KR20090098538A - Method for releasing deposit stress of cu electroplating and cu plating bath using the same - Google Patents

Method for releasing deposit stress of cu electroplating and cu plating bath using the same Download PDF

Info

Publication number
KR20090098538A
KR20090098538A KR1020080023992A KR20080023992A KR20090098538A KR 20090098538 A KR20090098538 A KR 20090098538A KR 1020080023992 A KR1020080023992 A KR 1020080023992A KR 20080023992 A KR20080023992 A KR 20080023992A KR 20090098538 A KR20090098538 A KR 20090098538A
Authority
KR
South Korea
Prior art keywords
copper
electroplating
stress
electrodeposition
plating bath
Prior art date
Application number
KR1020080023992A
Other languages
Korean (ko)
Inventor
서수정
김진수
박인수
나성훈
임승규
김태성
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020080023992A priority Critical patent/KR20090098538A/en
Publication of KR20090098538A publication Critical patent/KR20090098538A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Abstract

A method for releasing deposit stress in Cu electroplating and a Cu plating bath using the same are provided to remove electroplating stress generated on a Cu deposition layer by applying an additive to the Cu plating bath for electroplating. A method for releasing deposit stress in Cu electroplating comprises the steps of preparing a cathode and an anode and a Cu plating bath, applying an additive for releasing electroplating stress to the Cu plating bath, dipping the cathode and the anode in the Cu plating bath, applying direct current density of 20mA/cm^2 between the anode and the cathode at the room temperature, and performing Cu electroplating until the thickness of the deposited copper has reached about 5~6mum. The additive includes thiourea of 0.0002~0.0006M. The Cu plating bath is mainly composed of copper sulfate and copper.

Description

구리 전기도금의 전착응력 해소방법 및 이를 이용한 구리도금액{METHOD FOR RELEASING DEPOSIT STRESS OF CU ELECTROPLATING AND CU PLATING BATH USING THE SAME}Method for relieving electrodeposition stress of copper electroplating and copper plating solution using same {METHOD FOR RELEASING DEPOSIT STRESS OF CU ELECTROPLATING AND CU PLATING BATH USING THE SAME}

본 발명은 구리 전기도금의 전착응력 해소방법에 관한 것으로서, 더욱 자세하게는 전착응력해소를 위한 첨가제를 전기도금을 위한 구리도금액에 첨가함으로써 전기도금시에 구리전착막에 발생하는 전착응력을 원천적으로 해소할 수 있는 방법에 관한 것이다. The present invention relates to a method for releasing electrodeposited stress of copper electroplating, and more particularly, by adding an additive for releasing electrodeposited stress to a copper plating solution for electroplating, the electrodeposition stress generated in the electrodeposited electrode during electroplating is inherently. It is about how to solve it.

전기도금은 전기분해의 원리를 이용하여 물체의 표면을 다른 금속의 얇은 막으로 덮어씌우는 것을 말하며, 전해질용액에 담긴 양극과 음극 사이에 직류전기를 연결하여 실시한다. 이때 음극은 도금할 물체(모재)이며 전해질용액에는 코팅될 금속(전착금속)을 이온으로 포함하는 용액을 사용한다. 이온화 경향이 작고 반응성이 낮아 안정적인 물질인 은, 금, 구리, 니켈 등이 전기도금에 주로 사용되는 금속들이다.Electroplating refers to covering the surface of an object with a thin film of another metal using the principle of electrolysis, and is performed by connecting a direct current electricity between the anode and the cathode contained in the electrolyte solution. At this time, the cathode is an object to be plated (base metal) and a solution containing a metal (electrodeposited metal) to be coated as an ion is used as an electrolyte solution. Silver, gold, copper, nickel, etc., which are stable materials with low ionization tendency and low reactivity, are metals mainly used for electroplating.

이러한 전기도금시에는 전착응력이 발생되는 경우가 있다. 전착응력('deposit stress' 또는 'stress in electrodeposites')이란 전기도금을 이용하 여 형성된 전착층 자체에 잔류하는 인장 또는 압축 응력을 말한다. 전착응력의 발생원인은 모재와 전착금속간의 격자상수 차이, 초기 전착시 형성되는 수많은 3차원 에피탁시 크리스탈라이트(three dimensional epitaxy crystallites)들이 합칠 때 인접면이 완벽하게 맞지 않아 하부에 형성된 빈 공간, 결정립성장 시 결정립 사이의 연속성을 유지하기 위해 유입되는 격자결함, 불순물의 유입 등을 들 수 있다.In such electroplating, electrodeposition stress may occur. Electrodeposition stress ('deposit stress' or 'stress in electrodeposites') refers to the tensile or compressive stress remaining in the electrodeposited layer itself formed using electroplating. The cause of electrodeposition stress is the difference between the lattice constant between the base metal and the electrodeposition metal, the empty space formed at the bottom because the adjacent surface does not fit perfectly when a large number of three dimensional epitaxy crystallites are formed during initial electrodeposition. Lattice defects introduced to maintain continuity between grains during grain growth, and inflow of impurities.

전착응력은 전기도금시 전착층 결함의 원인일 뿐만 아니라, 전착층과 모재와의 점착력을 약화시켜 심한 경우 전착층의 박리를 초래하기도 한다. 이는 전기도금 제품의 신뢰성 및 수명과 직결되는 중요한 문제이며, 이를 해결하지 못하여 제품화가 불가능한 경우도 있는 실정이다.Electrodeposition stress is not only a cause of the electrodeposition layer defects during electroplating, but also weakens the adhesion between the electrodeposition layer and the base material, and in some cases may cause the electrodeposition layer to peel off. This is an important issue directly related to the reliability and lifetime of electroplating products, and it may be impossible to commercialize them because these problems cannot be solved.

한편, 순물질인 구리를 전기도금한 경우 전착층에 인장응력이 발생하는 것이 일반적이며, 이 인장응력은 상기한 바와 같은 문제점으로 인하여 그 해소책이 연구되고 있다. 구리 전착층의 인장응력을 해소하는 방안으로 열처리를 하는 것을 생각해 볼 수 있으며, 이는 전기도금이 끝난 뒤 후처리로 구리 증착층에 열을 가하여 내부에 남아 있는 인장응력을 해소하는 것이다. 하지만, 이러한 열처리는 구리가 증착된 모재에도 동시에 열이 가해지기 때문에 모재가 열에 약한 경우에는 적용할 수 없다는 문제가 있다. On the other hand, in the case of electroplating a pure material of copper, tensile stress is generally generated in the electrodeposition layer, and this tensile stress has been studied due to the above problems. It is conceivable to consider heat treatment as a method to solve the tensile stress of the copper electrodeposition layer, which is to relieve the tensile stress remaining inside by applying heat to the copper deposition layer by post-treatment after the electroplating. However, this heat treatment has a problem that it is not applicable when the base material is weak to heat because heat is applied to the base material on which copper is deposited at the same time.

이는 회로기판 또는 디스플레이용 전자파 차단 필터 등 최근에 구리도금의 활용이 증가하는 분야의 모재가 PET 등 폴리머임을 생각하면 매우 큰 문제가 아닐 수 없다. 따라서 상기 분야에 적용되는 구리도금에는 모재와 구리증착층의 점착력 향상을 위한 전처리를 하는 등의 방법으로 해결하고 있으나, 공정이 복잡해져 비용 과 시간의 낭비가 심하다. 심지어는 해결책을 찾지 못하여 전기도금의 적용을 포기하고 값비싼 다른 공정을 적용하고 있는 상황이다.This is a very big problem considering that the base material in the field where the use of copper plating has recently increased, such as electromagnetic wave shielding filters for circuit boards or displays, is a polymer such as PET. Therefore, the copper plating applied to the field is solved by a method such as pretreatment for improving the adhesive strength of the base material and the copper deposition layer, but the process is complicated and wasteful cost and time. Even in the absence of a solution, they are giving up electroplating and applying other expensive processes.

따라서 구리전착층의 전착응력을 원천적으로 해소하는 방안이 마련된다면 공정이 간단해져 비용과 시간이 절약될 뿐만 아니라, 그동안 증착응력의 문제로 구리 전기도금이 적용되지 못하였던 제품에도 구리 전기도금을 적용할 수 있을 것이다.Therefore, if there is a plan to solve the electrodeposition stress of the copper electrodeposition layer at the source, the process is simpler and it saves cost and time, and copper electroplating is also applied to the product that copper electroplating has not been applied due to the problem of deposition stress. You can do it.

본 발명은 상기 문제점을 해결하기 위하여 발명된 것으로, 구리 전기도금시 구리전착층에 발생하는 전착응력을 사후처리 없이 원천적으로 해소하는 방법을 제공하는 것을 목적으로 한다.The present invention was invented to solve the above problems, and an object of the present invention is to provide a method for fundamentally eliminating electrodeposition stress generated in a copper electrodeposition layer during copper electroplating without post-treatment.

상기의 목적을 달성하기 위하여 본 발명에 의한 구리 전기도금의 전착응력 해소방법은, 양극과 모재인 음극 및 구리도금액을 이용한 구리 전기도금에 있어서, 상기 구리도금액에 전착응력 해소를 위한 첨가제로 티오우레아를 포함하는 것을 특징으로 한다.In order to achieve the above object, the electrodeposition stress elimination method of copper electroplating according to the present invention, in the copper electroplating using a cathode and a copper plating solution as a positive electrode and a base material, as an additive for solving the electrodeposition stress in the copper plating solution It is characterized by including thiourea.

이때 상기 티오우레아의 첨가량은 0.0002~0.0006M이 바람직하며, 특히 0.0004M인 것이 좋다.At this time, the amount of the thiourea added is preferably 0.0002 to 0.0006M, particularly preferably 0.0004M.

또한 본 발명에 의한 전착응력 해소 구리도금액은, 황산구리 및 구리를 기본 조성으로 하는 구리 전기도금용 구리도금액에 있어서, 티오우레아를 전착응력 해소 첨가제로서 0.0002~0.0006M 포함하는 것을 특징으로 한다. 이때 가장 적절한 첨가량은 0.0004M이다.The electrodeposition stress releasing copper plating solution according to the present invention is characterized in that the copper plating solution for copper electroplating having copper sulfate and copper as a base composition contains thiourea as 0.0002 to 0.0006M as an electrodeposition stress releasing additive. At this time, the most suitable amount is 0.0004M.

본 발명의 발명자들은 순물질인 구리를 전기도금하는 경우에 발생하는 전착응력을 원천적으로 해소하는 방법을 찾기 위하여 도금액에 유기 첨가제를 첨가하여 전착응력의 변화를 연구하였으며, 그 결과 황산구리, 황산으로 구성된 도금액에 유기 첨가제인 티오우레아(thiourea)를 첨가하는 경우에 구리 전착층의 전착응력을 조절할 수 있음을 알게 되었다. 더욱이 그 경우 첨가량을 특정값으로 정해줄 때 전착응력 해소 효과가 극대화될 수 있음을 발견하였다. The inventors of the present invention studied the change of the electrodeposition stress by adding an organic additive to the plating solution in order to find a way to fundamentally solve the electrodeposition stress generated when electroplating pure copper, the result, a plating solution composed of copper sulfate, sulfuric acid It was found that the electrodeposition stress of the copper electrodeposition layer can be controlled when the organic additive, thiourea, is added. Moreover, in this case, it was found that the effect of reducing the electrodeposition stress can be maximized when the amount of the additive is set to a specific value.

본 발명에 따르면, 구리 전기도금시 구리전착층에 인장응력이 발생하지 않도록 함으로써, 구리도금 제품의 신뢰성 및 수명을 크게 향상시키는 효과가 있다. According to the present invention, the tensile stress is not generated in the copper electrodeposition layer during copper electroplating, thereby greatly improving the reliability and life of the copper plated product.

특히 원천적으로 전착응력의 발생을 방지하기 때문에, 열처리를 할 수 없는 모재에 구리도금을 하는 경우의 큰 문제인 전착응력으로 인한 제한에서 벗어날 수 있어, 다양한 제품을 제작할 수 있는 효과가 있다.In particular, since it prevents the occurrence of electrodeposition stress inherently, it can escape from the limitation due to electrodeposition stress, which is a big problem when copper plating on a base material that can not be heat-treated, there is an effect that can produce a variety of products.

본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 발명자들은 순수한 구리를 전기도금하는 경우에 티오우레아의 첨가량에 따른 구리 전착층의 전착응력을 측정하여 티오우레아가 구리 전기도금의 전착응력을 해소함을 알 수 있었다.When the electroplating of pure copper, the inventors of the present invention measured the electrodeposition stress of the copper electrodeposition layer according to the addition amount of thiourea, and found that thiourea solves the electrodeposition stress of copper electroplating.

먼저 본 실시예의 구리 전기도금의 조건은 다음과 같다.First, the conditions of copper electroplating of this embodiment are as follows.

양극은 Pt 메쉬 전극을 사용하였으며, 음극에는 구리를 증착시키고자 하는 모재인 구리 시편(Specialty Testing & Development Co)를 설치하였다. 구리도금액은 구리의 공급원인 용해된 구리염으로 황산구리(CuSO4·H2O, 0.55M)를 전도성을 부여하는 산성 전해질로 황산(H2SO4, 1.73M)을 사용하였다. 상기의 양극과 음극을 구리도금액에 담지한 뒤에 상온에서 양극과 음극 사이에 20 mA/cm2의 직류 전류 밀 도를 인가하여 증착되는 구리의 두께가 약 5~6㎛가 될 때까지 구리 전기도금을 실시하였으며, 전기도금 중에 교반작용은 하지 않았다. 이때 정확한 데이터를 얻기 위하여 상기 구리도금액에 Cl 이온의 첨가를 위한 NaCl나 균일한 구리 전착층 성장을 위한 레벨러나 광택을 위한 브라이트너 등 전기도금 품질 향상을 위한 첨가제는 첨가하지 않았으며 단지 전착응력 해소를 위한 첨가제로 티오우레아만을 0M에서 0.001M로 변화시켜가면서 첨가하였다. Pt mesh electrode was used as the anode, and a copper specimen (Specialty Testing & Development Co), which is a base material for depositing copper, was installed on the cathode. The copper plating solution used sulfuric acid (H 2 SO 4, 1.73M) as an acidic electrolyte to impart conductivity to copper sulfate (CuSO 4 · H 2 O, 0.55M) as a dissolved copper salt as a source of copper. After the anode and cathode are supported in a copper plating solution, a copper current of 20 mA / cm 2 is applied between the anode and the cathode at room temperature until the thickness of the deposited copper is about 5 to 6 μm. Plating was carried out, and stirring was not performed during electroplating. At this time, in order to obtain accurate data, additives for improving electroplating quality such as NaCl for adding Cl ions, leveler for uniform copper electrodeposition layer growth, brightener for glossiness, and the like were not added. Only thiourea was added from 0M to 0.001M as an additive for.

이러한 방법으로 제조된 구리 전기도금 제품의 구리전착층에 남아있는 전착응력을 Specialty Testing & Development Co에서 제조된 전착응력 측정기를 이용하여 측정하였다.The electrodeposition stress remaining in the copper electrodeposition layer of the copper electroplating product manufactured in this way was measured using an electrodeposition stress meter manufactured by Specialty Testing & Development Co.

도 1은 티오우레아 첨가량을 0에서 0.001M까지 변화시키면서 실시한 구리 전기도금을 통해 제조된 구리전착층에 잔류하는 전착응력을 측정한 결과를 나타낸 그래프이다. Figure 1 is a graph showing the result of measuring the electrodeposition stress remaining in the copper electrodeposition layer produced through the copper electroplating carried out while varying the amount of thiourea added from 0 to 0.001M.

먼저, 티오우레아가 첨가되지 않은 경우(0M)에 구리 전착층에는 인장응력이 잔류하고 있음을 알 수 있었다. 이는 일반적으로 예측했던 것과 일치하고, 그 값이 12㎫이상으로 잔류응력을 해소하지 않으면 구리전착층의 품질이나 수명에 영향을 미칠 정도의 큰 값이었다. First, it was found that when the thiourea was not added (0M), tensile stress remained in the copper electrodeposition layer. This is generally in agreement with the prediction, and the value was large enough to affect the quality and life of the copper electrodeposition layer if the residual stress was not solved above 12 MPa.

티오우레아의 첨가량이 증가함에 따라 구리전착층의 인장응력은 점차 감소하며, 0.0002M이 첨가된 경우에 4.7㎫로 감소하였다. 또한 첨가량이 더 증가하여 0.0004M에 이르자 구리전착층의 인장응력이 거의 해소되었음을 알 수 있었다.As the amount of thiourea added increased, the tensile stress of the copper electrodeposition layer gradually decreased, and decreased to 4.7 MPa when 0.0002M was added. In addition, it was found that the tensile stress of the copper electrodeposition layer was almost solved when the addition amount increased to 0.0004M.

그리고 티오우레아의 첨가량이 0.0004M 이상으로 증가하면 구리전착층에는 압축응력이 잔류하게 되며, 0.0006M을 첨가한 경우 6.2㎫ 정도의 압축응력이 발생했음을 알 수 있었다.When the amount of thiourea was increased to 0.0004M or more, the compressive stress remained in the copper electrodeposition layer, and when 0.0006M was added, the compressive stress of about 6.2 MPa occurred.

나아가 티오우레아의 첨가량이 0.0006M을 초과하면서부터 구리전착층에 잔류하는 압축응력이 급격하게 증가하는 것을 알 수가 있었다.Furthermore, it was found that the compressive stress remaining in the copper electrodeposition layer rapidly increased since the amount of thiourea added exceeded 0.0006M.

이상의 결과를 통하여 실제 제품에서 용인될 정도의 전착응력(인장 또는 압축응력)이 잔류하는 티오우레아의 첨가량은 0.0002M에서 0.0006M의 범위임을 알 수 있었으며, 0.0004M을 첨가하는 경우에 전착응력이 거의 해소된 최적의 조성임을 알 수 있었다. Based on the above results, it was found that the amount of thiourea added in which electrodeposition stress (tensile or compressive stress) remained tolerable in the actual product ranged from 0.0002M to 0.0006M. It was found that the optimal composition was solved.

또한 티오우레아 첨가량이 0과 0.0004M인 경우에 구리전착층의 표면 미세구조를 전자주사현미경(SEM)을 이용하여 관찰하였다. 도 2와 도 3은 각각 티오우레아의 첨가량이 0과 0.0004M인 경우에 구리전착층의 표면 미세구조를 나타내는 전자주사현미경사진이다.In addition, when the thiourea addition amount was 0 and 0.0004M, the surface microstructure of the copper electrodeposition layer was observed using an electron scanning microscope (SEM). 2 and 3 are electron scanning micrographs showing the surface microstructure of the copper electrodeposition layer when the amounts of thiourea added are 0 and 0.0004M, respectively.

도 2에 나타난 바와 같이 티오우레아를 포함하지 않는 경우 구리전착층에 잔류하는 인장응력에 의하여 구리전착층의 표면이 매우 거칠었다. 반면에 도 3은 전착응력이 거의 해소된 결과 균일하고 안정적인 구리전착층의 표면 미세구조를 나타낸다. 도면에서, 전착층의 표면 미세구조사진을 통해서도 티오우레아 첨가에 의한 전착응력해소의 효과를 확인할 수 있었다.As shown in FIG. 2, when the thiourea was not included, the surface of the copper electrodeposition layer was very rough due to the tensile stress remaining in the copper electrodeposition layer. On the other hand, FIG. 3 shows the surface microstructure of the uniform and stable copper electrodeposition layer as a result of almost eliminating electrodeposition stress. In the figure, the effect of the electrodeposition stress can be confirmed by the addition of thiourea through the surface microstructure photograph of the electrodeposition layer.

이상에서는 본 발명을 특정의 바람직한 실시예에 대해서 도시하고 설명하였다. 그러나 본 발명은 상술한 실시예에만 국한되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어남이 없 이 얼마든지 다양하게 변경 실시할 수 있을 것이다. 따라서 본 발명의 권리범위는 특정 실시예에 한정되는 것이 아니라, 첨부된 특허청구범위에 의해 정해지는 것으로 해석되어야 할 것이다.In the above, the present invention has been shown and described with respect to certain preferred embodiments. However, the present invention is not limited only to the above-described embodiments, and those skilled in the art to which the present invention pertains may variously change the present invention without departing from the technical spirit of the present invention. Therefore, the scope of the present invention should not be limited to the specific embodiments, but should be construed as defined by the appended claims.

도 1은 구리 도금액에 첨가된 티오우레아의 농도에 따른 전착응력을 나타내는 그래프이다.1 is a graph showing electrodeposition stress according to the concentration of thiourea added to the copper plating solution.

도 2는 티오우레아가 첨가되지 않은 구리전착층의 표면 미세구조를 나타내는 주사전자현미경사진이다.FIG. 2 is a scanning electron micrograph showing the surface microstructure of the copper electrodeposition layer to which thiourea is not added.

도 3은 티오우레아가 0.0004M 첨가된 구리전착층의 표면 미세구조를 나타내는 주사전자현미경사진이다.3 is a scanning electron micrograph showing the surface microstructure of the copper electrodeposited layer added with thiourea 0.0004M.

Claims (5)

양극과 모재인 음극 및 구리도금액을 이용한 구리 전기도금에 있어서,In the copper electroplating using the positive electrode and the base material negative electrode and copper plating solution, 상기 구리도금액에 전착응력 해소를 위한 첨가제로 티오우레아를 포함하는 것을 특징으로 하는 구리 전기도금의 전착응력 해소방법.The electrodeposition stress of the copper electroplating, characterized in that it comprises a thiourea as an additive for solving the electrodeposition stress in the copper plating solution. 청구항 1에 있어서,The method according to claim 1, 상기 티오우레아의 첨가량이 0.0002~0.0006M 인 것을 특징으로 하는 구리 전기도금의 전착응력 해소방법.The amount of the thiourea added is 0.0002 ~ 0.0006M, the electrodeposition stress of the copper electroplating, characterized in that. 청구항 1에 있어서,The method according to claim 1, 상기 티오우레아의 첨가량이 0.0004M인 것을 특징으로 하는 구리 전기도금의 전착응력 해소방법.Electrodeposition of the electrodeposited stress of the copper electroplating, characterized in that the addition amount of the thiourea is 0.0004M. 황산구리 및 구리를 기본 조성으로 하는 구리 전기도금용 구리도금액에 있어서,In the copper plating solution for copper electroplating having a copper sulfate and copper as a basic composition, 티오우레아를 전착응력 해소 첨가제로서 0.0002~0.0006M 포함하는 것을 특징으로 하는 전착응력 해소 구리도금액.Electrodeposition stress relief copper plating solution containing thiourea 0.0002-0.0006M as an electrodeposition stress relief additive. 청구항 4에 있어서,The method according to claim 4, 상기 티오우레아의 첨가량이 0.0004M 인 것을 특징으로 하는 전착응력 해소 구리도금액.Electrodeposition stress relief copper plating solution, characterized in that the addition amount of the thiourea is 0.0004M.
KR1020080023992A 2008-03-14 2008-03-14 Method for releasing deposit stress of cu electroplating and cu plating bath using the same KR20090098538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080023992A KR20090098538A (en) 2008-03-14 2008-03-14 Method for releasing deposit stress of cu electroplating and cu plating bath using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080023992A KR20090098538A (en) 2008-03-14 2008-03-14 Method for releasing deposit stress of cu electroplating and cu plating bath using the same

Publications (1)

Publication Number Publication Date
KR20090098538A true KR20090098538A (en) 2009-09-17

Family

ID=41357598

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080023992A KR20090098538A (en) 2008-03-14 2008-03-14 Method for releasing deposit stress of cu electroplating and cu plating bath using the same

Country Status (1)

Country Link
KR (1) KR20090098538A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234589B1 (en) * 2010-05-24 2013-02-19 한국생산기술연구원 Copper plated layer for forming pattern of printed circuit board and method of manufacturing the same
WO2013119062A1 (en) * 2012-02-08 2013-08-15 주식회사 호진플라텍 Copper plating solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234589B1 (en) * 2010-05-24 2013-02-19 한국생산기술연구원 Copper plated layer for forming pattern of printed circuit board and method of manufacturing the same
WO2013119062A1 (en) * 2012-02-08 2013-08-15 주식회사 호진플라텍 Copper plating solution
US9150977B2 (en) 2012-02-08 2015-10-06 Hojin Platech Co., Ltd. Copper plating solution

Similar Documents

Publication Publication Date Title
WO2007082112A2 (en) Tin and tin alloy electroplating method with controlled internal stress and grain size of the resulting deposit
Donten et al. Pulse electroplating of rich-in-tungsten thin layers of amorphous Co-W alloys
CN102762777A (en) Porous metal foil and method for manufacturing the same
de Almeida et al. Electrodeposition of CuZn films from free-of-cyanide alkaline baths containing EDTA as complexing agent
CN103668369A (en) Electric plating method capable of improving anti-corrosion performance of metal element
JP2012162775A (en) Silver plated material and method for manufacturing the same
Wojciechowski et al. Nickel coatings electrodeposited from watts type baths containing quaternary ammonium sulphate salts
Ballesteros et al. Electrodeposition of Cu-Zn intermetallic compounds for its application as electrocatalyst in the hydrogen evolution reaction
Yu et al. A novel strategy to electrodeposit high-quality copper foils using composite additive and pulse superimposed on direct current
Ibrahim et al. New cyanide-free ammonia bath for brass alloy coatings on steel substrate by electrodeposition
Saeki et al. Ni electroplating on AZ91D Mg alloy using alkaline citric acid bath
Raub et al. The electrodeposition of gold by pulse plating: Improvements in the properties of deposits
Kamel Anomalous codeposition of Co–Ni: alloys from gluconate baths
CN113463148A (en) Method for electroplating gold on surface of titanium or titanium alloy substrate
Kamel et al. Electrodeposition of nanocrystalline Ni–Cu alloy from environmentally friendly lactate bath
CN114752975A (en) Platinum electrolytic plating bath and platinum plated product
Birlik et al. Influence of bath composition on the structure and properties of nickel coatings produced by electrodeposition technique
KR20090098538A (en) Method for releasing deposit stress of cu electroplating and cu plating bath using the same
Senna et al. Hardness analysis and morphological characterization of copper-zinc alloys produced in pyrophosphate-based electrolytes
Yi et al. Experimental analysis of pinholes on electrolytic copper foil and their prevention
Egoshi et al. Effects of minor elements in Al alloy on zincate pretreatment
Grill et al. Cobalt–nickel material libraries obtained from electrodeposition using citrate or glycine as additives
Rao et al. Synergistic effect of gelatin and glycerol on electrodeposition of Zn-Ni alloy
Narasimhamurthy et al. Electrodeposition of Zn-Ni Alloy from an alkaline sulphate bath containing triethanolamine and mercaptopyridine
Mizuhashi et al. Comparative study on physical and electrochemical characteristics of thin films deposited from electroless platinum plating baths

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application