WO2015123889A1 - 一种脉冲变压器及其制造方法 - Google Patents

一种脉冲变压器及其制造方法 Download PDF

Info

Publication number
WO2015123889A1
WO2015123889A1 PCT/CN2014/072467 CN2014072467W WO2015123889A1 WO 2015123889 A1 WO2015123889 A1 WO 2015123889A1 CN 2014072467 W CN2014072467 W CN 2014072467W WO 2015123889 A1 WO2015123889 A1 WO 2015123889A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
core body
manufacturing
magnetic core
pulse transformer
Prior art date
Application number
PCT/CN2014/072467
Other languages
English (en)
French (fr)
Inventor
张晓东
张大伟
张观福
Original Assignee
东莞铭普光磁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞铭普光磁股份有限公司 filed Critical 东莞铭普光磁股份有限公司
Priority to PCT/CN2014/072467 priority Critical patent/WO2015123889A1/zh
Publication of WO2015123889A1 publication Critical patent/WO2015123889A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • H01F41/064Winding non-flat conductive wires, e.g. rods, cables or cords

Definitions

  • the invention relates to the field of magnetic device technology, in particular to a pulse transformer and a method of manufacturing the same.
  • the pulse transformer mainly functions as DC isolation, impedance matching, high voltage isolation, etc., to complete the primary and secondary DC current isolation, impedance matching and primary and secondary high voltage protection; the pulse transformer is mainly applied to IT equipment such as routers, modems and notebook computers.
  • the transformer is a device that converts AC voltage, current and impedance.
  • the transformer includes a magnetic core and a coil.
  • the winding has two or more windings, wherein the winding of the pulse signal source or the input signal is defined as the primary winding, and the working is completed.
  • the winding of the current or output signal is defined as the secondary line ⁇ ; when an alternating current or input signal is passed through the primary line, an alternating magnetic flux is generated in the core, causing a voltage or current to be induced in the secondary line.
  • the number of turns of the primary and secondary turns can be specifically set according to the actual use.
  • a magnetic ring is often used as the core body, and the magnetic ring structure can achieve a higher signal bandwidth, but the magnetic ring
  • the structure belongs to a closed structure, which is not conducive to the realization of an automated winding process, especially for a magnetic core with a small inner hole of the magnetic ring.
  • the manual uses a large number of manual manual threading, which not only has low production efficiency, but also has uneven product quality. Electrical characteristics also vary widely. This method not only causes great waste of human resources, but also has certain problems for the application of the client due to the instability of the characteristics.
  • the object of the present invention is to provide a pulse transformer and a manufacturing method thereof.
  • the magnetic core body of the pulse transformer has a split structure, which is beneficial to improving the production efficiency and quality of the pulse transformer.
  • the present invention provides a method for manufacturing a pulse transformer, comprising a magnetic core body wound with at least two winding turns, the magnetic core body being a split structure including a first magnetic core body and a second
  • the magnetic core body, the specific steps of the manufacturing process of the pulse transformer are as follows:
  • the first winding group is composed of a plurality of windings
  • the step S1 is specifically: winding each winding of the first winding group from the first end of the first magnetic core body in parallel at the same time. When folded to its second end, the foldback is wound back to the first end in parallel, and the beginning end of each winding is welded to the corresponding outer electrode.
  • the beginning ends of the windings of the same winding turns are at the same end.
  • step S3 winding each winding of the second winding group from the first magnetic core
  • the second end of the body is wound in parallel toward the first end, and is folded back and forth to the second end when wound to the first end thereof, and the beginning end of each winding is welded to the corresponding outer electrode.
  • the second winding group is further composed of a plurality of windings; when the first winding group is folded back in the step S1 and the winding back does not reach the initial end, the step S4 is performed, and the second winding group is Each winding is wound in parallel from the second end of the first core body toward the first end.
  • step S4 when the second winding group is wound to approach the other end portion, the folding back is wound back in parallel to the starting end of the winding.
  • the outer electrode connecting the beginning end of each of the windings is at the same end as the beginning end of the winding.
  • the outer electrodes connecting the beginning ends of the respective windings are located at opposite ends from the beginning ends of the windings.
  • the outer electrodes located at both ends of the first core body are a group on both sides, and each group is connected to the beginning end of a winding.
  • the number of windings in the first winding group and the second winding group is two.
  • the first magnetic core body is an I-shaped magnetic core, and includes a central cylindrical magnetic core and a boss disposed at two ends of the cylindrical magnetic core, wherein the winding wire is disposed on the columnar magnetic core.
  • the outer electrode is disposed on the boss.
  • the magnetic core body of the winding wire ⁇ in the pulse transformer provided by the invention is a split structure, and the windings constituting the winding wire turns before the first magnetic core body and the second magnetic core body form a complete closed magnetic circuit. Winding on at least one of the two magnetic core bodies, which can eliminate the technical problem that the magnetic core body is an integral annular structure and causes winding difficulties in the prior art, which is beneficial to realize automatic winding, reduce cost, and solve the present problem. In the technology, the quality of the product is inconsistent due to the hand-made transformer.
  • the present invention also provides a pulse transformer comprising a core body wound with at least two winding turns, wherein the core body is a split structure including a first core body and a second magnetic body.
  • the core body, the first core body and the second core body may together form a closed magnetic circuit, and the pulse transformer is processed by the manufacturing method of the pulse transformer according to any one of the above.
  • the pulse transformer also has the advantageous technical effects of the above manufacturing method.
  • FIG. 1 is a schematic top view of a three-dimensional structure of a pulse transformer according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a bottom view of the pulse transformer shown in FIG. 1
  • FIG. 3 is a first core body of a preferred embodiment.
  • FIG. 4 is a schematic structural view of a second magnetic core body in a preferred embodiment;
  • FIG. 5 is a schematic structural view of a winding wire W1 and W2 wound to form a winding wire ⁇ according to an embodiment of the present invention; 6 is a specific embodiment of the present invention in which windings W3 and W4 are wound to form a winding wire
  • Figure 7 is a schematic cross-sectional view of the winding of Figure 6; 8 is a schematic diagram of electrical connection of a pulse transformer according to a preferred embodiment of the present invention; FIG. 9 is a block diagram of a method for manufacturing a pulse transformer according to an embodiment of the present invention; FIG. 10 is a pulse transformer according to another embodiment of the present invention. A block diagram of the manufacturing method. detailed description
  • the core of the invention provides a pulse transformer and a manufacturing method thereof.
  • the magnetic core body of the pulse transformer has a split structure, which is beneficial to improving the production efficiency and quality of the pulse transformer.
  • FIG. 1 is a schematic structural view of a three-dimensional structure of a pulse transformer according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a bottom view of the pulse transformer shown in FIG. 1
  • the present invention provides a pulse transformer comprising a core body wound with at least two winding turns, the core body being a split structure comprising a first core body 1 and a second core body 4, A core body 1 and a second core body 4 can collectively enclose a closed magnetic circuit.
  • the specific steps of the manufacturing process of the pulse transformer are as follows:
  • the winding wires may be wound around the first core body 1 , that is, the winding wires are all disposed on the same core body, or a part of the windings may be wound around the first core body 1 , and the other part of the number is
  • the winding is wound around the second core body 4, that is, the winding cores are disposed on both core bodies.
  • the position of the outer electrode can be installed according to the number and position of the winding wire ⁇ . Generally, for the convenience of connection, the outer electrode and the winding wire connected thereto are disposed on the same core body.
  • the magnetic core body of the winding wire in the pulse transformer provided by the invention is a split structure, Before the first core body 1 and the second core body 4 form a complete closed magnetic circuit, the windings constituting the winding turns are wound on at least one of the two core bodies, which can eliminate the prior art. Due to the technical problem that the core body is an integral ring structure, the winding is difficult, the automatic winding is facilitated, the cost is reduced, and the problem of inconsistent product twisting quality caused by manual manufacture of the transformer in the prior art is solved.
  • first core body 1 and the second core body 4 are not described in the present application, and the two may be an I-shaped structure or the like, as long as the two can form a ring-shaped closed magnetic circuit to satisfy the transformer.
  • the requirements for use can be.
  • the size of the core body and the outer electrode can be adjusted according to actual needs, and the material of the core body can also be adapted as needed.
  • the beginning ends of the windings of the same winding turns are located at the same end, which facilitates an operator to accurately and quickly identify both ends of the same winding and reduce the probability of error in the external circuit.
  • a preferred embodiment of the first core body 1 and the second core body 4 is shown in Figures 3-4, respectively.
  • the first core body 1 has an I-shaped structure, including a central cylindrical core 5 and a boss disposed at both ends of the cylindrical core, and the winding wire is disposed on the column
  • the outer electrode is disposed on the boss
  • the second core body 4 is an I-shaped planar structure
  • the second core body 4 is fixed to the boss at both ends of the first core body 1 by glue curing. on.
  • the pulse transformer may include a first winding group composed of a plurality of windings, and step S1 specifically includes the steps of: winding each winding of the first winding group from the first core body
  • step S1 specifically includes the steps of: winding each winding of the first winding group from the first core body
  • the first end portion 3 of 1 is wound in parallel at the same time, and when folded to its second end portion 2, it is folded back and wound back to the first end portion 3, and the beginning end of each winding is welded to the corresponding outer electrode, the starting end of the winding It may be soldered to the respective outer electrode before winding, or may be soldered to the corresponding outer electrode after winding.
  • the number of windings in the first winding group may preferably be two.
  • the following embodiment introduces the technical solution by taking two simultaneous windings as an example, and needs to be explained.
  • the number of windings that are simultaneously wound in parallel is limited to the above two, and may also be three or more. This paper only considers the current winding process, and gives A preferred embodiment of the invention.
  • Step S10 soldering the starting end of each winding to the corresponding outer electrode
  • Step S20 winding each winding of the first winding group from the first end portion 3 of the first core body 1 at the same time, and winding back and forth to the first end portion 3 when winding to the second end portion 2 thereof. (the starting end of the winding); the number of winding turns of each winding can be set according to actual needs;
  • Figure 1 shows a winding path of wl and w2;
  • Step S30 soldering the ends of the windings to the corresponding outer electrodes.
  • the two windings in the first winding group are defined as: wl and w2, the initial ends of the winding are: wla and w2a, and the end portions of the winding are: wlb and w2b,
  • External electrode: pl, p2, p7, p8; Wla and wlb are soldered to the outer electrodes pl, p2 (Fig. 8) or the outer electrodes pi, p8 (Fig. 5), and w2a and w2b are soldered to the outer electrodes p7, p8 (Fig. 8) or external electrodes p2, p7 (Fig. 5).
  • a single winding can be used to wind a plurality of turns, and the molding efficiency is relatively high, and the precision of the winding is relatively high for a pulse transformer having a number of turns of a primary winding and a secondary winding of 1:1. , is conducive to improve the accuracy of the work of the product.
  • the same end of the same winding wire ⁇ is located on the same side, which facilitates the provision of external electrodes on the same side of the first core body 1, which facilitates connection of external circuits and increases product flexibility.
  • the pulse transformer may further include a second winding group composed of a plurality of windings; after step S1, before step S2, adding step S3: removing each winding of the second winding group from the first A second end portion 2 of the core body 1 is wound in parallel to the first end portion 3, and is folded back and wound back to the second end portion 2 when wound to the first end portion 3 thereof, and the beginning ends of the respective windings are welded to Corresponding external electrodes.
  • the two windings in the second winding group are defined as: w3 and w4, the initial ends of the winding are: w3a and w4a, the end portions of the winding are: w3b and w4b, and the outer electrodes: p3, p4, p5, P6; soldering w3a and w3b to the outer electrodes p3, p4 (Fig. 8) or the outer electrodes p3, p6 (Fig. 5), soldering w4a and w4b to the outer electrodes p5, p6 (Fig. 8) or the outer electrode p4, P5 (Fig.
  • the pulse transformer may further include a second winding group consisting of a plurality of windings; when the first winding group is folded back in the step S1 and the winding back does not reach the initial end, step S4 is performed. And winding each winding of the second winding group from the second end portion 2 of the first core body 1 to the first end portion 3 in parallel.
  • the winding of the second winding group winding is performed while winding the first winding group winding, which further improves the winding efficiency.
  • step S4 may further add the following steps: When the second winding is wound close to the other end, the foldback is wound back in parallel to the starting end of the winding.
  • first winding group and the second winding group After the winding of the first winding group and the second winding group is completed, welding of the winding end of the first winding, the end portion of the second winding, and the corresponding external electrode is performed.
  • the initial ends of the windings in the second winding may be pre-welded to the respective outer electrodes, and the first winding group and the second winding group form the total winding wire ⁇ 6, as shown in Fig. 6.
  • the outer electrode connecting the beginning end of each of the windings is at the same end as the beginning end of the winding, and the above embodiment is taken as an example, and the winding ends of the first winding group are The external electrode connected to the end is disposed at the first end portion 3 of the first core body 1; Similarly, in the above embodiments, the outer electrode connected to the beginning end of the winding in the second winding group is disposed at the The second end portion 2 of the first core body 1 is described.
  • the outer electrodes connecting the beginning ends of the respective windings and the beginning ends of the windings are respectively located at opposite ends.
  • the manner of connecting the initial end portion and the end portion of the winding in the first winding group to the external electrode is not limited to the above connection manner, and according to the use environment of the pulse transformer, the external electrode may be selected at other suitable positions, part or all of the outside.
  • the electrodes and the winding ends are respectively located at both ends.
  • the outer electrodes located at the two ends of the first core body 1 are a group of two sides, and each group is connected to the beginning end of a winding. .
  • the present invention also provides a pulse transformer comprising a magnetic core body wound with at least two winding turns, the magnetic core body being a split structure comprising a first core body 1 and a second core body 4
  • the first magnetic core body 1 and the second magnetic core body 4 may together form a closed magnetic circuit, and the pulse transformer is processed by the manufacturing method of the pulse transformer according to any one of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

一种脉冲变压器及其制造方法,该制造方法包括缠绕有至少两个绕组线圈的磁芯本体,磁芯本体为分体结构,包括第一磁芯本体和第二磁芯本体,脉冲变压器的制造工艺具体步骤如下:首先将各绕线缠绕至第一磁芯本体或第二磁芯本体上形成相应绕组线圈,并将各绕线的始末端焊接至相应外电极;其次安装第一磁芯本体于第二磁芯本体上,使两者围成闭合磁路;该脉冲变压器中的缠绕线圈的磁芯本体为分体式结构,在第一磁芯本体和第二磁芯本体组成完整的闭合磁路之前,先将组成绕组线圈的绕线缠绕于两磁芯本体至少一者上,这样可以消除现有技术中因磁芯本体为一体式环形结构而导致绕线困难的技术问题,有利于实现自动化绕线,降低成本。

Description

一种脉冲变压器及其制造方法
技术领域
本发明涉及磁性器件技术领域, 特别是脉沖变压器及其制造方法。
背景技术
脉沖变压器主要起到直流隔离、 阻抗匹配、 高压隔离等作用, 完成初 次级直流电流隔离、 阻抗匹配及初次级的高压防护; 脉沖变压器主要应用 于路由器, 调制解调器, 笔记本电脑等 IT设备。
变压器是变换交流电压、 电流和阻抗的器件, 变压器包括磁芯和线圏, 线圏有两个或两个以上的绕组, 其中接脉沖信号源或输入信号的绕组定义 为初级线圏, 接工作电流或输出信号的绕组定义为次级线圏; 当初级线圏 中通有交流电流或输入信号时, 磁芯中便产生交流磁通, 使次级线圏中感 应出电压或电流。 其中初级线圏和次级线圏的圏数可以根据实际使用情况 进行专门设置。
现有的脉沖变压器, 为了达到较高的磁耦合效果, 减小漏磁, 从而提 高通信带宽的目的, 往往采用磁环作为磁芯本体, 磁环结构可以实现较高 的信号带宽, 但磁环结构属于闭合结构, 其本身不利于实现自动化的绕线 工艺,特别是对于磁环内孔较小的磁芯, 目前业界大量采用人工手工穿线, 不仅生产效率低下, 而且产品质量参差不齐, 产品电气特性也偏差很大。 此种方式不仅造成人力资源的极大浪费, 而且由于特性的不稳定, 对客户 端的应用也会造成一定的困扰。
因此, 如何改进脉沖变压器的结构, 提高脉沖变压器的生产效率和质 量, 是本领域内技术人员亟待解决的技术问题。
发明内容
本发明的目的为提供一种脉沖变压器及其制造方法, 该脉沖变压器的 磁芯本体为分体结构, 有利于提高脉沖变压器的生产效率和质量。 为解决上述技术问题, 本发明提供一种脉沖变压器的制造方法, 包括 缠绕有至少两个绕组线圏的磁芯本体, 所述磁芯本体为分体结构, 包括第 一磁芯本体和第二磁芯本体, 所述脉沖变压器的制造工艺具体步骤如下:
51、 将各绕线缠绕至第一磁芯本体或第二磁芯本体上形成相应绕组线 圏, 并将各所述绕线的始末端焊接至相应外电极;
52、 安装第一磁芯本体于第二磁芯本体上, 使两者围成闭合磁路。 优选地, 包括由若干根绕线组成的第一绕线组, 步骤 S1具体为: 将所 述第一绕线组的各绕线从第一磁芯本体的第一端部同时并行缠绕, 当绕至 其第二端部时折返并行绕回至第一端部, 并将各绕线的始末端焊接至相应 外电极。
优选地, 同一绕组线圏的绕线的始末端位于同一端部。
优选地,还包括由若干根绕线组成的第二绕线组; 在步骤 S1之后, 步 骤 S2之前, 增加步骤 S3: 将所述第二绕线组的各绕线从所述第一磁芯本 体第二端部向第一端部并行缠绕, 当绕至其第一端部时折返并行绕回至第 二端部, 并将各绕线的始末端焊接至相应外电极。
优选地,还包括由若干根绕线组成的第二绕线组; 当步骤 S1中第一绕 线组折返并行绕回未到达初始端前, 进行步骤 S4、 将所述第二绕线组的各 绕线从所述第一磁芯本体第二端部向第一端部并行缠绕。
优选地,步骤 S4中进一步增加以下步骤: 当第二绕线组中绕至靠近另 一端部时折返并行绕回至绕线的起始端部。
优选地, 连接各所述绕线的始末端的外电极与该所述绕线的始末端位 于同一端部。
优选地, 连接各所述绕线的始末端的外电极与该所述绕线的始末端分 别位于相对端部。
优选地, 位于所述第一磁芯本体两端部的外电极两两为一组分居于两 侧, 每组对应连接一条绕线的始末端。
优选地, 所述第一绕线组和第二绕线组中绕线的数量为两根。
优选地, 所述第一磁芯本体为工字型磁芯, 包括中部的柱状磁芯和设 置于所述柱状磁芯两端的凸台, 所述绕组线圏设于所述柱状磁芯上, 所述 外电极设置于所述凸台。 脉沖变压器在工作时, 选择合适的绕组线圏为初级线圏, 将该绕组线 圏对应的外电极连接脉沖信号源, 其他的绕组线圏连接工作电路。
本发明所提供的脉沖变压器中的缠绕线圏的磁芯本体为分体式结构, 在第一磁芯本体和第二磁芯本体组成完整的闭合磁路之前, 先将组成绕组 线圏的绕线缠绕于两磁芯本体至少一者上, 这样可以消除现有技术中, 因 磁芯本体为一体式环形结构而导致绕线困难的技术问题, 有利于实现自动 化绕线, 降低成本, 而且解决现有技术中变压器由于手工制作所导致的产 品缠制质量不一致的问题。
另外, 本发明还提供了一种脉沖变压器, 包括缠绕有至少两个绕组线 圏的磁芯本体, 其特征在于, 所述磁芯本体为分体结构, 包括第一磁芯本 体和第二磁芯本体, 所述第一磁芯本体和第二磁芯本体可共同围成闭合磁 路,所述脉沖变压器由上述任一项所述的脉沖变压器的制造方法加工而成。 该脉沖变压器也具有上述制造方法的有益技术效果。
附图说明
图 1为本发明一种具体实施方式中脉沖变压器的立体结构上视结构示 意图; 图 2为图 1所示脉沖变压器的下视结构示意图; 图 3为一种优选实施例中第一磁芯本体的结构示意图; 图 4为一种优选实施例中第二磁芯本体的结构示意图; 图 5为本发明一种具体实施方式中绕线 W1 , W2绕制形成绕组线圏后的 结构示意图; 图 6为本发明一种具体实施方式中绕线 W3 , W4绕制形成绕组线圏后的
图 7为图 6的绕组剖视示意图; 图 8为本发明一种优选的实施方式中脉沖变压器电气连接示意图; 图 9为本发明一种具体实施方式中脉沖变压器的制造方法框图; 图 10为本发明另一种具体实施方式中脉沖变压器的制造方法框图。 具体实施方式
本发明的核心为提供一种脉沖变压器及其制造方法, 该脉沖变压器的 磁芯本体为分体结构, 有利于提高脉沖变压器的生产效率和质量。
为了使本领域的技术人员更好地理解本发明的技术方案, 下面结合脉 沖变压器的结构、 制造方法、 附图和具体实施例对本发明作进一步的详细 说明。
请综合参考图 1-2、 图 9, 图 1为本发明一种具体实施方式中脉沖变压 器的立体结构上视结构示意图; 图 2为图 1所示脉沖变压器的下视结构示 意图; 图 9为本发明一种具体实施方式中脉沖变压器的制造方法框图。 本发明提供了一种脉沖变压器, 该脉沖变压器包括缠绕有至少两个绕 组线圏的磁芯本体, 磁芯本体为分体结构, 包括第一磁芯本体 1和第二磁 芯本体 4, 第一磁芯本体 1和第二磁芯本体 4可共同围成闭合磁路, 脉沖 变压器的制造工艺具体步骤如下:
Sl、 将各绕线缠绕至第一磁芯本体 1或第二磁芯本体 4上形成相应绕 组线圏, 并将各绕线的始末端焊接至相应外电极;
绕线可以均缠绕至第一磁芯本体 1 , 也就是说绕组线圏均设置于同一 磁芯本体上, 也可以部分根数的绕线缠绕于第一磁芯本体 1 , 另一部分根 数的绕线缠绕于第二磁芯本体 4, 即两磁芯本体上均设置有绕组线圏。
其中, 外电极的设置位置可以根据绕组线圏的设置数量和位置选择合 适的位置安装, 一般为了连接方便, 外电极和与其连接的绕组线圏设置于 同一磁芯本体上。
S2、安装第一磁芯本体 1于第二磁芯本体 4上,使两者围成闭合磁路。 脉沖变压器在工作时, 选择合适的绕组线圏为初级线圏, 将该绕组线 圏对应的外电极连接脉沖信号源, 其他的绕组线圏连接工作电路。
本发明所提供的脉沖变压器中的缠绕线圏的磁芯本体为分体式结构, 在第一磁芯本体 1和第二磁芯本体 4组成完整的闭合磁路之前, 先将组成 绕组线圏的绕线缠绕于两磁芯本体至少一者上,这样可以消除现有技术中, 因磁芯本体为一体式环形结构而导致绕线困难的技术问题, 有利于实现自 动化绕线, 降低成本, 而且解决现有技术中变压器由于手工制作所导致的 产品缠制质量不一致的问题。
对于第一磁芯本体 1和第二磁芯本体 4的具体结构本申请文件中不作 过多介绍, 两者可以为工字型结构或其他类似结构, 只要两者能组成环形 闭合磁路满足变压器的使用要求即可。 同理, 磁芯本体以及外电极的尺寸 大小可以根据实际需要做相应调整,磁芯本体的材质也可以根据需要适配。
在一种优选的实施方式中, 同一绕组线圏的绕线的始末端位于同一端 部, 这样便于操作人员准确、 快速识别同一绕组的两端部, 减小外接电路 出错概率。
图 3-4中分别给出了第一磁芯本体 1和第二磁芯本体 4的一种优选实 施方式。
在一种优选实施方式中, 第一磁芯本体 1为工字型结构, 包括中部的 柱状磁芯 5和设置于所述柱状磁芯两端的凸台, 所述绕组线圏设于所述柱 状磁芯上, 所述外电极设置于所述凸台, 第二磁芯本体 4为 I型平面结构, 第二磁芯本体 4通过胶水固化安装于第一磁芯本体 1两端部的凸台上。
为了进一步提高脉沖变压器的绕制效率, 以下给出了几种绕组线圏的 绕制方法, 具体如下。
在一种具体实施例中, 脉沖变压器可以包括由若干根绕线组成的第一 绕线组,步骤 S1具体包括以下步骤:将所述第一绕线组的各绕线从第一磁 芯本体 1的第一端部 3同时并行缠绕, 当绕至其第二端部 2时折返并行绕 回至第一端部 3 , 并将各绕线的始末端焊接至相应外电极, 绕线起始端可 以在缠绕之前焊接至相应外电极上, 也可以在缠绕之后焊接至相应外电极 上。
在提高缠绕效率的同时, 为了尽量降低缠绕工艺的难度, 第一绕线组 中绕线的根数可以优选为两根, 以下实施例以两根同时并行缠绕为例进行 介绍技术方案, 需要说明的是, 同时并行缠绕的绕线根数部局限于上述两 根, 也可以为三根或更多根数, 本文只是综合考虑目前的缠绕工艺, 给出 的一种优选的实施方式。
请综合参考图 5-8 , 以下给出了在缠绕之前焊接初始端的制造工艺, 具体步骤如下:
步骤 S10、 将各绕线的起始端焊接至相应外电极;
步骤 S20、 将第一绕线组的各绕线从第一磁芯本体 1的第一端部 3同 时并行缠绕, 当绕至其第二端部 2时折返并行绕回至第一端部 3 (绕线的 起始端); 各绕线的缠绕圏数可以根据实际需求设置; 图 7中示出了 wl和 w2的一绕制路径;
步骤 S30、 将各绕线的末端焊接至相应外电极。
为了描述技术方案的清楚筒洁,本文定义第一绕线组中两绕线分别为: wl和 w2,绕线的初始端部为: wla和 w2a,绕线的末端部为: wlb和 w2b, 外电极: pl、 p2、 p7、 p8; 将 wla和 wlb焊接于外电极 pl、 p2上(图 8 ) 或外电极 pi、 p8 (图 5 ), 将 w2a和 w2b焊接于外电极 p7、 p8上(图 8 ) 或外电极 p2、 p7 (图 5 )。
本实施方式中, 一次缠绕可以绕制出多个线圏, 成型效率比较高, 并 且对于初级线圏和次级线圏的圏数为 1: 1 的脉沖变压器, 该绕制的精确度 比较高, 有利于提高产品的工作精确度。
另外, 通过该绕制成型的同一绕组线圏的始末端位于同侧, 便于在第 一磁芯本体 1的同侧设置外电极, 方便连接外电路,增加产品使用灵活性。
进一步地, 脉沖变压器还可以包括由若干根绕线组成的第二绕线组; 在步骤 S1之后, 步骤 S2之前, 增加步骤 S3: 将所述第二绕线组的各绕线 从所述第一磁芯本体 1第二端部 2向第一端部 3并行缠绕, 当绕至其第一 端部 3时折返并行绕回至第二端部 2, 并将各绕线的始末端焊接至相应外 电极。
本文定义第二绕线组中两绕线分别为: w3和 w4, 绕线的初始端部为: w3a和 w4a, 绕线的末端部为: w3b和 w4b, 外电极: p3、 p4、 p5、 p6; 将 w3a和 w3b焊接于外电极 p3、 p4上(图 8 )或外电极 p3、 p6 (图 5 ), 将 w4a和 w4b焊接于外电极 p5、 p6上(图 8 )或外电极 p4、 p5 (图 5 ) 该实施方式不仅可以进一步增加绕组线圏的数量, 而且可以实现变压 器初级线圏和次级线圏匹配数量的多种选择。 在另一种优选的实施方式中, 脉沖变压器还可以包括由若干根绕线组 成的第二绕线组; 当步骤 S1中第一绕线组折返并行绕回未到达初始端前, 进行步骤 S4、将所述第二绕线组的各绕线从所述第一磁芯本体 1第二端部 2向第一端部 3并行缠绕。
这样, 在绕制第一绕线组线圏的同时进行第二绕线组线圏的绕制, 进 一步提高了绕制效率。
在上述实施方式的基础上,步骤 S4可以进一步增加以下步骤: 当第二 绕组中绕至靠近另一端部时折返并行绕回至绕线的起始端部。
在完成第一绕线组和第二绕线组的缠绕后, 再进行第一绕组中绕线末 端、 第二绕组末端部和相应外电极的焊接。 第二绕组中绕线的初始端部可 以预先焊接于相应外电极上, 第一绕线组和第二绕线组通过以上步骤形成 总绕组线圏 6, 如图 6所示。
上述各实施例中, 连接各所述绕线的始末端的外电极与该所述绕线的 始末端位于同一端部, 以上述实施例为例, 与第一绕线组中各绕线的始末 端连接的外电极设置于所述第一磁芯本体 1的第一端部 3; 同理, 上述各 实施例中, 与第二绕线组中绕线的始末端连接的外电极设置于所述第一磁 芯本体 1的第二端部 2。
当然, 连接各所述绕线的始末端的外电极与该所述绕线的始末端分别 位于相对端部。
第一绕线组中的绕线初始端部和末端部与外电极的连接方式不局限于 上述连接方式, 根据脉沖变压器的使用环境, 可以将外电极选择其他合适 位置设置, 部分或全部的外电极与绕线端部分别位于两端部。
在一种优选的实施方式中, 上述各实施例中, 位于所述第一磁芯本体 1 两端部的外电极两两为一组分居于两侧, 每组对应连接一条绕线的始末 端。
这样可以便于识别连接端口, 减少与外接电路时出错的概率。
此外, 本发明还提供了一种脉沖变压器, 包括缠绕有至少两个绕组线 圏的磁芯本体, 所述磁芯本体为分体结构, 包括第一磁芯本体 1和第二磁 芯本体 4, 所述第一磁芯本体 1和第二磁芯本体 4可共同围成闭合磁路, 所述脉沖变压器由上述任一项所述的脉沖变压器的制造方法加工而成。 以上对本发明所提供的一种脉沖变压器及其制造方法进行了详细介 实施例的说明只是用于帮助理解本发明的方法及其核心思想。 应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理的前提下, 还 可以对本发明进行若干改进和修饰, 这些改进和修饰也落入本发明权利要 求的保护范围内。

Claims

权 利 要 求
1、一种脉沖变压器的制造方法, 包括缠绕有至少两个绕组线圏的磁芯 本体, 其特征在于, 所述磁芯本体为分体结构, 包括第一磁芯本体(1 )和 第二磁芯本体(4 ), 所述脉沖变压器的制造工艺具体步骤如下:
51、 将各绕线缠绕至第一磁芯本体 ( 1 )或第二磁芯本体(4 )上形成 相应绕组线圏, 并将各所述绕线的始末端焊接至相应外电极;
52、 安装第一磁芯本体 ( 1 ) 于第二磁芯本体(4 )上, 使两者围成闭 合磁路。
2、 如权利要求 1所述的制造方法, 其特征在于, 同一绕组线圏的绕线 的始末端位于同一端部。
3、 如权利要求 2所述的制造方法, 其特征在于, 包括由若干根绕线组 成的第一绕线组,步骤 S1具体为:将所述第一绕线组的各绕线从第一磁芯 本体(1 )的第一端部(3 ) 同时并行缠绕, 当绕至其第二端部(2 )时折返 并行绕回至第一端部 (3 ), 并将各绕线的始末端焊接至相应外电极。
4、 如权利要求 3所述的制造方法, 其特征在于, 还包括由若干根绕线 组成的第二绕线组; 在步骤 S1之后, 步骤 S2之前, 增加步骤 S3: 将所述 第二绕线组的各绕线从所述第一磁芯本体的第二端部( 2 )向第一端部( 3 ) 并行缠绕, 当绕至其第一端部(3 )时折返并行绕回至第二端部(2 ), 并将 各绕线的始末端焊接至相应外电极。
5、 如权利要求 3所述的制造方法, 其特征在于, 还包括由若干根绕线 组成的第二绕线组; 当步骤 S1 中第一绕线组折返并行绕回未到达初始端 前, 进行步骤 S4、 将所述第二绕线组的各绕线从所述第一磁芯本体第二端 部 (2 ) 向第一端部 (3 )并行缠绕。
6、 如权利要求 5所述的制造方法, 其特征在于, 步骤 S4中进一步增 加以下步骤: 当第二绕线组中绕至靠近另一端部时折返并行绕回至绕线的 起始端部。
7、 如权利要求 1至 6任一项所述的制造方法, 其特征在于, 连接各所 述绕线的始末端的外电极与该所述绕线的始末端位于同一端部。
8、 如权利要求 1至 6任一项所述的制造方法, 其特征在于, 连接各所 述绕线的始末端的外电极与该所述绕线的始末端分别位于相对端部。
9、 如权利要求 7所述的制造方法, 其特征在于, 位于所述第一磁芯本 体( 1 )两端部的外电极两两为一组分居于两侧, 每组对应连接一条绕线的 始末端。
10、 如权利要求 3至 6任一项所述的制造方法, 其特征在于, 所述第 一绕线组和第二绕线组中绕线的数量为两根。
11、 如权利要求 1所述的制造方法, 其特征在于, 所述第一磁芯本体 ( 1 ) 为工字型磁芯, 包括中部的柱状磁芯和设置于所述柱状磁芯 (5 ) 两 端的凸台, 所述绕组线圏设于所述柱状磁芯上, 所述外电极设置于所述凸 台。
12、 一种脉沖变压器, 包括缠绕有至少两个绕组线圏的磁芯本体, 其 特征在于, 所述磁芯本体为分体结构, 包括第一磁芯本体( 1 )和第二磁芯 本体(4 ), 所述第一磁芯本体(1 )和第二磁芯本体(4 )可共同围成闭合 磁路,所述脉沖变压器由上述权利要求 1至 11任一项所述的脉沖变压器的 制造方法加工而成。
PCT/CN2014/072467 2014-02-24 2014-02-24 一种脉冲变压器及其制造方法 WO2015123889A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072467 WO2015123889A1 (zh) 2014-02-24 2014-02-24 一种脉冲变压器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072467 WO2015123889A1 (zh) 2014-02-24 2014-02-24 一种脉冲变压器及其制造方法

Publications (1)

Publication Number Publication Date
WO2015123889A1 true WO2015123889A1 (zh) 2015-08-27

Family

ID=53877572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072467 WO2015123889A1 (zh) 2014-02-24 2014-02-24 一种脉冲变压器及其制造方法

Country Status (1)

Country Link
WO (1) WO2015123889A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017143117A (ja) * 2016-02-09 2017-08-17 株式会社村田製作所 コイル部品
JP2017143118A (ja) * 2016-02-09 2017-08-17 株式会社村田製作所 コイル部品
CN108053982A (zh) * 2017-12-29 2018-05-18 铜陵日科电子有限责任公司 变压器引线防护结构
CN108258912A (zh) * 2015-09-11 2018-07-06 万国半导体(开曼)股份有限公司 脉冲变压器
CN111313479A (zh) * 2020-03-09 2020-06-19 贵州电网有限责任公司 一种应用于配电网中可调配的能源路由器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822549B2 (en) * 2001-12-03 2004-11-23 Wolfgram Industries, Inc. Method for increased coupling coefficient in a pulse type transformer through coil configuration and varied core area
CN202171992U (zh) * 2011-06-29 2012-03-21 富士康(昆山)电脑接插件有限公司 脉冲变压器
CN202736634U (zh) * 2012-06-20 2013-02-13 泉德电子股份有限公司 脉冲变压器
CN103594874A (zh) * 2012-08-16 2014-02-19 富士康(昆山)电脑接插件有限公司 电连接器及其应用
CN103779041A (zh) * 2014-02-24 2014-05-07 东莞铭普光磁股份有限公司 一种脉冲变压器及其制造方法
CN203721420U (zh) * 2014-02-24 2014-07-16 东莞铭普光磁股份有限公司 一种脉冲变压器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822549B2 (en) * 2001-12-03 2004-11-23 Wolfgram Industries, Inc. Method for increased coupling coefficient in a pulse type transformer through coil configuration and varied core area
CN202171992U (zh) * 2011-06-29 2012-03-21 富士康(昆山)电脑接插件有限公司 脉冲变压器
CN202736634U (zh) * 2012-06-20 2013-02-13 泉德电子股份有限公司 脉冲变压器
CN103594874A (zh) * 2012-08-16 2014-02-19 富士康(昆山)电脑接插件有限公司 电连接器及其应用
CN103779041A (zh) * 2014-02-24 2014-05-07 东莞铭普光磁股份有限公司 一种脉冲变压器及其制造方法
CN203721420U (zh) * 2014-02-24 2014-07-16 东莞铭普光磁股份有限公司 一种脉冲变压器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108258912A (zh) * 2015-09-11 2018-07-06 万国半导体(开曼)股份有限公司 脉冲变压器
CN108258912B (zh) * 2015-09-11 2020-04-28 万国半导体(开曼)股份有限公司 脉冲变压器
JP2017143117A (ja) * 2016-02-09 2017-08-17 株式会社村田製作所 コイル部品
JP2017143118A (ja) * 2016-02-09 2017-08-17 株式会社村田製作所 コイル部品
CN108053982A (zh) * 2017-12-29 2018-05-18 铜陵日科电子有限责任公司 变压器引线防护结构
CN111313479A (zh) * 2020-03-09 2020-06-19 贵州电网有限责任公司 一种应用于配电网中可调配的能源路由器

Similar Documents

Publication Publication Date Title
WO2015123889A1 (zh) 一种脉冲变压器及其制造方法
AU2012337260B2 (en) Wind-on core manufacturing method for split core configurations
TWI459414B (zh) 耦合電感
TWI609387B (zh) 複合磁性元件
JP2017126634A (ja) コイル部品
CN103779041B (zh) 一种脉冲变压器及其制造方法
TWI615861B (zh) 變壓器、變壓器繞組及其製作方法
CN206421891U (zh) 一种方便自动化绕线的变压器及开关电源
TWI601166B (zh) 繞線器、變壓器及纏繞繞線於繞線器的方法
WO2016147482A1 (ja) 絶縁トランス
JP3829572B2 (ja) トランス及びその製造方法
WO2019033879A1 (zh) 一种变压器
CN107887147A (zh) 一种磁集成变压器及加工方法
JP2010165711A (ja) コイル及び変圧器
CN211788543U (zh) 一种环形电感器和变压器
CN203721420U (zh) 一种脉冲变压器
JPS6154607A (ja) トランス
TWM498953U (zh) 磁性元件之繞線架結構
JP2014049681A (ja) トランス
CN109346288A (zh) 一种片式磁心以及使用该磁心的片式变压器
TW201324551A (zh) 繞組、繞組形成方法以及變壓器
JP2014139973A (ja) デュアルモードチョークコイル、及び、デュアルモードチョークコイルの製造方法
JP3904442B2 (ja) トランスモジュール
RU2284601C1 (ru) Способ намотки высокочастотного силового трансформатора
TWI641007B (zh) Transformer manufacturing method capable of increasing output

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882817

Country of ref document: EP

Kind code of ref document: A1