WO2015122171A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2015122171A1
WO2015122171A1 PCT/JP2015/000580 JP2015000580W WO2015122171A1 WO 2015122171 A1 WO2015122171 A1 WO 2015122171A1 JP 2015000580 W JP2015000580 W JP 2015000580W WO 2015122171 A1 WO2015122171 A1 WO 2015122171A1
Authority
WO
WIPO (PCT)
Prior art keywords
outdoor
pipe
heat exchanger
compressor
pressure gas
Prior art date
Application number
PCT/JP2015/000580
Other languages
English (en)
French (fr)
Inventor
増田 哲也
松井 大
西山 吉継
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015562734A priority Critical patent/JP6296364B2/ja
Priority to DE112015000790.3T priority patent/DE112015000790B4/de
Publication of WO2015122171A1 publication Critical patent/WO2015122171A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner in which a plurality of outdoor units parallel to each other are connected to an indoor unit, and particularly relates to an anti-frosting operation of an outdoor heat exchanger.
  • the heating operation when frost is generated in the heat exchanger of the outdoor unit during the heating operation, the heating operation is stopped, the heating cycle is switched to the cooling cycle, and the high temperature discharged from the compressor is changed.
  • the refrigerant is defrosted by directly guiding the refrigerant to the outdoor heat exchanger.
  • the defrosting defrosting
  • the heating operation is stopped, and thus there is a problem that the user's comfort is impaired.
  • the present invention has been made in view of such a point, and the object of the present invention is to prevent frost formation in the heat exchanger of the outdoor unit during heating operation and to enable continuous operation while maintaining the heating capacity.
  • An object of the present invention is to provide an air conditioner.
  • a plurality of outdoor units including a compressor, an outdoor heat exchanger, and an outdoor expansion valve, and a plurality of units including an indoor heat exchanger and an indoor expansion valve are provided.
  • the indoor unit is connected by an inter-unit pipe, one end of the outdoor heat exchanger is branched and connected to the refrigerant discharge pipe and the refrigerant suction pipe of the compressor, and the inter-unit pipe is connected to the refrigerant discharge pipe.
  • the other end is connected to the liquid pipe through the liquid branch pipe, and the other end is connected to the high pressure gas branch pipe and the low pressure gas branch pipe, respectively.
  • Valves are provided to simultaneously cool multiple indoor units
  • the plurality of outdoor units include power-driven compressors driven by electric power. It includes at least one outdoor unit mounted and at least one outdoor unit mounted with a non-power source driven compressor driven by a driving source other than electric power.
  • the indoor unit includes a heating operation and frost formation occurs in the outdoor heat exchanger of the outdoor unit
  • a part of the refrigerant to be evaporated in the outdoor heat exchanger of the power supply outdoor unit is removed.
  • Flow through the power supply outdoor unit evaporate with the exhaust heat generated from the outdoor heat exchanger of the non-power supply drive outdoor unit and the drive source of the non-power supply drive compressor, and evaporate the refrigerant evaporated in the non-power supply drive outdoor unit While returning to a drive compressor, it returns also to a power supply drive compressor through a low-pressure gas pipe.
  • the heat exchange load in the outdoor heat exchanger of the power supply outdoor unit is reduced, frost formation in the heat exchanger is prevented, and continuous operation is possible while maintaining the heating capacity.
  • FIG. 1 is a refrigeration cycle diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • 1st invention connects the several outdoor unit provided with the compressor, the outdoor heat exchanger, and the outdoor expansion valve, and the several indoor unit provided with the indoor heat exchanger and the indoor expansion valve by piping between units.
  • One end of the outdoor heat exchanger is alternatively branched and connected to the refrigerant discharge pipe and the refrigerant suction pipe of the compressor, the inter-unit pipe is connected to the refrigerant discharge pipe, the refrigerant suction pipe
  • a low-pressure gas pipe connected to the pipe and a liquid pipe connected to the other end of the outdoor heat exchanger, and one end of the indoor heat exchanger is connected to the high-pressure gas pipe and the low-pressure gas pipe, respectively.
  • the plurality of outdoor units include an outdoor unit equipped with a power-driven compressor driven by electric power and other than electric power And at least one outdoor unit on which a non-power source driven compressor driven by the driving source is mounted.
  • the indoor unit when the indoor unit includes a heating operation, a part of the refrigerant to be evaporated in the outdoor heat exchanger of the power supply outdoor unit is caused to flow to the non-power supply outdoor unit, and the outdoor heat exchanger of the non-power supply outdoor unit And evaporating with exhaust heat generated from the drive source of the non-power source driven compressor.
  • the refrigerant evaporated in the non-power source driven outdoor unit is returned to the non-power source driven compressor and also returned to the power source driven compressor through the low-pressure gas pipe. Therefore, in the present invention, when the indoor unit includes a heating operation, the amount of refrigerant flowing to the outdoor heat exchanger of the power supply outdoor unit is reduced, and the amount of heat exchange for evaporating the refrigerant is reduced. It is possible to prevent frost formation in the outdoor heat exchanger of the unit and maintain the heating capacity.
  • a second aspect of the present invention is the air conditioner according to the first aspect, wherein the excluded volume of the non-power source driven compressor is larger than the excluded volume of the power source driven compressor.
  • the amount of exhaust heat generated from the drive source of the non-power source driven compressor is relatively larger than the amount of heat exchange to be evaporated in the outdoor heat exchanger of the power source driven outdoor unit. Therefore, in the present invention, among the refrigerants to be evaporated in the outdoor heat exchanger of the power supply driven outdoor unit, more refrigerant than in the first invention is used as the outdoor heat exchanger of the non-power supply driven outdoor unit, and the non-power supply drive. Evaporation can be performed by exhaust heat generated from the drive source of the compressor, and the risk of frost formation in the outdoor heat exchanger of the power supply outdoor unit can be reduced as compared with the first invention.
  • FIG. 1 is a circuit diagram showing an embodiment of an air conditioner according to the present invention.
  • the air conditioner 1 includes a plurality of (for example, two) outdoor units 2A and 2B and a plurality of (for example, three) indoor units 3A, 3B, and 3C.
  • the inter-unit piping 5 that connects the outdoor units 2A and 2B and the indoor units 3A, 3B, and 3C includes a low-pressure gas pipe 6, a high-pressure gas pipe 7, and a liquid pipe 8, and the air conditioner 1
  • the units 3A, 3B, and 3C can be simultaneously operated in a cooling operation or a heating operation, or the cooling operation and the heating operation can be performed in a mixed manner.
  • the outdoor unit 2A is generally configured by a variable capacity compressor 201A that uses a power source as a drive source, an outdoor heat exchanger 202A, an outdoor expansion valve 203A, and the like.
  • the refrigerant suction pipe 204A connected to the suction port of the compressor 201A is connected to the low-pressure gas pipe 6 via the accumulator 205A.
  • the refrigerant discharge pipe 206A connected to the discharge port of the compressor 201A branches into two via the oil separator 207A, and one refrigerant discharge branch pipe 206Aa is connected to the high-pressure gas pipe 7, and the other refrigerant discharge
  • the branch pipe 206Ab is connected to one end of the outdoor heat exchanger 202A.
  • the refrigerant discharge branch pipes 206Aa and 206Ab are provided with switching valves 208A and 209A.
  • the switching valve 208A is closed and the switching valve 209A is opened, the refrigerant discharged from the compressor 201A is supplied to the outdoor heat exchanger 202A. Is done.
  • one end of the outdoor heat exchanger 202A to which the refrigerant discharge branch pipe 206Ab is connected is connected to a heating pipe 206Ac via a switching valve 210A in parallel with the refrigerant discharge branch pipe 206Ab as viewed from the outdoor heat exchanger 202A.
  • the other end of the heating pipe 206Ac is connected to the refrigerant suction pipe 204A.
  • the other end of the outdoor heat exchanger 202A is piped to the liquid pipe 8 via an outdoor expansion valve 203A for adjusting the flow rate of refrigerant supplied to the outdoor heat exchanger 202A.
  • the outdoor unit 2A also detects a temperature sensor (not shown) that detects the inlet / outlet temperature of the outdoor heat exchanger 202A, a pressure sensor (not shown) that detects the suction pressure of the compressor 201A, and a discharge pressure of the compressor 201A.
  • a temperature sensor not shown
  • a pressure sensor not shown
  • the outdoor unit 2B is generally configured by, for example, an engine 4 using gas as a drive source, an engine-driven compressor 201B using the engine 4 as a drive source, an outdoor heat exchanger 202B, an outdoor expansion valve 203B, and the like.
  • the refrigerant suction pipe 204B connected to the suction port of the compressor 201B is connected to the low-pressure gas pipe 6 via the accumulator 205B.
  • the refrigerant discharge pipe 206B connected to the discharge port of the compressor 201B is branched into two via the oil separator 207B, and one refrigerant discharge branch pipe 206Ba is connected to the high-pressure gas pipe 7, and the other refrigerant discharge Branch pipe 206Bb is connected to one end of outdoor heat exchanger 202B.
  • the refrigerant discharge branch pipes 206Ba and 206Bb are provided with switching valves 208B and 209B.
  • the switching valve 208B is closed and the switching valve 209B is opened, the refrigerant discharged from the compressor 201B is supplied to the outdoor heat exchanger 202B. Is done.
  • one end of the outdoor heat exchanger 202B to which the refrigerant discharge branch pipe 206Bb is connected is connected to a heating pipe 206Bc via the switching valve 210B in parallel with the refrigerant discharge branch pipe 206Bb as viewed from the outdoor heat exchanger 202B.
  • the other end of the heating pipe 206Bc is connected to the refrigerant suction pipe 204B.
  • the other end of the outdoor heat exchanger 202B is piped to the liquid pipe 8 via an outdoor expansion valve 203B for adjusting the flow rate of refrigerant supplied to the outdoor heat exchanger 202B.
  • an engine exhaust heat exchanger 212B that performs heat exchange between the high-temperature coolant used for cooling the engine 4 and the refrigerant in parallel with the outdoor heat exchanger 202B sets the refrigerant flow rate supplied to the engine exhaust heat exchanger 212B.
  • An expansion valve 211B for engine exhaust heat exchanger for adjustment is provided via a liquid pipe branch pipe 8B from the liquid pipe 8, and the liquid branch pipe 8B is connected to the refrigerant suction pipe 204B.
  • the outdoor unit 2B also detects a temperature sensor (not shown) that detects the inlet / outlet temperature of the outdoor heat exchanger 202B, a pressure sensor (not shown) that detects the suction pressure of the compressor 201B, and a discharge pressure of the compressor 201B.
  • Various sensors such as a pressure sensor (not shown), and an outdoor control device 100B that inputs the detection results of the various sensors and controls the entire outdoor unit 2B are provided.
  • any one of the outdoor units 2A and 2B functions as a parent device, and the outdoor control device 100A or 101B of the parent device performs indoor control based on a user instruction input via a remote controller (not shown). It communicates with a device (not shown) and controls the operation of the entire air conditioner 1.
  • the indoor unit 3A includes an indoor heat exchanger 10 and an indoor expansion valve 11.
  • One end of the indoor heat exchanger 10 is connected to the liquid pipe 8 via a liquid branch pipe 18 provided with the indoor expansion valve 11.
  • a branch pipe 12 is connected to the other end of the indoor heat exchanger 10, and the branch pipe 12 branches into a high-pressure gas branch pipe 12A and a low-pressure gas branch pipe 12B.
  • the high-pressure gas branch pipe 12 ⁇ / b> A is connected to the high-pressure gas pipe 7 via the first on-off valve 13
  • the low-pressure gas branch pipe 12 ⁇ / b> B is connected to the low-pressure gas pipe 6 via the second on-off valve 14.
  • the indoor unit 3A is provided with a temperature sensor (not shown) for detecting the inlet / outlet temperature and room temperature of the outdoor heat exchanger 21, a pressure sensor (not shown) for detecting the refrigerant pressure in the indoor heat exchanger 21, and the like.
  • a temperature sensor not shown
  • a pressure sensor not shown
  • an indoor control device not shown is provided that inputs the detection results of these sensors and controls the indoor unit 3A. Since the indoor units 3B and 3C have substantially the same configuration as the indoor unit 3A, the same portions are denoted by the same reference numerals, and redundant description is omitted.
  • the switching valves 209A and 209B are opened and the switching valves 208A, 208B, 210A, and 210B are closed.
  • the first on-off valve 13 is closed and the second on-off valve 14 is opened.
  • the refrigerant discharged from the compressors 201A and 201B is supplied to the outdoor heat exchangers 202A and 202B via the oil separator 25, and is blown by the outdoor fans 212A and 212B. It exchanges heat with the air to be condensed, becomes a liquid refrigerant, and is supplied to the liquid pipe 8.
  • liquid refrigerant is supplied to the indoor heat exchanger 10 via the liquid pipe 8 via the expansion valve 11, and exchanges heat with the air blown by the indoor fan 15 here. Then, it absorbs heat, evaporates, becomes a low-temperature and low-pressure gas refrigerant, and is supplied to the low-pressure gas pipe 6 via the second on-off valve 14.
  • the gas refrigerant supplied to the low-pressure gas pipe 6 is compressed again by the compressors 201A and 201B via the suction pipes 204A and 204B of the outdoor units 2A and 2B. Thereby, the cooling operation can be simultaneously performed in all the indoor units 3A, 3B, and 3C.
  • the operation method of the power supply driven compressor 201A and the engine driven compressor 201B during the cooling operation is as follows. If the cooling load is smaller than the cooling capacity when the engine-driven compressor 201B is operated at the minimum operating frequency (the minimum cooling capacity of the engine-driven compressor 201B), the engine-driven compressor 201B alone will be intermittently operated. Only the power-driven compressor 201A is operated. The cooling capacity when the cooling load is larger than the minimum cooling load of the engine-driven compressor 201B and both the power-driven compressor 201A and the engine-driven compressor 201B are operated at the minimum operating frequency (when both compressors are operated).
  • one of the power source driven compressor 201A and the engine driven compressor 201B for example, the one with the lower operating cost or the lower energy consumption is selected for operation.
  • both the power-driven compressor 201A and the engine-driven compressor 201B are operated so that, for example, the operating cost or energy consumption is minimized.
  • the operating frequency and operating cost of each compressor or the energy consumption Use the relationship.
  • the ratio of the cooling load that the engine-driven compressor 201B handles to the entire cooling load is the maximum cooling capacity when both compressors are operated at the maximum operating frequency (maximum cooling capacity when both compressors are operating).
  • the ratio of the cooling capacity when only the engine-driven compressor 201B is operated at the maximum operating frequency is about ⁇ 15%.
  • the switching valves 209A and 209B are closed, and the switching valves 208A, 208B, 210A and 210B are closed, and each indoor unit 3A, In 3B and 3C, the first on-off valve 13 is opened and the second on-off valve 14 is closed.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 20 is supplied to the high-pressure gas pipe 7 via the oil separator 25 as indicated by broken line arrows in FIG.
  • the gas refrigerant is supplied to the indoor heat exchanger 10 through the high-pressure gas pipe 7, where heat is exchanged with the air blown by the indoor fan 15 and condensed. After becoming a liquid refrigerant, it is supplied to the liquid pipe 8 via the expansion valve 11.
