WO2015120983A1 - Verfahren und anlage zum erzeugen von biomethan - Google Patents

Verfahren und anlage zum erzeugen von biomethan Download PDF

Info

Publication number
WO2015120983A1
WO2015120983A1 PCT/EP2015/000297 EP2015000297W WO2015120983A1 WO 2015120983 A1 WO2015120983 A1 WO 2015120983A1 EP 2015000297 W EP2015000297 W EP 2015000297W WO 2015120983 A1 WO2015120983 A1 WO 2015120983A1
Authority
WO
WIPO (PCT)
Prior art keywords
supplied
methanation unit
biogas
gasification
water
Prior art date
Application number
PCT/EP2015/000297
Other languages
English (en)
French (fr)
Inventor
Michael Niederbacher
Original Assignee
Michael Niederbacher
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michael Niederbacher filed Critical Michael Niederbacher
Publication of WO2015120983A1 publication Critical patent/WO2015120983A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1662Conversion of synthesis gas to chemicals to methane (SNG)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1684Integration of gasification processes with another plant or parts within the plant with electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the invention relates to a method for producing biomethane according to the preamble of claim 1 and to a system for producing biomethane according to the preamble of claim 16.
  • biogas by fermentation or biological gasification of biomass or organic waste in biogas plants.
  • the biogas produced by means of a biological gasification is regularly emitted on site in CHPs, the power thus generated is then fed into a power grid.
  • the raw gas produced by means of the thermal or biological gasification can also, after appropriate treatment and purification, as biomethane in a gas network, for example in a natural gas network, are fed or used for example as biofuel.
  • a large part of this biomethane fed into the gas network is then used, for example, in combined heat and power plants (CHP) to generate electricity and heat.
  • CHP combined heat and power plants
  • a problem which thus regularly occurs in the production of biomethane based on synthesis gas and / or biogas is that the raw gas produced during thermal as well as biological gasification is contaminated to a considerable extent in addition to the actual methane (CH 4 ) and further gas components.
  • the biogas produced by fermentation or biological gasification in addition to other impurities such as ammonia (NH 3 ), hydrogen sulfide (H 2 S), a very large carbon dioxide (C0 2 ) share, while that formed during the thermal gasification Synthesis gas in addition to the methane also significant amounts of nitrogen (N 2 , only in the gasification with air as an oxidant), carbon monoxide (CO), hydrogen (H 2 ), carbon dioxide (C0 2 ) and water (H 2 0).
  • the synthesis gas often also has traces of ammonia (NH 3 ) and tar.
  • the raw gas formed in the biogas plant or in the gasification device must be relatively expensive processed or purified prior to its supply to the gas network in order to obtain the purity required for feeding into the gas network, based on methane (CH 4 ).
  • the cleaning effort required for this also requires a considerable amount of electrical energy, for example, the use of gas, electrostatic precipitators, etc., which ultimately has a negative impact on the overall life cycle assessment of such Biomethange wall or has a negative impact on the overall efficiency of such biomethane production.
  • the inventive method further comprises an electrolysis device in which the electrolysis device supplied water is split by electric current into hydrogen and oxygen, wherein the means of Electrolysis generated hydrogen is at least partially supplied to the methanation unit.
  • the inventive method further comprises a biogas plant, in which by biogasification or fermentation of biologically vergasbaren or fermentable substances, in particular of biomass and / or organic waste, in at least one fermenter of the biogas plant containing at least or especially methane and carbon dioxide biogas is generated, which (without previous C0 2 separation) is at least partially supplied to the methanation unit to provide there for the Sabatier- needed carbon dioxide (C0 2 ) available.
  • a biogas plant in which by biogasification or fermentation of biologically vergasbaren or fermentable substances, in particular of biomass and / or organic waste, in at least one fermenter of the biogas plant containing at least or especially methane and carbon dioxide biogas is generated, which (without previous C0 2 separation) is at least partially supplied to the methanation unit to provide there for the Sabatier- needed carbon dioxide (C0 2 ) available.
  • the method according to the invention comprises a gasification device in which by thermal gasification of thermally gasifiable substances, in particular biomass and / or organic waste, by means of a gasification and / or oxidizing agent, for example air, oxygen or water vapor, in at least one reactor of the gasification device a synthesis gas containing inter alia or at least carbon monoxide, hydrogen, carbon dioxide and methane is generated, which is supplied at least in part to the methanation unit in order to provide carbon monoxide and carbon dioxide required therefor for the sabbing reactions.
  • a gasification device in which by thermal gasification of thermally gasifiable substances, in particular biomass and / or organic waste, by means of a gasification and / or oxidizing agent, for example air, oxygen or water vapor, in at least one reactor of the gasification device a synthesis gas containing inter alia or at least carbon monoxide, hydrogen, carbon dioxide and methane is generated, which is supplied at least in part to the methanation unit in order to provide carbon monoxid
  • the biomethane thus formed in the methanation unit can then be supplied with the required purity of a defined utilization and / or storage device, in particular a gas storage and / or a gas network, preferably a public gas network.
  • the use of a methanation unit in a simple and functionally reliable manner becomes possible ensures that the raw gas produced by the thermal gasification device and by the biogas plant is cleaned or processed so that it has a quality that can be fed as biomethane readily in the gas network.
  • the biomethane thus produced can be used, for example, by combustion in a gas power plant for power generation, which then can also be used indirectly via the power grid to operate the electrolysis device.
  • the energy expenditure in operating the electrolysis device can be reduced advantageously, which helps to significantly increase the efficiency for generating biomethane.
  • biomass is gassed or fermented, and this term is to be understood explicitly comprehensively, that is to say, for example, in the broad sense meaning phyto- and / or zoomasse as well as resulting derivatives, by-products, residues and wastes is.
  • this applies in particular to the waste fractions of waste wood, compostable waste from households, vegetable and animal wastes from the agricultural, forestry and fish industries as well as waste from the production and use of food and beverages.
  • renewable raw materials Natural raw materials (NawaRo) represent a relevant biomass group.
  • Another significant advantage of the method according to the invention is that the water obtained during the methanation in the methanation unit optionally also in turn the Electrolysis can be supplied to split off the hydrogen from this water, which is then required in the methanation for methanation. Even with this particularly preferred embodiment, thus, the efficiency of the process control according to the invention can be significantly increased again.
  • the electrolysis device is supplied with a defined amount of fresh water.
  • the water obtained in the gasification device and / or in the biogas plant in particular condensed water, can also be supplied at least in part to the electrolysis device.
  • the biogas plant may, for example, have at least one hydrolysis stage designed or designed specifically for producing hydrogen, in which the hydrogen (H 2 ) is produced.
  • the hydrogen can also be produced in the course of "normal" hydrolysis in a fermenter of the biogas plant and withdrawn therefrom, in particular in connection with a biogas plant which has a drying device, for example a drying device for drying fermentation residues, it may be advantageous to supply the water obtained in the drying device at least partially to the electrolysis device Utilization of the valuable substances occurring within the system in the context of the biomethane production according to the invention.
  • the amount of water supplied to the electrolysis device is, preferably by means of a control and / or regulating device, dependent on that in the methanation unit specified and the electrolysis device supplied amount of water specified.
  • a control and / or regulating device dependent on that in the methanation unit specified and the electrolysis device supplied amount of water specified.
  • at least one control and / or regulating device is provided, by means of which the material flows to the individual plants, components, etc. are controlled in dependence on defined operating parameters and / or be managed.
  • the water formed in the methanation unit at least in part to the at least one fermenter of the biogas plant or, alternatively or additionally, to feed it to the gasification device at least in part, preferably in heated form as water vapor.
  • the steam then serves as a gasification and / or oxidizing agent of the gasification device, for example.
  • the reactions occurring in the methanation unit are strongly exothermic reactions.
  • at least part of the biogas produced in the biogas plant and / or at least part of the synthesis gas produced in the gasification device can of course also be supplied to at least one cogeneration plant in which electricity is generated. This power can then be fed into a power grid, for example.
  • Particularly effective and advantageous in terms of the overall efficiency is an embodiment in which the generated power is at least partly also supplied to the electrolysis device which requires electrical energy in order to split the water into hydrogen and oxygen.
  • the carbon dioxide-containing biogas obtained in the biogas plant and the synthesis gas obtained in the gasification device can, in principle, be supplied independently and separately from one another to the methanation unit at predetermined times and in a predetermined amount. In principle, however, it is also possible to combine at least part of the biogas fed to the methanation unit with at least part of the synthesis gas fed to the methanization unit upstream of the methanation unit and to mix what is expediently done in a mixing device, so that then the methanation unit is a mixture of the two gases is supplied. This has the advantage that the methanation unit can then be supplied with a substantially homogeneous homogeneous gas mixture, which has an advantageous effect on the course of the reaction in the methanation unit.
  • the synthesis gas produced in the gasification device is preferably fed to the methanation unit continuously and without intermediate storage.
  • the reason for this is, in particular, that storage of the synthesis gas is relatively expensive on the one hand and that the reactor of the gasification device is relatively simple in terms of the gas yield by means of a control and / or regulating device can be controlled or regulated, that is, the gas yield and thus the gas outlet by means of a control and / or regulating device relatively well and easily throttled or increased.
  • the latter is more difficult in a biogas plant, while here, however, the resulting biogas can be stored relatively easily.
  • the biogas plant preferably has a gas storage in which the methanation unit supplied carbon dioxide-containing biogas is temporarily stored and then withdrawn by means of a control and / or regulating device, if necessary.
  • a structure is provided by means of which the gas management for supplying gas to the methanation unit is easy to accomplish.
  • a part of the carbon dioxide-containing biogas which can not be fed to the methanation unit is fed to a treatment device in which the carbon dioxide is separated from the biogas, the separated carbon dioxide being fed to the methanation unit.
  • a treatment device in which the carbon dioxide is separated from the biogas, the separated carbon dioxide being fed to the methanation unit.
  • the separated carbon dioxide need not simply be discarded, but can advantageously be fed to the methanation unit, in which the carbon dioxide is required as starting material for the sabatizing reactions taking place there.
  • At least part of the oxygen produced in the electrolysis device is supplied to the gasification device.
  • the single figure shows schematically a flow diagram of an exemplary embodiment of a device according to the invention for the production of biomethane.
  • This device 1 comprises, on the one hand, a gasification device 2 in which by at least or among other carbon monoxide (CO), carbon dioxide by thermal gasification of, for example, biomass (as defined above) by means of a gasification and / or oxidizing agent in at least one reactor of the gasification device (C0 2 ), hydrogen (H 2 ) and methane (CH 4 ) containing synthesis gas is generated.
  • a portion of this synthesis gas 3 is, controlled or regulated via a control and / or regulating device, not shown here, supplied at predetermined times and in a predetermined amount of a methanation unit 4.
  • Another part of this synthesis gas 5 produced in the gasification device 2 is supplied here by way of example to a CHP 6.
  • the device 1 according to the invention for producing biomethane comprises a biogas plant 7 in which by at least or especially methane and carbon dioxide containing by biological gasification or fermentation of biomass (as defined above) in at least one fermenter of the biogas plant 7 Biogas is generated.
  • the Biogas plant 7 can also have, for example, at least one specifically designed for hydrogen production or trained hydrolysis in which hydrogen (H 2 ) is generated, which then forms part of the biogas 8. In principle, however, this hydrogen can also be generated in the course of the "normal" hydrolysis in a fermenter of the biogas plant 7.
  • a part of this biogas 8, which preferably also contains hydrogen, is again fed or controlled from the biogas plant 7 to the methanation unit 4. Another part This biogas 9 is supplied here by way of example to another CHP 10.
  • CHP 11 As shown schematically in FIG. 1 and dashed by the CHP 11, but also only a single CHP 11 may be present, by means of which a mixture of synthesis gas 5 and biogas 9 is burned. This has the advantage that the engine of the CHP can be driven more stable and thus the efficiency is higher, because pure synthesis gas has a strong tendency to knock or tends to flash back. Likewise, this CHP 11 could also be provided in addition to the CHPs 6 and 10.
  • the electricity generated in the CHPs will then be fed into a, preferably public, power grid 12.
  • Power is then withdrawn from the power grid 12 (reference numeral 19) and supplied to an electrolyzer 14, which requires power to split water 15 supplied to the electrolyzer 14 by the electric current into hydrogen H 2 and oxygen O 2 , wherein, as shown in FIG 1, the hydrogen produced by means of the electrolyzer 14 is at least partially supplied to the methanation unit 4.
  • the material flows are again controlled or regulated by means of one or the previously mentioned control and / or regulating device.
  • at least a portion of the oxygen O 2 generated in the electrolyzer 14 may be supplied to the gasifier 2, in which the oxygen may then function as an oxidant.
  • an optionally overshooting part of the generated hydrogen 17 can also be supplied to a, for example public, gas network 18.
  • the synthesis gas 3 coming from the gasification device 2 and the biogas 8 coming from the biogas plant 7 can in principle, as shown in FIG. 1, be supplied separately and independently of one another to the methanation unit 4.
  • these two gas streams can also be fed upstream of the methanation unit 4 to a mixing device 20, in which the two gas streams are then mixed with one another and supplied to the methanation unit 4 as gas mixture.
  • the water formed in the methanation 4 may alternatively or additionally but also, as indicated by the arrows 22 and 23, the gasification device 2 and / or the biogas plant 7 are supplied.
  • the supply of water 15 from the methanation unit 4 to the electrolysis device 14 may also be provided to supply the electrolysis device 14 fresh water 24.
  • the amount and the time or the duration of the current, water and hydrogen streams are controlled or regulated by means of the control and / or regulating device.
  • condensation water 37 from the gasification device 2 or from the biogas plant 7 could be supplied at least in part to the electrolysis device 14.
  • the water management that is, the supply of fresh water and / or product water from the methanation unit 4 and / or in a drying device of the Biogas plant accumulating water 26 and / or condensate 37 from the gasification device 2 to the electrolysis device 14 are controlled by means of a control and / or regulating device, in dependence on the respective predetermined operating parameters.
  • part of the carbon dioxide-containing biogas 8 produced in the biogas plant can be supplied to a treatment device 27, for example a gas scrubber, in which the carbon dioxide is separated off.
  • This separated carbon dioxide can then optionally be supplied to the methanation unit 4, for example (reference numeral 28).
  • the methanation unit 4 for example (reference numeral 28).
  • the carbon dioxide is then used as starting material in the methanation of hydrogen, while the thus purified biogas 29 can then be supplied to the public gas network 18 as biomethane.
  • gas can also be taken from the gas network 18 and fed to a gas-fired power station 30 in which power 31 is then generated, which is supplied to the power grid 12.
  • gas-fired power station 30 in which power 31 is then generated, which is supplied to the power grid 12.
  • biomethane 21 produced in the methanation unit 4 directly or at least partially to the gas power plant 30.
  • the power grid 12 of wind turbines 32 and 33 of electricity generated by solar panels 33 can be supplied.
  • the waste heat 34 available in the methanation unit 4 on account of the strongly exothermic reactions can then be supplied, for example, to the gasification device 2 and / or the biogas plant 7, as is further illustrated schematically in FIG. (Heat supply 35, 36).
  • Heat supply 35, 36 the advantage over a classic biogas treatment is mainly that the carbon dioxide is not separated and thus lost, but is further processed and the entire produced biogas in the form of methane are ultimately fed into the high gas purity requiring gas network 18 can.
  • the advantage in connection with gasification devices 2 is that the resulting lean gas is upgraded and can also be fed into the gas network 18.
  • the material flows themselves are made by means of pipelines laid between the individual plant components.
  • For power supply power lines are provided.
  • Actuating or control signals can be transmitted functionally as well as by means of cables.

Abstract

Die Erfindung betrifft ein Verfahren und eine Anlage zum Erzeugen von Biomethan, mit einer Methanisierungseinheit (4), in der Kohlenstoffdioxid, Kohlenmonoxid und Wasserstoff in Methan und Wasser umgewandelt werden. Ferner ist eine Elektrolyseeinrichtung (14) vorgesehen, in der der Elektrolyseeinrichtung (14) zugeführtes Wasser durch elektrischen Strom in Wasserstoff und Sauerstoff gespalten wird, wobei der mittels der Elektrolyseeinrichtung (14) erzeugte Wasserstoff wenigstens zum Teil der Methanisierungseinheit (4) zugeführt wird. Zudem ist eine Biogasanlage (7) vorgesehen, in der durch Vergärung von vergärbaren Stoffen in wenigstens einem Fermenter der Biogasanlage (7) ein wenigstens Methan und Kohlendioxid enthaltendes Biogas erzeugt wird, das wenigstens zum Teil der Methanisierungseinheit (4) zugeführt wird. Weiter ist eine Vergasungseinrichtung (2) vorgesehen, in der durch Vergasung von vergasbaren Stoffen mittels eines Vergasungs- und/oder Oxidationsmittels in wenigstens einem Reaktor der Vergasungseinrichtung (2) ein wenigstens Kohlenmonoxid, Wasserstoff, Kohlendioxid und Methan enthaltendes Synthesegas erzeugt wird, das wenigstens zum Teil der Methanisierungseinheit (4) zugeführt wird, wobei das in der Methanisierungseinheit (4) gebildete Biomethan einer Verwertungs- und/oder Speichereinrichtung, insbesondere einem Gasspeicher und/oder einem Gasnetz, zugeführt wird.

Description

Beschreibung Verfahren und Anlage zum Erzeugen von Biomethan
Die Erfindung betrifft ein Verfahren zum Erzeugen von Biomethan nach dem Oberbegriff des Anspruchs 1 sowie eine Anlage zur Erzeugung von Biomethan nach dem Oberbegriff des Anspruchs 16.
Es ist allgemein bekannt, zum Beispiel Biomasse und/oder Abfälle in Vergasungseinrichtungen mittels eines Vergasungs- und/oder Oxidationsmittels (zum Beispiel Luft, Sauerstoff oder Wasserdampf) thermisch zu vergasen. Das im Rahmen einer derartigen thermischen Vergasung erzeugte Gas bezeichnet man oftmals als„Holzgas", als Synthesegas, als Syngas oder kurz als SNG (die Abkürzung SNG steht für den englischen Begriff: Synthetic Natural Gas). Nachfolgend wird für das durch thermische Vergasung erzeugte Gas der Einfachheit halber stets der Begriff Synthesegas verwendet.
Des Weiteren ist es allgemein bekannt, Biogas durch Vergärung bzw. biologische Vergasung von Biomasse bzw. organischen Abfällen in Biogasanlagen zu erzeugen.
Insbesondere das mittels einer biologischen Vergasung erzeugte Biogas wird regelmäßig vor Ort in BHKWs verströmt, wobei der so erzeugte Strom dann in ein Stromnetz eingespeist wird.
BESTÄTIGUNGSKOPIE Das mittels der thermischen bzw. biologischen Vergasung erzeugte Rohgas kann aber auch, nach einer entsprechenden Aufbereitung und Reinigung, als Biomethan in ein Gasnetz, zum Beispiel in ein Erdgasnetz, eingespeist werden oder zum Beispiel auch als Biokraftstoff verwendet werden. Ein Großteil dieses in das Gasnetz eingespeisten Biomethans wird dann zum Beispiel in Blockheizkraftwerken (BHKW) zur Strom- und Wärmeerzeugung genutzt.
Ein Problem, das bei der Biomethanerzeugung auf der Basis von Synthesegas und/oder Biogas somit regelmäßig auftritt, ist, dass das bei der thermischen als auch bei der biologischen Vergasung entstehende Rohgas neben dem eigentlichen Methan (CH4) noch in einem erheblichen Maße verunreinigt ist und weitere Gasbestandteile aufweist. So weist das durch Vergärung bzw. biologische Vergasung erzeugte Biogas neben anderen Verunreinigungen, wie zum Beispiel Ammoniak (NH3), Schwefelwasserstoff (H2S), einen sehr großen Kohlendioxid (C02)-Anteil auf, während das bei der thermischen Vergasung gebildete Synthesegas neben dem Methan auch noch erhebliche Mengen an Stickstoff (N2; nur bei der Vergasung mit Luft als Oxidationsmittel), Kohlenmonoxid (CO), Wasserstoff (H2), Kohlendioxid (C02) und Wasser (H20) aufweist. Zudem weist das Synthesegas oftmals auch Spuren von Ammoniak (NH3) und Teer auf.
Dementsprechend muss das in der Biogasanlage bzw. in der Vergasungseinrichtung gebildete Rohgas vor dessen Zuführung zum Gasnetz relativ aufwendig aufbereitet bzw. gereinigt werden, um den für die Einspeisung in das Gasnetz erforderlichen Reinheitsgrad, bezogen auf Methan (CH4), zu erhalten. Der hierfür erforderliche Reinigungsaufwand erfordert darüber hinaus einen erheblichen Aufwand an elektrischer Energie, zum Beispiel den Einsatz von Gas, Elektrofiltern etc., was sich letztendlich auch negativ auf die gesamte Ökobilanz einer derartigen Biomethangewinnung bzw. negativ auf den Gesamtwirkungsgrad einer derartigen Biomethanerzeugung auswirkt.
Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zum Erzeugen von Biomethan zur Verfügung zu stellen, mittels dem bzw. mittels der insbesondere der apparative und energetische Aufwand bei der Erzeugung von Biomethan, insbesondere im Hinblick auf die Einspeisung in ein Gasnetz, auf Ressourcen schonende Weise erzielt werden kann.
Diese Aufgabe wird gelöst mit den Merkmalen der unabhängigen Patentansprüche. Vorteilhafte Ausgestaltungen hierzu sind Gegenstand der darauf rückbezogenen Unteransprüche. Gemäß Patentanspruch 1 wird ein Verfahren zur Erzeugung von Biomethan vorgeschlagen, bei dem eine Methanisierungseinheit vorgesehen ist, in der Kohlenstoffdioxid, Kohlenmonoxid und Wasserstoff gemäß der nachstehenden Reaktionsgleichungen in Methan und Wasser umgewandelt werden: C02 + 4 H2 -> 2 H20 + CH4
CO + 3 H2 -> H20 + CH4
Diese auch Sabatier-Reaktionen genannten Reaktionsgleichungen zeigen, wie Kohlenmonoxid und Kohlendioxid unter Anwesenheit von Wasserstoff zu Methan und Wasser (als Nebenprodukt) umgewandelt werden.
Das erfindungsgemäße Verfahren umfasst weiter eine Elektrolyseeinrichtung, in der der Elektrolyseeinrichtung zugeführtes Wasser durch elektrischen Strom in Wasserstoff und Sauerstoff gespalten wird, wobei der mittels der Elektrolyseeinrichtung erzeugte Wasserstoff wenigstens zum Teil der Methanisierungseinheit zugeführt wird.
Das erfindungsgemäße Verfahren umfasst weiter eine Biogasanlage, in der durch biologische Vergasung bzw. Vergärung von biologisch vergasbaren bzw. vergärbaren Stoffen, insbesondere von Biomasse und/oder organischen Abfällen, in wenigstens einem Fermenter der Biogasanlage ein wenigstens bzw. vor allem Methan und Kohlendioxid enthaltendes Biogas erzeugt wird, das (ohne vorherige C02-Abtrennung) wenigstens zum Teil der Methanisierungseinheit zugeführt wird, um dort das für die Sabatier- Reaktionen benötigte Kohlendioxid (C02) zur Verfügung zu stellen.
Ferner umfasst die erfindungsgemäße Verfahrensführung eine Vergasungseinrichtung, in der durch thermische Vergasung von thermisch vergasbaren Stoffen, insbesondere von Biomasse und/oder organischen Abfällen, mittels eines Vergasungs- und/oder Oxidationsmittels, zum Beispiel Luft, Sauerstoff oder Wasserdampf, in wenigstens einem Reaktor der Vergasungseinrichtung ein unter anderem bzw. wenigstens Kohlenmonoxid, Wasserstoff, Kohlendioxid und Methan enthaltendes Synthesegas erzeugt wird, das wenigstens zum Teil der Methanisierungseinheit zugeführt wird, um dort für die Sabatier-Reaktionen erforderlichen Edukte Kohlenmonoxid und Kohlendioxid zur Verfügung zu stellen.
Das so in der Methanisierungseinheit gebildete Biomethan, kann dann mit der erforderlichen Reinheit einer definierten Verwertungs- und/oder Speichereinrichtung, insbesondere einem Gasspeicher und/oder einem Gasnetz, bevorzugt einem öffentlichen Gasnetz, zugeführt werden.
Mit der erfindungsgemäßen Lösung wird somit lediglich durch den Einsatz einer Methanisierungseinheit auf einfache und funktionssichere Weise sichergestellt, dass das von der thermischen Vergasungseinrichtung und von der Biogasanlage erzeugte Rohgas so gereinigt bzw. aufbereitet wird, dass dieses eine Qualität aufweist, das als Biomethan ohne Weiteres in das Gasnetz eingespeist werden kann. Mit der erfindungsgemäßen Lösung kann somit der apparatetechnische Aufwand zur Aufbereitung des von der Vergasungseinrichtung bzw. von der Biogasanlage erzeugten Rohgases deutlich reduziert und verringert werden.
Das so erzeugte Biomethan kann zum Beispiel durch Verbrennung in einem Gaskraftwerk zur Stromerzeugung genutzt werden, welcher Strom dann auch wiederum mittelbar über das Stromnetz zum Betreiben der Elektrolyseeinrichtung verwendet werden kann. Dadurch lässt sich der energetische Aufwand beim Betreiben der Elektrolyseeinrichtung vorteilhaft reduzieren, was hilft, den Wirkungsgrad zum Erzeugen von Biomethan deutlich zu erhöhen.
Vergast bzw. vergärt wird hier in erster Linie Biomasse, wobei dieser Begriff ausdrücklich umfassend zu verstehen ist, das heißt zum Beispiel dergestalt, dass darunter im weiteren Sinne Phyto- und/oder Zoomasse sowie daraus resultierende Folge-, Nebenprodukte, Rückstände und Abfälle zu verstehen ist. Im abfallwirtschaftlichen Zusammenhang betrifft dies insbesondere die Abfallfraktionen Altholz, kompostierbare Abfälle aus Haushalten, pflanzliche und tierische Abfälle aus der Land-, Forst- und Fischwirtschaft sowie Abfälle aus der Produktion und Verwendung von Nahrungs- und Genussmitteln. Außerhalb der Abfallwirtschaft stellen die nachwachsenden Rohstoffe (NawaRo) eine relevante Biomassegruppe dar.
Ein weiterer wesentlicher Vorteil der erfindungsgemäßen Verfahrensführung liegt darin, dass das im Rahmen der Methanisierung in der Methanisierungs- einheit anfallende Wasser gegebenenfalls auch wiederum der Elektrolyseeinrichtung zugeführt werden kann, um von diesem Wasser den Wasserstoff abzuspalten, der dann in der Methanisierungseinheit zur Methanisierung benötigt wird. Auch mit dieser besonders bevorzugten Ausführungsvariante lässt sich somit der Wirkungsgrad der erfindungsgemäßen Verfahrensführung nochmals wesentlich erhöhen.
Je nach den vorherrschenden Betriebsbedingungen kann aber selbstverständlich, alternativ oder zusätzlich, vorgesehen sein, dass der Elektrolyseeinrichtung eine definierte Menge an Frischwasser zugeführt wird.
Zusätzlich oder alternativ kann auch das in der Vergasungseinrichtung und/oder in der Biogasanlage anfallende Wasser, insbesondere Kondenswasser, wenigstens zum Teil der Elektrolyseeinrichtung zugeführt werden.
Besonders vorteilhaft ist des Weiteren eine Verfahrensführung, bei der wenigstens ein Teil oder lediglich ein Teil des in der Biogasanlage im Rahmen einer Hydrolyse erzeugten Wasserstoffes der Elektrolyseinrichtung zugeführt wird. Die Biogasanlage kann hierzu zum Beispiel wenigstens eine gezielt zur Wasserstofferzeugung ausgelegte bzw. ausgebildete Hydrolysestufe aufweisen, in der der Wasserstoff (H2) erzeugt wird. Grundsätzlich kann der Wasserstoff aber auch im Rahmen der „normalen" Hydrolyse in einem Fermenter der Biogasanlage erzeugt und von dort abgezogen werden. Insbesondere in Verbindung mit einer Biogasanlage die eine Trocknungseinrichtung, zum Beispiel eine Trocknungseinrichtung zur Trocknung von Gärresten, aufweist, kann es vorteilhaft sein, das in der Trocknungseinrichtung anfallende Wasser wenigstens zum Teil der Elektrolyseeinrichtung zuzuführen. Auch hierdurch ergibt sich eine optimale Ausnutzung der innerhalb des Systems anfallenden Wertstoffe im Rahmen der erfindungsgemäßen Biomethanerzeugung.
Die der Elektrolyseeinrichtung zugeführte Wassermenge, insbesondere eine Frischwassermenge und/oder eine Trocknungswassermenge und/oder eine Kondenswassermenge aus der Biogasanlage und/oder eine Kondenswassermenge aus der Vergasungseinrichtung, wird, bevorzugt mittels einer Steuer- und/oder Regeleinrichtung, in Abhängigkeit von der in der Methanisierungseinheit gebildeten und der Elektrolyseeinrichtung zugeführten Wassermenge vorgegeben. Hier, wie auch insgesamt und damit ganz allgemein, gilt, dass bei der erfindungsgemäßen Verfahrensführung wenigstens eine Steuer- und/oder Regeleinrichtung vorgesehen ist, mittels der die Stoffströme zu den einzelnen Anlagen, Bauteilen etc. in Abhängigkeit von definiert vorgegebenen Betriebsparametern gesteuert und/oder geregelt werden.
Grundsätzlich besteht jedoch auch die Möglichkeit, das in der Methanisierungseinheit gebildete Wasser wenigstens zum Teil dem wenigstens einen Fermenter der Biogasanlage zuzuführen bzw. alternativ oder zusätzlich wenigstens zum Teil, vorzugsweise in erhitzter Form als Wasserdampf, dem wenigstens einen Reaktor der Vergasungseinrichtung zuzuführen. In letzterem Fall dient dann der Wasserdampf zum Beispiel als Vergasungs- und/oder Oxidationsmittel der Vergasungseinrichtung.
Des Weiteren handelt es sich bei den in der Methanisierungseinheit ablaufenden Reaktionen um stark exotherme Reaktionen. Dadurch besteht die Möglichkeit, die in der Methanisierungseinheit anfallende Wärme aus dieser auszukoppeln und innerhalb des Systems dort einzukoppeln, wo Wärme benötigt wird, zum Beispiel der Biogasanlage und/oder der Vergasungseinrichtung zuzuführen. Es versteht sich, dass wenigstens ein Teil des in der Biogasanlage erzeugten Biogases und/oder wenigstens ein Teil des in der Vergasungseinrichtung erzeugten Synthesegases selbstverständlich auch wenigstens einem Blockheizkraftwerk zugeführt werden kann, in dem Strom erzeugt wird. Dieser Strom kann dann zum Beispiel in ein Stromnetz eingespeist werden. Besonders effektiv und im Hinblick auf den Gesamtwirkungsgrad vorteilhaft ist jedoch eine Ausführungsform, bei der der erzeugte Strom wenigstens zum Teil auch der Elektrolyseeinrichtung zugeführt wird, die elektrische Energie benötigt, um das Wasser in Wasserstoff und Sauerstoff aufzuspalten.
Das in der Biogasanlage gewonnene kohlendioxidhaltige Biogas und das in der Vergasungseinrichtung erhaltene Synthesegas können grundsätzlich unabhängig und separat voneinander der Methanisierungseinheit zu vorgegebenen Zeiten und in vorgegebener Menge zugeführt werden. Grundsätzlich besteht jedoch auch die Möglichkeit, wenigstens einen Teil des zur Methanisierungseinheit geführten Biogases mit wenigstens einem Teil des zur Methanisierungseinheit geführten Synthesegases stromauf der Methanisierungseinheit zusammenzuführen und zu vermischen, was zweckmäßigerweise in einer Mischeinrichtung geschieht, so dass dann der Methanisierungseinheit ein Gemisch aus den beiden Gasen zugeführt wird. Dies hat den Vorteil, dass der Methanisierungseinheit dann ein im Wesentlichen gleichbleibendes homogenes Gasgemisch zugeführt werden kann, was sich vorteilhaft auf den Reaktionsablauf in der Methanisierungseinheit auswirkt.
Das in der Vergasungseinrichtung erzeugte Synthesegas wird der Methanisierungseinheit vorzugsweise kontinuierlich und ohne Zwischenspeicherung zugeführt. Der Grund hierfür liegt insbesondere darin, dass eine Speicherung des Synthesegases zum einen relativ aufwendig ist und dass der Reaktor der Vergasungseinrichtung relativ einfach hinsichtlich der Gasausbeute mittels einer Steuer- und/oder Regeleinrichtung Steuer- bzw. regelbarbar ist, das heißt die Gasausbeute und damit der Gasabzug mittels einer Steuer- und/oder Regeleinrichtung relativ gut und einfach gedrosselt bzw. erhöht werden kann. Letzteres ist dagegen bei einer Biogasanlage schwieriger, während hier aber das entstehende Biogas relativ leicht gespeichert werden kann. Dementsprechend weist die Biogasanlage bevorzugt einen Gasspeicher auf, in dem das der Methanisierungseinheit zugeführte kohlendioxidhaltige Biogas zwischengespeichert und dann mittels einer Steuer- und/oder Regeleinrichtung bedarfsweise abgezogen wird. Hierdurch wird somit ein Aufbau zur Verfügung gestellt, mittels dem das Gasmanagment für Zuführung von Gas zur Methanisierungseinheit einfach zu bewerkstelligen ist.
Gemäß einer weiteren besonders bevorzugten Ausgestaltung kann vorgesehen sein, dass ein nicht der Methanisierungseinheit zuführbarer Teil des kohlendioxidhaltigen Biogases einer Aufbereitungseinrichtung zugeführt wird, in der das Kohlendioxid aus dem Biogas abgetrennt wird, wobei das abgetrennte Kohlendioxid der Methanisierungseinheit zugeführt wird. Auch hierdurch wird zum Beispiel insbesondere in Verbindung mit sehr großen Mengen von anfallendem Biogas zum einen sichergestellt, dass ein möglichst reines Methan dem Gasnetz zugeführt wird. Das abgetrennte Kohlendioxid braucht dann zum anderen aber nicht einfach verworfen werden, sondern kann vorteilhaft der Methanisierungseinheit zugeführt werden, in der das Kohlendioxid als Edukt für die dort ablaufenden Sabatier-Reaktionen benötigt wird.
Ferner wird gemäß einer weiteren bevorzugten Ausführungsform vorgeschlagen, dass wenigstens ein Teil des in der Elektrolyseeinrichtung erzeugten Sauerstoffs der Vergasungseinrichtung zugeführt wird. Dies hat den Vorteil, dass der Sauerstoff dann dort, insbesondere als Vergasungs- bzw. Oxidationsmittel, verwendet werden kann. Dies hilft ebenfalls, den Gesamtwirkungsgrad der erfindungsgemäßen Verfahrensführung zu erhöhen.
Ferner wird eine Anlage zur Erzeugung von Biomethan beansprucht, deren Vorteile identisch zu den zuvor in Verbindung mit der Verfahrensführung genannten Vorteilen sind. Insofern wird auf die zuvor gemachten Ausführungen verwiesen.
Die Erfindung wird nachfolgend anhand einer Zeichnung näher erläutert.
Die einzige Figur zeigt schematisch ein Fließbild einer beispielhaften Ausführungsform einer erfindungsgemäßen Vorrichtung zur Erzeugung von Biomethan. Diese Vorrichtung 1 umfasst zum einen eine Vergasungseinrichtung 2, in der durch thermische Vergasung von zum Beispiel Biomasse (im Sinne der vorstehenden Definition) mittels eines Vergasungsund/oder Oxidationsmittels in wenigstens einem Reaktor der Vergasungseinrichtung ein wenigstens bzw. unter anderem Kohlenmonoxid (CO), Kohlendioxid (C02), Wasserstoff (H2) und Methan (CH4) enthaltendes Synthesegas erzeugt wird. Ein Teil dieses Synthesegas 3 wird, gesteuert bzw. geregelt über eine hier nicht dargestellte Steuer- und/oder Regeleinrichtung, zu vorgegebenen Zeiten und in vorgegebener Menge einer Methanisierungseinheit 4 zugeführt. Ein anderer Teil dieses in der Vergasungseinrichtung 2 erzeugten Synthesegases 5 wird hier beispielhaft einem BHKW 6 zugeführt.
Weiter umfasst die erfindungsgemäße Vorrichtung 1 zur Erzeugung von Biomethan eine Biogasanlage 7, in der durch biologische Vergasung bzw. Vergärung von zum Beispiel Biomasse (im Sinne der vorstehenden Definition) in wenigstens einem Fermenter der Biogasanlage 7 ein wenigstens bzw. vor allem Methan und Kohlendioxid enthaltendes Biogas erzeugt wird. Die Biogasanlage 7 kann zudem zum Beispiel wenigstens eine gezielt zur Wasserstofferzeugung ausgelegte bzw. ausgebildete Hydrolysestufe aufweisen, in der Wasserstoff (H2) erzeugt wird, der dann Bestandteil des Biogases 8 bildet. Dieser Wasserstoff kann grundsätzlich aber auch im Rahmen der„normalen" Hydrolyse in einem Fermenter der Biogasanlage 7 erzeugt werden. Ein Teil dieses vorzugsweise auch Wasserstoff aufweisenden Biogases 8 wird von der Biogasanlage 7 ausgehend wiederum gesteuert bzw. geregelt der Methanisierungseinheit 4 zugeführt. Ein anderer Teil dieses Biogases 9 wird hier beispielhaft einem weiteren BHKW 10 zugeführt.
Optional kann, wie in der Fig. 1 schematisch und strichliert mittels des BHKWs 11 dargestellt, aber auch nur ein einziges BHKW 11 vorhanden sein, mittels dem ein Gemisch aus Synthesegas 5 und Biogas 9 verbrannt wird. Dies hat den Vorteil, dass der Motor des BHKWs stabiler gefahren werden kann und damit der Wirkungsgrad höher ist, weil reines Synthesegas eine starke Klopfneigung aufweist bzw. zum Rückzünden neigt. Ebenso könnte dieses BHKW 11 auch zusätzlich zu den BHKWs 6 und 10 vorgesehen sein.
Der in den BHKWs erzeugte Strom wird dann in ein, vorzugsweise öffentliches, Stromnetz 12 eingespeist werden.
Aus dem Stromnetz 12 wird dann Strom abgezogen (Bezugszeichen 19) und einer Elektrolyseeinrichtung 14 zugeführt, die Strom benötigt, um der Elektrolyseeinrichtung 14 zugeführtes Wasser 15 durch den elektrischen Strom in Wasserstoff H2 und Sauerstoff 02 zu spalten, wobei, wie in der Fig. 1 dargestellt, der mittels der Elektrolyseeinrichtung 14 erzeugte Wasserstoff wenigstens zum Teil der Methanisierungseinheit 4 zugeführt wird. Auch hier werden die Stoffströme wieder mittels einer bzw. der bereits vorhin erwähnten Steuer- und/oder Regeleinrichtung gesteuert bzw. geregelt. Wie in der Fig. 1 weiter dargestellt (Bezugszeichen 13), kann wenigstens ein Teil des in der Elektrolyseeinrichtung 14 erzeugten Sauerstoffs 02 der Vergasungseinrichtung 2 zugeführt werden, in der der Sauerstoff dann als Oxidationsmittel fungieren kann.
Im vorliegenden Beispielfall der Fig. 1 ist ferner gezeigt, dass ein gegebenenfalls überschießender Teil des erzeugten Wasserstoffs 17 auch einem, zum Beispiel öffentlichen, Gasnetz 18 zugeführt werden, kann. Das von der Vergasungseinrichtung 2 kommende Synthesegas 3 und das von der Biogasanlage 7 kommende Biogas 8 können grundsätzlich, wie in der Fig. 1 dargestellt, separat und unabhängig voneinander der Methanisierungseinheit 4 zugeführt werden. Wie in der Fig. 1 schematisch und strichliert dargestellt, können diese beiden Gasströme jedoch auch stromauf der Methanisierungseinheit 4 einer Mischeinrichtung 20 zugeführt werden, in der die beiden Gasströme dann miteinander vermischt und als Gasgemisch der Methanisierungseinheit 4 zugeführt werden.
In der Methanisierungseinheit 4 selbst finden dann die nachfolgenden beiden Sabatier-Reaktionen statt:
C02 + 4H2 -» 2H20 + CH4
CO + 3H2 H20 + CH4 Mit anderen Worten wird in der Methanisierungseinheit 4 das Kohlenstoffdioxid, das Kohlenmonoxid und der Wasserstoff in Methan (CH4) und Wasser (H20) umgewandelt. Das einen hohen Reinheitsgrad aufweisende CH4 kann dann als Biomethan 21 dem Gasnetz 18 zugeführt werden. Das im Rahmen der Sabatier-Reaktionen weiter anfallende Reaktionsprodukt Wasser kann zum Beispiel, wie bereits zuvor ausgeführt mittelbar oder wie hier gezeigt unmittelbar der Elektrolyseeinrichtung 14 zugeführt werden (Wasser 15).
Das in der Methanisierungseinheit 4 gebildete Wasser kann alternativ oder zusätzlich aber auch, wie mit den Pfeilen 22 und 23 angedeutet, der Vergasungseinrichtung 2 und/oder der Biogasanlage 7 zugeführt werden. Alternativ oder zusätzlich zu der Zuführung von Wasser 15 aus der Methanisierungseinheit 4 zur Elektrolyseeinrichtung 14 kann auch vorgesehen sein, der Elektrolyseeinrichtung 14 Frischwasser 24 zuzuführen.
Auch hier gilt wieder, dass die Menge und der Zeitpunkt bzw. die Zeitdauer der Strom-, Wasser- und Wasserstoff-Stoffströme mittels der Steuer- und/oder Regeleinrichtung gesteuert bzw. geregelt wird.
In Verbindung mit der Wasserversorgung der Elektrolyseeinrichtung 14 ist es ebenso denkbar, dass im Falle einer Trocknungseinrichtung 25 als Bestandteil der Biogasanlage 7, zum Beispiel im Falle einer Gärreste- Trocknungseinrichtung, dort anfallendes Wasser 26 wenigstens zum Teil der Elektrolyseeinrichtung 14 zugeführt wird.
Ebenso könnte alternativ oder zusätzlich Kondenswasser 37 aus der Vergasungseinrichtung 2 bzw. aus der Biogasanlage 7 (analog Bezugszeichen 26) wenigstens zum Teil der Elektrolyseeinrichtung 14 zugeführt werden.
Wie bereits zuvor ausgeführt, kann das Wassermanagement, das heißt die Zuführung von Frischwasser und/oder von Produktwasser aus der Methanisierungseinheit 4 und/oder von in einer Trocknungseinrichtung der Biogasanlage anfallendes Wasser 26 und/oder von Kondenswasser 37 aus der Vergasungseinrichtung 2 zur Elektrolyseeinrichtung 14 mittels einer Steuer- und/oder Regeleinrichtung gesteuert werden, und zwar in Abhängigkeit von den jeweils vorgegebenen Betriebsparametern.
Wie dies der Fig. 1 weiter zu entnehmen ist, kann ein Teil des in der Biogasanlage erzeugten kohlendioxidhaltigen Biogases 8 einer Aufbereitungseinrichtung 27, zum Beispiel einem Gaswäscher, zugeführt werden, in dem das Kohlendioxid abgetrennt wird. Dieses abgetrennte Kohlendioxid kann dann zum Beispiel optional der Methanisierungseinheit 4 zugeführt werden kann (Bezugszeichen 28). In der Methanisierungseinheit 4 dient das Kohlendioxid dann als Edukt bei der Methanisierung von Wasserstoff, während das so gereinigte Biogas 29 dann als Biomethan dem öffentlichen Gasnetz 18 zugeführt werden kann.
Wie in der Fig. 1 weiter dargestellt, kann dem Gasnetz 18 auch Gas entnommen und einem Gaskraftwerk 30 zugeführt werden, in dem dann Strom 31 erzeugt wird, der dem Stromnetz 12 zugeführt wird. Grundsätzlich wäre es denkbar, das in der Methanisierungseinheit 4 erzeugte Biomethan 21 direkt bzw. wenigstens zum Teil dem Gaskraftwerk 30 zuzuführen.
Ebenso kann dem Stromnetz 12 von Windkraftanalagen 32 bzw. von Solaranlagen 33 erzeugter Strom zugeführt werden.
Die aufgrund der stark exothermen Reaktionen in der Methanisierungseinheit 4 zur Verfügung stehende Abwärme 34 kann dann zum Beispiel der Vergasungseinrichtung 2 und/oder der Biogasanlage 7 zugeführt werden, wie dies in der Fig. 1 weiter schematisch dargestellt ist. (Wärmezuführung 35, 36). Bei einer derartigen Verfahrensführung besteht der Vorteil gegenüber einer klassischen Biogasaufbereitung vor allem darin, dass das Kohlendioxid nicht abgetrennt wird und somit verloren geht, sondern weiter aufbereitet wird und das gesamte produzierte Biogas in Form von Methan letztendlich in das einen hohen Gasreinheitsgrad erfordernde Gasnetz 18 eingespeist werden kann. Der Vorteil in Verbindung mit Vergasungseinrichtungen 2 besteht darin, dass das entstehende Schwachgas aufgewertet wird und ebenfalls in das Gasnetz 18 eingespeist werden kann.
Die Stoffströme selbst werden mittels zwischen den einzelnen Anlagenteilen verlegten Rohrleitungen vorgenommen. Zur Stromversorgung sind Stromleitungen vorgesehen. Stell- bzw. Steuersignale können funktionstechnisch als auch mittels Leitungen übertragen werden.

Claims

Patentansprüche
1. Verfahren zum Erzeugen von Biomethan, mit einer Methanisierungseinheit (4), in der Kohlenstoffdioxid, Kohlenmonoxid und Wasserstoff in Methan und Wasser umgewandelt werden, mit einer Elektrolyseeinrichtung (14), in der der Elektrolyseeinrichtung (14) zugeführtes Wasser durch elektrischen Strom in Wasserstoff und Sauerstoff gespalten wird, wobei der mittels der Elektrolyseeinrichtung
(14) erzeugte Wasserstoff wenigstens zum Teil der Methanisierungseinheit (4) zugeführt wird, mit einer Biogasanlage (7), in der durch Vergärung von vergärbaren Stoffen in wenigstens einem Fermenter der Biogasanlage (7) ein wenigstens Methan und Kohlendioxid enthaltendes Biogas erzeugt wird, das wenigstens zum Teil der Methanisierungseinheit (4) zugeführt wird, mit einer Vergasungseinrichtung (2), in der durch thermische Vergasung von thermisch vergasbaren Stoffen mittels eines Vergasungs- und/oder
Oxidationsmittels in wenigstens einem Reaktor der Vergasungseinrichtung (2) ein wenigstens Kohlenmonoxid, Wasserstoff, Kohlendioxid und Methan enthaltendes Synthesegas erzeugt wird, das wenigstens zum Teil der Methanisierungseinheit (4) zugeführt wird, wobei das in der Methanisierungseinheit (4) gebildete Biomethan einer Verwertungs- und/oder Speichereinrichtung, insbesondere einem Gasspeicher und/oder einem Gasnetz (18), zugeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das in der Methanisierungseinheit (4) gebildete Wasser wenigstens zum Teil der Elektrolyseeinrichtung (14) zugeführt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Elektrolyseeinrichtung (14) eine definierte Menge an Frischwasser zugeführt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das in der Vergasungseinrichtung (2) und/oder in der Biogasanlage (7) anfallende Wasser, insbesondere Kondenswasser, wenigstens zum Teil der Elektrolyseeinrichtung (14) zugeführt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Teil oder lediglich ein Teil des in der Biogasanlage (7) im Rahmen einer Hydrolyse, insbesondere in wenigstens einer Hydrolysestufe, erzeugten Wasserstoffes der Elektrolyseinrichtung (14) zugeführt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Biogasanlage (7) eine Trocknungseinrichtung (25), insbesondere zur Trocknung von Gärresten, aufweist, wobei das in der Trocknungseinrichtung (25) anfallende Wasser wenigstens zum Teil der Elektrolyseinrichtung (14) zugeführt wird. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die der Elektrolyseeinrichtung (14) zugeführte Wassermenge, insbesondere eine Frischwassermenge und/oder eine Trocknungswassermenge und/oder eine Kondenswassermenge aus der Biogasanlage (7) und/oder eine Kondenswassermenge aus der Vergasungseinrichtung (2), mittels einer Steuer- und/oder Regeleinrichtung in Abhängigkeit von der in der Methanisierungseinheit (4) gebildeten und der Elektrolyseeinrichtung (14) zugeführten Wassermenge vorgegeben wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das in der Methanisierungseinheit (4) gebildete Wasser wenigstens zum Teil dem wenigstens einem Fermenter der Biogasanlage (7) zugeführt wird und/oder wenigstens zum Teil in erhitzter Form als Wasserdampf dem wenigstens einen Reaktor der Vergasungseinrichtung (2) zugeführt wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in der Methanisierungseinheit (4) anfallende Wärme aus der Methanisierungseinheit (4) ausgekoppelt und der Biogasanlage (7) und/oder der Vergasungseinrichtung (2) zugeführt wird.
0. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Teil des in der Biogasanlage (7) erzeugten Biogases und/oder ein Teil des in der Vergasungseinrichtung (2) erzeugten Synthesegases wenigstens einem Blockheizkraftwerk (6,
10, 11 ) zugeführt wird, in dem Strom erzeugt wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der erzeugte Strom in ein Stromnetz (12) eingespeist wird.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Teil des der Methanisierungs- einheit (4) zugeführten Biogases mit wenigstens einem Teil des der Methanisierungseinheit (4) zugeführten Synthesegases in einer Mischeinrichtung (20) zusammengeführt und vermischt sowie anschließend der Methanisierungseinheit (4) zugeführt wird.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das die Biogasanlage (7) einen Gasspeicher aufweist, in dem das der Methanisierungseinheit (4) zugeführte kohlendioxidhaltige Biogas zwischengespeichert und bedarfsweise abgezogen wird.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein nicht der Methanisierungseinheit (4) zuführbarer Teil des kohlendioxidhaltigen Biogases einer Aufbereitungseinrichtung (27) zugeführt wird, in der Kohlendioxid aus dem Biogas abgetrennt wird, wobei das abgetrennte Kohlendioxid der Methanisierungseinheit (4) zugeführt wird.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Teil des in der Elektrolyseeinrichtung (14) erzeugten Sauerstoffs der Vergasungseinrichtung (2) zugeführt wird.
16. Anlage zur Erzeugung von Biomethan, insbesondere zur Durchführung eines Verfahrens nach einem der vorhergehenden Ansprüche, mit einer Methanisierungseinheit (4), in der Kohlenstoffdioxid, Kohlenmonoxid und Wasserstoff in Methan und Wasser umwandelbar ist, mit einer Elektrolyseeinrichtung (14), in der der Elektrolyseeinrichtung zugeführtes Wasser durch elektrischen Strom in Wasserstoff und Sauerstoff spaltbar, wobei von der Elektrolyseeinrichtung (14) wenigstens eine Wasserstoff-Zuführleitung zu der Methanisierungseinheit (4) führt, mittels der eine definierte Menge eines mittels der Elektrolyseeinrichtung (14) erzeugten Wasserstoffes der Methanisierungseinheit (4) zuführbar ist, mit einer Biogasanlage (7), in der durch Vergärung von vergärbaren Stoffen in wenigstens einem Fermenter der Biogasanlage (7) ein wenigstens Methan und Kohlendioxid enthaltendes Biogas erzeugbar ist, wobei von der Biogasanlage wenigstens eine Biogas-Zuführleitung zu der Methanisierungseinheit (4) geführt ist, mittels der eine definierte Menge des Biogases der Methanisierungseinheit (4) zuführbar ist, mit einer Vergasungseinrichtung (2), in der durch thermische Vergasung von vergasbaren Stoffen mittels eines Vergasungs- und/oder Oxidationsmittels in wenigstens einem Reaktor der Vergasungseinrichtung (2) ein wenigstens Kohlenmonoxid, Wasserstoff, Kohlendioxid und Methan enthaltendes Synthesegas erzeugbar ist, wobei von der Vergasungseinrichtung (2) wenigstens eine Synthesegas- Zuführleitung zu der Methanisierungseinheit (4) geführt ist, mittels der eine definierte Menge des Synthesegases der Methanisierungseinheit (4) zuführbar ist, und mit wenigstens einer zu einer Verwertungs- und/oder Speichereinrichtung, insbesondere zu einem Gasspeicher und/oder zu einem Gasnetz (18), geführten Biomethan-Zuführleitung, mittels der das in der Methanisierungseinheit (4) gebildete Biomethan der Verwertungs- und/oder Speichereinrichtung, insbesondere dem Gasspeicher und/oder dem Gasnetz (18), zuführbar ist.
PCT/EP2015/000297 2014-02-12 2015-02-11 Verfahren und anlage zum erzeugen von biomethan WO2015120983A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014001933.0A DE102014001933A1 (de) 2014-02-12 2014-02-12 Verfahren und Anlage zum Erzeugen von Biomethan
DE102014001933.0 2014-02-12

Publications (1)

Publication Number Publication Date
WO2015120983A1 true WO2015120983A1 (de) 2015-08-20

Family

ID=52630316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/000297 WO2015120983A1 (de) 2014-02-12 2015-02-11 Verfahren und anlage zum erzeugen von biomethan

Country Status (2)

Country Link
DE (1) DE102014001933A1 (de)
WO (1) WO2015120983A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2539021A (en) * 2015-06-04 2016-12-07 Advanced Plasma Power Ltd Process for producing a substitute natural gas
CN108780803A (zh) * 2016-03-29 2018-11-09 索尼公司 固态成像装置及电子设备
WO2018234695A1 (fr) 2017-06-20 2018-12-27 Michel Bonhomme Procédé de et dispositif de production de biométhane en réacteur compartimente en voie visqueuse
EP3441452A1 (de) * 2017-08-10 2019-02-13 Martin GmbH für Umwelt- und Energietechnik Energieerzeugungssystem mit einem heizkraftwerk und einer vergärungsanlage und verfahren zur energieerzeugung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219986B4 (de) * 2016-10-13 2022-11-03 Fld Technologies Gmbh Verfahren zur Herstellung von Methan
WO2020060469A1 (en) * 2018-09-19 2020-03-26 Kiram Ab Process for utilization of gaseous by-products from fermentation processes
EP4001381A1 (de) * 2020-11-17 2022-05-25 K-Inn Tech S.r.l. Verfahren zur herstellung von hochreinem biomethan

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009018126A1 (de) * 2009-04-09 2010-10-14 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Energieversorgungssystem und Betriebsverfahren
DE102011103430A1 (de) * 2011-06-07 2012-12-13 Solar Fuel Gmbh Verfahren zur Bereitstellung eines Gases mit sehr hohem Methangehalt und dazu ausgelegte Anlage
DE102012200221A1 (de) * 2012-01-10 2013-07-11 Highterm Research Gmbh Verfahren zur Erzeugung eines methanreichen Gases
DE102012009903A1 (de) * 2012-05-18 2013-11-21 Karl Werner Dietrich Hybridspeicherkraftwerk mit Umwandlung von Kohle in Methan

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010012734U1 (de) * 2010-09-03 2011-12-05 Carbon-Clean Technologies Ag Energieträger-Erzeugungsanlage zum kohlendioxidneutralen Ausgleich von Erzeugungsspitzen und Erzeugungstälern bei der Erzeugung von elektrischer Energie und/oder zur Erzeugung eines kohlenwasserstoffhaltigen Energieträgers
DE102012203334A1 (de) * 2012-03-02 2013-09-05 Wobben Properties Gmbh Verfahren zum Betreiben eines Kombikraftwerks bzw. Kombikraftwerk

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009018126A1 (de) * 2009-04-09 2010-10-14 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Energieversorgungssystem und Betriebsverfahren
DE102011103430A1 (de) * 2011-06-07 2012-12-13 Solar Fuel Gmbh Verfahren zur Bereitstellung eines Gases mit sehr hohem Methangehalt und dazu ausgelegte Anlage
DE102012200221A1 (de) * 2012-01-10 2013-07-11 Highterm Research Gmbh Verfahren zur Erzeugung eines methanreichen Gases
DE102012009903A1 (de) * 2012-05-18 2013-11-21 Karl Werner Dietrich Hybridspeicherkraftwerk mit Umwandlung von Kohle in Methan

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2539021A (en) * 2015-06-04 2016-12-07 Advanced Plasma Power Ltd Process for producing a substitute natural gas
CN108780803A (zh) * 2016-03-29 2018-11-09 索尼公司 固态成像装置及电子设备
CN108780803B (zh) * 2016-03-29 2023-03-17 索尼公司 固态成像装置及电子设备
US11798962B2 (en) 2016-03-29 2023-10-24 Sony Corporation Solid-state imaging device with a pixel having a partially shielded photoelectric conversion unit region for holding charge
WO2018234695A1 (fr) 2017-06-20 2018-12-27 Michel Bonhomme Procédé de et dispositif de production de biométhane en réacteur compartimente en voie visqueuse
EP3441452A1 (de) * 2017-08-10 2019-02-13 Martin GmbH für Umwelt- und Energietechnik Energieerzeugungssystem mit einem heizkraftwerk und einer vergärungsanlage und verfahren zur energieerzeugung
US20190049111A1 (en) * 2017-08-10 2019-02-14 Martin Gmbh Fuer Umwelt- Und Energietechnik Power-generation system having a combined heat and power plant and method for power generation
JP2019037121A (ja) * 2017-08-10 2019-03-07 マルチン ゲーエムベーハー フュア ウムヴェルト ウント エネルギーテヒニーク 熱併給形コンバインド発電プラントを有する発電システム及び発電のための方法
US10883715B2 (en) 2017-08-10 2021-01-05 Martin Gmbh Fuer Umwelt- Und Energietechnik Power-generation system having a combined heat and power plant and method for power generation
JP7207881B2 (ja) 2017-08-10 2023-01-18 マルチン ゲーエムベーハー フュア ウムヴェルト ウント エネルギーテヒニーク 熱併給形コンバインド発電プラントを有する発電システム及び発電のための方法

Also Published As

Publication number Publication date
DE102014001933A1 (de) 2015-08-13

Similar Documents

Publication Publication Date Title
WO2015120983A1 (de) Verfahren und anlage zum erzeugen von biomethan
DE102008007423B4 (de) Verfahren zur Erzeugung von Biogas und Biogasanlage zur Durchführung des Verfahrens
DE102012103458B4 (de) Anlage und Verfahren zur ökologischen Erzeugung und Speicherung von Strom
EP2562237B1 (de) Verfahren zur bereitstellung eines gases mit sehr hohem methangehalt und dazu ausgelegte anlage
DE102014111287A1 (de) Verfahren zur Erzeugung von Methan
WO2014094734A2 (de) Energieumwandlungssystem
DE102007013190A1 (de) Verfahren und Vorrichtung zum Abbau schädlicher Stoffe mittels Zuführen von Sauerstoff
EP2682450B1 (de) Verfahren zum katalytischen methanisieren und methanisierungsanlage
EP2586868B1 (de) Verfahren und Biogasanlage zum Erzeugen von Biogas
DE102008037402A1 (de) Verfahren zur Erzeugung von Biogas
EP2650257B1 (de) Vorrichtung zur synthese von regenerativem methanol aus co2-haltigem methangas
DE102011015415B4 (de) Druckmethanisierung von Biomasse
DE102015116366A1 (de) System zur Aufarbeitung von organischen Reststoffen
DE102015214592A1 (de) Herstellungsverfahren für ein Brenngas und Anlage zur Herstellung eines Brenngases mit einem Elektrolysesystem zur elektrochemischen Kohlenstoffdioxid-Verwertung
DE102019115711A1 (de) Verfahren und Anlage zur Aufarbeitung von Klärschlamm, Gärresten und/oder Gülle unter Gewinnung von Wasserstoff
DE102014111298A1 (de) Verfahren zur Erzeugung von Methan
WO2014079921A1 (de) Mikrobiologische biomethan-erzeugung mit wasserstoff aus der thermischen vergasung von kohlenstoffhaltigen einsatzstoffen
DE102011054298A1 (de) Methanerzeugungseinheit und Biomasse-Vergärungsanlage
AT511941B1 (de) Betriebsstoffversorgungssystem für Fahrzeuge mit Kohlendioxidspeicherung
WO2010100224A1 (de) Verfahren und vorrichtung zur nachhaltigen erzeugung von energie und mindestens eines basisstoffes
DE102007007131A1 (de) Verfahren und Vorrichtungen zur Verbesserung der Wirtschaftlichkeit von Biogasanlagen
DE102013108264B4 (de) Biogaseinrichtung
DE102013211685B4 (de) Kombiniertes Verfahren zur Nutzung von Roh-Biogas enthaltend Kohlendioxid und ein Nutzgas
DE102011008186B4 (de) Verfahren zur Herstellung von Biogas aus überwiegend stärkehaltigen Rohstoffen als Biomasse
AT508614B1 (de) Anlage zur verarbeitung von organischem substrat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15708436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15708436

Country of ref document: EP

Kind code of ref document: A1