WO2024067077A1 - 无线局域网中的通信方法及装置 - Google Patents

无线局域网中的通信方法及装置 Download PDF

Info

Publication number
WO2024067077A1
WO2024067077A1 PCT/CN2023/118378 CN2023118378W WO2024067077A1 WO 2024067077 A1 WO2024067077 A1 WO 2024067077A1 CN 2023118378 W CN2023118378 W CN 2023118378W WO 2024067077 A1 WO2024067077 A1 WO 2024067077A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppdu
content
start field
communication device
field
Prior art date
Application number
PCT/CN2023/118378
Other languages
English (en)
French (fr)
Inventor
白小飞
倪一展
应腾达
王晨
刘亚辉
于健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067077A1 publication Critical patent/WO2024067077A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/52TPC using AGC [Automatic Gain Control] circuits or amplifiers

Definitions

  • the present application relates to the technical field of wireless local area network (WLAN), and in particular to a communication method and device in WLAN.
  • WLAN wireless local area network
  • the receiver in WLAN When receiving signals, the receiver in WLAN needs to adjust the power gain of the received signal, amplify the power of the received signal with too low power, and attenuate the power of the received signal with too high power, so that the received signal is finally adjusted to a suitable power level to ensure the signal reception performance of the receiver.
  • the process of the receiver adjusting the power gain of the received signal can be called the automatic gain control (AGC) adjustment process.
  • AGC automatic gain control
  • the receiver When receiving a physical layer protocol data unit (PPDU), the receiver uses the legacy short training field (STF) (L-STF) in the preamble of the PPDU to perform AGC adjustment on the received signal power.
  • STF legacy short training field
  • L-STF legacy short training field
  • the receiver may not be able to complete the AGC adjustment, which will affect the normal communication in the WLAN.
  • the present application provides a communication method and device in a WLAN, which improves the communication reliability in the WLAN.
  • a PPDU wherein a preamble of the PPDU includes a start field and a traditional long training field (LTF) (L-LTF for short) immediately following the start field.
  • the length of the start field is greater than 8 microseconds, and the start field has 8 continuous microseconds of content that is the same as the content of the L-STF.
  • the preamble of the PPDU includes a target field, an L-STF, and an L-LTF.
  • the target field is the content in the start field other than the 8 continuous microseconds of content that is the same as the content of the L-STF.
  • the target field is adjacent to the L-STF, and the target field and the L-STF are before the L-LTF.
  • the length of the target field is greater than 0.
  • the present application replaces the traditional short training field with a start field in the preamble of the PPDU.
  • the start field includes the content of the traditional short training field to facilitate compatibility.
  • the start field is longer than the traditional short training field, thus relaxing the time constraints on the receiver to use the field to complete the corresponding functions (for example, synchronization, signal detection, AGC, etc.), and can meet the time requirements of hardware with different performance to perform synchronization, signal detection, AGC and other functions, thereby improving the communication reliability of WLAN in different application scenarios.
  • the present application only needs to change the first field in the preamble, and has no effect on subsequent fields, so it will not change the subsequent processing of the PPDU by the communication equipment, and the implementation is simple.
  • the preamble of the PPDU includes a start field and an L-LTF
  • the first 8 microseconds of the start field are the same as the content of the L-STF
  • the last 8 microseconds of the start field are the same as the content of the L-STF.
  • the Start field is used for automatic gain control adjustment.
  • the start field can be composed of multiple L-STFs, or M L-STFs and N L-LTFs, or P L-STFs and Q L-SIG fields, or X L-STFs, Y L-LTFs and Z L-SIG fields, and so on.
  • M, N, P, Q, X, Y, and Z are all positive numbers, and M, P, and X are all greater than or equal to 1.
  • the other content in the start field other than the continuous 8 microseconds of content that is the same as the content of the L-STF includes one or more of the following: the content of at least 6 L-STFs, the content of at least 6 L-LTFs, the content of at least 12 L-SIG fields, or a combination of the content of at least 3 L-STFs and the content of at least 3 L-LTFs.
  • the other contents in the start field other than the continuous 8 microseconds of content identical to the content of the L-STF may include the content of 6 L-STFs, or the content of 6 L-LTFs, or the content of 12 L-SIG fields, or the combination of the content of 3 L-STFs and the content of 3 L-LTFs.
  • the total length of the start field is 56 microseconds.
  • the length of the start field can be variable.
  • the above examples can be combined so that the total length of the start field exceeds 56 microseconds.
  • the length of the start field is predefined or determined by negotiation between the communicating parties.
  • the length of the start field is predefined, including: the length of the start field is predefined in the WLAN protocol.
  • the length of the start field is determined by negotiation between the communicating parties, including: before the communicating parties start communicating, the length of the start field is preconfigured in the communication devices of both parties, or the communication devices of both parties negotiate to determine the length of the start field through message interaction, for example, the communication devices of both parties can determine the length of the start field through message negotiation during the process of establishing a communication connection.
  • the continuous 8 microseconds of content that is identical to the content of L-STF in the start field of the preamble of the PPDU and the content after the start field in the PPDU constitute a non-high throughput (Non-HT) PPDU, a high throughput mixed format (HT-MF) PPDU, a very high throughput (VHT) PPDU, a high efficiency single user (HE SU) PPDU, a high efficiency multi-user (HE MU) PPDU, a high efficiency extended range single user (HE ER SU) PPDU or a high efficiency trigger-based (HE-TB) PPDU.
  • Non-HT non-high throughput
  • HT-MF high throughput mixed format
  • VHT very high throughput
  • HE SU high efficiency single user
  • HE MU high efficiency multi-user
  • HE ER SU high efficiency extended range single user
  • HE-TB high efficiency trigger-based
  • a communication method in a WLAN is provided.
  • a first communication device in the WLAN sends a PPDU to a second communication device in the WLAN.
  • the preamble of the PPDU includes a start field and an L-LTF immediately following the start field.
  • the length of the start field is greater than 8 microseconds, and the start field has 8 consecutive microseconds of content that is the same as the content of the L-STF.
  • the PPDU may be any PPDU as described in the first aspect.
  • the first communication device replaces the traditional short training field with the start field in the preamble code of the PPDU sent to the second communication device.
  • the start field includes the content of the traditional short training field for compatibility.
  • the start field is longer than the traditional short training field, so the time constraint on the second communication device to use the field to complete the corresponding functions (for example, synchronization, signal detection, AGC, etc.) is relaxed, and the time requirements of hardware with different performance to perform synchronization, signal detection, AGC and other functions can be met, thereby improving the communication reliability of WLAN in different application scenarios.
  • the present application only needs to change the first field in the preamble code, and has no effect on the subsequent fields. Therefore, for the second communication device, in addition to increasing the time length for using the field to complete the corresponding function, the second communication device does not need to make any changes to the subsequent processing of the PPDU, and the implementation is simple.
  • the first 8 microseconds of the start field are the same as the content of the L-STF, and/or the last 8 microseconds of the start field are the same as the content of the L-STF.
  • the Start field is used for automatic gain control adjustment.
  • the other content in the start field includes part or all of the content of one or more fields.
  • the one or more fields include L-STF, L-LTF, L-SIG domain, HE-STF or HE-LTF.
  • the other content in the start field other than the continuous 8 microseconds of content that is the same as the content of the L-STF includes one or more of the following: the content of at least 6 L-STFs, the content of at least 6 L-LTFs, the content of at least 12 L-SIG fields, or a combination of the content of at least 3 L-STFs and the content of at least 3 L-LTFs.
