WO2015120613A1 - 传输数据的方法和装置 - Google Patents

传输数据的方法和装置 Download PDF

Info

Publication number
WO2015120613A1
WO2015120613A1 PCT/CN2014/072094 CN2014072094W WO2015120613A1 WO 2015120613 A1 WO2015120613 A1 WO 2015120613A1 CN 2014072094 W CN2014072094 W CN 2014072094W WO 2015120613 A1 WO2015120613 A1 WO 2015120613A1
Authority
WO
WIPO (PCT)
Prior art keywords
power enhancement
power
field
target field
preamble
Prior art date
Application number
PCT/CN2014/072094
Other languages
English (en)
French (fr)
Inventor
朱俊
张佳胤
刘亚林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14882347.9A priority Critical patent/EP3094057B1/en
Priority to PCT/CN2014/072094 priority patent/WO2015120613A1/zh
Priority to CN201480075141.8A priority patent/CN105981343B/zh
Publication of WO2015120613A1 publication Critical patent/WO2015120613A1/zh
Priority to US15/234,891 priority patent/US10129069B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • Embodiments of the present invention relate to the field of communications technology and, more particularly, to a method and apparatus for transmitting data. Background technique
  • Wireless Local Area Networks is a data transmission system that uses radio frequency (RF) technology to replace the local area network of old twisted-pair copper wires, enabling wireless local area networks to utilize
  • RF radio frequency
  • Wi-Fi Wireless Fidelity
  • Wi-Fi Alliance is a brand of wireless network communication technology, held by the Wi-Fi Alliance, to improve interoperability between 802.11-based wireless network products, using the 802.11 family of protocols.
  • the wireless LAN can be called a Wi-Fi network.
  • the embodiments of the present invention provide a method and an apparatus for transmitting data, which can improve the overall throughput of the system, thereby improving the user experience.
  • a method for transmitting data including: transmitting, by a transmitting end, a transmit power enhancement process on a target field of a WLAN system preamble, where the target field includes an unconventional field of a preamble of the WLAN system Unless the one or more fields of the legacy signaling field; the transmitting end transmits the preamble subjected to the transmit power enhancement process to the receiving end.
  • the sending end performs a transmit power enhancement process on a target field of a WLAN system preamble, including: a peak-to-average power ratio corresponding to the target field
  • the PAPR and the power amplification limit of the transmitting end determine a power enhancement amount of the target field; and generate a baseband signal of the target field according to the power enhancement amount of the target field.
  • the sending end performs a transmit power enhancement process on a target field of a WLAN system preamble of the WLAN system, and further includes: the preamble And the power enhancement information is used to indicate whether the target field is subjected to power enhancement processing. In the case that the target field is subjected to power enhancement processing, the power enhancement information is further The amount of power enhancement used to indicate the target field.
  • the PAPR corresponding to the target field is lower than a threshold, where the threshold is smaller than a power amplification limit of the sending end.
  • the target field includes a long training field LTF.
  • a method for transmitting data including: receiving a wireless local area network by a receiving end
  • the power enhancement information in the non-legacy signaling field of the WLAN system preamble where the power enhancement information is used to instruct the transmitting end to perform a transmission power enhancement process on a target field of the preamble, where the target field includes the WLAN
  • the non-legacy field of the system preamble includes one or more fields of the legacy signaling field; the receiving end receives the non-legacy field of the preamble according to the power enhancement information.
  • the power enhancement information is used to indicate a power enhancement amount of the target field, where the power enhancement amount is used by the sending end according to the target field
  • the corresponding peak-to-average power is determined by the PAPR and the power amplification limit of the transmitting end.
  • the receiving end receives the preamble according to the power enhancement information.
  • the non-legacy field includes: performing multiple input and multiple output MIMO channel estimation according to the power enhancement amount of the target field indicated by the power enhancement information; and receiving subsequent fields and data according to the MIMO channel estimation result.
  • the third aspect provides an apparatus for transmitting data, including: a power enhancement processing unit, configured to perform a transmit power enhancement process on a target field of a WLAN system preamble, where the target field includes the WLAN system preamble In the non-legacy field, unless one or more fields of the traditional signaling field are used; the sending unit is configured to send the preamble subjected to the transmit power enhancement process to the receiving end.
  • a power enhancement processing unit configured to perform a transmit power enhancement process on a target field of a WLAN system preamble, where the target field includes the WLAN system preamble In the non-legacy field, unless one or more fields of the traditional signaling field are used
  • the sending unit is configured to send the preamble subjected to the transmit power enhancement process to the receiving end.
  • the power enhancement processing unit The method is: determining a power enhancement amount of the target field according to a peak-to-average power ratio PAPR corresponding to the target field and a power amplification limit of the transmitting end; generating a target field according to a power enhancement amount of the target field Baseband signal.
  • the power enhancement processing unit is further configured to: add power enhancement information to the non-legacy signaling field in the preamble,
  • the power enhancement information is used to indicate whether the target field is subjected to power enhancement processing.
  • the power enhancement information is further used to indicate the power enhancement amount of the target field.
  • the PAPR corresponding to the target field is lower than a threshold, where the threshold is smaller than a power amplification limit of the transmitting end.
  • the target field includes a long training field LTF.
  • the fourth aspect provides an apparatus for transmitting data, including: an acquiring unit, configured to acquire power enhancement information in a non-legacy signaling field of a preamble of a WLAN system of a wireless local area network, where the power enhancement information is used to indicate a sending end Transmitting power enhancement processing is performed on a target field of the preamble, where the target field includes one or more fields in a non-legacy field of the WLAN system preamble unless a conventional signaling field is used;
  • the power enhancement information receives an unconventional field of the preamble.
  • the power enhancement information is used to indicate a power enhancement amount of the target field, where the power enhancement amount is used by the sending end according to the target field
  • the corresponding peak-to-average power is determined by the PAPR and the power amplification limit of the transmitting end.
  • the apparatus when the target field is a long training field LTF, the apparatus further includes a channel estimation unit, where the receiving unit is specifically configured to: : performing multiple input multiple output MIMO channel estimation by using the channel estimation unit according to the power enhancement amount of the target field indicated by the power enhancement information; and estimating subsequent fields and data according to the MIMO channel.
  • the overall throughput rate of the system can be improved, thereby improving data transmission performance and user experience.
  • FIG. 1 is a flow chart of a method of transmitting data in accordance with one embodiment of the present invention.
  • FIG. 2 is a flow chart of a method of transmitting data in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a preamble according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of power enhancement information bits in accordance with an embodiment of the present invention.
  • Figure 5 is a schematic block diagram of a transmitting end of an embodiment of the present invention.
  • Figure 6 is a schematic block diagram of a receiving end of another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a transmitting end according to another embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a receiving end according to another embodiment of the present invention. detailed description
  • the transmitting end may be a user station (STA, Station) in the WLAN, and the user station may also be referred to as a system, a subscriber unit, an access terminal, a mobile station, a mobile station, a remote station, a remote terminal, and a mobile station.
  • STA User station
  • Device user terminal, terminal, wireless communication device, user agent, user device or UE (User Equipment).
  • the STA can be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), with wireless A handheld device of a local area network (eg, Wi-Fi) communication function, a computing device, or other processing device connected to a wireless modem.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the sending end may also be an access point (AP, Access Point) in the WLAN, and the access point may be used to communicate with the access terminal through the wireless local area network, and transmit the data of the access terminal to the network side, or Data from the network side is transmitted to the access terminal.
  • AP Access Point
  • the receiving end may be a communication peer corresponding to the transmitting end.
  • the receiving end may be a communication peer corresponding to the transmitting end.
  • FIG. 1 is a flow chart of a method of transmitting data in accordance with one embodiment of the present invention.
  • the transmitting end performs a transmit power enhancement process on a target field of the WLAN system preamble, where the target field includes one or more fields of the WLAN system preamble in the unconventional field unless the traditional signaling field.
  • the sending end sends the preamble that is processed by the transmit power enhancement to the receiving end.
  • the embodiment of the present invention can improve the overall throughput of the system by improving the transmission power of the non-traditional field of the preamble of the WLAN system of the wireless local area network, thereby improving data transmission performance and user experience.
  • the Wi-Fi system frame structure is mainly composed of a preamble, a service field, a data field, a trailer field, and the like.
  • the preamble mainly implements frame detection, automatic gain control, frequency offset estimation, time synchronization, channel estimation and other functions.
  • the preamble can be divided into a traditional field part and a non-traditional field part.
  • the traditional field part of the preamble contains three fields, namely: L-STF, Legacy-Short Training Field, L-LTF, Legacy-Long Training Field, and tradition. Signaling (L-SIG, Legacy-Signal) field.
  • L-STF field is used for frame start detection, automatic gain control (AGC, Auto Gain Control) setting, initial frequency offset estimation and initial time synchronization
  • L-LTF is used for more accurate frequency offset estimation and time synchronization
  • the L-SIG field is mainly used for carrying the data rate information and the data length information, so that the receiving device can determine the data according to the data rate information and the data length information.
  • the preamble carries the length of the data of the same frame, which in turn enables the determination of the appropriate time to remain idle.
  • the non-traditional field portion may be other fields in the preamble other than the above-described conventional portion.
  • the non-traditional part specifically includes which fields depend on the version of the 802.11 standard.
  • the fields of the non-traditional part include High Throughput-Signal (HT-SIG), High Throughput- Short Training Field (HT-STF), and High Throughput Field (HT-STF).
  • HTTP-SIG High Throughput-Signal
  • H-STF High Throughput- Short Training Field
  • HT-STF High Throughput Field
  • HT-STF High Throughput Field
  • HT-LTF High Throughput-Long Training Field
  • the target field may be any one or more fields other than the non-legacy signaling field in the non-legacy field.
  • fields such as HT-STF and HT-LTF may be used depending on the specific version of the standard.
  • the embodiment of the present invention performs power enhancement processing on a target field that belongs to a non-legacy field, and does not impose any limitation on whether the traditional field performs power enhancement.
  • the transmitting end first needs to determine a target field to be used for transmit power enhancement.
  • one or more target fields may be determined in the field of the non-traditional part according to the system state and the service requirement, where the peak-to-average power ratio (PAPR) of the target field is smaller than the power amplification limit of the transmitting end. .
  • PAPR peak-to-average power ratio
  • the transmitting end can determine the transmission power amplification limit.
  • the transmit power amplification limit is determined based on the maximum output power of the power amplifier used by the transmitting end.
  • the power amplifier has a linear interval in which the ratio of the output power to the input power increases linearly, but when the input power exceeds a certain threshold, the power amplification effect is significantly weakened, and If the input power continues to increase, the output power will remain unchanged, that is, the power amplifier has a maximum output power (remembered, P max ), or the ratio of the output power to the input power has an inflection point, after the inflection point
  • P max maximum output power
  • the above-mentioned maximum power output power can be determined according to the above-mentioned maximum output power.
  • the average transmit power of the signal amplified by the power amplifier is ⁇ ⁇ .
  • the average power of the transmitted signal should conform to the standard, that is, less than or equal to the maximum average transmit power P standard specified by the standard , usually using full power transmission, ie
  • ⁇ ⁇ P max /P standard can be obtained from the formulas (1), (2) and (3). Therefore, the transmitting end can determine the above-mentioned transmit power amplification limit according to the maximum output power of the power amplifier and the maximum average transmit power of the signal. For example, the value of P max /P standard can be used as the above-mentioned transmit power amplification limit. Also, the transmission power amplification limit can be, for example, 8 dB.
  • the method for determining the above-mentioned transmission power amplification limit and the value are merely exemplary descriptions, and the present invention is not limited thereto.
  • the value may be smaller than P max /P standard or greater than P max /P standarf.
  • the value of the present invention is not particularly limited.
  • the sending end performs a transmit power enhancement process on a target field of the WLAN system preamble of the WLAN system, including: determining a power of the target field according to a peak-to-average power ratio of the target field and a power amplification limit of the transmitting end.
  • the amount of enhancement; the baseband signal of the target field is generated according to the power enhancement amount of the target field.
  • the PAPR corresponding to the target field can be determined based on the system bandwidth.
  • Table 1 shows the PAPR values for some of the fields of the 802.11n preamble at 20 MHz system bandwidth:
  • the target field corresponds to a PAPR value of 3.2245. It should be understood that the corresponding relationship between the system bandwidth and the PAPR value of each field may be pre-stored on the transmitting end, and the sending end may directly acquire, read, or invoke the PAPR value corresponding to the target field according to the system bandwidth.
  • the transmitter can determine the limit at which it can perform power amplification based on the power amplifier it uses. For example, in the 802.11n scenario where the system bandwidth is 20MHz, the power amplifier has a power amplification limit of 8dB, that is, the PAPR of the preamble exceeds 8dB, and the transmitted signal is significantly distorted, resulting in system performance degradation.
  • the power enhancement amount of the target field is determined according to the peak-to-average power ratio of the target field and the power amplification limit of the PAPR and the transmitting end, and the amount of power enhancement allowed in the target field is 8-3.2245 dB, and the transmitting end can be within the amount of power enhancement allowed. Determine any amount of power boost, such as determining a power boost of 4 dB.
  • the transmitting end can determine an appropriate amount of power enhancement based on system status, service requirements, and the like. Specifically, when the system load is low, a relatively small amount of power enhancement can be determined; when the system load is high, a relatively large amount of power enhancement can be determined, which is not limited by the present invention.
  • the amount of power enhancement may be an actual power boost value or a power boost factor.
  • the power enhancement factor is ", then the actual power boost value can be 20.1o gl . (") dB.
  • the baseband waveform of the target field can be generated according to the power enhancement amount according to the following formula. / M . M Tone ' V T NL —
  • ra represents the cyclic delay value
  • guard interval value represents the stream mapping matrix
  • a represents the spatial mapping matrix
  • ⁇ ⁇ represents the space time stream number
  • the sending end performs a transmit power enhancement process on the target field of the WLAN system preamble of the WLAN system, and further includes: adding power enhancement information to the non-legacy signaling field in the preamble, where the power enhancement information is used to indicate Whether the target field is subjected to power enhancement processing, and in the case where the target field is subjected to power enhancement processing, the power enhancement information is used to indicate the power enhancement amount of the target field.
  • the transmitting end may add power enhancement information in a signaling field of the non-legacy part, such as the HT-SIG, to indicate that the transmission power of the target field is enhanced.
  • the power enhancement information may indicate whether the transmission power of the target field is enhanced. For example, "000" may be used to indicate that the target field is not enhanced by the transmission power, and the target field may be enhanced by "001".
  • the power enhancement information may further indicate the amount of power enhancement of the target field. For example, "001" may indicate that the transmission power is enhanced by ldB;
  • the power enhancement information may occupy more or less bits to describe the relevant information of the transmission power enhancement, which is not limited by the present invention.
  • the PAPR corresponding to the target field is lower than a threshold, where the threshold is smaller than a power amplification limit of the transmitting end.
  • the target field may be a field with a lower PAPR.
  • a field with a lower PAPR has a larger power enhancement space, that is, a larger space for improving system performance.
  • the system or the transmitting end may preset a threshold, which is smaller than a power amplification limit of the transmitting end.
  • a field in the non-traditional field where the PAPR is below the threshold may be determined as the target field of power enhancement.
  • the power amplification limit of the transmitting end is 8 dB, and the system or the transmitting end presets the threshold 5, then the non-traditional field whose PAPR value is lower than 5 may be determined as the target field, in the above table. 1 , eligible for HT-STF And HT-LTF.
  • the target field includes a long training field LTF.
  • LTF multi-input multi-output
  • the device is upgraded. Power can improve the accuracy of MIMO channel estimation and reduce the system frame error rate, so as to improve system performance and enhance user experience.
  • the LTF of the non-traditional field may also be different according to the standard version.
  • the target field in 802.11n may be the high throughput long training field HT-LTF.
