WO2015122301A1 - Porous metal foil and method for producing same - Google Patents

Porous metal foil and method for producing same Download PDF

Info

Publication number
WO2015122301A1
WO2015122301A1 PCT/JP2015/052834 JP2015052834W WO2015122301A1 WO 2015122301 A1 WO2015122301 A1 WO 2015122301A1 JP 2015052834 W JP2015052834 W JP 2015052834W WO 2015122301 A1 WO2015122301 A1 WO 2015122301A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
porous metal
metal
release layer
porous
Prior art date
Application number
PCT/JP2015/052834
Other languages
French (fr)
Japanese (ja)
Inventor
尚光 井上
近藤 和夫
池田 裕一
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2015122301A1 publication Critical patent/WO2015122301A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Definitions

  • the present invention relates to a porous metal foil and a method for producing the same, and more specifically to a porous metal foil having a high aperture ratio suitable for use as a transparent conductive film and a method for producing the same.
  • the touch panel generally has a configuration in which a transparent conductive film is formed as an electrode on a transparent substrate such as a glass plate.
  • the most widely used material for the transparent conductive film is ITO (indium tin oxide).
  • ITO indium tin oxide
  • ITO contains indium which is a rare metal, it is expensive and accompanied by supply concerns, and the film must be formed by sputtering, which increases equipment and manufacturing costs, and further due to heat during sputtering.
  • the base material may be distorted depending on the material of the base material.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-94254 discloses a transparent conductive film in which a regular fine metal wire network and a graphene sheet are combined.
  • Patent Document 2 Japanese Patent No. 4610416 discloses a capacitive touch panel using a metal as a conductive film having a mesh structure.
  • Patent Document 3 Japanese Patent No. 5282991 discloses a transparent conductive layer containing metal nanowires.
  • Patent Document 4 Japanese Patent Publication No. 2012-527071 also discloses a transparent conductive layer containing nanowires, as in Patent Document 3.
  • Patent Document 5 Japanese Patent Laid-Open No. 2013-178550 discloses a method of manufacturing a metal fine wire sheet by vapor deposition or the like using a base material having an uneven shape.
  • these technologies have various problems such as a large number of manufacturing steps and high manufacturing costs, and insufficient surface resistivity and light transmittance as a transparent conductive film, and further improvements are desired. ing.
  • Patent Document 6 International Publication No. 2010/034949 discloses a conductive grid having an irregular pattern manufactured using a mask having a network of openings having substantially vertical mask zone edges. It is disclosed.
  • the conductive grid is said to have low electrical resistance ( ⁇ 2 ⁇ ) and high light transmittance (> 80%), but the masking layer is dried to form a mask with a network of openings.
  • a complicated process such as a process for removing the masking layer must be performed, and the removed masking layer cannot be reused, resulting in a large number of manufacturing processes and a high manufacturing cost.
  • the masking layer is formed each time, it is understood that the reproducibility of the network shape obtained through the masking layer is inferior.
  • the cross-sectional shape of the strands constituting the conductive grid becomes substantially rectangular due to the edge of the substantially vertical mask zone.
  • Patent Document 7 Japanese Patent No. 4762368 discloses a porous metal foil having a two-dimensional network structure in which metal fibers are irregularly stretched.
  • the aperture ratio of the porous metal foil disclosed in this document cannot be said to be sufficiently high, and is not suitable for the use of a transparent conductive film in which a light transmittance of 85% or more is desired.
  • JP 2012-94254 A Japanese Patent No. 4610416 Japanese Patent No. 5282991 Special table 2012-527071 gazette JP 2013-178550 A International Publication No. 2010/034949 Japanese Patent No. 4762368
  • the present inventors have now found that it is possible to provide a porous metal foil that has an opening ratio that is high enough to be used as a transparent conductive film and that can be mass-produced by an inexpensive and simple process.
  • an object of the present invention is to provide a porous metal foil that has an opening ratio that is high enough to be used as a transparent conductive film and that can be mass-produced by an inexpensive and simple process.
  • the porous metal foil has a two-dimensional network structure composed of metal fibers that are irregularly stretched, and the metal fibers have a substantially semi-circular or substantially semi-elliptical cross-sectional shape.
  • a porous metal foil is provided wherein the porous metal foil has an open area ratio greater than 80%.
  • a method for producing a porous metal foil comprising: Forming a release layer made of chromium, a chromium alloy and / or a chromium oxide by performing electrolytic chromium plating on the conductive substrate, and generating a crack in the release layer by the stress of the release layer itself;
  • the release layer is electroplated with a metal that can be preferentially deposited on the cracks, and an infinite number of metal particles are grown along the cracks, thereby comprising a two-dimensional network structure composed of metal fibers and 80 Forming a porous metal foil having an open area ratio greater than%,
  • a manufacturing method is provided comprising:
  • FIG. 3 is an FE-SEM image obtained by observing the porous metal foil of Sample 1 manufactured in Example 1 from directly above.
  • 3 is an FE-SEM image obtained by magnifying and observing the metal fibers constituting the porous metal foil of Sample 1 produced in Example 1.
  • FIG. 3 is an FE-SEM image obtained by observing the porous metal foil of Sample 3 prepared in Example 1 from directly above.
  • FIG. 3 is an FE-SEM image obtained by magnifying and observing the metal fibers constituting the porous metal foil of Sample 3 prepared in Example 1.
  • FIG. 4 is a SIM image measured at an inclination angle of 60 ° C. showing a cut surface of a metal fiber constituting the porous metal foil of Sample 2 produced in Example 1 cut vertically.
  • 4 is a SIM image measured at an inclination angle of 60 ° C. showing a cut surface of a metal fiber constituting the porous metal foil of Sample 3 produced in Example 1 that is cut perpendicularly.
  • 4 is a SIM image measured at an inclination angle of 60 ° C. showing a cut surface of a metal fiber constituting the porous metal foil of Sample 4 produced in Example 1 cut vertically.
  • Example 4 is a photograph of the porous metal foil of Sample 3 peeled off with an adhesive tape in Example 3.
  • 4 is a photograph of a porous metal foil of Sample 3 that was immersed in a Cr etching solution and peeled in Example 3.
  • 6 is a graph showing the relationship between the aperture ratio measured in Example 4 and electrolytic copper plating time.
  • 6 is a graph showing the relationship between the wire diameter of a metal fiber measured in Example 4 and the electrolytic copper plating time.
  • 6 is a diagram showing light transmittance profiles in a visible light region of metal foils having various aperture ratios measured in Example 4.
  • FIG. 1 shows a schematic top view of an example of a porous metal foil according to the present invention.
  • a porous metal foil 10 according to the present invention has a two-dimensional network structure composed of metal fibers 11 that are irregularly stretched. Since this two-dimensional network structure presents a unique pattern reminiscent of the mask melon skin pattern, the applicant refers to this kind of porous metal foil as a mask melon foil.
  • the porous metal foil 10 of this invention has an aperture ratio exceeding 80%. This extremely high aperture ratio exceeding 80% enables the high light transmittance desired for the transparent conductive film (particularly, the transmittance in the visible light region).
  • Metallic transparent conductive films are already known (see, for example, Patent Documents 1 to 6).
  • Patent Document 7 discloses a porous metal foil having an irregular two-dimensional network structure, the aperture ratio is low, for example, 28% or 33%, and is not suitable for use as a transparent conductive film. Met.
  • the porous metal foil of Patent Document 7 can be manufactured by the same technique as the electrolytic copper foil except that it involves the formation of a release layer in which cracks are formed, a transparent conductive film is manufactured by this technique. If it can be done, it can be said that it is extremely convenient from the viewpoint of manufacturing cost, mass productivity and the like.
  • the transparent conductive film can be mass-produced by an inexpensive and simple process according to the manufacturing method derived from electrolytic copper foil. Because it becomes. Actually, it has never been easy to obtain a porous metal foil having an open area ratio exceeding 80% by the above approach derived from electrolytic copper foil. However, the present inventors now have an open area ratio exceeding 80%.
  • the present invention succeeded in producing a porous metal foil having an irregular two-dimensional network structure. That is, according to the present invention, it is possible to provide a porous metal foil that has an opening ratio that is high enough to be used as a transparent conductive film and that can be mass-produced by an inexpensive and simple process. Moreover, since the porous metal foil 10 is made of metal, it can have a low sheet resistance suitable for a transparent conductive film.
  • This porous metal foil 10 has an opening ratio of more than 80%, preferably 83% or more, more preferably 85% or more, further preferably 87% or more, particularly preferably 90% or more, 93% or more or 95%. That's it.
  • the higher the aperture ratio the higher the light transmittance.
  • the aperture ratio and light transmittance (especially the light transmittance in the visible light region) have a high correlation regardless of the aperture ratio, and the aperture ratio value and the visible light region Is approximately the same as or not very close to the value of light transmittance at a wavelength of.
  • the porous metal foil 10 can have a high light transmittance (particularly the light transmittance in the visible light region), and the conductivity of the metal constituting the metal fiber 11 can be improved. Combined with, it becomes a very useful foil for use as a transparent conductive film. Since the aperture ratio is desired to be high in this way, the upper limit is not particularly limited as long as desired conductivity is ensured, but the aperture ratio is realistically 98% or less, 97% or less, or 96% or less. .
  • the aperture ratio in the present invention is defined as an area aperture ratio, and is specifically measured by the following procedure. That is, an enlarged photograph of a certain area is taken from directly above with an electron microscope, and this is measured by calculating the ratio of the opening area to the area using image analysis software.
  • the metal fiber 11 is a metal fiber, and the metal to be used may be appropriately determined according to the intended use, and is not particularly limited.
  • Preferred metals comprise at least one selected from the group consisting of copper, gold, silver, nickel, cobalt, tin, and zinc.
  • “comprising” may be any metal or alloy mainly containing the above-listed metal elements, and means that it is allowed to contain other metal elements and unavoidable impurities as the balance. Preferably, it means that 50% by weight or more of the metal or alloy is composed of the metal elements listed above, and typical examples include those composed of the metal elements listed above and inevitable impurities.
  • those suitable for the transparent conductive film include at least one selected from the group consisting of copper, copper alloys, gold, silver, nickel, cobalt, tin, and zinc, and more preferably Copper from the viewpoint of conductivity.
  • the metal fiber may be a surface-treated metal fiber as a base material with a surface treatment agent containing a different type of metal from the base material. Examples of metals used for such surface treatment include nickel, cobalt, Tin and zinc are mentioned.
  • the wire diameter of the metal fiber 11 is preferably 14 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 7 ⁇ m or less, and most preferably 4 ⁇ m or less.
  • the thin wire diameter contributes to a high aperture ratio.
  • the lower limit of the wire diameter is not particularly limited as long as desired conductivity is ensured, but from the viewpoint of handling properties, the wire diameter is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more.
  • the “wire diameter” is defined as the width (thickness) of the metal fiber 11 when the porous metal foil 10 is viewed from directly above, and includes a field emission scanning electron microscope (FE-SEM), a scanning ion microscope ( (SIM) or the like.
  • the metal fiber 11 has a substantially semicircular or substantially semi-elliptical cross-sectional shape as shown in FIG.
  • This substantially semicircular or substantially semi-elliptical cross-sectional shape is a shape imparted from the manufacturing method of the present invention as shown in FIG. 3 to be described later, but undergoes masking as disclosed in Patent Document 6.
  • the blackening process for example, the process of attaching copper oxide
  • the blackening process of the metal foil can be performed uniformly without any unevenness. Furthermore, there is also an advantage that there is little reflection of transmitted light on the side surface of the metal fiber, and a decrease in display brightness can be reduced.
  • the metal fiber 11 is preferably a branched fiber, and the porous metal foil 10 is made high by forming a two-dimensional network structure in which the branched fibers are irregularly stretched. It is possible to preferably maintain a peelable foil form while having an aperture ratio.
  • the two-dimensional network structure preferably has an irregular shape due to cracks formed on the surface of the substrate.
  • the above-described cross-sectional shape and branched shape of the metal fiber 11 are formed by connecting innumerable metal particles due to nucleation along cracks of the release layer described later. .
  • the metal particles constituting the metal fiber may no longer have a complete particle shape.
  • the metal particles constituting the metal fiber 11 are continuous in a shape having a bead-like or worm-like (caterpillar-like) seam, but may be in a shape in which the seam is not substantially observed. Therefore, as shown in FIG.
  • the metal particles constituting the metal fiber 11 have a hemispherical shape having a spherical portion 11a and a bottom portion 11b, and the bottom portions 11b of all the metal particles are on the same base surface. It can also be expressed that the spherical portions 11a of all the metal particles are located on the same side with respect to the base surface.
  • the width D of the bottom portion 11b along the basal plane becomes the wire diameter
  • the maximum cross-sectional height H of the spherical portion 11a corresponds to the thickness of the porous metal foil.
  • the basal plane and the bottom portion 11b positioned thereon reflect the planar shape of the release layer used during manufacturing.
  • the metal fiber 11 has a substantially semicircular or substantially semi-elliptical cross-sectional shape.
  • the average ratio of the maximum cross-sectional height H to the wire diameter D is not particularly limited.
  • the metal fiber 11 has a substantially semicircular cross-sectional shape, and the average ratio (H / D) of the maximum cross-sectional height H to the wire diameter D is typically 0.30 to It can be 0.70, more typically 0.40 to 0.60, even more typically 0.45 to 0.55, and most typically about 0.50. This average ratio can be adjusted by appropriately changing the plating conditions and the like.
  • the metal fiber 11 has a substantially elliptical cross-sectional shape, and the average ratio (H / D) of the maximum cross-sectional height H to the wire diameter D exceeds 0.50. It is preferably 0.50 to 2.00, more preferably 0.75 to 1.75, and particularly preferably 1.00 to 1.50. With such a ratio, the metal fiber 11 has a raised shape higher than the semicircular cross section, and the ease of peeling of the porous metal foil from the release layer after electrodeposition is improved, and the sheet resistance of the porous metal foil is improved. Is reduced.
  • Such a shape can be realized by adding an additive to the plating bath of the porous metal foil and / or lengthening the electrolysis time.
  • the porous metal foil 10 preferably has a thickness of 0.5 to 28 ⁇ m, more preferably 0.75 to 17.5 ⁇ m, still more preferably 1.5 to 12.5 ⁇ m, and particularly preferably 1.75 to 10 ⁇ m. Most preferably, the thickness is 2 to 6 ⁇ m. Within this range, handling is relatively easy while the aperture ratio is high, and sheet resistance can be reduced. However, the handling of the porous metal foil 10 may be a self-supporting form peeled from the base material, may be a form as it is coated on the base material, or may be from the base material to another base material. The thickness of the porous metal foil 10 may be appropriately set within the above range according to the form to be adopted.
  • the thickness of the porous metal foil corresponds to the maximum cross-sectional height of the metal fibers.
  • a thickness is preferably measured by a commercially available film thickness measuring device using a measuring element larger than the pore size of the porous metal foil.
  • This manufacturing method includes (1) a step of preparing a conductive base material, (2) a step of forming a cracked release layer by electrolytic chrome plating, and (3) a step of forming a porous metal foil by electrolytic plating. And (4) a step of peeling the porous metal foil as desired. Since this manufacturing method is a method derived from electrolytic copper foil, the transparent conductive film can be mass-produced by an inexpensive and simple process. Therefore, although the manufacturing method of porous metal foil is preferably performed by a continuous manufacturing method, it may be performed by a single wafer method. In particular, once a cracked release layer is formed on a conductive substrate, the release layer / conductive substrate can be reused thereafter. It becomes a possible manufacturing method, and a significant reduction in manufacturing cost can be realized.
  • FIG. 3 shows a flow of a manufacturing process of a porous metal foil according to the present invention.
  • a conductive substrate 12 is prepared as a support for producing a porous metal foil.
  • the conductive substrate may be a substrate having conductivity that can be plated, and any of inorganic materials, organic materials, laminates, and materials having a metal surface can be used. Is a metal.
  • Preferred examples of such metals include metals such as copper, nickel, cobalt, iron, chromium, tin, zinc, indium, silver, gold, aluminum, and titanium, and alloys containing at least one of these metal elements.
  • the form of the conductive substrate is not limited, and various forms of substrates such as a foil, a plate, and a drum can be used.
  • a conductive metal plate may be wound around the drum body, and the thickness of the conductive metal plate in this case is preferably 1 to 20 mm.
  • the conductive base material supports the manufactured porous metal foil during its processing or until just before its use, thereby improving the handleability of the porous metal foil.
  • using a metal foil or a metal plate as a conductive substrate means that the metal foil or metal plate as the conductive substrate can be reused as it is after the production of the porous metal foil, or can be recycled by melting and forming the foil. It is preferable because of its advantages. In that case, it is preferable that the thickness of the metal foil or metal plate is 10 ⁇ m to 1 mm, because it is possible to secure a strength that does not cause twisting in the manufacturing process of the metal foil or metal plate and the subsequent processing / conveying process. .
  • the conductive substrate 12 is subjected to pretreatment such as acid washing and degreasing to clean its surface.
  • Electrolytic chromium plating is applied to the conductive substrate 12 to form a release layer 13 made of chromium, a chromium alloy and / or a chromium oxide.
  • a crack 13a is generated in the release layer 13 by its own stress.
  • the peeling layer 13 is a layer for facilitating the peeling of the porous metal foil 10 to be formed on the peeling layer 13, can generate the crack 13 a, is easily plated with the crack 13 a, and has no crack.
  • a material having the property of being difficult to be plated at 13b is used, and specifically, chromium, a chromium alloy and / or a chromium oxide.
  • a material capable of preferentially depositing a certain kind of metal in the generated crack 13 a by plating is used as the release layer 13.
  • the formation conditions of the release layer 13 can be easily controlled, and as a result, how the cracks 13a enter the release layer 13 can be skillfully controlled. In this way, the generation ratio of the metal fibers formed along the cracks can be controlled to be low, whereby a porous metal foil having an opening ratio exceeding 80% can be realized.
  • the release layer may be formed in multiple layers. In this case, cracks may be formed only in the upper layer, and cracks may be formed not only in the upper layer but also in layers below it. It may be a thing.
  • the crack 13a is preferably controlled so as to be naturally generated by the stress of the release layer 13, and need not be formed at the same time as film formation, and is generated in the subsequent cleaning and drying process, machining, etc. Good. Cracks are usually undesirable, but the manufacturing method of the present invention is rather characterized by actively utilizing them. In particular, since cracks are usually formed such that branched lines are stretched around in a two-dimensional network, porous metal foil having an extremely high aperture ratio can be formed by forming metal fibers along the cracks. Can be obtained.
  • cracks since the occurrence of cracks is always a concern in normal film formation processes, the generation of cracks themselves is well-experienced by those skilled in the art engaged in film formation. It is possible to easily select within the range.
  • cracks may be generated by controlling the composition of the plating bath, the thickness of the release layer, the current density, the bath temperature, the stirring conditions, the post heat treatment, or the like.
  • the peeling layer 13 is a chromium plating layer made of chromium, a chromium alloy and / or a chromium oxide. Chromium has a high hardness and is excellent in terms of continuous peelability, durability and corrosion resistance, and is advantageous in that it is easily peeled off due to the formation of a passive state.
  • the thickness of the release layer 13 is preferably 4 to 120 ⁇ m, more preferably 6 to 80 ⁇ m, still more preferably 8 to 60 ⁇ m, and most preferably 10 to 40 ⁇ m. With such a composition and thickness, the porous metal foil 10 to be formed on the layer can be formed on the layer by making the release layer have a high resistance with respect to the conductive substrate while allowing the generation of cracks.
  • the thickness range of the release layer 13 described above can be unnecessarily thick when considering only the releasability, but by using a thick release layer, the generation ratio of cracks is reduced.
  • the aperture ratio of the obtained porous metal foil 10 can be significantly increased. Although the reason for this is not necessarily clear, it is considered that internal stress or internal strain is likely to be accumulated by increasing the thickness of the release layer 13, and as a result, easy generation of cracks is suppressed.
  • chromium plating solutions for electrolytic chromium plating include a sergeant bath (composition: chromic anhydride 250 g / L and sulfuric acid 2.5 g / L) and a hard chromium plating bath.
  • a sergeant bath composition: chromic anhydride 250 g / L and sulfuric acid 2.5 g / L
  • a hard chromium plating bath examples include Anchor 1127 manufactured by Meltex, HEEF-25 manufactured by Atotech, and Mac 1 manufactured by Nihon McDermid. Of these, the Sargent bath is particularly preferred because it tends to generate relatively few cracks and easily increases the aperture ratio of the porous metal foil.
  • the Sargent bath has fewer cracks than the HEEF bath containing the additive (for example, a bath containing chromic acid, sulfuric acid and HEEF-25), and thus has a high opening ratio. can get.
  • Electrolytic chrome plating may be carried out so as to obtain a desired thickness by appropriately setting the electrolysis conditions according to the composition of the chrome plating bath to be used. However, it is performed for 20 minutes or more at a current density of 30 to 100 A / dm 2. More preferably, it is 25 minutes or more at a current density of 40 to 90 A / dm 2 , more preferably 30 minutes or more at a current density of 45 to 70 A / dm 2 .
  • a Sargent bath preferably at a current density of 45 to 70 A / dm 2 , more preferably 50 to 65 A / dm 2 , still more preferably 50 to 65 A / dm 2 , particularly preferably 55 to 65 A / dm 2 , It is preferably performed for 30 minutes or more, more preferably 40 to 120 minutes, further preferably 50 to 90 minutes, particularly preferably 60 to 80 minutes.
  • the current density is higher and the chrome plating time is longer, the amount of coulomb increases, resulting in an increase in the thickness of the release layer 13.
  • the aperture ratio tends to increase as described above.
  • the aperture ratio increases at a high current density of around 60 A / dm 2 .
  • a preferable bath temperature in electrolytic chrome plating is 45 to 65 ° C, more preferably 45 to 60 ° C.
  • a stable chromium plating bath typically contains a small amount of trivalent chromium, and the amount is about 2 to 6 g / L. Further, a catalyst such as organic sulfonic acid may be added to the hard chromium plating bath.
  • concentration of chromic anhydride can be controlled by the Baume degree.
  • impurities such as iron, copper, and chloride ions affect the state of plating, care must be taken in managing the upper limit of the amount of impurities dissolved.
  • a titanium-coated lead oxide or Pb—Sn alloy can be preferably used.
  • a Ti—Pb electrode (Sn of SnF) is used. : 5%) and Exelod LD manufactured by Nippon Carlit.
  • the release layer 13 Prior to the formation of the porous metal foil by electroplating, the release layer 13 is preferably subjected to washing, drying, and heat treatment. Washing may be performed with an aqueous solvent such as water, or with an organic solvent such as acetone. Drying may be performed by either natural drying or heat drying.
  • the heat treatment is preferably performed at 80 to 180 ° C. for 2 to 16 hours, more preferably at 130 to 170 ° C. for 4 to 8 hours. This heat treatment is preferably performed in an oxygen-containing atmosphere such as an air atmosphere. By this heat treatment, the surface of the release layer 13 is oxidized, and Cr 2 O 3 is formed as a passive state. This has an advantage that the porous metal foil 10 can be easily peeled off.
  • the release layer 13 is electroplated with a metal that can be preferentially deposited on the crack 13a, and the innumerable metal particles 11 are grown along the crack 13a.
  • a porous metal foil 10 having a two-dimensional network structure composed of metal fibers and having an open area ratio exceeding 80% is formed.
  • the release layer 13 has the crack 13a having the property of being easily plated and the crack-free surface portion 13b having the property of being difficult to be plated.
  • the reason why plating with the crack 13a is facilitated is that the current is more likely to flow in the portion where the crack 13a is present than in the portion 13b where the crack 13a is not present, so that nucleation and growth occur preferentially in the crack 13a.
  • the metal that can be preferentially deposited in the crack 13a preferably comprises at least one selected from the group consisting of copper, gold, silver, nickel, cobalt, tin, and zinc, and more preferably copper, silver, And at least one selected from the group consisting of gold, and more preferably copper.
  • the conditions for the electroplating of the metal that can be preferentially deposited in cracks are in accordance with the known conditions using various known metal plating baths, except that the current density and time are set so as to give an opening ratio exceeding 80%. Just do it.
  • Such electrolytic plating is preferably performed at a current density of 0.5 to 10 A / dm 2 , more preferably 1 to 8 A / dm 2 , even more preferably 2 to 6 A / dm 2 , preferably 1 to 500 seconds, and more. It is preferably performed for 3 to 150 seconds, more preferably 5 to 75 seconds. Thus, it becomes easier to realize a high aperture ratio by performing electroplating for a short time at a considerably low current density.
  • the bath temperature is preferably 10 to 60 ° C, more preferably 15 to 55 ° C, and further preferably 20 to 50 ° C.
  • the electrolytic copper plating is preferably performed at a current density of 1 to 5 A / dm 2 for 2 to 250 seconds, more preferably 1.5 to 4 2-170 seconds at a current density of .5A / dm 2, still preferably performed 2.5 to 120 seconds at a current density of 2 ⁇ 4A / dm 2.
  • Electrolytic copper plating is preferably performed using a copper sulfate plating bath, and the preferred composition of the copper sulfate plating bath is a copper sulfate pentahydrate concentration: 150 to 320 g / L, and a sulfuric acid concentration: 15 to 200 g / L. .
  • the preferred bath temperature for copper sulfate plating is 15 to 55 ° C., more preferably 20 to 50 ° C., and further preferably 25 to 45 ° C.
  • An additive may be appropriately added to the plating solution to improve the characteristics of the metal foil.
  • preferred examples of such additives include sulfur-containing compounds such as glue, gelatin, chlorine and thiourea, and synthetic additives such as polyethylene glycol.
  • the concentration of the additive is not limited, but is usually 1 to 300 ppm.
  • the porous metal foil can be peeled off from the conductive substrate having the release layer to obtain a single porous metal foil. After peeling, it may be transferred to another substrate such as a film with an adhesive layer, or peeling itself may be performed by transfer to another substrate.
  • the peeling of the porous metal foil can be performed with an adhesive tape or by immersing in an etching solution, and various methods can be adopted.
  • this peeling step is not essential, and the substrate may be handled as a porous metal foil product with the substrate attached via the peeling layer, and may be peeled off for the first time during use.
  • Example 1 Production of Porous Metal Foil A stainless steel plate having a thickness of 0.5 ⁇ m was prepared as a conductive substrate. Chromium plating was performed on the stainless steel plate as a release layer by the following procedure. First, after dipping in acetone (99.0%, manufactured by Wako Pure Chemical Industries) for 10 seconds, the surface is cleaned by washing with pure water and drying. Next, the stainless steel plate foil was immersed in a Sargent bath in which 2.5 g / L sulfuric acid and 250 g / L chromic acid were dissolved, bath temperature: 50 ° C., current density: 60 A / dm 2 , anode: Pb, Chromium plating was performed for 72 minutes under the condition of cathode: stainless steel plate.
  • acetone 99.0%, manufactured by Wako Pure Chemical Industries
  • the stainless steel plate on which the chromium plating layer was formed was washed with acetone and then dried.
  • the thickness of the obtained chrome plating was measured by XRF (fluorescence X-ray analysis), it was about 15 ⁇ m, and numerous cracks generated by plating stress were confirmed on the surface of the chrome plating.
  • the dried chrome plating layer was heat-treated at 150 ° C. for 5 hours in an air atmosphere.
  • Copper sulfate plating was performed on the chromium plating in which the cracks occurred.
  • a stainless steel plate coated with chromium was immersed in a copper sulfate plating bath in which 25 g / L of sulfuric acid and 200 g / L of copper sulfate pentahydrate were dissolved, and the current density was 3 A / dm 2 .
  • anode Cu
  • cathode chromium plating layer, 75 seconds (sample 1), 30 seconds (sample 2), 15 seconds (sample 3), 7 seconds (sample 4) or 3 seconds (sample) 5) I went.
  • Example 2 Observation of Porous Metal Foil
  • the porous metal foils of Samples 1 and 3 obtained in Example 1 were observed from directly above with a field emission scanning electron microscope (FE-SEM).
  • the image shown in 5A was obtained.
  • the metal fibers of the porous metal foils of Samples 1 and 3 were observed with a field emission scanning electron microscope (FE-SEM)
  • the images shown in FIGS. 4B and 5B were obtained, respectively.
  • bead-like or worm-like (caterpillar-like) irregularities due to the spherical portions of the metal particles were observed on the growth surface.
  • FIG. Images shown in 6B and 6C were obtained.
  • the cross-sectional structure of the metal fiber is precipitated radially starting from the crack, and the cross-sectional shape of the metal fiber is a semicircular shape including a spherical portion and a planar bottom surface.
  • the cross section of the metal fiber has a two-layer structure, which is because the metal fiber is previously coated with carbon in order to clearly observe the processed surface. It was about 0.50 when the ratio with respect to the wire diameter D of the largest cross-section height H in a metal fiber cross section was computed.
  • Example 3 Peeling of porous metal foil (1) Peeling with adhesive tape High tackiness on the surface of samples 1 to 5 (formed on a conductive substrate through a peeling layer) obtained in Example 1 A pressure-sensitive adhesive tape (manufactured by Nitoms Co., Ltd., super-transparent double-sided pressure-sensitive adhesive sheet, product number T: 284) was attached, and the pressure-sensitive adhesive tape was peeled off. As a result, as shown in FIG. 7, the porous metal foil was peeled off in a form transferred to the adhesive tape. The peeled porous metal foil was attached to a glass plate.
  • Example 4 Measurement of aperture ratio, wire diameter and thickness
  • the aperture ratio, wire diameter and thickness of the porous metal foil obtained in Example 1 were measured as follows. (Measurement method of aperture ratio) Using an electron microscope, an SEM photograph of the porous metal foil at a magnification of 100 was taken so that the observation area was 1.137 mm 2 . Next, the image processing software: Image-J was used to identify the metal fiber portion and the opening portion, and the ratio of the opening portion area to the total observation area was calculated and used as the opening ratio.
  • FIG. 9 shows the relationship between the aperture ratio and the copper plating time
  • FIG. 10 shows the relationship between the wire diameter and the copper plating time.
  • Example 5 Relationship between aperture ratio and transmittance
  • various conditions such as chromium plating and copper sulfate plating were appropriately changed in Example 1 so that the aperture ratio was 71.0%, 46 0.0% and 13.2% porous copper foils were produced.
  • the transmittance in the visible light region of the obtained porous copper foil was measured with an absorptiometer, the result shown in FIG. 11 was obtained.
  • the porous metal foil of the present invention having an aperture ratio of 80%, preferably more than 85%, has a very high light transmittance in the visible light region (approximately more than 80%, preferably more than 85%). However, it can be seen that it is extremely suitable for the use of the transparent conductive film.

Abstract

Provided is a porous metal foil which has a two-dimensional network structure composed of metallic fibers that are laid unregularly, wherein each of the metallic fibers has an approximately semicircular or approximately semielliptical cross section, and wherein the aperture ratio of the porous metal foil is more than 80%. The porous metal foil according to the present invention has a high aperture ratio to such an extent that the porous metal foil can be used as a transparent conductive film, and can be produced in a large quantity by an inexpensive and simple process.

Description

多孔質金属箔及びその製造方法Porous metal foil and method for producing the same
 本発明は、多孔質金属箔及びその製造方法に関するものであり、より具体的には、透明導電膜としての利用に適した高開口率の多孔質金属箔及びその製造方法に関する。 The present invention relates to a porous metal foil and a method for producing the same, and more specifically to a porous metal foil having a high aperture ratio suitable for use as a transparent conductive film and a method for producing the same.
 ディスプレイ画面上の表示に接触することで入力が行われるタッチパネルがスマートフォンやパソコン等に広く普及している。タッチパネルは、ガラス板等の透明基板上に透明導電膜が電極として形成されてなる構成を一般的に有している。この透明導電膜として最も広く使用される材料はITO(酸化インジウム錫)である。しかしながら、ITOは、レアメタルであるインジウムを含むため高価であり且つ供給懸念を伴うこと、また、スパッタリング法により成膜しなければならず設備及び製造コストが増大すること、さらにはスパッタリング時の熱により基材の材質によっては基材が歪んでしまうことがある等の問題がある。 Touch panels that perform input by touching the display on the display screen are widely used in smartphones and personal computers. The touch panel generally has a configuration in which a transparent conductive film is formed as an electrode on a transparent substrate such as a glass plate. The most widely used material for the transparent conductive film is ITO (indium tin oxide). However, since ITO contains indium which is a rare metal, it is expensive and accompanied by supply concerns, and the film must be formed by sputtering, which increases equipment and manufacturing costs, and further due to heat during sputtering. There is a problem that the base material may be distorted depending on the material of the base material.
 このような事情に鑑み、ITOに代わる透明導電膜材料として、金属製の透明導電膜が提案されている。例えば、特許文献1(特開2012-94254号公報)は、規則的な金属細線ネットワークとグラフェンシートを組み合せた透明導電膜が開示されている。特許文献2(特許第4610416号公報)には網目構造の導電性膜として金属を用いた静電容量型タッチパネルが開示されている。特許文献3(特許第5282991号公報)には金属ナノワイヤーを含有する透明導電層が開示されている。特許文献4(特表2012-527071号公報)にも、特許文献3と同様、ナノワイヤーを含有する透明導電層が開示されている。特許文献5(特開2013-178550号公報)には、凹凸形状を有する基材を利用して、蒸着等により金属細線シートを製造する方法が開示されている。しかしながら、これらの技術には、製造工程数が多く製造コストが高くなる、表面抵抗率や光透過率が透明導電膜としては不十分である等の種々の問題があり、更なる改善が望まれている。 In view of such circumstances, a metal transparent conductive film has been proposed as a transparent conductive film material replacing ITO. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-94254) discloses a transparent conductive film in which a regular fine metal wire network and a graphene sheet are combined. Patent Document 2 (Japanese Patent No. 4610416) discloses a capacitive touch panel using a metal as a conductive film having a mesh structure. Patent Document 3 (Japanese Patent No. 5282991) discloses a transparent conductive layer containing metal nanowires. Patent Document 4 (Japanese Patent Publication No. 2012-527071) also discloses a transparent conductive layer containing nanowires, as in Patent Document 3. Patent Document 5 (Japanese Patent Laid-Open No. 2013-178550) discloses a method of manufacturing a metal fine wire sheet by vapor deposition or the like using a base material having an uneven shape. However, these technologies have various problems such as a large number of manufacturing steps and high manufacturing costs, and insufficient surface resistivity and light transmittance as a transparent conductive film, and further improvements are desired. ing.
 また、特許文献6(国際公開第2010/034949号公報)には実質的に垂直のマスクゾーンの縁を有する、開口部のネットワークを有するマスクを用いて製造される不規則パターンの導電性グリッドが開示されている。この導電性グリッドは低い電気抵抗(<2Ω)及び高い光透過率(>80%)を有することができるとされているが、マスキング層を乾燥させて開口部のネットワークを有するマスクを形成させる工程、マスキング層を除去する工程等の煩雑な工程を経なくてはならず、しかも除去されたマスキング層は再利用できないため、製造工程数が多く製造コストが高くなる。また、マスキング層をその都度形成するためそれを経て得られるネットワーク形状の再現性に劣るものと解される。また、マスキングを経て作製されるため、導電性グリッドを構成するストランドの断面形状が、実質的に垂直のマスクゾーンの縁に起因して略矩形状になる。 Patent Document 6 (International Publication No. 2010/034949) discloses a conductive grid having an irregular pattern manufactured using a mask having a network of openings having substantially vertical mask zone edges. It is disclosed. The conductive grid is said to have low electrical resistance (<2Ω) and high light transmittance (> 80%), but the masking layer is dried to form a mask with a network of openings. In addition, a complicated process such as a process for removing the masking layer must be performed, and the removed masking layer cannot be reused, resulting in a large number of manufacturing processes and a high manufacturing cost. Further, since the masking layer is formed each time, it is understood that the reproducibility of the network shape obtained through the masking layer is inferior. Moreover, since it is produced through masking, the cross-sectional shape of the strands constituting the conductive grid becomes substantially rectangular due to the edge of the substantially vertical mask zone.
 一方で、リチウムイオン電池の負極集電体を主たる用途として想定した多孔質金属箔が提案されている。例えば、特許文献7(特許第4762368号公報)には、金属繊維が不規則に張り巡らされてなる二次元網目構造からなる多孔質金属箔が開示されている。しかしながら、この文献に開示される多孔質金属箔の開口率は十分に高いとはいえず、光透過率85%以上が望まれる透明導電膜の用途に適したものではない。 On the other hand, porous metal foils have been proposed assuming a negative current collector of a lithium ion battery as a main application. For example, Patent Document 7 (Japanese Patent No. 4762368) discloses a porous metal foil having a two-dimensional network structure in which metal fibers are irregularly stretched. However, the aperture ratio of the porous metal foil disclosed in this document cannot be said to be sufficiently high, and is not suitable for the use of a transparent conductive film in which a light transmittance of 85% or more is desired.
特開2012-94254号公報JP 2012-94254 A 特許第4610416号公報Japanese Patent No. 4610416 特許第5282991号公報Japanese Patent No. 5282991 特表2012-527071号公報Special table 2012-527071 gazette 特開2013-178550号公報JP 2013-178550 A 国際公開第2010/034949号公報International Publication No. 2010/034949 特許第4762368号公報Japanese Patent No. 4762368
 本発明者らは、今般、透明導電膜として利用可能な程に高い開口率を有し、安価且つ簡素なプロセスで量産可能な多孔質金属箔を提供できることを知見した。 The present inventors have now found that it is possible to provide a porous metal foil that has an opening ratio that is high enough to be used as a transparent conductive film and that can be mass-produced by an inexpensive and simple process.
 したがって、本発明の目的は、透明導電膜として利用可能な程に高い開口率を有し、安価且つ簡素なプロセスで量産可能な多孔質金属箔を提供することにある。 Therefore, an object of the present invention is to provide a porous metal foil that has an opening ratio that is high enough to be used as a transparent conductive film and that can be mass-produced by an inexpensive and simple process.
 本発明の一態様によれば、不規則に張り巡らされてなる金属繊維で構成される二次元網目構造からなり、前記金属繊維が略半円又は略半楕円の断面形状を有する多孔質金属箔であって、該多孔質金属箔が80%を超える開口率を有する、多孔質金属箔が提供される。 According to one aspect of the present invention, the porous metal foil has a two-dimensional network structure composed of metal fibers that are irregularly stretched, and the metal fibers have a substantially semi-circular or substantially semi-elliptical cross-sectional shape. A porous metal foil is provided wherein the porous metal foil has an open area ratio greater than 80%.
 本発明の他の一態様によれば、多孔質金属箔の製造方法であって、
 導電性基材に電解クロムめっきを施してクロム、クロム合金及び/又はクロム酸化物からなる剥離層を形成し、その際、前記剥離層自体の応力によって前記剥離層にクラックを発生させる工程と、
 前記剥離層に、前記クラックに優先的に析出可能な金属を電解めっきして、前記クラックに沿って無数の金属粒子を成長させ、それにより金属繊維で構成される二次元網目構造からなり且つ80%を超える開口率を有する多孔質金属箔を形成する工程と、
を含んでなる、製造方法が提供される。
According to another aspect of the present invention, a method for producing a porous metal foil comprising:
Forming a release layer made of chromium, a chromium alloy and / or a chromium oxide by performing electrolytic chromium plating on the conductive substrate, and generating a crack in the release layer by the stress of the release layer itself;
The release layer is electroplated with a metal that can be preferentially deposited on the cracks, and an infinite number of metal particles are grown along the cracks, thereby comprising a two-dimensional network structure composed of metal fibers and 80 Forming a porous metal foil having an open area ratio greater than%,
A manufacturing method is provided comprising:
本発明による多孔質金属箔の一例の上面模式図である。It is an upper surface schematic diagram of an example of the porous metal foil by this invention. 本発明による多孔質金属箔を構成する金属繊維の模式断面図である。It is a schematic cross section of the metal fiber which comprises the porous metal foil by this invention. 本発明による多孔質金属箔の製造工程の流れを示す図である。It is a figure which shows the flow of the manufacturing process of the porous metal foil by this invention. 例1で作製された試料1の多孔質金属箔を真上から観察したFE-SEM画像である。3 is an FE-SEM image obtained by observing the porous metal foil of Sample 1 manufactured in Example 1 from directly above. 例1で作製された試料1の多孔質金属箔を構成する金属繊維を拡大観察したFE-SEM画像である。3 is an FE-SEM image obtained by magnifying and observing the metal fibers constituting the porous metal foil of Sample 1 produced in Example 1. FIG. 例1で作製された試料3の多孔質金属箔を真上から観察したFE-SEM画像である。3 is an FE-SEM image obtained by observing the porous metal foil of Sample 3 prepared in Example 1 from directly above. 例1で作製された試料3の多孔質金属箔を構成する金属繊維を拡大観察したFE-SEM画像である。3 is an FE-SEM image obtained by magnifying and observing the metal fibers constituting the porous metal foil of Sample 3 prepared in Example 1. FIG. 例1で作製された試料2の多孔質金属箔を構成する金属繊維の垂直に切断した切断面を示す傾斜角60℃にて測定したSIM画像である。4 is a SIM image measured at an inclination angle of 60 ° C. showing a cut surface of a metal fiber constituting the porous metal foil of Sample 2 produced in Example 1 cut vertically. 例1で作製された試料3の多孔質金属箔を構成する金属繊維の垂直に切断した切断面を示す傾斜角60℃にて測定したSIM画像である。4 is a SIM image measured at an inclination angle of 60 ° C. showing a cut surface of a metal fiber constituting the porous metal foil of Sample 3 produced in Example 1 that is cut perpendicularly. 例1で作製された試料4の多孔質金属箔を構成する金属繊維の垂直に切断した切断面を示す傾斜角60℃にて測定したSIM画像である。4 is a SIM image measured at an inclination angle of 60 ° C. showing a cut surface of a metal fiber constituting the porous metal foil of Sample 4 produced in Example 1 cut vertically. 例3において粘着テープにより剥離した、試料3の多孔質金属箔の写真である。4 is a photograph of the porous metal foil of Sample 3 peeled off with an adhesive tape in Example 3. 例3においてCrエッチング液に浸漬して剥離した、試料3の多孔質金属箔の写真である。4 is a photograph of a porous metal foil of Sample 3 that was immersed in a Cr etching solution and peeled in Example 3. 例4で測定された開口率と電解銅めっき時間の関係を示すグラフである。6 is a graph showing the relationship between the aperture ratio measured in Example 4 and electrolytic copper plating time. 例4で測定された金属繊維の線径と電解銅めっき時間の関係を示すグラフである。6 is a graph showing the relationship between the wire diameter of a metal fiber measured in Example 4 and the electrolytic copper plating time. 例4で測定された各種開口率の金属箔の可視光領域における光透過率プロファイルを示す図である。6 is a diagram showing light transmittance profiles in a visible light region of metal foils having various aperture ratios measured in Example 4. FIG.
 多孔質金属箔
 図1に本発明による多孔質金属箔の一例の上面模式図を示す。図1に示されるように、本発明による多孔質金属箔10は、不規則に張り巡らされてなる金属繊維11で構成される二次元網目構造からなる。この二次元網目構造はマスクメロンの表皮模様を連想させる独特の模様を呈することから、この種の多孔質金属箔を出願人はマスクメロン箔と称している。そして、本発明の多孔質金属箔10は80%を超える開口率を有する。この80%を超える極めて高い開口率は、透明導電膜に望まれる高い光透過率(特に可視光領域の透過率)を可能とするものである。金属製の透明導電膜は既に知られているが(例えば特許文献1~6を参照)、本発明者らの知るかぎり、電解銅箔由来の製法で作製された不規則二次元網目構造の透明導電膜は今まで存在しなかった。実際、特許文献7には不規則二次元網目構造からなる多孔質金属箔が開示されているものの、開口率は例えば28%や33%と低めであり、透明導電膜の用途には適さないものであった。しかしながら、その一方で、特許文献7の多孔質金属箔は、クラックが形成された剥離層の形成を伴うこと以外は電解銅箔と同様の手法で製造できるため、この手法で透明導電膜を製造することができれば製造コスト及び量産性等の観点から極めて好都合といえる。というのも、製造工程数が多いが故に製造コストが高くなりがちな他の従来製法とは異なり、電解銅箔由来の製法によれば透明導電膜が安価且つ簡素なプロセスで量産可能なものとなるからである。実際に電解銅箔由来の上記アプローチにより80%を超える開口率を有する多孔質金属箔を得ることは決して容易なことではなかったが、本発明者らは、今般、80%を超える開口率を有する不規則二次元網目構造からなる多孔質金属箔の製造に成功し、本発明に至った。すなわち、本発明によれば、透明導電膜として利用可能な程に高い開口率を有し、安価且つ簡素なプロセスで量産可能な多孔質金属箔を提供することができる。また、多孔質金属箔10は金属製であるため、透明導電膜に適した低いシート抵抗を有することができる。
Porous Metal Foil FIG. 1 shows a schematic top view of an example of a porous metal foil according to the present invention. As shown in FIG. 1, a porous metal foil 10 according to the present invention has a two-dimensional network structure composed of metal fibers 11 that are irregularly stretched. Since this two-dimensional network structure presents a unique pattern reminiscent of the mask melon skin pattern, the applicant refers to this kind of porous metal foil as a mask melon foil. And the porous metal foil 10 of this invention has an aperture ratio exceeding 80%. This extremely high aperture ratio exceeding 80% enables the high light transmittance desired for the transparent conductive film (particularly, the transmittance in the visible light region). Metallic transparent conductive films are already known (see, for example, Patent Documents 1 to 6). However, as far as the present inventors know, a transparent transparent irregular two-dimensional network structure produced by a method derived from electrolytic copper foil is known. The conductive film has not existed until now. Actually, although Patent Document 7 discloses a porous metal foil having an irregular two-dimensional network structure, the aperture ratio is low, for example, 28% or 33%, and is not suitable for use as a transparent conductive film. Met. However, on the other hand, since the porous metal foil of Patent Document 7 can be manufactured by the same technique as the electrolytic copper foil except that it involves the formation of a release layer in which cracks are formed, a transparent conductive film is manufactured by this technique. If it can be done, it can be said that it is extremely convenient from the viewpoint of manufacturing cost, mass productivity and the like. Because, unlike other conventional manufacturing methods that tend to increase the manufacturing cost due to the large number of manufacturing steps, the transparent conductive film can be mass-produced by an inexpensive and simple process according to the manufacturing method derived from electrolytic copper foil. Because it becomes. Actually, it has never been easy to obtain a porous metal foil having an open area ratio exceeding 80% by the above approach derived from electrolytic copper foil. However, the present inventors now have an open area ratio exceeding 80%. The present invention succeeded in producing a porous metal foil having an irregular two-dimensional network structure. That is, according to the present invention, it is possible to provide a porous metal foil that has an opening ratio that is high enough to be used as a transparent conductive film and that can be mass-produced by an inexpensive and simple process. Moreover, since the porous metal foil 10 is made of metal, it can have a low sheet resistance suitable for a transparent conductive film.
 この多孔質金属箔10は、80%を超える開口率を有し、好ましくは83%以上、より好ましく85%以上、さらに好ましくは87%以上、特に好ましくは90%以上、93%以上又は95%以上である。開口率が高いほど光透過率が高くなる。特に、多孔質金属箔においては、開口率の高低を問わず、開口率と光透過率(特に可視光領域の光透過率)は高い相関関係を有し、開口率の値と可視光領域内の波長における光透過率の値と概ね同等であるか又はそうでなくとも極めて近い。したがって、上述のように高い開口率を有することで、多孔質金属箔10は高い光透過率(特に可視光領域の光透過率)を有することができ、金属繊維11を構成する金属の導電性と相まって、透明導電膜としての用途に極めて有用な箔となる。このように開口率は高いことが望まれるため、その上限は所望の導電性が確保されるかぎり特に限定されないが、開口率は98%以下、97%以下、又は96%以下が現実的である。本発明における開口率は、面積開口率として定義されるものであり、具体的には以下の手順により測定されるものである。すなわち、電子顕微鏡で一定面積の拡大写真を真上から撮影し、これを画像解析ソフトを用いて、その面積に占める開口部面積の割合を算出することにより測定される。 This porous metal foil 10 has an opening ratio of more than 80%, preferably 83% or more, more preferably 85% or more, further preferably 87% or more, particularly preferably 90% or more, 93% or more or 95%. That's it. The higher the aperture ratio, the higher the light transmittance. In particular, in porous metal foils, the aperture ratio and light transmittance (especially the light transmittance in the visible light region) have a high correlation regardless of the aperture ratio, and the aperture ratio value and the visible light region Is approximately the same as or not very close to the value of light transmittance at a wavelength of. Therefore, by having a high aperture ratio as described above, the porous metal foil 10 can have a high light transmittance (particularly the light transmittance in the visible light region), and the conductivity of the metal constituting the metal fiber 11 can be improved. Combined with, it becomes a very useful foil for use as a transparent conductive film. Since the aperture ratio is desired to be high in this way, the upper limit is not particularly limited as long as desired conductivity is ensured, but the aperture ratio is realistically 98% or less, 97% or less, or 96% or less. . The aperture ratio in the present invention is defined as an area aperture ratio, and is specifically measured by the following procedure. That is, an enlarged photograph of a certain area is taken from directly above with an electron microscope, and this is measured by calculating the ratio of the opening area to the area using image analysis software.
 金属繊維11は金属製の繊維であり、使用する金属は目的とする用途に応じて適宜決定すればよく、特に限定されない。好ましい金属は、銅、金、銀、ニッケル、コバルト、錫、及び亜鉛からなる群から選択される少なくとも一種を含んでなる。ここで、「含んでなる」とは、上記列挙される金属元素を主として含む金属又は合金であればよく、残部として他の金属元素や不可避不純物を含むことが許容されることを意味し、より好ましくは金属ないし合金の50重量%以上が上記列挙される金属元素で構成されるとの意味であり、典型例としては上記列挙される金属元素及び不可避不純物からなるものが挙げられる。これらの定義は以下に金属に関して記述される同種の表現に同様に適用されるものとする。これらの金属において、透明導電膜に適するものは、銅、銅合金、金、銀、ニッケル、コバルト、錫、及び亜鉛からなる群から選択される少なくとも一種を含んでなるものであり、より好ましくは導電性の点から銅である。金属繊維は母材としての金属繊維を母材と異なる種類の金属を含む表面処理剤で表面処理したものであってもよく、そのような表面処理に用いられる金属の例としてはニッケル、コバルト、錫及び亜鉛が挙げられる。 The metal fiber 11 is a metal fiber, and the metal to be used may be appropriately determined according to the intended use, and is not particularly limited. Preferred metals comprise at least one selected from the group consisting of copper, gold, silver, nickel, cobalt, tin, and zinc. Here, “comprising” may be any metal or alloy mainly containing the above-listed metal elements, and means that it is allowed to contain other metal elements and unavoidable impurities as the balance. Preferably, it means that 50% by weight or more of the metal or alloy is composed of the metal elements listed above, and typical examples include those composed of the metal elements listed above and inevitable impurities. These definitions shall apply equally to the same kind of expressions described below for metals. Among these metals, those suitable for the transparent conductive film include at least one selected from the group consisting of copper, copper alloys, gold, silver, nickel, cobalt, tin, and zinc, and more preferably Copper from the viewpoint of conductivity. The metal fiber may be a surface-treated metal fiber as a base material with a surface treatment agent containing a different type of metal from the base material. Examples of metals used for such surface treatment include nickel, cobalt, Tin and zinc are mentioned.
 金属繊維11の線径は14μm以下であるのが好ましく、より好ましくは10μm以下、さらに好ましくは7μm以下、最も好ましくは4μm以下である。このように線径が細いことで高開口率に寄与する。このため線径の下限は所望の導電性が確保されるかぎり特に限定されないが、ハンドリング性の観点から、線径は1μm以上が好ましく、より好ましくは2μm以上である。なお、「線径」は、多孔質金属箔10を真上から見た場合の金属繊維11の幅(太さ)として定義され、電界放射型走査電子顕微鏡(FE-SEM)、走査イオン顕微鏡(SIM)等を用いて測定することができる。 The wire diameter of the metal fiber 11 is preferably 14 μm or less, more preferably 10 μm or less, still more preferably 7 μm or less, and most preferably 4 μm or less. The thin wire diameter contributes to a high aperture ratio. For this reason, the lower limit of the wire diameter is not particularly limited as long as desired conductivity is ensured, but from the viewpoint of handling properties, the wire diameter is preferably 1 μm or more, more preferably 2 μm or more. The “wire diameter” is defined as the width (thickness) of the metal fiber 11 when the porous metal foil 10 is viewed from directly above, and includes a field emission scanning electron microscope (FE-SEM), a scanning ion microscope ( (SIM) or the like.
 金属繊維11は、図2に示されるように、略半円又は略半楕円の断面形状を有する。この略半円又は略半楕円の断面形状は後述する図3に示されるように本発明の製造方法に由来して付与される形状であるが、特許文献6に開示されるようなマスキングを経て作製される矩形状の断面形状を有する金属繊維と比べて、角が取れているため表面がより滑らかであり各種処理を高精度にしやすいとの利点がある。例えば、透明導電膜に反射防止層を設ける場合に反射防止コーティング剤を金属繊維の側面部分の全域にわたって十分に行き渡らせることができる。また、金属箔の黒化処理(例えば酸化銅を付着させる処理)をムラなく均一に行うことができる。さらには、金属繊維側面における透過光の反射が少なく表示の輝度低下を少なくできるとの利点もある。 The metal fiber 11 has a substantially semicircular or substantially semi-elliptical cross-sectional shape as shown in FIG. This substantially semicircular or substantially semi-elliptical cross-sectional shape is a shape imparted from the manufacturing method of the present invention as shown in FIG. 3 to be described later, but undergoes masking as disclosed in Patent Document 6. Compared to a metal fiber having a rectangular cross-sectional shape to be manufactured, there is an advantage that the surface is smoother because various corners are taken and various treatments are easily performed with high accuracy. For example, when an antireflection layer is provided on the transparent conductive film, the antireflection coating agent can be sufficiently spread over the entire side surface portion of the metal fiber. Moreover, the blackening process (for example, the process of attaching copper oxide) of the metal foil can be performed uniformly without any unevenness. Furthermore, there is also an advantage that there is little reflection of transmitted light on the side surface of the metal fiber, and a decrease in display brightness can be reduced.
 金属繊維11は、図1に示されるように、分枝状繊維であるのが好ましく、分枝状繊維が不規則に張り巡らされた二次元網目構造とすることで多孔質金属箔10が高開口率でありながら剥離可能な箔形態を好ましく保持することができる。特に、二次元網目構造は、基材の表面に形成されたクラックに起因した不規則形状を有してなるのが好ましい。 As shown in FIG. 1, the metal fiber 11 is preferably a branched fiber, and the porous metal foil 10 is made high by forming a two-dimensional network structure in which the branched fibers are irregularly stretched. It is possible to preferably maintain a peelable foil form while having an aperture ratio. In particular, the two-dimensional network structure preferably has an irregular shape due to cracks formed on the surface of the substrate.
 金属繊維11の上述した断面形状や分枝状形状は、後述する剥離層のクラックに沿った核生成に起因して、無数の金属粒子が連結されてなることにより形成されたものということができる。もっとも、金属繊維を構成するためには粒子成長によって隣接する金属粒子同士が緊密に結合することが望ましいことから金属繊維を構成する金属粒子はもはや完全な粒子形状を有しなくてよく、典型的には、金属繊維11を構成する金属粒子は、数珠状又は芋虫状(キャタピラー状)の継ぎ目を有する形状に連なっているが、継ぎ目が実質的に観察されない形状に連なっていてもよい。したがって、金属繊維11を構成する金属粒子は、図2に示されるように、球状部11aと底部11bとを有する半球状の形態を有し、全ての金属粒子の底部11bが同一基底面上に位置し、全ての金属粒子の球状部11aが基底面を基準として同じ側に位置すると表現することも可能である。この場合、基底面に沿った底部11bの幅Dが線径となり、球状部11aの最大断面高さHが多孔質金属箔の厚さに相当する。この基底面及びその上に位置する底部11bは、製造時に用いられる剥離層の平面形状が反映されたものである。その結果、上述したとおり、金属繊維11は略半円又は略半楕円の断面形状を有することになる。金属繊維11において、最大断面高さHの線径Dに対する平均比率は、特に限定されるものではない。 It can be said that the above-described cross-sectional shape and branched shape of the metal fiber 11 are formed by connecting innumerable metal particles due to nucleation along cracks of the release layer described later. . However, since it is desirable that the adjacent metal particles are closely bonded to each other by particle growth in order to constitute the metal fiber, the metal particles constituting the metal fiber may no longer have a complete particle shape. In addition, the metal particles constituting the metal fiber 11 are continuous in a shape having a bead-like or worm-like (caterpillar-like) seam, but may be in a shape in which the seam is not substantially observed. Therefore, as shown in FIG. 2, the metal particles constituting the metal fiber 11 have a hemispherical shape having a spherical portion 11a and a bottom portion 11b, and the bottom portions 11b of all the metal particles are on the same base surface. It can also be expressed that the spherical portions 11a of all the metal particles are located on the same side with respect to the base surface. In this case, the width D of the bottom portion 11b along the basal plane becomes the wire diameter, and the maximum cross-sectional height H of the spherical portion 11a corresponds to the thickness of the porous metal foil. The basal plane and the bottom portion 11b positioned thereon reflect the planar shape of the release layer used during manufacturing. As a result, as described above, the metal fiber 11 has a substantially semicircular or substantially semi-elliptical cross-sectional shape. In the metal fiber 11, the average ratio of the maximum cross-sectional height H to the wire diameter D is not particularly limited.
 本発明の好ましい態様によれば、金属繊維11は略半円の断面形状を有し、最大断面高さHの線径Dに対する平均比率(H/D)は、典型的には0.30~0.70であり、より典型的には0.40~0.60であり、より一層典型的には0.45~0.55、最も典型的には約0.50であることができる。この平均比率はめっき条件等を適宜変えることによって調整することができる。 According to a preferred embodiment of the present invention, the metal fiber 11 has a substantially semicircular cross-sectional shape, and the average ratio (H / D) of the maximum cross-sectional height H to the wire diameter D is typically 0.30 to It can be 0.70, more typically 0.40 to 0.60, even more typically 0.45 to 0.55, and most typically about 0.50. This average ratio can be adjusted by appropriately changing the plating conditions and the like.
 本発明の別の好ましい態様によれば、金属繊維11は略楕円の断面形状を有し、最大断面高さHの線径Dに対する平均比率(H/D)は、0.50を超えるのが好ましく、より好ましくは0.50~2.00、さらに好ましくは0.75~1.75、特に好ましくは1.00~1.50である。このような比率であると、金属繊維11が半円状断面よりも高く盛り上がった形状となり、電析後に多孔質金属箔を剥離層から剥離容易性が向上するとともに、多孔質金属箔のシート抵抗が低減される。このような形状は多孔質金属箔のめっき浴に添加剤を加えること、及び/又は電解時間を長くすることによって実現することができる。 According to another preferred embodiment of the present invention, the metal fiber 11 has a substantially elliptical cross-sectional shape, and the average ratio (H / D) of the maximum cross-sectional height H to the wire diameter D exceeds 0.50. It is preferably 0.50 to 2.00, more preferably 0.75 to 1.75, and particularly preferably 1.00 to 1.50. With such a ratio, the metal fiber 11 has a raised shape higher than the semicircular cross section, and the ease of peeling of the porous metal foil from the release layer after electrodeposition is improved, and the sheet resistance of the porous metal foil is improved. Is reduced. Such a shape can be realized by adding an additive to the plating bath of the porous metal foil and / or lengthening the electrolysis time.
 多孔質金属箔10は0.5~28μmの厚さを有するのが好ましく、より好ましくは0.75~17.5μm、さらに好ましくは1.5~12.5μm、特に好ましくは1.75~10μm、最も好ましくは2~6μmである。この範囲内であると高開口率でありながら比較的ハンドリングがしやすく、シート抵抗も低減できる。もっとも、多孔質金属箔10のハンドリングは、基材から剥離された自立した形態であってもよいし、基材に被膜されたままの形態であってもよいし、基材から他の基材に転写された形態であってもよく、採用する形態に応じて多孔質金属箔10の厚さを上記範囲内で適宜設定すればよい。本発明の多孔質金属箔は金属繊維で構成される二次元網目構造からなるため、多孔質金属箔の厚さは金属繊維の最大断面高さに相当する。このような厚さは多孔質金属箔の孔サイズよりも大きな測定子を用いた市販の膜厚測定装置によって測定するのが好ましい。 The porous metal foil 10 preferably has a thickness of 0.5 to 28 μm, more preferably 0.75 to 17.5 μm, still more preferably 1.5 to 12.5 μm, and particularly preferably 1.75 to 10 μm. Most preferably, the thickness is 2 to 6 μm. Within this range, handling is relatively easy while the aperture ratio is high, and sheet resistance can be reduced. However, the handling of the porous metal foil 10 may be a self-supporting form peeled from the base material, may be a form as it is coated on the base material, or may be from the base material to another base material. The thickness of the porous metal foil 10 may be appropriately set within the above range according to the form to be adopted. Since the porous metal foil of the present invention has a two-dimensional network structure composed of metal fibers, the thickness of the porous metal foil corresponds to the maximum cross-sectional height of the metal fibers. Such a thickness is preferably measured by a commercially available film thickness measuring device using a measuring element larger than the pore size of the porous metal foil.
 製造方法
 本発明による多孔質金属箔の好ましい製造方法を説明する。この製造方法は、(1)導電性基材を用意する工程と、(2)電解クロムめっきによりクラック入りの剥離層を形成する工程と、(3)電解めっきにより多孔質金属箔を形成する工程と、所望により(4)多孔質金属箔を剥離する工程とを含む。この製造方法は、電解銅箔由来の製法であるため、透明導電膜が安価且つ簡素なプロセスで量産可能なものとなる。したがって、多孔質金属箔の製造方法は連続製造方式で行われるのが好ましいが、枚葉式で行われてもよい。特に、クラック入りの剥離層を導電性基材上に一旦形成してしまえば、その後はその剥離層/導電性基材を再利用できるため、電解めっき工程1プロセスのみの簡素で且つ連続製造も可能な製法となり、製造コストの大幅な低減を実現することができる。
Production Method A preferred production method of the porous metal foil according to the present invention will be described. This manufacturing method includes (1) a step of preparing a conductive base material, (2) a step of forming a cracked release layer by electrolytic chrome plating, and (3) a step of forming a porous metal foil by electrolytic plating. And (4) a step of peeling the porous metal foil as desired. Since this manufacturing method is a method derived from electrolytic copper foil, the transparent conductive film can be mass-produced by an inexpensive and simple process. Therefore, although the manufacturing method of porous metal foil is preferably performed by a continuous manufacturing method, it may be performed by a single wafer method. In particular, once a cracked release layer is formed on a conductive substrate, the release layer / conductive substrate can be reused thereafter. It becomes a possible manufacturing method, and a significant reduction in manufacturing cost can be realized.
(1)導電性基材の用意
 図3に本発明による多孔質金属箔の製造工程の流れを示す。本発明の製造方法にあっては、まず、多孔質金属箔を製造するための支持体として、導電性基材12を用意する。導電性基材はめっきされることができる程度の導電性を有する基材であればよく、無機材料、有機材料、積層体、及び表面を金属とした材料のいずれも使用可能であるが、好ましくは金属である。そのような金属の好ましい例としては、銅、ニッケル、コバルト、鉄、クロム、錫、亜鉛、インジウム、銀、金、アルミニウム、及びチタン等の金属、ならびにこれらの金属元素の少なくとも一種を含む合金が挙げられ、より好ましくは銅、銅合金、ニッケル、ニッケル合金、チタン、チタン合金、及びステンレスである。導電性基材の形態も限定されず、箔、板、ドラム等の様々な形態の基材が使用可能である。ドラムの場合は、ドラム本体に導電性金属板を巻き付けて使用してもよく、この場合の導電性金属板の厚さは1~20mmとするのが好ましい。導電性基材は、製造された多孔質金属箔をその加工中に、あるいはさらにその使用の直前まで支持しておき、多孔質金属箔の取り扱い性を向上させる。特に、金属箔又は金属板を導電性基材として用いるのが、多孔質金属箔の製造後に導電性基材としての金属箔又は金属板をそのまま再利用、又は溶解及び製箔してリサイクルできるという利点があるため好ましい。その場合、金属箔又は金属板の厚さを10μm~1mmとするのが、金属箔又は金属板の製造工程及びその後の加工・搬送工程等においてヨレ等が生じないような強度を確保できることから好ましい。
(1) Preparation of conductive substrate FIG. 3 shows a flow of a manufacturing process of a porous metal foil according to the present invention. In the production method of the present invention, first, a conductive substrate 12 is prepared as a support for producing a porous metal foil. The conductive substrate may be a substrate having conductivity that can be plated, and any of inorganic materials, organic materials, laminates, and materials having a metal surface can be used. Is a metal. Preferred examples of such metals include metals such as copper, nickel, cobalt, iron, chromium, tin, zinc, indium, silver, gold, aluminum, and titanium, and alloys containing at least one of these metal elements. More preferable are copper, copper alloy, nickel, nickel alloy, titanium, titanium alloy, and stainless steel. The form of the conductive substrate is not limited, and various forms of substrates such as a foil, a plate, and a drum can be used. In the case of a drum, a conductive metal plate may be wound around the drum body, and the thickness of the conductive metal plate in this case is preferably 1 to 20 mm. The conductive base material supports the manufactured porous metal foil during its processing or until just before its use, thereby improving the handleability of the porous metal foil. In particular, using a metal foil or a metal plate as a conductive substrate means that the metal foil or metal plate as the conductive substrate can be reused as it is after the production of the porous metal foil, or can be recycled by melting and forming the foil. It is preferable because of its advantages. In that case, it is preferable that the thickness of the metal foil or metal plate is 10 μm to 1 mm, because it is possible to secure a strength that does not cause twisting in the manufacturing process of the metal foil or metal plate and the subsequent processing / conveying process. .
 なお、後述する剥離層13の形成に先立ち、導電性基材12に酸洗浄、脱脂等の前処理を施してその表面を清浄にしておくことが好ましい。 In addition, prior to the formation of the release layer 13 described later, it is preferable that the conductive substrate 12 is subjected to pretreatment such as acid washing and degreasing to clean its surface.
(2)電解クロムめっきによるクラック入り剥離層の形成
 導電性基材12に電解クロムめっきを施してクロム、クロム合金及び/又はクロム酸化物からなる剥離層13を形成し、その際、剥離層13自体の応力によって剥離層13にクラック13aを発生させる。剥離層13はその上に形成されることになる多孔質金属箔10の剥離を容易とするための層であり、クラック13aを発生可能で、かつ、クラック13aでめっきされやすく、クラックの無い部分13bでめっきされにくい性質を有する材料が用いられ、具体的にはクロム、クロム合金及び/又はクロム酸化物である。すなわち、発生したクラック13aにある種の金属をめっきにより優先的に析出可能な材料が剥離層13として用いられる。特に、電解クロムめっきを用いることで、剥離層13の形成条件を制御しやすくなり、その結果、剥離層13へのクラック13aの入り方を巧みに制御することができる。こうして、クラックに沿って形成される金属繊維の発生比率を低めに制御することができ、それにより80%を超える開口率の多孔質金属箔を実現することができる。また、この剥離層は多層に形成されていてもよく、この場合、上層のみにクラックが形成されるものであってもよいし、上層のみならずそれより下の層にもクラックが形成されるものであってよい。また、剥離層の表面にはダイヤモンドライクカーボン(DLC)等が存在していてもよい。クラック13aは、剥離層13の応力によって自然に発生するように制御することが好ましく、成膜と同時に形成される必要はなく、その後の洗浄及び乾燥工程、機械加工等において発生するものであってよい。クラックは、通常は望ましくないものであるが、本発明の製造方法ではむしろそれを積極的に活用することを特徴としている。特に、クラックは、通常、枝分かれした線が二次元網目状に張り巡らされるように形成される特性があるため、このクラックに沿って金属繊維を形成させることで極めて高い開口率の多孔質金属箔を得ることができる。なお、クラックについては通常の成膜プロセスにおいてその発生が常に懸念されていることから、クラックを発生させること自体は、成膜に従事する当業者が経験的に熟知しており、その経験及び知識の範囲内で容易に選択可能である。例えば、めっき浴等の組成制御、剥離層の厚さ、電流密度の条件、浴温度、攪拌条件、後熱処理を工夫したりすること等によりクラックの発生を行えばよい。
(2) Formation of cracked release layer by electrolytic chromium plating Electrolytic chromium plating is applied to the conductive substrate 12 to form a release layer 13 made of chromium, a chromium alloy and / or a chromium oxide. A crack 13a is generated in the release layer 13 by its own stress. The peeling layer 13 is a layer for facilitating the peeling of the porous metal foil 10 to be formed on the peeling layer 13, can generate the crack 13 a, is easily plated with the crack 13 a, and has no crack. A material having the property of being difficult to be plated at 13b is used, and specifically, chromium, a chromium alloy and / or a chromium oxide. That is, a material capable of preferentially depositing a certain kind of metal in the generated crack 13 a by plating is used as the release layer 13. In particular, by using electrolytic chrome plating, the formation conditions of the release layer 13 can be easily controlled, and as a result, how the cracks 13a enter the release layer 13 can be skillfully controlled. In this way, the generation ratio of the metal fibers formed along the cracks can be controlled to be low, whereby a porous metal foil having an opening ratio exceeding 80% can be realized. The release layer may be formed in multiple layers. In this case, cracks may be formed only in the upper layer, and cracks may be formed not only in the upper layer but also in layers below it. It may be a thing. Further, diamond-like carbon (DLC) or the like may be present on the surface of the release layer. The crack 13a is preferably controlled so as to be naturally generated by the stress of the release layer 13, and need not be formed at the same time as film formation, and is generated in the subsequent cleaning and drying process, machining, etc. Good. Cracks are usually undesirable, but the manufacturing method of the present invention is rather characterized by actively utilizing them. In particular, since cracks are usually formed such that branched lines are stretched around in a two-dimensional network, porous metal foil having an extremely high aperture ratio can be formed by forming metal fibers along the cracks. Can be obtained. In addition, since the occurrence of cracks is always a concern in normal film formation processes, the generation of cracks themselves is well-experienced by those skilled in the art engaged in film formation. It is possible to easily select within the range. For example, cracks may be generated by controlling the composition of the plating bath, the thickness of the release layer, the current density, the bath temperature, the stirring conditions, the post heat treatment, or the like.
 剥離層13は、クロム、クロム合金及び/又はクロム酸化物からなるクロムめっき層である。クロムは硬度が高く、連続剥離性、耐久性及び耐食性の観点から優れるとともに、不動態の形成により剥離しやすい点でも有利である。剥離層13の厚さは4~120μmであるのが好ましく、より好ましくは6~80μm、さらに好ましくは8~60μm、最も好ましくは10~40μmである。このような組成及び厚さとすることで、クラックの発生を可能としながら、導電性基材に対して剥離層を高抵抗とすることで層上に形成されることになる多孔質金属箔10を成膜及び剥離しやすくなる。もっとも、上述した剥離層13の厚さ範囲は剥離性のみを考えた場合には不必要なまでに厚いものでありうるが、厚い剥離層とすることでクラックの発生比率を低減し、それにより得られる多孔質金属箔10の開口率を有意に高くすることができる。この理由は必ずしも定かではないが、剥離層13が厚くなることで内部応力ないし内部歪を蓄積しやすくなり、その結果、クラックの安易な発生が抑制されるためではないかと考えられる。 The peeling layer 13 is a chromium plating layer made of chromium, a chromium alloy and / or a chromium oxide. Chromium has a high hardness and is excellent in terms of continuous peelability, durability and corrosion resistance, and is advantageous in that it is easily peeled off due to the formation of a passive state. The thickness of the release layer 13 is preferably 4 to 120 μm, more preferably 6 to 80 μm, still more preferably 8 to 60 μm, and most preferably 10 to 40 μm. With such a composition and thickness, the porous metal foil 10 to be formed on the layer can be formed on the layer by making the release layer have a high resistance with respect to the conductive substrate while allowing the generation of cracks. It becomes easy to form and peel. However, the thickness range of the release layer 13 described above can be unnecessarily thick when considering only the releasability, but by using a thick release layer, the generation ratio of cracks is reduced. The aperture ratio of the obtained porous metal foil 10 can be significantly increased. Although the reason for this is not necessarily clear, it is considered that internal stress or internal strain is likely to be accumulated by increasing the thickness of the release layer 13, and as a result, easy generation of cracks is suppressed.
 電解クロムめっきのための好ましいクロムめっき液としては、サージェント浴(組成:無水クロム酸250g/L及び硫酸2.5g/L)及び硬質クロムめっき浴が挙げられる。市販の硬質クロムめっき浴の例としては、メルテックス社製のアンカー1127、アトテック社製のHEEF-25、及び日本マクダーミッド社製のマック・1が挙げられる。中でも、サージェント浴は、クラックが比較的少なく発生する傾向があり、多孔質金属箔の開口率を高くしやすいことから特に好ましい。実際、本発明者らの知見によれば、サージェント浴は、添加剤を入れたHEEF浴(例えばクロム酸、硫酸及びHEEF-25を含有する浴)よりもクラックが少なく入るため、高い開口率が得られる。電解クロムめっきは、使用するクロムめっき浴の組成に応じた電解条件を適宜設定して所望の厚さが得られるように行えばよいが、30~100A/dmの電流密度で20分間以上行われるのが好ましく、より好ましくは40~90A/dmの電流密度で25分間以上であり、さらに好ましくは45~70A/dmの電流密度で30分間以上である。特に、サージェント浴を用いる場合、好ましくは45~70A/dm、より好ましくは50~65A/dm、さらに好ましくは50~65A/dm、特に好ましくは55~65A/dm電流密度で、好ましくは30分間以上、より好ましくは40~120分間、さらに好ましくは50~90分間、特に好ましくは60~80分間行われる。電流密度が高く、クロムめっきの時間が長いほど、クーロン量が増加する結果、剥離層13の膜厚が大きくなる。そして、上述したように、剥離層13の膜厚が大きくなると上述したように開口率が上がる傾向がある。とりわけ60A/dm前後の高電流密度においては開口率が高くなる。電解クロムめっきにおける好ましい浴温は45~65℃であり、より好ましくは45~60℃である。 Preferable chromium plating solutions for electrolytic chromium plating include a sergeant bath (composition: chromic anhydride 250 g / L and sulfuric acid 2.5 g / L) and a hard chromium plating bath. Examples of commercially available hard chrome plating baths include Anchor 1127 manufactured by Meltex, HEEF-25 manufactured by Atotech, and Mac 1 manufactured by Nihon McDermid. Of these, the Sargent bath is particularly preferred because it tends to generate relatively few cracks and easily increases the aperture ratio of the porous metal foil. In fact, according to the knowledge of the present inventors, the Sargent bath has fewer cracks than the HEEF bath containing the additive (for example, a bath containing chromic acid, sulfuric acid and HEEF-25), and thus has a high opening ratio. can get. Electrolytic chrome plating may be carried out so as to obtain a desired thickness by appropriately setting the electrolysis conditions according to the composition of the chrome plating bath to be used. However, it is performed for 20 minutes or more at a current density of 30 to 100 A / dm 2. More preferably, it is 25 minutes or more at a current density of 40 to 90 A / dm 2 , more preferably 30 minutes or more at a current density of 45 to 70 A / dm 2 . In particular, when a Sargent bath is used, preferably at a current density of 45 to 70 A / dm 2 , more preferably 50 to 65 A / dm 2 , still more preferably 50 to 65 A / dm 2 , particularly preferably 55 to 65 A / dm 2 , It is preferably performed for 30 minutes or more, more preferably 40 to 120 minutes, further preferably 50 to 90 minutes, particularly preferably 60 to 80 minutes. As the current density is higher and the chrome plating time is longer, the amount of coulomb increases, resulting in an increase in the thickness of the release layer 13. As described above, when the thickness of the release layer 13 increases, the aperture ratio tends to increase as described above. In particular, the aperture ratio increases at a high current density of around 60 A / dm 2 . A preferable bath temperature in electrolytic chrome plating is 45 to 65 ° C, more preferably 45 to 60 ° C.
 なお、安定したクロムめっき浴は、典型的には、少量の3価クロムが存在しており、その量は2~6g/L程度である。また、硬質クロムめっき浴には有機スルホン酸などの触媒を添加してもよい。無水クロム酸の濃度はボーメ度により管理することができる。さらに、鉄、銅、塩化物イオン等の不純物はめっきの状態に影響を与えるので、不純物の溶解量の上限管理には注意が必要である。クロムめっきに用いられるアノードとしては、チタンに酸化鉛やPb-Sn合金をコーティングしたものを好ましく用いることができ、そのようなアノードの代表的な市販品として、SPF社のTi-Pb電極(Sn:5%)や日本カーリット社製のエクセロードLDが挙げられる。 A stable chromium plating bath typically contains a small amount of trivalent chromium, and the amount is about 2 to 6 g / L. Further, a catalyst such as organic sulfonic acid may be added to the hard chromium plating bath. The concentration of chromic anhydride can be controlled by the Baume degree. Furthermore, since impurities such as iron, copper, and chloride ions affect the state of plating, care must be taken in managing the upper limit of the amount of impurities dissolved. As an anode used for chromium plating, a titanium-coated lead oxide or Pb—Sn alloy can be preferably used. As a typical commercial product of such an anode, a Ti—Pb electrode (Sn of SnF) is used. : 5%) and Exelod LD manufactured by Nippon Carlit.
 電解めっきによる多孔質金属箔の形成の前に、剥離層13に対して洗浄、乾燥、及び熱処理が行われるのが好ましい。洗浄は水等の水系溶媒で行ってもよいし、アセトン等の有機溶媒により行ってもよい。乾燥は自然乾燥及び加熱乾燥のいずれで行ってもよい。熱処理は好ましくは80~180℃で2~16時間行うのが好ましく、より好ましくは130~170℃で4~8時間である。この熱処理は空気雰囲気等の酸素含有雰囲気下で行われるのが好ましい。この熱処理によって剥離層13の表面が酸化されてCrが不動態として形成され、それにより多孔質金属箔10を剥離しやすくなるとの利点がある。 Prior to the formation of the porous metal foil by electroplating, the release layer 13 is preferably subjected to washing, drying, and heat treatment. Washing may be performed with an aqueous solvent such as water, or with an organic solvent such as acetone. Drying may be performed by either natural drying or heat drying. The heat treatment is preferably performed at 80 to 180 ° C. for 2 to 16 hours, more preferably at 130 to 170 ° C. for 4 to 8 hours. This heat treatment is preferably performed in an oxygen-containing atmosphere such as an air atmosphere. By this heat treatment, the surface of the release layer 13 is oxidized, and Cr 2 O 3 is formed as a passive state. This has an advantage that the porous metal foil 10 can be easily peeled off.
(3)電解めっきによる多孔質金属箔の形成
 次に、剥離層13に、クラック13aに優先的に析出可能な金属を電解めっきして、クラック13aに沿って無数の金属粒子11を成長させ、それにより金属繊維で構成される二次元網目構造からなり且つ80%を超える開口率を有する多孔質金属箔10を形成する。前述したように、剥離層13には、めっきされやすい性質を有するクラック13aと、めっきされにくい性質を有するクラックの無い表面部分13bを有する。クラック13aでめっきされやすくなるのは、クラック13aのある部分の方が、それらの無い部分13bよりも電流が流れやすいことから、核生成及びその成長がクラック13aで優先的に起こるためである。クラック13aに優先的に析出可能な金属は、銅、金、銀、ニッケル、コバルト、錫、及び亜鉛からなる群から選択される少なくとも一種を含んでなるのが好ましく、より好ましくは銅、銀、及び金からなる群から選択される少なくとも一種を含んでなり、さらに好ましくは銅である。
(3) Formation of porous metal foil by electrolytic plating Next, the release layer 13 is electroplated with a metal that can be preferentially deposited on the crack 13a, and the innumerable metal particles 11 are grown along the crack 13a. Thereby, a porous metal foil 10 having a two-dimensional network structure composed of metal fibers and having an open area ratio exceeding 80% is formed. As described above, the release layer 13 has the crack 13a having the property of being easily plated and the crack-free surface portion 13b having the property of being difficult to be plated. The reason why plating with the crack 13a is facilitated is that the current is more likely to flow in the portion where the crack 13a is present than in the portion 13b where the crack 13a is not present, so that nucleation and growth occur preferentially in the crack 13a. The metal that can be preferentially deposited in the crack 13a preferably comprises at least one selected from the group consisting of copper, gold, silver, nickel, cobalt, tin, and zinc, and more preferably copper, silver, And at least one selected from the group consisting of gold, and more preferably copper.
 クラックに優先的に析出可能な金属の電解めっきの条件は、80%を超える開口率を与えるような電流密度及び時間を選択すること以外は、公知各種の金属めっき浴を用いて公知の条件従って行えばよい。そのような電解めっきは、好ましくは0.5~10A/dm、より好ましくは1~8A/dm、さらに好ましくは2~6A/dmの電流密度で、好ましくは1~500秒間、より好ましくは3~150秒間、さらに好ましくは5~75秒間行われる。このようにかなり低めの電流密度で短時間電解めっきを行うことで高い開口率をより一層実現しやすくなる。好ましい浴温は10~60℃であり、より好ましくは15~55℃であり、さらに好ましくは20~50℃である。 The conditions for the electroplating of the metal that can be preferentially deposited in cracks are in accordance with the known conditions using various known metal plating baths, except that the current density and time are set so as to give an opening ratio exceeding 80%. Just do it. Such electrolytic plating is preferably performed at a current density of 0.5 to 10 A / dm 2 , more preferably 1 to 8 A / dm 2 , even more preferably 2 to 6 A / dm 2 , preferably 1 to 500 seconds, and more. It is preferably performed for 3 to 150 seconds, more preferably 5 to 75 seconds. Thus, it becomes easier to realize a high aperture ratio by performing electroplating for a short time at a considerably low current density. The bath temperature is preferably 10 to 60 ° C, more preferably 15 to 55 ° C, and further preferably 20 to 50 ° C.
 特に、クラックに優先的に析出可能な金属が銅である場合、電解銅めっきは、1~5A/dmの電流密度で2~250秒間行われるのが好ましく、より好ましくは1.5~4.5A/dmの電流密度で2~170秒間、さらに好ましくは2~4A/dmの電流密度で2.5~120秒間行われる。このようにかなり低めの電流密度で短時間電解めっきを行うことで高い開口率をより一層実現しやすくなる。電解銅めっきは硫酸銅めっき浴を用いて行なわれるのが好ましく、硫酸銅めっき浴の好ましい組成は、硫酸銅5水和物濃度:150~320g/L、硫酸濃度:15~200g/Lである。また、硫酸銅めっきの好ましい浴温は15~55℃であり、より好ましくは20~50℃であり、さらに好ましくは25~45℃である。 In particular, when the metal capable of preferentially precipitating in cracks is copper, the electrolytic copper plating is preferably performed at a current density of 1 to 5 A / dm 2 for 2 to 250 seconds, more preferably 1.5 to 4 2-170 seconds at a current density of .5A / dm 2, still preferably performed 2.5 to 120 seconds at a current density of 2 ~ 4A / dm 2. Thus, it becomes easier to realize a high aperture ratio by performing electroplating for a short time at a considerably low current density. Electrolytic copper plating is preferably performed using a copper sulfate plating bath, and the preferred composition of the copper sulfate plating bath is a copper sulfate pentahydrate concentration: 150 to 320 g / L, and a sulfuric acid concentration: 15 to 200 g / L. . The preferred bath temperature for copper sulfate plating is 15 to 55 ° C., more preferably 20 to 50 ° C., and further preferably 25 to 45 ° C.
 めっき液には、添加剤を適宜加えて金属箔の特性の向上を図ってもよい。例えば銅箔の場合、そのような添加剤の好ましい例としては、膠、ゼラチン、塩素、チオ尿素等の含硫黄化合物、ポリエチレングリコール等の合成系添加剤が挙げられる。これらの好ましい添加剤を用いることで、金属箔の力学的特性や表面状態をコントロールすることができる。添加剤の濃度は限定されないが、通常1~300ppmである。 An additive may be appropriately added to the plating solution to improve the characteristics of the metal foil. For example, in the case of copper foil, preferred examples of such additives include sulfur-containing compounds such as glue, gelatin, chlorine and thiourea, and synthetic additives such as polyethylene glycol. By using these preferable additives, the mechanical properties and surface state of the metal foil can be controlled. The concentration of the additive is not limited, but is usually 1 to 300 ppm.
(4)多孔質金属箔の剥離
 必要に応じて、多孔質金属箔を、剥離層を有する導電性基材から剥離して、単体の多孔質金属箔を得ることができる。剥離後、接着層付きのフィルム等の別基材に転写してもよいし、剥離自体を別の基材への転写により行ってもよい。例えば、多孔質金属箔の剥離は粘着テープによって行うこともできるし、エッチング液に浸漬することにより行うこともでき、多種多様な方法を採用しうる。もっとも、この剥離工程は必須ではなく、剥離層を介して基材が付けられたまま多孔質金属箔製品として取り扱われ、かつ、使用時に初めて剥離される構成としてもよい。
(4) Peeling of porous metal foil If necessary, the porous metal foil can be peeled off from the conductive substrate having the release layer to obtain a single porous metal foil. After peeling, it may be transferred to another substrate such as a film with an adhesive layer, or peeling itself may be performed by transfer to another substrate. For example, the peeling of the porous metal foil can be performed with an adhesive tape or by immersing in an etching solution, and various methods can be adopted. However, this peeling step is not essential, and the substrate may be handled as a porous metal foil product with the substrate attached via the peeling layer, and may be peeled off for the first time during use.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.
 例1:多孔質金属箔の作製
 導電性基材として厚さ0.5μmのステンレス板を用意した。このステンレス板に剥離層としてクロムめっきを以下の手順で行った。まず、アセトン(和光純薬製99.0%)に10秒間浸漬した後に、純水にて洗浄、乾燥させて表面を清浄にする。次に、ステンレス板箔を、2.5g/Lの硫酸及び250g/Lのクロム酸が溶解されたサージェント浴に浸漬させ、浴温度:50℃、電流密度:60A/dm、陽極:Pb、陰極:ステンレス板の条件で72分間クロムめっきを行った。クロムめっき層が形成されたステンレス板をアセトンで洗浄後、乾燥した。得られたクロムめっきの厚さをXRF(蛍光X線分析)により測定したところ約15μmであり、クロムめっきの表面には、めっき応力により発生した無数のクラックが確認された。乾燥したクロムめっき層を空気雰囲気下、150℃で5時間熱処理した。
Example 1 Production of Porous Metal Foil A stainless steel plate having a thickness of 0.5 μm was prepared as a conductive substrate. Chromium plating was performed on the stainless steel plate as a release layer by the following procedure. First, after dipping in acetone (99.0%, manufactured by Wako Pure Chemical Industries) for 10 seconds, the surface is cleaned by washing with pure water and drying. Next, the stainless steel plate foil was immersed in a Sargent bath in which 2.5 g / L sulfuric acid and 250 g / L chromic acid were dissolved, bath temperature: 50 ° C., current density: 60 A / dm 2 , anode: Pb, Chromium plating was performed for 72 minutes under the condition of cathode: stainless steel plate. The stainless steel plate on which the chromium plating layer was formed was washed with acetone and then dried. When the thickness of the obtained chrome plating was measured by XRF (fluorescence X-ray analysis), it was about 15 μm, and numerous cracks generated by plating stress were confirmed on the surface of the chrome plating. The dried chrome plating layer was heat-treated at 150 ° C. for 5 hours in an air atmosphere.
 このクラックが発生したクロムめっき上に硫酸銅めっきを行った。この硫酸銅めっきは、硫酸25g/L及び硫酸銅5水和物200g/Lが溶解された硫酸銅めっき浴に、クロムめっきが施されたステンレス板を浸漬させ、電流密度:3A/dm、浴温:25℃、陽極:Cu、陰極:クロムめっき層の条件で75秒間(試料1)、30秒間(試料2)、15秒間(試料3)、7秒間(試料4)又は3秒間(試料5)行った。このとき、クロムめっきの最表面よりもクラック部分の方で電流が流れやすいことから、銅の粒子がクラックを起点として成長した。その結果、クロムめっき上に銅繊維で構成される二次元網目構造が多孔質金属箔として形成された。 Copper sulfate plating was performed on the chromium plating in which the cracks occurred. In this copper sulfate plating, a stainless steel plate coated with chromium was immersed in a copper sulfate plating bath in which 25 g / L of sulfuric acid and 200 g / L of copper sulfate pentahydrate were dissolved, and the current density was 3 A / dm 2 . Bath temperature: 25 ° C., anode: Cu, cathode: chromium plating layer, 75 seconds (sample 1), 30 seconds (sample 2), 15 seconds (sample 3), 7 seconds (sample 4) or 3 seconds (sample) 5) I went. At this time, since the current flows more easily in the crack portion than in the outermost surface of the chromium plating, the copper particles grew from the crack. As a result, a two-dimensional network structure composed of copper fibers was formed on the chrome plating as a porous metal foil.
 例2:多孔質金属箔の観察
 例1で得られた試料1及び3の多孔質金属箔を、電界放射型走査電子顕微鏡(FE-SEM)で真上から観察したところ、それぞれ図4A及び図5Aに示される画像が得られた。また、試料1及び3の多孔質金属箔の金属繊維を電界放射型走査電子顕微鏡(FE-SEM)で観察したところ、それぞれ図4B及び図5Bに示される画像が得られた。これらの図から明らかなように、成長面には金属粒子の球状部に起因する数珠状ないし芋虫状(キャタピラー状)の凹凸が観察された。
Example 2 Observation of Porous Metal Foil The porous metal foils of Samples 1 and 3 obtained in Example 1 were observed from directly above with a field emission scanning electron microscope (FE-SEM). The image shown in 5A was obtained. Further, when the metal fibers of the porous metal foils of Samples 1 and 3 were observed with a field emission scanning electron microscope (FE-SEM), the images shown in FIGS. 4B and 5B were obtained, respectively. As is clear from these figures, bead-like or worm-like (caterpillar-like) irregularities due to the spherical portions of the metal particles were observed on the growth surface.
 さらに、試料2、3及び4の多孔質金属箔における金属繊維の断面を、集束イオンビーム加工装置(FIB)を用いて加工後、走査イオン顕微鏡(SIM)を用いて観察したところ、図6A、6B及び6Cに示される画像が得られた。この図6A~6Cに示されるように、金属繊維の断面組織はクラックを起点として放射状に析出しており、金属繊維の断面形状は球状部と平面状底面とを含む半円状であることが観察された。なお、図6A~6Cでは金属繊維の断面が2層構成を有するように見えるが、これは加工面を鮮明に観察するために金属繊維を予めカーボンで被覆したことによるものである。金属繊維断面における最大断面高さHの線径Dに対する比率を算出したところ、約0.50であった。 Furthermore, when the cross section of the metal fiber in the porous metal foils of Samples 2, 3 and 4 was processed using a focused ion beam processing apparatus (FIB) and then observed using a scanning ion microscope (SIM), FIG. Images shown in 6B and 6C were obtained. As shown in FIGS. 6A to 6C, the cross-sectional structure of the metal fiber is precipitated radially starting from the crack, and the cross-sectional shape of the metal fiber is a semicircular shape including a spherical portion and a planar bottom surface. Observed. 6A to 6C, it seems that the cross section of the metal fiber has a two-layer structure, which is because the metal fiber is previously coated with carbon in order to clearly observe the processed surface. It was about 0.50 when the ratio with respect to the wire diameter D of the largest cross-section height H in a metal fiber cross section was computed.
 例3:多孔質金属箔の剥離
(1)粘着テープによる剥離
 例1で得られた試料1~5(剥離層を介して導電性基材上に形成されている)の表面に、高い粘着性を有する粘着テープ(株式会社二トムズ製、超透明両面粘着シート・品番T:284)を貼り付け、粘着テープを引き剥がした。その結果、図7に示されるように、多孔質金属箔が粘着テープに転写された形態で剥離された。剥離された多孔質金属箔をガラス板に張り付けた。
Example 3 : Peeling of porous metal foil (1) Peeling with adhesive tape High tackiness on the surface of samples 1 to 5 (formed on a conductive substrate through a peeling layer) obtained in Example 1 A pressure-sensitive adhesive tape (manufactured by Nitoms Co., Ltd., super-transparent double-sided pressure-sensitive adhesive sheet, product number T: 284) was attached, and the pressure-sensitive adhesive tape was peeled off. As a result, as shown in FIG. 7, the porous metal foil was peeled off in a form transferred to the adhesive tape. The peeled porous metal foil was attached to a glass plate.
(2)Crエッチング液による剥離
 例1で得られた試料1~5(剥離層を介して導電性基材上に形成されている)をCrエッチング液(メック株式会社製、メックリムーバー・品番CH-1925)に40~50℃で数分間浸漬した。その結果、図8に示されるように、多孔質金属箔が単離ないし自立した形態で剥離された。
(2) Stripping with Cr etching solution Samples 1 to 5 (formed on a conductive substrate through a peeling layer) obtained in Example 1 were treated with Cr etching solution (Mekku Co., Ltd. -1925) at 40-50 ° C. for several minutes. As a result, as shown in FIG. 8, the porous metal foil was peeled off in an isolated or self-supporting form.
 例4:開口率、線径及び厚さの測定
 例1で得られた多孔質金属箔の開口率、線径及び厚さを以下の通り測定した。
(開口率の測定方法)
 電子顕微鏡にて、多孔質金属箔の倍率100倍のSEM写真を観察面積が1.137mmとなるように撮影した。次に、画像処理ソフト:Image-Jを用いて、金属繊維部分と開口部分を識別し、全観察面積に対する開口部分面積の割合を算出し、開口率とした。より具体的には、a)SEM画像を画像解析ソフトImage-Jに取り込み、b)タブの[画像>調整>閾値設定]をクリックし取り込んだ画像に表示されている銅繊維部分とクロムめっき部分を二色化(二値化)し、c)タブの[画像解析>画像解析を実行]をクリックして、画像上の色の割合を算出させ、d)クロムめっき部分につけた色の割合を開口率として得た。すなわち、本例における開口率はSEM観察画像のうちクロムめっき部分の見えている面積の割合として算出した。
(線径の測定方法)
 電子顕微鏡にて、多孔質金属箔の真上から倍率5千倍~1万倍で観察を行い、金属繊維の線径を測定した。
(厚さの測定方法)
 表面形状測定装置Dektak150(株式会社アルバック製)を使用して、多孔質金属箔の厚さを測定した。
Example 4 : Measurement of aperture ratio, wire diameter and thickness The aperture ratio, wire diameter and thickness of the porous metal foil obtained in Example 1 were measured as follows.
(Measurement method of aperture ratio)
Using an electron microscope, an SEM photograph of the porous metal foil at a magnification of 100 was taken so that the observation area was 1.137 mm 2 . Next, the image processing software: Image-J was used to identify the metal fiber portion and the opening portion, and the ratio of the opening portion area to the total observation area was calculated and used as the opening ratio. More specifically, a) Import SEM image into image analysis software Image-J, b) Click [Image>Adjust> Threshold Setting] in the tab and the copper fiber part and chrome plating part displayed in the imported image C) Click [Image Analysis> Execute Image Analysis] on the tab to calculate the ratio of colors on the image, and d) Set the ratio of colors applied to the chrome plating part. Obtained as the aperture ratio. That is, the aperture ratio in this example was calculated as the ratio of the area where the chrome plating portion was visible in the SEM observation image.
(Measurement method of wire diameter)
The wire diameter of the metal fiber was measured by observation with an electron microscope at a magnification of 5,000 to 10,000 from directly above the porous metal foil.
(Thickness measurement method)
The thickness of the porous metal foil was measured using a surface shape measuring device Dektak 150 (manufactured by ULVAC, Inc.).
 測定の結果、表1に示される開口率、線径及び厚さが得られた。また、開口率と銅めっき時間との関係を図9に、線径と銅めっき時間との関係を図10に示す。これらの結果から、クロムめっきを厚く設け、かつ、硫酸銅めっきを低電流密度で短時間行うことで線径が小さく開口率が極めて高い多孔質金属箔が得られることが分かる。
Figure JPOXMLDOC01-appb-T000001
As a result of the measurement, the aperture ratio, wire diameter, and thickness shown in Table 1 were obtained. FIG. 9 shows the relationship between the aperture ratio and the copper plating time, and FIG. 10 shows the relationship between the wire diameter and the copper plating time. From these results, it can be seen that a porous metal foil having a small wire diameter and an extremely high aperture ratio can be obtained by providing a thick chromium plating and performing copper sulfate plating for a short time at a low current density.
Figure JPOXMLDOC01-appb-T000001
 例5:開口率と透過率の関係
 開口率と透過率の関係を調べるために、例1においてクロムめっき及び硫酸銅めっき等の諸条件を適宜変更して、開口率が71.0%、46.0%、13.2%の多孔性銅箔をそれぞれ作製した。得られた多孔性銅箔の可視光領域における透過率を吸光光度計により測定したところ、図11に示される結果が得られた。また、各銅箔の開口率と波長550nmでの透過率との数値を併記すると表2のとおりであった。
Figure JPOXMLDOC01-appb-T000002
 図11及び表2から分かるように、多孔質金属箔の開口率は可視光領域における透過率と高い相関関係があること、さらには可視光領域に特異的な吸光ピークが無いことが確認された。したがって、開口率が80%、好ましくは85%を超える本発明の多孔質金属箔は可視光領域における極めて高い光透過率(概ね80%を超える、好ましくは85%以上の光透過率)を有しうるといえ、透明導電膜の用途に極めて適することが分かる。
Example 5 : Relationship between aperture ratio and transmittance In order to investigate the relationship between aperture ratio and transmittance, various conditions such as chromium plating and copper sulfate plating were appropriately changed in Example 1 so that the aperture ratio was 71.0%, 46 0.0% and 13.2% porous copper foils were produced. When the transmittance in the visible light region of the obtained porous copper foil was measured with an absorptiometer, the result shown in FIG. 11 was obtained. Moreover, it was as Table 2 when the numerical value of the aperture ratio of each copper foil and the transmittance | permeability in wavelength 550nm was written together.
Figure JPOXMLDOC01-appb-T000002
As can be seen from FIG. 11 and Table 2, it was confirmed that the aperture ratio of the porous metal foil had a high correlation with the transmittance in the visible light region, and that there was no specific absorption peak in the visible light region. . Therefore, the porous metal foil of the present invention having an aperture ratio of 80%, preferably more than 85%, has a very high light transmittance in the visible light region (approximately more than 80%, preferably more than 85%). However, it can be seen that it is extremely suitable for the use of the transparent conductive film.

Claims (21)

  1.  不規則に張り巡らされてなる金属繊維で構成される二次元網目構造からなり、前記金属繊維が略半円又は略半楕円の断面形状を有する多孔質金属箔であって、該多孔質金属箔が80%を超える開口率を有する、多孔質金属箔。 A porous metal foil having a two-dimensional network structure composed of irregularly stretched metal fibers, wherein the metal fibers have a substantially semi-circular or substantially semi-elliptical cross-sectional shape, and the porous metal foil A porous metal foil having an opening ratio of more than 80%.
  2.  前記開口率が85%以上である、請求項1に記載の多孔質金属箔。 The porous metal foil according to claim 1, wherein the aperture ratio is 85% or more.
  3.  前記金属繊維が14μm以下の線径を有する、請求項1又は2に記載の多孔質金属箔。 The porous metal foil according to claim 1 or 2, wherein the metal fiber has a wire diameter of 14 µm or less.
  4.  前記金属繊維が4μm以下の線径を有する、請求項1又は2に記載の多孔質金属箔。 The porous metal foil according to claim 1 or 2, wherein the metal fiber has a wire diameter of 4 µm or less.
  5.  前記金属繊維が分枝状繊維である、請求項1~4のいずれか一項に記載の多孔質金属箔。 The porous metal foil according to any one of claims 1 to 4, wherein the metal fiber is a branched fiber.
  6.  前記金属繊維が、無数の金属粒子が連結されてなるものである、請求項1~5のいずれか一項に記載の多孔質金属箔。 The porous metal foil according to any one of claims 1 to 5, wherein the metal fiber is formed by connecting innumerable metal particles.
  7.  前記金属粒子が球状部と底部とを有する半球状の形態を有し、全ての前記金属粒子の底部が同一基底面上に位置し、全ての前記金属粒子の球状部が前記基底面を基準として同じ側に位置する、請求項6に記載の多孔質金属箔。 The metal particles have a hemispherical shape having a spherical portion and a bottom portion, the bottom portions of all the metal particles are located on the same base surface, and the spherical portions of all the metal particles are based on the base surface. The porous metal foil according to claim 6, which is located on the same side.
  8.  前記多孔質金属箔が1~7μmの厚さを有する、請求項1~7のいずれか一項に記載の多孔質金属箔。 The porous metal foil according to any one of claims 1 to 7, wherein the porous metal foil has a thickness of 1 to 7 µm.
  9.  前記二次元網目構造が、クラックに起因した不規則形状を有してなる、請求項1~8のいずれか一項に記載の多孔質金属箔。 The porous metal foil according to any one of claims 1 to 8, wherein the two-dimensional network structure has an irregular shape caused by a crack.
  10.  前記金属繊維が、銅、金、銀、ニッケル、コバルト、錫、及び亜鉛からなる群から選択される少なくとも一種を含んでなる、請求項1~9のいずれか一項に記載の多孔質金属箔。 The porous metal foil according to any one of claims 1 to 9, wherein the metal fiber comprises at least one selected from the group consisting of copper, gold, silver, nickel, cobalt, tin, and zinc. .
  11.  前記金属繊維は、略半楕円の断面形状を有し、最大断面高さの線径に対する平均比率が0.50を超える、請求項1~10のいずれか一項に記載の多孔質金属箔。 The porous metal foil according to any one of claims 1 to 10, wherein the metal fiber has a substantially semi-elliptical cross-sectional shape, and an average ratio of a maximum cross-sectional height to a wire diameter exceeds 0.50.
  12.  多孔質金属箔の製造方法であって、
     導電性基材に電解クロムめっきを施してクロム、クロム合金及び/又はクロム酸化物からなる剥離層を形成し、その際、前記剥離層自体の応力によって前記剥離層にクラックを発生させる工程と、
     前記剥離層に、前記クラックに優先的に析出可能な金属を電解めっきして、前記クラックに沿って無数の金属粒子を成長させ、それにより金属繊維で構成される二次元網目構造からなり且つ80%を超える開口率を有する多孔質金属箔を形成する工程と、
    を含んでなる、製造方法。
    A method for producing a porous metal foil,
    Forming a release layer made of chromium, a chromium alloy and / or a chromium oxide by performing electrolytic chromium plating on the conductive substrate, and generating a crack in the release layer by the stress of the release layer itself;
    The release layer is electroplated with a metal that can be preferentially deposited on the cracks, and an infinite number of metal particles are grown along the cracks, thereby comprising a two-dimensional network structure composed of metal fibers and 80 Forming a porous metal foil having an open area ratio greater than%,
    A manufacturing method comprising:
  13.  前記クラックに優先的に析出可能な金属の電解めっきの前に、前記剥離層に対して洗浄、乾燥、及び熱処理が行われる、請求項12に記載の方法。 The method according to claim 12, wherein the release layer is cleaned, dried, and heat-treated before electrolytic plating of metal that can be preferentially deposited on the cracks.
  14.  前記多孔質金属箔を前記剥離層から剥離する工程をさらに含んでなる、請求項12又は13に記載の方法。 The method according to claim 12 or 13, further comprising a step of peeling the porous metal foil from the release layer.
  15.  前記電解クロムめっきがサージェント浴を用いて行われる、請求項12~14のいずれか一項に記載の方法。 The method according to any one of claims 12 to 14, wherein the electrolytic chromium plating is performed using a surge bath.
  16.  前記電解クロムめっきが、30~100A/dmの電流密度で20分間以上行われる、請求項12~15のいずれか一項に記載の方法。 The method according to any one of claims 12 to 15, wherein the electrolytic chromium plating is performed at a current density of 30 to 100 A / dm 2 for 20 minutes or more.
  17.  前記電解クロムめっきが、45~70A/dmの電流密度で30分間以上行われる、請求項12~15のいずれか一項に記載の方法。 The method according to any one of claims 12 to 15, wherein the electrolytic chromium plating is performed at a current density of 45 to 70 A / dm 2 for 30 minutes or more.
  18.  前記剥離層の厚さが4~120μmである、請求項12~17のいずれか一項に記載の方法。 The method according to any one of claims 12 to 17, wherein the release layer has a thickness of 4 to 120 µm.
  19.  前記クラックに優先的に析出可能な金属が、銅、金、銀、ニッケル、コバルト、錫、及び亜鉛からなる群から選択される少なくとも一種を含んでなる、請求項12~18のいずれか一項に記載の方法。 The metal capable of preferentially precipitating in the crack comprises at least one selected from the group consisting of copper, gold, silver, nickel, cobalt, tin, and zinc. The method described in 1.
  20.  前記クラックに優先的に析出可能な金属の電解めっきが、0.5~10A/dmの電流密度で1~500秒間行われる、請求項12~19のいずれか一項に記載の方法。 The method according to any one of claims 12 to 19, wherein the electrolytic plating of the metal capable of preferentially precipitating in the crack is performed at a current density of 0.5 to 10 A / dm 2 for 1 to 500 seconds.
  21.  前記クラックに優先的に析出可能な金属が銅であり、銅の電解めっきが、1~5A/dmの電流密度で2~250秒間行われる、請求項12~19のいずれか一項に記載の方法。

     
    The metal that can be preferentially deposited in the crack is copper, and the electrolytic plating of copper is performed at a current density of 1 to 5 A / dm 2 for 2 to 250 seconds. the method of.

PCT/JP2015/052834 2014-02-14 2015-02-02 Porous metal foil and method for producing same WO2015122301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014026865A JP2015151580A (en) 2014-02-14 2014-02-14 Porous metal foil and method for producing the same
JP2014-026865 2014-02-14

Publications (1)

Publication Number Publication Date
WO2015122301A1 true WO2015122301A1 (en) 2015-08-20

Family

ID=53800048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052834 WO2015122301A1 (en) 2014-02-14 2015-02-02 Porous metal foil and method for producing same

Country Status (3)

Country Link
JP (1) JP2015151580A (en)
TW (1) TW201546333A (en)
WO (1) WO2015122301A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228057A (en) * 2002-11-25 2004-08-12 Fuji Photo Film Co Ltd Mesh-like conductor, manufacturing method therefor, and its use
JP2009167523A (en) * 2007-12-18 2009-07-30 Hitachi Chem Co Ltd Conductive substrate for plating, method for manufacturing the same, conductive layer pattern using the same, and method for manufacturing substrate with conductive layer pattern, substrate with conductive layer pattern, and translucent electromagnetic wave shielding member
JP2011513890A (en) * 2007-12-20 2011-04-28 シーマ ナノ テック イスラエル リミティド Microstructured material and method for manufacturing the same
JP2012503715A (en) * 2008-09-25 2012-02-09 サン−ゴバン グラス フランス Submillimeter conductive grid manufacturing method and submillimeter conductive grid
WO2012137613A1 (en) * 2011-04-08 2012-10-11 三井金属鉱業株式会社 Porous metal foil and production method therefor
JP2012219333A (en) * 2011-04-08 2012-11-12 Mitsui Mining & Smelting Co Ltd Composite metal foil and production method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228057A (en) * 2002-11-25 2004-08-12 Fuji Photo Film Co Ltd Mesh-like conductor, manufacturing method therefor, and its use
JP2009167523A (en) * 2007-12-18 2009-07-30 Hitachi Chem Co Ltd Conductive substrate for plating, method for manufacturing the same, conductive layer pattern using the same, and method for manufacturing substrate with conductive layer pattern, substrate with conductive layer pattern, and translucent electromagnetic wave shielding member
JP2011513890A (en) * 2007-12-20 2011-04-28 シーマ ナノ テック イスラエル リミティド Microstructured material and method for manufacturing the same
JP2012503715A (en) * 2008-09-25 2012-02-09 サン−ゴバン グラス フランス Submillimeter conductive grid manufacturing method and submillimeter conductive grid
WO2012137613A1 (en) * 2011-04-08 2012-10-11 三井金属鉱業株式会社 Porous metal foil and production method therefor
JP2012219333A (en) * 2011-04-08 2012-11-12 Mitsui Mining & Smelting Co Ltd Composite metal foil and production method therefor

Also Published As

Publication number Publication date
TW201546333A (en) 2015-12-16
JP2015151580A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
US9138964B2 (en) Surface-treated copper foil
US8497026B2 (en) Porous metal foil and production method therefor
US8980438B2 (en) Porous metal foil and production method therefor
US9595719B2 (en) Composite metal foil and production method therefor
JP2011174184A5 (en)
CN106414807B (en) Nickel-plating liquid, the manufacturing method of solia particle adhesion metal line and solia particle adhesion metal line
US20180226655A1 (en) Surface-treated copper foil, and current collector, electrode, and battery cell using the surface-treated copper foil
JP2012219333A5 (en)
JP6444860B2 (en) Method for making a metal coating
TWI644995B (en) Copper foil with carrier foil, copper clad laminate and printed circuit board
TW201139703A (en) Copper alloy for electronic material and method of manufacture for same
CN108866585B (en) Refractory metal or stainless steel with electroplated layer on surface and electroplating process for surface of refractory metal or stainless steel
JP5822928B2 (en) Electrolytic copper foil having high strength and low warpage and method for producing the same
CN109534460B (en) Titanium electrode and preparation method and application thereof
WO2015122301A1 (en) Porous metal foil and method for producing same
JP4847179B2 (en) Titanium or titanium alloy material with precious metal plating
KR20090098538A (en) Method for releasing deposit stress of cu electroplating and cu plating bath using the same
JP2017179597A (en) Base material for substrate for flexible device, and production method thereof
KR20230041745A (en) Methods and Systems for Forming Multilayer Zinc Alloy Coatings and Metal Articles
TW551006B (en) A method of roughening a copper film
WO2013150640A1 (en) Electrolytic copper foil and method for manufacturing same
JP2004253588A (en) Composite material and its manufacturing method
CN110777404A (en) Preparation method of graphene film on metal surface
JPS5911679B2 (en) Nickel-chromium alloy plating method
TW201241241A (en) Surface blackening treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748612

Country of ref document: EP

Kind code of ref document: A1