  • the liquid refrigerant supplied to the liquid pipe 8 is supplied to the outdoor heat exchangers 202A and 202B via the outdoor expansion valves 203A and 203B of the outdoor units 2A and 2B, and is blown by the outdoor fans 212A and 212B.
  • the expansion valve 211B for the engine exhaust heat exchanger is opened together with the outdoor expansion valve 203B, and a part of the refrigerant supplied to the outdoor unit 2B through the liquid pipe 8 is Heat is exchanged in the cooling water (not shown) of the driving engine 4 of the compressor 201B and the engine exhaust heat exchanger 212B, evaporates to become a gas refrigerant, and the outdoor heat in the suction pipe 204B via the liquid branch pipe 8B. It merges with the gas refrigerant evaporated in the exchanger 202B. Thereby, heating operation becomes possible simultaneously in all the indoor units 3A, 3B, 3C.
  • the outdoor expansion valve 203A of the outdoor unit 2A is in a fully closed state or a considerably closed state.
  • the amount of refrigerant flowing in the outdoor heat exchanger 202A of the outdoor unit 2A is considerably smaller than the sum of the amount of refrigerant flowing in the outdoor heat exchanger 202B of the outdoor unit 2B and the amount of refrigerant flowing in the engine exhaust heat exchanger 212B. It has become.
  • the ratio of the heating load that the power supply driven compressor 201A handles to the whole is approximately proportional to the maximum heating capacity of each compressor, and is approximately 1/2 of the heating load that the non-power supply driven compressor 201B handles.
  • the amount of refrigerant originally flowing in the outdoor heat exchanger 202A of the outdoor unit 2A is about 1 ⁇ 2 of the amount of refrigerant flowing in the outdoor heat exchanger 202B and the engine exhaust heat exchanger 212B of the outdoor unit 2B.
  • the amount of refrigerant flowing through the outdoor heat exchanger 202A of the outdoor unit 2A is more than 1 ⁇ 2 of the amount of refrigerant flowing through the outdoor heat exchanger 202B and the engine exhaust heat exchanger 212B of the outdoor unit 2B. It is set to a considerably small amount, for example, 1/4 or less.
  • the temperature of the refrigerant may not be lowered. That is, moisture in the outside air hardly freezes on the fin surface of the outdoor heat exchanger 202A, and frost formation hardly occurs.
  • the switching valve 210B of the outdoor unit 2B is in an open state, and a part of the refrigerant evaporated in the outdoor heat exchanger 202B and the engine exhaust heat exchanger 212B is part of the heating pipe 206Bc, And after flowing through the liquid branch pipe 8B, it flows into the low pressure pipe 6, flows into the suction pipe 204A of the outdoor unit 2A via the low pressure gas pipe 5, passes through the accumulator 205A, and returns to the power supply driven compressor 201A.
  • the operation method of the power supply driven compressor 201A and the engine driven compressor 201B during the heating operation is, for example, as follows. If the heating load is smaller than the heating capacity when the engine-driven compressor 201B is operated at the minimum operating frequency (the minimum heating capacity of the engine-driven compressor 201B), the engine-driven compressor 201B alone will be intermittently operated. Only the power-driven compressor 201A is operated.
  • both the power-driven compressor 201A and the engine-driven compressor 201B are operated so that, for example, the operating cost or energy consumption is minimized. To do.
  • the operating frequency and operating cost of each compressor or the energy consumption Use the relationship.
  • the ratio of the heating load that the engine-driven compressor 201B handles to the entire heating load is the maximum heating capacity when both compressors are operated at the maximum operating frequency (maximum heating capacity when operating both compressors).
  • the ratio of the heating capacity when only the engine driven compressor 201B is operated at the maximum operating frequency is about ⁇ 15%.
  • the frost formation state of the outdoor heat exchanger 202B of the outdoor unit 2B is constantly monitored, and if there is a risk of frost formation, the operation cost or energy consumption is minimized. Even if the operating frequency of each compressor is set, control for increasing the operating frequency of the engine-driven compressor 201B and lowering the operating frequency of the power-driven compressor 201A is performed.
  • the amount of exhaust heat of the engine 4 is increased, and the amount of heat of cooling water supplied to the engine exhaust heat heat exchanger 212B is also increased. That is, more refrigerant can be evaporated in the engine exhaust heat exchanger 212B, and the amount of refrigerant flowing to the outdoor heat exchanger 202B is reduced, thereby reducing the risk of frost formation.
  • a part of the refrigerant to be evaporated in the outdoor heat exchanger 202A of the outdoor unit 2A is partly replaced with the outdoor heat exchanger 202B of the outdoor unit 2B and the engine exhaust. It evaporates with the heat heat exchanger 212B.
  • the refrigerant evaporated in the outdoor heat exchanger 202B and the engine exhaust heat exchanger 212B is returned to the non-power source driven compressor 201B and the switching valve 210B is opened, and the power source driven compressor 201A is also passed through the low pressure gas pipe 6. return.
  • the amount of refrigerant flowing to the outdoor heat exchanger 202A of the outdoor unit 2A is reduced, and the amount of heat exchange for evaporating the refrigerant is reduced, so that frost formation in the outdoor heat exchanger 202A is prevented. And heating capacity can be maintained. Further, by reducing or eliminating the amount of heat exchange in the outdoor heat exchanger 202A of the outdoor unit 2A, the rotational speed of the outdoor blower fan 212A can be reduced or zero. Therefore, it is possible to suppress the power consumption of the outdoor blower fan 212A and improve the efficiency of the entire air conditioner.
  • the outdoor units 2A and 2B are the same as in the case of the simultaneous heating operation.
  • the first on-off valve 13 is opened and the second on-off valve 14 is closed.
  • the first on-off valve 13 is closed and the second on-off valve 14 is opened.
  • high-temperature and high-pressure gas refrigerant is supplied from the outdoor units 2A and 2B to the high-pressure gas pipe 7, and in the indoor units 3A and 3B, gas refrigerant is supplied to the indoor heat exchanger 10 via the high-pressure gas pipe 7.
  • the liquid refrigerant is condensed and supplied to the liquid pipe 8 via the expansion valve 11.
  • Part of the liquid refrigerant supplied to the liquid pipe 8 returns to the outdoor units 2A and 2B, exchanges heat with the air blown by the outdoor fans 212A and 212B in the outdoor heat exchangers 202A and 202B, evaporates, and has a low temperature and low pressure. It becomes a gas refrigerant.
  • the remainder of the liquid refrigerant supplied to the liquid pipe 8 is supplied to the indoor heat exchanger 10 via the expansion valve 11 of the indoor unit 3C, where it exchanges heat with the air blown by the indoor fan 15 and evaporates.
  • the low-pressure gas pipe 6 After becoming a low-temperature and low-pressure gas refrigerant, it is supplied to the low-pressure gas pipe 6 via the second on-off valve 14.
  • the refrigerant supplied to the low-pressure gas pipe 6 is compressed again by the compressors 201A and 201B through the suction pipe 30 together with the gas refrigerant passed through the outdoor heat exchangers 202A and 202B. This makes it possible to perform the heating operation with the indoor units 3A and 3B and the cooling operation with the indoor unit 3C.
  • the outdoor units 2A and 2B are controlled in the same manner as in the case of the simultaneous heating operation, so that a situation occurs such that the power-driven compressor 201A is driven at the maximum rotational speed, such as a low outside air temperature. If this happens, control is performed to avoid frost formation on the outdoor heat exchanger 202A of the outdoor unit 2A.
  • the present invention can be suitably used as an air conditioner capable of continuous operation while maintaining capacity during heating operation.
  • Air conditioning apparatus 2A Power supply drive outdoor unit 2B Non power supply drive outdoor unit 3A, 3B, 3C Indoor unit 4 Engine 5 Unit piping 6 Low pressure gas pipe 7 High pressure gas pipe 8 Liquid pipe 201A Power supply drive compressor 201B Non power supply drive compressor 202A 202B outdoor heat exchanger 203A, 203B outdoor expansion valve 212B engine exhaust heat exchanger

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 複数台の室内ユニットを同時に冷房運転もしくは暖房運転可能とし、または、これらの暖房運転と冷房運転を混在して実施可能とする空気調和装置において、暖房運転時に定格能力付近で運転すると、室外ユニットの熱交換器が着霜するため、除霜運転を行う必要があり、システム全体の暖房能力が低下し、利用者の快適性を損なうという課題があった。 電力により駆動される電源駆動圧縮機201Aが搭載された室外ユニット2Aと、電力以外の駆動源により駆動される非電源駆動圧縮機202Bが搭載された室外ユニット2Bと、を少なくとも1台ずつ含む。

Description

空気調和装置
 本発明は、室内ユニットに対して互いに並列な複数の室外ユニットが接続された空気調和装置に関し、特に、室外熱交換器の着霜防止運転に係るものである。
 近年、空気調和装置には高い空調性能が要求されており、室内ユニットの空調負荷が大きくなると、1台の室外ユニットのみで必要な容量を確保することが困難となる。ここで、室内ユニットの空調性能に応じて室外ユニットの熱交換器や圧縮機を大型化することも考えられるが、それに伴って室外ユニットのケーシングが大きくなってしまい、例えば、設置現場までエレベータで搬入することが困難となり、工場内の組み立てラインで搬送することができず組み立て工数が増大する等、様々な問題がある。
 そこで、上記室内ユニットから延びたユニット間配管に、室外ユニットを複数個並列につなぎ、室内の空調負荷に応じて複数個の室外ユニットの運転を制御させ、空気調和装置の容量のシステムアップを図るようにしたものが知られている(例えば、特許文献1参照)。
特開平7-225067号公報
 ところで、上述したような空気調和装置では、暖房運転時において室外ユニットの熱交換器に霜が生じた場合、暖房運転を停止し、暖房サイクルを冷房サイクルに切り換え、圧縮機から吐出された高温の冷媒を室外熱交換器に直接導くことでデフロスト(除霜)するようにしている。
 しかしながら、デフロスト(除霜)すると、暖房運転を停止するために、利用者の快適性を損なう等の課題があった。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、暖房運転時において、室外ユニットの熱交換器における着霜を防止し、暖房能力を維持したまま連続運転を可能とする空気調和装置を提供することを目的とする。
 この明細書には、2014年2月14日に出願された日本国特許出願・特願2014-026967の全ての内容が含まれる。
 上記課題を解決するために、本発明の空気調和装置では、圧縮機、室外熱交換器及び室外膨張弁を備えた複数台の室外ユニットと、室内熱交換器及び室内膨張弁を備えた複数台の室内ユニットとがユニット間配管により接続され、室外熱交換器の一端が、圧縮機の冷媒吐出管と冷媒吸込管とに択一に分岐して接続され、ユニット間配管が、冷媒吐出管に接続された高圧ガス管と、冷媒吸込管に接続された低圧ガス管と、室外熱交換器の他端に接続された液管とを有して構成され、室内熱交換器の一端が高圧ガス管及び低圧ガス管に、それぞれ高圧ガス分岐管及び低圧ガス分岐管を介して接続され、他端が液管に液分岐管を介して接続され、高圧ガス分岐管及び低圧ガス分岐管にそれぞれ開閉弁が設けられ、複数台の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、これらの冷房運転と暖房運転を混在して実施可能とするよう構成された空気調和装置において、複数台の室外ユニットは、電力により駆動される電源駆動圧縮機が搭載された室外ユニットと、電力以外の駆動源により駆動される非電源駆動圧縮機が搭載された室外ユニットと、を少なくとも1台ずつ含むこと、を特徴とする。
 これによって、室内ユニットに暖房運転が含まれ、室外ユニットの室外熱交換器に着霜が発生するような場合に、電源駆動室外ユニットの室外熱交換器において蒸発させるべき冷媒の一部を、非電源駆動室外ユニットに流し、非電源駆動室外ユニットの室外熱交換器、および、非電源駆動圧縮機の駆動源より発生する排熱で蒸発させ、非電源駆動室外ユニット内で蒸発した冷媒を非電源駆動圧縮機に戻すとともに、低圧ガス管を通して電源駆動圧縮機にも戻す。
 暖房運転時において、電源駆動室外ユニットの室外熱交換器における熱交換負荷を下げ、当該熱交換器における着霜を防止し、暖房能力を維持したまま連続運転が可能となる。
図1は、本発明の実施の形態1における空気調和装置の冷凍サイクル図である。
 第1の発明は、圧縮機、室外熱交換器及び室外膨張弁を備えた複数台の室外ユニットと、室内熱交換器及び室内膨張弁を備えた複数台の室内ユニットとがユニット間配管により接続され、室外熱交換器の一端が、圧縮機の冷媒吐出管と冷媒吸込管とに択一に分岐して接続され、ユニット間配管が、冷媒吐出管に接続された高圧ガス管と、冷媒吸込管に接続された低圧ガス管と、室外熱交換器の他端に接続された液管とを有して構成され、室内熱交換器の一端が高圧ガス管及び低圧ガス管に、それぞれ高圧ガス分岐管及び低圧ガス分岐管を介して接続され、他端が液管に液分岐管を介して接続され、高圧ガス分岐管及び低圧ガス分岐管にそれぞれ開閉弁が設けられ、複数台の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、これらの冷房運転と暖房運転を混在して実施可能とするよう構成された空気調和装置において、複数台の室外ユニットは、電力により駆動される電源駆動圧縮機が搭載された室外ユニットと、電力以外の駆動源により駆動される非電源駆動圧縮機が搭載された室外ユニットと、を少なくとも1台ずつ含むこと、を特徴とする。
 これにより、室内ユニットに暖房運転が含まれる場合、電源駆動室外ユニットの室外熱交換器において蒸発させるべき冷媒の一部を、非電源駆動室外ユニットに流し、非電源駆動室外ユニットの室外熱交換器、および、非電源駆動圧縮機の駆動源より発生する排熱で蒸発させる。なお、非電源駆動室外ユニット内で蒸発した冷媒は、非電源駆動圧縮機に戻すとともに、低圧ガス管を通して電源駆動圧縮機にも戻す。
 よって、本発明では、室内ユニットに暖房運転が含まれる場合、電源駆動室外ユニットの室外熱交換器に流れる冷媒量が減り、当該冷媒を蒸発させるための熱交換量が低減するため、電源駆動室外ユニットの室外熱交換器における着霜を防止することができ、暖房能力を維持することが可能となる。
 第2の発明は、第1の発明において、非電源駆動圧縮機の排除容積は、電源駆動圧縮機の排除容積よりも大きいことを特徴とする空気調和装置である。
 これにより、暖房時において、非電源駆動圧縮機の駆動源より発生する排熱量は、電源駆動室外ユニットの室外熱交換器において蒸発させるべき熱交換量よりも相対的に大きくなる。
 よって、本発明では、電源駆動室外ユニットの室外熱交換器において蒸発させるべき冷媒のうち、第1の発明よりも多くの冷媒を、非電源駆動室外ユニットの室外熱交換器、および、非電源駆動圧縮機の駆動源より発生する排熱にて蒸発させることができ、第1の発明に比べ、電源駆動室外ユニットの室外熱交換器における着霜の危険性を低減することができる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施形態によって、本発明が限定されるものではない。
 (実施の形態1)
 以下、図面を参照して本発明の実施形態を詳述する。
 図1は、本発明に係る空気調和装置の一実施の形態を示す回路図である。この空気調和装置1は、複数台(例えば2台)の室外ユニット2A、2Bと、複数台(例えば3台)の室内ユニット3A、3B、3Cと、を備えている。室外ユニット2A、2Bと室内ユニット3A、3B、3Cとを接続するユニット間配管5は、低圧ガス管6と、高圧ガス管7と、液管8とから構成され、空気調和装置1は、室内ユニット3A、3B、3Cを同時に冷房運転若しくは暖房運転可能とし、または、これらの冷房運転と暖房運転とを混在して実施可能としている。
 室外ユニット2Aは、電源を駆動源とする能力可変型の圧縮機201Aと、室外熱交換器202Aと、室外膨張弁203A等から概略構成されている。
 この室外ユニット2Aにおいて、圧縮機201Aの吸込口に接続された冷媒吸込管204Aが、アキュムレータ205Aを介して低圧ガス管6に接続される。また、圧縮機201Aの吐出口に接続された冷媒吐出管206Aは、オイルセパレー207Aを介して2つに分岐し、一方の冷媒吐出分岐管206Aaが高圧ガス管7に接続され、他方の冷媒吐出分岐管206Abが室外熱交換器202Aの一端に接続される。
 ここで、上記冷媒吐出分岐管206Aaおよび206Abには、切換弁208Aおよび209Aが設けられ、この切換弁208Aを閉め、切換弁209Aを開けると圧縮機201Aの吐出冷媒が室外熱交換器202Aに供給される。
 さらに、この冷媒吐出分岐管206Abが接続される室外熱交換器202Aの一端には、室外熱交換器202Aから見て冷媒吐出分岐管206Abと並列に切換弁210Aを介して暖房用配管206Acが接続され、暖房用配管206Acの他端は冷媒吸込管204Aに接続される。
 室外熱交換器202Aの他端は、室外熱交換器202Aに供給する冷媒流量を調整するための室外膨張弁203Aを介して液管8と配管接続される。
 また、室外ユニット2Aは、室外熱交換器202Aの出入口温度を検出する温度センサ(図示しない)、圧縮機201Aの吸込圧を検出する圧力センサ(図示しない)及び圧縮機201Aの吐出圧を検出する圧力センサ(図示しない)等の各種センサ、各種センサの検出結果を入力して室外ユニット2A全体を制御する室外制御装置100A等を備える。
 室外ユニット2Bは、例えばガスを駆動源とするエンジン4、エンジン4を駆動源とするエンジン駆動圧縮機201Bと、室外熱交換器202B、室外膨張弁203B等から概略構成されている。
 この室外ユニット2Bにおいて、圧縮機201Bの吸込口に接続された冷媒吸込管204Bが、アキュムレータ205Bを介して低圧ガス管6に接続される。また、圧縮機201Bの吐出口に接続された冷媒吐出管206Bは、オイルセパレー207Bを介して2つに分岐し、一方の冷媒吐出分岐管206Baが高圧ガス管7に接続され、他方の冷媒吐出分岐管206Bbが室外熱交換器202Bの一端に接続される。
 ここで、上記冷媒吐出分岐管206Baおよび206Bbには、切換弁208Bおよび209Bが設けられ、この切換弁208Bを閉め、切換弁209Bを開けると圧縮機201Bの吐出冷媒が室外熱交換器202Bに供給される。
 さらに、この冷媒吐出分岐管206Bbが接続される室外熱交換器202Bの一端には、室外熱交換器202Bから見て冷媒吐出分岐管206Bbと並列に切換弁210Bを介して暖房用配管206Bcが接続され、暖房用配管206Bcの他端は冷媒吸込管204Bに接続される。
 室外熱交換器202Bの他端は、室外熱交換器202Bに供給する冷媒流量を調整するための室外膨張弁203Bを介して液管8と配管接続される。
 さらに室外熱交換器202Bと並列にエンジン4の冷却に用いた高温の冷却水と冷媒との熱交換を行うエンジン排熱熱交換器212Bが、エンジン排熱熱交換器212Bに供給する冷媒流量を調整するためのエンジン排熱熱交換器用の膨張弁211Bを介して液管8からの液管分岐管8Bを介して設けられ、液分岐管8Bは冷媒吸込管204Bに接続される。
 また、室外ユニット2Bは、室外熱交換器202Bの出入口温度を検出する温度センサ(図示しない)、圧縮機201Bの吸込圧を検出する圧力センサ(図示しない)及び圧縮機201Bの吐出圧を検出する圧力センサ(図示しない)等の各種センサ、各種センサの検出結果を入力して室外ユニット2B全体を制御する室外制御装置100B等を備える。
 ここで、各室外ユニット2A、2Bのいずれか1つが親機として機能し、親機の室外制御装置100Aまたは101Bは、リモートコントローラ(図示しない)を介して入力したユーザ指示に基づいて、室内制御装置(図示しない)と通信し、この空気調和装置1全体の運転制御を行う。
 室内ユニット3Aは、室内熱交換器10と室内膨張弁11とを備えて構成され、この室内熱交換器10の一端は、室内膨張弁11を設けた液分岐管18を介して液管8に接続される。また、室内熱交換器10の他端には、分岐管12が接続され、この分岐管12は、高圧ガス分岐管12Aと低圧ガス分岐管12Bとに分岐する。高圧ガス分岐管12Aは第1開閉弁13を介して高圧ガス管7に接続され、低圧ガス分岐管12Bは第2開閉弁14を介して低圧ガス管6に接続される。
 また、室内ユニット3Aには、室外熱交換器21の出入口温度や室温を検出する温度センサ(図示しない)、室内熱交換器21内の冷媒圧力を検出する圧力センサ(図示しない)等が配置される他、これら各センサの検出結果を入力してこの室内ユニット3Aの制御を行う室内制御装置(図示しない)を備えている。なお、室内ユニット3B、3Cは、室内ユニット3Aと略同一の構成であるため、同一の部分に同一の符号を付して示し、重複する説明は省略する。
 次に、空気調和装置1の運転動作を説明する。
 全ての室内ユニット3A、3B、3Cを同時に冷房運転する場合、各室外ユニット2A、2Bでは、切換弁209A、209Bが開くと共に切換弁208A、208B、210A、210Bが閉じられ、また、各室内ユニット3A、3B、3Cでは第1開閉弁13が閉じ、第2開閉弁14が開く。この場合、図1に実線矢印で示すように、圧縮機201A、201Bの吐出冷媒が、オイルセパレータ25を介して室外熱交換器202A、202Bに供給され、ここで室外ファン212A、212Bによって送風される空気と熱交換し、凝縮して液冷媒となり、液管8に供給される。
 そして、室内ユニット3A、3B、3Cにおいては、液管8を介して液冷媒が膨張弁11を介して室内熱交換器10に供給され、ここで室内ファン15によって送風される空気と熱交換し、吸熱、蒸発し、低温低圧のガス冷媒となり、第2開閉弁14を介して低圧ガス管6に供給される。この低圧ガス管6に供給されたガス冷媒は、室外ユニット2A、2Bの吸込管204A、204Bを介して圧縮機201A、201Bで再び圧縮される。これによって、全ての室内ユニット3A、3B、3Cで同時に冷房運転が可能になる。
 冷房運転時における、電源駆動圧縮機201Aとエンジン駆動圧縮機201Bの運転方法は、例えば下記のようにする。
 冷房負荷が、エンジン駆動圧縮機201Bが最低運転周波数で運転した時の冷房能力(エンジン駆動圧縮機201Bの最小冷房能力)よりも小さい場合には、エンジン駆動圧縮機201Bのみでは断続運転に陥るため、電源駆動圧縮機201Aのみを運転する。
 冷房負荷が、エンジン駆動圧縮機201Bの最小冷房負荷よりも大きく、かつ、電源駆動圧縮機201Aとエンジン駆動圧縮機201Bとがともに最低運転周波数で運転した場合の冷房能力(両圧縮機運転時の最小冷房能力)よりも小さい場合は、電源駆動圧縮機201Aとエンジン駆動圧縮機201Bのどちらか一方、例えば、運転コストが安い、もしくは、消費エネルギーが小さい方を選択して運転する。
 冷房負荷が、両圧縮機運転時の最小冷房能力よりも大きい場合は、電源駆動圧縮機201Aとエンジン駆動圧縮機201Bの両方を、例えば、運転コスト、もしくは、消費エネルギーが最小となるように運転する。この場合、運転コスト、もしくは、消費エネルギーを最小とするための電源駆動圧縮機201Aとエンジン駆動圧縮機201Bの運転周波数の決定には、各圧縮機の運転周波数と運転コスト、もしくは、消費エネルギーとの関係を利用する。
 実際には、冷房負荷全体に対してエンジン駆動圧縮機201Bが受け持つ冷房負荷の割合は、両圧縮機をともに最高運転周波数で運転した場合の最大冷房能力(両圧縮機運転時の最大冷房能力)に対する、エンジン駆動圧縮機201Bのみを最高運転周波数で運転したときの冷房能力の割合±15%程度である。
 一方、全ての室内ユニット3A、3Bを同時に暖房運転する場合、各室外ユニット2A、2Bでは、切換弁209A、209Bが閉じると共に、切換弁208A、208B、210A、210Bが閉じ、各室内ユニット3A、3B、3Cでは第1開閉弁13が開き、第2開閉弁14が閉じる。この場合、図1に破線矢印で示すように、圧縮機20が吐出した高温高圧のガス冷媒が、オイルセパレータ25を介して高圧ガス管7に供給される。
 そして、室内ユニット3A、3B、3Cにおいては、高圧ガス管7を介してガス冷媒が室内熱交換器10に供給され、ここで、室内ファン15によって送風される空気と熱交換し、凝縮して液冷媒となった後、膨張弁11を介して液管8に供給される。この液管8に供給された液冷媒は、室外ユニット2A、2Bの室外膨張弁203A、203Bを介して室外熱交換器202A、202Bに供給され、ここで、室外ファン212A、212Bによって送風される空気と熱交換、蒸発し、ここで低温低圧のガス冷媒となり、暖房用配管206Ac、206Bcおよび吸込管204A、204Bを介して圧縮機201A、201Bで再び圧縮される。
 なお、暖房運転の場合、室外ユニット2Bにおいては、室外膨張弁203Bと共に、エンジン排熱熱交換器用の膨張弁211Bが開き、液管8を介して室外ユニット2Bに供給された一部の冷媒は、圧縮機201Bの駆動用エンジン4の冷却水(図示しない)とエンジン排熱熱交換器212Bで熱交換、蒸発し、ガス冷媒となって、液分岐管8Bを介して吸込管204Bにおいて室外熱交換器202Bで蒸発したガス冷媒と合流する。
 これによって、全ての室内ユニット3A、3B、3Cで同時に暖房運転が可能になる。
 また、低外気温時に、例えば電源駆動圧縮機201Aが最高回転数で駆動されるような状況が生じた場合、室外ユニット2Aの室外膨張弁203Aは、全閉、もしくはかなり閉じた状態になっており、室外ユニット2Aの室外熱交換器202Aに流れる冷媒量は、室外ユニット2Bの室外熱交換器202Bに流れる冷媒量と、エンジン排熱熱交換器212Bに流れる冷媒量との和よりもかなり少なくなっている。
 例えば、エンジン駆動圧縮機201Bを最高運転周波数で運転した場合の最大暖房能力が、電源駆動圧縮機201Aを最高運転周波数で運転した場合の最大暖房能力の2倍に設定されている場合、暖房負荷全体に対して電源駆動圧縮機201Aが受け持つ暖房負荷の割合は、後述するように、各圧縮機の最大暖房能力にほぼ比例し、非電源駆動圧縮機201Bが受け持つ暖房負荷のほぼ1/2となる。すなわち、本来、室外ユニット2Aの室外熱交換器202Aに流れる冷媒量は、室外ユニット2Bの室外熱交換器202Bとエンジン排熱熱交換器212Bに流れる冷媒量の約1/2となる。
 しかし、本実施の形態では、室外ユニット2Aの室外熱交換器202Aに流れる冷媒量は、室外ユニット2Bの室外熱交換器202Bとエンジン排熱熱交換器212Bに流れる冷媒量の1/2よりもかなり小さい量、例えば、1/4以下に設定される。室外ユニット2Aの室外熱交換器202Aに流れる冷媒量を絞ることにより、室外熱交換器202Aに流れる冷媒を全て蒸発させるために、冷媒の温度を下げなくてもよい。つまり、室外熱交換器202Aのフィン表面で外気中の水分が凍結しにくくなり、着霜が起こりにくくなる。
 なお、暖房運転中は、室外ユニット2Bの切換弁210Bは開状態となっており、室外熱交換器202B、エンジン排熱熱交換器212Bにて蒸発した冷媒の一部は、暖房用配管206Bc、および液分岐管8Bを通った後、低圧配管6に流入し、低圧ガス管5を介して室外ユニット2Aの吸込管204Aに流入し、アキュムレータ205Aを通って、電源駆動圧縮機201Aに戻る。
 暖房運転時における、電源駆動圧縮機201Aとエンジン駆動圧縮機201Bの運転方法は、例えば下記のようにする。
 暖房負荷が、エンジン駆動圧縮機201Bが最低運転周波数で運転した時の暖房能力(エンジン駆動圧縮機201Bの最小暖房能力)よりも小さい場合には、エンジン駆動圧縮機201Bのみでは断続運転に陥るため、電源駆動圧縮機201Aのみを運転する。
 暖房負荷が、エンジン駆動圧縮機201Bの最小暖房負荷よりも大きく、かつ、電源駆動圧縮機201Aとエンジン駆動圧縮機201Bがともに最低運転周波数で運転した場合の暖房能力(両圧縮機運転時の最小暖房能力)よりも小さい場合は、電源駆動圧縮機201Aとエンジン駆動圧縮機201Bのどちらか一方、例えば、運転コストが安い、もしくは、消費エネルギーが小さい方を選択して運転する。
 暖房負荷が、両圧縮機運転時の最小暖房能力よりも大きい場合は、電源駆動圧縮機201Aとエンジン駆動圧縮機201Bの両方を、例えば、運転コスト、もしくは、消費エネルギーが最小となるように運転する。この場合、運転コスト、もしくは、消費エネルギーを最小とするための電源駆動圧縮機201Aとエンジン駆動圧縮機201Bの運転周波数の決定には、各圧縮機の運転周波数と運転コスト、もしくは、消費エネルギーとの関係を利用する。
 実際には、暖房負荷全体に対してエンジン駆動圧縮機201Bが受け持つ暖房負荷の割合は、両圧縮機をともに最高運転周波数で運転した場合の最大暖房能力(両圧縮機運転時の最大暖房能力)に対する、エンジン駆動圧縮機201Bのみを最高運転周波数で運転したときの暖房能力の割合±15%程度である。
 ただし、暖房運転時は、常時、室外ユニット2Bの室外熱交換器202Bの着霜状態を監視しており、着霜の危険性がある場合は、運転コスト、もしくは、消費エネルギーが最小となるように各圧縮機の運転周波数を設定していても、エンジン駆動圧縮機201Bの運転周波数を上げ、電源駆動圧縮機201Aの運転周波数を下げる制御をおこなう。
 エンジン駆動圧縮機201Bの運転周波数を上げると、エンジン4の排熱量が増加し、エンジン排熱熱交換器212Bに供給される冷却水熱量も増加する。すなわち、エンジン排熱熱交換器212Bにて、より多くの冷媒を蒸発させることができ、室外熱交換器202Bに流す冷媒量を減らして、着霜の危険性を低減する。
 以上の説明から明らかなように、本実施の形態においては、暖房時には、室外ユニット2Aの室外熱交換器202Aにおいて蒸発させるべき冷媒の一部を、室外ユニット2Bの室外熱交換器202Bとエンジン排熱熱交換器212Bとで蒸発させる。なお、室外熱交換器202Bとエンジン排熱熱交換器212Bとで蒸発した冷媒は、非電源駆動圧縮機201Bに戻すとともに切換弁210Bを開として、低圧ガス管6を通して電源駆動圧縮機201Aにも戻す。
 よって、暖房運転時において、室外ユニット2Aの室外熱交換器202Aに流れる冷媒量が減り、当該冷媒を蒸発させるための熱交換量が低減するため、室外熱交換器202Aにおける着霜を防止することができ、暖房能力を維持することが可能となる。
 また、室外ユニット2Aの室外熱交換器202Aにおける熱交換量が小さくなる、あるいは無くすことにより、室外送風ファン212Aの回転数を小さく、もしくはゼロとすることができる。よって、室外送風ファン212Aの消費電力を抑え、空気調和装置全体の効率を向上させることが可能となる。
 また、暖房運転と冷房運転の混在運転を行う場合、例えば、室内ユニット3A、3Bを暖房運転し、室内ユニット3Cを冷房運転する場合、室外ユニット2A、2Bが上記同時暖房運転の場合と同様に制御される一方、室内ユニット3A、3Bにおいては、第1開閉弁13が開き、第2開閉弁14が閉じ、室内ユニット3Cにおいては、第1開閉弁13が閉じ、第2開閉弁14が開く。この場合、各室外ユニット2A、2Bから高温高圧のガス冷媒が高圧ガス管7に供給され、室内ユニット3A、3Bにおいては、高圧ガス管7を介してガス冷媒が室内熱交換器10に供給され、ここで室内ファン15によって送風される空気と熱交換、凝縮して液冷媒となった後、膨張弁11を介して液管8に供給される。この液管8に供給された液冷媒の一部は室外ユニット2A、2Bへ戻り、室外熱交換器202A、202Bで室外ファン212A、212Bによって送風される空気と熱交換、蒸発し、低温低圧のガス冷媒となる。
 一方、液管8に供給された液冷媒の残りは、室内ユニット3Cの膨張弁11を介して室内熱交換器10に供給され、ここで室内ファン15によって送風される空気と熱交換、蒸発し、低温低圧のガス冷媒となった後、第2開閉弁14を介して低圧ガス管6に供給される。そして、この低圧ガス管6に供給された冷媒は、室外熱交換器202A、202Bを経た上記ガス冷媒と共に、吸込管30を介して圧縮機201A、201Bで再び圧縮される。これによって、室内ユニット3A、3Bで暖房運転、室内ユニット3Cで冷房運転を行うことが可能になる。
 なお、この場合にも室外ユニット2Aおよび2Bは上記同時暖房運転の場合と同様に制御されるため、低外気温等、例えば電源駆動圧縮機201Aが最高回転数で駆動されるような状況が生じた場合、室外ユニット2Aの室外熱交換器202Aの着霜を回避するための制御が行われる。
 本発明は、暖房運転時に、能力を維持して連続運転が可能な空気調和装置として好適に利用することができる。
 1 空気調和装置
 2A 電源駆動室外ユニット
 2B 非電源駆動室外ユニット
 3A、3B、3C 室内ユニット
 4 エンジン
 5 ユニット配管
 6 低圧ガス管
 7 高圧ガス管
 8 液管
 201A 電源駆動圧縮機
 201B 非電源駆動圧縮機
 202A、202B 室外熱交換器
 203A、203B 室外膨張弁
 212B エンジン排熱熱交換器

Claims (2)

  1.  圧縮機、室外熱交換器及び室外膨張弁を備えた複数台の室外ユニットと、室内熱交換器及び室内膨張弁を備えた複数台の室内ユニットとがユニット間配管により接続され、前記室外熱交換器の一端が、圧縮機の冷媒吐出管と冷媒吸込管とに択一に分岐して接続され、前記ユニット間配管が、前記冷媒吐出管に接続された高圧ガス管と、前記冷媒吸込管に接続された低圧ガス管と、前記室外熱交換器の他端に接続された液管とを有して構成され、室内熱交換器の一端が前記高圧ガス管及び前記低圧ガス管に、それぞれ高圧ガス分岐管及び低圧ガス分岐管を介して接続され、他端が前記液管に液分岐管を介して接続され、前記高圧ガス分岐管及び前記低圧ガス分岐管にそれぞれ開閉弁が設けられ、複数台の前記室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、これらの冷房運転と暖房運転を混在して実施可能とするよう構成された空気調和装置において、前記複数台の室外ユニットは、電力により駆動される電源駆動圧縮機が搭載された室外ユニットと、電力以外の駆動源により駆動される非電源駆動圧縮機が搭載された室外ユニットと、を少なくとも1台ずつ含むこと、を特徴とする空気調和装置。
  2.  前記非電源駆動圧縮機の排除容積は、前記電源駆動圧縮機の排除容積よりも大きいことを特徴とする請求項1記載の空気調和装置。
PCT/JP2015/000580 2014-02-14 2015-02-09 空気調和装置 WO2015122171A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015562734A JP6296364B2 (ja) 2014-02-14 2015-02-09 空気調和装置
DE112015000790.3T DE112015000790B4 (de) 2014-02-14 2015-02-09 Klimatisierungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014026967 2014-02-14
JP2014-026967 2014-02-14

Publications (1)

Publication Number Publication Date
WO2015122171A1 true WO2015122171A1 (ja) 2015-08-20

Family

ID=53799922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000580 WO2015122171A1 (ja) 2014-02-14 2015-02-09 空気調和装置

Country Status (3)

Country Link
JP (1) JP6296364B2 (ja)
DE (1) DE112015000790B4 (ja)
WO (1) WO2015122171A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157117A (zh) * 2015-10-20 2015-12-16 珠海格力电器股份有限公司 一种空调系统及其控制方法
EP3182037A1 (en) * 2015-12-14 2017-06-21 Panasonic Intellectual Property Management Co., Ltd. Air conditioner
WO2018079517A1 (ja) * 2016-10-31 2018-05-03 パナソニックIpマネジメント株式会社 空気調和装置
CN110779113A (zh) * 2018-07-30 2020-02-11 松下知识产权经营株式会社 空气调节装置
KR20220144201A (ko) * 2021-04-19 2022-10-26 엘지전자 주식회사 공기조화기의 제어방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109708216A (zh) * 2018-12-06 2019-05-03 珠海格力电器股份有限公司 模块化多联机空调系统及其控制方法
KR102409975B1 (ko) * 2020-09-07 2022-06-15 엘지전자 주식회사 공기조화기
KR102407648B1 (ko) * 2020-09-07 2022-06-10 엘지전자 주식회사 공기조화기
KR102405709B1 (ko) * 2020-09-07 2022-06-03 엘지전자 주식회사 공기조화기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201220A (ja) * 1992-12-29 1994-07-19 Yanmar Diesel Engine Co Ltd 冷暖房混在型エンジン駆動ヒートポンプシステム
JPH07225067A (ja) * 1994-02-15 1995-08-22 Sanyo Electric Co Ltd 空気調和装置
JP2002168539A (ja) * 2000-12-01 2002-06-14 Tokyo Gas Co Ltd マルチ形空調装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201220A (ja) * 1992-12-29 1994-07-19 Yanmar Diesel Engine Co Ltd 冷暖房混在型エンジン駆動ヒートポンプシステム
JPH07225067A (ja) * 1994-02-15 1995-08-22 Sanyo Electric Co Ltd 空気調和装置
JP2002168539A (ja) * 2000-12-01 2002-06-14 Tokyo Gas Co Ltd マルチ形空調装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105157117A (zh) * 2015-10-20 2015-12-16 珠海格力电器股份有限公司 一种空调系统及其控制方法
CN105157117B (zh) * 2015-10-20 2018-10-26 珠海格力电器股份有限公司 一种空调系统及其控制方法
EP3182037A1 (en) * 2015-12-14 2017-06-21 Panasonic Intellectual Property Management Co., Ltd. Air conditioner
WO2018079517A1 (ja) * 2016-10-31 2018-05-03 パナソニックIpマネジメント株式会社 空気調和装置
GB2570817A (en) * 2016-10-31 2019-08-07 Panasonic Ip Man Co Ltd Air conditioning apparatus
GB2570817B (en) * 2016-10-31 2021-03-24 Panasonic Ip Man Co Ltd Air conditioning apparatus
CN110779113A (zh) * 2018-07-30 2020-02-11 松下知识产权经营株式会社 空气调节装置
KR20220144201A (ko) * 2021-04-19 2022-10-26 엘지전자 주식회사 공기조화기의 제어방법
KR102465072B1 (ko) * 2021-04-19 2022-11-09 엘지전자 주식회사 공기조화기의 제어방법

Also Published As

Publication number Publication date
DE112015000790B4 (de) 2022-10-20
JPWO2015122171A1 (ja) 2017-03-30
DE112015000790T5 (de) 2016-11-03
JP6296364B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
JP6296364B2 (ja) 空気調和装置
US9958175B2 (en) Air-conditioning apparatus
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
WO2010131335A1 (ja) 空気調和装置
WO2006013834A1 (ja) 冷凍装置
JP6283815B2 (ja) 空気調和機
US20150369498A1 (en) Air-conditioning apparatus
WO2014122922A1 (ja) 暖房システム
JP2008157557A (ja) 空気調和装置
JP2006071137A (ja) 冷凍装置
EP3690356A1 (en) Refrigeration cycle device
KR20180019042A (ko) 히트 펌프형 냉동 시스템
JP6123289B2 (ja) 空気調和システム
JP6640695B2 (ja) 冷暖房機能付きヒートポンプ給湯機
WO2016001958A1 (ja) 空気調和装置
JP6672619B2 (ja) 空調システム
JP2007183045A (ja) ヒートポンプ式冷暖房装置
US20210048216A1 (en) Air-conditioning apparatus
JP6675961B2 (ja) 冷房機能付きヒートポンプ給湯機
JP2017009269A5 (ja)
JP2017166773A (ja) ヒートポンプ式冷温水供給システム
CN107178932A (zh) 一种超远距离输送制冷剂的高能效多联式空调机组
JP5465491B2 (ja) 空気調和装置
JP6745895B2 (ja) 空調システム
CN105556219A (zh) 制冷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748861

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562734

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015000790

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748861

Country of ref document: EP

Kind code of ref document: A1