  • the embodiment of the present invention can improve the overall throughput of the system by improving the transmission power of the non-traditional field of the preamble of the WLAN system of the wireless local area network, thereby improving data transmission performance and user experience. Also, by increasing the transmit power of non-traditional fields with lower PAPR, system performance can be further significantly improved. In addition, by adding power enhancement information in the non-legacy signaling field, the peer can obtain and perform channel estimation according to the power enhancement information, thereby improving the correctness of the subsequent field reception.
  • FIG. 2 is a flow chart of a method of transmitting data in accordance with an embodiment of the present invention.
  • the receiving end acquires the power enhancement information in the non-legacy signaling field of the preamble of the WLAN system of the WLAN, where the power enhancement information is used to indicate that the sending end performs the transmission power enhancement processing on the target field of the preamble, and the target field includes the WLAN system.
  • the non-traditional field of the preamble is unless one or more fields of the legacy signaling field.
  • the receiving end receives the non-traditional field of the preamble according to the power enhancement information.
  • the embodiment of the present invention can improve the overall throughput of the system by improving the transmission power of the non-traditional field of the preamble of the WLAN system of the wireless local area network, thereby improving data transmission performance and user experience.
  • the Wi-Fi system frame structure is mainly composed of a preamble, a service field, a data field, a trailer field, and the like.
  • the preamble mainly implements frame detection, automatic gain control, frequency offset estimation, time synchronization, channel estimation and other functions.
  • the preamble can be divided into a traditional field part and a non-traditional field part.
  • the traditional field portion of the preamble contains three fields, namely: L-STF field, L-LTF field, and L-SIG field.
  • L-STF field is used for frame start detection, automatic gain control AGC setting, initial frequency offset estimation and initial time synchronization
  • L-LTF is used for more accurate frequency offset estimation and time synchronization, also for receiving And equalizing the L-SIG to generate channel estimation
  • the L-SIG field is mainly used to carry data rate information and data length information, so that the receiving device can The data rate information and the data length information determine the length of the data carried in the same frame as the preamble, thereby determining the appropriate time to remain idle.
  • the non-traditional field portion may be other fields in the preamble other than the above-described conventional portion.
  • the non-traditional part specifically includes which fields depend on the version of the 802.11 standard.
  • the fields of the non-legacy part include a high throughput signaling field HT-SIG, a high throughput short training field HT-STF, and a high throughput long training field HT-LTF.
  • the target field may be any one or more fields other than the non-legacy signaling field in the non-legacy field.
  • it can be fields such as HT-STF and HT-LTF, depending on the specific version of the standard.
  • the embodiment of the present invention performs power enhancement processing on a target field that belongs to a non-legacy field, and does not impose any limitation on whether the traditional field performs power enhancement.
  • the target field is a field that is determined by the transmitting end and needs to be enhanced in transmit power.
  • the specific sender may determine one or more target fields in the field of the non-legacy part according to the system state and the service requirement, where the PAPR corresponding to the target field is smaller than the power amplification limit of the sender.
  • the transmitting end can determine the transmission power amplification limit.
  • the transmit power amplification limit is determined based on the maximum output power of the power amplifier used by the transmitting end.
  • the power amplifier has a linear interval in which the ratio of the output power to the input power increases linearly, but when the input power exceeds a certain threshold, the power amplification effect is significantly weakened, and If the input power continues to increase, the output power will remain unchanged, that is, the power amplifier has a maximum output power (remembered, P max ), or the ratio of the output power to the input power has an inflection point, after the inflection point
  • P max maximum output power
  • the above-mentioned maximum power output power can be determined according to the above-mentioned maximum output power.
  • the average transmitted power of the signal amplified by the power amplifier is P x .
  • the average power of the transmitted signal should conform to the standard, that is, less than or equal to the maximum average transmit power P standard specified by the standard , usually using full power transmission, ie Pi. ⁇ — Pstandard . . . (2)
  • ⁇ ⁇ P max /P standard can be obtained from the formulas (1), (2) and (3). Therefore, the transmitting end can determine the above-mentioned transmit power amplification limit according to the maximum output power of the power amplifier and the maximum average transmit power of the signal. For example, the value of P max /P standard can be used as the above-mentioned transmit power amplification limit. Also, the transmission power amplification limit can be, for example, 8 dB.
  • the method for determining the above-mentioned transmission power amplification limit and the value are merely exemplary descriptions, and the present invention is not limited thereto.
  • the value may be smaller than the value of P max /P standard or greater than the value of P max /P standarf .
  • the invention is not particularly limited.
  • the power enhancement information is used to indicate a power enhancement amount of the target field, where the power enhancement amount is determined by the transmitting end according to a peak-to-average power ratio PAPR corresponding to the target field and a power amplification limit of the transmitting end.
  • the PAPR corresponding to the target field can be determined based on the system bandwidth. Still taking the above Table 1 as an example, the above Table 1 shows the PAPR value of the partial field of the 802.11n preamble under the 20 MHz system bandwidth. When the system bandwidth is 20MHz and the target field is HT-LTF, it can be determined that the target field corresponds to a PAPR value of 3.2245. It should be understood that the corresponding relationship between the system bandwidth and the PAPR value of each field may be pre-stored on the transmitting end, and the sending end may directly acquire, read, or invoke the PAPR value corresponding to the target field according to the system bandwidth.
  • the transmitter can determine the limit at which it can perform power amplification based on the power amplifier it uses. For example, in the 802.11n scenario where the system bandwidth is 20MHz, the power amplifier has a power amplification limit of 8dB, that is, the PAPR of the preamble exceeds 8dB, and the transmitted signal is significantly distorted, resulting in system performance degradation.
  • the power enhancement amount of the target field is determined according to the peak-to-average power ratio of the target field and the power amplification limit of the PAPR and the transmitting end, and the amount of power enhancement allowed in the target field is 8-3.2245 dB, and the transmitting end can be within the amount of power enhancement allowed. Determine any amount of power boost, such as determining a power boost of 4 dB.
  • the transmitting end can determine an appropriate amount of power enhancement based on system status, service requirements, and the like. Specifically, when the system load is low, a relatively small amount of power enhancement can be determined; when the system load is high, a relatively large amount of power enhancement can be determined, which is not limited by the present invention.
  • the amount of power enhancement may be an actual power boost value or a power boost factor.
  • the power enhancement factor is ", the actual power enhancement value can be 20.1o gl . (") dB.
  • the target word can be generated according to the power enhancement amount according to the following formula.
  • TF represents the non-traditional LTF subcarrier value
  • cyclic delay value represents the guard interval value
  • P ⁇ rf represents the stream mapping matrix
  • spatial mapping matrix represents the frequency domain rotation value
  • ⁇ ⁇ represents the space time stream number
  • the receiving end receives the non-legacy field of the preamble according to the power enhancement information, including: performing, according to the power enhancement amount of the target field indicated by the power enhancement information, performing Incrementing MIMO channel estimation; receiving subsequent fields and data according to the MIMO channel estimation result.
  • the subsequent fields and data may include the remaining non-legacy fields of the non-traditional portion of the preamble and the data transmitted thereafter.
  • the target field is the long training field LTF in the non-legacy field
  • the LTF field since the LTF field generally has a MIMO channel estimation, increasing the transmission power thereof can improve the accuracy of the MIMO channel estimation and reduce the system error frame.
  • the LTF of the non-traditional field may also be different according to the standard version.
  • the target field in 802.11n may be the high throughput long training field HT-LTF.
  • the transmitting end may add power enhancement information in a signaling field of the non-legacy part, such as the HT-SIG, to indicate that the transmission power of the target field is enhanced.
  • the receiving end can perform MIMO channel estimation according to the actual enhanced power value, and finally complete subsequent field and data reception.
  • the subsequent fields and data may include the remaining non-legacy fields of the non-traditional portion of the preamble and the data transmitted thereafter.
  • the power enhancement information may indicate whether the transmission power of the target field is enhanced. For example, “000” may be used to indicate that the target field is not enhanced by the transmission power, and “001” may be used to indicate that the target field is enhanced by the transmission power.
  • the power enhancement information may further indicate the power enhancement amount of the target field. For example, “001” may indicate that the transmission power is enhanced by ldB; “010” may indicate that the transmission power is enhanced by 2dB; “011” may indicate that the transmission power is enhanced by 3dB, and accordingly analogy. It should be understood that The rate enhancement information may occupy more or less bits to describe the relevant information of the transmission power enhancement, which is not limited by the present invention.
  • the embodiment of the present invention can improve the overall throughput of the system by improving the transmission power of the non-traditional field of the preamble of the WLAN system of the wireless local area network, thereby improving data transmission performance and user experience. Also, by increasing the transmit power of non-traditional fields with lower PAPR, system performance can be further significantly improved. In addition, by adding power enhancement information in the non-legacy signaling field, the peer can obtain and perform channel estimation according to the power enhancement information, thereby improving the correctness of the subsequent field reception.
  • FIG. 3 is a schematic diagram of a preamble according to an embodiment of the present invention.
  • Figure 3 shows the preamble of the mixed format in the 802.11n standard, including traditional short training fields, traditional long training fields, traditional signaling fields, high throughput signaling fields, high throughput short training fields, high throughput. Long training field.
  • the high-throughput signaling field, the high-throughput short training field, and the high-throughput long training field are non-traditional fields.
  • the two symbols of the high throughput signaling field may be used to carry the power enhancement information in the above embodiments to indicate the power enhancement of subsequent non-traditional fields of the high throughput signaling field.
  • One or more of the high throughput short training field and the high throughput long training field may be determined by the transmitting end as the target field for power enhancement.
  • FIG. 4 is a schematic diagram of power enhancement information bits in accordance with an embodiment of the present invention. Similar to the preamble of Fig. 3, Fig. 4 shows a schematic diagram of power enhancement information.
  • the power enhancement information may indicate whether the transmission power of the target field is enhanced. For example, "000" may be used to indicate that the target field is not subjected to transmission power enhancement, and the transmission power enhancement may be performed by using "001" in FIG.
  • the power enhancement information may further indicate the amount of power enhancement of the target field.
  • the power enhancement information may occupy more or less bits to describe related information of the transmission power enhancement, which is not limited by the present invention.
  • the frequency domain expression of the HT-LTF can be:
  • U WW QN N ' ⁇ ⁇ N, ' F N ⁇ , - CC - HTLTF K
  • ⁇ ⁇ is the number of empty time streams
  • iTF is the number of HT-LTF-OFDM symbols used for ⁇ ⁇ channel estimation
  • ⁇ ⁇ is the number of transmit antennas
  • ⁇ ⁇ is the number of transmit antennas
  • ⁇ ⁇ is the number of transmit antennas
  • ⁇ ⁇ " is the HT-LTF stream mapping matrix
  • CSD mapping matrix is empty Inter-map matrix.
  • the standard specifies the P matrix as:
  • the HT-LTF time domain waveform formula with a final transmit power enhancement of 4 dB can be expressed as:
  • the station At the receiving end, after detecting the transmission frame, the station first extracts the corresponding power enhancement related information bits from the HT-SIG field of the received frame.
  • the MIMO channel parameter estimation is then performed based on the enhanced power value, using an LS channel estimation algorithm. From the content of the P matrix and the relationship between 5 and ⁇ can be derived
  • N PN STS , N DLTF ⁇ ⁇ N ⁇ DLTF , M STS
  • HN RX , NSTS HN RX , N TX ⁇ QN TX , NSTS ⁇ M N STS , N ST s
  • H ⁇ HTLTF ' N y ⁇ ⁇ ⁇
  • FIG. 5 is a schematic block diagram of a transmitting end of an embodiment of the present invention.
  • the transmitting end 50 of Fig. 5 includes a power enhancement processing unit 51 and a transmitting unit 52.
  • the power enhancement processing unit 51 performs a transmission power enhancement process on the target field of the WLAN system preamble, wherein the target field includes a field in the non-legacy field of the WLAN system preamble unless the legacy signaling field.
  • the transmitting unit 52 transmits the preamble subjected to the transmission power enhancement processing to the receiving end.
  • the transmitting end 50 performs the transmission power enhancement processing on the non-traditional field of the WLAN system preamble of the WLAN system, thereby improving the overall throughput rate of the system, thereby improving data transmission performance and user experience.
  • the Wi-Fi system frame structure is mainly composed of a preamble, a service field, a data field, a trailer field, and the like.
  • the preamble mainly implements frame detection, automatic gain control, frequency offset estimation, time synchronization, channel estimation and other functions.
  • the preamble can be divided into a traditional field part and a non-traditional field part.
  • the traditional field portion of the preamble contains three fields, namely: L-STF field, L-LTF field, and L-SIG field.
  • the non-traditional field portion may be other fields in the preamble other than the above-described conventional portion.
  • the non-traditional part specifically includes which fields depend on the version of the 802.11 standard. example As in the 802.11n standard, the fields of the non-legacy part include high throughput signaling HT-SIG, high throughput short training field HT-STF, and high throughput long training field HT-LTF.
  • the target field may be any one or more fields other than the non-legacy signaling field in the non-legacy field.
  • it can be fields such as HT-STF and HT-LTF, depending on the specific version of the standard.
  • the embodiment of the present invention performs power enhancement processing on a target field that belongs to a non-legacy field, and does not impose any limitation on whether the traditional field performs power enhancement.
  • the transmitting end first needs to determine a target field to be used for transmit power enhancement.
  • one or more target fields may be determined in the field of the non-legacy part according to the system state and the service requirement, where the PAPR corresponding to the target field is smaller than the power amplification limit of the transmitting end.
  • the transmitting end can determine the transmission power amplification limit.
  • the transmit power amplification limit is determined based on the maximum output power of the power amplifier used by the transmitting end.
  • the power enhancement processing unit 51 is specifically configured to: determine, according to a peak-to-average power ratio PAPR of the target field and a power amplification limit of the transmitting end, a power enhancement amount of the target field; according to the power enhancement amount of the target field, Generate the baseband signal of the target field.
  • the PAPR corresponding to the target field can be determined based on the system bandwidth. Still taking the above Table 1 as an example, the above Table 1 shows the PAPR value of the partial field of the 802.11n preamble under the 20 MHz system bandwidth. When the system bandwidth is 20MHz and the target field is HT-LTF, it can be determined that the target field corresponds to a PAPR value of 3.2245. It should be understood that the corresponding relationship between the system bandwidth and the PAPR value of each field may be pre-stored on the transmitting end, and the sending end may directly acquire, read, or invoke the PAPR value corresponding to the target field according to the system bandwidth.
  • the transmitter can determine the limits of its power amplification based on the power amplifier it uses. For example, in the 802.11n scenario where the system bandwidth is 20 MHz, the power amplifier has a power amplification limit of 8 dB, that is, the PAPR of the preamble exceeds 8 dB, and the transmitted signal is significantly distorted, resulting in system performance degradation.
  • the power enhancement amount of the target field is determined according to the peak-to-average power ratio of the target field and the power amplification limit of the PAPR and the transmitting end, and the amount of power enhancement allowed in the target field is 8-3.2245 dB, and the transmitting end can be within the amount of power enhancement allowed. Determine any amount of power boost, such as determining a power boost of 4 dB.
  • the transmitting end can determine an appropriate amount of power enhancement according to system status, service requirements, and the like. Specifically, when the system load is low, a relatively small amount of power enhancement can be determined; when the system load is high, a relatively large amount of power enhancement can be determined, which is not limited by the present invention. It should also be understood that the amount of power enhancement may be an actual power boost value or a power boost factor. For example, if the power enhancement factor is ", then the actual power enhancement value can be 20.1 Ogl . ( a ;»dB.
  • the baseband waveform of the target field can be generated according to the power enhancement amount.
  • the baseband waveform formula of the embodiment in FIG. 1 above which will not be described herein.
  • the power enhancement processing unit 51 is further configured to: add power enhancement information to the non-legacy signaling field in the preamble, where the power enhancement information is used to indicate whether the target field is subjected to power enhancement processing, in the target field.
  • the power enhancement information is also used to indicate the amount of power enhancement of the target field.
  • the transmitting end may add power enhancement information in a signaling field of the non-legacy part, such as the HT-SIG, to indicate that the transmission power of the target field is enhanced.
  • the power enhancement information may indicate whether the transmission power of the target field is enhanced. For example, "000” may be used to indicate that the target field is not enhanced by the transmission power, and the target field may be enhanced by "001".
  • the power enhancement information may further indicate the power enhancement amount of the target field. For example, "001” may indicate that the transmission power is enhanced by ldB; "010” may indicate that the transmission power is enhanced by 2dB; “011” may indicate that the transmission power is enhanced by 3dB, according to this analogy. It should be understood that the power enhancement information may occupy more or less bits to describe the relevant information of the transmission power enhancement, which is not limited by the present invention.
  • the PAPR corresponding to the target field is lower than a threshold, where the threshold is smaller than a power amplification limit of the transmitting end.
  • the target field may be a field with a lower PAPR.
  • a field with a lower PAPR has a larger power enhancement space, that is, a larger space for improving system performance.
  • the system or the transmitting end may preset a threshold that is smaller than a power amplification limit of the transmitting end.
  • a field in the non-traditional field where the PAPR is below the threshold can be determined as the target field for power boosting.
  • the power amplification limit of the transmitting end is 8 dB, and the system or the transmitting end presets the threshold 5, then the non-traditional field whose PAPR value is lower than 5 may be determined as the target field, in the above table.
  • the qualified ones are HT-STF and HT-LTF.
  • the target field includes a long training field LTF.
  • LTF long training field LTF in the non-legacy field
  • the LTF field generally has a MIMO channel estimation, increasing the transmission power thereof can improve the accuracy of the MIMO channel estimation and reduce the system error frame. Rate, which can improve system performance and enhance user experience.
  • the LTF of the non-traditional field may also differ according to the standard version.
  • the target field in 802.11n may be the high throughput long training field HT-LTF.
  • the transmitting end 50 performs the transmission power enhancement processing on the non-traditional field of the WLAN system preamble of the WLAN system, thereby improving the overall throughput rate of the system, thereby improving data transmission performance and user experience. Also, system performance can be further significantly improved by boosting the transmit power of non-traditional fields with lower PAPR. In addition, by adding power enhancement information in the non-legacy signaling field, the peer can obtain and perform channel estimation according to the power enhancement information, thereby improving the correctness of subsequent field reception.
  • FIG. 6 is a schematic block diagram of a receiving end of another embodiment of the present invention.
  • the receiving end 60 of Fig. 6 includes an obtaining unit 61 and a receiving unit 62.
  • the obtaining unit 61 obtains the power enhancement information in the non-legacy signaling field of the preamble of the WLAN system of the WLAN, where the power enhancement information is used to indicate that the transmitting end performs the transmission power enhancement processing on the target field of the preamble, and the target field includes the WLAN system preamble.
  • the receiving unit 62 receives the non-legacy field of the preamble based on the power enhancement information.
  • the embodiment of the present invention can improve the overall throughput of the system by improving the transmission power of the non-traditional field of the preamble of the WLAN system of the wireless local area network, thereby improving data transmission performance and user experience.
  • the Wi-Fi system frame structure is mainly composed of a preamble, a service field, a data field, a trailer field, and the like.
  • the preamble mainly implements frame detection, automatic gain control, frequency offset estimation, time synchronization, channel estimation and other functions.
  • the preamble can be divided into a traditional field part and a non-traditional field part.
  • the traditional field portion of the preamble contains three fields, namely: L-STF field, L-LTF field, and L-SIG field.
  • L-STF field is used for frame start detection, automatic gain control AGC setting, initial frequency offset estimation and initial time synchronization
  • L-LTF is used for more accurate frequency offset estimation and time synchronization, also for receiving
  • the equalization L-SIG generates channel estimation
  • the L-SIG field is mainly used to carry data rate information and data length information, so that the receiving end device can determine that the preamble is carried in the same according to the data rate information and the data length information.
  • the length of the data of the frame in turn, can determine the appropriate time to remain idle.
  • the non-traditional field portion may be other fields in the preamble other than the above-described conventional portion.
  • the non-traditional part specifically includes which fields depend on the version of the 802.11 standard.
  • the fields of the non-traditional part include high-throughput signaling HT-SIG, high-throughput short training field.
  • HT-STF and high throughput long training fields such as HT-LTF.
  • the target field may be any one or more fields other than the non-legacy signaling field in the non-legacy field.
  • it can be fields such as HT-STF and HT-LTF, depending on the specific version of the standard.
  • the embodiment of the present invention performs power enhancement processing on a target field that belongs to a non-legacy field, and does not impose any limitation on whether the traditional field performs power enhancement.
  • the target field is a field that is determined by the transmitting end and needs to be enhanced in transmit power.
  • the specific sender may determine one or more target fields in the field of the non-legacy part according to the system state and the service requirement, where the PAPR corresponding to the target field is smaller than the power amplification limit of the sender.
  • the transmitting end can determine the transmission power amplification limit.
  • the transmit power amplification limit is determined based on the maximum output power of the power amplifier used by the transmitting end.
  • the power enhancement information is used to indicate a power enhancement amount of the target field, where the power enhancement amount is determined by the transmitting end according to a peak-to-average power ratio PAPR corresponding to the target field and a power amplification limit of the transmitting end.
  • PAPR corresponding to the target field can be determined based on the system bandwidth. Still with the above table
  • Table 1 shows the PAPR value of a part of the 802.11n preamble under the 20 MHz system bandwidth.
  • the target field corresponds to a PAPR value of 3.2245. It should be understood that the corresponding relationship between the system bandwidth and the PAPR value of each field may be pre-stored on the transmitting end, and the sending end may directly acquire, read, or invoke the PAPR value corresponding to the target field according to the system bandwidth.
  • the transmitter can determine the limit at which it can perform power amplification based on the power amplifier it uses. For example, in the 802.11n scenario where the system bandwidth is 20MHz, the power amplifier has a power amplification limit of 8dB, that is, the PAPR of the preamble exceeds 8dB, and the transmitted signal is significantly distorted, resulting in system performance degradation.
  • the power enhancement amount of the target field is determined according to the peak-to-average power ratio of the target field and the power amplification limit of the PAPR and the transmitting end, and the amount of power enhancement allowed in the target field is 8-3.2245 dB, and the transmitting end can be within the amount of power enhancement allowed. Determine any amount of power boost, such as determining a power boost of 4 dB.
  • the transmitting end can determine an appropriate amount of power enhancement based on system status, service requirements, and the like. Specifically, when the system load is low, a relatively small amount of power enhancement can be determined; when the system load is high, a relatively large amount of power enhancement can be determined, which is not limited by the present invention.
  • the power enhancement amount may be an actual power enhancement value or a power enhancement factor.
  • the power enhancement factor is such that the actual power enhancement value can be 20.1 Ogl . ( a ) dB.
  • the baseband waveform of the target field can be generated according to the power enhancement amount. For details, refer to the baseband waveform formula of the embodiment in FIG. 1 above, and details are not described herein again.
  • the device when the target field is the long training field LTF, the device further includes a channel estimation unit, where the receiving unit 82 is specifically configured to: use the channel estimation unit according to the power enhancement amount of the target field indicated by the power enhancement information. Performing multiple input and multiple output MIMO channel estimation; receiving subsequent fields and data according to the MIMO channel estimation result.
  • the subsequent fields and data may include the remaining non-traditional fields of the non-traditional portion of the preamble and the data transmitted thereafter.
  • the target field is the long training field LTF in the non-legacy field
  • LTF field since the LTF field generally has a MIMO channel estimation, increasing the transmission power thereof can improve the accuracy of the MIMO channel estimation and reduce the system error frame. Rate, which can improve system performance and enhance user experience.
  • the LTF of the non-traditional field may also be different according to the standard version.
  • the target field in 802.11n may be the high throughput long training field HT-LTF.
  • the transmitting end may add power enhancement information in a signaling field of the non-legacy part, such as the HT-SIG, to indicate that the transmission power of the target field is enhanced.
  • the receiving end can perform MIMO channel estimation according to the actual enhanced power value, and finally complete reception of all frames.
  • the power enhancement information may indicate whether the transmission power of the target field is enhanced. For example, “000” may be used to indicate that the target field is not enhanced by the transmission power, and “001” may be used to indicate that the target field is enhanced by the transmission power.
  • the power enhancement information may further indicate the power enhancement amount of the target field. For example, “001” may indicate that the transmission power is enhanced by ldB; “010” may indicate that the transmission power is enhanced by 2 dB; “011” may indicate that the transmission power is enhanced by 3 dB, thereby analogy. It should be understood that the power enhancement information may occupy more or less bits to describe the relevant information of the transmission power enhancement, which is not limited by the present invention.
  • FIG. 7 is a schematic block diagram of a transmitting end according to another embodiment of the present invention.
  • the transmitting end 70 of FIG. 7 includes a processor 71, a memory 72, and a transmitter 73.
  • Processor 71, memory 72 and transmitter 73 are coupled by bus system 74.
  • the memory 72 is configured to store instructions that cause the processor 71 to: transmit power enhancement processing to a target field of a WLAN system preamble, wherein the target field includes an unconventional field of the WLAN system preamble unless the legacy signaling field One or more fields; transmitting a preamble subjected to transmission power enhancement processing to the receiving end.
  • the transmitting end 70 performs the transmission power enhancement processing on the non-legacy field of the preamble of the WLAN system of the wireless local area network, thereby improving the overall throughput rate of the system, thereby improving the data transmission performance and the user experience.
  • the target field may be any one or more fields other than the non-legacy signaling field in the non-legacy field.
  • it can be fields such as HT-STF and HT-LTF, depending on the specific version of the standard.
  • the embodiment of the present invention performs power enhancement processing on a target field that belongs to a non-legacy field, and does not impose any limitation on whether the traditional field performs power enhancement.
  • the transmitting end 70 may further include a receiver 75, an antenna 76, and the like.
  • the processor 71 controls the operation of the transmitting terminal 70, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 72 can include read only memory and random access memory and provides instructions and data to processor 71. A portion of memory 72 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • transmitter 73 and receiver 75 can be coupled to antenna 76.
  • the various components of the transmitting end 70 are coupled together by a bus system 74, which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 74 in the figure.
  • Processor 71 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 71 or an instruction in a form of software.
  • the processor 71 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or The combination of hardware and software modules in the decoding processor is completed.
  • the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 72, and the processor 71 reads the information in the memory 72 and performs the steps of the above method in combination with its hardware.
  • processor 71 can implement the power enhancement processing unit in the corresponding embodiment of FIG. 5 described above.
  • the transmitter 73 can implement the functions of the transmitting unit 52 in the above-described embodiment of Fig. 5.
  • the sending end performs a transmit power enhancement process on a target field of the WLAN system preamble of the WLAN system, including: determining a power of the target field according to a peak-to-average power ratio of the target field and a power amplification limit of the transmitting end.
  • the amount of enhancement; the baseband signal of the target field is generated according to the power enhancement amount of the target field.
  • the sending end performs a transmit power enhancement process on the target field of the WLAN system preamble of the WLAN system, and further includes: adding power enhancement information to the non-legacy signaling field in the preamble, where the power enhancement information is used to indicate Whether the target field is subjected to power enhancement processing, and in the case where the target field is subjected to power enhancement processing, the power enhancement information is further used to indicate the power enhancement amount of the target field.
  • the PAPR corresponding to the target field is lower than a threshold, where the threshold is smaller than a power amplification limit of the transmitting end.
  • the transmitting end 70 performs the transmission power enhancement processing on the non-legacy field of the preamble of the WLAN system of the wireless local area network, thereby improving the overall throughput rate of the system, thereby improving the data transmission performance and the user experience. Also, system performance can be further significantly improved by boosting the transmit power of non-traditional fields with lower PAPR. In addition, by adding power enhancement information in the non-legacy signaling field, the peer can obtain and perform channel estimation according to the power enhancement information, thereby improving the correctness of subsequent field reception.
  • FIG. 8 is a schematic block diagram of a receiving end according to another embodiment of the present invention.
  • the receiving end 80 of Fig. 8 includes a processor 81, a memory 82, and a receiver 83.
  • the processor 81, the memory 82 and the receiver 83 are connected by a bus system 84.
  • the memory 82 is configured to store instructions for causing the processor 81 to: obtain power enhancement information in a non-legacy signaling field of a WLAN system preamble, where the power enhancement information is used to instruct the sender to perform a target field of the preamble
  • the transmit power enhancement process the target field includes one or more fields in the non-legacy field of the WLAN system preamble unless the legacy signaling field is received; the non-legacy field of the preamble is received according to the power enhancement information.
  • the overall throughput rate of the system can be improved, thereby improving data transmission performance and user experience.
  • the target field may be any one or more fields other than the non-legacy signaling field in the non-legacy field.
  • it can be fields such as HT-STF and HT-LTF, depending on the specific version of the standard.
  • the embodiment of the present invention performs power enhancement processing on a target field that belongs to a non-legacy field, and does not impose any limitation on whether the traditional field performs power enhancement.
  • the receiving end 80 may further include a receiver 85, an antenna 86, and the like.
  • the processor 81 controls the operation of the receiving terminal 80, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 82 can include read only memory and random access memory and provides instructions and data to processor 81. A portion of memory 82 may also include non-volatile random access memory (NVRAM).
  • transmitter 83 and receiver 85 can be coupled to antenna 86.
  • the various components of the receiving end 80 are coupled together by a bus system 84, which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 84 in the figure.
  • Processor 81 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 81 or an instruction in the form of software.
  • the processor 81 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present invention may be directly embodied by the execution of the hardware decoding processor or by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as a random access memory, a flash memory, a read only memory, a programmable read only memory, or an electrically erasable programmable memory, a register, or the like.
  • the storage medium is located in the memory 82, and the processor 81 reads the information in the memory 82 and combines the hardware to perform the steps of the above method.
  • the processor 81 can implement the functions of the acquisition unit 61 in the corresponding embodiment of Fig. 6 described above.
  • the receiver 83 can implement the functions of the receiving unit 62 in the above-described embodiment of Fig. 6.
  • the power enhancement information is used to indicate power enhancement of the target field.
  • the amount of power enhancement is determined by the transmitting end according to the peak-to-average power ratio of the target field and the power amplification limit of the PAPR and the transmitting end.
  • the receiving end receives the non-legacy field of the preamble according to the power enhancement information, including: performing, according to the power enhancement amount of the target field indicated by the power enhancement information, performing Incrementing MIMO channel estimation; receiving subsequent fields and data according to the MIMO channel estimation result.
  • the subsequent fields and data may include the remaining non-legacy fields of the non-traditional portion of the preamble and the data transmitted thereafter.
  • the embodiment of the present invention can improve the overall throughput of the system by improving the transmission power of the non-traditional field of the preamble of the WLAN system of the wireless local area network, thereby improving data transmission performance and user experience. Also, by increasing the transmit power of non-traditional fields with lower PAPR, system performance can be further significantly improved. In addition, by adding power enhancement information in the non-legacy signaling field, the peer can obtain and perform channel estimation according to the power enhancement information, thereby improving the correctness of the subsequent field reception.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and may be implemented in actual implementation.
  • multiple units or components may be combined or integrated into another system, or some features may be omitted or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种传输数据的方法和装置,能够提高系统总体吞吐率,从而提升用户体验。该方法包括:发送端对无线局域网 WLAN系统前导码的目标字段进行发射功率增强处理,其中目标字段包括 WLAN系统前导码的非传统字段中除非传统信令字段的字段;发送端向接收端发送经过发射功率增强处理的前导码。本发明实施例通过对无线局域网 WLAN系统前导码的非传统字段进行发射功率增强处理,可以提高系统总体吞吐率,从而能够提升数据传输性能以及用户体验。

Description

传输数据的方法和装置 技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及传输数据的方法 和装置。 背景技术
无线局域网络( WLAN, Wireless Local Area Networks )是一种数据传输 系统, 它利用无线射频 (RF, Radio Frequency)技术, 取代旧式双绞铜线所构 成的局域网络, 使得无线局域网络能利用筒单的存取架构让用户透过它, 达 到信息传输的目地。 无线保真(Wi-Fi, Wireless Fidelity )是一个无线网路通 信技术的品牌, 由 Wi-Fi联盟所持有, 目的是改善基于 802.11标准的无线网 络产品之间的互通性,使用 802.11系列协议的无线局域网可以称为 Wi-Fi网 络。
随着智能终端的广泛应用, 人们对数据网络流量的需求日益增长, 无线 局域网中的 Wi-Fi系统也由 802.11a/b演进到 802.11g、 802.11η再到 802.11ac 等等, 数据速率也随之大幅提升。 因此, 如何提高系统总体吞吐率, 提升数 据传输性能以及用户体验, 成为亟待解决的问题。 发明内容
本发明实施例提供一种传输数据的方法和装置, 能够提高系统总体吞吐 率, 从而提升用户体验。
第一方面, 提供了一种传输数据的方法, 包括: 发送端对无线局域网 WLAN系统前导码的目标字段进行发射功率增强处理,其中所述目标字段包 括所述 WLAN系统前导码的非传统字段中除非传统信令字段的一个或多个 字段; 所述发送端向接收端发送经过发射功率增强处理的所述前导码。
结合第一方面, 在第一方面的第一种实现方式中, 所述发送端对无线局 域网 WLAN系统前导码的目标字段进行发射功率增强处理, 包括: 根据所 述目标字段对应的峰均功率比 PAPR和所述发送端的功率放大界限确定所述 目标字段的功率增强量; 根据所述目标字段的功率增强量, 生成所述目标字 段的基带信号。 结合第一方面及其上述实现方式, 在第一方面的第二种实现方式中, 所 述发送端对无线局域网 WLAN 系统前导码的目标字段进行发射功率增强处 理, 还包括: 在所述前导码中非传统信令字段增加功率增强信息, 所述功率 增强信息用于指示所述目标字段是否进行了功率增强处理,在所述目标字段 进行了功率增强处理的情况下, 所述功率增强信息还用于指示所述目标字段 的所述功率增强量。
结合第一方面及其上述实现方式, 在第一方面的第三种实现方式中, 所 述目标字段对应的 PAPR低于阈值, 其中所述阈值小于所述发送端的功率放 大界限。
结合第一方面及其上述实现方式, 在第一方面的第四种实现方式中, 所 述目标字段包括长训练字段 LTF。
第二方面, 提供了一种传输数据的方法, 包括: 接收端获取无线局域网
WLAN系统前导码的非传统信令字段中的功率增强信息,其中所述功率增强 信息用于指示发送端对所述前导码的目标字段进行了发射功率增强处理, 所 述目标字段包括所述 WLAN系统前导码的非传统字段中除非传统信令字段 的一个或多个字段; 所述接收端根据所述功率增强信息接收所述前导码的非 传统字段。
结合第二方面, 在第二方面的第一种实现方式中, 所述功率增强信息用 于指示所述目标字段的功率增强量,其中所述功率增强量由所述发送端根据 所述目标字段对应的峰均功率比 PAPR和所述发送端的功率放大界限确定。
结合第二方面及其上述实现方式, 在第二方面的第二种实现方式中, 在 所述目标字段为长训练字段 LTF时,所述接收端根据所述功率增强信息接收 所述前导码的非传统字段, 包括: 根据所述功率增强信息指示的所述目标字 段的功率增强量, 进行多入多出 MIMO信道估计; 根据所述 MIMO信道估 计结果接收后续字段和数据。
第三方面, 提供了一种传输数据的装置, 包括: 功率增强处理单元, 用 于对无线局域网 WLAN 系统前导码的目标字段进行发射功率增强处理, 其 中所述目标字段包括所述 WLAN 系统前导码的非传统字段中除非传统信令 字段的一个或多个字段; 发送单元, 用于向接收端发送经过发射功率增强处 理的所述前导码。
结合第三方面, 在第三方面的第一种实现方式中, 功率增强处理单元具 体用于: 根据所述目标字段对应的峰均功率比 PAPR和所述发送端的功率放 大界限确定所述目标字段的功率增强量; 根据所述目标字段的功率增强量, 生成所述目标字段的基带信号。
结合第三方面及其上述实现方式, 在第三方面的第二种实现方式中, 所 述功率增强处理单元还用于: 在所述前导码中非传统信令字段增加功率增强 信息, 所述功率增强信息用于指示所述目标字段是否进行了功率增强处理, 在所述目标字段进行了功率增强处理的情况下, 所述功率增强信息还用于指 示所述目标字段的所述功率增强量。
结合第三方面及其上述实现方式, 在第三方面的第三种实现方式中, 所 述目标字段对应的 PAPR低于阈值, 其中所述阈值小于所述发送端的功率放 大界限。
结合第三方面及其上述实现方式, 在第三方面的第四种实现方式中, 所 述目标字段包括长训练字段 LTF。
第四方面, 提供了一种传输数据的装置, 包括: 获取单元, 用于获取无 线局域网 WLAN 系统前导码的非传统信令字段中的功率增强信息, 其中所 述功率增强信息用于指示发送端对所述前导码的目标字段进行了发射功率 增强处理, 所述目标字段包括所述 WLAN系统前导码的非传统字段中除非 传统信令字段的一个或多个字段; 接收单元, 用于根据所述功率增强信息接 收所述前导码的非传统字段。
结合第四方面, 在第四方面的第一种实现方式中, 所述功率增强信息用 于指示所述目标字段的功率增强量,其中所述功率增强量由所述发送端根据 所述目标字段对应的峰均功率比 PAPR和所述发送端的功率放大界限确定。
结合第四方面及其上述实现方式, 在第四方面的第二种实现方式中, 在 所述目标字段为长训练字段 LTF时, 所述装置还包括信道估计单元, 所述接 收单元具体用于: 根据所述功率增强信息指示的所述目标字段的功率增强 量,通过所述信道估计单元进行多入多出 MIMO信道估计;根据所述 MIMO 信道估后续字段和数据。
本发明实施例通过对无线局域网 WLAN 系统前导码的非传统字段进行 发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据传输性能 以及用户体验。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明一个实施例的传输数据的方法的流程图。
图 2是本发明一个实施例的传输数据的方法的流程图。
图 3是本发明一个实施例的前导码的示意图。
图 4是本发明一个实施例的功率增强信息比特位的示意图。
图 5是本发明一个实施例的发送端的示意框图。
图 6是本发明另一实施例的接收端的示意框图。
图 7是本发明另一实施例的发送端的示意框图。
图 8是本发明另一实施例的接收端的示意框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
本发明的技术方案中,发送端可以是 WLAN中用户站点( STA, Station ), 该用户站点也可以称为系统、 用户单元、 接入终端、 移动站、 移动台、 远方 站、 远程终端、 移动设备、 用户终端、 终端、 无线通信设备、 用户代理、 用 户装置或 UE ( User Equipment, 用户设备)。 该 STA可以是蜂窝电话、 无绳 电话、 SIP ( Session Initiation Protocol, 会话启动十办议)电话、 WLL ( Wireless Local Loop, 无线本地环路)站、 PDA ( Personal Digital Assistant, 个人数字 处理)、 具有无线局域网 (例如 Wi-Fi )通信功能的手持设备、 计算设备或连 接到无线调制解调器的其它处理设备。
另夕卜, 发送端也可以是 WLAN中接入点 (AP, Access Point ), 接入点 可用于与接入终端通过无线局域网进行通信, 并将接入终端的数据传输至网 络侧, 或将来自网络侧的数据传输至接入终端。
接收端可以是与发送端相对应的通信对端。 以下, 为了便于理解和说明, 作为示例而非限定, 以将本发明的传输数 据的方法和装置在 Wi-Fi系统中的执行过程和动作进行说明。
图 1是本发明一个实施例的传输数据的方法的流程图。
101 ,发送端对无线局域网 WLAN系统前导码的目标字段进行发射功率 增强处理, 其中目标字段包括 WLAN 系统前导码的非传统字段中除非传统 信令字段的一个或多个字段。
102, 发送端向接收端发送经过发射功率增强处理的前导码。
本发明实施例通过对无线局域网 WLAN 系统前导码的非传统字段进行 发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据传输性能 以及用户体验。
Wi-Fi 系统帧结构主要由前导码, 服务字段, 数据字段, 尾部字段等组 成。 其中前导码主要实现帧检测, 自动增益控制, 频偏估计, 时间同步, 信 道估计等功能。 前导码可以分为传统字段部分和非传统字段部分。
通常来说, 前导码的传统字段部分包含三个字段, 即: 传统短训练字段 ( L-STF, Legacy-Short Training Field ),传统长训练字段( L-LTF, Legacy-Long Training Field ) 以及传统信令 ( L-SIG, Legacy-Signal )字段。 其中, L-STF 字段用于帧起始检测、 自动增益控制 (AGC, Auto Gain Control )设置、 初 始频率偏移估计以及初始时间同步; L-LTF用于更精确的频率偏移估计和时 间同步, 也用来为接收及匀衡 L-SIG生成信道估计; L-SIG字段主要用于承 载数据速率信息及数据长度信息, 以使接收端设备能够根据该数据速率信息 及数据长度信息, 确定与该前导码承载于同一帧的数据的长度, 进而能够确 定保持空闲的适当时间。
非传统字段部分可以是前导码中除了上述传统部分之外的其他字段。 非 传统部分具体包括哪些字段取决于 802.11标准的版本。 例如在 802.11η标准 中,非传统部分的字段包括高吞吐量信令( HT-SIG, High Throughput- Signal )、 高吞吐量短训练字段 ( HT-STF, High Throughput- Short Training Field )和高 吞吐量长训练字段( HT-LTF, High Throughput- Long Training Field )等。
目标字段可以为非传统字段中除了非传统信令字段之外的任意一个或 多个字段。 例如, 可以为 HT-STF和 HT-LTF等字段, 具体取决于标准的具 体版本。 需要说明的是, 本发明实施例针对属于非传统字段的目标字段进行 功率增强处理, 对于传统字段是否进行功率增强并不做任何限定。 可选地, 发送端首先需要确定要进行发射功率增强的目标字段。 具体可 以根据系统状态和业务需求在上述非传统部分的字段中确定一个或者多个 目标字段, 其中目标字段对应的峰均功率比( PAPR, Peak-to- Average Power Ratio )小于发送端的功率放大界限。 并且, 在本发明实施例中, 发送端可以 确定发射功率放大界限。
可选地,该发射功率放大界限是根据该发送端使用的功率放大器的最大 输出功率确定的。
具体地说, 通常情况下, 功率放大器具有一个线性区间, 在该线性区间 内, 输出功率与输入功率的比值呈线性增长, 但是, 当输入功率超过一定阈 值时, 功率放大的效果明显减弱, 并且, 如果输入功率继续增大, 则输出功 率将保持不变, 即功率放大器存在一个最大输出功率(记做, Pmax ),或者说, 输出功率与输入功率的比值曲线出现拐点, 该拐点之后部分的输出功率与输 入功率基本相同, 从而无法是达到功率不失真放大的效果在本发明实施例 中, 作为示例而非限定, 可以根据上述最大输出功率确定上述, 发射功率放 大界限。
例如, 对于一个所选的目标字段信号, 在进入功率放大器之前设其平均 功率为 pl 峰值功率为 P2, 则其 PAPR (记做 β ) 可以表示为 =?2/? , 即,
Ρ2=Ρι · β ... a)
设功率放大器的放大倍数为 X , 则经过功率放大器放大后的信号平均发 射功率为 Ρ χ。 并且, 在通信系统中, 发射信号的平均功率应符合标准规 定, 即, 小于或者等于标准所规定的最大平均发射功率 Pstandard, 通常情况下 采用满功率发射, 即
Pi · X=Pstandard … (2)
根据前述功率放大器的限制, 需要满足
Figure imgf000007_0001
因此, 由公式(1 ), ( 2 )和(3 )可得 β < Pmax/Pstandard。 因此, 发送端可 以根据其功率放大器的最大输出功率和信号最大平均发射功率,确定上述发 射功率放大界限, 例如, 可以将 Pmax/Pstandard的值, 作为上述发射功率放大界 限。 并且, 通常情况下该发射功率放大界限可以为例如, 8dB。
应理解, 上述发射功率放大界限的确定方法以及取值仅为示例性说明, 本发明并未限定于此,例如,还可以小于 Pmax/Pstandard的值或者大于 Pmax/Pstandarf 的值, 本发明并未特别限定。
可选地, 作为一个实施例, 发送端对无线局域网 WLAN 系统前导码的 目标字段进行发射功率增强处理, 包括: 根据目标字段对应的峰均功率比 PAPR和发送端的功率放大界限确定目标字段的功率增强量; 根据目标字段 的功率增强量, 生成目标字段的基带信号。
应理解, 目标字段对应的 PAPR可以根据系统带宽确定。 例如, 表 1示 出了 20MHz系统带宽下 802.11η前导码的部分字段的 PAPR值:
Figure imgf000008_0001
表 1
当系统带宽为 20MHz, 目标字段为 HT-LTF时, 可以确定目标字段对应 的 PAPR值为 3.2245。 应理解, 上述系统带宽和各字段的 PAPR值的对应关 系可以是预存于发送端的, 发送端可以根据系统带宽直接获取、 读取或调用 目标字段对应的 PAPR值。
发送端可以根据其使用的功率放大器, 确定其能够进行功率放大的界 限。举个例子, 在上述系统带宽为 20MHz的 802.11η场景中, 功率放大器的 功率放大界限为 8dB, 即前导码的 PAPR超过 8dB则会出现发射信号明显失 真, 导致系统性能下降。 根据目标字段对应的峰均功率比 PAPR和发送端的 功率放大界限确定目标字段的功率增强量, 目标字段允许进行功率增强的量 为 8-3.2245dB,发送端可以在允许进行功率增强的量之内确定任意的功率增 强量, 例如确定功率增强量为 4dB。 应理解, 发送端可以根据系统状态和业 务需求等确定适当的功率增强量。 具体地, 当系统负载较低时, 可以确定相 对较小的功率增强量; 当系统负载较高时,可以确定相对较大的功率增强量, 本发明对此并不限定。
还应理解, 功率增强量可以是实际的功率增强值, 也可以是功率增强因 子。 例如, 功率增强因子为《, 则实际的功率增强值可以为 20.1ogl。(《)dB。
确定了目标字段的功率增强量后, 可以根据该功率增强量, 按照如下公 式生成目标字段的基带波形。 / M . MTone 'VTNL
'丄、 STS L NL-LTF
NSR NSTS
∑ ∑ fe l , [PNLLA n rkNLLTFk exp( j2^Af (t -TGI -T^ k
其中, 表示非传统 LTF子载波值, ra表示循环延时值, 表示 保护间隔值, 表示流映射矩阵, a表示空间映射矩阵, 表示频域旋 转值, Λ ^表示空时流数, wrn^表示用到的子载波数, ( 表示时域 窗函数, "即为发射功率增强因子。 如果不进行发射功率增强则《 = 1 ; 如进 行发射功率增强, 则增强的发射功率为 2Q ' lQgl。 )dB。
可选地, 作为一个实施例, 发送端对无线局域网 WLAN 系统前导码的 目标字段进行发射功率增强处理, 还包括: 在前导码中非传统信令字段增加 功率增强信息, 功率增强信息用于指示目标字段是否进行了功率增强处理, 在目标字段进行了功率增强处理的情况下, 功率增强信息用于指示目标字段 的功率增强量。
发射端可以在非传统部分的信令字段中, 例如 HT-SIG, 增加功率增强 信息, 以指示目标字段的发射功率增强。 功率增强信息可以指示目标字段的 发射功率是否增强, 例如可以用 "000" 表示目标字段未进行发射功率增强, 可以用 "001" 表示目标字段进行了发射功率增强。 功率增强信息还可以进 一步指示目标字段的功率增强量,例如" 001 "可以表示发射功率增强了 ldB;
"010"可以表示发射功率增强了 2dB; "011"可以表示发射功率增强了 3dB , 依此类推。 应理解, 功率增强信息可以占用更多的或者更少的比特位来描述 发射功率增强的相关信息, 本发明对此并不限定。
可选地, 作为一个实施例, 目标字段对应的 PAPR低于阈值, 其中阈值 小于发送端的功率放大界限。
作为一个优选的实施例, 目标字段可以是具有较低 PAPR的字段。 具有 较低 PAPR的字段的功率增强空间较大, 也就是说, 可提升系统性能的空间 也较大。 具体地, 系统或者发送端可以预先设定阈值, 该阈值小于发送端的 功率放大界限。 非传统字段中 PAPR低于该阈值的字段可以被确定为功率增 强的目标字段。 例如, 延续上述实施例当中的例子进行说明, 发送端的功率 放大界限为 8dB , 系统或者发送端预先设定阈值 5 , 那么 PAPR值低于 5的 非传统字段可以被确定为目标字段, 在上述表 1 中, 符合条件的为 HT-STF 和 HT-LTF。
可选地, 目标字段包括长训练字段 LTF。 作为一个优选的实施例, 当目 标字段为非传统字段中的长训练字段 LTF时, 由于 LTF字段一般具有多入 多出 (MIMO, Multi-input Multi-output )信道估计功能, 因而提升其发设功 率可以提高 MIMO信道估计的准确性, 降低系统误帧率, 从而能够达到改 善系统性能、 提升用户体验的目的。 应理解, 根据标准版本不同, 非传统字 段的 LTF也可以有所不同, 举个具体的例子, 在 802.11η中目标字段可以为 高吞吐量长训练字段 HT-LTF。
本发明实施例通过对无线局域网 WLAN 系统前导码的非传统字段进行 发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据传输性能 以及用户体验。 并且, 通过提升具有较低 PAPR的非传统字段的发射功率能 够进一步显著地提升系统性能。 此外, 通过在非传统信令字段中增加功率增 强信息, 能够使得对端获取并根据功率增强信息进行信道估计, 从而提高后 续字段接收的正确性。
图 2是本发明一个实施例的传输数据的方法的流程图。
201 ,接收端获取无线局域网 WLAN系统前导码的非传统信令字段中的 功率增强信息,其中功率增强信息用于指示发送端对前导码的目标字段进行 了发射功率增强处理, 目标字段包括 WLAN 系统前导码的非传统字段中除 非传统信令字段的一个或多个字段。
202, 接收端根据功率增强信息接收前导码的非传统字段。
本发明实施例通过对无线局域网 WLAN 系统前导码的非传统字段进行 发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据传输性能 以及用户体验。
Wi-Fi 系统帧结构主要由前导码, 服务字段, 数据字段, 尾部字段等组 成。 其中前导码主要实现帧检测, 自动增益控制, 频偏估计, 时间同步, 信 道估计等功能。 前导码可以分为传统字段部分和非传统字段部分。
通常来说,前导码的传统字段部分包含三个字段,即: L-STF字段, L-LTF 字段以及 L-SIG 字段。 其中, L-STF 字段用于帧起始检测、 自动增益控制 AGC设置、初始频率偏移估计以及初始时间同步; L-LTF用于更精确的频率 偏移估计和时间同步, 也用来为接收及匀衡 L-SIG生成信道估计; L-SIG字 段主要用于承载数据速率信息及数据长度信息, 以使接收端设备能够根据该 数据速率信息及数据长度信息, 确定与该前导码承载于同一帧的数据的长 度, 进而能够确定保持空闲的适当时间。
非传统字段部分可以是前导码中除了上述传统部分之外的其他字段。 非 传统部分具体包括哪些字段取决于 802.11标准的版本。 例如在 802.11η标准 中, 非传统部分的字段包括高吞吐量信令字段 HT-SIG、 高吞吐量短训练字 段 HT-STF和高吞吐量长训练字段 HT-LTF等。
目标字段可以为非传统字段中除了非传统信令字段之外的任意一个或 多个字段。 例如, 可以为 HT-STF和 HT-LTF等字段, 具体取决于标准的具 体版本。 需要说明的是, 本发明实施例针对属于非传统字段的目标字段进行 功率增强处理, 对于传统字段是否进行功率增强并不做任何限定。
可选地, 目标字段是由发送端确定的需要进行发射功率增强的字段。 具 体发送端可以根据系统状态和业务需求在上述非传统部分的字段中确定一 个或者多个目标字段, 其中目标字段对应的 PAPR小于发送端的功率放大界 限。 并且, 在本发明实施例中, 发送端可以确定发射功率放大界限。
可选地,该发射功率放大界限是根据该发送端使用的功率放大器的最大 输出功率确定的。
具体地说, 通常情况下, 功率放大器具有一个线性区间, 在该线性区间 内, 输出功率与输入功率的比值呈线性增长, 但是, 当输入功率超过一定阈 值时, 功率放大的效果明显减弱, 并且, 如果输入功率继续增大, 则输出功 率将保持不变, 即功率放大器存在一个最大输出功率(记做, Pmax ),或者说, 输出功率与输入功率的比值曲线出现拐点, 该拐点之后部分的输出功率与输 入功率基本相同, 从而无法是达到功率不失真放大的效果在本发明实施例 中, 作为示例而非限定, 可以根据上述最大输出功率确定上述, 发射功率放 大界限。
例如, 对于一个所选的目标字段信号, 在进入功率放大器之前设其平均 功率为 p1 峰值功率为 P2, 则其 PAPR (记做 β ) 可以表示为 =?2^^ 即,
Ρ2=Ρι · β ... (1)
设功率放大器的放大倍数为 X , 则经过功率放大器放大后的信号平均发 射功率为 P x。 并且, 在通信系统中, 发射信号的平均功率应符合标准规 定, 即, 小于或者等于标准所规定的最大平均发射功率 Pstandard, 通常情况下 采用满功率发射, 即 Pi . χ— Pstandard . . . (2)
根据前述功率放大器的限制, 需要满足
Figure imgf000012_0001
因此, 由公式(1 ), ( 2 )和(3 )可得 β < Pmax/Pstandard。 因此, 发送端可 以根据其功率放大器的最大输出功率和信号最大平均发射功率,确定上述发 射功率放大界限, 例如, 可以将 Pmax/Pstandard的值, 作为上述发射功率放大界 限。 并且, 通常情况下该发射功率放大界限可以为例如, 8dB。
应理解, 上述发射功率放大界限的确定方法以及取值仅为示例性说明, 本发明并未限定于此,例如,还可以小于 Pmax/Pstandard的值或者大于 Pmax/Pstandarf 的值, 本发明并未特别限定。
可选地, 作为一个实施例, 功率增强信息用于指示目标字段的功率增强 量, 其中功率增强量由发送端根据目标字段对应的峰均功率比 PAPR和发送 端的功率放大界限确定。
应理解, 目标字段对应的 PAPR可以根据系统带宽确定。 仍然以上述表 1为例进行说明,上述表 1示出了 20MHz系统带宽下 802.11η前导码的部分 字段的 PAPR值。 当系统带宽为 20MHz , 目标字段为 HT-LTF时, 可以确定 目标字段对应的 PAPR值为 3.2245。应理解,上述系统带宽和各字段的 PAPR 值的对应关系可以是预存于发送端的, 发送端可以根据系统带宽直接获取、 读取或调用目标字段对应的 PAPR值。
发送端可以根据其使用的功率放大器, 确定其能够进行功率放大的界 限。举个例子, 在上述系统带宽为 20MHz的 802.11η场景中, 功率放大器的 功率放大界限为 8dB, 即前导码的 PAPR超过 8dB则会出现发射信号明显失 真, 导致系统性能下降。 根据目标字段对应的峰均功率比 PAPR和发送端的 功率放大界限确定目标字段的功率增强量, 目标字段允许进行功率增强的量 为 8-3.2245dB,发送端可以在允许进行功率增强的量之内确定任意的功率增 强量, 例如确定功率增强量为 4dB。 应理解, 发送端可以根据系统状态和业 务需求等确定适当的功率增强量。 具体地, 当系统负载较低时, 可以确定相 对较小的功率增强量; 当系统负载较高时,可以确定相对较大的功率增强量, 本发明对此并不限定。
还应理解, 功率增强量可以是实际的功率增强值, 也可以是功率增强因 子。 例如, 功率增强因子为《, 则实际的功率增强值可以为 20 .1ogl。(《)dB。 确定了目标字段的功率增强量后, 可以根据该功率增强量, 按照如下公 式生成目标字
Figure imgf000013_0001
NSR NSTS
∑ ∑ [Qk \x ,STS [ ],srs,„ rkNLLTFk exp j2^Af (t CS k NSR i
其中, TF表示非传统 LTF子载波值, 表示循环延时值, 表示 保护间隔值, P^rf表示流映射矩阵, 表示空间映射矩阵, 表示频域旋 转值, Λ ^表示空时流数, 表示用到的子载波数, WTNL_LTFS ( 表示时域 窗函数, "即为发射功率增强因子。 如果不进行发射功率增强则《 = 1 ; 如进 行发射功率增强, 则增强的发射功率为 2Q ' lQgl。 dB。
可选地, 作为一个实施例, 在目标字段为长训练字段 LTF时, 接收端根 据功率增强信息接收前导码的非传统字段, 包括: 根据功率增强信息指示的 目标字段的功率增强量, 进行多入多出 MIMO信道估计; 根据 MIMO信道 估计结果接收后续字段和数据。 其中, 后续字段和数据可以包括前导码的非 传统部分余下的非传统字段以及之后传输的数据。 作为一个优选的实施例, 当目标字段为非传统字段中的长训练字段 LTF时, 由于 LTF字段一般具有 MIMO信道估计, 因而提升其发设功率可以提高 MIMO信道估计的准确性, 降低系统误帧率, 从而能够达到改善系统性能、 提升用户体验的目的。 应理 解, 根据标准版本不同, 非传统字段的 LTF也可以有所不同, 举个具体的例 子, 在 802.11η中目标字段可以为高吞吐量长训练字段 HT-LTF。
具体地, 发射端可以在非传统部分的信令字段中, 例如 HT-SIG, 增加 功率增强信息, 以指示目标字段的发射功率增强。 接收端可以根据实际增强 的功率值进行 MIMO信道估计, 并最终完成后续字段和数据的接收。 其中, 后续字段和数据可以包括前导码的非传统部分余下的非传统字段以及之后 传输的数据。
功率增强信息可以指示目标字段的发射功率是否增强, 例如可以用 "000" 表示目标字段未进行发射功率增强, 可以用 "001" 表示目标字段进 行了发射功率增强。 功率增强信息还可以进一步指示目标字段的功率增强 量, 例如 "001 " 可以表示发射功率增强了 ldB; "010" 可以表示发射功率 增强了 2dB; "011" 可以表示发射功率增强了 3dB , 依此类推。 应理解, 功 率增强信息可以占用更多的或者更少的比特位来描述发射功率增强的相关 信息, 本发明对此并不限定。
本发明实施例通过对无线局域网 WLAN 系统前导码的非传统字段进行 发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据传输性能 以及用户体验。 并且, 通过提升具有较低 PAPR的非传统字段的发射功率能 够进一步显著地提升系统性能。 此外, 通过在非传统信令字段中增加功率增 强信息, 能够使得对端获取并根据功率增强信息进行信道估计, 从而提高后 续字段接收的正确性。
图 3是本发明一个实施例的前导码的示意图。
图 3示出了 802.11η标准中的混合格式的前导码, 具体包括传统短训练 字段、 传统长训练字段、 传统信令字段、 高吞吐量信令字段、 高吞吐量短训 练字段、 高吞吐量长训练字段。 其中的高吞吐量信令字段、 高吞吐量短训练 字段、 高吞吐量长训练字段为非传统字段。 高吞吐量信令字段的两个符号可 以用于承载上述实施例中的功率增强信息, 以指示该高吞吐量信令字段后续 的非传统字段的功率增强情况。 高吞吐量短训练字段和高吞吐量长训练字段 中的一个或者多个字段可以被发送端确定为目标字段进行功率增强。
图 4是本发明一个实施例的功率增强信息比特位的示意图。与图 3的前 导码相类似, 图 4示出了功率增强信息的示意图。 功率增强信息可以指示目 标字段的发射功率是否增强, 例如可以用 "000" 表示目标字段未进行发射 功率增强, 可以用图 4 中的 "001" 表示目标字段进行了发射功率增强。 功 率增强信息还可以进一步指示目标字段的功率增强量, 例如 "001" 可以表 示发射功率增强了 ldB; "010" 可以表示发射功率增强了 2dB; "011" 可以 表示发射功率增强了 3dB, "100" 可以表示发射功率增强了 4dB,依此类推。 应理解, 功率增强信息可以占用更多的或者更少的比特位来描述发射功率增 强的相关信息, 本发明对此并不限定。
以提升高吞吐量长训练字段的发射功率为例, HT-LTF 的频域表达式可 以为:
U W W = QN N ' ΜΝ N、 ' FN Ν、 - CC - HTLTFK 其中, 表示载波指示, Λ ^为空时流数, iTF为用于 ΜΙΜΟ信道估计 的 HT-LTF-OFDM符号数, Λ ^为发射天线数; 为载波 上的 HT-LTF 数据, Ρ ·" 为 HT-LTF流映射矩阵, 为 CSD映射矩阵, 为空 间映射矩阵。 "即为发射功率增强因子, 发射功率增强 4dB时, 取《 = ι.585。 标准中规定了 P矩阵为:
1 -1 1 1
1 1 -1 1
4x4
1 1 1 -1
-1 1 1 1
NSTS ,NDLTF ~ 4x4(l:NSTS ,1:NDLTF)
且规定了 和 间的关系:
Figure imgf000015_0002
若使用 4空时流, 则最终发射功率增强 4dB的 HT-LTF时域波形公式可 表示为:
dTF t、 = ^^ WTnl 人 ή )
Figure imgf000015_0001
在接收端, 站点在检测到了传送帧后, 首先从接收帧的 HT-SIG字段提 取出相应的功率增强相关信息位。 读取的功率增强信息位为 "100" 则表示 对 HT-LTF进行了发射功率增强, 实际增强的发射功率为 4dB。 根据公式 20 - logl。(a)=4dB可得, α = 1 585
随后根据增强的功率值进行 MIMO信道参数估计,使用 LS信道估计算 法。 从 P矩阵的内容及 5和 ^间的关系可得出
1 τ
I N ,N = P N STS ,N DLTF · Ρ NΓ DLTF ,M STS
Π DLTF
其中 为 χ Λ^单位矩阵。
通过接收到的 HT-LTF数据,我们容易得到频域的接收 HT-LTF表达式: yW ,W = H W¾ ,W¾ ' UNTX,NDLTF + ZNRX ,NDLTF
= Hw¾,w¾ . Qw¾,wsrs ' ^NSTS ,NSTS ' ^NSTS ,Ndltf c ' HTLTFk + ZN = H NRX ,NSTS ' ?NSTS ,N ' a ' HTLTFk + zw&
其中, 为信道矩阵, ^ 为噪声矩阵。 令等效信道矩阵
H NRX ,NSTS = H NRX ,NTX · Q NTX ,NSTS · M NSTS ,NSTs
利用已知的 HTLTFk , 可以得到载波 上的等效信道矩阵^^ 的 估计值, 表示如下
. 1 τ
H = · HTLTF ' N y · ΡΓ
N Rx ,N STS N Rx ,N DLTF N DLTF , STS
― ρ Γ
Figure imgf000016_0001
― · HTLTFk · N隱 N°LTF 'NsTS
― H ~ _|_ z N Rx , N DLTF P Nr DLTF , NSTS
- w¾ ,NSTS A HTLTFK · N
Figure imgf000016_0002
很显然噪声项由于功率增强因子《 = 1 -585而得到了抑制。 随后利用该 MIMO信道估计参数完成全部的帧接收。
图 5是本发明一个实施例的发送端的示意框图。 图 5的发送端 50包括 功率增强处理单元 51和发送单元 52
功率增强处理单元 51对无线局域网 WLAN系统前导码的目标字段进行 发射功率增强处理, 其中目标字段包括 WLAN 系统前导码的非传统字段中 除非传统信令字段的字段。 发送单元 52向接收端发送经过发射功率增强处 理的前导码。
本发明实施例通过发送端 50对无线局域网 WLAN系统前导码的非传统 字段进行发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据 传输性能以及用户体验。
Wi-Fi 系统帧结构主要由前导码, 服务字段, 数据字段, 尾部字段等组 成。 其中前导码主要实现帧检测, 自动增益控制, 频偏估计, 时间同步, 信 道估计等功能。 前导码可以分为传统字段部分和非传统字段部分。
通常来说,前导码的传统字段部分包含三个字段,即: L-STF字段, L-LTF 字段以及 L-SIG字段。非传统字段部分可以是前导码中除了上述传统部分之 外的其他字段。非传统部分具体包括哪些字段取决于 802.11标准的版本。例 如在 802.11η标准中, 非传统部分的字段包括高吞吐量信令 HT-SIG、 高吞吐 量短训练字段 HT-STF和高吞吐量长训练字段 HT-LTF等。
目标字段可以为非传统字段中除了非传统信令字段之外的任意一个或 多个字段。 例如, 可以为 HT-STF和 HT-LTF等字段, 具体取决于标准的具 体版本。 需要说明的是, 本发明实施例针对属于非传统字段的目标字段进行 功率增强处理, 对于传统字段是否进行功率增强并不做任何限定。
可选地, 发送端首先需要确定要进行发射功率增强的目标字段。 具体可 以根据系统状态和业务需求在上述非传统部分的字段中确定一个或者多个 目标字段, 其中目标字段对应的 PAPR小于发送端的功率放大界限。 并且, 在本发明实施例中, 发送端可以确定发射功率放大界限。
可选地,该发射功率放大界限是根据该发送端使用的功率放大器的最大 输出功率确定的。
可选地, 作为一个实施例, 功率增强处理单元 51具体用于: 根据目标 字段对应的峰均功率比 PAPR和发送端的功率放大界限确定目标字段的功率 增强量; 根据目标字段的功率增强量, 生成目标字段的基带信号。
应理解, 目标字段对应的 PAPR可以根据系统带宽确定。 仍然以上述表 1为例进行说明,上述表 1示出了 20MHz系统带宽下 802.11η前导码的部分 字段的 PAPR值。 当系统带宽为 20MHz , 目标字段为 HT-LTF时, 可以确定 目标字段对应的 PAPR值为 3.2245。应理解,上述系统带宽和各字段的 PAPR 值的对应关系可以是预存于发送端的, 发送端可以根据系统带宽直接获取、 读取或调用目标字段对应的 PAPR值。
发送端可以根据其使用的功率放大器, 确定其能够进行功率放大的界 限。举个例子, 在上述系统带宽为 20MHz的 802.11η场景中, 功率放大器的 功率放大界限为 8dB, 即前导码的 PAPR超过 8dB则会出现发射信号明显失 真, 导致系统性能下降。 根据目标字段对应的峰均功率比 PAPR和发送端的 功率放大界限确定目标字段的功率增强量, 目标字段允许进行功率增强的量 为 8-3.2245dB,发送端可以在允许进行功率增强的量之内确定任意的功率增 强量, 例如确定功率增强量为 4dB。 应理解, 发送端可以根据系统状态和业 务需求等确定适当的功率增强量。 具体地, 当系统负载较低时, 可以确定相 对较小的功率增强量; 当系统负载较高时,可以确定相对较大的功率增强量, 本发明对此并不限定。 还应理解, 功率增强量可以是实际的功率增强值, 也可以是功率增强因 子。 例如, 功率增强因子为《, 则实际的功率增强值可以为 20 .1Ogl。(a;»dB。
确定了目标字段的功率增强量后, 可以根据该功率增强量生成目标字段 的基带波形。 具体可以参照上述图 1中实施例的基带波形公式, 此处不再赘 述。
可选地, 作为一个实施例, 功率增强处理单元 51还用于: 在前导码中 非传统信令字段增加功率增强信息, 功率增强信息用于指示目标字段是否进 行了功率增强处理, 在目标字段进行了功率增强处理的情况下, 功率增强信 息还用于指示目标字段的功率增强量。
发射端可以在非传统部分的信令字段中, 例如 HT-SIG, 增加功率增强 信息, 以指示目标字段的发射功率增强。 功率增强信息可以指示目标字段的 发射功率是否增强, 例如可以用 "000"表示目标字段未进行发射功率增强, 可以用 "001" 表示目标字段进行了发射功率增强。 功率增强信息还可以进 一步指示目标字段的功率增强量,例如" 001 "可以表示发射功率增强了 ldB; "010"可以表示发射功率增强了 2dB; "011"可以表示发射功率增强了 3dB, 依此类推。 应理解, 功率增强信息可以占用更多的或者更少的比特位来描述 发射功率增强的相关信息, 本发明对此并不限定。
可选地, 作为一个实施例, 目标字段对应的 PAPR低于阈值, 其中阈值 小于发送端的功率放大界限。
作为一个优选的实施例, 目标字段可以是具有较低 PAPR的字段。 具有 较低 PAPR的字段的功率增强空间较大, 也就是说, 可提升系统性能的空间 也较大。 具体地, 系统或者发送端可以预先设定阈值, 该阈值小于发送端的 功率放大界限。 非传统字段中 PAPR低于该阈值的字段可以被确定为功率增 强的目标字段。 例如, 延续上述实施例当中的例子进行说明, 发送端的功率 放大界限为 8dB, 系统或者发送端预先设定阈值 5, 那么 PAPR值低于 5的 非传统字段可以被确定为目标字段, 在上述表 1 中, 符合条件的为 HT-STF 和 HT-LTF。
可选地, 目标字段包括长训练字段 LTF。 作为一个优选的实施例, 当目 标字段为非传统字段中的长训练字段 LTF时,由于 LTF字段一般具有 MIMO 信道估计, 因而提升其发设功率可以提高 MIMO信道估计的准确性, 降低 系统误帧率, 从而能够达到改善系统性能、 提升用户体验的目的。 应理解, 根据标准版本不同, 非传统字段的 LTF也可以有所不同, 举个具体的例子, 在 802.11η中目标字段可以为高吞吐量长训练字段 HT-LTF。
本发明实施例通过发送端 50对无线局域网 WLAN系统前导码的非传统 字段进行发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据 传输性能以及用户体验。 并且, 通过提升具有较低 PAPR的非传统字段的发 射功率能够进一步显著地提升系统性能。 此外, 通过在非传统信令字段中增 加功率增强信息, 能够使得对端获取并根据功率增强信息进行信道估计, 从 而提高后续字段接收的正确性。
图 6是本发明另一实施例的接收端的示意框图。 图 6的接收端 60包括 获取单元 61和接收单元 62。
获取单元 61获取无线局域网 WLAN系统前导码的非传统信令字段中的 功率增强信息,其中功率增强信息用于指示发送端对前导码的目标字段进行 了发射功率增强处理, 目标字段包括 WLAN 系统前导码的非传统字段中除 非传统信令字段的一个或多个字段。 接收单元 62根据功率增强信息接收前 导码的非传统字段。
本发明实施例通过对无线局域网 WLAN 系统前导码的非传统字段进行 发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据传输性能 以及用户体验。
Wi-Fi 系统帧结构主要由前导码, 服务字段, 数据字段, 尾部字段等组 成。 其中前导码主要实现帧检测, 自动增益控制, 频偏估计, 时间同步, 信 道估计等功能。 前导码可以分为传统字段部分和非传统字段部分。
通常来说,前导码的传统字段部分包含三个字段,即: L-STF字段, L-LTF 字段以及 L-SIG 字段。 其中, L-STF 字段用于帧起始检测、 自动增益控制 AGC设置、初始频率偏移估计以及初始时间同步; L-LTF用于更精确的频率 偏移估计和时间同步, 也用来为接收及匀衡 L-SIG生成信道估计; L-SIG字 段主要用于承载数据速率信息及数据长度信息, 以使接收端设备能够根据该 数据速率信息及数据长度信息, 确定与该前导码承载于同一帧的数据的长 度, 进而能够确定保持空闲的适当时间。
非传统字段部分可以是前导码中除了上述传统部分之外的其他字段。 非 传统部分具体包括哪些字段取决于 802.11标准的版本。 例如在 802.11η标准 中, 非传统部分的字段包括高吞吐量信令 HT-SIG、 高吞吐量短训练字段 HT-STF和高吞吐量长训练字段 HT-LTF等。
目标字段可以为非传统字段中除了非传统信令字段之外的任意一个或 多个字段。 例如, 可以为 HT-STF和 HT-LTF等字段, 具体取决于标准的具 体版本。 需要说明的是, 本发明实施例针对属于非传统字段的目标字段进行 功率增强处理, 对于传统字段是否进行功率增强并不做任何限定。
可选地, 目标字段是由发送端确定的需要进行发射功率增强的字段。 具 体发送端可以根据系统状态和业务需求在上述非传统部分的字段中确定一 个或者多个目标字段, 其中目标字段对应的 PAPR小于发送端的功率放大界 限。 并且, 在本发明实施例中, 发送端可以确定发射功率放大界限。
可选地,该发射功率放大界限是根据该发送端使用的功率放大器的最大 输出功率确定的。
可选地, 作为一个实施例, 功率增强信息用于指示目标字段的功率增强 量, 其中功率增强量由发送端根据目标字段对应的峰均功率比 PAPR和发送 端的功率放大界限确定。
应理解, 目标字段对应的 PAPR可以根据系统带宽确定。 仍然以上述表
1为例进行说明,上述表 1示出了 20MHz系统带宽下 802.11η前导码的部分 字段的 PAPR值。 当系统带宽为 20MHz , 目标字段为 HT-LTF时, 可以确定 目标字段对应的 PAPR值为 3.2245。应理解,上述系统带宽和各字段的 PAPR 值的对应关系可以是预存于发送端的, 发送端可以根据系统带宽直接获取、 读取或调用目标字段对应的 PAPR值。
发送端可以根据其使用的功率放大器, 确定其能够进行功率放大的界 限。举个例子, 在上述系统带宽为 20MHz的 802.11η场景中, 功率放大器的 功率放大界限为 8dB, 即前导码的 PAPR超过 8dB则会出现发射信号明显失 真, 导致系统性能下降。 根据目标字段对应的峰均功率比 PAPR和发送端的 功率放大界限确定目标字段的功率增强量, 目标字段允许进行功率增强的量 为 8-3.2245dB,发送端可以在允许进行功率增强的量之内确定任意的功率增 强量, 例如确定功率增强量为 4dB。 应理解, 发送端可以根据系统状态和业 务需求等确定适当的功率增强量。 具体地, 当系统负载较低时, 可以确定相 对较小的功率增强量; 当系统负载较高时,可以确定相对较大的功率增强量, 本发明对此并不限定。
还应理解, 功率增强量可以是实际的功率增强值, 也可以是功率增强因 子。 例如, 功率增强因子为 则实际的功率增强值可以为 20 .1Ogl。(a)dB。 确定了目标字段的功率增强量后, 可以根据该功率增强量生成目标字段 的基带波形。 具体可以参照上述图 1中实施例的基带波形公式, 此处不再赘 述。
可选地, 作为一个实施例, 在目标字段为长训练字段 LTF时, 装置还包 括信道估计单元, 接收单元 82具体用于: 根据功率增强信息指示的目标字 段的功率增强量, 通过信道估计单元进行多入多出 MIMO信道估计; 根据 MIMO信道估计结果接收后续字段和数据。 其中, 后续字段和数据可以包括 前导码的非传统部分余下的非传统字段以及之后传输的数据。
作为一个优选的实施例, 当目标字段为非传统字段中的长训练字段 LTF 时, 由于 LTF字段一般具有 MIMO信道估计, 因而提升其发设功率可以提 高 MIMO信道估计的准确性, 降低系统误帧率, 从而能够达到改善系统性 能、 提升用户体验的目的。 应理解, 根据标准版本不同, 非传统字段的 LTF 也可以有所不同, 举个具体的例子, 在 802.11η中目标字段可以为高吞吐量 长训练字段 HT-LTF。
具体地, 发射端可以在非传统部分的信令字段中, 例如 HT-SIG, 增加 功率增强信息, 以指示目标字段的发射功率增强。 接收端可以根据实际增强 的功率值进行 MIMO信道估计, 并最终完成全部帧的接收。
功率增强信息可以指示目标字段的发射功率是否增强, 例如可以用 "000" 表示目标字段未进行发射功率增强, 可以用 "001" 表示目标字段进 行了发射功率增强。 功率增强信息还可以进一步指示目标字段的功率增强 量, 例如 "001" 可以表示发射功率增强了 ldB; "010" 可以表示发射功率 增强了 2dB; "011" 可以表示发射功率增强了 3dB, 依此类推。 应理解, 功 率增强信息可以占用更多的或者更少的比特位来描述发射功率增强的相关 信息, 本发明对此并不限定。
本发明实施例通过对无线局域网 WLAN 系统前导码的非传统字段进行 发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据传输性能 以及用户体验。 并且, 通过提升具有较低 PAPR的非传统字段的发射功率能 够进一步显著地提升系统性能。 此外, 通过在非传统信令字段中增加功率增 强信息, 能够使得解码端 60获取并根据功率增强信息进行信道估计, 从而 提高后续字段接收的正确性。 图 7是本发明另一实施例的发送端的示意框图。 图 7的发送端 70包括 处理器 71、存储器 72和发射机 73。 处理器 71、存储器 72和发射机 73通过 总线系统 74相连。
存储器 72用于存储使得处理器 71执行以下操作的指令: 对无线局域网 WLAN 系统前导码的目标字段进行发射功率增强处理, 其中目标字段包括 WLAN系统前导码的非传统字段中除非传统信令字段的一个或多个字段;向 接收端发送经过发射功率增强处理的前导码。
本发明实施例通过发送端 70对无线局域网 WLAN系统前导码的非传统 字段进行发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据 传输性能以及用户体验。
目标字段可以为非传统字段中除了非传统信令字段之外的任意一个或 多个字段。 例如, 可以为 HT-STF和 HT-LTF等字段, 具体取决于标准的具 体版本。 需要说明的是, 本发明实施例针对属于非传统字段的目标字段进行 功率增强处理, 对于传统字段是否进行功率增强并不做任何限定。
此外, 发送端 70还可以包括接收机 75及天线 76等。 处理器 71控制发 送端 70的操作, 处理器 71还可以称为 CPU ( Central Processing Unit, 中央 处理单元)。 存储器 72可以包括只读存储器和随机存取存储器, 并向处理器 71提供指令和数据。 存储器 72的一部分还可以包括非易失性随机存取存储 器( NVRAM )。 具体的应用中, 发射机 73和接收机 75可以耦合到天线 76。 发送端 70的各个组件通过总线系统 74耦合在一起, 其中总线系统 74除包 括数据总线之外, 还可以包括电源总线、 控制总线和状态信号总线等。 但是 为了清楚说明起见, 在图中将各种总线都标为总线系统 74。
上述本发明实施例揭示的方法可以应用于处理器 71 中, 或者由处理器 71实现。 处理器 71可能是一种集成电路芯片, 具有信号的处理能力。 在实 现过程中, 上述方法的各步骤可以通过处理器 71 中的硬件的集成逻辑电路 或者软件形式的指令完成。 上述的处理器 71可以是通用处理器、 数字信号 处理器(DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA )或者 其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 可以实 现或者执行本发明实施例中的公开的各方法、 步骤及逻辑框图。 通用处理器 可以是微处理器或者该处理器也可以是任何常规的处理器等。 结合本发明实 施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成, 或者用 译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储 器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写可编程存储器、 寄 存器等本领域成熟的存储介质中。 该存储介质位于存储器 72, 处理器 71读 取存储器 72中的信息, 结合其硬件完成上述方法的步骤。
应理解, 处理器 71可以实现上述图 5对应实施例中功率增强处理单元
51的功能。 发射机 73可以实现上述图 5对应实施例中发送单元 52的功能。
可选地, 作为一个实施例, 发送端对无线局域网 WLAN 系统前导码的 目标字段进行发射功率增强处理, 包括: 根据目标字段对应的峰均功率比 PAPR和发送端的功率放大界限确定目标字段的功率增强量; 根据目标字段 的功率增强量, 生成目标字段的基带信号。
可选地, 作为一个实施例, 发送端对无线局域网 WLAN 系统前导码的 目标字段进行发射功率增强处理, 还包括: 在前导码中非传统信令字段增加 功率增强信息, 功率增强信息用于指示目标字段是否进行了功率增强处理, 在目标字段进行了功率增强处理的情况下, 功率增强信息还用于指示目标字 段的功率增强量。
可选地, 作为一个实施例, 目标字段对应的 PAPR低于阈值, 其中阈值 小于发送端的功率放大界限。
本发明实施例通过发送端 70对无线局域网 WLAN系统前导码的非传统 字段进行发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据 传输性能以及用户体验。 并且, 通过提升具有较低 PAPR的非传统字段的发 射功率能够进一步显著地提升系统性能。 此外, 通过在非传统信令字段中增 加功率增强信息, 能够使得对端获取并根据功率增强信息进行信道估计, 从 而提高后续字段接收的正确性。
图 8是本发明另一实施例的接收端的示意框图。 图 8的接收端 80包括 处理器 81、存储器 82和接收机 83。 处理器 81、存储器 82和接收机 83通过 总线系统 84相连。
存储器 82用于存储使得处理器 81执行以下操作的指令: 获取无线局域 网 WLAN 系统前导码的非传统信令字段中的功率增强信息, 其中功率增强 信息用于指示发送端对前导码的目标字段进行了发射功率增强处理, 目标字 段包括 WLAN系统前导码的非传统字段中除非传统信令字段的一个或多个 字段; 根据功率增强信息接收前导码的非传统字段。 本发明实施例通过对无线局域网 WLAN 系统前导码的非传统字段进行 发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据传输性能 以及用户体验。
目标字段可以为非传统字段中除了非传统信令字段之外的任意一个或 多个字段。 例如, 可以为 HT-STF和 HT-LTF等字段, 具体取决于标准的具 体版本。 需要说明的是, 本发明实施例针对属于非传统字段的目标字段进行 功率增强处理, 对于传统字段是否进行功率增强并不做任何限定。
此外, 接收端 80还可以包括接收机 85及天线 86等。 处理器 81控制接 收端 80的操作, 处理器 81还可以称为 CPU ( Central Processing Unit, 中央 处理单元)。 存储器 82可以包括只读存储器和随机存取存储器, 并向处理器 81提供指令和数据。 存储器 82的一部分还可以包括非易失性随机存取存储 器( NVRAM )。 具体的应用中, 发射机 83和接收机 85可以耦合到天线 86。 接收端 80的各个组件通过总线系统 84耦合在一起, 其中总线系统 84除包 括数据总线之外, 还可以包括电源总线、 控制总线和状态信号总线等。 但是 为了清楚说明起见, 在图中将各种总线都标为总线系统 84。
上述本发明实施例揭示的方法可以应用于处理器 81 中, 或者由处理器 81实现。 处理器 81可能是一种集成电路芯片, 具有信号的处理能力。 在实 现过程中, 上述方法的各步骤可以通过处理器 81 中的硬件的集成逻辑电路 或者软件形式的指令完成。 上述的处理器 81可以是通用处理器、 数字信号 处理器(DSP )、 专用集成电路(ASIC )、 现成可编程门阵列 (FPGA )或者 其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件。 可以实 现或者执行本发明实施例中的公开的各方法、 步骤及逻辑框图。 通用处理器 可以是微处理器或者该处理器也可以是任何常规的处理器等。 结合本发明实 施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成, 或者用 译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储 器, 闪存、 只读存储器, 可编程只读存储器或者电可擦写可编程存储器、 寄 存器等本领域成熟的存储介质中。 该存储介质位于存储器 82, 处理器 81读 取存储器 82中的信息, 结合其硬件完成上述方法的步骤。
应理解,处理器 81可以实现上述图 6对应实施例中获取单元 61的功能。 接收机 83可以实现上述图 6对应实施例中接收单元 62的功能。
可选地, 作为一个实施例, 功率增强信息用于指示目标字段的功率增强 量, 其中功率增强量由发送端根据目标字段对应的峰均功率比 PAPR和发送 端的功率放大界限确定。
可选地, 作为一个实施例, 在目标字段为长训练字段 LTF时, 接收端根 据功率增强信息接收前导码的非传统字段, 包括: 根据功率增强信息指示的 目标字段的功率增强量, 进行多入多出 MIMO信道估计; 根据 MIMO信道 估计结果接收后续字段和数据。 其中, 后续字段和数据可以包括前导码的非 传统部分余下的非传统字段以及之后传输的数据。
本发明实施例通过对无线局域网 WLAN 系统前导码的非传统字段进行 发射功率增强处理, 可以提高系统总体吞吐率, 从而能够提升数据传输性能 以及用户体验。 并且, 通过提升具有较低 PAPR的非传统字段的发射功率能 够进一步显著地提升系统性能。 此外, 通过在非传统信令字段中增加功率增 强信息, 能够使得对端获取并根据功率增强信息进行信道估计, 从而提高后 续字段接收的正确性。
应理解, 本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例如, A和 /或 B, 可以表示: 单独存在 A, 同时存 在 A和 B, 单独存在 B这三种情况。 另外, 本文中字符 "/" , 一般表示前后 关联对象是一种 "或" 的关系。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM , Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

权利要求
1. 一种传输数据的方法, 其特征在于, 包括:
发送端对无线局域网 WLAN 系统前导码的目标字段进行发射功率增强 处理, 其中所述目标字段包括所述 WLAN系统前导码的非传统字段中除非 传统信令字段的一个或多个字段;
所述发送端向接收端发送经过发射功率增强处理的所述前导码。
2.根据权利要求 1所述的方法,其特征在于,所述发送端对无线局域网 WLAN系统前导码的目标字段进行发射功率增强处理, 包括:
根据所述目标字段对应的峰均功率比 PAPR和所述发送端的功率放大界 限确定所述目标字段的功率增强量;
根据所述目标字段的功率增强量, 生成所述目标字段的基带信号。
3.根据权利要求 2所述的方法,其特征在于,所述发送端对无线局域网 WLAN系统前导码的目标字段进行发射功率增强处理,还包括: 在所述前导 码中非传统信令字段增加功率增强信息, 所述功率增强信息用于指示所述目 标字段是否进行了功率增强处理,在所述目标字段进行了功率增强处理的情 况下, 所述功率增强信息还用于指示所述目标字段的所述功率增强量。
4.根据权利要求 1-3中任意一项所述的方法, 其特征在于, 所述目标字 段对应的 PAPR低于阈值, 其中所述阈值小于所述发送端的功率放大界限。
5.根据权利要求 1-4中任意一项所述的方法, 其特征在于, 所述目标字 段包括长训练字段 LTF。
6. 一种传输数据的方法, 其特征在于, 包括:
接收端获取无线局域网 WLAN系统前导码的非传统信令字段中的功率 增强信息, 其中所述功率增强信息用于指示发送端对所述前导码的目标字段 进行了发射功率增强处理, 所述目标字段包括所述 WLAN系统前导码的非 传统字段中除非传统信令字段的一个或多个字段;
所述接收端根据所述功率增强信息接收所述前导码的非传统字段。
7.根据权利要求 6所述的方法,其特征在于,所述功率增强信息用于指 示所述目标字段的功率增强量, 其中所述功率增强量由所述发送端根据所述 目标字段对应的峰均功率比 PAPR和所述发送端的功率放大界限确定。
8.根据权利要求 7所述的方法,其特征在于,在所述目标字段为长训练 字段 LTF时,所述接收端根据所述功率增强信息接收所述前导码的非传统字 段, 包括:
根据所述功率增强信息指示的所述目标字段的功率增强量, 进行多入多 出 MIMO信道估计;
根据所述 MIMO信道估计结果接收后续字段和数据。
9. 一种传输数据的装置, 其特征在于, 包括:
功率增强处理单元, 用于对无线局域网 WLAN 系统前导码的目标字段 进行发射功率增强处理, 其中所述目标字段包括所述 WLAN 系统前导码的 非传统字段中除非传统信令字段的一个或多个字段;
发送单元, 用于向接收端发送经过发射功率增强处理的所述前导码。
10. 根据权利要求 9所述的装置, 其特征在于, 功率增强处理单元具体 用于:
根据所述目标字段对应的峰均功率比 PAPR和所述发送端的功率放大界 限确定所述目标字段的功率增强量;
根据所述目标字段的功率增强量, 生成所述目标字段的基带信号。
11.根据权利要求 10所述的装置,其特征在于,所述功率增强处理单元 还用于: 在所述前导码中非传统信令字段增加功率增强信息, 所述功率增强 信息用于指示所述目标字段是否进行了功率增强处理,在所述目标字段进行 了功率增强处理的情况下, 所述功率增强信息还用于指示所述目标字段的所 述功率增强量。
12. 根据权利要求 9-11中任意一项所述的装置, 其特征在于, 所述目标 字段对应的 PAPR低于阈值,其中所述阈值小于所述发送端的功率放大界限。
13. 根据权利要求 9-12中任意一项所述的方法, 其特征在于, 所述目标 字段包括长训练字段 LTF。
14. 一种传输数据的装置, 其特征在于, 包括:
获取单元, 用于获取无线局域网 WLAN 系统前导码的非传统信令字段 中的功率增强信息, 其中所述功率增强信息用于指示发送端对所述前导码的 目标字段进行了发射功率增强处理, 所述目标字段包括所述 WLAN 系统前 导码的非传统字段中除非传统信令字段的一个或多个字段;
接收单元, 用于根据所述功率增强信息接收所述前导码的非传统字段。
15. 根据权利要求 14所述的装置,其特征在于,所述功率增强信息用于 指示所述目标字段的功率增强量, 其中所述功率增强量由所述发送端根据所 述目标字段对应的峰均功率比 PAPR和所述发送端的功率放大界限确定。
16. 根据权利要求 15所述的装置,其特征在于,在所述目标字段为长训 练字段 LTF时, 所述装置还包括信道估计单元, 所述接收单元具体用于: 根据所述功率增强信息指示的所述目标字段的功率增强量,通过所述信 道估计单元进行多入多出 MIMO信道估计;
根据所述 MIMO信道估计结果接收后续字段和数据。
PCT/CN2014/072094 2014-02-14 2014-02-14 传输数据的方法和装置 WO2015120613A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14882347.9A EP3094057B1 (en) 2014-02-14 2014-02-14 Method and apparatus for data transmission
PCT/CN2014/072094 WO2015120613A1 (zh) 2014-02-14 2014-02-14 传输数据的方法和装置
CN201480075141.8A CN105981343B (zh) 2014-02-14 2014-02-14 传输数据的方法和装置
US15/234,891 US10129069B2 (en) 2014-02-14 2016-08-11 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072094 WO2015120613A1 (zh) 2014-02-14 2014-02-14 传输数据的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/234,891 Continuation US10129069B2 (en) 2014-02-14 2016-08-11 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2015120613A1 true WO2015120613A1 (zh) 2015-08-20

Family

ID=53799522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072094 WO2015120613A1 (zh) 2014-02-14 2014-02-14 传输数据的方法和装置

Country Status (4)

Country Link
US (1) US10129069B2 (zh)
EP (1) EP3094057B1 (zh)
CN (1) CN105981343B (zh)
WO (1) WO2015120613A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108029041A (zh) * 2015-11-04 2018-05-11 松下知识产权经营株式会社 无线通信装置和无线通信方法
CN111836276A (zh) * 2019-04-17 2020-10-27 华为技术有限公司 优化数据传输的方法及装置、无线局域网设备及芯片
US11128508B2 (en) 2016-01-07 2021-09-21 Huawei Technologies Co., Ltd. Information transmission method and apparatus in wireless local area network

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105519065B (zh) * 2014-02-13 2019-05-24 华为技术有限公司 传输数据的方法和装置
US10033565B2 (en) * 2015-07-27 2018-07-24 Intel Corporation Low peak-to-average power ratio long training field sequences
US20180167235A1 (en) * 2016-12-13 2018-06-14 Qualcomm Incorporated Adaptive channel estimation
CN109756928B (zh) * 2017-11-01 2022-03-04 展讯通信(上海)有限公司 无线局域网系统的数据发送方法及装置、存储介质、终端
US10499346B2 (en) * 2018-04-03 2019-12-03 Cypress Semiconductor Corporation System and method extending range of a wireless network
US20230388002A1 (en) * 2022-05-25 2023-11-30 Nxp Usa, Inc. System and method for range extension of wireless networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734995A (zh) * 2004-08-13 2006-02-15 三星电子株式会社 用于传送数据帧的方法及系统
CN102244607A (zh) * 2010-05-15 2011-11-16 雷凌科技股份有限公司 用于无线通讯系统中配置封包的方法及装置
CN102377468A (zh) * 2010-06-09 2012-03-14 美国博通公司 用于操作无线通信设备的方法和装置
CN102714643A (zh) * 2009-08-25 2012-10-03 高通股份有限公司 支持旧式设备的ieee802.11ac前置码

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60320956D1 (de) 2002-03-07 2008-06-26 Alvarion Ltd Hierarchische präambelkonstruktionen für ofdma auf der basis komplementärer sequenzen
US7577438B2 (en) * 2005-04-25 2009-08-18 Interdigital Technology Corporation Method and system for efficient addressing and power savings in wireless systems
US7742390B2 (en) * 2005-08-23 2010-06-22 Agere Systems Inc. Method and apparatus for improved long preamble formats in a multiple antenna communication system
US7715803B2 (en) * 2005-12-20 2010-05-11 Samsung Electronics Co., Ltd. Methods and apparatus for constant-power loading asymmetric antenna configuration
US8462676B2 (en) * 2006-10-17 2013-06-11 Intel Corporation Frame structure for support of large delay spread deployment scenarios
US8717865B2 (en) * 2009-07-17 2014-05-06 Qualcomm Incorporated Method and apparatus for constructing very high throughput short training field sequences
US8917784B2 (en) * 2009-07-17 2014-12-23 Qualcomm Incorporated Method and apparatus for constructing very high throughput long training field sequences
US8619676B2 (en) * 2010-06-09 2013-12-31 Broadcom Corporation Legacy cyclic shift delay (CSD) for orthogonal frequency division multiplexing (OFDM) signaling within multiple user, multiple access, and/or MIMO wireless communications
US9054929B2 (en) * 2010-08-11 2015-06-09 Qualcomm Incorporated Constructing very high throughput signal (VHT-SIG) fields for reduced peak-to-average power ratio (PAPR)
US8934572B2 (en) * 2010-08-31 2015-01-13 Broadcom Corporation Phase rotation for preambles within multiple user, multiple access, and/or MIMO wireless communications
US9019991B1 (en) * 2011-12-08 2015-04-28 Marvell International Ltd. Method and apparatus for detecting a packet in a WLAN system
US9497000B2 (en) * 2012-02-14 2016-11-15 Lg Electronics Inc. Method for transmitting data units in wireless LAN systems and apparatus for supporting same
US9338660B2 (en) * 2012-05-08 2016-05-10 Electronics And Telecommunications Research Institute Apparatus and method for extending coverage in wireless communication system
US20140211775A1 (en) * 2013-01-28 2014-07-31 Qualcomm Incorporated Larger delay spread support for wifi bands
KR102007986B1 (ko) * 2014-01-28 2019-08-06 후아웨이 테크놀러지 컴퍼니 리미티드 커버리지 개선 시나리오에서의 송신 전력 결정 방법 및 장치
CN105519065B (zh) * 2014-02-13 2019-05-24 华为技术有限公司 传输数据的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734995A (zh) * 2004-08-13 2006-02-15 三星电子株式会社 用于传送数据帧的方法及系统
CN102714643A (zh) * 2009-08-25 2012-10-03 高通股份有限公司 支持旧式设备的ieee802.11ac前置码
CN102244607A (zh) * 2010-05-15 2011-11-16 雷凌科技股份有限公司 用于无线通讯系统中配置封包的方法及装置
CN102377468A (zh) * 2010-06-09 2012-03-14 美国博通公司 用于操作无线通信设备的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3094057A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108029041A (zh) * 2015-11-04 2018-05-11 松下知识产权经营株式会社 无线通信装置和无线通信方法
CN108029041B (zh) * 2015-11-04 2021-03-23 松下知识产权经营株式会社 无线通信装置和无线通信方法
US11128508B2 (en) 2016-01-07 2021-09-21 Huawei Technologies Co., Ltd. Information transmission method and apparatus in wireless local area network
CN111836276A (zh) * 2019-04-17 2020-10-27 华为技术有限公司 优化数据传输的方法及装置、无线局域网设备及芯片

Also Published As

Publication number Publication date
EP3094057B1 (en) 2018-05-30
CN105981343B (zh) 2019-08-20
CN105981343A (zh) 2016-09-28
EP3094057A1 (en) 2016-11-16
US20160352556A1 (en) 2016-12-01
EP3094057A4 (en) 2017-01-25
US10129069B2 (en) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2015120613A1 (zh) 传输数据的方法和装置
US11398877B2 (en) Channel state information measurement method and apparatus
JP6599333B2 (ja) マルチユーザ多入力多出力(mu−mimo)フィードバックプロトコル
TWI445368B (zh) 適用於無線通訊能力傳訊之行動通訊裝置
US10631142B2 (en) Systems, methods, and devices for extending range of wireless networks
US10812307B2 (en) Physical layer protocol data unit transmission method and apparatus
US9882754B2 (en) Data transmission method and apparatus
WO2012026779A2 (en) Method and apparatus for transmitting control information in wireless local area network using multi-channel
KR101507676B1 (ko) 무선 프레임 송신 방법 및 장치
US10972157B2 (en) Multiuser multiple-input and multiple-output setup frame
US10084635B2 (en) High efficiency signal field coding
WO2016179807A1 (zh) 传输数据的方法、接收端设备和发送端设备
WO2017067208A1 (zh) 无线局域网中站点间直接通信的方法及相关设备
WO2016138778A1 (zh) 传输信道状态信息的方法和装置
US9055590B2 (en) Transmitter warm-up using dummy frame generation
US9774482B2 (en) High efficiency signal field enhancement
US11489946B2 (en) Wireless preamble design
WO2016074209A1 (zh) 无线局域网中的用于自动增益控制的方法和通信设备
TWI692954B (zh) 無線通信方法及其設備
WO2023240422A1 (zh) 感知测量方法、装置、设备及存储介质
WO2024067077A1 (zh) 无线局域网中的通信方法及装置
WO2024109036A1 (zh) 信道探测方法、装置及通信系统
WO2023284638A1 (zh) 下行控制信息发送、获取方法、装置、终端及网络侧设备
CN116709573A (zh) 用于WiFi6及其改进型的无线通信系统及无线收发通信系统
WO2016033798A1 (zh) 无线局域网中的通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882347

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014882347

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014882347

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE