WO2015121995A1 - Electronic-apparatus cooling device and control method therefor - Google Patents

Electronic-apparatus cooling device and control method therefor Download PDF

Info

Publication number
WO2015121995A1
WO2015121995A1 PCT/JP2014/053564 JP2014053564W WO2015121995A1 WO 2015121995 A1 WO2015121995 A1 WO 2015121995A1 JP 2014053564 W JP2014053564 W JP 2014053564W WO 2015121995 A1 WO2015121995 A1 WO 2015121995A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
electronic device
door
inlet
target
Prior art date
Application number
PCT/JP2014/053564
Other languages
French (fr)
Japanese (ja)
Inventor
陽子 國眼
繁裕 椿
佐々木 重幸
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/053564 priority Critical patent/WO2015121995A1/en
Publication of WO2015121995A1 publication Critical patent/WO2015121995A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20754Air circulating in closed loop within cabinets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20818Liquid cooling with phase change within cabinets for removing heat from server blades

Definitions

  • the present invention relates to an electronic device cooling apparatus and a control method thereof.
  • a server is placed in a dedicated room and is operated while being cooled by an air conditioner installed in the room.
  • an apparatus equipped with an electronic device such as an integrated circuit is required to be cooled because the operation of the device may become unstable and malfunction may occur when the temperature of the electronic device rises due to heat generation.
  • the cooling chamber in which the electronic device is installed may be opened for maintenance during cooling of the electronic device in the room. For example, when an outside air temperature is 35 ° C. and a cooling chamber that is cooling an electronic device to a target set temperature 25 ° C. is opened, the refrigerant in the refrigeration cycle becomes unstable, and the liquefied refrigerant may enter the compressor.
  • the compressor makes the target set temperature 25 ° C. almost at the outside air temperature of 35 ° C., so that the rotation speed is greatly increased. Thereafter, when the door of the cooling chamber that houses the electronic device is closed, the door of the cooling chamber that houses the electronic device is closed while the rotational speed of the compressor is increased.
  • the compressor since the compressor is operated in a state where the outside air temperature is 35 ° C. and the target set temperature is 25 ° C., the compressor can reduce the rotation speed to the operation state in which the cooling chamber for housing the electronic device is cooled. When the rotation speed of the compressor is decreased, the opening degree of the expansion valve is changed.
  • Patent Document 1 as a method for improving the influence of outside air when the door of the cooling chamber is opened, an air curtain is configured using a part of the cooling air when the door is opened, and the cooling air in the housing is opened when the door is opened. And the ambient air of the apparatus are prevented from mixing and the heat exchange inside and outside the housing is blocked.
  • the apparatus of Patent Document 1 is not equipped with a refrigeration cycle.
  • the compressor follows the outside air environment, the outside air rotates at high speed when it is hot, and the object to be cooled is cooled too much when the door is closed, or It does not give a solution to the problem that the outside air rotates at low speed when the temperature is low and the object to be cooled becomes too warm when the door is closed. Moreover, the problem that the liquefied refrigerant enters the compressor when the door is opened and closed is still unsolved.
  • the present invention has been made to solve the above-mentioned conventional technical problems, and an object thereof is to provide an electronic device cooling apparatus having a high reliability in cooling performance and a control method therefor regardless of opening of the door.
  • the compressor, the condenser, the decompression unit, and the evaporator constituting the refrigeration cycle for cooling the electronic device are connected by a pipe through which the refrigerant flows, and are provided in the storage chamber.
  • An electronic device cooling apparatus in which an electronic device is cooled with air cooled by the evaporator, a door that opens and closes the storage chamber, door open / close detection means that detects opening and closing of the door, and an evaporator inlet
  • a target superheat degree which is a control target value of the superheat degree obtained by subtracting the refrigerant temperature at the evaporator outlet from the refrigerant temperature at the evaporator outlet, is set before the door is closed. It has been changed to a higher value than the target degree of superheat.
  • an electronic device cooling apparatus in which a compressor, a condenser, a decompression unit, and an evaporator constituting a refrigeration cycle for cooling an electronic device are connected by a pipe through which a refrigerant flows and provided in a storage chamber.
  • An electronic device cooling apparatus in which the device is cooled by air cooled by the evaporator, wherein the storage chamber is opened / closed, door opening / closing detection means for detecting opening / closing of the door, and outside air temperature is detected.
  • An outside air temperature detecting means an inlet air temperature detecting means for detecting an inlet air temperature that is a temperature at which air for cooling the electronic device starts to hit the electronic device, and a control means for controlling the cooling
  • the control means is configured such that the outside air temperature is a target electronic equipment inlet temperature that is a control target value of the inlet temperature when the door is closed.
  • the target electronic device inlet temperature when the door is opened is changed to be higher than the target electronic device inlet temperature when the door is closed, and the outside air temperature is closed. If the target electronic device inlet temperature is lower than the target electronic device inlet temperature when the door is opened, the target electronic device inlet temperature when the door is closed is changed to be lower than the target electronic device inlet temperature when the door is closed. Yes.
  • a compressor, a condenser, a decompression unit, and an evaporator constituting a refrigeration cycle for cooling an electronic device are connected by a pipe through which a refrigerant flows,
  • An electronic device provided is cooled by air cooled by the evaporator, the door for opening and closing the storage chamber, door opening / closing detection means for detecting opening / closing of the door, and an inlet for detecting refrigerant temperature at the inlet of the evaporator
  • a method for controlling an electronic device cooling apparatus comprising temperature detecting means, outlet temperature detecting means for detecting a refrigerant temperature at an evaporator outlet, and control means for controlling the cooling, when the door is opened,
  • the target superheat degree which is a control target value of the superheat degree obtained by subtracting the refrigerant temperature at the evaporator inlet from the refrigerant temperature at the evaporator outlet, is changed to a value higher than the target superheat degree when
  • the perspective view which shows the structure of the electronic device cooling device of the modification 2 of embodiment of this invention. Sectional drawing which looked at the state at the time of the cooling operation which closed the front side door and the back side door of the electronic device cooling device of the modification 2 from upper direction.
  • the flowchart which shows the basic control at the time of the door opening in the cooling operation of an electronic device cooling device.
  • the flowchart which shows the control which resets only a target superheat degree in control at the time of the door opening in the cooling operation of an electronic device cooling device.
  • the flowchart which shows the control which resets the superheat degree at the time of the door opening in the cooling operation of the electronic device cooling device in the external temperature of 35 degreeC, and a server inlet temperature.
  • the flowchart which shows the control which resets the superheat degree at the time of the door opening in the cooling operation of the electronic device cooling device in the external temperature of 15 degreeC, and a server inlet temperature.
  • FIG. 1 is a perspective view showing a configuration of an electronic device cooling apparatus according to an embodiment of the present invention, and shows a state where a front door and a rear door are opened.
  • FIG. 2 is a cross-sectional view of the electronic device cooling apparatus during the cooling operation in which the front door and the rear door of FIG. 1 are closed as viewed from the left side from the front.
  • the arrow a1 in FIG. 2 indicates the flow of air circulating in the storage chamber 5, and the arrow a2 indicates the flow of air passing through the heat dissipation and machine chamber 6.
  • the electronic device cooling apparatus R of the embodiment is an apparatus for cooling the server 8 that generates heat during operation to a desired temperature. Therefore, the electronic device cooling apparatus R includes the following refrigeration cycle for cooling the server 8.
  • the refrigerant flowing through the pipe h (see FIG. 2) is compressed to a high temperature and a high pressure, and the refrigerant discharged from the compressor 9 is condensed to exchange heat with indoor air to condense heat.
  • the electronic device cooling device R is disposed in the upper stage, the storage chamber 5 for storing the server 8, the evaporator 12, and the like, and the heat dissipation and machine in the lower stage, in which the condenser 10, the compressor 9, the expansion valve 11 and the like are stored.
  • the room 6 is divided into two parts in the vertical direction.
  • the upper storage chamber 5 is sealed from another chamber so that heat does not enter and exit in order to cool the server 8 to a desired temperature.
  • the compressor 9, the condenser 10, the expansion valve 11, and the evaporator 12 in the storage chamber 5 of the heat radiation and machine room 6 are sequentially connected by the refrigerant pipe h, The refrigeration cycle is formed.
  • the refrigerant that has been pressurized by the compressor 9 to become a high-temperature and high-pressure gas is sent to the condenser 10.
  • the refrigerant sent to the condenser 10 dissipates heat to the outside air in the process of passing through the condenser 10, and changes in phase from a gas to a two-phase state and to a liquid.
  • the refrigerant passes through the expansion valve 11 and is depressurized to be in a low-pressure two-phase state.
  • the refrigerant that has become a low-pressure two-phase state then absorbs heat from the air in the storage chamber 5 in the process of passing through the evaporator 12, and again changes from the two-phase state to a gas and is returned to the compressor 9. .
  • a casing k that forms the outer shell of the electronic device cooling device R includes a box-shaped cabinet 1, a front door 2, a rear door 3, and the like. As described above, the casing k of the electronic device cooling device R is divided into the upper storage chamber 5 and the lower machine chamber 6 and is divided into two.
  • a condenser 10 for radiating heat and a condenser fan 13 are arranged, and a compressor 9 and an expansion valve 11 of machinery are arranged.
  • Openings 16a and 16b are respectively provided at locations facing the heat radiation and machine room 6 of the front side door 2 and the back side door 3, respectively. Through the openings 16a and 16b, the air that has absorbed the heat of the condenser 10 in the heat radiating and machine room 6 and the air that has absorbed the heat of the compressor 9 can be circulated with the surrounding air (room air).
  • a condenser fan 13 is disposed upstream of the air flow passing through the heat radiation and machine room 6 indicated by an arrow a2 in FIG. 2, and a condenser 10 and a compressor 9 are disposed downstream thereof.
  • the condenser fan 13 allows outside air (indoor air) to flow in from the opening 16 a provided in the front door 2, and heat exchange between the outside air and the condenser 10 or the compressor 9 causes the condenser 10 and the compressor 9 to be exchanged. Promotes the release of heat to the outside air. In this way, the air that has absorbed the heat of the condenser 10 and the compressor 9 is discharged to the outside through the opening 16 b provided in the rear door 3.
  • the compressor 9 is a variable capacity compressor capable of capacity control.
  • a compressor a piston type, a rotary type, a scroll type, a screw type, or a centrifugal type can be adopted.
  • the compressor 9 is a scroll type compressor, capacity control is possible by inverter control, and the rotational speed is variable from low speed to high speed.
  • the expansion valve 11 may be a small-diameter tube, and other than the expansion valve 11 may be used as long as the pressure reducing means.
  • FIG. 2 shows a case where a plurality of servers 8 are stacked and arranged, a single server 8 may be arranged in a part of the storage room 5.
  • Each server 8 is provided with a blower 15, and the heat generating components inside the server 8 are cooled by circulating the air that is cooled by the evaporator 12 and circulated in the storage chamber 5.
  • the evaporator 12 that cools the air (cooling air) heated by the heat of the server 8 and the heated air pass through the evaporator 12. And a door fan 14 for suction.
  • the evaporator 12 circulates in the storage chamber 5 and cools the air heated by the server 8 by heat exchange.
  • the upper and lower ducts 4 a and 4 b are provided in the flow path 2 r passing through the front door 2 and the rear door 3. And a flow path 3r passing through the back side door 3 is connected to form an air path.
  • a baffle plate that expands the area of air contact with at least some of the air passages of the upper and lower ducts 4a and 4b, the flow path 2r of the front door 2, and the flow path 3r of the rear door 3. It is preferable to provide a member that promotes condensation. Alternatively, it is more preferable that a part of the air passages is cooled with water or the like, so that condensation on the air passages is promoted and adhesion of moisture to the server 8 is further suppressed.
  • the bottom plate of the evaporator 12 is provided with a drain pan (not shown) that receives condensed water that is condensed by water contained in the air that has cooled the server 8 in the evaporator 12.
  • the condensed water received by the drain pan is guided to a water storage tank (not shown) disposed in the heat radiating and machine room 6.
  • the electronic device cooling apparatus R hits the outside air temperature sensor 202 that detects the temperature of outside air as a sensor that detects the air temperature, and the server 8 that cools the server 8 in the storage chamber 5.
  • a temperature sensor 201 that detects an intake air temperature that is a starting temperature.
  • sensors for detecting the refrigerant temperature of the refrigeration cycle a temperature sensor 203 for detecting the evaporator (12) inlet temperature and a temperature sensor 204 for detecting the evaporator (12) outlet temperature are provided.
  • FIG. 3 is a block diagram illustrating control of the control device.
  • the electronic device cooling device R is a control device that adjusts the rotation speed (number of rotations) of the compressor 9, the condenser fan 13, and the door fan 14 and the opening degree of the expansion valve 11 based on the temperatures detected by the above-described sensors. 200.
  • the control device 200 is constituted by a microcomputer, a peripheral circuit, etc., and temperature data detected by each of the temperature sensors described above is input to the control device, and control is performed. Note that at least a part of the microcomputer of the control device may be configured by a circuit as long as predetermined control is performed.
  • the control device 200 includes information on the inlet temperature for cooling the server 8 detected by the temperature sensor 201, information on the outside temperature detected by the outside temperature sensor 202, and information on the inlet temperature of the evaporator 12 detected by the temperature sensor 203.
  • the control device 200 performs an operation according to the input information, the target superheat degree of the evaporator 12, the target server inlet temperature (target electronic equipment inlet temperature), the opening degree of the expansion valve 11, the rotational speed of the compressor 9, Information such as the rotational speed of the condenser fan 13 is output.
  • the target superheat degree is a control target value of (exit temperature ⁇ inlet temperature) of the evaporator 12.
  • the target server inlet temperature is a control target value of the inlet temperature that cools the server 8 detected by the temperature sensor 201.
  • the peripheral circuit of the control device 200 is configured so that the opening degree of the expansion valve 11 and the rotation speed of the compressor 9 are adjusted so that the target superheat degree and the target server intake air temperature are reached by the digital signal of each information of the calculation result in the control device 200.
  • the rotational speed of the condenser fan 13 is controlled.
  • the air cooled by the evaporator 12 flows through the flow path 2r of the front door 2 through the upper and lower ducts 4a and 4b, and is warmed by cooling the server 8.
  • the warmed air is cooled by the evaporator 12, moves to the flow path 2 r of the front door 2 through the upper and lower ducts 4 a and 4 b, and returns to the windward side of the server 8 again.
  • the structure which incorporates the evaporator 12 and the door fan 14 may be sufficient.
  • the door fan 14 is disposed upstream of the cooling air from the evaporator 12.
  • a side plate of the electronic device cooling device R or a door that can be opened and closed is installed, and the evaporator 12 and the door fan 14 are installed on the side plate or the side door. Also good.
  • FIG. 4 is a perspective view illustrating a configuration of the electronic device cooling apparatus according to the first modification of the embodiment, and illustrates a state in which the front door and the rear door are opened.
  • FIG. 5 is a cross-sectional view of the electronic device cooling apparatus during the cooling operation in which the front door and the rear door of the first modification are closed as viewed from the left side from the front.
  • An arrow a1 in FIG. 5 indicates the flow of air circulating in the storage chamber 5
  • an arrow a2 indicates the flow of air passing through the heat dissipation chamber 7.
  • the electronic device cooling device 2R of Modification 1 has a three-layer structure in the vertical direction from top to bottom and has two refrigeration cycles. .
  • the electronic device cooling apparatus 2R has two refrigeration cycles, a first refrigeration cycle and a second refrigeration cycle, the first refrigeration cycle is disposed on the front side, and the second refrigeration cycle is disposed on the back side.
  • Other configurations are the same as those of the electronic device cooling apparatus R of the first embodiment.
  • the electronic device cooling device 2R includes a storage chamber 5 that is disposed in the middle stage and accommodates the server 8, the evaporators 12a and 12b, a heat radiation chamber 7 that is disposed in the upper stage and accommodates the condensers 10a and 10b, and is compressed in the lower stage. It is divided into a machine room 6 in which the machines 9a and 9b, the expansion valves 11a and 11b and the like are accommodated, and has a three-layer structure divided into three in the vertical direction.
  • the storage chamber 5 is sealed from another chamber so that heat does not enter and exit in order to cool the server 8 to a desired temperature.
  • Openings 16a and 16b are respectively provided at locations facing the heat radiation chamber 7 and the machine room 6 of the front door 2 and the rear door 3, respectively. Through the openings 16a and 16b, the air that has absorbed the heat of the condenser 10 in the heat radiating chamber 7 and the air that has absorbed the heat of the compressor 9 in the machine chamber 6 can be circulated with ambient air (indoor air). Has been.
  • a first door fan 14 a and a first evaporator 12 a are installed in the flow path 2 r of the front door 2 of the storage chamber 5, and the rear surface of the storage chamber 5
  • a second evaporator 12 b and a second door fan 14 b are installed in the flow path 3 r of the side door 3.
  • a first condenser 10a and a first condenser fan 13a are arranged on the front side, and a second condenser 10b and a second condenser fan are arranged on the rear side. 13b.
  • a first compressor 9a and a first expansion valve 11a are disposed on the front side, and a second compressor 9b and a second expansion valve 11b are disposed on the back side. Is arranged.
  • the first compressor 9a in the machine room 6 the first condenser 10a in the heat radiating room 7, and the first expansion valve 11a in the machine room 6 are used.
  • the first evaporator 12a of the storage chamber 5 is sequentially connected by the refrigerant pipe ha.
  • the second compressor 9b in the machine chamber 6 As the second refrigeration cycle, on the back side of the electronic device cooling device 2R, the second compressor 9b in the machine chamber 6, the second condenser 10b in the heat radiating chamber 7, the second expansion valve 11b in the machine chamber 6, and storage
  • the second evaporator 12b of the chamber 5 is sequentially connected by the refrigerant pipe hb.
  • the electronic device cooling device 2R detects the outside air temperature sensor 202 that detects the temperature of the outside air as a sensor that detects the air temperature, and the temperature of the air entering the server 8 for cooling the server 8 in the storage chamber 5.
  • the temperature sensor 201 is provided.
  • Each of the sensors 204a is provided.
  • the electronic device cooling device 2R is based on the temperatures detected by the sensors described above, and the first and second compressors 9a and 9b, the first and second condenser fans 13a and 13b, and the first and second compressors.
  • a control device (not shown) is provided for adjusting the rotational speed (number of rotations) of the door fans 14a and 14b and the opening degrees of the first and second expansion valves 11a and 11b. The control device performs the same control as the control device 200 of the first embodiment.
  • the air that cools the server 8 includes the first door fan 14a, the first evaporator 12a, the server 8, the second evaporator 12b, the second door fan 14b, the upper and lower ducts 4a, 4b,
  • the server 8 is cooled by circulating to the first door fan 14a.
  • the electronic device cooling apparatus 2R the case where two refrigeration cycles are provided on the front side and the back side is illustrated, but the two refrigeration cycles are replaced with a front side and a back side, and a right side portion and a left side portion are provided. May be provided.
  • FIG. 6 shows an electronic device cooling device provided with one refrigeration cycle on the back side
  • FIG. 7 shows an electronic device cooling device 2R2 provided with one refrigeration cycle on the side portion side.
  • FIG. 8 is a perspective view showing the configuration of the electronic device cooling apparatus of Modification 2 of the embodiment of the present invention, and shows a state in which the front door is opened.
  • FIG. 9 is sectional drawing which looked at the state at the time of the cooling operation which closed the front side door and the back side door of the electronic device cooling device of the modification 2 from upper direction.
  • the arrow b1 in FIGS. 8 and 9 indicates the flow of air circulating in the storage chamber 35, and the arrow b2 in FIG. 8 indicates the flow of air passing through the heat dissipation chamber 7.
  • the electronic device cooling device 3R of the second modified example horizontally moves the air that cools the server 8 in the storage chamber 35 (see the broken line arrow b1 in FIGS. 8 and 9). It is configured to circulate.
  • Other configurations of the electronic device cooling apparatus 3R of the third embodiment are the same as those of the electronic apparatus cooling device R of the first embodiment.
  • the electronic device cooling device 3R of Modification 2 is arranged in the middle stage, the storage chamber 35 in which the server 8, the evaporator 32, and the like are housed, and the condenser 10 in the upper stage.
  • the condenser 10 in the upper stage.
  • a heat radiating chamber 7 in which the components are stored and a machine chamber 6 in which the compressor 9, the expansion valve 11 and the like are disposed in the lower stage and are divided into three parts in the vertical direction.
  • the upper radiating chamber 7 is provided with a condenser 10 constituting a refrigeration cycle and a condenser fan 13 for sucking outside air and radiating heat of the condenser fan 13.
  • a compressor 9 and an expansion valve 11 are arranged in the lower machine chamber 6.
  • the evaporator 32 and the door fan 34 are arranged so that air for cooling the server 8 circulates in the horizontal direction (see arrow b1 in FIG. 9). Is installed on the side plate kd1.
  • the compressor 9 in the machine room 6, the condenser 10 in the heat radiating room 7, the expansion valve 11 in the machine room 6, and the evaporator 32 in the storage room 35 are sequentially connected by the refrigerant pipe h3 (see FIG. 8), and the refrigeration cycle is performed. Forming.
  • the electronic device cooling device 3R since air for cooling the server 8 circulates in the horizontal direction, upper and lower ducts 4a and 4b provided above and below the server 8 in the storage chamber 35 (see FIGS. 1 and 2). ) Is not necessary.
  • the evaporator 32 is disposed on the side plate kd1, and therefore the evaporator 10 installed in the condenser 10 in the heat radiating chamber 7 and the side plate kd1 in the storage chamber 35.
  • the door fan 34, the compressor 9 and the expansion valve 11 in the machine room 6, and the refrigerant pipe h3 can be provided as one replaceable part P having a U-shape when viewed from the front or the rear.
  • the electronic device cooling device 3R even when the front door 2 or the rear door 3 is opened, the evaporator 32 is disposed on the side plate kd1 on the side, so that the evaporator 32 serves as the heat source server 8. Therefore, the influence on the cooling performance of the server 8 can be reduced as much as possible.
  • the evaporator 32 is installed on the side plate kd1 on the side and the front side. Since it is not installed on the side door 2 or the back side door 3, the condensed water adhering to the evaporator 32 jumps to the place where the air that cools the server 8 enters the server 8 by opening and closing the front side door 2 or the back side door 3. Hateful. Therefore, it is possible to suppress the condensed water from adhering to the server 8.
  • the vertical space of the server 8 can be increased, and the server 8 can be expanded (stacked) in the vertical direction. .
  • the refrigeration cycle is two refrigeration cycles, a first refrigeration cycle and a second refrigeration cycle, and as shown by a two-dot chain line in FIG.
  • the first evaporator 32a and the second evaporator 32b may be installed in the storage chamber 35.
  • the control feature of the electronic device cooling device R is that the cooling operation of the electronic device cooling device R is not performed when the front door 2 or the rear door 3 is closed while the server 8 is being cooled in the storage room. It suppresses becoming stable.
  • the target superheat degree that is the control target value or the target superheat degree and the input of the server 8 is triggered by the opening of the front door 2 or the rear door 3 while the server 8 is being cooled in the storage room.
  • Control for changing the target server intake air temperature, which is the target value of the air temperature is performed as follows.
  • the target superheat degree is a control target value of (exit temperature ⁇ inlet temperature) of the evaporator 12.
  • the outlet temperature of the evaporator 12 is detected by a temperature sensor 204 (see FIG. 2), and the inlet temperature of the evaporator 12 is detected by a temperature sensor 203.
  • the target server inlet temperature is a control target value of the inlet temperature for cooling the server 8 detected by the temperature sensor 201 (see FIG. 2).
  • the server 8 is controlled in the temperature in the outside air state.
  • the compressor 9 is controlled to achieve the target set temperature.
  • the target superheat degree of the target set value of the superheat degree is used for control when the front side door 2 or the rear side door 3 is opened while the inside of the storage chamber 5 is being cooled. And the target server inlet temperature of the target set value of the inlet temperature of the server 8 is changed.
  • the liquid refrigerant may return to the compressor 9.
  • the target superheat degree is increased from the set value when the front door 2 or the rear door 3 is closed. Thereby, it is suppressed that the liquid state refrigerant returns to the compressor 9.
  • the increase in the target superheat degree is made larger when the outside air temperature is low than when the outside air temperature is high. This is because the refrigerant is less likely to evaporate when the outside air temperature is low, and the liquid refrigerant is more likely to return to the compressor 9 than when the outside air temperature is high. Thereby, it can suppress effectively that the refrigerant
  • the evaporator 12 when the outside air temperature is high, the evaporator 12 is more likely to condense than when the outside air temperature is low. Therefore, it is desirable that the increase in the degree of superheat is lower than when the outside air temperature is low. is there. Therefore, the condensation of the evaporator 12 is effectively suppressed.
  • Table 1 shows a target that is a control target of the degree of superheat when the front door 2 or the rear door 3 is opened when the target server inlet temperature that is the target set temperature of the inlet of the server 8 is 25 ° C.
  • Table 1 shows a case where the target server inlet temperature is 25 ° C., and the amount of change in the target superheat degree shown in Table 1 may change depending on the target server inlet temperature.
  • the amount of change that is an increase in the target superheat degree is set larger than when the outside air temperature is higher than the target set temperature 25 ° C. .
  • the compressor 9 rotates too much when the outside air temperature is high, or the rotation is insufficient when the outside air temperature is low. It is necessary to suppress. Further, it is necessary to prevent the refrigerant in the liquid state from returning to the compressor 9 when the opened front side door 2 or back side door 3 is closed.
  • the target set value of the inlet temperature of the server 8 detected by the temperature sensor 201 that detects the inlet temperature of the air for cooling the server 8 in the storage room 5 (35) to the server 8 is set.
  • Table 2 shows the target server inlet temperature of the server when the front door 2 or the rear door 3 is opened when the target server inlet temperature, which is the target set temperature of the inlet of the server 8, is 25 ° C. An example of the amount of change is shown. Table 2 shows a case where the target server inlet temperature is 25 ° C., and the amount of change in the target server inlet temperature shown in Table 2 may vary depending on the target server inlet temperature.
  • the change amount of the target server intake air temperature is set to (outside air temperature ⁇ 25) / 2 following the change in the outside air temperature from 45 ° C. to 10 ° C.
  • the data of Table 1 and Table 2 are stored in a table or the like.
  • the data in Tables 1 and 2 is merely an example, and other data may be used.
  • FIG. 10 is a flowchart showing basic control when the door is opened in the cooling operation of the electronic device cooling apparatus.
  • the front and rear doors 2 and 3 are closed, and the normal cooling operation of the server 8 is performed in the storage chamber 5.
  • the change amount of the increase in the target superheat degree according to the outside air temperature is acquired from the information in Table 1 stored in a table or the like, added to the target superheat degree value of the initial value, and according to the outside air temperature Reset the target superheat. Further, the change amount of the target server intake temperature corresponding to the outside air temperature is acquired from the information in Table 2 stored in a table or the like, and added to the initial value of the target server inlet temperature, and the change is made according to the outside air temperature.
  • the target server inlet temperature is reset (S103).
  • the opening degree of the expansion valve 11 is calculated and obtained so as to achieve the reset target superheat degree.
  • the opening degree of the expansion valve 11 is narrowed.
  • the opening degree of the expansion valve 11 is widened.
  • the rotational speed of the compressor 9 and the rotational speed of the condenser fan 13 are calculated and obtained so as to reach the reset target server inlet temperature (S104).
  • the normal cooling operation shifts to the next operation. That is, the expansion valve 11 is controlled so as to obtain the opening degree obtained in S104, the compressor 9 is operated so as to obtain the rotational speed obtained in S104, and the condenser fan so as to obtain the rotational speed obtained in S104. 13 is operated (S105).
  • the degree of superheat is equal to the reset target degree of superheat (Yes in S107)
  • control device 200 performs control when the door of the electronic device cooling device R described below is opened.
  • FIG. 11 is a flowchart showing control for resetting only the target superheat degree in the control when the door is opened in the cooling operation of the electronic device cooling apparatus.
  • the front and rear doors 2 and 3 are closed, and the cooling operation of the server 8 is performed in the storage chamber 5.
  • the front door opening / closing detection sensor 205a detects that the front door 2 is opened
  • / or the back door opening / closing detection sensor 205b detects that the rear door 3 is opened (see FIG. 11).
  • the outside air temperature sensor 202 obtains the value of the outside air temperature of 35 ° C., the target superheat degree of 5 ° C. when the door (2, 3) as the control target is closed (initial value)
  • the server 8 The target server inlet temperature 25 ° C. when the door (2, 3), which is the target set temperature of the inlet temperature, is closed (initial value) is acquired (S202).
  • the amount of change from the target superheat degree of 5 ° C. corresponding to the target server inlet temperature value of 25 ° C. and the outside air temperature of 35 ° C. is the target server inlet temperature of 25 ° C. stored in a table or the like.
  • change amount 2 degreeC is acquired, change amount 2 degreeC is added to the value of the target superheat degree 5 degreeC of an initial value, and the target superheat degree 7 degreeC according to outside temperature is reset ( S203).
  • the opening degree of the expansion valve 11 is calculated so that the target superheat degree 7 ° C. reset in S203 is obtained (S204). Subsequently, from the normal cooling operation, the expansion valve 11 is moved to the opening calculated in S204, and the cooling operation is performed (S205).
  • the opening degree of the expansion valve 11 is adjusted so as to become the target superheat degree 7 ° C. (S209), and the process proceeds to S206.
  • the target superheat degree is set higher, the opening degree of the expansion valve 11 is narrowed.
  • the target superheat degree is set lower, the opening degree of the expansion valve 11 is widened.
  • the process proceeds to S206.
  • the rotational speed of the compressor 9 and the rotational speed of the condenser fan 13 satisfy the target server inlet temperature 25 ° C. (S210). Thereafter, the process proceeds to S206.
  • the above is control which resets only the target superheat degree in control at the time of door opening.
  • the target superheat degree and the target are set under the conditions that the outside air temperature is 35 ° C., the target server inlet temperature 25 ° C. and the target superheat degree 5 ° C. of the normal cooling operation in which the front door 2 and the rear door 3 are closed. This is control for resetting the server inlet temperature.
  • FIG. 12 is a flowchart showing control for resetting the degree of superheat and the server inlet temperature when the door is opened in the cooling operation of the electronic device cooling apparatus at an outside air temperature of 35 ° C. As shown in FIG. 2, during the normal cooling operation, the front and rear doors 2 and 3 are closed, and the server 8 is cooling in the storage chamber 5.
  • the outside air temperature value (35 ° C.) is acquired by the outside air temperature sensor 202, and the doors (2, 3), which are control targets in the state where the front and rear side doors 2, 3 are closed, are closed.
  • An air temperature value (25 ° C.) is acquired (S302).
  • the opening degree of the expansion valve 11 is calculated and obtained so that the reset target superheat degree becomes 7 ° C. Since the target superheat degree is 7 ° C. and 2 ° C. is higher than the initial value, the opening degree of the expansion valve 11 is narrowed. Further, the rotational speed of the compressor 9 and the rotational speed of the condenser fan 13 are increased so that the initial target server inlet temperature 25 ° C. becomes the reset target server inlet temperature 30 ° C. It is obtained by calculation (S304).
  • the normal cooling operation shifts to the next operation. That is, the opening of the expansion valve 11 is controlled to be narrowed so that the opening of the expansion valve 11 obtained in S304 is obtained. Further, the compressor 9 is operated so as to achieve the increased rotational speed determined in S304, and the condenser fan 13 is operated so as to achieve the rotational speed determined in S304 (S305). As a result, it is possible to prevent the compressor 9 from rotating excessively when returning to the normal cooling operation later, and the liquid refrigerant from entering the compressor 9. Subsequently, it is determined whether the front door 2 and / or the rear door 3 are opened (S306).
  • the opening degree of the expansion valve 11 is adjusted to be the target superheat degree 7 ° C. (S309).
  • the rotation speed of the compressor 9 and the rotation speed of the condenser fan 13 are determined based on the server inlet temperature.
  • the air temperature is adjusted to 30 ° C. (S310). Thereafter, the process proceeds to S306.
  • the process proceeds to S306.
  • the above is the degree of superheat when the door is opened under the conditions that the outside air temperature is 35 ° C., the target server inlet temperature 25 ° C. for the normal cooling operation in which the front and rear doors 2 and 3 are closed, and the target superheat degree 5 ° C. This is a control flow for resetting the inlet temperature.
  • FIG. 13 is a flowchart showing control for resetting the degree of superheat when the door is opened in the cooling operation of the electronic device cooling apparatus at an outside air temperature of 15 ° C., and the server inlet temperature.
  • the front and rear doors 2 and 3 are closed, and the normal cooling operation of the server 8 is performed in the storage chamber 5.
  • the outside air temperature sensor 202 obtains the outside air temperature value (15 ° C.), and the target superheat degree, which is a control target when the front and rear doors 2 and 3 are closed (initial value).
  • the value (5 ° C.) and the value (25 ° C.) of the target server inlet temperature when the door (2, 3), which is the target set temperature of the inlet temperature of the server 8, is closed (initial value) are acquired ( S402).
  • the opening degree of the expansion valve 11 is calculated and obtained so that the reset target superheat degree is 11 ° C. Since the target superheat degree is 11 ° C. and 6 ° C. is higher than the initial value, the opening degree of the expansion valve 11 is narrowed. Further, the rotational speed of the compressor 9 and the rotational speed of the condenser fan 13 are lowered so that the initial target server inlet temperature 25 ° C. becomes the reset target server inlet temperature 20 ° C. (S404).
  • the normal cooling operation shifts to the next operation. That is, the opening degree of the expansion valve 11 is controlled to be narrowed so as to be the opening degree of the expansion valve 11 obtained in S404. Further, the compressor 9 is operated so as to be the rotational speed obtained in S404, and the condenser fan 13 is operated so as to be the rotational speed obtained in S404 (S405). Thereby, insufficient rotation of the compressor 9 when returning to the normal cooling operation later and liquid refrigerant entering the compressor 9 are suppressed.
  • the opening degree of the expansion valve 11 is adjusted to become the target superheat degree 11 ° C. (S409).
  • the server intake air temperature is equal to the target server intake air temperature 20 ° C. (S408). .
  • the rotation speed of the compressor 9 and the rotation speed of the condenser fan 13 are the target server inlet temperature.
  • the server inlet temperature is adjusted to 20 ° C. (S410). Thereafter, the process proceeds to S406.
  • the process proceeds to S406.
  • the above is to reset the degree of superheat when the door of the electronic device cooling device R is opened and the server inlet temperature under the conditions of the server inlet air 15 ° C., the target server inlet temperature 25 ° C. of the normal cooling operation, and the target superheat degree 5 ° C. This is the flow of control.
  • the return of the refrigerant in the liquid state to the compressor 9 is more likely to occur when the outside air temperature is lower than the target server inlet temperature, but the target superheat degree is determined by the outside air temperature being the target server inlet temperature. Since the lower case is set higher than the higher case, it is possible to more reliably prevent the liquid refrigerant from returning to the compressor 9. Therefore, the reliability of the compressor 9 and the reliability of the cooling performance of the electronic device cooling device R can be improved. In addition, condensation is more likely to occur when the outside temperature is higher than when the outside temperature is low, but the amount of increase in the target superheat degree is lower than when the outside temperature is low, so that condensation can be suppressed in advance.
  • the target server inlet temperature is changed to follow the outside air temperature so that it is close to the outside air temperature, so that the doors (2, 3) are opened. It is possible to prevent the storage room 5 from being overcooled when the outside air temperature is high when the outside air temperature is high after being closed and overheating of the storage room 5 when the outside air temperature is low.
  • the compressor 9 can be prevented from being rotated excessively, and the compressor 9 can be prevented from being damaged.
  • the opened front side door 2 and / or back side door 3 are closed, it is possible to promptly shift to a normal cooling operation when the door is closed. Therefore, damage to the blades caused by high-speed rotation of the compressor 9 can be suppressed, the reliability of the compressor 9 can be improved, and the operating life can be extended.
  • the target server inlet temperature is changed to follow the outside air temperature so as to be close to the outside air temperature, it is possible to suppress the liquid refrigerant from returning to the compressor 9 when the doors (2, 3) are closed. .
  • the rotation speed of the compressor 9 is changed to a higher value when the door is closed, and when the outside temperature is lower than the target server inlet temperature, the door is closed.
  • the rotation speed of the compressor 9 is changed to a low value.
  • the rotation speed of the compressor 9 when the door is closed is prevented from exceeding a predetermined rotation speed (first predetermined rotation speed), or the outside air temperature is the target.
  • first predetermined rotation speed the rotational speed of the compressor 9 when the door is closed
  • second predetermined rotational speed the rotational speed of the compressor 9 when the door is closed
  • the electronic device cooling device R (2R, 2R1, 2R2, 3R) has been described. It is also possible to provide a cooling housing in which the space of the room is arranged, or a cooling housing in which the space of the storage room for cooling is arranged in the upper stage, and the space of the heat radiating and machine room in which the heat radiating room and machinery are accommodated in the lower stage. Is possible.
  • a cooling housing is arranged in a space where a heat radiating chamber is provided in the upper stage and provided with a heat radiating part, a space storage room provided in the middle stage and provided with a cooling target and a cooling part for cooling the cooling target, and a lower stage. And a machine room in a space where the machinery is provided. Or it can be set as the structure provided with the cooling object and the cooling part which cools this cooling object arranged in the upper stage, and the heat radiation and machine room of the space arranged in the lower stage and provided with the heat dissipation part and machinery. As a result, it is possible to provide a cooling housing that is excellent in thermal characteristics, maintainability, and controllability.
  • the electronic apparatus cooling device R (2R, 2R1, 2R2, 3R) having a high reliability in cooling performance and its control method can be realized by the configuration described above, regardless of the opening of the door.
  • the present invention is not limited to the above-described embodiments and modifications, and includes various embodiments.
  • the above-described embodiments and modification examples are merely illustrative of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration described may be included.

Abstract

This electronic-apparatus cooling device (R) has a compressor (9), a condenser (10), a decompression means (11), and an evaporator (12) that constitute a refrigeration cycle for cooling an electronic apparatus (8) and are connected by pipes (h). The electronic apparatus (8) provided inside a housing chamber (5) is cooled by air cooled by the evaporator (12). The electronic-apparatus cooling device (R) comprises: doors (2, 3) that open and close the housing chamber (5); door open/close detection means (205a, 205b) that detect the opening and closing of the doors (2, 3); an inlet temperature detection means (203) that detects refrigerant temperature at an evaporator inlet; an outlet temperature detection means (204) that detects the refrigerant temperature at an evaporator outlet; and a control means (200) that controls the refrigerant. When the door open/close detection means (205a, 205b) detect that the doors (2, 3) have been opened, the control means (200) changes a target degree of superheating, being a control target value for the degree of superheating found by deducting the evaporator inlet refrigerant temperature from the evaporator outlet refrigerant temperature, to a value higher than the target superheating value for when the doors (2, 3) are closed.

Description

電子機器冷却装置およびその制御方法Electronic device cooling apparatus and control method thereof
 本発明は、電子機器冷却装置およびその制御方法に関する。 The present invention relates to an electronic device cooling apparatus and a control method thereof.
 従来、サーバは、専用の室内に載置して、室内に設置した空調機で冷却しつつ稼働させている。
 何故なら、集積回路等の電子機器を搭載する装置は、発熱により電子機器の温度が上昇すると動作が不安定になり不具合が発生する恐れがあるため、冷却が必要だからである。
Conventionally, a server is placed in a dedicated room and is operated while being cooled by an air conditioner installed in the room.
This is because an apparatus equipped with an electronic device such as an integrated circuit is required to be cooled because the operation of the device may become unstable and malfunction may occur when the temperature of the electronic device rises due to heat generation.
一方、熱効率を上げるため、電子機器を冷却室に収納して、冷凍サイクルなどで冷却室内の電子機器を所望の温度に冷却すべく制御する装置が出現している。 On the other hand, in order to increase thermal efficiency, an apparatus has emerged in which an electronic device is accommodated in a cooling chamber and controlled to cool the electronic device in the cooling chamber to a desired temperature by a refrigeration cycle or the like.
特開平08-316676号公報Japanese Patent Application Laid-Open No. 08-316676
 ところで、冷凍サイクルなどで冷却室内の電子機器を冷却する装置の場合、室内の電子機器の冷却中にメンテナンスなどのため、電子機器を設置した冷却室を開ける場合がある。
 例えば、外気温度35℃で、目標設定温度25℃に電子機器を冷却中の冷却室を開けた場合、冷凍サイクルの冷媒が不安定となり、圧縮機に液化した冷媒が入るおそれがある。
By the way, in the case of an apparatus that cools an electronic device in a cooling chamber by a refrigeration cycle or the like, the cooling chamber in which the electronic device is installed may be opened for maintenance during cooling of the electronic device in the room.
For example, when an outside air temperature is 35 ° C. and a cooling chamber that is cooling an electronic device to a target set temperature 25 ° C. is opened, the refrigerant in the refrigeration cycle becomes unstable, and the liquefied refrigerant may enter the compressor.
また、電子機器を収納する冷却室中に外気温度35℃の暖かい外気が入り込むため、圧縮機は、ほぼ外気温度35℃中で目標設定温度25℃にするため、回転速度を大きく上昇させる。その後、電子機器を収納する冷却室の扉を閉じた場合、圧縮機の回転速度が上昇したまま、電子機器を収納する冷却室の扉が閉じられることとなる。 Further, since warm outside air having an outside air temperature of 35 ° C. enters the cooling chamber that houses the electronic device, the compressor makes the target set temperature 25 ° C. almost at the outside air temperature of 35 ° C., so that the rotation speed is greatly increased. Thereafter, when the door of the cooling chamber that houses the electronic device is closed, the door of the cooling chamber that houses the electronic device is closed while the rotational speed of the compressor is increased.
 この場合、外気温度35℃中で目標設定温度25℃にする状態で圧縮機が運転されるため、圧縮機が、電子機器を収納する冷却室を冷却する運転の状態に回転速度を落とすには、圧縮機の回転速度を落としては、膨張弁の開度を変えるなどを繰り返す。 In this case, since the compressor is operated in a state where the outside air temperature is 35 ° C. and the target set temperature is 25 ° C., the compressor can reduce the rotation speed to the operation state in which the cooling chamber for housing the electronic device is cooled. When the rotation speed of the compressor is decreased, the opening degree of the expansion valve is changed.
 そのため、圧縮機の運転状態を電子機器を収納する冷却室の冷却状態に移行するには、時間を要する。例えば、圧縮機が、高速の回転速度での運転から、冷却室を冷却する回転速度に落とすのに、10分程度かかる場合がある。
 加えて、圧縮機に冷媒の液戻り現象が生じ、圧縮機の翼が損傷を受けるおそれがある。
Therefore, it takes time to shift the operation state of the compressor to the cooling state of the cooling chamber that houses the electronic device. For example, it may take about 10 minutes for the compressor to drop from the operation at a high rotational speed to the rotational speed for cooling the cooling chamber.
In addition, a refrigerant liquid return phenomenon occurs in the compressor, and the compressor blades may be damaged.
 特許文献1には、冷却室の扉を開けた場合の外気の影響を改善する方法として、ドア開放時には冷却空気の一部を用いてエアーカーテンを構成し、ドアの解放時に筐体内の冷却空気と装置の周囲空気とが混合するのを防ぎ、筐体内外の熱のやり取りを遮断する構成が記載されている。
 しかし、特許文献1の装置は、冷凍サイクルの搭載はない。
In Patent Document 1, as a method for improving the influence of outside air when the door of the cooling chamber is opened, an air curtain is configured using a part of the cooling air when the door is opened, and the cooling air in the housing is opened when the door is opened. And the ambient air of the apparatus are prevented from mixing and the heat exchange inside and outside the housing is blocked.
However, the apparatus of Patent Document 1 is not equipped with a refrigeration cycle.
 そのため、ドア開放時の冷凍サイクルを搭載した装置に特有の冷媒の液戻り現象や、圧縮機が外気環境に追随して外気が高温時に高速回転してドア閉塞時に冷却対象を冷し過ぎる、または、外気が低温時に低速回転してドア閉塞時に冷却対象を温め過ぎるという問題の解決策を与えるものではない。また、ドア開閉時に圧縮機に液化した冷媒が入るという問題も未解決である。 Therefore, the refrigerant return phenomenon peculiar to the device equipped with the refrigeration cycle when the door is opened, the compressor follows the outside air environment, the outside air rotates at high speed when it is hot, and the object to be cooled is cooled too much when the door is closed, or It does not give a solution to the problem that the outside air rotates at low speed when the temperature is low and the object to be cooled becomes too warm when the door is closed. Moreover, the problem that the liquefied refrigerant enters the compressor when the door is opened and closed is still unsolved.
 本発明は、上記従来の技術的課題を解決するためになされたものであり、扉の開放に拘らず、冷却性能の信頼性が高い電子機器冷却装置およびその制御方法の提供を目的とする。 The present invention has been made to solve the above-mentioned conventional technical problems, and an object thereof is to provide an electronic device cooling apparatus having a high reliability in cooling performance and a control method therefor regardless of opening of the door.
 請求項1の電子機器冷却装置は、電子機器を冷却するための冷凍サイクルを構成する圧縮機、凝縮器、減圧手段、および蒸発器が、冷媒が流れる配管により接続され、収納室内に設けられる前記電子機器が前記蒸発器で冷却された空気で冷却される電子機器冷却装置であって、前記収納室が開閉されるドアと、 前記ドアの開閉を検知するドア開閉検知手段と、蒸発器入口の冷媒温度を検知する入口温度検知手段と、蒸発器出口の冷媒温度を検知する出口温度検知手段と、前記冷却の制御を行う制御手段とを備え、前記制御手段は、前記ドア開閉検知手段により前記ドアの開放が検知された際、前記蒸発器出口の冷媒温度から前記蒸発器入口の冷媒温度を減算して求められる過熱度の制御目標値である目標過熱度を、前記ドアの閉塞時の前記目標過熱度より高い値に変更している。 In the electronic device cooling apparatus according to claim 1, the compressor, the condenser, the decompression unit, and the evaporator constituting the refrigeration cycle for cooling the electronic device are connected by a pipe through which the refrigerant flows, and are provided in the storage chamber. An electronic device cooling apparatus in which an electronic device is cooled with air cooled by the evaporator, a door that opens and closes the storage chamber, door open / close detection means that detects opening and closing of the door, and an evaporator inlet An inlet temperature detecting means for detecting a refrigerant temperature; an outlet temperature detecting means for detecting a refrigerant temperature at an evaporator outlet; and a control means for controlling the cooling. When opening of the door is detected, a target superheat degree, which is a control target value of the superheat degree obtained by subtracting the refrigerant temperature at the evaporator outlet from the refrigerant temperature at the evaporator outlet, is set before the door is closed. It has been changed to a higher value than the target degree of superheat.
 請求項7の電子機器冷却装置は、電子機器を冷却するための冷凍サイクルを構成する圧縮機、凝縮器、減圧手段、および蒸発器が、冷媒が流れる配管により接続され、収納室内に設けられる電子機器が前記蒸発器で冷却された空気で冷却される電子機器冷却装置であって、前記収納室が開閉されるドアと、前記ドアの開閉を検知するドア開閉検知手段と、外気温度を検出する外気温度検出手段と、前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段と、前記冷却の制御を行う制御手段とを備え、前記制御手段は、前記ドア開閉検知手段により前記ドアの開放を検知した際、前記外気温度が、前記ドアが閉じられた際の前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記ドアの開放時の前記目標電子機器入気温度を、前記ドアが閉じられた際の前記目標電子機器入気温度より高く変更し、前記外気温度が前記ドアが閉じられた際の前記目標電子機器入気温度より低い場合には、前記ドアの開放時の前記目標電子機器入気温度を、前記ドアが閉じられた際の前記目標電子機器入気温度より低く変更している。 According to a seventh aspect of the present invention, there is provided an electronic device cooling apparatus in which a compressor, a condenser, a decompression unit, and an evaporator constituting a refrigeration cycle for cooling an electronic device are connected by a pipe through which a refrigerant flows and provided in a storage chamber. An electronic device cooling apparatus in which the device is cooled by air cooled by the evaporator, wherein the storage chamber is opened / closed, door opening / closing detection means for detecting opening / closing of the door, and outside air temperature is detected. An outside air temperature detecting means, an inlet air temperature detecting means for detecting an inlet air temperature that is a temperature at which air for cooling the electronic device starts to hit the electronic device, and a control means for controlling the cooling, When the door opening / closing detecting means detects the opening of the door, the control means is configured such that the outside air temperature is a target electronic equipment inlet temperature that is a control target value of the inlet temperature when the door is closed. The target electronic device inlet temperature when the door is opened is changed to be higher than the target electronic device inlet temperature when the door is closed, and the outside air temperature is closed. If the target electronic device inlet temperature is lower than the target electronic device inlet temperature when the door is opened, the target electronic device inlet temperature when the door is closed is changed to be lower than the target electronic device inlet temperature when the door is closed. Yes.
 請求項8の電子機器冷却装置の制御方法は、電子機器を冷却するための冷凍サイクルを構成する圧縮機、凝縮器、減圧手段、および蒸発器が、冷媒が流れる配管により接続され、収納室内に設けられる電子機器が前記蒸発器で冷却された空気で冷却され、前記収納室が開閉されるドアと、前記ドアの開閉を検知するドア開閉検知手段と、蒸発器入口の冷媒温度を検知する入口温度検知手段と、蒸発器出口の冷媒温度を検知する出口温度検知手段と、前記冷却の制御を行う制御手段とを備える電子機器冷却装置の制御方法であって、前記ドアが開放された場合、前記蒸発器出口の冷媒温度から前記蒸発器入口の冷媒温度を減算して求められる過熱度の制御目標値である目標過熱度が、前記ドアの閉塞時の前記目標過熱度より高い値に変更されている。 According to a control method of an electronic device cooling apparatus of claim 8, a compressor, a condenser, a decompression unit, and an evaporator constituting a refrigeration cycle for cooling an electronic device are connected by a pipe through which a refrigerant flows, An electronic device provided is cooled by air cooled by the evaporator, the door for opening and closing the storage chamber, door opening / closing detection means for detecting opening / closing of the door, and an inlet for detecting refrigerant temperature at the inlet of the evaporator A method for controlling an electronic device cooling apparatus comprising temperature detecting means, outlet temperature detecting means for detecting a refrigerant temperature at an evaporator outlet, and control means for controlling the cooling, when the door is opened, The target superheat degree, which is a control target value of the superheat degree obtained by subtracting the refrigerant temperature at the evaporator inlet from the refrigerant temperature at the evaporator outlet, is changed to a value higher than the target superheat degree when the door is closed. There.
 本発明によれば、扉の開放に拘らず、冷却性能の信頼性が高い電子機器冷却装置およびその制御方法を実現できる。 According to the present invention, it is possible to realize an electronic device cooling apparatus with high reliability in cooling performance and a control method thereof regardless of the opening of the door.
本発明の実施形態の電子機器冷却装置の構成を示す斜視図。The perspective view which shows the structure of the electronic device cooling device of embodiment of this invention. 図1の前面側ドアおよび背面側ドアを閉めた冷却運転時の電子機器冷却装置を前方から向かって左側から見た断面図。Sectional drawing which looked at the electronic device cooling device at the time of the cooling operation which closed the front side door and the back side door of FIG. 制御装置の制御を示すブロック図。The block diagram which shows control of a control apparatus. 実施形態の変形例1の電子機器冷却装置の構成を示す斜視図。The perspective view which shows the structure of the electronic device cooling device of the modification 1 of embodiment. 変形例1の前面側ドアおよび背面側ドアを閉めた冷却運転時の電子機器冷却装置を前方から向かって左側から見た断面図。Sectional drawing which looked at the electronic device cooling device at the time of the cooling operation which closed the front side door and the back side door of the modification 1 from the left side toward the front. 1つの冷凍サイクルを背面側に設けた電子機器冷却装置の前方から向かって左側から見た断面図。Sectional drawing seen from the left side toward the front of the electronic device cooling device which provided one refrigeration cycle in the back side. 1つの冷凍サイクルを側部側に設けた電子機器冷却装置を前方から見た断面図。Sectional drawing which looked at the electronic device cooling device which provided the one freezing cycle in the side part side from the front. 本発明の実施形態の変形例2の電子機器冷却装置の構成を示す斜視図。The perspective view which shows the structure of the electronic device cooling device of the modification 2 of embodiment of this invention. 変形例2の電子機器冷却装置の前面側ドアおよび背面側ドアを閉めた冷却運転時の状態を上方から見た断面図。Sectional drawing which looked at the state at the time of the cooling operation which closed the front side door and the back side door of the electronic device cooling device of the modification 2 from upper direction. 電子機器冷却装置の冷却運転におけるドア開放時の基本の制御を示すフロー図。The flowchart which shows the basic control at the time of the door opening in the cooling operation of an electronic device cooling device. 電子機器冷却装置の冷却運転におけるドア開放時の制御において、目標過熱度のみを再設定する制御を示すフロー図。The flowchart which shows the control which resets only a target superheat degree in control at the time of the door opening in the cooling operation of an electronic device cooling device. 外気温35℃での電子機器冷却装置の冷却運転におけるドア開放時の過熱度、サーバ入気温度を再設定する制御を示すフロー図。The flowchart which shows the control which resets the superheat degree at the time of the door opening in the cooling operation of the electronic device cooling device in the external temperature of 35 degreeC, and a server inlet temperature. 外気温15℃での電子機器冷却装置の冷却運転におけるドア開放時の過熱度、サーバ入気温度を再設定する制御を示すフロー図。The flowchart which shows the control which resets the superheat degree at the time of the door opening in the cooling operation of the electronic device cooling device in the external temperature of 15 degreeC, and a server inlet temperature.
 以下、本発明の実施形態に係る電子機器冷却装置について、詳細に説明する。なお、以下の説明では、電子機器としてサーバを収納して冷却する例を説明するが、動作することにより発熱する電子機器であれば、サーバ以外の電子機器であってもよい。 Hereinafter, the electronic device cooling apparatus according to the embodiment of the present invention will be described in detail. In the following description, an example in which a server is housed and cooled as an electronic device will be described. However, an electronic device other than the server may be used as long as the electronic device generates heat by operation.
<<実施形態>>
 図1は、本発明の実施形態の電子機器冷却装置の構成を示す斜視図であり、前面側ドアと背面側ドアとが開いた状態を示している。図2は、図1の前面側ドアおよび背面側ドアを閉めた冷却運転時の電子機器冷却装置を前方から向かって左側から見た断面図である。図2の矢印a1は収納室5内を循環する空気の流れを示し、また矢印a2は放熱兼機械室6内を通過する空気の流れを示す。
<< Embodiment >>
FIG. 1 is a perspective view showing a configuration of an electronic device cooling apparatus according to an embodiment of the present invention, and shows a state where a front door and a rear door are opened. FIG. 2 is a cross-sectional view of the electronic device cooling apparatus during the cooling operation in which the front door and the rear door of FIG. 1 are closed as viewed from the left side from the front. The arrow a1 in FIG. 2 indicates the flow of air circulating in the storage chamber 5, and the arrow a2 indicates the flow of air passing through the heat dissipation and machine chamber 6.
 実施形態の電子機器冷却装置Rは、動作時に熱を発生するサーバ8を所望の温度に冷却するための装置である。
 そのため、電子機器冷却装置Rは、サーバ8を冷却するための下記の冷凍サイクルを具備している。
The electronic device cooling apparatus R of the embodiment is an apparatus for cooling the server 8 that generates heat during operation to a desired temperature.
Therefore, the electronic device cooling apparatus R includes the following refrigeration cycle for cooling the server 8.
 冷凍サイクルは、配管h(図2参照)を流れる冷媒を圧縮して高温・高圧にする圧縮機9と、圧縮機9から吐出される冷媒を凝縮させて室内の空気と熱交換して凝縮熱を放熱する凝縮器10と、凝縮器10からの冷媒を減圧する減圧手段の膨張弁11と、サーバ8の熱を吸熱し高温となった冷却風(空気)を冷媒の蒸発により冷却する蒸発器12とを備えている。 In the refrigeration cycle, the refrigerant flowing through the pipe h (see FIG. 2) is compressed to a high temperature and a high pressure, and the refrigerant discharged from the compressor 9 is condensed to exchange heat with indoor air to condense heat. , A condenser 10 that radiates heat, an expansion valve 11 that decompresses the refrigerant from the condenser 10, and an evaporator that absorbs heat from the server 8 and cools the cooling air (air) that has become high temperature by evaporating the refrigerant. 12.
 <電子機器冷却装置Rの分割構造>
 電子機器冷却装置Rは、上段に配置されサーバ8、蒸発器12などを収納する収納室5と、下段に配置され、凝縮器10、圧縮機9、膨張弁11などが収納される放熱兼機械室6とに区分けされ、鉛直方向に2分割の構成とされている。
 上段の収納室5は、サーバ8を所望の温度に冷却するために熱の出入りがないように他室から密閉されている。
<Divided structure of electronic device cooling device R>
The electronic device cooling device R is disposed in the upper stage, the storage chamber 5 for storing the server 8, the evaporator 12, and the like, and the heat dissipation and machine in the lower stage, in which the condenser 10, the compressor 9, the expansion valve 11 and the like are stored. The room 6 is divided into two parts in the vertical direction.
The upper storage chamber 5 is sealed from another chamber so that heat does not enter and exit in order to cool the server 8 to a desired temperature.
 図2に示す電子機器冷却装置Rの背面側において、放熱兼機械室6の圧縮機9、凝縮器10、および膨張弁11、収納室5の蒸発器12が冷媒配管hにより順次接続され、前記の冷凍サイクルを形成している。 On the back side of the electronic device cooling apparatus R shown in FIG. 2, the compressor 9, the condenser 10, the expansion valve 11, and the evaporator 12 in the storage chamber 5 of the heat radiation and machine room 6 are sequentially connected by the refrigerant pipe h, The refrigeration cycle is formed.
 冷媒の流れについて説明する。
 圧縮機9で昇圧されて高温・高圧の気体となった冷媒は凝縮器10へ送られる。凝縮器10へ送られた冷媒は、凝縮器10を通過する過程で外気へ放熱し、気体から二相状態、液体へと相変化する。その後冷媒は、膨張弁11を通過し減圧されることで低圧の二相状態となる。低圧の二相状態となった冷媒は、その後、蒸発器12を通過する過程で収納室5内の空気から吸熱し、再び二相状態から気体へと相変化して圧縮機9へと戻される。
The flow of the refrigerant will be described.
The refrigerant that has been pressurized by the compressor 9 to become a high-temperature and high-pressure gas is sent to the condenser 10. The refrigerant sent to the condenser 10 dissipates heat to the outside air in the process of passing through the condenser 10, and changes in phase from a gas to a two-phase state and to a liquid. Thereafter, the refrigerant passes through the expansion valve 11 and is depressurized to be in a low-pressure two-phase state. The refrigerant that has become a low-pressure two-phase state then absorbs heat from the air in the storage chamber 5 in the process of passing through the evaporator 12, and again changes from the two-phase state to a gas and is returned to the compressor 9. .
 <筐体k>
 電子機器冷却装置Rの外郭を形成する筐体kは、箱状のキャビネット1と前面側ドア2と背面側ドア3などにより構成される。
 電子機器冷却装置Rの筐体kは、前記したように、上段の収納室5と下段の機械室6とに分けられ、2分割されている
<Case k>
A casing k that forms the outer shell of the electronic device cooling device R includes a box-shaped cabinet 1, a front door 2, a rear door 3, and the like.
As described above, the casing k of the electronic device cooling device R is divided into the upper storage chamber 5 and the lower machine chamber 6 and is divided into two.
 <放熱兼機械室6>
 下段の放熱兼機械室6には、放熱する凝縮器10と凝縮器用ファン13とが配置されるとともに、機械類の圧縮機9と膨張弁11とが配置されている。
<Heat radiation and machine room 6>
In the lower heat radiating and machine room 6, a condenser 10 for radiating heat and a condenser fan 13 are arranged, and a compressor 9 and an expansion valve 11 of machinery are arranged.
 前面側ドア2及び背面側ドア3の放熱兼機械室6にそれぞれ対向する箇所には、開口部16a、16b(図1参照)がそれぞれ設けられている。開口部16a、16bにより、放熱兼機械室6内の凝縮器10の熱を吸熱した空気および圧縮機9の熱を吸熱した空気が、周囲空気(室内の空気)と流通可能とされている。 Openings 16a and 16b (see FIG. 1) are respectively provided at locations facing the heat radiation and machine room 6 of the front side door 2 and the back side door 3, respectively. Through the openings 16a and 16b, the air that has absorbed the heat of the condenser 10 in the heat radiating and machine room 6 and the air that has absorbed the heat of the compressor 9 can be circulated with the surrounding air (room air).
 図2の矢印a2の放熱兼機械室6内を通過する空気の流れの上流に、凝縮器用ファン13が配置され、その下流に凝縮器10、圧縮機9が配置されている。凝縮器用ファン13は、前面側ドア2に設けられた開口部16aから外気(室内の空気)を流入させ、外気と凝縮器10や圧縮機9の熱交換によって、凝縮器10と圧縮機9の熱の外気への放出を促進する。こうして、凝縮器10、圧縮機9の熱を吸収した空気を、後面側ドア3に設けられた開口部16bを通して、外部に排出している。 2, a condenser fan 13 is disposed upstream of the air flow passing through the heat radiation and machine room 6 indicated by an arrow a2 in FIG. 2, and a condenser 10 and a compressor 9 are disposed downstream thereof. The condenser fan 13 allows outside air (indoor air) to flow in from the opening 16 a provided in the front door 2, and heat exchange between the outside air and the condenser 10 or the compressor 9 causes the condenser 10 and the compressor 9 to be exchanged. Promotes the release of heat to the outside air. In this way, the air that has absorbed the heat of the condenser 10 and the compressor 9 is discharged to the outside through the opening 16 b provided in the rear door 3.
 圧縮機9は、容量制御が可能な可変容量型圧縮機である。このような圧縮機としては、ピストン式、ロータリー式、スクロール式、スクリュー式、遠心式のものを採用可能である。具体的には、圧縮機9はスクロール式の圧縮機であり、インバータ制御により容量制御が可能で、低速から高速まで回転速度が可変である。
 膨張弁11は、細径のチューブでもよく、減圧手段であれば、膨張弁11以外のものを用いてもよい。
The compressor 9 is a variable capacity compressor capable of capacity control. As such a compressor, a piston type, a rotary type, a scroll type, a screw type, or a centrifugal type can be adopted. Specifically, the compressor 9 is a scroll type compressor, capacity control is possible by inverter control, and the rotational speed is variable from low speed to high speed.
The expansion valve 11 may be a small-diameter tube, and other than the expansion valve 11 may be used as long as the pressure reducing means.
 <収納室5>
 上段の収納室5内には、上・下部のダクト4a、4bがそれぞれ天井部(最上部)と底部に設けられ、サーバ8を冷却するための空気の風路を形成している。
 上部のダクト4aと、下部のダクト4bとの間のスペースには電子機器としてサーバ8が搭載されている。図2には、複数のサーバ8を積層して配置した場合を示すが、収納室5内の一部に単独のサーバ8を配置してもよい。サーバ8にはそれぞれ送風機15が設けられており、蒸発器12で冷却され収納室5内を循環する空気を流通させることで、サーバ8内部の発熱部品を冷却している。
<Storage room 5>
In the upper storage chamber 5, upper and lower ducts 4 a and 4 b are provided at the ceiling (top) and the bottom, respectively, to form an air passage for cooling the server 8.
A server 8 is mounted as an electronic device in a space between the upper duct 4a and the lower duct 4b. Although FIG. 2 shows a case where a plurality of servers 8 are stacked and arranged, a single server 8 may be arranged in a part of the storage room 5. Each server 8 is provided with a blower 15, and the heat generating components inside the server 8 are cooled by circulating the air that is cooled by the evaporator 12 and circulated in the storage chamber 5.
 後方の背面側ドア3の収納室5に対向する空間には、サーバ8の熱で加熱された空気(冷却風)を冷却する蒸発器12と、加熱された空気を、蒸発器12を通るように吸引するドアファン14とが内蔵されている。蒸発器12は収納室5内を循環してサーバ8で加熱された空気を熱交換により冷却している。 In the space facing the storage chamber 5 of the rear door 3 on the back side, the evaporator 12 that cools the air (cooling air) heated by the heat of the server 8 and the heated air pass through the evaporator 12. And a door fan 14 for suction. The evaporator 12 circulates in the storage chamber 5 and cools the air heated by the server 8 by heat exchange.
 上段の収納室5内において、前面側ドア2及び背面側ドア3を閉じた冷却運転中、上・下部のダクト4a、4bは前面側ドア2を通る流路2rと、背面側ドア3に設けられ背面側ドア3を通る流路3rとが接続され、風路が形成されている。 During the cooling operation in which the front door 2 and the rear door 3 are closed in the upper storage chamber 5, the upper and lower ducts 4 a and 4 b are provided in the flow path 2 r passing through the front door 2 and the rear door 3. And a flow path 3r passing through the back side door 3 is connected to form an air path.
 ここで、上・下部のダクト4a、4b、前面側ドア2の流路2r、背面側ドア3の流路3rのうちの少なくとも一部の風路に、空気が接触する面積を拡大するじゃま板などの部材を設け、結露を促進する構成とすることが好ましい。或いは、一部の風路を水などで冷却するように構成すると風路への結露が促進され、サーバ8への水分の付着がより抑制され、より好ましい。 Here, a baffle plate that expands the area of air contact with at least some of the air passages of the upper and lower ducts 4a and 4b, the flow path 2r of the front door 2, and the flow path 3r of the rear door 3. It is preferable to provide a member that promotes condensation. Alternatively, it is more preferable that a part of the air passages is cooled with water or the like, so that condensation on the air passages is promoted and adhesion of moisture to the server 8 is further suppressed.
 蒸発器12の下部の底板には、蒸発器12でのサーバ8を冷却した空気に含まれる水が結露した結露水を受けるドレンパン(図示せず)を備えている。ドレンパンで受けた結露水は、放熱兼機械室6内に配置される貯水タンク(図示せず)に導かれる構成とされている。 The bottom plate of the evaporator 12 is provided with a drain pan (not shown) that receives condensed water that is condensed by water contained in the air that has cooled the server 8 in the evaporator 12. The condensed water received by the drain pan is guided to a water storage tank (not shown) disposed in the heat radiating and machine room 6.
 <センサ>
 図2に示すように、電子機器冷却装置Rは、空気温度を検出するセンサとして、外気の温度を検出する外気温度センサ202と、収納室5内でサーバ8を冷却する空気のサーバ8へ当たり始める温度である入気温度を検出する温度センサ201とを備えている。また、冷凍サイクルの冷媒温度を検出するセンサとして、蒸発器(12)入口温度を検出する温度センサ203と蒸発器(12)出口温度を検出する温度センサ204が備えられている。
 さらに、前面側ドアの開閉を検知する前ドア開閉検知センサ205aと、背面側ドア3の開閉を検知する背ドア開閉検知センサ205bとが備えられている。
<Sensor>
As shown in FIG. 2, the electronic device cooling apparatus R hits the outside air temperature sensor 202 that detects the temperature of outside air as a sensor that detects the air temperature, and the server 8 that cools the server 8 in the storage chamber 5. And a temperature sensor 201 that detects an intake air temperature that is a starting temperature. As sensors for detecting the refrigerant temperature of the refrigeration cycle, a temperature sensor 203 for detecting the evaporator (12) inlet temperature and a temperature sensor 204 for detecting the evaporator (12) outlet temperature are provided.
Further, a front door opening / closing detection sensor 205a for detecting opening / closing of the front side door and a back door opening / closing detection sensor 205b for detecting opening / closing of the back side door 3 are provided.
 図3は、制御装置の制御を示すブロック図である。
 電子機器冷却装置Rは、上述の各センサが検出する温度を基に、圧縮機9、凝縮器用ファン13、ドアファン14の回転速度(回転数)及び膨張弁11の開度を調整する制御装置200を備えている。
FIG. 3 is a block diagram illustrating control of the control device.
The electronic device cooling device R is a control device that adjusts the rotation speed (number of rotations) of the compressor 9, the condenser fan 13, and the door fan 14 and the opening degree of the expansion valve 11 based on the temperatures detected by the above-described sensors. 200.
 制御装置200は、マイクロコンピュータ、周辺回路などで構成され、上述の各温度センサが検出した温度データが制御装置に入力され、制御が遂行される。なお、制御装置のマイクロコンピュータは所定の制御が遂行されれば、その少なくとも一部を回路で構成してもよい。 The control device 200 is constituted by a microcomputer, a peripheral circuit, etc., and temperature data detected by each of the temperature sensors described above is input to the control device, and control is performed. Note that at least a part of the microcomputer of the control device may be configured by a circuit as long as predetermined control is performed.
 制御装置200には、温度センサ201で検出したサーバ8を冷却する入気温度の情報、外気温度センサ202で検出をする外気温度の情報、温度センサ203で検出した蒸発器12の入口温度の情報、温度センサ204で検出した蒸発器12の出口温度の情報、前・背ドア開閉検知センサ205a、205bでそれぞれ検出した前面側ドア2の開閉情報、背面側ドア3の開閉情報が入力される。 The control device 200 includes information on the inlet temperature for cooling the server 8 detected by the temperature sensor 201, information on the outside temperature detected by the outside temperature sensor 202, and information on the inlet temperature of the evaporator 12 detected by the temperature sensor 203. The information of the outlet temperature of the evaporator 12 detected by the temperature sensor 204, the opening / closing information of the front door 2 and the opening / closing information of the rear door 3 detected by the front / back door opening / closing detection sensors 205a and 205b, respectively, are input.
 制御装置200は、入力される情報に従って演算を行い、蒸発器12の目標過熱度、目標サーバ入気温度(目標電子機器入気温度)、膨張弁11の開度、圧縮機9の回転速度、凝縮器用ファン13の回転速度などの各情報を出力する。目標過熱度とは、蒸発器12の(出口温度-入口温度)の制御目標値である。目標サーバ入気温度とは、温度センサ201で検出されるサーバ8を冷却する入気温度の制御目標値である。 The control device 200 performs an operation according to the input information, the target superheat degree of the evaporator 12, the target server inlet temperature (target electronic equipment inlet temperature), the opening degree of the expansion valve 11, the rotational speed of the compressor 9, Information such as the rotational speed of the condenser fan 13 is output. The target superheat degree is a control target value of (exit temperature−inlet temperature) of the evaporator 12. The target server inlet temperature is a control target value of the inlet temperature that cools the server 8 detected by the temperature sensor 201.
 制御装置200の周辺回路は、制御装置200での演算結果の各情報のデジタル信号により、目標過熱度や目標サーバ入気温度になるように、膨張弁11の開度、圧縮機9の回転速度、凝縮器用ファン13の回転速度を制御する。 The peripheral circuit of the control device 200 is configured so that the opening degree of the expansion valve 11 and the rotation speed of the compressor 9 are adjusted so that the target superheat degree and the target server intake air temperature are reached by the digital signal of each information of the calculation result in the control device 200. The rotational speed of the condenser fan 13 is controlled.
 <サーバ8を冷却する循環空気>
 次に、電子機器冷却装置Rの収納室5内を、サーバ8を冷却するために循環する空気の流れについて説明する。
 図2に示すサーバ8の周囲の空気は、図2の矢印a1に示すように、サーバ8に内蔵された送風機15によりサーバ内部に取り込まれ、サーバ8からの排熱により高温になる。サーバ8を通過後の空気は、背面側ドア3に内蔵されたドアファン14に吸引されてドアファン14手前の蒸発器12を通過し冷却され、上部のダクト4aと下部のダクト4bとを通って、前面側ドア2の流路2rに送られる。
<Circulating air for cooling the server 8>
Next, the flow of air circulating to cool the server 8 in the storage chamber 5 of the electronic device cooling device R will be described.
The air around the server 8 shown in FIG. 2 is taken into the server by the blower 15 built in the server 8 and becomes high temperature due to exhaust heat from the server 8 as indicated by an arrow a1 in FIG. The air after passing through the server 8 is sucked by the door fan 14 built in the rear door 3 and passes through the evaporator 12 in front of the door fan 14 to be cooled, and passes through the upper duct 4a and the lower duct 4b. Then, it is sent to the flow path 2r of the front side door 2.
 つまり、蒸発器12で冷却された空気は、上・下部のダクト4a、4bを通って前面側ドア2の流路2rを流れ、サーバ8を冷却することで温められる。温められた空気は蒸発器12で冷却された後、上・下部のダクト4a、4bを通って前面側ドア2の流路2rへ移動し、再度、サーバ8の風上へ戻る。 That is, the air cooled by the evaporator 12 flows through the flow path 2r of the front door 2 through the upper and lower ducts 4a and 4b, and is warmed by cooling the server 8. The warmed air is cooled by the evaporator 12, moves to the flow path 2 r of the front door 2 through the upper and lower ducts 4 a and 4 b, and returns to the windward side of the server 8 again.
 なお、電子機器冷却装置Rでは、収納室5内の背面側ドア3に蒸発器12とドアファン14を内蔵した場合を例示したが、収納室5内の背面側ドア3に代えて前面側ドア2に、蒸発器12とドアファン14を内蔵する構成でもよい。この場合、ドアファン14は蒸発器12よりも冷却用の空気の上流に配置されることとなる。
 或いは、電子機器冷却装置Rの側方部の側板や、側方部を開閉自在としたドアを設置して、蒸発器12とドアファン14を、側板や側方部のドアに設置する構成としてもよい。
In the electronic device cooling apparatus R, the case where the evaporator 12 and the door fan 14 are incorporated in the back door 3 in the storage chamber 5 is illustrated, but the front door is replaced with the back door 3 in the storage chamber 5. 2, the structure which incorporates the evaporator 12 and the door fan 14 may be sufficient. In this case, the door fan 14 is disposed upstream of the cooling air from the evaporator 12.
Alternatively, a side plate of the electronic device cooling device R or a door that can be opened and closed is installed, and the evaporator 12 and the door fan 14 are installed on the side plate or the side door. Also good.
<変形例1の電子機器冷却装置2R>
 図4は、実施形態の変形例1の電子機器冷却装置の構成を示す斜視図であり、前面側ドアと背面側ドアとが開いた状態を示している。図5は、変形例1の前面側ドアおよび背面側ドアを閉めた冷却運転時の電子機器冷却装置を前方から向かって左側から見た断面図である。図5の矢印a1は収納室5内を循環する空気の流れを示し、また矢印a2は放熱室7内を通過する空気の流れを示す。
<Electronic Equipment Cooling Device 2R of Modification 1>
FIG. 4 is a perspective view illustrating a configuration of the electronic device cooling apparatus according to the first modification of the embodiment, and illustrates a state in which the front door and the rear door are opened. FIG. 5 is a cross-sectional view of the electronic device cooling apparatus during the cooling operation in which the front door and the rear door of the first modification are closed as viewed from the left side from the front. An arrow a1 in FIG. 5 indicates the flow of air circulating in the storage chamber 5, and an arrow a2 indicates the flow of air passing through the heat dissipation chamber 7.
 変形例1の電子機器冷却装置2Rは、実施形態の電子機器冷却装置Rと異なり、内部を鉛直方向に上から下へ、3層構造とするとともに2つの冷凍サイクルを有する構成としたものである。 Unlike the electronic device cooling device R of the embodiment, the electronic device cooling device 2R of Modification 1 has a three-layer structure in the vertical direction from top to bottom and has two refrigeration cycles. .
 つまり、電子機器冷却装置2Rは、冷凍サイクルを第1冷凍サイクルと第2冷凍サイクルの2系統とし、前面側に第1冷凍サイクルを配置し、背面側に第2冷凍サイクルを配置したものである。その他の構成は、実施形態1の電子機器冷却装置Rと同様である。 In other words, the electronic device cooling apparatus 2R has two refrigeration cycles, a first refrigeration cycle and a second refrigeration cycle, the first refrigeration cycle is disposed on the front side, and the second refrigeration cycle is disposed on the back side. . Other configurations are the same as those of the electronic device cooling apparatus R of the first embodiment.
 <電子機器冷却装置2Rの分割構造>
 電子機器冷却装置2Rは、中段に配置されサーバ8、蒸発器12a、12bなどを収納する収納室5と、上段に配置され凝縮器10a、10bを収納する放熱室7と、下段に配置され圧縮機9a、9b、膨張弁11a、11bなどが収納される機械室6とに区分けされ、鉛直方向に3分割の3層の構成とされている。
 収納室5は、サーバ8を所望の温度に冷却するために熱の出入りがないように他室から密閉されている。
<Divided structure of electronic device cooling device 2R>
The electronic device cooling device 2R includes a storage chamber 5 that is disposed in the middle stage and accommodates the server 8, the evaporators 12a and 12b, a heat radiation chamber 7 that is disposed in the upper stage and accommodates the condensers 10a and 10b, and is compressed in the lower stage. It is divided into a machine room 6 in which the machines 9a and 9b, the expansion valves 11a and 11b and the like are accommodated, and has a three-layer structure divided into three in the vertical direction.
The storage chamber 5 is sealed from another chamber so that heat does not enter and exit in order to cool the server 8 to a desired temperature.
 前面側ドア2及び背面側ドア3の放熱室7、機械室6にそれぞれ対向する箇所には、開口部16a、16b(図4参照)がそれぞれ設けられている。開口部16a、16bにより、放熱室7内の凝縮器10の熱を吸熱した空気および機械室6内の圧縮機9の熱を吸熱した空気が、それぞれ周囲空気(室内の空気)と流通可能とされている。 Openings 16a and 16b (see FIG. 4) are respectively provided at locations facing the heat radiation chamber 7 and the machine room 6 of the front door 2 and the rear door 3, respectively. Through the openings 16a and 16b, the air that has absorbed the heat of the condenser 10 in the heat radiating chamber 7 and the air that has absorbed the heat of the compressor 9 in the machine chamber 6 can be circulated with ambient air (indoor air). Has been.
 図5に示すように、電子機器冷却装置2Rでは、収納室5の前面側ドア2の流路2rに、第1のドアファン14aと第1の蒸発器12aを設置し、収納室5の背面側ドア3の流路3rに、第2の蒸発器12bと第2のドアファン14bを設置している。 As shown in FIG. 5, in the electronic device cooling device 2 </ b> R, a first door fan 14 a and a first evaporator 12 a are installed in the flow path 2 r of the front door 2 of the storage chamber 5, and the rear surface of the storage chamber 5 A second evaporator 12 b and a second door fan 14 b are installed in the flow path 3 r of the side door 3.
 上段の放熱室7には、前面側に、第1の凝縮器10aと第1の凝縮器用ファン13aとが配置されており、背面側に、第2の凝縮器10bと第2の凝縮器用ファン13bとが配置されている。 In the upper radiating chamber 7, a first condenser 10a and a first condenser fan 13a are arranged on the front side, and a second condenser 10b and a second condenser fan are arranged on the rear side. 13b.
 下段の機械室6には、前面側に、第1の圧縮機9aと第1の膨張弁11aとが配置されており、背面側に、第2の圧縮機9bと第2の膨張弁11bとが配置されている。 In the lower machine room 6, a first compressor 9a and a first expansion valve 11a are disposed on the front side, and a second compressor 9b and a second expansion valve 11b are disposed on the back side. Is arranged.
 こうして、第1冷凍サイクルとして、電子機器冷却装置2Rの前面側において、機械室6の第1の圧縮機9a、放熱室7の第1の凝縮器10a、機械室6の第1の膨張弁11a、収納室5の第1の蒸発器12aが冷媒配管haにより順次接続されている。 Thus, as the first refrigeration cycle, on the front side of the electronic device cooling device 2R, the first compressor 9a in the machine room 6, the first condenser 10a in the heat radiating room 7, and the first expansion valve 11a in the machine room 6 are used. The first evaporator 12a of the storage chamber 5 is sequentially connected by the refrigerant pipe ha.
 第2冷凍サイクルとして、電子機器冷却装置2Rの背面側において、機械室6の第2の圧縮機9b、放熱室7の第2の凝縮器10b、機械室6の第2の膨張弁11b、収納室5の第2の蒸発器12bが冷媒配管hbにより順次接続されている。 As the second refrigeration cycle, on the back side of the electronic device cooling device 2R, the second compressor 9b in the machine chamber 6, the second condenser 10b in the heat radiating chamber 7, the second expansion valve 11b in the machine chamber 6, and storage The second evaporator 12b of the chamber 5 is sequentially connected by the refrigerant pipe hb.
 <センサ>
 電子機器冷却装置2Rは、空気温度を検出するセンサとして、外気の温度を検出する外気温度センサ202と、収納室5内でサーバ8を冷却するための空気のサーバ8への入気温度を検出する温度センサ201とを備えている。
<Sensor>
The electronic device cooling device 2R detects the outside air temperature sensor 202 that detects the temperature of the outside air as a sensor that detects the air temperature, and the temperature of the air entering the server 8 for cooling the server 8 in the storage chamber 5. The temperature sensor 201 is provided.
 また、第1の冷凍サイクルの冷媒温度を検出するセンサとして、第1の蒸発器(12a)入口温度を検出する第1のセンサ203a、第1の蒸発器(12a)出口温度を検出する第1のセンサ204aが、それぞれ備えられている。 Further, as a sensor for detecting the refrigerant temperature of the first refrigeration cycle, a first sensor 203a for detecting the inlet temperature of the first evaporator (12a), and a first sensor for detecting the outlet temperature of the first evaporator (12a). Each of the sensors 204a is provided.
 第2の冷凍サイクルの冷媒温度を検出するセンサとして、第2の蒸発器(12b)入口温度を検出する第2のセンサ203b、第2の蒸発器(12a)出口温度を検出する第2のセンサ204bが、それぞれ備えられている。
 さらに、前面側ドアの開閉を検知する前ドア開閉検知センサ205aと、背面側ドア3の開閉を検知する背ドア開閉検知センサ205bとが備えられている。
As sensors for detecting the refrigerant temperature of the second refrigeration cycle, the second sensor 203b for detecting the inlet temperature of the second evaporator (12b), and the second sensor for detecting the outlet temperature of the second evaporator (12a). 204b are provided.
Further, a front door opening / closing detection sensor 205a for detecting opening / closing of the front side door and a back door opening / closing detection sensor 205b for detecting opening / closing of the back side door 3 are provided.
 電子機器冷却装置2Rは、上述の各センサが検出する温度を基に、第1・第2の圧縮機9a、9b、第1・第2の凝縮器用ファン13a、13b、第1・第2のドアファン14a、14bの回転速度(回転数)及び第1・第2の膨張弁11a、11bの開度を調整する制御装置(図示せず)を備えている。
 制御装置は、実施形態1の制御装置200と同様な制御を行う。
The electronic device cooling device 2R is based on the temperatures detected by the sensors described above, and the first and second compressors 9a and 9b, the first and second condenser fans 13a and 13b, and the first and second compressors. A control device (not shown) is provided for adjusting the rotational speed (number of rotations) of the door fans 14a and 14b and the opening degrees of the first and second expansion valves 11a and 11b.
The control device performs the same control as the control device 200 of the first embodiment.
 <サーバ8を冷却する循環空気>
 電子機器冷却装置2Rでは、図5の矢印a1に示すように、第1のドアファン14aにより上部のダクト4aと下部のダクト4bとから第1のドアファン14aで吸引された空気が、第1の蒸発器12aで冷却され、サーバ8に送られ、サーバ8を冷却する。サーバ8を冷却後の空気は、第2のドアファン14bに吸引され、第2の蒸発器12bで冷却され、上部のダクト4aと下部のダクト4bとに送られる。
<Circulating air for cooling the server 8>
In the electronic device cooling apparatus 2R, as indicated by an arrow a1 in FIG. 5, the air sucked by the first door fan 14a from the upper duct 4a and the lower duct 4b by the first door fan 14a is the first door fan 14a. The evaporator 12a is cooled and sent to the server 8 to cool the server 8. The air after cooling the server 8 is sucked into the second door fan 14b, cooled by the second evaporator 12b, and sent to the upper duct 4a and the lower duct 4b.
 こうして、サーバ8を冷却する空気は、第1のドアファン14a、第1の蒸発器12a、サーバ8、第2の蒸発器12b、第2のドアファン14b、上・下部のダクト4a、4b、第1のドアファン14aへと循環して、サーバ8を冷却する。
 なお、電子機器冷却装置2Rでは、2つの冷凍サイクルを、前面側と背面側とに設ける場合を例示したが、2つの冷凍サイクルを、前面側と背面側とに代えて、右側部と左側部に設けてもよい。
Thus, the air that cools the server 8 includes the first door fan 14a, the first evaporator 12a, the server 8, the second evaporator 12b, the second door fan 14b, the upper and lower ducts 4a, 4b, The server 8 is cooled by circulating to the first door fan 14a.
In the electronic device cooling apparatus 2R, the case where two refrigeration cycles are provided on the front side and the back side is illustrated, but the two refrigeration cycles are replaced with a front side and a back side, and a right side portion and a left side portion are provided. May be provided.
 また、電子機器冷却装置2Rでは、2つの冷凍サイクルを、前面側と背面側とに設ける場合を例示したが、1つの冷凍サイクルを、前面側または背面側または両側部の何れかに設けてもよい。図6に、1つの冷凍サイクルを背面側に設けた電子機器冷却装置を示し、図7に、1つの冷凍サイクルを側部側に設けた電子機器冷却装置2R2を示す。 Further, in the electronic device cooling apparatus 2R, the case where two refrigeration cycles are provided on the front side and the back side is illustrated, but one refrigeration cycle may be provided on either the front side, the back side, or both sides. Good. FIG. 6 shows an electronic device cooling device provided with one refrigeration cycle on the back side, and FIG. 7 shows an electronic device cooling device 2R2 provided with one refrigeration cycle on the side portion side.
<変形例2の電子機器冷却装置3R>
 図8は、本発明の実施形態の変形例2の電子機器冷却装置の構成を示す斜視図であり、前面側ドアが開いた状態を示している。図9は、変形例2の電子機器冷却装置の前面側ドアおよび背面側ドアを閉めた冷却運転時の状態を上方から見た断面図である。図8、図9の矢印b1は収納室35内を循環する空気の流れを、また図8の矢印b2は放熱室7内を通過する空気の流れを示す。
<Electronic Equipment Cooling Device 3R of Modification 2>
FIG. 8 is a perspective view showing the configuration of the electronic device cooling apparatus of Modification 2 of the embodiment of the present invention, and shows a state in which the front door is opened. FIG. 9: is sectional drawing which looked at the state at the time of the cooling operation which closed the front side door and the back side door of the electronic device cooling device of the modification 2 from upper direction. The arrow b1 in FIGS. 8 and 9 indicates the flow of air circulating in the storage chamber 35, and the arrow b2 in FIG. 8 indicates the flow of air passing through the heat dissipation chamber 7.
 変形例2の電子機器冷却装置3Rは、実施形態1の電子機器冷却装置Rと異なり、収納室35内のサーバ8を冷却する空気を水平方向(図8、図9の破線の矢印b1参照)に循環するように構成したものである。その他の実施形態3の電子機器冷却装置3Rの構成は、実施形態1の電子機器冷却装置Rと同様である。 Unlike the electronic device cooling device R of the first embodiment, the electronic device cooling device 3R of the second modified example horizontally moves the air that cools the server 8 in the storage chamber 35 (see the broken line arrow b1 in FIGS. 8 and 9). It is configured to circulate. Other configurations of the electronic device cooling apparatus 3R of the third embodiment are the same as those of the electronic apparatus cooling device R of the first embodiment.
 変形例2の電子機器冷却装置3Rは、実施形態1の電子機器冷却装置Rと異なり、中段に配置されサーバ8、蒸発器32などが収納される収納室35と、上段に配置され凝縮器10などが収納される放熱室7と、下段に配置され圧縮機9、膨張弁11などが収納される機械室6とに区分けされ、鉛直方向に3分割の構成とされている。 Unlike the electronic device cooling device R of the first embodiment, the electronic device cooling device 3R of Modification 2 is arranged in the middle stage, the storage chamber 35 in which the server 8, the evaporator 32, and the like are housed, and the condenser 10 in the upper stage. Are divided into a heat radiating chamber 7 in which the components are stored, and a machine chamber 6 in which the compressor 9, the expansion valve 11 and the like are disposed in the lower stage and are divided into three parts in the vertical direction.
 上段の放熱室7には、冷凍サイクルを構成する凝縮器10と、外気を吸引して凝縮器用ファン13の熱を放熱するための凝縮器用ファン13とが設置されている。
 下段の機械室6には、圧縮機9と膨張弁11とが配置されている。
The upper radiating chamber 7 is provided with a condenser 10 constituting a refrigeration cycle and a condenser fan 13 for sucking outside air and radiating heat of the condenser fan 13.
A compressor 9 and an expansion valve 11 are arranged in the lower machine chamber 6.
 図9に示すように、サーバ8が収納される収納室35には、サーバ8を冷却する空気が水平方向に循環する(図9の矢印b1参照)ように、蒸発器32とドアファン34とが、側面板kd1に設置されている。 As shown in FIG. 9, in the storage chamber 35 in which the server 8 is stored, the evaporator 32 and the door fan 34 are arranged so that air for cooling the server 8 circulates in the horizontal direction (see arrow b1 in FIG. 9). Is installed on the side plate kd1.
 こうして、機械室6の圧縮機9、放熱室7の凝縮器10、機械室6の膨張弁11、収納室35の蒸発器32が冷媒配管h3(図8参照)により順次接続され、冷凍サイクルを形成している。
 電子機器冷却装置3Rでは、サーバ8を冷却する空気が水平方向に循環するので、収納室35内のサーバ8の上・下方に設けられる上・下部のダクト4a、4b(図1、図2参照)は設ける必要がない。
Thus, the compressor 9 in the machine room 6, the condenser 10 in the heat radiating room 7, the expansion valve 11 in the machine room 6, and the evaporator 32 in the storage room 35 are sequentially connected by the refrigerant pipe h3 (see FIG. 8), and the refrigeration cycle is performed. Forming.
In the electronic device cooling device 3R, since air for cooling the server 8 circulates in the horizontal direction, upper and lower ducts 4a and 4b provided above and below the server 8 in the storage chamber 35 (see FIGS. 1 and 2). ) Is not necessary.
 図8に示すように、電子機器冷却装置3Rでは、蒸発器32を側面板kd1に配置するので、放熱室7内の凝縮器10と、収納室35内の側面板kd1に設置される蒸発器32およびドアファン34、機械室6内の圧縮機9および膨張弁11、および冷媒配管h3を、前方または後方から見て、コの字型のひとつの交換可能なパーツPとして提供可能となる。 As shown in FIG. 8, in the electronic device cooling device 3R, the evaporator 32 is disposed on the side plate kd1, and therefore the evaporator 10 installed in the condenser 10 in the heat radiating chamber 7 and the side plate kd1 in the storage chamber 35. 32, the door fan 34, the compressor 9 and the expansion valve 11 in the machine room 6, and the refrigerant pipe h3 can be provided as one replaceable part P having a U-shape when viewed from the front or the rear.
 また、電子機器冷却装置3Rでは、前面側ドア2または背面側ドア3が開放された場合にも、蒸発器32を側部の側面板kd1に配置されるので、蒸発器32が熱源のサーバ8から離れないので、サーバ8の冷却性能への影響を可及的に少なくすることができる。 Further, in the electronic device cooling device 3R, even when the front door 2 or the rear door 3 is opened, the evaporator 32 is disposed on the side plate kd1 on the side, so that the evaporator 32 serves as the heat source server 8. Therefore, the influence on the cooling performance of the server 8 can be reduced as much as possible.
 また、電子機器冷却装置3Rでは、過熱度(=蒸発器32の出口側温度-蒸発器32の入側温度)を高くした場合にも、蒸発器32が側部の側面板kd1に設置され前面側ドア2または背面側ドア3に設置されないので、前面側ドア2または背面側ドア3の開閉により、蒸発器32に付着した結露水が、サーバ8を冷却する空気がサーバ8に入る箇所に飛びにくい。そのため、サーバ8に結露水が付着することを抑制できる。 Further, in the electronic device cooling device 3R, even when the degree of superheat (= temperature at the outlet side of the evaporator 32−temperature at the inlet side of the evaporator 32) is increased, the evaporator 32 is installed on the side plate kd1 on the side and the front side. Since it is not installed on the side door 2 or the back side door 3, the condensed water adhering to the evaporator 32 jumps to the place where the air that cools the server 8 enters the server 8 by opening and closing the front side door 2 or the back side door 3. Hateful. Therefore, it is possible to suppress the condensed water from adhering to the server 8.
 さらに、サーバ8の上方、下方にダクトを設けないため、鉛直方向のサーバ8のスペースを広く取ることができ、サーバ8の鉛直方向への増設(段積み)が可能になるなどの特徴をもつ。 Furthermore, since no duct is provided above and below the server 8, the vertical space of the server 8 can be increased, and the server 8 can be expanded (stacked) in the vertical direction. .
 また、電子機器冷却装置3Rにおいても、図5に示すように、冷凍サイクルを第1の冷凍サイクルと第2の冷凍サイクルとの2つの冷凍サイクルとし、図9の二点鎖線で示すように、第1の蒸発器32aと第2の蒸発器32bとを収納室35内に設置する構成としてもよい。 Also in the electronic device cooling device 3R, as shown in FIG. 5, the refrigeration cycle is two refrigeration cycles, a first refrigeration cycle and a second refrigeration cycle, and as shown by a two-dot chain line in FIG. The first evaporator 32a and the second evaporator 32b may be installed in the storage chamber 35.
<電子機器冷却装置Rの制御の特徴>
 次に、電子機器冷却装置R(2R、2R1、2R2、3R)の制御の特徴について説明する。
 電子機器冷却装置Rの制御の特徴は、収納室内でサーバ8を冷却中に前面側ドア2または背面側ドア3が開けられた後に閉じられた場合に、電子機器冷却装置Rの冷却運転が不安定になるのを抑制するものである。
<Characteristics of control of electronic device cooling device R>
Next, features of control of the electronic device cooling apparatus R (2R, 2R1, 2R2, 3R) will be described.
The control feature of the electronic device cooling device R is that the cooling operation of the electronic device cooling device R is not performed when the front door 2 or the rear door 3 is closed while the server 8 is being cooled in the storage room. It suppresses becoming stable.
 具体的には、収納室内でサーバ8を冷却中に前面側ドア2または背面側ドア3が開けられたことをトリガに制御目標値である目標過熱度、または、目標過熱度とサーバ8の入気温度の目標値である目標サーバ入気温度を変更する制御を、以下のように行う。 Specifically, the target superheat degree that is the control target value or the target superheat degree and the input of the server 8 is triggered by the opening of the front door 2 or the rear door 3 while the server 8 is being cooled in the storage room. Control for changing the target server intake air temperature, which is the target value of the air temperature, is performed as follows.
 前記したように、目標過熱度とは、蒸発器12の(出口温度-入口温度)の制御目標値である。蒸発器12の出口温度は、温度センサ204(図2参照)で検出され、蒸発器12の入口温度は、温度センサ203で検出される。
 目標サーバ入気温度とは、温度センサ201(図2参照)で検出されるサーバ8を冷却する入気温度の制御目標値である。
As described above, the target superheat degree is a control target value of (exit temperature−inlet temperature) of the evaporator 12. The outlet temperature of the evaporator 12 is detected by a temperature sensor 204 (see FIG. 2), and the inlet temperature of the evaporator 12 is detected by a temperature sensor 203.
The target server inlet temperature is a control target value of the inlet temperature for cooling the server 8 detected by the temperature sensor 201 (see FIG. 2).
 前記したように、収納室5内を冷却中に、前面側ドア2または背面側ドア3が開けられた後に閉じられた場合、
 第1に、前面側ドア2または背面側ドア3が開けられた際にも冷却を続行するため、前面側ドア2または背面側ドア3が開けられた場合に冷媒の状態が不安定となり、冷媒が液状態で圧縮機9に戻り、圧縮機9の翼が破損するおそれがあるという第1の問題がある。
As described above, when the inside of the storage chamber 5 is being cooled and the front door 2 or the rear door 3 is opened and then closed,
First, since cooling continues even when the front door 2 or the back door 3 is opened, the state of the refrigerant becomes unstable when the front door 2 or the back door 3 is opened, and the refrigerant Is returned to the compressor 9 in a liquid state, and there is a first problem that the blades of the compressor 9 may be damaged.
 第2に、収納室5内のサーバ8の目標設定温度と乖離した温度の外気状態で、前面側ドア2または背面側ドア3を開けられた場合、制御が外気状態での温度中でサーバ8の目標設定温度になるように圧縮機9が制御される。 Secondly, when the front door 2 or the rear door 3 is opened in an outside air state having a temperature deviating from the target set temperature of the server 8 in the storage room 5, the server 8 is controlled in the temperature in the outside air state. The compressor 9 is controlled to achieve the target set temperature.
 そのため、圧縮機9の回転速度が高速または低速回転になり、開けられた前面側ドア2または背面側ドア3が閉められた際に、圧縮機9の回転速度を前・背面側ドア2、3が閉められた状態に戻すのに時間がかかり、収納室5内の温度が、サーバ8の目標設定温度に対して冷却し過ぎ、または、冷却が足りない状態がある時間継続するという事象が起こるという第2の問題がある。換言すれば、前・背面側ドア2、3が閉められた際に、圧縮機9が回転し過ぎ、または回転不足の状態がある時間継続するという事象が起こる場合がある。 Therefore, when the rotation speed of the compressor 9 is high or low and the opened front side door 2 or back side door 3 is closed, the rotation speed of the compressor 9 is set to the front / rear side doors 2, 3. Takes a long time to return to the closed state, and the temperature in the storage chamber 5 is excessively cooled with respect to the target set temperature of the server 8, or an event occurs in which the cooling is continued for a certain period of time. There is a second problem. In other words, when the front / rear side doors 2 and 3 are closed, an event may occur in which the compressor 9 rotates excessively or continues for a certain period of time.
 第3に、開けられた前面側ドア2または背面側ドア3が閉められた場合に、制御が不安定となるために液状態の冷媒が圧縮機9に戻るおそれがあるという第3の問題がある。 Third, there is a third problem that when the opened front side door 2 or back side door 3 is closed, the liquid refrigerant may return to the compressor 9 because the control becomes unstable. is there.
 そこで、電子機器冷却装置Rの制御装置200では、収納室5内を冷却中に、前面側ドア2または背面側ドア3を開けられた場合の制御に、過熱度の目標設定値の目標過熱度と、サーバ8の入気温度の目標設定値の目標サーバ入気温度を変更する。 Therefore, in the control device 200 of the electronic device cooling apparatus R, the target superheat degree of the target set value of the superheat degree is used for control when the front side door 2 or the rear side door 3 is opened while the inside of the storage chamber 5 is being cooled. And the target server inlet temperature of the target set value of the inlet temperature of the server 8 is changed.
 詳細には、制御の第1の特徴として、前面側ドア2または背面側ドア3が開けられた際に、冷却を続行することから、圧縮機9に液状態の冷媒が戻るおそれがあることから、目標過熱度を前面側ドア2または背面側ドア3が閉じられた際の設定値から増加させる。これにより、圧縮機9に液状態の冷媒が戻ることが抑制される。 Specifically, as the first control feature, when the front side door 2 or the rear side door 3 is opened, the cooling is continued, and therefore the liquid refrigerant may return to the compressor 9. The target superheat degree is increased from the set value when the front door 2 or the rear door 3 is closed. Thereby, it is suppressed that the liquid state refrigerant returns to the compressor 9.
 目標過熱度の増加分は、外気温が低い場合の方が、外気温が高い場合よりも大きくする。これは、外気温が低い場合の方が、冷媒が蒸発し難くなり、外気温が高い場合よりも液状態の冷媒が圧縮機9に戻り易いからである。これにより、圧縮機9に液状態の冷媒が戻ることを効果的に抑制できる。
 また、外気温が高い場合には、外気温が低い場合よりも蒸発器12が結露し易いので、外気温が低い場合よりも、過熱度の増加分が低い方が望ましいという副次的効果もある。
そのため、蒸発気器12の結露が効果的に抑制される。
The increase in the target superheat degree is made larger when the outside air temperature is low than when the outside air temperature is high. This is because the refrigerant is less likely to evaporate when the outside air temperature is low, and the liquid refrigerant is more likely to return to the compressor 9 than when the outside air temperature is high. Thereby, it can suppress effectively that the refrigerant | coolant of a liquid state returns to the compressor 9. FIG.
Further, when the outside air temperature is high, the evaporator 12 is more likely to condense than when the outside air temperature is low. Therefore, it is desirable that the increase in the degree of superheat is lower than when the outside air temperature is low. is there.
Therefore, the condensation of the evaporator 12 is effectively suppressed.
Figure JPOXMLDOC01-appb-T000001
 表1に、サーバ8の入気の目標設定温度である目標サーバ入気温度が25℃の場合に、前面側ドア2または背面側ドア3が開けられた場合の過熱度の制御目標である目標過熱度の増加分の変化量の一例を示す。なお、表1は、目標サーバ入気温度が25℃の場合であり、目標サーバ入気温度によっては、表1に示す目標過熱度の変化量は変化する場合がある。
 表1から分かるように、外気温度が目標設定温度25℃より低い方が、外気温度が目標設定温度25℃より高い場合よりも、目標過熱度の増加分である変化量を大きく設定している。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows a target that is a control target of the degree of superheat when the front door 2 or the rear door 3 is opened when the target server inlet temperature that is the target set temperature of the inlet of the server 8 is 25 ° C. An example of the change amount of the increase in the degree of superheat will be shown. Table 1 shows a case where the target server inlet temperature is 25 ° C., and the amount of change in the target superheat degree shown in Table 1 may change depending on the target server inlet temperature.
As can be seen from Table 1, when the outside air temperature is lower than the target set temperature 25 ° C, the amount of change that is an increase in the target superheat degree is set larger than when the outside air temperature is higher than the target set temperature 25 ° C. .
 制御の第2の特徴として、前面側ドア2または背面側ドア3が開けられた後に閉じられた際に、外気温が高温時の圧縮機9の回し過ぎや、外気温が低温時の回転不足を抑制する必要がある。また、開けられた前面側ドア2または背面側ドア3が閉じられた場合に、圧縮機9に液状態の冷媒が戻ることを抑制する必要がある。 As a second control feature, when the front door 2 or the rear door 3 is opened and then closed, the compressor 9 rotates too much when the outside air temperature is high, or the rotation is insufficient when the outside air temperature is low. It is necessary to suppress. Further, it is necessary to prevent the refrigerant in the liquid state from returning to the compressor 9 when the opened front side door 2 or back side door 3 is closed.
 これらの観点から、収納室5(35)内においてサーバ8を冷却するための空気のサーバ8への入気温度を検出する温度センサ201で検出されるサーバ8の入気温度の目標設定値の目標サーバ入気温度を外気温に追随させて変更する。
 そこで、外気温度が高い場合には、サーバ8の入気温度の目標設定値を高く変更し、外気温度が低い場合には、サーバ8の入気温度の目標設定値を低く変更する。
From these viewpoints, the target set value of the inlet temperature of the server 8 detected by the temperature sensor 201 that detects the inlet temperature of the air for cooling the server 8 in the storage room 5 (35) to the server 8 is set. Change the target server intake air temperature to follow the outside air temperature.
Therefore, when the outside air temperature is high, the target set value of the inlet temperature of the server 8 is changed to be high, and when the outside air temperature is low, the target set value of the inlet temperature of the server 8 is changed to be low.
Figure JPOXMLDOC01-appb-T000002
 表2に、サーバ8の入気の目標設定温度である目標サーバ入気温度が25℃の場合に、前面側ドア2または背面側ドア3が開けられた場合のサーバの目標サーバ入気温度の変化量の一例を示す。なお、表2は、目標サーバ入気温度が25℃の場合であり、目標サーバ入気温度によっては、表2に示す目標サーバ入気温度の変化量は変化する場合がある。
Figure JPOXMLDOC01-appb-T000002
Table 2 shows the target server inlet temperature of the server when the front door 2 or the rear door 3 is opened when the target server inlet temperature, which is the target set temperature of the inlet of the server 8, is 25 ° C. An example of the amount of change is shown. Table 2 shows a case where the target server inlet temperature is 25 ° C., and the amount of change in the target server inlet temperature shown in Table 2 may vary depending on the target server inlet temperature.
 表2から分かるように、外気温度が45℃~10℃に変化するのに追随して、目標サーバ入気温度の変化量を、 (外気温度-25)/2 で設定する。
 表1、表2のデータは、テーブルなどに格納されている。
 なお、表1、表2のデータは、あくまでも一例であり、他のデータを用いてもよい。
As can be seen from Table 2, the change amount of the target server intake air temperature is set to (outside air temperature−25) / 2 following the change in the outside air temperature from 45 ° C. to 10 ° C.
The data of Table 1 and Table 2 are stored in a table or the like.
The data in Tables 1 and 2 is merely an example, and other data may be used.
<電子機器冷却装置R(2R、2R1、2R2、3R)のドア開放時の基本の制御>
 次に、電子機器冷却装置Rのドア開放時の基本の制御について説明する。
 なお、前記したように、電子機器冷却装置Rの制御は制御装置200(図3参照)によって遂行される。
<Basic control when the door of the electronic device cooling device R (2R, 2R1, 2R2, 3R) is opened>
Next, basic control when the door of the electronic device cooling apparatus R is opened will be described.
As described above, the control of the electronic device cooling device R is performed by the control device 200 (see FIG. 3).
 図10は、電子機器冷却装置の冷却運転におけるドア開放時の基本の制御を示すフロー図である。
 通常の冷却運転中、図2に示すように、前・背面側ドア2、3が閉じられ、収納室5ではサーバ8の通常の冷却運転が行われている。
FIG. 10 is a flowchart showing basic control when the door is opened in the cooling operation of the electronic device cooling apparatus.
During the normal cooling operation, as shown in FIG. 2, the front and rear doors 2 and 3 are closed, and the normal cooling operation of the server 8 is performed in the storage chamber 5.
 そして、前ドア開閉検知センサ205aで前面側ドア2が開けられたことが検知されるか、または/および、背ドア開閉検知センサ205bで背面側ドア3が開けられたことが検知される(図10のS101)と、外気温度センサ202で外気温度の値を取得するとともに、制御目標であるドア(2、3)が閉じられた際(初期値)の目標過熱度の値と、サーバ8の入気温度の目標設定温度のドア(2、3)が閉じられた際(初期値)の目標サーバ入気温度の値が取得される(S102)。 Then, it is detected by the front door opening / closing detection sensor 205a that the front side door 2 is opened, or / and the back door opening / closing detection sensor 205b is detected that the rear side door 3 is opened (FIG. 10 (S101) and the outside air temperature sensor 202 obtain the value of the outside air temperature, and the target superheat value when the doors (2, 3) as the control targets are closed (initial values) and the server 8 The value of the target server inlet temperature when the door (2, 3) of the target set temperature of the inlet temperature is closed (initial value) is acquired (S102).
 続いて、外気温度に応じた目標過熱度の増加分の変化量を、テーブルなどに格納された表1の情報から取得し、初期値の目標過熱度の値に加算し、外気温に応じた目標過熱度を再設定する。また、外気温度に応じた目標サーバ入気温度の変化量を、テーブルなどに格納された表2の情報から取得し、初期値の目標サーバ入気温度の値に加算し、外気温に応じた目標サーバ入気温度を再設定する(S103)。 Subsequently, the change amount of the increase in the target superheat degree according to the outside air temperature is acquired from the information in Table 1 stored in a table or the like, added to the target superheat degree value of the initial value, and according to the outside air temperature Reset the target superheat. Further, the change amount of the target server intake temperature corresponding to the outside air temperature is acquired from the information in Table 2 stored in a table or the like, and added to the initial value of the target server inlet temperature, and the change is made according to the outside air temperature. The target server inlet temperature is reset (S103).
 続いて、再設定された目標過熱度になるように、膨張弁11の開度を演算して求める。目標過熱度が高くなった場合には、膨張弁11の開度が狭められ、目標過熱度が低くなった場合には、膨張弁11の開度が広げられることとなる。また、再設定された目標サーバ入気温度になるように、圧縮機9の回転速度と、凝縮器用ファン13の回転速度とを演算して求める(S104)。 Subsequently, the opening degree of the expansion valve 11 is calculated and obtained so as to achieve the reset target superheat degree. When the target superheat degree becomes high, the opening degree of the expansion valve 11 is narrowed. When the target superheat degree becomes low, the opening degree of the expansion valve 11 is widened. Further, the rotational speed of the compressor 9 and the rotational speed of the condenser fan 13 are calculated and obtained so as to reach the reset target server inlet temperature (S104).
続いて、通常の冷却運転から次の運転に移行する。すなわち、S104で求めた開度になるように、膨張弁11を制御し、S104で求めた回転速度になるように圧縮機9を運転し、S104で求めた回転速度になるように凝縮器用ファン13を運転する(S105)。 Subsequently, the normal cooling operation shifts to the next operation. That is, the expansion valve 11 is controlled so as to obtain the opening degree obtained in S104, the compressor 9 is operated so as to obtain the rotational speed obtained in S104, and the condenser fan so as to obtain the rotational speed obtained in S104. 13 is operated (S105).
 続いて、前面側ドア2または/および背面側ドア3が開けられた状態か判定する(S106)。
 前面側ドア2または/および背面側ドア3が閉じられたと判定された場合(S106でNo)、通常の冷却運転に移行する(S111)。
Subsequently, it is determined whether the front door 2 and / or the rear door 3 are opened (S106).
When it is determined that the front side door 2 and / or the back side door 3 are closed (No in S106), the routine proceeds to a normal cooling operation (S111).
 前面側ドア2または/および背面側ドア3が開けられた状態と判定された場合(S106でYes)、過熱度が再設定された目標過熱度に等しいか否か判定する(S107)。
 過熱度が再設定された目標過熱度に等しくない場合(S107でNo)、膨張弁11の開度を目標過熱度になるように調整する(S109)。
When it is determined that the front door 2 and / or the rear door 3 are opened (Yes in S106), it is determined whether the superheat is equal to the reset target superheat (S107).
When the superheat degree is not equal to the reset target superheat degree (No in S107), the opening degree of the expansion valve 11 is adjusted so as to become the target superheat degree (S109).
 一方、過熱度が再設定された目標過熱度に等しい場合(S107でYes)、サーバ入気温度が目標サーバ入気温度に等しいか否か判定する(S108)。
 サーバ入気温度が目標サーバ入気温度に等しくない場合(S108でNo)、圧縮機9の回転速度と、凝縮器用ファン13の回転速度とが、目標サーバ入気温度を満足するように調整する(S110)。その後、S106に移行する。
On the other hand, when the degree of superheat is equal to the reset target degree of superheat (Yes in S107), it is determined whether or not the server inlet temperature is equal to the target server inlet temperature (S108).
If the server inlet temperature is not equal to the target server inlet temperature (No in S108), the rotational speed of the compressor 9 and the rotational speed of the condenser fan 13 are adjusted so as to satisfy the target server inlet temperature. (S110). Thereafter, the process proceeds to S106.
 一方、サーバ入気温度が目標サーバ入気温度に等しい場合(S108でYes)、S106に移行する。
 以上が、電子機器冷却装置Rのドア開放時の制御の基本の流れである。
On the other hand, when the server inlet temperature is equal to the target server inlet temperature (Yes in S108), the process proceeds to S106.
The above is the basic flow of control when the door of the electronic device cooling apparatus R is opened.
 <ドア開放時に目標過熱度のみを再設定する制御>
 次に、電子機器冷却装置Rのドア開放時の制御において、過熱度のみを再設定する制御について説明する。
 前記したように、以下説明する電子機器冷却装置Rのドア開放時の制御は、制御装置200によって遂行される。
<Control to reset only the target superheat degree when the door is opened>
Next, control for resetting only the degree of superheat in the control of the electronic device cooling apparatus R when the door is opened will be described.
As described above, the control device 200 performs control when the door of the electronic device cooling device R described below is opened.
 具体例としては、外気温が35℃、前面側ドア2、背面側ドア3が閉じられた通常冷却運転の目標サーバ入気温度25℃、目標過熱度5℃の条件において、目標過熱度のみを再設定する制御である。
 図11は、電子機器冷却装置の冷却運転におけるドア開放時の制御において、目標過熱度のみを再設定する制御を示すフロー図である。
As a specific example, only the target superheat degree is obtained under the conditions that the outside air temperature is 35 ° C., the target server inlet temperature 25 ° C. and the target superheat degree 5 ° C. of the normal cooling operation in which the front door 2 and the rear door 3 are closed. It is control to reset.
FIG. 11 is a flowchart showing control for resetting only the target superheat degree in the control when the door is opened in the cooling operation of the electronic device cooling apparatus.
 通常の冷却運転中、図2に示すように、前・背面側ドア2、3が閉じられ、収納室5ではサーバ8の冷却運転が行われている。
 そして、前ドア開閉検知センサ205aで前面側ドア2が開けられたことを検知するか、または/および、背ドア開閉検知センサ205bで背面側ドア3が開けられたことを検知する(図11のS201)と、外気温度センサ202で外気温度35℃の値を取得するとともに、制御目標であるドア(2、3)が閉じられた際(初期値)の目標過熱度の5℃と、サーバ8の入気温度の目標設定温度であるドア(2、3)が閉じられた際(初期値)の目標サーバ入気温度25℃を取得する(S202)。
During the normal cooling operation, as shown in FIG. 2, the front and rear doors 2 and 3 are closed, and the cooling operation of the server 8 is performed in the storage chamber 5.
Then, the front door opening / closing detection sensor 205a detects that the front door 2 is opened, and / or the back door opening / closing detection sensor 205b detects that the rear door 3 is opened (see FIG. 11). S201), the outside air temperature sensor 202 obtains the value of the outside air temperature of 35 ° C., the target superheat degree of 5 ° C. when the door (2, 3) as the control target is closed (initial value), and the server 8 The target server inlet temperature 25 ° C. when the door (2, 3), which is the target set temperature of the inlet temperature, is closed (initial value) is acquired (S202).
 続いて、目標サーバ入気温度の値25℃および外気温度35℃に応じた目標過熱度5℃からの増加分の変化量を、テーブルなどに格納された目標サーバ入気温度25℃の場合の表1の情報を参照して変化量2℃を取得し、初期値の目標過熱度5℃の値に変化量2℃を加算し、外気温に応じた目標過熱度7℃を再設定する(S203)。 Subsequently, the amount of change from the target superheat degree of 5 ° C. corresponding to the target server inlet temperature value of 25 ° C. and the outside air temperature of 35 ° C. is the target server inlet temperature of 25 ° C. stored in a table or the like. With reference to the information of Table 1, change amount 2 degreeC is acquired, change amount 2 degreeC is added to the value of the target superheat degree 5 degreeC of an initial value, and the target superheat degree 7 degreeC according to outside temperature is reset ( S203).
 続いて、S203で再設定された目標過熱度7℃になるような膨張弁11の開度を演算する(S204)。
 続いて、通常の冷却運転から、S204で演算した開度に膨張弁11をして、冷却運転が行われる(S205)。
Subsequently, the opening degree of the expansion valve 11 is calculated so that the target superheat degree 7 ° C. reset in S203 is obtained (S204).
Subsequently, from the normal cooling operation, the expansion valve 11 is moved to the opening calculated in S204, and the cooling operation is performed (S205).
 続いて、前面側ドア2または/および背面側ドア3が開けられた状態か判定する(S206)。
 前面側ドア2または/および背面側ドア3が閉じられたと判定された場合(S206でNo)、通常の冷却運転に移行する(S211)。
Subsequently, it is determined whether or not the front side door 2 and / or the back side door 3 are opened (S206).
When it is determined that the front side door 2 and / or the rear side door 3 are closed (No in S206), the routine proceeds to a normal cooling operation (S211).
 一方、前面側ドア2または/および背面側ドア3が開けられていると判定された場合(S206でYes)、過熱度が目標過熱度7℃と等しいか否か判定される(S207)。
 過熱度が目標過熱度7℃と等しくないと判定された場合(S207でNo)、膨張弁11の開度を目標過熱度7℃になるように調整し(S209)、S206に移行する。なお、目標過熱度がより高く設定された場合には、膨張弁11の開度が狭められ、目標過熱度がより低く設定された場合には膨張弁11の開度が広げられる。
 一方、過熱度が目標過熱度7℃と等しいと判定された場合(S207でYes)、S208で、サーバ入気温度が目標サーバ入気温度25℃に等しいか否か判定する(S208)。
 なお、前面側ドア2または/および背面側ドア3が開けられた場合、サーバ入気温度は外気温度に追従して変化するため、S208で、サーバ入気温度が目標サーバ入気温度25℃に等しいか判定し、サーバ入気温度が目標サーバ入気温度25℃に等しくなるように制御する。
On the other hand, when it is determined that the front side door 2 and / or the back side door 3 are opened (Yes in S206), it is determined whether or not the superheat degree is equal to the target superheat degree 7 ° C. (S207).
If it is determined that the superheat degree is not equal to the target superheat degree 7 ° C. (No in S207), the opening degree of the expansion valve 11 is adjusted so as to become the target superheat degree 7 ° C. (S209), and the process proceeds to S206. When the target superheat degree is set higher, the opening degree of the expansion valve 11 is narrowed. When the target superheat degree is set lower, the opening degree of the expansion valve 11 is widened.
On the other hand, when it is determined that the superheat degree is equal to the target superheat degree 7 ° C. (Yes in S207), it is determined in S208 whether the server inlet temperature is equal to the target server inlet temperature 25 ° C. (S208).
When the front door 2 and / or the rear door 3 are opened, the server inlet temperature changes following the outside air temperature, so that the server inlet temperature is set to the target server inlet temperature 25 ° C. in S208. It is determined whether they are equal, and control is performed so that the server intake air temperature becomes equal to the target server intake air temperature of 25 ° C.
 サーバ入気温度が目標サーバ入気温度25℃に等しいと判定された場合、S206に移行する。
 一方、サーバ入気温度が目標サーバ入気温度25℃に等しくないと判定された場合、圧縮機9の回転速度と、凝縮器用ファン13の回転速度とが、目標サーバ入気温度25℃を満足するように調整する(S210)。その後、S206に移行する。
 以上が、ドア開放時の制御における目標過熱度のみを再設定する制御である。
When it is determined that the server inlet temperature is equal to the target server inlet temperature 25 ° C., the process proceeds to S206.
On the other hand, when it is determined that the server inlet temperature is not equal to the target server inlet temperature 25 ° C., the rotational speed of the compressor 9 and the rotational speed of the condenser fan 13 satisfy the target server inlet temperature 25 ° C. (S210). Thereafter, the process proceeds to S206.
The above is control which resets only the target superheat degree in control at the time of door opening.
 <外気温が35℃でのドア開放時に目標過熱度、目標サーバ入気温度を再設定する制御>
 次に、外気温が35℃での電子機器冷却装置Rのドア開放時に、目標過熱度、目標サーバ入気温度を再設定する制御について説明する。
<Control to reset the target superheat and target server inlet temperature when the door is open at 35 ° C>
Next, control for resetting the target superheat degree and the target server intake air temperature when the door of the electronic device cooling apparatus R is opened at an external temperature of 35 ° C. will be described.
 具体的には、外気温が35℃、前面側ドア2、背面側ドア3が閉じられた通常冷却運転の目標サーバ入気温度25℃、目標過熱度5℃の条件において、目標過熱度、目標サーバ入気温度を再設定する制御である。 Specifically, the target superheat degree and the target are set under the conditions that the outside air temperature is 35 ° C., the target server inlet temperature 25 ° C. and the target superheat degree 5 ° C. of the normal cooling operation in which the front door 2 and the rear door 3 are closed. This is control for resetting the server inlet temperature.
 図12は、外気温35℃での電子機器冷却装置の冷却運転におけるドア開放時の過熱度、サーバ入気温度を再設定する制御を示すフロー図である。
 図2に示すように、通常の冷却運転中は、前・背面側ドア2、3が閉じられ、収納室5ではサーバ8の冷却運転が行われている。
FIG. 12 is a flowchart showing control for resetting the degree of superheat and the server inlet temperature when the door is opened in the cooling operation of the electronic device cooling apparatus at an outside air temperature of 35 ° C.
As shown in FIG. 2, during the normal cooling operation, the front and rear doors 2 and 3 are closed, and the server 8 is cooling in the storage chamber 5.
 そして、前ドア開閉検知センサ205aで前面側ドア2が開けられたことが検知されるか、または/および、背ドア開閉検知センサ205bで背面側ドア3が開けられたことが検知されると(図12のS301)、外気温度センサ202で外気温度の値(35℃)を取得するとともに、前・背面側ドア2、3が閉じられた状態の制御目標であるドア(2、3)が閉じられた際(初期値)の目標過熱度の値(5℃)と、サーバ8の入気温度の目標設定温度であるドア(2、3)が閉じられた際(初期値)の目標サーバ入気温度の値(25℃)を取得する(S302)。 When the front door opening / closing detection sensor 205a detects that the front door 2 has been opened or / and the back door opening / closing detection sensor 205b detects that the rear door 3 has been opened ( In step S301 in FIG. 12, the outside air temperature value (35 ° C.) is acquired by the outside air temperature sensor 202, and the doors (2, 3), which are control targets in the state where the front and rear side doors 2, 3 are closed, are closed. The target superheat value (5 ° C.) when it is opened (initial value) and the target server entry when the doors (2, 3) that are the target set temperature of the inlet temperature of the server 8 are closed (initial value) An air temperature value (25 ° C.) is acquired (S302).
 続いて、外気温35℃に応じた目標過熱度の増加分の変化量を、テーブルなどに格納された表1の情報から取得し、初期値の目標過熱度5℃の値に加算し、外気温に応じた目標過熱度を再設定する。すなわち、表1から、外気温度35℃の目標過熱度の変化量+2℃であるから、再設定された目標過熱度は、7℃(=5+2)とされる。また、外気温35℃に応じた目標サーバ入気温度の変化量を、テーブルなどに格納された表2の情報から取得する。表2から、外気温度45~10℃の目標サーバ入気温度の変化量は、(35-25)/2=5℃ と演算され、再設定された目標サーバ入気温度は、25+5=30℃ とされる(S303)。 Subsequently, the amount of change in the increase in the target superheat degree corresponding to the outside air temperature of 35 ° C. is obtained from the information in Table 1 stored in a table or the like, and added to the initial value of the target superheat degree of 5 ° C. Reset the target superheat degree according to the temperature. That is, from Table 1, since the change amount of the target superheat degree at the outside air temperature of 35 ° C. + 2 ° C., the reset target superheat degree is set to 7 ° C. (= 5 + 2). Further, the change amount of the target server intake air temperature corresponding to the outside air temperature of 35 ° C. is acquired from the information in Table 2 stored in a table or the like. From Table 2, the change amount of the target server inlet temperature when the outside air temperature is 45-10 ° C is calculated as (35-25) / 2 = 5 ° C, and the reset target server inlet temperature is 25 + 5 = 30 ° C. (S303).
 続いて、再設定された目標過熱度7℃になるように、膨張弁11の開度を演算して求める。目標過熱度7℃と初期値より2℃が高くなったので、膨張弁11の開度が狭められることとなる。また、初期値の目標サーバ入気温度25℃が再設定された目標サーバ入気温度30℃になるように、圧縮機9の回転速度と、凝縮器用ファン13の回転速度とが高くなるように演算して求められる(S304)。 Subsequently, the opening degree of the expansion valve 11 is calculated and obtained so that the reset target superheat degree becomes 7 ° C. Since the target superheat degree is 7 ° C. and 2 ° C. is higher than the initial value, the opening degree of the expansion valve 11 is narrowed. Further, the rotational speed of the compressor 9 and the rotational speed of the condenser fan 13 are increased so that the initial target server inlet temperature 25 ° C. becomes the reset target server inlet temperature 30 ° C. It is obtained by calculation (S304).
 続いて、通常の冷却運転から次の運転に移行する。すなわち、S304で求めた膨張弁11の開度となるように、膨張弁11の開度が狭められように制御される。また、S304で求めた高くなった回転速度となるように圧縮機9が運転され、S304で求めた回転速度となるように凝縮器用ファン13が運転される(S305)。これにより、後に通常の冷却運転に戻った際の圧縮機9の回転し過ぎや、圧縮機9に液状態の冷媒が入ることが抑制される。
 続いて、前面側ドア2、または/および背面側ドア3が開けられた状態か判定される(S306)。
Subsequently, the normal cooling operation shifts to the next operation. That is, the opening of the expansion valve 11 is controlled to be narrowed so that the opening of the expansion valve 11 obtained in S304 is obtained. Further, the compressor 9 is operated so as to achieve the increased rotational speed determined in S304, and the condenser fan 13 is operated so as to achieve the rotational speed determined in S304 (S305). As a result, it is possible to prevent the compressor 9 from rotating excessively when returning to the normal cooling operation later, and the liquid refrigerant from entering the compressor 9.
Subsequently, it is determined whether the front door 2 and / or the rear door 3 are opened (S306).
 前面側ドア2または/および背面側ドア3が閉じられたと判定された場合(S306でNo)、通常の冷却運転(S311)の制御に移行する。
 前面側ドア2または/および背面側ドア3が開けられた状態と判定された場合(S306でYes)、過熱度が再設定された目標過熱度7℃に等しいか否か判定される(S307)。
When it is determined that the front door 2 and / or the rear door 3 are closed (No in S306), the control proceeds to the normal cooling operation (S311).
When it is determined that the front door 2 and / or the rear door 3 are opened (Yes in S306), it is determined whether the superheat is equal to the reset target superheat 7 ° C. (S307). .
 過熱度が再設定された目標過熱度7℃に等しくないと判定された場合(S307でNo)、膨張弁11の開度を目標過熱度7℃になるように調整される(S309)。 When it is determined that the superheat degree is not equal to the reset target superheat degree 7 ° C. (No in S307), the opening degree of the expansion valve 11 is adjusted to be the target superheat degree 7 ° C. (S309).
 一方、過熱度が再設定された目標過熱度7℃に等しいと判定された場合(S307でYes)、サーバ入気温度が目標サーバ入気温度30℃に等しいか否か判定する(S308)。 On the other hand, when it is determined that the superheat degree is equal to the reset target superheat degree 7 ° C. (Yes in S307), it is determined whether or not the server air intake temperature is equal to the target server air intake temperature 30 ° C. (S308).
 サーバ入気温度が目標サーバ入気温度に等しくないと判定された場合(S308でNo)、圧縮機9の回転速度と、凝縮器用ファン13の回転速度とを、サーバ入気温度が目標サーバ入気温度30℃になるように調整する(S310)。その後、S306に移行する。 When it is determined that the server inlet temperature is not equal to the target server inlet temperature (No in S308), the rotation speed of the compressor 9 and the rotation speed of the condenser fan 13 are determined based on the server inlet temperature. The air temperature is adjusted to 30 ° C. (S310). Thereafter, the process proceeds to S306.
 一方、サーバ入気温度が目標サーバ入気温度に等しいと判定された場合(S308でYes)、S306に移行する。
 以上が、外気温が35℃、前・背面側ドア2、3が閉じられた通常冷却運転の目標サーバ入気温度25℃、目標過熱度5℃の条件においてのドア開放時の過熱度、サーバ入気温度を再設定する制御の流れである。
On the other hand, when it is determined that the server inlet temperature is equal to the target server inlet temperature (Yes in S308), the process proceeds to S306.
The above is the degree of superheat when the door is opened under the conditions that the outside air temperature is 35 ° C., the target server inlet temperature 25 ° C. for the normal cooling operation in which the front and rear doors 2 and 3 are closed, and the target superheat degree 5 ° C. This is a control flow for resetting the inlet temperature.
 <外気温15℃でのドア開放時に過熱度、サーバ入気温度を再設定する制御>
 次に、外気温15℃での電子機器冷却装置Rのドア開放時の過熱度、サーバ入気温度を再設定する制御について説明する。
 具体的には、外気温が15℃、前面側ドア2、背面側ドア3が閉じられた通常冷却運転の目標サーバ入気温度25℃、目標過熱度5℃の条件において、過熱度、サーバ入気温度を再設定する制御である。
<Control that resets the degree of superheat and server inlet temperature when the door is opened at an external temperature of 15 ° C>
Next, control for resetting the degree of superheat when the door of the electronic device cooling apparatus R is opened at an outside air temperature of 15 ° C. and the server inlet temperature will be described.
Specifically, under conditions where the outside air temperature is 15 ° C., the front server door 2 and the rear door 3 are closed, the target server inlet temperature 25 ° C. and the target super heater 5 ° C. of the normal cooling operation, This is control for resetting the air temperature.
 図13は、外気温15℃での電子機器冷却装置の冷却運転におけるドア開放時の過熱度、サーバ入気温度を再設定する制御を示すフロー図である。
 通常の冷却運転中、図2に示すように、前・背面側ドア2、3が閉じられ、収納室5ではサーバ8の通常の冷却運転が行われている。
FIG. 13 is a flowchart showing control for resetting the degree of superheat when the door is opened in the cooling operation of the electronic device cooling apparatus at an outside air temperature of 15 ° C., and the server inlet temperature.
During the normal cooling operation, as shown in FIG. 2, the front and rear doors 2 and 3 are closed, and the normal cooling operation of the server 8 is performed in the storage chamber 5.
 そして、前ドア開閉検知センサ205aで前面側ドア2が開けられたことが検知されるか、または/および、背ドア開閉検知センサ205bで背面側ドア3が開けられたことが検知されると(図13のS401)、外気温度センサ202で外気温度の値(15℃)を取得するとともに、前・背面側ドア2、3が閉じられた状態(初期値)の制御目標である目標過熱度の値(5℃)と、サーバ8の入気温度の目標設定温度であるドア(2、3)が閉じられた際(初期値)の目標サーバ入気温度の値(25℃)を取得する(S402)。 When the front door opening / closing detection sensor 205a detects that the front door 2 has been opened or / and the back door opening / closing detection sensor 205b detects that the rear door 3 has been opened ( 13 (S401 in FIG. 13), the outside air temperature sensor 202 obtains the outside air temperature value (15 ° C.), and the target superheat degree, which is a control target when the front and rear doors 2 and 3 are closed (initial value). The value (5 ° C.) and the value (25 ° C.) of the target server inlet temperature when the door (2, 3), which is the target set temperature of the inlet temperature of the server 8, is closed (initial value) are acquired ( S402).
 続いて、外気温15℃に応じた目標過熱度の増加分の変化量を、テーブルなどに格納された表1の情報から取得し、初期値の目標過熱度5℃の値に加算し、外気温に応じた目標過熱度を再設定する。表1から、外気温度15℃の目標過熱度の変化量+6℃であるから、再設定された目標過熱度は、11℃(=5+6)とされる。また、外気温15℃に応じた目標サーバ入気温度の変化量を、テーブルなどに格納された表2の情報から取得する。表2から、外気温度45~10℃の目標サーバ入気温度の変化量は、(15-25)/2=-5 と演算され、再設定された目標サーバ入気温度は、25-5=20℃ とされる(S403)。 Subsequently, the change amount of the increase in the target superheat degree corresponding to the outside air temperature of 15 ° C. is obtained from the information in Table 1 stored in a table or the like, and added to the initial value of the target superheat degree of 5 ° C. Reset the target superheat degree according to the temperature. From Table 1, since the change amount of the target superheat degree at the outside air temperature of 15 ° C. + 6 ° C., the reset target superheat degree is set to 11 ° C. (= 5 + 6). Further, the change amount of the target server intake air temperature corresponding to the outside air temperature of 15 ° C. is acquired from the information in Table 2 stored in a table or the like. From Table 2, the change amount of the target server inlet temperature when the outside air temperature is 45 to 10 ° C. is calculated as (15−25) / 2 = −5, and the reset target server inlet temperature is 25−5 = It is set to 20 ° C. (S403).
 続いて、再設定された目標過熱度11℃になるように、膨張弁11の開度を演算して求める。目標過熱度11℃と初期値より6℃が高くなったので、膨張弁11の開度が狭められることとなる。また、初期値の目標サーバ入気温度25℃が、再設定された目標サーバ入気温度20℃になるように、圧縮機9の回転速度と、凝縮器用ファン13の回転速度とが低くなるように演算して求められる(S404)。 Subsequently, the opening degree of the expansion valve 11 is calculated and obtained so that the reset target superheat degree is 11 ° C. Since the target superheat degree is 11 ° C. and 6 ° C. is higher than the initial value, the opening degree of the expansion valve 11 is narrowed. Further, the rotational speed of the compressor 9 and the rotational speed of the condenser fan 13 are lowered so that the initial target server inlet temperature 25 ° C. becomes the reset target server inlet temperature 20 ° C. (S404).
続いて、通常の冷却運転から次の運転に移行する。すなわち、S404で求めた膨張弁11の開度となるように、膨張弁11の開度が狭められように制御される。また、S404で求めた回転速度となるように圧縮機9が運転され、S404で求めた回転速度となるように凝縮器用ファン13が運転される(S405)。これにより、後に通常の冷却運転に戻った際の圧縮機9の回転不足や、圧縮機9に液状態の冷媒が入ることが抑制される。 Subsequently, the normal cooling operation shifts to the next operation. That is, the opening degree of the expansion valve 11 is controlled to be narrowed so as to be the opening degree of the expansion valve 11 obtained in S404. Further, the compressor 9 is operated so as to be the rotational speed obtained in S404, and the condenser fan 13 is operated so as to be the rotational speed obtained in S404 (S405). Thereby, insufficient rotation of the compressor 9 when returning to the normal cooling operation later and liquid refrigerant entering the compressor 9 are suppressed.
 続いて、前面側ドア2または/および背面側ドア3が開けられた状態か否か判定される(S406)。
 前面側ドア2または/および背面側ドア3が閉じられたと判定された場合(S406でNo)、通常の冷却運転に移行する(S411)。
Subsequently, it is determined whether or not the front side door 2 and / or the back side door 3 are opened (S406).
When it is determined that the front side door 2 and / or the back side door 3 are closed (No in S406), the routine proceeds to a normal cooling operation (S411).
 一方、前面側ドア2または/および背面側ドア3が開けられた状態と判定された場合(S406でYes)、過熱度が再設定された目標過熱度11℃に等しいか否か判定される(S407)。 On the other hand, when it is determined that the front door 2 and / or the rear door 3 are opened (Yes in S406), it is determined whether or not the superheat is equal to the reset target superheat 11 ° C. ( S407).
 過熱度が再設定された目標過熱度11℃に等しくないと判定された場合(S407でNo)、膨張弁11の開度が、目標過熱度11℃になるように調整される(S409)。
 一方、過熱度が再設定された目標過熱度11℃に等しいと判定された場合(S407でYes)、サーバ入気温度が目標サーバ入気温度20℃に等しいか否か判定される(S408)。
When it is determined that the superheat degree is not equal to the reset target superheat degree 11 ° C. (No in S407), the opening degree of the expansion valve 11 is adjusted to become the target superheat degree 11 ° C. (S409).
On the other hand, when it is determined that the superheat degree is equal to the reset target superheat degree 11 ° C. (Yes in S407), it is determined whether or not the server intake air temperature is equal to the target server intake air temperature 20 ° C. (S408). .
 サーバ入気温度が目標サーバ入気温度20℃に等しくないと判定された場合(S408でNo)、圧縮機9の回転速度と、凝縮器用ファン13の回転速度とが、サーバ入気温度が目標サーバ入気温度20℃になるように調整される(S410)。その後、S406に移行する。 When it is determined that the server inlet temperature is not equal to the target server inlet temperature of 20 ° C. (No in S408), the rotation speed of the compressor 9 and the rotation speed of the condenser fan 13 are the target server inlet temperature. The server inlet temperature is adjusted to 20 ° C. (S410). Thereafter, the process proceeds to S406.
 一方、サーバ入気温度が目標サーバ入気温度20℃に等しいと判定された場合(S408でYes)、S406に移行する。
 以上が、サーバ入気15℃、通常冷却運転の目標サーバ入気温度25℃、目標過熱度5℃の条件においての電子機器冷却装置Rのドア開放時の過熱度、サーバ入気温度を再設定する制御の流れである。
On the other hand, when it is determined that the server inlet temperature is equal to the target server inlet temperature 20 ° C. (Yes in S408), the process proceeds to S406.
The above is to reset the degree of superheat when the door of the electronic device cooling device R is opened and the server inlet temperature under the conditions of the server inlet air 15 ° C., the target server inlet temperature 25 ° C. of the normal cooling operation, and the target superheat degree 5 ° C. This is the flow of control.
 上記構成によれば、サーバ8の冷却運転中に前面側ドア2または/および、背面側ドア3が開けられた場合、目標過熱度を上げるように変更するので、ドア(2、3)が開かれた場合に圧縮機9に液状態の冷媒が戻ることが抑制される。 According to the above configuration, when the front door 2 and / or the rear door 3 are opened during the cooling operation of the server 8, the doors (2, 3) are opened because the target superheat degree is increased. In this case, the liquid refrigerant is prevented from returning to the compressor 9.
 また、圧縮機9への液状態の冷媒の戻りは、外気温度が目標サーバ入気温度より低い場合の方が高い場合よりも起き易いが、目標過熱度は、外気温が目標サーバ入気温度より低い場合の方が高い場合よりも大きく上昇させて設定されるので、より確実に圧縮機9へ液状態の冷媒が戻ることを抑制できる。そのため、圧縮機9の信頼性および電子機器冷却装置Rの冷却性能の信頼性を高めることができる。
 加えて、外気温が高い方が低い場合よりも結露を起こし易いが、外気温が高い方が低い場合よりも目標過熱度の増加分は低いので、結露を未然に抑制できる。
Further, the return of the refrigerant in the liquid state to the compressor 9 is more likely to occur when the outside air temperature is lower than the target server inlet temperature, but the target superheat degree is determined by the outside air temperature being the target server inlet temperature. Since the lower case is set higher than the higher case, it is possible to more reliably prevent the liquid refrigerant from returning to the compressor 9. Therefore, the reliability of the compressor 9 and the reliability of the cooling performance of the electronic device cooling device R can be improved.
In addition, condensation is more likely to occur when the outside temperature is higher than when the outside temperature is low, but the amount of increase in the target superheat degree is lower than when the outside temperature is low, so that condensation can be suppressed in advance.
 また、前面側ドア2または/および背面側ドア3が開けられた際に、目標サーバ入気温度を外気温に追従させて外気温に近いように変更するので、ドア(2、3)が開かれた後に閉じられた場合の外気温が高い場合の収納室5の冷やし過ぎ、外気温が低い場合の収納室5の温め過ぎを抑制できる。 In addition, when the front door 2 and / or the rear door 3 are opened, the target server inlet temperature is changed to follow the outside air temperature so that it is close to the outside air temperature, so that the doors (2, 3) are opened. It is possible to prevent the storage room 5 from being overcooled when the outside air temperature is high when the outside air temperature is high after being closed and overheating of the storage room 5 when the outside air temperature is low.
 また、外気温が高温時にドア(2、3)が開かれた場合の圧縮機9の回し過ぎを抑制でき、圧縮機9の損壊を抑制できる。
 加えて、開けられた前面側ドア2または/および背面側ドア3が閉じられた場合も、速やかに通常のドア閉時の冷却運転に移行することができる。そのため、圧縮機9の高速回転に起因する翼の損傷を抑制でき、圧縮機9の信頼性を高め、その運転寿命を延ばすことができる。
In addition, when the doors (2, 3) are opened when the outside air temperature is high, the compressor 9 can be prevented from being rotated excessively, and the compressor 9 can be prevented from being damaged.
In addition, even when the opened front side door 2 and / or back side door 3 are closed, it is possible to promptly shift to a normal cooling operation when the door is closed. Therefore, damage to the blades caused by high-speed rotation of the compressor 9 can be suppressed, the reliability of the compressor 9 can be improved, and the operating life can be extended.
 さらに、目標サーバ入気温度を外気温に追従させて外気温に近いように変更するので、ドア(2、3)が閉じられた場合に液状態の冷媒が圧縮機9に戻ることを抑制できる。 Further, since the target server inlet temperature is changed to follow the outside air temperature so as to be close to the outside air temperature, it is possible to suppress the liquid refrigerant from returning to the compressor 9 when the doors (2, 3) are closed. .
<<その他の実施形態>>
1.前記実施形態では、収納室5内に収納する電子機器として、サーバ8を収納する場合を例示して説明したが、収納室5内に、CPUのみ、ストレージのみ、ネットワーク機器のみ、またはこれらの何れかを組み合わせて、収納することとしてもよい。
 前記したように、収納室5内には、電子機器であればどのような機器でも冷却対象として収納できる。
<< Other Embodiments >>
1. In the embodiment, the case where the server 8 is stored as the electronic device stored in the storage chamber 5 has been described as an example. However, in the storage chamber 5, only the CPU, only the storage, only the network device, or any of these It is good also as storing, combining these.
As described above, any device as long as it is an electronic device can be stored in the storage chamber 5 as a cooling target.
2.前記実施形態では、ドアの開放時に、外気温に追従させて目標サーバ入気温度を変更して制御する場合を説明したが、外気温に追従させて圧縮機9の回転速度を変更させたり、予め圧縮機9の回転速度に制限を設け、ドアの開放時に所定回転速度(第1の所定回転速度)以上に回転速度が上昇しないまたは所定回転速度(第2の所定回転速度)以下に回転速度が下降しない構成としてもよい。 2. In the above embodiment, when the door is opened, the case where the target server intake air temperature is changed and controlled by following the outside air temperature is described, but the rotation speed of the compressor 9 can be changed following the outside air temperature, The rotational speed of the compressor 9 is limited in advance, and when the door is opened, the rotational speed does not increase above the predetermined rotational speed (first predetermined rotational speed) or below the predetermined rotational speed (second predetermined rotational speed). It is good also as a structure which does not fall.
 例えば、外気温が目標サーバ入気温度よりも高い場合にはドアの閉塞時の圧縮機9の回転速度を高く変更し、外気温が目標サーバ入気温度よりも低い場合にはドアの閉塞時の圧縮機9の回転速度を低く変更する。
 これにより、ドア閉時の圧縮機9の回転のし過ぎや回転不足、および、圧縮機9に液状態の冷媒が戻ることが抑制される。
For example, when the outside air temperature is higher than the target server inlet temperature, the rotation speed of the compressor 9 is changed to a higher value when the door is closed, and when the outside temperature is lower than the target server inlet temperature, the door is closed. The rotation speed of the compressor 9 is changed to a low value.
Thereby, it is suppressed that the compressor 9 is excessively rotated or insufficiently rotated when the door is closed, and the liquid refrigerant returns to the compressor 9.
 または、外気温が目標サーバ入気温度よりも高い場合にはドアの閉塞時の圧縮機9の回転速度が所定回転速度(第1の所定回転速度)以上にならないようにしたり、外気温が目標サーバ入気温度よりも低い場合にはドアの閉塞時の圧縮機9の回転速度が所定回転速度(第2の所定回転速度)以下にならないようにしてもよい。
 同様に、ドア閉時の圧縮機9の回転のし過ぎや回転不足、および、圧縮機9に液状態の冷媒が戻ることが抑制される。
Alternatively, when the outside air temperature is higher than the target server intake air temperature, the rotation speed of the compressor 9 when the door is closed is prevented from exceeding a predetermined rotation speed (first predetermined rotation speed), or the outside air temperature is the target. When the temperature is lower than the server inlet temperature, the rotational speed of the compressor 9 when the door is closed may not be equal to or lower than a predetermined rotational speed (second predetermined rotational speed).
Similarly, excessive or insufficient rotation of the compressor 9 when the door is closed, and return of the liquid refrigerant to the compressor 9 are suppressed.
3.前記実施形態では、前面側ドア2または/および背面側ドア3が開放された場合の制御を説明したが、収納室5の側面部にドアを形成し、当該ドアを開閉した場合にも、前記と同様な制御が適用できることは勿論である。 3. In the embodiment, the control when the front door 2 or / and the rear door 3 is opened has been described. However, even when the door is formed on the side surface of the storage chamber 5 and the door is opened and closed, Of course, the same control can be applied.
4.前記実施形態では、ドア(2、3)が開閉された際、目標過熱度または目標過熱度および目標サーバ入気温度を再設定する場合を説明したが、ドア(2、3)が開閉された際、目標サーバ入気温度のみを再設定する制御としてもよい。 4). In the above embodiment, the case where the target superheat degree or the target superheat degree and the target server inlet temperature are reset when the doors (2, 3) are opened and closed has been described. However, the doors (2, 3) are opened and closed. At this time, only the target server inlet temperature may be reset.
5.前記実施形態、変形例では電子機器冷却装置R(2R、2R1、2R2、3R)として説明したが、上段に放熱室の空間、中段に冷却用の収納室の空間、下段に機械類を納める機械室の空間を配置する冷却用筐体、または、上段に冷却用の収納室の空間、下段に放熱室および機械類を納める放熱兼機械室の空間を配置する冷却用筐体として提供することも可能である。 5. In the above-described embodiment and modifications, the electronic device cooling device R (2R, 2R1, 2R2, 3R) has been described. It is also possible to provide a cooling housing in which the space of the room is arranged, or a cooling housing in which the space of the storage room for cooling is arranged in the upper stage, and the space of the heat radiating and machine room in which the heat radiating room and machinery are accommodated in the lower stage. Is possible.
 例えば、冷却用筐体を、上段に配置され放熱部が設けられる空間の放熱室と、中段に配置され冷却対象と該冷却対象を冷却する冷却部とが設けられる空間の収納室と、下段に配置され機械類が設けられる空間の機械室とを備える構成とできる。または、上段に配置され冷却対象と該冷却対象を冷却する冷却部と、下段に配置され放熱部および機械類が設けられる空間の放熱兼機械室とを備える構成とすることができる。
 これにより、熱特性やメンテナンス性、制御性に優れる冷却用筐体を提供できる。
For example, a cooling housing is arranged in a space where a heat radiating chamber is provided in the upper stage and provided with a heat radiating part, a space storage room provided in the middle stage and provided with a cooling target and a cooling part for cooling the cooling target, and a lower stage. And a machine room in a space where the machinery is provided. Or it can be set as the structure provided with the cooling object and the cooling part which cools this cooling object arranged in the upper stage, and the heat radiation and machine room of the space arranged in the lower stage and provided with the heat dissipation part and machinery.
As a result, it is possible to provide a cooling housing that is excellent in thermal characteristics, maintainability, and controllability.
 以上、説明した構成により、扉の開放に拘らず、冷却性能の信頼性が高い電子機器冷却装置R(2R、2R1、2R2、3R)およびその制御方法を実現することができる。 As described above, the electronic apparatus cooling device R (2R, 2R1, 2R2, 3R) having a high reliability in cooling performance and its control method can be realized by the configuration described above, regardless of the opening of the door.
 なお、本発明は前記した実施形態、変形例に限定されるものでなく、様々な実施形態が含まれる。例えば、上記した実施形態、変形例は本発明を分り易く説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。例えば、説明した構成の一部を含むものであってもよい。 Note that the present invention is not limited to the above-described embodiments and modifications, and includes various embodiments. For example, the above-described embodiments and modification examples are merely illustrative of the present invention, and are not necessarily limited to those having all the configurations described. For example, a part of the configuration described may be included.
 また、ある実施形態、変形例の一部を他の実施形態、変形例の構成に置き換えることが可能であり、また、ある実施形態、変形例の構成に他の実施形態、変形例の構成を加えることも可能である。また、各実施形態、変形例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。 Moreover, it is possible to replace a part of a certain embodiment or modification with the configuration of another embodiment or modification, and the configuration of another embodiment or modification may be replaced with the configuration of a certain embodiment or modification. It is also possible to add. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configurations of each embodiment and modification.
 2   前面側ドア(ドア)
 3   背面側ドア(ドア)
 5   収納室
 8   サーバ(電子機器)
 9   圧縮機
 9a  第1の圧縮機(圧縮機)
 9b  第2の圧縮機(圧縮機)
 10  凝縮器
 10a 第1の凝縮器(凝縮器)
 10b 第2の凝縮器(凝縮器)
 11  膨張弁(減圧手段)
 11a 第1の膨張弁(減圧手段)
 11b 第2の膨張弁減圧手段)
 12  蒸発器
 12a 第1の蒸発器(蒸発器)
 12b 第2の蒸発器(蒸発器)
 13  凝縮器用ファン
 200 制御装置(制御手段)
 201 温度センサ(入気温度検知手段)
 202 外気温度センサ(外気温度検出手段)
 203 温度センサ(入口温度検知手段)
 203a 第1のセンサ(入口温度検知手段)
 203b 第2のセンサ(入口温度検知手段)
 204 温度センサ(出口温度検知手段)
 204a 第1のセンサ(出口温度検知手段)
 204b 第2のセンサ(出口温度検知手段)
 205a 前ドア開閉検知センサ(ドア開閉検知手段)
 205b 背ドア開閉検知センサ(ドア開閉検知手段)
 h、h1、h2、h1a、h2a   配管
 ha、hb 冷媒配管(配管)
 k   筐体(冷却用筐体)
 ka  側面ドア(ドア)
 ka1 第1側面ドア(ドア)
 ka2 第2側面ドア(ドア)
 R、2R、2R1、2R2、3R 電子機器冷却装置
2 Front door (door)
3 Back door (door)
5 Storage room 8 Server (electronic equipment)
9 Compressor 9a First compressor (compressor)
9b Second compressor (compressor)
10 Condenser 10a First condenser (condenser)
10b Second condenser (condenser)
11 Expansion valve (pressure reduction means)
11a First expansion valve (pressure reduction means)
11b Second expansion valve pressure reducing means)
12 Evaporator 12a First evaporator (evaporator)
12b Second evaporator (evaporator)
13 Condenser fan 200 Control device (control means)
201 Temperature sensor (inlet air temperature detection means)
202 Outside temperature sensor (outside temperature detection means)
203 Temperature sensor (Inlet temperature detection means)
203a First sensor (inlet temperature detection means)
203b Second sensor (inlet temperature detection means)
204 Temperature sensor (outlet temperature detection means)
204a First sensor (outlet temperature detection means)
204b Second sensor (outlet temperature detection means)
205a Front door opening / closing detection sensor (door opening / closing detection means)
205b Back door open / close detection sensor (door open / close detection means)
h, h1, h2, h1a, h2a piping ha, hb Refrigerant piping (piping)
k Enclosure (Cooling enclosure)
ka side door (door)
ka1 first side door (door)
ka2 Second side door (door)
R, 2R, 2R1, 2R2, 3R Electronic equipment cooling device

Claims (13)

  1.  電子機器を冷却するための冷凍サイクルを構成する圧縮機、凝縮器、減圧手段、および蒸発器が、冷媒が流れる配管により接続され、収納室内に設けられる電子機器が前記蒸発器で冷却された空気で冷却される電子機器冷却装置であって、
     前記収納室が開閉されるドアと、
     前記ドアの開閉を検知するドア開閉検知手段と、
     蒸発器入口の冷媒温度を検知する入口温度検知手段と、
     蒸発器出口の冷媒温度を検知する出口温度検知手段と、
     前記冷却の制御を行う制御手段とを備え、
     前記制御手段は、
     前記ドア開閉検知手段により前記ドアの開放が検知された際、
     前記蒸発器出口の冷媒温度から前記蒸発器入口の冷媒温度を減算して求められる過熱度の制御目標値である目標過熱度を、前記ドアの閉塞時の前記目標過熱度より高い値に変更する
     ことを特徴とする電子機器冷却装置。
    Compressor, condenser, decompression means, and evaporator constituting a refrigeration cycle for cooling electronic equipment are connected by piping through which refrigerant flows, and the electronic equipment provided in the storage chamber is cooled by the evaporator An electronic device cooling device cooled by
    A door that opens and closes the storage chamber;
    Door opening and closing detection means for detecting opening and closing of the door;
    An inlet temperature detecting means for detecting the refrigerant temperature at the evaporator inlet;
    Outlet temperature detecting means for detecting the refrigerant temperature at the outlet of the evaporator;
    Control means for controlling the cooling,
    The control means includes
    When opening of the door is detected by the door opening / closing detection means,
    The target superheat degree, which is a control target value of the superheat degree obtained by subtracting the refrigerant temperature at the evaporator inlet from the refrigerant temperature at the evaporator outlet, is changed to a value higher than the target superheat degree when the door is closed. An electronic device cooling device.
  2.  請求項1に記載の電子機器冷却装置において、
     外気温度を検出する外気温度検出手段と、
     前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段とを備え、
     前記制御手段は、
     前記ドア開閉検知手段により前記ドアの開放を検知した際、
     前記外気温度が前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記外気温度が前記目標電子機器入気温度より低い場合よりも前記目標過熱度を低い値に変更する
     ことを特徴とする電子機器冷却装置。
    The electronic device cooling device according to claim 1,
    Outside temperature detecting means for detecting outside temperature;
    An inlet air temperature detecting means for detecting an inlet air temperature that is a temperature when air for cooling the electronic device starts to hit the electronic device;
    The control means includes
    When opening of the door is detected by the door opening / closing detection means,
    When the outside air temperature is higher than a target electronic device inlet temperature that is a control target value of the inlet temperature, the target superheat degree is set to a lower value than when the outside air temperature is lower than the target electronic device inlet temperature. An electronic device cooling device characterized by being changed.
  3.  請求項1に記載の電子機器冷却装置において、
     外気温度を検出する外気温度検出手段と、
     前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段とを備え、
     前記制御手段は、
     前記ドア開閉検知手段により前記ドアの開放を検知した際、
     前記外気温度が、前記ドアが閉じられた際の前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記ドアの開放時の前記目標電子機器入気温度を、前記ドアが閉じられた際の前記目標電子機器入気温度より高い値に変更し、
     前記外気温度が前記ドアが閉じられた際の前記目標電子機器入気温度より低い場合には、前記ドアの開放時の前記目標電子機器入気温度を、前記ドアが閉じられた際の前記目標電子機器入気温度より低い値に変更する
     ことを特徴とする電子機器冷却装置。
    The electronic device cooling device according to claim 1,
    Outside temperature detecting means for detecting outside temperature;
    An inlet air temperature detecting means for detecting an inlet air temperature that is a temperature when air for cooling the electronic device starts to hit the electronic device;
    The control means includes
    When opening of the door is detected by the door opening / closing detection means,
    When the outside air temperature is higher than a target electronic device inlet temperature that is a control target value of the inlet temperature when the door is closed, the target electronic device inlet temperature when the door is opened, Change to a value higher than the target electronic device inlet temperature when the door is closed,
    When the outside air temperature is lower than the target electronic device inlet temperature when the door is closed, the target electronic device inlet temperature when the door is opened is set as the target electronic device inlet temperature when the door is closed. An electronic device cooling apparatus characterized by changing to a value lower than the electronic device inlet temperature.
  4.  請求項1に記載の電子機器冷却装置において、
     外気温度を検出する外気温度検出手段と、
     前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段とを備え、
     前記制御手段は、
     前記ドア開閉検知手段により前記ドアの開放を検知した際、
     前記外気温度が、前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記圧縮機の回転速度を前記ドアの閉塞時よりも増加させ、
     前記外気温度が、前記目標電子機器入気温度より低い場合には、前記圧縮機の回転速度を前記ドアの閉塞時よりも減少させる
     ことを特徴とする電子機器冷却装置。
    The electronic device cooling device according to claim 1,
    Outside temperature detecting means for detecting outside temperature;
    An inlet air temperature detecting means for detecting an inlet air temperature that is a temperature when air for cooling the electronic device starts to hit the electronic device;
    The control means includes
    When opening of the door is detected by the door opening / closing detection means,
    When the outside air temperature is higher than a target electronic device inlet temperature that is a control target value of the inlet temperature, the rotational speed of the compressor is increased more than when the door is closed,
    When the outside air temperature is lower than the target electronic device inlet temperature, the rotation speed of the compressor is reduced as compared with that when the door is closed.
  5.  請求項1に記載の電子機器冷却装置において、
     前記電子機器冷却装置は、前記凝縮器に空気を送る凝縮器用ファンと、
     外気温度を検出する外気温度検出手段と、
     前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段とを備え、
     前記制御手段は、
     前記ドア開閉検知手段により前記ドアの開放を検知した際、
     前記外気温度が、前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記圧縮機の回転速度を前記ドアの閉塞時よりも増加させるとともに、前記凝縮器用ファンの回転速度を前記ドアの閉塞時よりも増加させ、
     前記外気温度が、前記目標電子機器入気温度より低い場合には、前記圧縮機の回転速度を前記ドアの閉塞時よりも減少させるとともに、前記凝縮器用ファンの回転速度を前記ドアの閉塞時よりも減少させる
     ことを特徴とする電子機器冷却装置。
    The electronic device cooling device according to claim 1,
    The electronic device cooling device includes a condenser fan that sends air to the condenser;
    Outside temperature detecting means for detecting outside temperature;
    An inlet air temperature detecting means for detecting an inlet air temperature that is a temperature when air for cooling the electronic device starts to hit the electronic device;
    The control means includes
    When opening of the door is detected by the door opening / closing detection means,
    When the outside air temperature is higher than the target electronic device inlet temperature that is the control target value of the inlet air temperature, the rotational speed of the compressor is increased more than when the door is closed, and the condenser fan Increase the rotation speed than when the door is closed,
    When the outside air temperature is lower than the target electronic device inlet temperature, the rotation speed of the compressor is decreased as compared to when the door is closed, and the rotation speed of the condenser fan is set lower than when the door is closed. An electronic equipment cooling device characterized in that it also reduces.
  6.  請求項1に記載の電子機器冷却装置において、
     外気温度を検出する外気温度検出手段と、
     前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段とを備え、
     前記制御手段は、
     前記ドア開閉検知手段により前記ドアの開放を検知した際、
     前記外気温度が、前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記圧縮機の回転速度が第1の所定回転速度以上に増加しないように制御し、
     前記外気温度が、前記目標電子機器入気温度より低い場合には、前記圧縮機の回転速度が第2の所定回転速度以下に減少しないように制御する
     ことを特徴とする電子機器冷却装置。
    The electronic device cooling device according to claim 1,
    Outside temperature detecting means for detecting outside temperature;
    An inlet air temperature detecting means for detecting an inlet air temperature that is a temperature when air for cooling the electronic device starts to hit the electronic device;
    The control means includes
    When opening of the door is detected by the door opening / closing detection means,
    When the outside air temperature is higher than a target electronic device inlet temperature that is a control target value of the inlet temperature, control is performed so that the rotation speed of the compressor does not increase beyond a first predetermined rotation speed,
    When the outside air temperature is lower than the target electronic device inlet temperature, the electronic device cooling device is controlled so that the rotation speed of the compressor does not decrease below a second predetermined rotation speed.
  7.  電子機器を冷却するための冷凍サイクルを構成する圧縮機、凝縮器、減圧手段、および蒸発器が、冷媒が流れる配管により接続され、収納室内に設けられる電子機器が前記蒸発器で冷却された空気で冷却される電子機器冷却装置であって、
     前記収納室が開閉されるドアと、
     前記ドアの開閉を検知するドア開閉検知手段と、
     外気温度を検出する外気温度検出手段と、
     前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段と、
     前記冷却の制御を行う制御手段とを備え、
     前記制御手段は、
     前記ドア開閉検知手段により前記ドアの開放を検知した際、
     前記外気温度が、前記ドアが閉じられた際の前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記ドアの開放時の前記目標電子機器入気温度を、前記ドアが閉じられた際の前記目標電子機器入気温度より高く変更し、
     前記外気温度が前記ドアが閉じられた際の前記目標電子機器入気温度より低い場合には、前記ドアの開放時の前記目標電子機器入気温度を、前記ドアが閉じられた際の前記目標電子機器入気温度より低く変更する
     ことを特徴とする電子機器冷却装置。
    Compressor, condenser, decompression means, and evaporator constituting a refrigeration cycle for cooling electronic equipment are connected by piping through which refrigerant flows, and the electronic equipment provided in the storage chamber is cooled by the evaporator An electronic device cooling device cooled by
    A door that opens and closes the storage chamber;
    Door opening and closing detection means for detecting opening and closing of the door;
    Outside temperature detecting means for detecting outside temperature;
    An inlet air temperature detecting means for detecting an inlet air temperature which is a temperature at which the air for cooling the electronic device starts to hit the electronic device;
    Control means for controlling the cooling,
    The control means includes
    When opening of the door is detected by the door opening / closing detection means,
    When the outside air temperature is higher than a target electronic device inlet temperature that is a control target value of the inlet temperature when the door is closed, the target electronic device inlet temperature when the door is opened, Change higher than the target electronic device inlet temperature when the door is closed,
    When the outside air temperature is lower than the target electronic device inlet temperature when the door is closed, the target electronic device inlet temperature when the door is opened is set as the target electronic device inlet temperature when the door is closed. An electronic device cooling device characterized by being changed to a temperature lower than the electronic device inlet temperature.
  8.  電子機器を冷却するための冷凍サイクルを構成する圧縮機、凝縮器、減圧手段、および蒸発器が、冷媒が流れる配管により接続され、収納室内に設けられる電子機器が前記蒸発器で冷却された空気で冷却され、
     前記収納室が開閉されるドアと、
     前記ドアの開閉を検知するドア開閉検知手段と、
     蒸発器入口の冷媒温度を検知する入口温度検知手段と、
     蒸発器出口の冷媒温度を検知する出口温度検知手段と、
     前記冷却の制御を行う制御手段とを備える電子機器冷却装置の制御方法であって、
     前記ドアが開放された場合、
     前記蒸発器出口の冷媒温度から前記蒸発器入口の冷媒温度を減算して求められる過熱度の制御目標値である目標過熱度が、前記ドアの閉塞時の前記目標過熱度より高い値に変更される
     ことを特徴とする電子機器冷却装置の制御方法。
    Compressor, condenser, decompression means, and evaporator constituting a refrigeration cycle for cooling electronic equipment are connected by piping through which refrigerant flows, and the electronic equipment provided in the storage chamber is cooled by the evaporator Cooled by
    A door that opens and closes the storage chamber;
    Door opening and closing detection means for detecting opening and closing of the door;
    An inlet temperature detecting means for detecting the refrigerant temperature at the evaporator inlet;
    Outlet temperature detecting means for detecting the refrigerant temperature at the outlet of the evaporator;
    A control method of an electronic device cooling device comprising a control means for controlling the cooling,
    If the door is opened,
    The target superheat degree, which is a control target value of the superheat degree obtained by subtracting the refrigerant temperature at the evaporator inlet from the refrigerant temperature at the evaporator outlet, is changed to a value higher than the target superheat degree when the door is closed. A method for controlling an electronic device cooling apparatus.
  9.  請求項8に記載の電子機器冷却装置の制御方法において、
     前記電子機器冷却装置は、
     外気温度を検出する外気温度検出手段と、
     前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段とを備え、
     前記ドアが開放された場合、
     前記外気温度が前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記外気温度が前記目標電子機器入気温度より低い場合よりも前記目標過熱度が低い値に変更される
     ことを特徴とする電子機器冷却装置の制御方法。
    In the control method of the electronic device cooling device according to claim 8,
    The electronic device cooling apparatus is
    Outside temperature detecting means for detecting outside temperature;
    An inlet air temperature detecting means for detecting an inlet air temperature that is a temperature when air for cooling the electronic device starts to hit the electronic device;
    If the door is opened,
    When the outside air temperature is higher than the target electronic device inlet temperature that is the control target value of the inlet temperature, the target superheat degree is lower than when the outside air temperature is lower than the target electronic device inlet temperature. A method of controlling an electronic device cooling device, characterized by being changed.
  10.  請求項8に記載の電子機器冷却装置の制御方法において、
     前記電子機器冷却装置は、
     外気温度を検出する外気温度検出手段と、
     前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段とを備え、
     前記ドアが開放された場合、
     前記外気温度が、前記ドアが閉じられた際の前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記ドアの開放時の前記目標電子機器入気温度が、前記ドアが閉じられた際の前記目標電子機器入気温度より高い値に変更され、
     前記外気温度が、前記ドアが閉じられた際の前記目標電子機器入気温度より低い場合には、前記ドアの開放時の前記目標電子機器入気温度が、前記ドアが閉じられた際の前記目標電子機器入気温度より低い値に変更される
     ことを特徴とする電子機器冷却装置の制御方法。
    In the control method of the electronic device cooling device according to claim 8,
    The electronic device cooling apparatus is
    Outside temperature detecting means for detecting outside temperature;
    An inlet air temperature detecting means for detecting an inlet air temperature that is a temperature when air for cooling the electronic device starts to hit the electronic device;
    If the door is opened,
    When the outside air temperature is higher than a target electronic device inlet temperature that is a control target value of the inlet temperature when the door is closed, the target electronic device inlet temperature when the door is opened, It is changed to a value higher than the target electronic device inlet temperature when the door is closed,
    When the outside air temperature is lower than the target electronic device inlet temperature when the door is closed, the target electronic device inlet temperature when the door is opened is the same as when the door is closed. A method for controlling an electronic device cooling apparatus, wherein the temperature is changed to a value lower than a target electronic device inlet temperature.
  11.  請求項8に記載の電子機器冷却装置の制御方法において、
     前記電子機器冷却装置は、
     外気温度を検出する外気温度検出手段と、
     前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段とを備え、
     前記ドアが開放された際、
     前記外気温度が、前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記圧縮機の回転速度は前記ドアの閉塞時よりも増加し、
     前記外気温度が、前記目標電子機器入気温度より低い場合には、前記圧縮機の回転速度は前記ドアの閉塞時よりも減少する
     ことを特徴とする電子機器冷却装置の制御方法。
    In the control method of the electronic device cooling device according to claim 8,
    The electronic device cooling apparatus is
    Outside temperature detecting means for detecting outside temperature;
    An inlet air temperature detecting means for detecting an inlet air temperature that is a temperature when air for cooling the electronic device starts to hit the electronic device;
    When the door is opened,
    When the outside air temperature is higher than the target electronic device inlet temperature, which is the control target value of the inlet temperature, the rotational speed of the compressor increases more than when the door is closed,
    When the outside air temperature is lower than the target electronic device inlet air temperature, the rotation speed of the compressor is reduced as compared with that when the door is closed.
  12.  請求項8に記載の電子機器冷却装置の制御方法において、
     前記電子機器冷却装置は、
     前記凝縮器に空気を送る凝縮器用ファンと、
     外気温度を検出する外気温度検出手段と、
     前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段とを備え、
     前記ドアが開放された際、
     前記外気温度が、前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記圧縮機の回転速度は前記ドアの閉塞時よりも増加するとともに、前記凝縮器用ファンの回転速度は前記ドアの閉塞時よりも増加し、
     前記外気温度が、前記目標電子機器入気温度より低い場合には、前記圧縮機の回転速度は前記ドアの閉塞時よりも減少するとともに、前記凝縮器用ファンの回転速度は前記ドアの閉塞時よりも減少する
     ことを特徴とする電子機器冷却装置の制御方法。
    In the control method of the electronic device cooling device according to claim 8,
    The electronic device cooling apparatus is
    A condenser fan for sending air to the condenser;
    Outside temperature detecting means for detecting outside temperature;
    An inlet air temperature detecting means for detecting an inlet air temperature that is a temperature when air for cooling the electronic device starts to hit the electronic device;
    When the door is opened,
    When the outside air temperature is higher than a target electronic device inlet temperature that is a control target value of the inlet air temperature, the rotational speed of the compressor increases more than when the door is closed, and the condenser fan The rotational speed increases compared to when the door is closed,
    When the outside air temperature is lower than the target electronic device inlet air temperature, the rotational speed of the compressor is lower than when the door is closed, and the rotational speed of the condenser fan is lower than when the door is closed. The method for controlling an electronic device cooling device is characterized by the fact that the number of times is also reduced.
  13.  請求項8に記載の電子機器冷却装置の制御方法において、
     前記電子機器冷却装置は、
     外気温度を検出する外気温度検出手段と、
     前記電子機器を冷却する空気が当該電子機器に当たり始める際の温度である入気温度を検知する入気温度検知手段とを備え、
     前記ドアが開放された際、
     前記外気温度が、前記入気温度の制御目標値である目標電子機器入気温度より高い場合には、前記圧縮機の回転速度は第1の所定回転速度以上に増加せず、
     前記外気温度が、前記目標電子機器入気温度より低い場合には、前記圧縮機の回転速度は第2の所定回転速度以下に減少しない
     ことを特徴とする電子機器冷却装置の制御方法。
    In the control method of the electronic device cooling device according to claim 8,
    The electronic device cooling apparatus is
    Outside temperature detecting means for detecting outside temperature;
    An inlet air temperature detecting means for detecting an inlet air temperature that is a temperature when air for cooling the electronic device starts to hit the electronic device;
    When the door is opened,
    When the outside air temperature is higher than a target electronic device inlet temperature, which is a control target value of the inlet air temperature, the rotational speed of the compressor does not increase beyond the first predetermined rotational speed,
    When the outside air temperature is lower than the target electronic device inlet temperature, the rotation speed of the compressor does not decrease below a second predetermined rotation speed.
PCT/JP2014/053564 2014-02-14 2014-02-14 Electronic-apparatus cooling device and control method therefor WO2015121995A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053564 WO2015121995A1 (en) 2014-02-14 2014-02-14 Electronic-apparatus cooling device and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/053564 WO2015121995A1 (en) 2014-02-14 2014-02-14 Electronic-apparatus cooling device and control method therefor

Publications (1)

Publication Number Publication Date
WO2015121995A1 true WO2015121995A1 (en) 2015-08-20

Family

ID=53799758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053564 WO2015121995A1 (en) 2014-02-14 2014-02-14 Electronic-apparatus cooling device and control method therefor

Country Status (1)

Country Link
WO (1) WO2015121995A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800003529A1 (en) * 2018-03-14 2019-09-14 Dkc Europe S R L COMPUTER RACK CABINET

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261219A (en) * 2001-03-02 2002-09-13 Sanyo Electric Co Ltd Cooling device for semiconductor element
JP2005030679A (en) * 2003-07-14 2005-02-03 Mitsubishi Electric Corp Refrigerating air conditioner and control method for refrigerating air conditioner
JP2011155301A (en) * 2011-05-02 2011-08-11 Hitachi Plant Technologies Ltd Cooling system for electronic apparatus
JP2013258166A (en) * 2012-06-11 2013-12-26 Hitachi Ltd Electronic apparatus device and housing thereof
JP2014022377A (en) * 2012-07-12 2014-02-03 Nec Corp Cooling control device, cooling control system, cooling control method, and cooling control program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261219A (en) * 2001-03-02 2002-09-13 Sanyo Electric Co Ltd Cooling device for semiconductor element
JP2005030679A (en) * 2003-07-14 2005-02-03 Mitsubishi Electric Corp Refrigerating air conditioner and control method for refrigerating air conditioner
JP2011155301A (en) * 2011-05-02 2011-08-11 Hitachi Plant Technologies Ltd Cooling system for electronic apparatus
JP2013258166A (en) * 2012-06-11 2013-12-26 Hitachi Ltd Electronic apparatus device and housing thereof
JP2014022377A (en) * 2012-07-12 2014-02-03 Nec Corp Cooling control device, cooling control system, cooling control method, and cooling control program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800003529A1 (en) * 2018-03-14 2019-09-14 Dkc Europe S R L COMPUTER RACK CABINET

Similar Documents

Publication Publication Date Title
JP5391250B2 (en) Refrigerator and freezer
EP3361192B1 (en) Heat source unit and air conditioner having the heat source unit
JP6934603B2 (en) Refrigerator and cooling system
KR101578002B1 (en) A refrigerator
KR101387489B1 (en) Refrigerator
JP5472391B2 (en) Container refrigeration equipment
KR102171872B1 (en) Air Conditioner
EP3037750B1 (en) Refrigerator and a method for controlling the same
WO2015121994A1 (en) Electronic-apparatus cooling device and case for cooling
JP2015068610A (en) Air conditioner
EP3361191B1 (en) Heat source unit and air conditioner having the heat source unit
JP2009193137A (en) Electronic equipment cooling system
JP2009216357A (en) Temperature controlled bath
WO2015114742A1 (en) Electronic apparatus cooling device
JP2021042906A (en) refrigerator
JP2013057415A (en) Refrigerator
WO2015121995A1 (en) Electronic-apparatus cooling device and control method therefor
JP2015005677A (en) Electronic device apparatus and housing therefor
JP6539093B2 (en) refrigerator
JP2014048029A (en) Refrigerator
JP7241469B2 (en) Showcase
JP2014059110A (en) Refrigerator and cooling mechanism
JP2014085060A (en) Refrigerator
EP3361168B1 (en) Heat source unit and air conditioner having the heat source unit
JP5165358B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP