WO2015123796A1 - 一种分数阶次不同的含x2的chen混沌切换系统方法及电路 - Google Patents

一种分数阶次不同的含x2的chen混沌切换系统方法及电路 Download PDF

Info

Publication number
WO2015123796A1
WO2015123796A1 PCT/CN2014/000403 CN2014000403W WO2015123796A1 WO 2015123796 A1 WO2015123796 A1 WO 2015123796A1 CN 2014000403 W CN2014000403 W CN 2014000403W WO 2015123796 A1 WO2015123796 A1 WO 2015123796A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
operational amplifier
resistor
capacitor
multiplier
Prior art date
Application number
PCT/CN2014/000403
Other languages
English (en)
French (fr)
Inventor
梅增霞
Original Assignee
梅增霞
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 梅增霞 filed Critical 梅增霞
Publication of WO2015123796A1 publication Critical patent/WO2015123796A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/001Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals

Definitions

  • the invention relates to a chaotic system and a circuit implementation, in particular to a method and a circuit for a chen chaotic switching system with c 2 having different fractional orders.
  • the methods and circuits for switching chaotic systems mainly include switching between different linear or nonlinear terms in chaotic systems, and fractional order based on the two switching modes.
  • the switching method and circuit of the system have not been proposed yet.
  • the present invention proposes a method and circuit for a chen chaotic switching system with different fractions of X 2 .
  • the present invention proposes a novel switching method and circuit for a novel chaotic system. This provides a new idea for increasing the type of chaotic system switching and the application of this chaotic system to engineering practice.
  • the technical problem to be solved by the present invention is to provide a method and a circuit for a chen chaotic switching system with different fractions of X 2 , and the present invention adopts the following technical means to achieve the object of the invention:
  • a method for chen chaotic switching system with X 2 having different fractional orders characterized in that it comprises the following steps:
  • the analog switch U5 adopts ADG888, and the operational amplifier U1 is connected to the multiplier U3, the multiplier U4 and the analog switch ⁇ 5, the operational amplifier U2 is connected to the multiplier U3 and the analog switch U5, and the multiplier U3 is connected to the operational amplifier U1.
  • the multiplier U4 is connected to the operational amplifier U2, the analog switch U5 is connected to the operational amplifier U1 and the operational amplifier U2;
  • the first pin of the operational amplifier U1 is connected to the second pin of the operational amplifier m via the resistor R3, and is connected to the sixth pin of the operational amplifier U1 via the resistor R8, and the third, fifth, and tenth of the operational amplifier U1.
  • 12-pin ground the 4th pin is connected to VCC
  • the 11th pin is connected to VEE
  • the 6th pin of the operational amplifier U1 is connected in parallel with the capacitor Cyll through the resistor Ryll, the parallel connection of the resistor Ryl2 and the capacitor Cyl2, and then the resistor Ryl3 In parallel with the capacitor Cyl3, connect the 7th pin of the analog switch U5, connect the resistor Ry21 and the capacitor Cy21 in parallel, connect the resistor Ry22 and the capacitor Cy22 in parallel, and then connect the resistor Ry23 and the capacitor Cy23 in parallel, then connect the analog
  • the fifth pin of the switch U5, the seventh pin of the operational amplifier U1 is connected to the 13th pin of the operational amplifier U1 through the resistor R2, the second pin of the operational amplifier U1 through
  • the first and third pins of the U4 and the ninth pin of the operational amplifier ⁇ are connected in parallel with the capacitor Cx11 through the resistor Rx11, and the parallel connection between the resistor Rxl2 and the capacitor Cxl2, and then connected in parallel with the resistor Rxl3 and the capacitor Cxl3.
  • the second pin of the analog switch U5 is connected in parallel with the capacitor Cx21 through the resistor Rx21, and the parallel connection between the resistor Rx22 and the capacitor Cx22, and then connected in parallel with the capacitor Rx23 and the capacitor Cx23, and then connected to the fourth pin of the analog switch U5.
  • the 14th pin of amplifier U1 is connected to the 13th pin of the operational amplifier 1)1 through the resistor R1, and is connected to the 9th pin of the operational amplifier U1 through the resistor R7;
  • the sixth and seventh pins of the operational amplifier U2 are left floating, the third, fifth, ten, and 12 pins of the operational amplifier U2 are grounded, the fourth pin is connected to VCC, the eleventh pin is connected to VEE, and the operational amplifier U2 is
  • the first pin is connected to the series ground of the resistors R14 and R15, and connected to the 8th and 9th pins of the analog switch U5 through R14.
  • the 8th pin of the operational amplifier U2 is connected to the 9th pin of the operational amplifier U2 through the resistor R12.
  • the third pin of U3, the ninth pin of the operational amplifier U2 is connected in parallel with the capacitor Czll through the resistor Rzll, and the parallel connection between the resistor Rzl2 and the capacitor Czl2, and then connected in parallel with the capacitor Rzl3 and the capacitor Czl3, and then connected to the analog switch U5.
  • the 10th pin is connected in parallel with the capacitor Cz21 through the resistor Rz21.
  • the Rz22 and the capacitor Cz22 are connected in parallel, and then connected in parallel with the capacitor Rz23 and the capacitor Cz23, and then connected to the 12th pin of the analog switch U5, and the 14th pin of the operational amplifier U2 is connected to the 13th lead of the operational amplifier U2 through the resistor R1 1
  • the pin is connected to the ninth pin of the operational amplifier U2 through the resistor R13;
  • the first pin of the multiplier U3 is connected to the eighth pin of the operational amplifier U1, and the third pin is connected to the eighth pin of the operational amplifier U2.
  • the second, fourth, and sixth pins are grounded, and the fifth pin is connected.
  • VEE the 7th pin is connected to the 6th pin of the operational amplifier U1 through the resistor R9, and the 8th pin is connected to VCC;
  • the first and third pins of the multiplier U4 are connected to the eighth pin of the operational amplifier U1, the second, fourth, and sixth pins are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the operational amplifier through the resistor R10.
  • Pin 13 of U2 Pin 8 is connected to VCC;
  • Pin 1 of the analog switch U5 is connected to VCC,
  • Pin 16 is grounded,
  • Pins 13, 14, and 15 are floating, and
  • Pin 3 is connected to the operational amplifier.
  • the 8th pin of U 1 , the 6th pin is connected to the 7th pin of the operational amplifier U1, and the 11th pin is connected to the 8th pin of the operational amplifier U2.
  • a circuit of chen chaotic switching system with different fractions of X 2 characterized in that an operational amplifier U1, an operational amplifier U2, a resistor and a capacitor are used to form an inverting adder and fractional inversion of different orders.
  • the integrator realizes the multiplication operation by using the multiplier U3 and the multiplier U4, and realizes the selection and output of the analog signal by using the analog switch U5, the operational amplifier U1 and the operational amplifier U2 adopt LF347D, and the multiplier U3 and the multiplier U4 adopt AD633JN,
  • the analog switch U5 is an ADG888, and the operational amplifier U1 is connected to a multiplier U3, a multiplier U4, and an analog switch U5.
  • the operational amplifier U2 is connected to a multiplier U3 and an analog switch U5.
  • the multiplier U3 is connected to the operational amplifier U1.
  • the multiplier U4 is connected to the operational amplifier U2, and the analog switch U5 is connected to the operational amplifier U1 and the operational amplifier U2.
  • the first pin of the operational amplifier U1 is connected to the second pin of the operational amplifier U1 via the resistor R3, and passes through Resistor R8 is connected to the 6th pin of the operational amplifier U1, the 3rd, 5th, 10th, and 12th pins of the operational amplifier U1 are grounded, and the 4th pin is connected to VCC, 1st
  • the pin is connected to VEE, and the sixth pin of the operational amplifier U1 is connected in parallel with the capacitor Cyl l through the resistor Ryl l, and the parallel connection between the resistor Ryl2 and the capacitor Cyl 2 is connected, and then the parallel connection between the resistor Ryl 3 and the capacitor Cy l 3 is connected.
  • the 7th pin of the analog switch U5 is connected in parallel with the capacitor Cy21 through the resistor Ry21, and the parallel connection of the resistor Ry22 and the capacitor Cy22. Then, the parallel connection between the resistor Ry23 and the capacitor Cy23 is connected, and then the fifth pin of the analog switch U5 is connected.
  • the 7th pin of amplifier U 1 is connected to the 13th pin of operational amplifier U1 through resistor R2, the second pin of operational amplifier U1 through resistor R5, and the 8th pin of operational amplifier U1 is connected to operational amplifier U1 through resistor R6.
  • the 9th pin is connected to the 6th pin of the operational amplifier U1 through the resistor R4, the second pin of the operational amplifier U2, the first pin of the multiplier U3, and the first and third pins of the multiplier U4.
  • the ninth pin of the operational amplifier U1 is connected in parallel with the capacitor Cxl l through the resistor Rx ll, and the parallel connection between the resistor Rxl 2 and the capacitor Cx l 2 , and then connected in parallel with the resistor Rxl 3 and the capacitor Cxl 3 , and then connected to the analog switch U5
  • the second pin is connected in parallel with the capacitor c21 through the resistor Rx21.
  • the 14th pin of the operational amplifier U1 is connected to the 13th pin of the operational amplifier U1 through the resistor R1, and is connected to the operational amplifier U1 through the resistor R7. 9 pins;
  • the 6th and 7th pins of the operational amplifier U2 are left floating, the 3rd, 5th, 10th, and 12th pins of the operational amplifier U2 are grounded, the fourth pin is connected to VCC, the 1st pin is connected to VEE, and the operational amplifier U2
  • the first pin of the resistor is connected to the series ground of the resistors R14 and R15, and the eighth and the nine pins of the analog switch U5 are connected through R14.
  • the eighth pin of the operational amplifier U2 is connected to the ninth pin of the operational amplifier 112 through the resistor R12.
  • the third pin of the multiplier U3, the ninth pin of the operational amplifier U2 is connected in parallel with the capacitor Czl l through the resistor Rz ll, the parallel connection of the resistor Rz l2 and the capacitor Cz l 2 , and then the resistor Rz l 3 and the capacitor Cz l
  • the 10th pin of the analog switch U5 is connected, the parallel connection of the resistor Rz21 and the capacitor Cz21 is connected, the parallel connection of the resistor Rz22 and the capacitor Cz22 is connected, and then the parallel connection of the resistor Rz23 and the capacitor Cz23 is connected, and then the analog switch U5 is connected.
  • the 12th pin, the 14th pin of the operational amplifier U2 is connected to the 13th pin of the operational amplifier U2 through the resistor R1 1, and is connected to the 9th pin of the operational amplifier U2 through the resistor R13;
  • the first pin of the multiplier U3 is connected to the eighth pin of the operational amplifier U1, and the third pin is connected to the eighth pin of the operational amplifier U2.
  • the second, fourth, and sixth pins are grounded, and the fifth pin is connected.
  • VEE the 7th pin is connected to the 6th pin of the operational amplifier U1 through the resistor R9, and the 8th pin is connected to VCC;
  • the first and third pins of the multiplier U4 are connected to the eighth pin of the operational amplifier U1, the second, fourth, and sixth pins are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the operational amplifier through the resistor R10.
  • Pin 13 of U2 pin 8 is connected to VCC;
  • pin 1 of analog switch U5 is connected to VCC,
  • pin 16 is grounded, pins 13 and 14 are suspended, and pin 3 is connected to op amp
  • the 8th pin of U1, the 6th pin is connected to the 7th pin of the operational amplifier U1, and the 1st pin is connected to the 8th pin of the operational amplifier U2.
  • a novel switching method and circuit for a novel chaotic system is proposed, which provides a new idea for increasing the type of chaotic system switching and the application of the chaotic system to engineering practice.
  • FIG. 1 is a schematic diagram of a circuit connection structure according to a preferred embodiment of the present invention.
  • a method of XY chaotic switching system with X 2 having different fractional order characterized in that it comprises the following steps: (1) The equation of the chen chaotic system i containing X 2 is:
  • the operational amplifier U2 is connected to a multiplier U3 and an analog switch U5.
  • the multiplier U3 is connected to the operational amplifier U1.
  • the multiplier U4 is connected to the operational amplifier U2, the analog switch U5 is connected to the operational amplifier U1 and the operational amplifier U2;
  • the first pin of the operational amplifier U1 is connected to the second pin of the operational amplifier U1 via the resistor R3, and is connected to the sixth pin of the operational amplifier U1 via the resistor R8, and the third, fifth, and tenth of the operational amplifier U1.
  • 12-pin ground the 4th pin is connected to VCC
  • the 11th pin is connected to VEE
  • the 6th pin of the operational amplifier U1 is connected in parallel with the capacitor Cyll through the resistor Ryll
  • the parallel connection of the resistor Ryl2 and the capacitor Cyl2 and then the resistor Ryl3
  • the third pin of the analog switch U5 is connected, and the parallel connection of the resistor Ry21 and the capacitor Cy21 is connected in parallel with the capacitor Ry22 and the capacitor Cy22, and then the parallel connection of the resistor Ry23 and the capacitor Cy23 is connected, and then the simulation is performed.
  • the fifth pin of U5, the seventh pin of the operational amplifier U1 is connected to the 13th pin of the operational amplifier U1 through the resistor R2, the second pin of the operational amplifier U1 through the resistor R5, and the eighth lead of the operational amplifier U1.
  • the pin is connected to the ninth pin of the operational amplifier U1 through the resistor R6, to the sixth pin of the operational amplifier m through the resistor R4, to the second pin of the operational amplifier U2, to the first pin of the multiplier U3, and to the multiplier.
  • the first and third pins, the ninth pin of the operational amplifier U1 is connected in parallel with the capacitor Cxl l through the resistor Rxl l, and the parallel connection of the resistor Rxl2 and the capacitor Cxl2, and then connected in parallel with the resistor Rxl 3 and the capacitor Cxl3, and then connected
  • the second pin of the analog switch U5 is connected in parallel with the capacitor Cx21 through the resistor Rx21, and the parallel connection between the resistor Rx22 and the capacitor Cx22, and then connected in parallel with the resistor Rx23 and the capacitor C X 23, and then connected to the fourth pin of the analog switch U5.
  • the 14th pin of the operational amplifier U1 is connected to the 13th pin of the operational amplifier U1 through the resistor R1, and is connected to the 9th pin of the operational amplifier U1 through the resistor R7;
  • the sixth and seventh pins of the operational amplifier U2 are left floating, the third, fifth, ten, and twelve pins of the operational amplifier U2 are grounded, the fourth pin is connected to VCC, the eleventh pin is connected to VEE, and the operational amplifier U2 is The first pin is connected to the series ground of resistors R14 and R15, and the 8th and 9th pins of analog U5 are connected through R14. The 8th pin of the operational amplifier U2 is connected to the 9th pin of the operational amplifier U2 through the resistor R12.
  • the third pin of the multiplier U3, the ninth pin of the operational amplifier U2 is connected in parallel with the capacitor Cz ll through the resistor Rzl l , and the parallel connection of the resistor Rz l2 and the capacitor Czl2, and then connected in parallel with the resistor Rzl3 and the capacitor Czl 3
  • the 14th pin of the operational amplifier U2 is connected to the 13th pin of the operational amplifier U2 through the resistor R11, and is connected to the 9th pin of the operational amplifier U2 through the resistor R13;
  • the first pin of the multiplier U3 is connected to the eighth pin of the operational amplifier U1, and the third pin is connected to the eighth pin of the operational amplifier U2.
  • the second, fourth, and sixth pins are grounded, and the fifth pin is connected.
  • VEE the 7th pin is connected to the 6th pin of the operational amplifier U1 through the resistor R9, and the 8th pin is connected to VCC;
  • the first and third pins of the multiplier U4 are connected to the eighth pin of the operational amplifier U1, the second, fourth, and sixth pins are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the operational amplifier through the resistor R10. Pin 13 of U2, the 8th pin is connected to VCC;
  • the first pin of the analog switch U5 is connected to VCC, the 16th pin is grounded, the 13th, 14th, and 15th pins are floating, the third pin is connected to the 8th pin of the operational amplifier U1, and the 6th pin is connected to the operational amplifier.
  • the 7th pin of U1 and the 11th pin are connected to the 8th pin of the operational amplifier U2.
  • a circuit of chen chaotic switching system with different fractions of X 2 characterized in that an operational amplifier U1, an operational amplifier U2, a resistor and a capacitor are used to form an inverting adder and fractional inversion of different orders.
  • the integrator performs multiplication by multiplier U3 and multiplier U4, and selects and outputs an analog signal by using analog switch U5.
  • FF347D is used for operational amplifier U1 and operational amplifier U2
  • AD633JN is used for multiplier U3 and multiplier U4.
  • the analog switch U5 is an ADG888
  • the operational amplifier U1 is connected to a multiplier U3, a multiplier U4, and an analog switch U5.
  • the operational amplifier U2 is connected to a multiplier U3 and an analog switch U5.
  • the multiplier U3 is connected to the operational amplifier U1.
  • the multiplier U4 is connected to the operational amplifier U2, and the analog switch U5 is connected to the operational amplifier U1 and the operational amplifier U2;
  • the first pin of the operational amplifier U1 is connected to the second pin of the operational amplifier U1 via the resistor R3, and is powered.
  • Resistor R8 is connected to the 6th pin of the operational amplifier Ul, the 3rd, 5th, 10th, and 12th pins of the operational amplifier U1 are grounded, the 4th pin is connected to VCC, the 11th pin is connected to VEE, and the operational amplifier U1 is 6th.
  • the pin is connected in parallel with the capacitor Cyl l through the resistor Ryl l, and the parallel connection between the resistor Ryl2 and the capacitor Cyl2, and then connected in parallel with the resistor Ryl3 and the capacitor Cyl3, and then connected to the 7th pin of the analog switch U5, through the resistor Ry21 and the capacitor Cy21
  • the resistor Ry22 is connected in parallel with the capacitor Cy22, and then connected in parallel with the resistor Cy23 and the capacitor Cy23, and then connected to the fifth pin of the analog switch U5.
  • the seventh pin of the operational amplifier U1 is connected to the operational amplifier U1 through the resistor R2.
  • the 13th pin is connected to the 2nd pin of the operational amplifier U1 through the resistor R5.
  • the 8th pin of the operational amplifier U1 is connected to the 9th pin of the operational amplifier U1 through the resistor R6, and is connected to the 6th lead of the operational amplifier U1 through the resistor R4.
  • the second pin of the operational amplifier U2 is connected to the first pin of the multiplier U3, the first and third pins of the multiplier U4, and the ninth pin of the operational amplifier U1 passes through the resistor Rxl l and the capacitor Cxl l In parallel, connect the resistor xl2 to the capacitor Cxl2 in parallel, and then After the resistor Rxl3 and the capacitor Cxl 3 are connected in parallel, the second pin of the analog switch U5 is connected, and the parallel connection of the resistor Rx21 and the capacitor Cx21 is connected in parallel with the capacitor Cx22, and then the parallel connection between the resistor Rx23 and the capacitor Cx23 is performed.
  • the fourth pin of the analog switch U5 is connected, and the 14th pin of the operational amplifier U1 is connected to the 13th pin of the operational amplifier U1
  • the sixth and seventh pins of the operational amplifier U2 are left floating, the third, fifth, ten, and 12 pins of the operational amplifier U2 are grounded, the fourth pin is connected to VCC, the eleventh pin is connected to VEE, and the operational amplifier U2 is The first pin is connected to the series ground of the resistors R14 and R15, and the eighth and the nine pins of the analog switch U5 are connected through R14.
  • the eighth pin of the operational amplifier U2 is connected to the ninth pin of the operational amplifier U2 through the resistor 12, and the multiplication method is adopted.
  • the third pin of U3, the ninth pin of the operational amplifier U2 is connected in parallel with the capacitor Czl l through the resistor Rzl l , and the parallel connection of the resistor Rzl2 and the capacitor Czl 2 , and then connected in parallel with the resistor Rzl3 and the capacitor Czl3, and then connected
  • the 10th pin of the analog switch U5 is connected in parallel with the capacitor Cz21 through the resistor Rz21 and the capacitor Cz21. Then, the parallel connection between the resistor Rz22 and the capacitor Cz22 is connected, and then the 12th pin of the analog switch U5 is connected.
  • the 14th pin of the amplifier U2 is connected to the 13th pin of the operational amplifier U2 through the resistor R11, and is connected to the 9th pin of the operational amplifier U2 through the resistor R13;
  • the first pin of the multiplier U3 is connected to the eighth pin of the operational amplifier U1, and the third pin is connected to the eighth pin of the operational amplifier U2.
  • the second, fourth, and sixth pins are grounded, and the fifth pin is connected.
  • VEE the 7th pin is connected to the 6th pin of the operational amplifier U1 through the resistor R9, and the 8th pin is connected to VCC;
  • the first and third pins of the multiplier LI4 are connected to the eighth pin of the operational amplifier U1, the second, fourth, and sixth pins are grounded, the fifth pin is connected to VEE, and the seventh pin is connected to the operational amplifier through the resistor R10.
  • Pin 13 of U2 Pin 8 is connected to VCC; Pin 1 of the analog switch U5 is connected to VCC, Pin 16 is grounded, Pins 13, 14, and 15 are floating, and Pin 3 is connected to the operational amplifier.
  • the 8th pin of U1 the 6th pin is connected to the 7th pin of the operational amplifier U1
  • the 11th pin is connected to the 8th pin of the operational amplifier U2.

Abstract

本发明提供一种分数阶次不同的含x2的chen混沌切换系统方法及电路,利用运算放大器U1、运算放大器U2及电阻和电容构成反相加法器和不同阶次的分数阶反相积分器,利用乘法器U3和乘法器U4实现乘法运算,利用模拟开关U5实现模拟信号的选择输出,所述运算放大器U1和运算放大器U2采用LF347D,所述乘法器U3和乘法器U4采用AD633JN,所述模拟开关U5采用ADG888,所述运算放大器U1连接乘法器U3、乘法器U4和模拟开关U5,所述运算放大器U2连接乘法器U3和模拟开关U5,所述乘法器U3连接运算放大器U1,所述乘法器U4连接运算放大器U2,所述模拟开关U5连接运算放大器U1和运算放大器U2,提出了一个新型的混沌系统的新型切换方法及电路,这对增加混沌系统切换的类型及这种混沌系统应用于工程实践提供了一种新思路。

Description

说 明 书
一种分数阶次不同的含 X2的 chen混沌切换系统方法及电路 技术领域
本发明涉及一个混沌系统及电路实现, 特别涉及一种分数阶次不同的含 c2的 chen混沌 切换系统方法及电路。
背景技术
目前, 己有的切换混沌系统的方法与电路主要包括混沌系统中不同线性项或非线性项 的之间的切换, 以及基于这 2种切换模式的分数阶形式, 关于不同阶次的分数阶混沌系统的 切换方法及电路还没有被提出, 本发明提出了一种分数阶次不同的含 X2的 chen 混沌切换系 统方法及电路, 本发明提出了一个新型的混沌系统的新型切换方法及电路, 这对增加混沌系 统切换的类型及这种混沌系统应用于工程实践提供了一种新思路。
发明内容
本发明要解决的技术问题是提供一种分数阶次不同的含 X2的 chen 混沌切换系统方法 及电路, 本发明采用如下技术手段实现发明目的:
1、 一种分数阶次不同的含 X2的 chen混沌切换系统方法, 其特征是在于, 包括以下步骤:
( 1 ) 含 的 chen混沌系统 i的方程为:
dx/ώ = α(γ-χ)
dy / dt = (c- a)x + cy-xz i a = 35,b = 3,c = 28
dz / dt = x2 - bz
(2) 0.9阶含 x2的 chen混沌系统 ii的方程为: 35,b = 3,c = 28
Figure imgf000003_0001
(3) 0. 1阶含 的 chen混沌系统 iii的方程为:
d0Ax/ dt0A = a(y-x)
d0 ly/dt0A = (c-a)x + cy-xz iii a = 35, b = 3,c = 28
d0 iz/dt0 =x2 -bz
(4)构造切换函数 = f(x),其中 /(x)的表达式 iv为:
ίθ.9 χ>0
q = f(x) = i iv
[0.1 x≤0
(5)由 、 iii和 w构造一种分数阶次不同的含 x2的 chen混沌切换系统 v为: dq x I d = a(y-x) ,
i0.9 x>0
\dqy I df =(c~ a)x + cv-xz a = 35,b = 3, c = 28 , q = f(x) = < v
\ 0.1 x<0
dqzldf =x2~bz
(6)根据分数阶次不同的含 x2的 chen 混沌切换系统 v构造模拟电路系统, 利用运算放大器 Ul、 运算放大器 U2 及电阻和电容构成反相加法器和不同阶次的分数阶反相积分器, 利用乘 法器 U3和乘法器 U4实现乘法运算, 利用模拟开关 U5实现模拟信号的选择输出, 所述运算 放大器 U1和运算放大器 U2采用 LF347D, 所述乘法器 U3和乘法器 U4采用 AD633JN, 所述模 拟开关 U5采用 ADG888, 所述运算放大器 U1连接乘法器 U3、 乘法器 U4和模拟开关 ϋ5, 所 述运算放大器 U2连接乘法器 U3和模拟开关 U5, 所述乘法器 U3连接运算放大器 Ul, 所述乘 法器 U4连接运算放大器 U2, 所述模拟开关 U5连接运算放大器 U1和运算放大器 U2;
所述运算放大器 U1的第 1引脚通过电阻 R3与运算放大器 m的第 2引脚相接, 通过电 阻 R8与运算放大器 U1的第 6引脚相接, 运算放大器 U1的第 3、 5、 10、 12引脚接地, 第 4 引脚接 VCC, 第 11引脚接 VEE, 运算放大器 U1的第 6引脚通过电阻 Ryll与电容 Cyll的并 联, 接电阻 Ryl2与电容 Cyl2的并联, 再接电阻 Ryl3与电容 Cyl3的并联后, 再接模拟开关 U5的第 7引脚, 通过电阻 Ry21与电容 Cy21 的并联, 接电阻 Ry22与电容 Cy22的并联, 再 接电阻 Ry23与电容 Cy23的并联后, 再接模拟开关 U5的第 5引脚, 运算放大器 U1的第 7引 脚通过电阻 R2接运算放大器 U1的第 13引脚, 通过电阻 R5接运算放大器 U1的第 2引脚, 运算放大器 U1的第 8引脚通过电阻 R6接运算放大器 U1的第 9引脚, 通过电阻 R4接运算放 大器 U1的第 6引脚, 接运算放大器 U2的第 2引脚, 接乘法器 U3的第 1引脚, 接乘法器 U4 的第 1、 3 引脚, 运算放大器 ϋΐ 的第 9 引脚通过电阻 Rxll 与电容 Cxll 的并联, 接电阻 Rxl2与电容 Cxl2的并联, 再接电阻 Rxl3与电容 Cxl3 的并联后, 再接模拟开关 U5的第 2 引脚, 通过电阻 Rx21 与电容 Cx21 的并联, 接电阻 Rx22 与电容 Cx22 的并联, 再接电阻 Rx23与电容 Cx23的并联后, 再接模拟开关 U5的第 4引脚, 运算放大器 U1 的第 14引脚通 过电阻 R1接运算放大器 1)1的第 13引脚, 通过电阻 R7接运算放大器 U1的第 9引脚;
所述运算放大器 U2的第 6、 7引脚悬空, 所述运算放大器 U2的第 3、 5、 10、 12引脚 接地, 第 4引脚接 VCC, 第 11 引脚接 VEE, 运算放大器 U2的第 1引脚通过电阻 R14和 R15 的串联接地,通过 R14接模拟开关 U5的第 8、 9 引脚, 运算放大器 U2的第 8 引脚通过电阻 R12接运算放大器 U2的第 9引脚, 接乘法器 U3的第 3引脚, 运算放大器 U2的第 9引脚通 过电阻 Rzll与电容 Czll 的并联, 接电阻 Rzl2与电容 Czl2的并联, 再接电阻 Rzl3与电容 Czl3的并联后, 再接模拟开关 U5的第 10引脚, 通过电阻 Rz21与电容 Cz21 的并联, 接电 阻 Rz22与电容 Cz22的并联, 再接电阻 Rz23与电容 Cz23的并联后, 再接模拟开关 U5的第 12引脚, 运算放大器 U2的第 14引脚通过电阻 R1 1接运算放大器 U2的第 13引脚, 通过电 阻 R13接运算放大器 U2的第 9引脚;
所述乘法器 U3的第 1 引脚接运算放大器 U1的第 8引脚, 第 3引脚接运算放大器 U2的 第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R9接运算放大器 U1的第 6引脚, 第 8引脚接 VCC;
所述乘法器 U4的第 1、 3引脚接运算放大器 U1的第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R10接运算放大器 U2的第 13引脚, 第 8引脚接 VCC ; 所述模拟开关 U5的第 1 引脚接 VCC,第 16引脚接地, 第 13、 14、 15引脚悬空, 第 3 引脚接运算放大器 U 1的第 8引脚, 第 6引脚接运算放大器 U1的第 7引脚, 第 11引脚接运 算放大器 U2的第 8引脚。
2、 一种分数阶次不同的含 X2的 chen 混沌切换系统电路, 其特征是在于, 利用运算放 大器 Ul、 运算放大器 U2及电阻和电容构成反相加法器和不同阶次的分数阶反相积分器, 利 用乘法器 U3和乘法器 U4实现乘法运算, 利用模拟开关 U5实现模拟信号的选择输出, 所述 运算放大器 U1和运算放大器 U2采用 LF347D , 所述乘法器 U3和乘法器 U4采用 AD633JN, 所 述模拟开关 U5 采用 ADG888 , 所述运算放大器 U1 连接乘法器 U3、 乘法器 U4 和模拟开关 U5, 所述运算放大器 U2连接乘法器 U3和模拟开关 U5, 所述乘法器 U3连接运算放大器 Ul, 所述乘法器 U4连接运算放大器 U2, 所述模拟开关 U5连接运算放大器 U1和运算放大器 U2 ; 所述运算放大器 U1的第 1引脚通过电阻 R3与运算放大器 U1的第 2引脚相接, 通过电 阻 R8与运算放大器 U1的第 6引脚相接, 运算放大器 U1的第 3、 5、 10、 12引脚接地, 第 4 引脚接 VCC, 第 1 1 引脚接 VEE, 运算放大器 U1的第 6引脚通过电阻 Ryl l与电容 Cyl l的并 联, 接电阻 Ryl2与电容 Cyl 2的并联, 再接电阻 Ryl 3与电容 Cy l 3的并联后, 再接模拟开关 U5的第 7引脚, 通过电阻 Ry21与电容 Cy21 的并联, 接电阻 Ry22与电容 Cy22的并联, 再 接电阻 Ry23与电容 Cy23的并联后, 再接模拟开关 U5的第 5引脚, 运算放大器 U 1的第 7引 脚通过电阻 R2接运算放大器 U1的第 13引脚, 通过电阻 R5接运算放大器 U1的第 2引脚, 运算放大器 U1的第 8引脚通过电阻 R6接运算放大器 U1的第 9引脚, 通过电阻 R4接运算放 大器 U1的第 6引脚, 接运算放大器 U2的第 2引脚, 接乘法器 U3的第 1引脚, 接乘法器 U4 的第 1、 3 引脚, 运算放大器 U1 的第 9 引脚通过电阻 Rx l l 与电容 Cxl l 的并联, 接电阻 Rxl 2与电容 Cx l 2的并联, 再接电阻 Rxl 3与电容 Cxl 3的并联后, 再接模拟开关 U5的第 2 引脚, 通过电阻 Rx21 与电容 c21 的并联, 接电阻 Rx22 与电容 Cx22 的并联, 再接电阻 Rx23与电容 Cx23的并联后, 再接模拟开关 U5的第 4引脚, 运算放大器 U1 的第 14引脚通 过电阻 R1接运算放大器 U1的第 1 3引脚, 通过电阻 R7接运算放大器 U1的第 9引脚;
所述运算放大器 U2的第 6、 7引脚悬空, 所述运算放大器 U2的第 3、 5、 10、 12引脚 接地, 第 4引脚接 VCC, 第 1 1 引脚接 VEE, 运算放大器 U2的第 1 引脚通过电阻 R14和 R15 的串联接地,通过 R14接模拟开关 U5的第 8、 9 引脚, 运算放大器 U2的第 8 引脚通过电阻 R12接运算放大器 112的第 9引脚, 接乘法器 U3的第 3引脚, 运算放大器 U2的第 9引脚通 过电阻 Rz l l与电容 Czl l的并联, 接电阻 Rz l2与电容 Cz l 2的并联, 再接电阻 Rz l 3与电容 Cz l 3的并联后, 再接模拟开关 U5的第 10引脚, 通过电阻 Rz21与电容 Cz21 的并联, 接电 阻 Rz22与电容 Cz22的并联, 再接电阻 Rz23与电容 Cz23的并联后, 再接模拟开关 U5的第 12引脚, 运算放大器 U2的第 14引脚通过电阻 R1 1接运算放大器 U2的第 13引脚, 通过电 阻 R13接运算放大器 U2的第 9引脚;
所述乘法器 U3的第 1引脚接运算放大器 U1的第 8引脚, 第 3引脚接运算放大器 U2的 第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R9接运算放大器 U1的第 6引脚, 第 8引脚接 VCC ;
所述乘法器 U4的第 1、 3引脚接运算放大器 U1的第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R10接运算放大器 U2的第 13引脚, 第 8引脚接 VCC ; 所述模拟开关 U5的第 1 引脚接 VCC,第 16引脚接地, 第 13、 14、 15 引脚悬空, 第 3 引脚接运算放大器 U1的第 8引脚, 第 6引脚接运算放大器 U 1的第 7引脚, 第 1 1引脚接运 算放大器 U2的第 8引脚。
本发明的有益效果是: 提出了一个新型的混沌系统的新型切换方法及电路, 这对增加 混沌系统切换的类型及这种混沌系统应用于工程实践提供了一种新思路。
附图说明
图 1为本发明优选实施例的电路连接结构示意图。
图 2和图 3为本发明的电路实际连接图。
具体实施方式
下面结合附图和优选实施例对本发明作更进一步的详细描述, 参见图 1 -图 3。
1、 一种分数阶次不同的含 X2的 chen混沌切换系统方法, 其特征是在于, 包括以下步骤: ( 1 ) 含 X2的 chen混沌系统 i的方程为:
dx l dt = a(y - x)
< dy / dt = (c - a)x + cy - x∑ i a = 35, b = 3, c = 28
dz I dt = x1 - bz (2) 0.9阶含 x2的 chen混沌系统 ii的方程为:
d°'9x I dt0' = a(y― x)
< d°'9y I dt0'9 = (c-a)x + cy-xz ii α二 35, b二 3, c = 28
do z I dt0'9 = x2 -bz
(3) 0. 1阶含 x2的 chen混沌系统 iii的方程为:
d°'lx / dt0A = a(y― x)
< d0 y / dt0.1 = (c~a)x + cy-xz iii a二 35,b二 3,c = 28
d0Az I dt01 -x2 -bz
(4)构造切换函数 g = / c),其中/ ( )的表达式 iv为:
(0.9 x>0
q = f(x) = < iv
J [0.1 x<0
(5)由 ii、 iii和 iv构造一种分数阶次不同的含 x2的 chen混沌切换系统 v为: ν
Figure imgf000007_0001
dqz I df χ—— bz
(6)根据分数阶次不同的含 x2的 chen 混沌切换系统 v构造模拟电路系统, 利用运算放大器 U 运算放大器 U2 及电阻和电容构成反相加法器和不同阶次的分数阶反相积分器, 利用乘 法器 113和乘法器 U4实现乘法运算, 利用模拟开关 U5实现模拟信号的选择输出, 所述运算 放大器 U1和运算放大器 U2采用 LF347D, 所述乘法器 U3和乘法器 U4采用 AD633JN, 所述模 拟开关 U5采用 ADG888, 所述运算放大器 U1连接乘法器 U3、 乘法器 U4和模拟开关 1:5, 所 述运算放大器 U2连接乘法器 U3和模拟开关 U5, 所述乘法器 U3连接运算放大器 Ul, 所述乘 法器 U4连接运算放大器 U2, 所述模拟开关 U5连接运算放大器 U1和运算放大器 U2;
所述运算放大器 U1的第 1引脚通过电阻 R3与运算放大器 U1的第 2引脚相接, 通过电 阻 R8与运算放大器 U1的第 6引脚相接, 运算放大器 U1的第 3、 5、 10、 12引脚接地, 第 4 引脚接 VCC, 第 11引脚接 VEE, 运算放大器 U1的第 6引脚通过电阻 Ryll与电容 Cyll的并 联, 接电阻 Ryl2与电容 Cyl2的并联, 再接电阻 Ryl3与电容 Cyl3的并联后, 再接模拟开关 U5的第 Ί引脚, 通过电阻 Ry21与电容 Cy21的并联, 接电阻 Ry22与电容 Cy22的并联, 再 接电阻 Ry23与电容 Cy23的并联后, 再接模拟幵关 U5的第 5引脚, 运算放大器 U1的第 7引 脚通过电阻 R2接运算放大器 U1的第 13引脚, 通过电阻 R5接运算放大器 U1的第 2引脚, 运算放大器 U1的第 8引脚通过电阻 R6接运算放大器 U1的第 9引脚, 通过电阻 R4接运算放 大器 m的第 6引脚, 接运算放大器 U2的第 2引脚, 接乘法器 U3的第 1引脚, 接乘法器 U4 的第 1、 3 引脚, 运算放大器 U1 的第 9 引脚通过电阻 Rxl l 与电容 Cxl l 的并联, 接电阻 Rxl2与电容 Cxl2的并联, 再接电阻 Rxl 3与电容 Cxl3的并联后, 再接模拟开关 U5的第 2 引脚, 通过电阻 Rx21 与电容 Cx21 的并联, 接电阻 Rx22 与电容 Cx22 的并联, 再接电阻 Rx23与电容 CX23的并联后, 再接模拟开关 U5的第 4引脚, 运算放大器 U1 的第 14引脚通 过电阻 R1接运算放大器 U1的第 13引脚, 通过电阻 R7接运算放大器 U1的第 9引脚;
所述运算放大器 U2的第 6、 7引脚悬空, 所述运算放大器 U2的第 3、 5、 10、 12引脚 接地, 第 4引脚接 VCC, 第 11引脚接 VEE, 运算放大器 U2的第 1 引脚通过电阻 R14和 R15 的串联接地,通过 R14接模拟幵关 U5的第 8、 9引脚, 运算放大器 U2的第 8 引脚通过电阻 R12接运算放大器 U2的第 9引脚, 接乘法器 U3的第 3引脚, 运算放大器 U2的第 9引脚通 过电阻 Rzl l与电容 Cz l l 的并联, 接电阻 Rz l2与电容 Czl2的并联, 再接电阻 Rzl3与电容 Czl 3的并联后, 再接模拟开关 U5的第 10引脚, 通过电阻 Rz21 与电容 Cz21 的并联, 接电 阻 Rz22与电容 Cz22的并联, 再接电阻 Rz23与电容 Cz23的并联后, 再接模拟开关 U5的第 12引脚, 运算放大器 U2的第 14引脚通过电阻 R11接运算放大器 U2的第 13引脚, 通过电 阻 R13接运算放大器 U2的第 9引脚;
所述乘法器 U3的第 1引脚接运算放大器 U1的第 8引脚, 第 3引脚接运算放大器 U2的 第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R9接运算放大器 U1的第 6引脚, 第 8引脚接 VCC;
所述乘法器 U4的第 1、 3引脚接运算放大器 U1的第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R10接运算放大器 U2的第 13引脚, 第 8引脚接 VCC;
所述模拟开关 U5 的第 1 引脚接 VCC,第 16 引脚接地, 第 13、 14、 15 引脚悬空, 第 3 引脚接运算放大器 U1 的第 8引脚, 第 6引脚接运算放大器 U1的第 7引脚, 第 11 引脚接运 算放大器 U2的第 8引脚。
2、 一种分数阶次不同的含 X2的 chen 混沌切换系统电路, 其特征是在于, 利用运算放 大器 Ul、 运算放大器 U2及电阻和电容构成反相加法器和不同阶次的分数阶反相积分器, 利 用乘法器 U3和乘法器 U4实现乘法运算, 利用模拟开关 U5实现模拟信号的选择输出, 所述 运算放大器 U1和运算放大器 U2采用 LF347D, 所述乘法器 U3和乘法器 U4采用 AD633JN, 所 述模拟开关 U5 采用 ADG888 , 所述运算放大器 U1 连接乘法器 U3、 乘法器 U4 和模拟开关 U5 , 所述运算放大器 U2连接乘法器 U3和模拟开关 U5, 所述乘法器 U3连接运算放大器 Ul, 所述乘法器 U4连接运算放大器 U2, 所述模拟开关 U5连接运算放大器 U1和运算放大器 U2 ;
所述运算放大器 U1的第 1引脚通过电阻 R3与运算放大器 U1的第 2引脚相接, 通过电 阻 R8与运算放大器 Ul的第 6引脚相接, 运算放大器 U1的第 3、 5、 10、 12引脚接地, 第 4 引脚接 VCC, 第 11引脚接 VEE, 运算放大器 U1的第 6引脚通过电阻 Ryl l与电容 Cyl l的并 联, 接电阻 Ryl2与电容 Cyl2的并联, 再接电阻 Ryl3与电容 Cyl3的并联后, 再接模拟开关 U5的第 7引脚, 通过电阻 Ry21与电容 Cy21 的并联, 接电阻 Ry22与电容 Cy22的并联, 再 接电阻 Ry23与电容 Cy23的并联后, 再接模拟开关 U5的第 5引脚, 运算放大器 U1的第 7引 脚通过电阻 R2接运算放大器 U1的第 13引脚, 通过电阻 R5接运算放大器 U1的第 2引脚, 运算放大器 U1的第 8引脚通过电阻 R6接运算放大器 U1的第 9引脚, 通过电阻 R4接运算放 大器 U1的第 6引脚, 接运算放大器 U2的第 2引脚, 接乘法器 U3的第 1引脚, 接乘法器 U4 的第 1、 3 引脚, 运算放大器 U1 的第 9 引脚通过电阻 Rxl l 与电容 Cxl l 的并联, 接电阻 xl2与电容 Cxl2 的并联, 再接电阻 Rxl3与电容 Cxl 3的并联后, 再接模拟开关 U5 的第 2 引脚, 通过电阻 Rx21 与电容 Cx21 的并联, 接电阻 Rx22 与电容 Cx22 的并联, 再接电阻 Rx23与电容 Cx23的并联后, 再接模拟开关 U5的第 4引脚, 运算放大器 U1的第 14引脚通 过电阻 R1接运算放大器 U1的第 13引脚, 通过电阻 R7接运算放大器 U1的第 9引脚;
所述运算放大器 U2的第 6、 7引脚悬空, 所述运算放大器 U2的第 3、 5、 10、 12引脚 接地, 第 4引脚接 VCC, 第 11 引脚接 VEE, 运算放大器 U2的第 1 引脚通过电阻 R14和 R15 的串联接地,通过 R14接模拟开关 U5的第 8、 9引脚, 运算放大器 U2的第 8 引脚通过电阻 12接运算放大器 U2的第 9引脚, 接乘法器 U3的第 3引脚, 运算放大器 U2的第 9引脚通 过电阻 Rzl l与电容 Czl l 的并联, 接电阻 Rzl2与电容 Czl 2的并联, 再接电阻 Rzl3与电容 Czl3的并联后, 再接模拟开关 U5的第 10引脚, 通过电阻 Rz21与电容 Cz21 的并联, 接电 阻 Rz22与电容 Cz22的并联, 再接电阻 Rz23与电容 Cz23的并联后, 再接模拟开关 U5的第 12引脚, 运算放大器 U2的第 14引脚通过电阻 R11接运算放大器 U2的第 13引脚, 通过电 阻 R13接运算放大器 U2的第 9引脚;
所述乘法器 U3的第 1 引脚接运算放大器 U1的第 8引脚, 第 3引脚接运算放大器 U2的 第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R9接运算放大器 U1的第 6引脚, 第 8引脚接 VCC;
所述乘法器 LI4的第 1、 3引脚接运算放大器 U1的第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R10接运算放大器 U2的第 13引脚, 第 8引脚接 VCC; 所述模拟开关 U5的第 1 引脚接 VCC,第 16引脚接地, 第 13、 14、 15 引脚悬空, 第 3 引脚接运算放大器 U1的第 8引脚, 第 6引脚接运算放大器 U1的第 7引脚, 第 11 引脚接运 算放大器 U2的第 8引脚。 ¾¾Φ ¾PI ?l = i?7 = i?3 = i?8 = mi = i?13 = 10ytQ , R2 = R6 = 2Mkn , 4 = 14 Ω, R5 = 3.57kQ , R9 = RlO = lkn , R\2 = 333kQ , R\4 = 100kn , ?15 = Ω , ¾cl 1 = 1 = i?zl 1 = 62.84 Ω , Rxl2 = Ry\2 ^Rz\2 = 250kQ , Rx\2> = RyU = RzU = 2.5^Ω , Rx2\ = Ry2\ = Rz2\ = 0.636ΜΩ , 76:22 = Ry22 = Rz22 = 0.3815ΜΩ ,
Rx23 = Ry2 = Rz23 = 0.5672 Ω , Cxll = Cyll = Czll = 1.2// ,
Cxl2 = Cyl2 = Czl3 = 1.8/ , Cxl3 = Cy\2 = Cz\ = 1.1 , Cx21 = Cy2\ = Cz2\ = 15.75 / , Cx22 = Cyll = Cz22 = 0.1575 / , Cx23 = Cy23 = Cz23 = 633.5nF。
当然, 上述说明并非对本发明的限制, 本发明也不仅限于上述举例, 本技术领域的普 通技术人员在本发明的实质范围内所做出的变化、 改型、 添加或替换, 也属于本发明的保护 范围。

Claims

权 利 要 求 书
1、 一种分数阶次不同的含 X2的 chen混沌切换系统方法, 其特征是在于, 包括以下步骤:
(1) 含 X2的 chen混沌系统 i的方程为:
dxl dt = a(y-x)
dy I dt = (c - a)x -- cy - xz i a― 35, b = 3,c = 28
dz I dt~ X1 - b∑
(2) 0.9阶含 x2的 chen混沌系统 ii的方程为:
d°'9x I dt0'9 - x)
d°'9y/ dt0'9 - (c - a)x + cy-xz ii a = 35, b = 3,c = 28 , d°-9z/dt0-9 =x2-bz
(3) 0.1阶含 x2的 chen混沌系统 iii的方程为:
d0Ax I dt0A = a{y― x)
d0Ay/ dt0A二 (d)x + y— xz iii a = 35, b = 3,c = 28
d0Az / dt0A = x2 -bz
(4)构造切换函数 g = /(x),其中 /(x)的表达式 iv为:
ίθ.9 χ〉0
q = f(x) = \ iv
O.l <0
(5)由 ii、 iii和 iv构造一种分数阶次不同的含 x2的 chen混沌切换系统 v为: v
Figure imgf000011_0001
dqzl df =x -bz
(6)根据分数阶次不同的含 x2的 chen 混沌切换系统 v构造模拟电路系统, 利用运算放大器 Ul、 运算放大器 U2 及电阻和电容构成反相加法器和不同阶次的分数阶反相积分器, 利用乘 法器 U3和乘法器 IM实现乘法运算, 利用模拟开关 U5实现模拟信号的选择输出, 所述运算 放大器 U1和运算放大器 U2采用 LF347D, 所述乘法器 U3和乘法器 U4采用 AD633JN, 所述模 拟开关 U5采用 ADG888, 所述运算放大器 U1连接乘法器 U3、 乘法器 U4和模拟开关 U5, 所 述运算放大器 U2连接乘法器 U3和模拟开关 U5, 所述乘法器 U3连接运算放大器 Ul, 所述乘 法器 U4连接运算放大器 U2, 所述模拟开关 U5连接运算放大器 U1和运算放大器 U2;
所述运算放大器 LI1的第 1引脚通过电阻 R3与运算放大器 U1的第 2引脚相接, 通过电 阻 R8与运算放大器 U1的第 6引脚相接, 运算放大器 U1的第 3、 5、 10、 12引脚接地, 第 4 引脚接 VCC, 第 11引脚接 VEE, 运算放大器 U1的第 6引脚通过电阻 Ryll与电容 Cyll的并 联, 接电阻 Ryl2与电容 Cyl2的并联, 再接电阻 Ryl3与电容 Cyl3的并联后, 再接模拟开关 U5的第 7引脚, 通过电阻 Ry21与电容 Cy21 的并联, 接电阻 Ry22与电容 Cy22的并联, 再 接电阻 Ry23与电容 Cy23的并联后, 再接模拟开关 U5的第 5引脚, 运算放大器 U1的第 7引 脚通过电阻 R2接运算放大器 U1的第 13引脚, 通过电阻 R5接运算放大器 U1的第 2引脚, 运算放大器 U1的第 8引脚通过电阻 R6接运算放大器 m的第 9引脚, 通过电阻 R4接运算放 大器 U1的第 6引脚, 接运算放大器 U2的第 2引脚, 接乘法器 U3的第 1引脚, 接乘法器 U4 的第 1、 3 引脚, 运算放大器 U1 的第 9 引脚通过电阻 Rxl l 与电容 Cx l l 的并联, 接电阻 Rxl2与电容 Cxl2的并联, 再接电阻 Rxl3与电容 Cxl3的并联后, 再接模拟开关 U5的第 2 引脚, 通过电阻 Rx21 与电容 Cx21 的并联, 接电阻 Rx22 与电容 Cx22 的并联, 再接电阻 Rx23与电容 Cx23的并联后, 再接模拟开关 U5的第 4引脚, 运算放大器 U1 的第 14引脚通 过电阻 R1接运算放大器 U1的第 13引脚, 通过电阻 R7接运算放大器 U1的第 9引脚;
所述运算放大器 U2的第 6、 7引脚悬空, 所述运算放大器 U2的第 3、 5、 10、 12引脚 接地, 第 4引脚接 VCC, 第 11 引脚接 VEE, 运算放大器 U2的第 1 引脚通过电阻 R14和 R15 的串联接地,通过 R14接模拟开关 U5的第 8、 9 引脚, 运算放大器 U2的第 8引脚通过电阻 R12接运算放大器 U2的第 9引脚, 接乘法器 U3的第 3引脚, 运算放大器 U2的第 9引脚通 过电阻 Rzl l与电容 Cz l l 的并联, 接电阻 Rz l2与电容 Cz l2的并联, 再接电阻 Rz l3与电容 Cz l 3的并联后, 再接模拟开关 U5的第 10引脚, 通过电阻 Rz21与电容 Cz21 的并联, 接电 阻 Rz22与电容 Cz22的并联, 再接电阻 Rz23与电容 Cz23的并联后, 再接模拟开关 U5的第 12引脚, 运算放大器 U2的第 14引脚通过电阻 R11接运算放大器 U2的第 13引脚, 通过电 阻 R13接运算放大器 U2的第 9引脚;
所述乘法器 U3的第 1引脚接运算放大器 Π的第 8引脚, 第 3引脚接运算放大器 U2的 第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R9接运算放大器 U1的第 6引脚, 第 8引脚接 VCC;
所述乘法器 U4的第 1、 3引脚接运算放大器 U1的第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R10接运算放大器 U2的第 13引脚, 第 8引脚接 VCC;
所述模拟开关 U5的第 1 引脚接 VCC,第 16引脚接地, 第 13、 14、 15引脚悬空, 第 3 引脚接运算放大器 U1的第 8引脚, 第 6引脚接运算放大器 U1的第 7引脚, 第 11引脚接运 算放大器 U2的第 8引脚。
2、 一种分数阶次不同的含 X2的 chen 混沌切换系统电路, 其特征是在于, 利用运算放 大器 Ul、 运算放大器 U2及电阻和电容构成反相加法器和不同阶次的分数阶反相积分器, 利 用乘法器 U3和乘法器 U4实现乘法运算, 利用模拟开关 U5实现模拟信号的选择输出, 所述 运算放大器 Ul和运算放大器 U2采用 LF347D, 所述乘法器 U3和乘法器 U4采用 AD633JN, 所 述模拟开关 U5 采用 ADG888 , 所述运算放大器 U1 连接乘法器 U3、 乘法器 U4 和模拟开关 U5, 所述运算放大器 U2连接乘法器 U3和模拟开关 U5 , 所述乘法器 U3连接运算放大器 U1 , 所述乘法器 U4连接运算放大器 U2, 所述模拟开关 U5连接运算放大器 U1和运算放大器 U2; 所述运算放大器 m的第 1引脚通过电阻 R3与运算放大器 1)1的第 2引脚相接, 通过电 阻 R8与运算放大器 U1的第 6引脚相接, 运算放大器 U1的第 3、 5、 10、 12引脚接地, 第 4 引脚接 VCC, 第 1 1引脚接 VEE, 运算放大器 U1的第 6引脚通过电阻 Ryl l与电容 Cyl l的并 联, 接电阻 Ryl2与电容 Cyl2的并联, 再接电阻 Ryl 3与电容 Cyl 3的并联后, 再接模拟开关 U5的第 7引脚, 通过电阻 Ry21与电容 Cy21的并联, 接电阻 Ry22与电容 Cy22的并联, 再 接电阻 Ry23与电容 Cy23的并联后, 再接模拟开关 U5的第 5引脚, 运算放大器 U1的第 7引 脚通过电阻 R2接运算放大器 U1的第 13引脚, 通过电阻 R5接运算放大器 U1的第 2引脚, 运算放大器 U1的第 8引脚通过电阻 R6接运算放大器 U1的第 9引脚, 通过电阻 R4接运算放 大器 U1的第 6引脚, 接运算放大器 U2的第 2引脚, 接乘法器 U3的第 1引脚, 接乘法器 U4 的第 1、 3 引脚, 运算放大器 U1 的第 9 引脚通过电阻 Rxl l 与电容 Cxl l 的并联, 接电阻 Rxl2与电容 Cxl2的并联, 再接电阻 Rxl 3与电容 Cx l 3 的并联后, 再接模拟开关 1」'5的第 2 引脚, 通过电阻 Rx21 与电容 Cx21 的并联, 接电阻 Rx22 与电容 Cx22 的并联, 再接电阻 Rx23与电容 Cx23的并联后, 再接模拟开关 U5的第 4引脚, 运算放大器 U1 的第 14引脚通 过电阻 R1接运算放大器 U1的第 13引脚, 通过电阻 R7接运算放大器 U1的第 9引脚;
所述运算放大器 L;2的第 6、 7引脚悬空, 所述运算放大器 U2的第 3、 5、 10、 12引脚 接地, 第 4引脚接 VCC, 第 11 引脚接 VEE, 运算放大器 U2的第 1 引脚通过电阻 R14和 R15 的串联接地,通过 R14接模拟开关 U5的第 8、 9 引脚, 运算放大器 U2的第 8 引脚通过电阻 R12接运算放大器 U2的第 9引脚, 接乘法器 U3的第 3引脚, 运算放大器 U2的第 9引脚通 过电阻 Rzl l与电容 Czl l 的并联, 接电阻 Rz l2与电容 Cz l2的并联, 再接电阻 Rzl3与电容 Czl 3的并联后, 再接模拟开关 U5的第 10引脚, 通过电阻 Rz21与电容 Cz21 的并联, 接电 阻 Rz22与电容 Cz22的并联, 再接电阻 Rz23与电容 Cz23的并联后, 再接模拟开关 U5的第 12引脚, 运算放大器 U2的第 14引脚通过电阻 R11接运算放大器 U2的第 13引脚, 通过电 阻 R13接运算放大器 U2的第 9引脚;
所述乘法器 U3的第 1引脚接运算放大器 U1的第 8引脚, 第 3引脚接运算放大器 U2的 第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R9接运算放大器 U1的第 6引脚, 第 8引脚接 VCC; 所述乘法器 U4的第 1、 3引脚接运算放大器 Ul的第 8引脚, 第 2、 4、 6引脚均接地, 第 5引脚接 VEE, 第 7引脚通过电阻 R10接运算放大器 U2的第 13引脚, 第 8引脚接 VCC;
所述模拟开关 U5 的第 1 引脚接 VCC,第 16引脚接地, 第 13、 14、 15引脚悬空, 第 3 引脚接运算放大器 U1的第 8引脚, 第 6引脚接运算放大器 U1的第 7引脚, 第 11 引脚接运 算放大器 U2的第 8引脚。
PCT/CN2014/000403 2014-02-22 2014-04-14 一种分数阶次不同的含x2的chen混沌切换系统方法及电路 WO2015123796A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410063231.7 2014-02-22
CN201410063231.7A CN103780374B (zh) 2014-02-22 2014-02-22 一种分数阶次不同的含x2的chen混沌切换系统方法及电路

Publications (1)

Publication Number Publication Date
WO2015123796A1 true WO2015123796A1 (zh) 2015-08-27

Family

ID=50572249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000403 WO2015123796A1 (zh) 2014-02-22 2014-04-14 一种分数阶次不同的含x2的chen混沌切换系统方法及电路

Country Status (2)

Country Link
CN (1) CN103780374B (zh)
WO (1) WO2015123796A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109215458A (zh) * 2018-10-31 2019-01-15 张剑锋 一种三阶类洛伦兹3+2型混沌电路
CN112422261A (zh) * 2019-08-23 2021-02-26 天津科技大学 一种具有四簇保守混沌流的广义Sprott-A系统及其电路实现

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104393983B (zh) * 2014-11-11 2016-01-20 国网山东省电力公司泰安供电公司 一种0.2阶混合型分数阶积分电路装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102385659A (zh) * 2011-12-13 2012-03-21 滨州学院 一种实现分数阶三个系统自动切换混沌系统的方法及模拟电路
CN102904709A (zh) * 2012-09-27 2013-01-30 滨州学院 基于Chen型系统的分数阶四个系统自动切换混沌系统方法及模拟电路
CN102946308A (zh) * 2012-11-19 2013-02-27 湖南大学 一种新分数阶超混沌电路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102385659A (zh) * 2011-12-13 2012-03-21 滨州学院 一种实现分数阶三个系统自动切换混沌系统的方法及模拟电路
CN102904709A (zh) * 2012-09-27 2013-01-30 滨州学院 基于Chen型系统的分数阶四个系统自动切换混沌系统方法及模拟电路
CN102946308A (zh) * 2012-11-19 2013-02-27 湖南大学 一种新分数阶超混沌电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109215458A (zh) * 2018-10-31 2019-01-15 张剑锋 一种三阶类洛伦兹3+2型混沌电路
CN112422261A (zh) * 2019-08-23 2021-02-26 天津科技大学 一种具有四簇保守混沌流的广义Sprott-A系统及其电路实现
CN112422261B (zh) * 2019-08-23 2022-05-20 天津科技大学 一种具有四簇保守混沌流的广义Sprott-A系统及其构建方法

Also Published As

Publication number Publication date
CN103780374A (zh) 2014-05-07
CN103780374B (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
WO2015123793A1 (zh) 一种分数阶次不同的含x2的Lü混沌切换系统方法及电路
WO2015123802A1 (zh) 一种分数阶次不同的经典Lorenz型混沌切换系统方法及电路
CN105553640B (zh) 基于Rikitake系统的无平衡点四维超混沌系统的构造方法
WO2015123803A1 (zh) 一种分数阶次不同的经典chen混沌切换系统方法及电路
WO2015123796A1 (zh) 一种分数阶次不同的含x2的chen混沌切换系统方法及电路
CN104202140A (zh) 基于五项最简混沌系统的无平衡点四维超混沌系统及模拟电路
CN104202143A (zh) 基于五项最简混沌系统的四维无平衡点超混沌系统及模拟电路
CN103731256B (zh) 一种无平衡点的混沌系统及模拟电路实现
CN102663496A (zh) 一种四阶神经网络超混沌电路
WO2015123797A1 (zh) 一种分数阶次不同的经典Lü混沌切换系统方法及电路
WO2015123794A1 (zh) 一种分数阶次不同的含xy的Liu混沌切换系统方法及电路
CN203813801U (zh) 一种分数阶次不同的含xy的Liu混沌切换系统电路
WO2015123795A1 (zh) 一种分数阶次不同的含y2的chen混沌切换系统方法及电路
CN103049790B (zh) 一种新的四阶神经网络超混沌电路
WO2016187738A1 (zh) 一种不同变量的利于终极边界估计的Lorenz型超混沌系统构建方法及电路
CN103731129A (zh) 一个具有2个平衡点的双翼吸引子混沌系统及电路
CN203872189U (zh) 一种分数阶次不同的含xy的Liu混沌切换系统电路
CN102195772B (zh) 双圆盘混沌信号发生器
CN110912675B (zh) 一种分数阶双翅膀混沌隐藏吸引子产生电路
CN203872186U (zh) 一种分数阶次不同的含x方的Qi混沌切换系统电路
CN104376764B (zh) 三阶双涡漩型细胞神经网络超混沌电路
CN103997400A (zh) 一种分数阶次不同的含y2的Liu混沌切换系统方法及电路
CN106992849A (zh) 一种二维四涡卷混沌电路
CN203734684U (zh) 一种工作于±5伏直流电源的三维混沌电路
CN203933652U (zh) 一种分数阶次不同的经典lü混沌切换系统电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14883162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14883162

Country of ref document: EP

Kind code of ref document: A1