  • an implementation of a first communication device in a WLAN sending a PPDU to a second communication device in the WLAN includes: the first communication device sending the PPDU to the second communication device in a millimeter wave frequency band, that is, both the first communication device and the second communication device use millimeter wave radio frequency chips.
  • the length of the start field is predefined, or is determined by negotiation between the first communication device and the second communication device.
  • the continuous 8 microseconds of content in the start field of the preamble of the PPDU that is identical to the content of the L-STF and the content after the start field in the PPDU constitute a Non-HT PPDU, HT-MF PPDU, VHT PPDU, HE SU PPDU, HE MU PPDU, HE ER SU PPDU or HE-TB PPDU.
  • a communication method in a WLAN receives a PPDU from a second communication device in the WLAN.
  • the preamble of the PPDU includes a start field and an L-LTF immediately following the start field.
  • the length of the start field is greater than 8 microseconds, and the start field has 8 consecutive microseconds of content that is the same as the content of the L-STF.
  • the PPDU may be any PPDU described in the first aspect.
  • the first communication device performs automatic gain control adjustment on the received signal power of the PPDU according to the length of the start field.
  • the first communication device performs automatic gain control adjustment on the received signal power of the PPDU according to the length of the start field, that is, the first communication device performs automatic gain control adjustment on the received signal power of the PPDU within the reception duration of the start field.
  • the traditional short training field is replaced by the start field in the preamble code of the PPDU received by the first communication device.
  • the start field includes the content of the traditional short training field for compatibility.
  • the start field is longer than the traditional short training field, thereby relaxing the time constraints on the first communication device to use the field to complete the corresponding functions (for example, synchronization, signal detection, AGC, etc.), and can meet the time requirements of hardware with different performance to perform synchronization, signal detection, AGC and other functions, thereby improving the communication reliability of WLAN in different application scenarios.
  • the present application only needs to change the first field in the preamble code, and has no effect on subsequent fields. Therefore, for the first communication device, in addition to increasing the time length for using the field to complete the corresponding function, the first communication device does not need to make any changes to the subsequent processing of the PPDU, and the implementation is simple.
  • the first 8 microseconds of the start field are the same as the content of the L-STF, and/or the last 8 microseconds of the start field are the same as the content of the L-STF.
  • the other content in the start field includes part or all of the content of one or more fields.
  • the one or more fields include L-STF, L-LTF, L-SIG domain, HE-STF or HE-LTF.
  • the other content in the start field other than the continuous 8 microseconds of content that is the same as the content of the L-STF includes one or more of the following: the content of at least 6 L-STFs, the content of at least 6 L-LTFs, the content of at least 12 L-SIG fields, or a combination of the content of at least 3 L-STFs and the content of at least 3 L-LTFs.
  • an implementation manner in which a first communication device in a WLAN receives a PPDU from a second communication device in the WLAN includes: the first communication device receives the PPDU from the second communication device in a millimeter wave frequency band, that is, both the first communication device and the second communication device use millimeter wave radio frequency chips.
  • the first communication device using the millimeter wave RF chip can have more time to perform AGC adjustment, which can reduce or avoid communication failures due to failure to perform AGC adjustment within the specified time, thereby improving communication reliability.
  • the length of the start field is predefined, or is determined by negotiation between the first communication device and the second communication device.
  • the continuous 8 microseconds of content in the start field of the preamble of the PPDU that is identical to the content of the L-STF and the content after the start field in the PPDU constitute a Non-HT PPDU, HT-MF PPDU, VHT PPDU, HE SU PPDU, HE MU PPDU, HE ER SU PPDU or HE-TB PPDU.
  • a communication device in a WLAN includes multiple functional modules, and the multiple functional modules interact with each other to implement the method in the second aspect and its various embodiments and/or the third aspect and its various embodiments.
  • the multiple functional modules can be implemented based on software, hardware, or a combination of software and hardware, and the multiple functional modules can be arbitrarily combined or divided based on specific implementations.
  • a communication device in a WLAN comprising: a transceiver and an antenna.
  • the transceiver is used to send and receive a PPDU using the antenna.
  • the preamble of the PPDU includes a start field and an L-LTF immediately following the start field.
  • the length of the start field is greater than 8 microseconds.
  • the start field has 8 continuous microseconds of content that is the same as the content of the L-STF.
  • the PPDU can be any PPDU described in the first aspect.
  • the transceiver includes a millimeter wave radio frequency chip.
  • a computer-readable storage medium on which instructions are stored.
  • the instructions are executed by a processor, the methods in the above-mentioned second aspect and its various embodiments and/or the above-mentioned third aspect and its various embodiments are implemented.
  • a chip which includes a programmable logic circuit and/or program instructions.
  • the chip When the chip is running, it implements the method in the above-mentioned second aspect and its various embodiments and/or the above-mentioned third aspect and its various embodiments.
  • FIG1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG2 is a schematic diagram of the hardware structure of a communication device in a WLAN provided in an embodiment of the present application
  • Figure 3 is a schematic diagram of the structure of Non-HT PPDU
  • Figure 4 is a schematic diagram of the structure of HT-MF PPDU
  • FIG5 is a schematic diagram of the structure of a VHT PPDU
  • FIG6 is a schematic diagram of the structure of HE SU PPDU
  • FIG7 is a schematic diagram of the structure of HE MU PPDU
  • FIG8 is a schematic diagram of the structure of HE ER SU PPDU
  • Figure 9 is a schematic diagram of the structure of HE-TB PPDU.
  • FIG10 is a schematic diagram of the structure of a PPDU provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of another PPDU provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of a start field provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of another start field provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of another start field provided in an embodiment of the present application.
  • FIG15 is a schematic diagram of the structure of another start field provided in an embodiment of the present application.
  • FIG16 is a schematic flow chart of a communication method in a WLAN provided in an embodiment of the present application.
  • FIG17 is a schematic diagram of the structure of a communication device in a WLAN provided in an embodiment of the present application.
  • FIG. 18 is a schematic diagram of the structure of another communication device in a WLAN provided in an embodiment of the present application.
  • the embodiment of the present application is applied to a WLAN.
  • the WLAN includes a plurality of communication devices.
  • the plurality of communication devices can implement wireless communication in accordance with the WLAN protocol.
  • the communication devices in the WLAN include but are not limited to access devices or stations.
  • the access device may be, for example, an access point (AP) or a customer premises equipment (CPE).
  • the station may be, for example, a wireless terminal such as a smartphone, a laptop computer, or a smart wearable device.
  • FIG1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the application scenario includes a communication device 101 and a communication device 102.
  • the communication device 101 and the communication device 102 can communicate via WLAN.
  • other devices may also be included in the application scenario, and the number and type of devices shown in FIG1 are only exemplary.
  • the communication device 101 sends a PPDU to the communication device 102.
  • the communication device 102 needs to adjust the received signal power gain of the PPDU. If the received signal power of the PPDU is too low, the communication device 102 needs to amplify the received signal power of the PPDU. If the received signal power of the PPDU is too high, the communication device 102 needs to attenuate the received signal power of the PPDU. So that the received signal power of the PPDU is finally adjusted to a suitable power level, so that the communication device 102 can successfully receive the PPDU.
  • the whole process of the communication device 102 adjusting the received signal power gain of the PPDU is the AGC adjustment process.
  • AGC adjustment is mainly implemented by the AGC module, control interface and analog amplifier in the communication equipment.
  • the AGC module is in the baseband processing circuit
  • the analog amplifier is in the RF processing circuit
  • the control interface is a bridge connecting the baseband processing circuit and the RF processing circuit, which can transmit the control signal between the baseband processing circuit and the RF processing circuit.
  • the AGC module calculates the power adjustment method of the received signal, and sends the power adjustment control word to the analog amplifier through the control interface.
  • the analog amplifier then adjusts the working gear according to the power adjustment control word to achieve gain adjustment of the received signal power.
  • FIG2 is a schematic diagram of the hardware structure of a communication device in a WLAN provided in an embodiment of the present application.
  • the communication device 20 includes but is not limited to a transceiver 201 and an antenna 202.
  • the communication device 20 also includes a processor 203 and a memory 204.
  • the processor 203, the memory 204 and the transceiver 201 are connected via a communication bus (not shown in the figure).
  • the transceiver 201 is used to perform the transceiver action of the communication device 20.
  • the transceiver 201 includes a baseband processing circuit 2011 and a radio frequency processing circuit 2012.
  • the baseband processing circuit 2011 generates a baseband signal
  • the radio frequency processing circuit 2012 converts the baseband signal into a radio frequency signal
  • the antenna 202 sends the radio frequency signal from the air interface.
  • the antenna 202 receives the radio frequency signal from the air interface
  • the radio frequency processing circuit 2012 converts the radio frequency signal into a baseband signal
  • the baseband processing circuit 2011 receives the baseband signal.
  • the baseband processing circuit 2011 includes an AGC module, a control interface a1, a baseband signal processing module and a data interface b1.
  • the RF processing circuit 2012 includes an analog amplifier, a control interface a2, a RF signal processing module and a data interface b2.
  • the control interface a1 is connected to the control interface a2 and is used to transmit control signals between the baseband processing circuit 2011 and the RF processing circuit 2012, such as power adjustment control words.
  • the data interface b1 is connected to the data interface b2 and is used to transmit baseband signals between the baseband processing circuit 2011 and the RF processing circuit 2012.
  • the AGC module is used to calculate the signal power adjustment method.
  • the analog amplifier is used to adjust the signal power gain.
  • the baseband signal processing module is connected by control interface a1 and control interface a2.
  • the baseband signal processing module is used to generate baseband signals and receive baseband signals.
  • the radio frequency signal processing module is used to perform frequency conversion processing on the signal, for example, performing frequency conversion processing on the baseband signal to obtain the radio frequency signal, and performing frequency conversion processing on the radio frequency signal to obtain the baseband signal.
  • the baseband signal processing module and the radio frequency signal processing module are connected by data interface b1 and data interface b2.
  • the baseband signal processing module includes an analog-to-digital converter and a digital-to-analog converter to realize the conversion between digital signals and analog signals.
  • the radio frequency signal processing module includes an analog-to-digital converter and a digital-to-analog converter to realize the conversion between digital signals and analog signals.
  • the above-mentioned baseband processing circuit 2011 and radio frequency processing circuit 2012 are implemented based on hardware.
  • the baseband processing circuit 2011 is a baseband chip that supports the WLAN protocol, and is responsible for generating and receiving baseband signals according to the WLAN protocol.
  • the radio frequency processing circuit 2012 is a radio frequency chip.
  • the radio frequency processing circuit 2012 can be a millimeter wave radio frequency chip, which is responsible for frequency conversion of the baseband signal into a millimeter wave signal.
  • a millimeter wave signal refers to a radio frequency signal transmitted on a millimeter wave frequency band.
  • the millimeter wave frequency band includes 45 gigahertz (GHz), 60 GHz, 77 GHz, etc., and it is generally believed that the millimeter wave frequency band ranges from 26.5 GHz to 300 GHz.
  • some or all of the functions of the baseband processing circuit 2011 may also be implemented based on software.
  • some or all of the functions of the baseband processing circuit 2011 may be implemented by the processor 203, that is, the functional module of the baseband processing circuit 2011 is integrated in the processor 203.
  • the embodiment of the present application does not limit the internal hardware structure of the communication device 20.
  • control interfaces and data interfaces in the baseband processing circuit and the radio frequency processing circuit include but are not limited to serial peripheral interface (SPI) or general-purpose input/output (GPIO) interface.
  • SPI serial peripheral interface
  • GPIO general-purpose input/output
  • Processor 203 may be a central processing unit (CPU) or an application-specific integrated circuit (ASIC). Processor 203 may be a single-CPU processor or a multi-CPU processor. Processor 203 herein may refer to one or more devices, circuits, and/or processing cores for processing data (e.g., computer program instructions).
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the memory 204 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory 204 may exist independently and be connected to the processor 203 via a communication bus. Alternatively, the memory 204 may be integrated with the processor 203.
  • the memory 204 is used to store a computer program, which includes program instructions.
  • the processor 203 is used to call the computer program, generate and/or process the PPDU provided in the embodiment of the present application, and cooperate with the transceiver 201 to implement the communication method provided in the embodiment of the present application.
  • the WLAN protocol stipulates that the first field in the preamble of the PPDU is used for AGC adjustment.
  • the first field in the preamble of the seven PPDUs namely Non-HT PPDU, HT-MF PPDU, VHT PPDU, HE SU PPDU, HE MU PPDU, HE ER SU PPDU and HE-TB PPDU
  • L-STF The length of L-STF is 8 microseconds, that is, the communication device must complete the AGC adjustment within 8 microseconds from the beginning of receiving these PPDUs.
  • the field lengths involved in the embodiments of the present application all refer to the length of the field in the time domain, and the unit is a time unit, such as microseconds.
  • Figures 3 to 9 show the structures of the above 7 PPDUs defined in the WLAN protocol.
  • Figure 3 is a schematic diagram of the structure of Non-HT PPDU.
  • Figure 4 is a schematic diagram of the structure of HT-MF PPDU.
  • Figure 5 is a schematic diagram of the structure of VHT PPDU.
  • Figure 6 is a schematic diagram of the structure of HE SU PPDU.
  • Figure 7 is a schematic diagram of the structure of HE MU PPDU.
  • Figure 8 is a schematic diagram of the structure of HE ER SU PPDU.
  • Figure 9 is a schematic diagram of the structure of HE-TB PPDU.
  • the PPDU includes a preamble and a data field.
  • the PPDU also includes a packet extension (PE) field located after the data field.
  • PE packet extension
  • the preamble of the Non-HT PPDU includes L-STF (length is 8 microseconds), L-LTF (length is 8 microseconds) and L-SIG field (length is 4 microseconds).
  • the preamble of the HT-MF PPDU includes L-STF (length is 8 microseconds), L-LTF (length is 8 microseconds), L-SIG field (length is 4 microseconds), high throughput (HT) signal field (HT-SIG field for short) (length is 8 microseconds), high throughput short training field (HT-STF for short) (length is 4 microseconds) and one or more high throughput long training fields (HT-LTF for short) (length is 4 microseconds).
  • the preamble of the VHT PPDU includes an L-STF (length of 8 microseconds), an L-LTF (length of 8 microseconds), an L-SIG field (length of 4 microseconds), a VHT-SIG-A field (length of 8 microseconds), a VHT-STF (length of 4 microseconds), one or more VHT-LTFs (length of 4 microseconds), and a VHT-SIG-A field (length of 8 microseconds).
  • the VHT-SIG-B field length is 4 microseconds).
  • the preamble of the HE SU PPDU includes L-STF (length is 8 microseconds), L-LTF (length is 8 microseconds), L-SIG field (length is 4 microseconds), repeated (recycle) L-SIG field (RL-SIG field for short) (length is 4 microseconds), HE-SIG-A field (length is 8 microseconds), HE-STF (length is 4 microseconds) and one or more HE-LTFs (length is 4 microseconds).
  • the preamble of the HE MU PPDU includes L-STF (length is 8 microseconds), L-LTF (length is 8 microseconds), L-SIG field (length is 4 microseconds), RL-SIG field (length is 4 microseconds), HE-SIG-A field (length is 8 microseconds), HE-SIG-B field (length is 8 microseconds), HE-STF (length is 4 microseconds) and one or more HE-LTFs (length is 4 microseconds).
  • the preamble of the HE ER SU PPDU includes L-STF (length is 8 microseconds), L-LTF (length is 8 microseconds), L-SIG field (length is 4 microseconds), RL-SIG field (length is 4 microseconds), HE-SIG-A field (length is 16 microseconds), HE-STF (length is 4 microseconds) and one or more HE-LTFs (length is 4 microseconds).
  • the difference between the preamble of the HE ER SU PPDU and the preamble of the HE SU PPDU is that the length of the HE-SIG-A field in the preamble of the HE SU PPDU is 8 microseconds, and the length of the HE-SIG-A field in the preamble of the HE ER SU PPDU is 16 microseconds.
  • the preamble of the HE-TB PPDU includes L-STF (length of 8 microseconds), L-LTF (length of 8 microseconds), L-SIG field (length of 4 microseconds), RL-SIG field (length of 4 microseconds), HE-SIG-A field (length of 8 microseconds), HE-STF (length of 8 microseconds) and one or more HE-LTFs (length of 4 microseconds).
  • the difference between the preamble of the HE-TB PPDU and the preamble of the HE SU PPDU is that the length of the HE-STF in the preamble of the HE SU PPDU is 4 microseconds, and the length of the HE-STF in the preamble of the HE-TB PPDU is 8 microseconds.
  • a communication device when a communication device receives a PPDU, it may not be able to complete the AGC adjustment within 8 microseconds, which will affect the normal communication in the WLAN.
  • the WLAN over millimeter wave system still uses the WLAN protocol for communication, while the RF chip used by the communication device works in the millimeter wave frequency band, that is, the communication device uses a millimeter wave RF chip.
  • the communication device in the millimeter wave-based WLAN system it is difficult for the communication device in the millimeter wave-based WLAN system to control the AGC adjustment process within the 8 microseconds specified by the WLAN protocol, resulting in the WLAN system being unable to communicate normally.
  • an embodiment of the present application provides a PPDU, wherein the preamble of the PPDU includes a start field and an L-LTF immediately following the start field.
  • the length of the start field is greater than 8 microseconds, and the start field has 8 consecutive microseconds of content that is the same as the content of the L-STF.
  • the start field is used for AGC adjustment.
  • the traditional short training field is replaced by the start field in the preamble of the PPDU.
  • the start field includes the content of the traditional short training field for compatibility.
  • the start field is longer than the traditional short training field, thereby relaxing the time constraints on the receiver to use the field to complete the corresponding functions (for example, synchronization, signal detection, AGC, etc.), and can meet the time requirements of hardware with different performance to perform synchronization, signal detection, AGC and other functions, thereby improving the communication reliability of WLAN in different application scenarios.
  • the present application only needs to change the first field in the preamble, and has no effect on subsequent fields, so it will not change the subsequent processing of the PPDU by the communication equipment, and the implementation is simple.
  • the start field can be defined as a field, or can be defined as a field combination consisting of multiple fields.
  • the preamble of the PPDU includes a start field and an L-LTF immediately following the start field.
  • the length of the start field is greater than 8 microseconds, and the start field has 8 continuous microseconds of content that is the same as the content of the L-STF.
  • the preamble of the PPDU includes a target field, an L-STF, and an L-LTF.
  • the target field is the other content in the start field except for the continuous 8 microseconds of content that is the same as the content of the L-STF.
  • the target field is adjacent to the L-STF, and the target field and the L-STF are before the L-LTF.
  • the length of the target field is greater than 0. Accordingly, the target field and the L-STF are used together for automatic gain control adjustment.
  • the length and content of the target field may be specified by the protocol, or may be customized. The embodiment of the present application does not limit the length and specific content of the target field.
  • the target field may be named, for example, a private training field (PTF).
  • the first 8 microseconds of the start field are identical to the content of L-STF, and/or, the last 8 microseconds of the start field are identical to the content of L-STF.
  • the start field is composed of L-STF and a target domain, the target domain is before L-STF, or, the target domain is after L-STF.
  • the embodiment of the present application also does not exclude the situation where the middle 8 microseconds of the start field are identical to the content of L-STF.
  • the target domain is before the L-STF, that is, the target domain is the first field in the preamble of the PPDU.
  • the preamble of the PPDU includes the target domain, L-STF and L-LTF from left to right.
  • the target domain is also used for signal detection.
  • Figure 10 is a structural diagram of a PPDU provided in an embodiment of the present application.
  • the PPDU includes a preamble and a data domain.
  • the preamble includes a target domain, L-STF, L-LTF and L-SIG in sequence.
  • the length of the target domain is greater than 0, and accordingly, the length of the start field composed of the target domain and L-STF is greater than 8 microseconds.
  • the PPDU also includes a PE domain located after the data domain.
  • the target domain is after the L-STF, that is, the target domain is located between the L-STF and the L-LTF.
  • the preamble of the PPDU includes the L-STF, the target domain, and the L-LTF from left to right.
  • FIG. 11 is another embodiment of the present application.
  • the PPDU includes a preamble and a data field.
  • the preamble includes L-STF, a target field, L-LTF and L-SIG in sequence.
  • the length of the target field is greater than 0, and accordingly, the length of the start field composed of the target field and L-STF is greater than 8 microseconds.
  • the PPDU also includes a PE field located after the data field.
  • the PPDU provided in the embodiment of the present application, there is a continuous 8 microseconds content in the start field of the preamble of the PPDU that is the same as the content of the L-STF, that is, there is a L-STF content in the start field.
  • the embodiment of the present application does not limit the length and specific content of the other content in the start field except the continuous 8 microseconds content that is the same as the content of the L-STF, which can be determined by the protocol or by negotiation between the two communicating parties.
  • the other content in the start field except the continuous 8 microseconds content that is the same as the content of the L-STF includes part or all of the content of one or more fields, and the one or more fields include but are not limited to L-STF, L-LTF, L-SIG domain, HE-STF or HE-LTF. That is, the start field can be composed of multiple L-STFs, or M L-STFs and N L-LTFs, or P L-STFs and Q L-SIG domains, or X L-STFs, Y L-LTFs and Z L-SIG domains, and so on. M, N, P, Q, X, Y, and Z are all positive numbers, and M, P, and X are all greater than or equal to 1.
  • the length of the start field is variable, that is, the length of the above-mentioned target field is variable.
  • the length of the start field is predefined or determined by negotiation between the communicating parties.
  • the length of the start field is predefined, including: the length of the start field is predefined in the WLAN protocol.
  • the length of the start field is determined by negotiation between the communicating parties, including: before the communicating parties start communicating, the length of the start field is preconfigured in the communication devices of both parties, or the communication devices of both parties negotiate to determine the length of the start field through message interaction, for example, the communication devices of both parties can determine the length of the start field through message negotiation during the process of establishing a communication connection.
  • the other contents in the start field except the continuous 8 microseconds of content identical to the content of the L-STF include one or more of the following: the content of at least 6 L-STFs, the content of at least 6 L-LTFs, the content of at least 12 L-SIG fields, or the combination of the content of at least 3 L-STFs and the content of at least 3 L-LTFs.
  • the length of the start field is not less than 56 microseconds.
  • the length of the start field is 56 microseconds, 60 microseconds, 64 microseconds, or 80 microseconds, etc.
  • the length of the start field is 88 microseconds.
  • other content in the start field may also include the content of 10 L-STFs, or the content of 10 L-LTFs, or the content of 20 L-SIG fields, or a combination of the content of 5 L-STFs and the content of 5 L-LTFs.
  • the length of the start field may also be greater than 8 microseconds and less than 56 microseconds.
  • the length of the start field is 24 microseconds, 32 microseconds, 40 microseconds, or 48 microseconds.
  • the length of the start field is 24 microseconds
  • the other content in the start field in addition to the continuous 8 microseconds of content that is the same as the content of L-STF, may also include the content of 2 L-STFs, or the content of 2 L-LTFs, or the content of 4 L-SIG fields, or a combination of the content of 1 L-STF and the content of 1 L-LTF.
  • the embodiments of the present application do not limit the length and composition of the contents other than one L-STF in the start field (the above-mentioned continuous 8 microseconds content). Any easily conceivable solution should be within the protection scope of the present application.
  • the contents other than one L-STF in the start field may include 2 to 10 L-STFs, and the embodiments of the present application will not give examples one by one here.
  • the continuous 8 microseconds of content identical to the content of L-STF in the start field of the preamble of the PPDU provided in the embodiment of the present application and the content located after the start field in the PPDU constitute a Non-HT PPDU (as shown in FIG. 3), HT-MF PPDU (as shown in FIG. 4), VHT PPDU (as shown in FIG. 5), HE SU PPDU (as shown in FIG. 6), HE MU PPDU (as shown in FIG. 7), HE ER SU PPDU (as shown in FIG. 8) or HE-TB PPDU (as shown in FIG. 9).
  • the PPDU provided in the embodiment of the present application is obtained by adding a target domain to the PPDU shown in any one of FIG. 3 to FIG. 9.
  • FIG16 is a flow chart of a communication method in a WLAN provided in an embodiment of the present application.
  • the first communication device and the second communication device are both communication devices in the WLAN.
  • the method can be applied to the application scenario shown in FIG1 , for example. As shown in FIG16 , the method includes:
  • Step 1601 The first communication device generates a PPDU, wherein the preamble of the PPDU includes a start field and an L- LTF: the length of the start field is greater than 8 microseconds, and the start field has 8 consecutive microseconds of content that is the same as the content of L-STF.
  • the structure of the PPDU here can refer to the relevant description in the above embodiments, and the embodiments of the present application will not be repeated here.
  • the PPDU can be the PPDU shown in Figure 10 or Figure 11.
  • Step 1602 The first communication device sends the PPDU to the second communication device.
  • the first communication device sends a PPDU to the second communication device in a millimeter wave frequency band, and correspondingly, the second communication device receives the PPDU from the first communication device in the millimeter wave frequency band.
  • Step 1603 The second communication device performs automatic gain control adjustment on the received signal power of the PPDU according to the length of the start field in the PPDU.
  • Step 1603 is that the second communication device performs automatic gain control adjustment on the received signal power of the PPDU within the reception duration of the start field of the PPDU. After the second communication device completes the automatic gain control adjustment on the received signal power of the PPDU, it continues to receive the remaining content of the PPDU and parses and processes the PPDU according to the WLAN protocol.
  • the first communication device replaces the traditional short training field with the start field in the preamble code of the PPDU sent to the second communication device.
  • the start field includes the content of the traditional short training field for compatibility.
  • the start field is longer than the traditional short training field, so the time constraint on the second communication device to use the field to complete the corresponding function (for example, synchronization, signal detection, AGC, etc.) is relaxed, and the time requirements of hardware with different performances to perform synchronization, signal detection, AGC and other functions can be met, thereby improving the communication reliability of WLAN in different application scenarios.
  • the embodiment of the present application only needs to change the first field in the preamble code, and has no effect on the subsequent fields. Therefore, for the second communication device, in addition to increasing the duration of using the field to complete the corresponding function, the second communication device does not need to make any changes to the subsequent processing of the PPDU, and the implementation is simple.
  • Figures 17 and 18 are schematic diagrams of the structure of a communication device in a WLAN provided by an embodiment of the present application.
  • the modules shown in Figures 17 and 18 can also be integrated into one communication device.
  • the communication device 1700 includes: a generating module 1701 and a sending module 1702.
  • the generating module 1701 is used to generate a PPDU, wherein the preamble of the PPDU includes a start field and an L-LTF immediately following the start field, wherein the length of the start field is greater than 8 microseconds, and the start field has a continuous 8 microseconds content that is the same as the content of the L-STF.
  • the sending module 1702 is used to send the PPDU to another communication device in the WLAN.
  • the communication device 1800 includes: a receiving module 1801 and an AGC adjustment module 1802.
  • the receiving module 1801 is used to receive a PPDU from another communication device in the WLAN, wherein the preamble of the PPDU includes a start field and an L-LTF immediately following the start field, the length of the start field is greater than 8 microseconds, and the start field has 8 continuous microseconds of content that is the same as the content of the L-STF.
  • the AGC adjustment module 1802 is used to perform automatic gain control adjustment on the received signal power of the PPDU according to the length of the start field.
  • the first 8 microseconds of the start field are the same as the content of the L-STF, and/or the last 8 microseconds of the start field are the same as the content of the L-STF.
  • the Start field is used for automatic gain control adjustment.
  • the other content in the start field includes part or all of the content of one or more fields, and the one or more fields include L-STF, L-LTF, L-SIG domain, HE-STF or HE-LTF.
  • the other content in the start field other than the continuous 8 microseconds of content that is the same as the content of the L-STF includes one or more of the following: the content of at least 6 L-STFs, the content of at least 6 L-LTFs, the content of at least 12 L-SIG fields, or a combination of the content of at least 3 L-STFs and the content of at least 3 L-LTFs.
  • the sending module 1702 is used to send PPDU to another communication device on the millimeter wave frequency band.
  • the receiving module 1801 is used to receive PPDU from another communication device on the millimeter wave frequency band.
  • the length of the start field is predefined or determined by negotiation between two communication devices.
  • the continuous 8 microseconds of content in the start field of the preamble of the PPDU that is identical to the content of the L-STF and the content after the start field in the PPDU constitute a Non-HT PPDU, HT-MF PPDU, VHT PPDU, HE SU PPDU, HE MU PPDU, HE ER SU PPDU or HE-TB PPDU.
  • the present application also provides a communication device in a WLAN, including: a transceiver and an antenna.
  • the transceiver is used to transmit and receive signals using the antenna.
  • PPDU PPDU.
  • the preamble of the PPDU includes a start field and an L-LTF immediately following the start field.
  • the length of the start field is greater than 8 microseconds, and the start field has 8 consecutive microseconds of content that is the same as the content of the L-STF.
  • the transceiver includes a millimeter wave radio frequency chip.
  • the communication device may be the communication device shown in FIG. 2 .
  • the embodiment of the present application also provides a WLAN, comprising: a first communication device and a second communication device.
  • the first communication device is used to send a PPDU to the second communication device, the preamble of the PPDU includes a start field and an L-LTF immediately following the start field, the length of the start field is greater than 8 microseconds, and the start field has 8 continuous microseconds of content that is the same as the content of the L-STF.
  • the second communication device is used to perform automatic gain control adjustment on the received signal power of the PPDU according to the length of the start field.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种WLAN中的通信方法及装置,属于WLAN技术领域。WLAN中的第一通信设备向该WLAN中的第二通信设备发送PPDU。该PPDU的前导码包括开始字段和紧接在该开始字段之后的L-LTF。开始字段的长度大于8微秒,且该开始字段中有连续8微秒内容与L-STF的内容相同。该开始字段用于自动增益控制调整。通过在PPDU的前导码中用开始字段替换L-STF。该开始字段包括L-STF的内容,以利于兼容。该开始字段比L-STF更长,因此放宽了对接收方利用该字段完成相应功能的时间约束,可满足不同性能的硬件执行同步、信号检测、AGC等功能的时间需求,从而提高WLAN在不同应用场景下的通讯可靠性。

Description

无线局域网中的通信方法及装置
本申请要求于2022年09月29日提交的申请号为202211197919.5、发明名称为“无线局域网中的通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线局域网(wireless local area network,WLAN)技术领域,特别涉及一种WLAN中的通信方法及装置。
背景技术
WLAN中的接收机在接收信号时,需要调整接收信号的功率增益,对于功率过低的接收信号进行功率放大,对于功率过高的接收信号进行功率衰减,使得接收信号最终被调整到一个合适的功率大小,以保障接收机的信号接收性能。接收机调整接收信号的功率增益的过程可称为自动增益控制(automatic gain control,AGC)调整过程。
接收机在接收到物理层协议数据单元(physical layer protocol data unit,PPDU)时,利用PPDU的前导码(preamble)中的传统(legacy)短训练域(short training field,STF)(简称L-STF)对接收信号功率进行AGC调整。但是有些情况下,接收机可能无法完成AGC调整,这会影响WLAN中的正常通讯。
发明内容
本申请提供了一种WLAN中的通信方法及装置,提高了WLAN中的通讯可靠性。
第一方面,提供了一种PPDU,该PPDU的前导码包括开始字段和紧接在该开始字段之后的传统长训练域(long training field,LTF)(简称L-LTF)。开始字段的长度大于8微秒,且该开始字段中有连续8微秒内容与L-STF的内容相同。换句话来说,该PPDU的前导码包括目标域、L-STF和L-LTF。目标域为开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容。目标域与L-STF相邻,且目标域和L-STF在L-LTF之前。目标域的长度大于0。
本申请通过在PPDU的前导码中用开始字段替换传统短训练域。该开始字段包括传统短训练域的内容,以利于兼容。并且,该开始字段比传统短训练域更长,因此放宽了对接收方利用该字段完成相应功能(例如,同步、信号检测、AGC等)的时间约束,可满足不同性能的硬件执行同步、信号检测、AGC等功能的时间需求,从而提高WLAN在不同应用场景下的通讯可靠性。本申请只需改变前导码中的第一个字段即可,对后续字段无影响,因此不会改变通信设备对PPDU的后续处理,实现简单。
可选地,PPDU的前导码包括开始字段和L-LTF,开始字段中前8微秒内容与L-STF的内容相同,和/或,开始字段中后8微秒内容与L-STF的内容相同。
可选地,开始字段用于自动增益控制调整。
可选地,开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容包括一种或多种字段的部分或全部内容。该一种或多种字段包括L-STF、L-LTF、传统信号(signal,SIG)域(简称L-SIG域)、高效(high efficiency,HE)短训练域(简称HE-STF)或高效长训练域(简称HE-LTF)。也即是,开始字段可以由多个L-STF组成,或者由M个L-STF和N个L-LTF组成,又或者由P个L-STF和Q个L-SIG域组成,又或者由X个L-STF、Y个L-LTF和Z个L-SIG域组成,等等。M、N、P、Q、X、Y、Z均为正数,且M、P和X均大于或等于1。
可选地,开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容包括以下一项或多项:至少6个L-STF的内容,至少6个L-LTF的内容,至少12个L-SIG域的内容,或者,至少3个L-STF的内容和至少3个L-LTF的内容的组合。
例如,开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容可以包括6个L-STF的内容,或者包括6个L-LTF的内容,或者包括12个L-SIG域的内容,或者包括3个L-STF的内容和3个L-LTF的内容的组合。上述这些例子里,开始字段的总长度为56微秒。可选地,开始字段的长度可变。例 如,上述这些例子可以组合使用,这样开始字段的总长度就超过了56微秒。
可选地,开始字段的长度为预先定义的,或者由通信双方协商确定。开始字段的长度为预先定义的,包括:开始字段的长度在WLAN协议中预先定义。开始字段的长度由通信双方协商确定,包括:在通信双方开始通信之前,在双方通信设备中预先配置开始字段的长度,或者,双方通信设备通过消息交互的方式协商确定开始字段的长度,例如双方通信设备可以在建立通信连接的过程中通过消息协商确定开始字段的长度。
可选地,PPDU的前导码的开始字段中与L-STF的内容相同的连续8微秒内容与该PPDU中位于开始字段之后的内容组成非高吞吐量(non-high throughput,Non-HT)PPDU、高吞吐量混合格式(high throughput mixed format,HT-MF)PPDU、极高吞吐量(very high throughput,VHT)PPDU、高效单用户(high efficiency single user,HE SU)PPDU、高效多用户(high efficiency multi-user,HE MU)PPDU、高效扩展距离单用户(high efficiency extended range single user,HE ER SU)PPDU或高效触发(high efficiency trigger-based,HE-TB)PPDU。
第二方面,提供了一种WLAN中的通信方法。WLAN中的第一通信设备向该WLAN中的第二通信设备发送PPDU。该PPDU的前导码包括开始字段和紧接在该开始字段之后的L-LTF。开始字段的长度大于8微秒,且该开始字段中有连续8微秒内容与L-STF的内容相同。该PPDU可以是如第一方面任一所述的PPDU。
本申请中,第一通信设备通过在向第二通信设备发送的PPDU的前导码中用开始字段替换了传统短训练域。该开始字段包括传统短训练域的内容,以利于兼容。并且,该开始字段比传统短训练域更长,因此放宽了对第二通信设备利用该字段完成相应功能(例如,同步、信号检测、AGC等)的时间约束,可满足不同性能的硬件执行同步、信号检测、AGC等功能的时间需求,从而提高WLAN在不同应用场景下的通讯可靠性。本申请只需改变前导码中的第一个字段即可,对后续字段无影响,因此对于第二通信设备而言,除了增加了利用该字段完成相应功能的时长以外,第二通信设备对PPDU的后续处理无需做任何改变,实现简单。
可选地,开始字段中前8微秒内容与L-STF的内容相同,和/或,开始字段中后8微秒内容与L-STF的内容相同。
可选地,开始字段用于自动增益控制调整。
可选地,开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容包括一种或多种字段的部分或全部内容。该一种或多种字段包括L-STF、L-LTF、L-SIG域、HE-STF或HE-LTF。
可选地,开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容包括以下一项或多项:至少6个L-STF的内容,至少6个L-LTF的内容,至少12个L-SIG域的内容,或者,至少3个L-STF的内容和至少3个L-LTF的内容的组合。
可选地,WLAN中的第一通信设备向该WLAN中的第二通信设备发送PPDU的一种实现方式,包括:第一通信设备在毫米波频段上向第二通信设备发送PPDU。即第一通信设备和第二通信设备均采用毫米波射频芯片。
本申请中,由于在PPDU的前导码中增加了用于AGC调整的字段长度,因此对于采用毫米波射频芯片的通信设备而言,能够有更多的时间进行AGC调整,可以减少或避免出现由于在规定时长内来不及进行AGC调整而导致通讯失败的情况,从而提高通讯可靠性。
可选地,开始字段的长度为预先定义的,或者由第一通信设备和第二通信设备协商确定。
可选地,PPDU的前导码的开始字段中与L-STF的内容相同的连续8微秒内容与该PPDU中位于开始字段之后的内容组成Non-HT PPDU、HT-MF PPDU、VHT PPDU、HE SU PPDU、HE MU PPDU、HE ER SU PPDU或HE-TB PPDU。
第三方面,提供了一种WLAN中的通信方法。WLAN中的第一通信设备接收来自该WLAN中的第二通信设备的PPDU。该PPDU的前导码包括开始字段和紧接在该开始字段之后的L-LTF。开始字段的长度大于8微秒,且该开始字段中有连续8微秒内容与L-STF的内容相同。该PPDU可以是如第一方面任一所述的PPDU。第一通信设备根据该开始字段的长度,对该PPDU的接收信号功率进行自动增益控制调整。
其中,第一通信设备根据该开始字段的长度,对该PPDU的接收信号功率进行自动增益控制调整,也即是,第一通信设备在接收该开始字段的接收时长内,对该PPDU的接收信号功率进行自动增益控制调整。
本申请中,第一通信设备接收到的PPDU的前导码中用开始字段替换了传统短训练域。该开始字段包括传统短训练域的内容,以利于兼容。并且,该开始字段比传统短训练域更长,因此放宽了对第一通信设备利用该字段完成相应功能(例如,同步、信号检测、AGC等)的时间约束,可满足不同性能的硬件执行同步、信号检测、AGC等功能的时间需求,从而提高WLAN在不同应用场景下的通讯可靠性。本申请只需改变前导码中的第一个字段即可,对后续字段无影响,因此对于第一通信设备而言,除了增加了利用该字段完成相应功能的时长以外,第一通信设备对PPDU的后续处理无需做任何改变,实现简单。
可选地,开始字段中前8微秒内容与L-STF的内容相同,和/或,开始字段中后8微秒内容与L-STF的内容相同。
可选地,开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容包括一种或多种字段的部分或全部内容。该一种或多种字段包括L-STF、L-LTF、L-SIG域、HE-STF或HE-LTF。
可选地,开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容包括以下一项或多项:至少6个L-STF的内容,至少6个L-LTF的内容,至少12个L-SIG域的内容,或者,至少3个L-STF的内容和至少3个L-LTF的内容的组合。
可选地,WLAN中的第一通信设备接收来自该WLAN中的第二通信设备的PPDU的一种实现方式,包括:第一通信设备在毫米波频段上接收来自第二通信设备的PPDU。即第一通信设备和第二通信设备均采用毫米波射频芯片。
本申请中,由于在PPDU的前导码中增加了用于AGC调整的字段长度,因此对于采用毫米波射频芯片的第一通信设备而言,能够有更多的时间进行AGC调整,可以减少或避免出现由于在规定时长内来不及进行AGC调整而导致通讯失败的情况,从而提高通讯可靠性。
可选地,开始字段的长度为预先定义的,或者由第一通信设备和第二通信设备协商确定。
可选地,PPDU的前导码的开始字段中与L-STF的内容相同的连续8微秒内容与该PPDU中位于开始字段之后的内容组成Non-HT PPDU、HT-MF PPDU、VHT PPDU、HE SU PPDU、HE MU PPDU、HE ER SU PPDU或HE-TB PPDU。
第四方面,提供了一种WLAN中的通信设备。所述装置包括多个功能模块,所述多个功能模块相互作用,实现上述第二方面及其各实施方式和/或上述第三方面及其各实施方式中的方法。所述多个功能模块可以基于软件、硬件或软件和硬件的结合实现,且所述多个功能模块可以基于具体实现进行任意组合或分割。
第五方面,提供了一种WLAN中的通信设备,包括:收发器和天线。收发器用于用天线收发PPDU。该PPDU的前导码包括开始字段和紧接在该开始字段之后的L-LTF。开始字段的长度大于8微秒。且该开始字段中有连续8微秒内容与L-STF的内容相同。该PPDU可以是如第一方面任一所述的PPDU。
可选地,收发器包括毫米波射频芯片。
第六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,当所述指令被处理器执行时,实现上述第二方面及其各实施方式和/或上述第三方面及其各实施方式中的方法。
第七方面,提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,当芯片运行时,实现上述第二方面及其各实施方式和/或上述第三方面及其各实施方式中的方法。
附图说明
图1是本申请实施例提供的一种应用场景示意图;
图2是本申请实施例提供的一种WLAN中的通信设备的硬件结构示意图;
图3是Non-HT PPDU的结构示意图;
图4是HT-MF PPDU的结构示意图;
图5是VHT PPDU的结构示意图;
图6是HE SU PPDU的结构示意图;
图7是HE MU PPDU的结构示意图;
图8是HE ER SU PPDU的结构示意图;
图9是HE-TB PPDU的结构示意图;
图10是本申请实施例提供的一种PPDU的结构示意图;
图11是本申请实施例提供的另一种PPDU的结构示意图;
图12是本申请实施例提供的一种开始字段的结构示意图;
图13是本申请实施例提供的另一种开始字段的结构示意图;
图14是本申请实施例提供的又一种开始字段的结构示意图;
图15是本申请实施例提供的再一种开始字段的结构示意图;
图16是本申请实施例提供的一种WLAN中的通信方法的流程示意图;
图17是本申请实施例提供的一种WLAN中的通信设备的结构示意图;
图18是本申请实施例提供的另一种WLAN中的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
本申请实施例应用于WLAN。该WLAN包括多个通信设备。该多个通信设备可以遵循WLAN协议实现无线通信。可选地,WLAN中的通信设备包括但不限于接入设备或站点(station)。接入设备例如可以是接入点(access point,AP)或客户前置设备(customer premise equipment,CPE)等。站点例如可以是智能手机、笔记本电脑或智能可穿戴设备等无线终端。
例如,图1是本申请实施例提供的一种应用场景示意图。如图1所示,该应用场景包括通信设备101和通信设备102。通信设备101与通信设备102之间可以通过WLAN通信。当然,该应用场景中还可以包括其它设备,图1示出的设备的数量及类型仅是示例性的。
可选地,通信设备101向通信设备102发送PPDU。通信设备102在接收该PPDU时,需要调整该PPDU的接收信号功率增益。如果该PPDU的接收信号功率过低,则通信设备102需要对该PPDU的接收信号功率进行放大。如果该PPDU的接收信号功率过高,则通信设备102需要对该PPDU的接收信号功率进行衰减。以使得该PPDU的接收信号功率最终被调整到一个合适的功率大小,进而使通信设备102能够成功接收该PPDU。通信设备102调整PPDU的接收信号功率增益的整个过程即AGC调整过程。
AGC调整主要由通信设备中的AGC模块、控制接口和模拟放大器这三部分实现。AGC模块在基带处理电路中,模拟放大器在射频处理电路中,控制接口则是连接基带处理电路和射频处理电路的桥梁,能够传递基带处理电路与射频处理电路之间的控制信号。具体实现时,由AGC模块计算接收信号功率调整方式,并通过控制接口向模拟放大器发送功率调整控制字,然后由模拟放大器根据功率调整控制字调整工作档位,实现对接收信号功率的增益调整。
例如,图2是本申请实施例提供的一种WLAN中的通信设备的硬件结构示意图。如图2所示,该通信设备20包括但不限于收发器201和天线202。可选地,请继续参见图2,通信设备20还包括处理器203和存储器204。处理器203、存储器204和收发器201之间通过通信总线(图中未示出)连接。
收发器201用于执行通信设备20的收发动作。参见图2,收发器201包括基带处理电路2011和射频处理电路2012。在信号发射过程中,由基带处理电路2011产生基带信号,并由射频处理电路2012将基带信号变频转换为射频信号,然后由天线202将射频信号从空口发出。在信号接收过程中,由天线202从空口接收射频信号,并由射频处理电路2012将射频信号变频转换为基带信号,然后由基带处理电路2011接收基带信号。
请继续参见图2,基带处理电路2011包括AGC模块、控制接口a1、基带信号处理模块和数据接口b1。射频处理电路2012包括模拟放大器、控制接口a2、射频信号处理模块和数据接口b2。控制接口a1与控制接口a2相连,用于传输基带处理电路2011和射频处理电路2012之间的控制信号,例如功率调整控制字。数据接口b1和数据接口b2相连,用于传输基带处理电路2011和射频处理电路2012之间的基带信号。AGC模块用于计算信号功率调整方式。模拟放大器用于调整信号功率增益。AGC模块和模拟放大器之间 通过控制接口a1和控制接口a2通信连接。基带信号处理模块用于产生基带信号和接收基带信号。射频信号处理模块用于对信号进行变频处理,例如对基带信号进行变频处理得到射频信号,对射频信号进行变频处理得到基带信号。基带信号处理模块和射频信号处理模块之间通过数据接口b1和数据接口b2通信连接。可选地,基带信号处理模块包括模数转换器和数模转换器,用于实现数字信号和模拟信号之间的转换。或者,射频信号处理模块包括模数转换器和数模转换器,用于实现数字信号和模拟信号之间的转换。
上述基带处理电路2011和射频处理电路2012基于硬件实现。例如,基带处理电路2011为支持WLAN协议的基带芯片,负责按照WLAN协议产生和接收基带信号。射频处理电路2012为射频芯片。例如射频处理电路2012可以是毫米波射频芯片,负责将基带信号变频转换为毫米波信号。毫米波信号是指在毫米波频段上传输的射频信号。毫米波频段包括45吉赫兹(GHz)、60GHz、77GHz等,通常认为毫米波频段范围为26.5GHz至300GHz。
在一些实现方式中,基带处理电路2011的部分或全部功能也可以基于软件实现。例如,基带处理电路2011的部分或全部功能可以由处理器203实现,也即是在处理器203中集成基带处理电路2011的功能模块,本申请实施例对通信设备20的内部硬件结构不做限定。
可选地,基带处理电路和射频处理电路中的控制接口和数据接口的类型包括但不限于串行外设接口(serial peripheral interface,SPI)或通用型输入输出(general-purpose input/output,GPIO)接口。
处理器203可以是中央处理器(central processing unit,CPU)或特定应用集成电路(application-specific integrated circuit,ASIC)。处理器203可以是单核CPU(single-CPU)处理器,也可以是多核CPU(multi-CPU)处理器。这里的处理器203可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器204可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘或者其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器204可以是独立存在,通过通信总线与处理器203相连接。或者存储器204也可以和处理器203集成在一起。
本申请实施例中,存储器204用于存储计算机程序,该计算机程序包括程序指令。处理器203用于调用该计算机程序,生成和/或处理本申请实施例提供的PPDU,并协同收发器201实现本申请实施例提供的通信方法。
WLAN协议规定,PPDU的前导码中的第一个字段用于AGC调整。例如,Non-HT PPDU、HT-MF PPDU、VHT PPDU、HE SU PPDU、HE MU PPDU、HE ER SU PPDU和HE-TB PPDU这7种PPDU的前导码中的第一个字段均为L-STF。L-STF的长度为8微秒,即通信设备从开始接收到这些PPDU起,需在8微秒内完成AGC调整。本申请实施例中涉及的字段长度均指字段在时域上的长度,单位为时间单位,例如微秒。
例如,图3至图9示出了WLAN协议中定义的上述7种PPDU的结构。其中,图3是Non-HT PPDU的结构示意图。图4是HT-MF PPDU的结构示意图。图5是VHT PPDU的结构示意图。图6是HE SU PPDU的结构示意图。图7是HE MU PPDU的结构示意图。图8是HE ER SU PPDU的结构示意图。图9是HE-TB PPDU的结构示意图。如图3至图9任一所示,PPDU包括前导码和数据域(data field)。如图6至图9任一所示,PPDU还包括位于数据域之后的数据包扩展(packet extension,PE)域。
如图3所示,Non-HT PPDU的前导码包括L-STF(长度为8微秒)、L-LTF(长度为8微秒)和L-SIG域(长度为4微秒)。
如图4所示,HT-MF PPDU的前导码包括L-STF(长度为8微秒)、L-LTF(长度为8微秒)、L-SIG域(长度为4微秒)、高吞吐量(high throughput,HT)信号域(简称HT-SIG域)(长度为8微秒)、高吞吐量短训练域(简称HT-STF)(长度为4微秒)以及一个或多个高吞吐量长训练域(简称HT-LTF)(长度为4微秒)。
如图5所示,VHT PPDU的前导码包括L-STF(长度为8微秒)、L-LTF(长度为8微秒)、L-SIG域(长度为4微秒)、VHT-SIG-A域(长度为8微秒)、VHT-STF(长度为4微秒)、一个或多个VHT-LTF(长 度为4微秒)以及VHT-SIG-B域(长度为4微秒)。
如图6所示,HE SU PPDU的前导码包括L-STF(长度为8微秒)、L-LTF(长度为8微秒)、L-SIG域(长度为4微秒)、重复(recycle)L-SIG域(简称RL-SIG域)(长度为4微秒)、HE-SIG-A域(长度为8微秒)、HE-STF(长度为4微秒)以及一个或多个HE-LTF(长度为4微秒)。
如图7所示,HE MU PPDU的前导码包括L-STF(长度为8微秒)、L-LTF(长度为8微秒)、L-SIG域(长度为4微秒)、RL-SIG域(长度为4微秒)、HE-SIG-A域(长度为8微秒)、HE-SIG-B域(长度为8微秒)、HE-STF(长度为4微秒)以及一个或多个HE-LTF(长度为4微秒)。
如图8所示,HE ER SU PPDU的前导码包括L-STF(长度为8微秒)、L-LTF(长度为8微秒)、L-SIG域(长度为4微秒)、RL-SIG域(长度为4微秒)、HE-SIG-A域(长度为16微秒)、HE-STF(长度为4微秒)以及一个或多个HE-LTF(长度为4微秒)。HE ER SU PPDU的前导码与HE SU PPDU的前导码的不同之处在于,HE SU PPDU的前导码中的HE-SIG-A域的长度为8微秒,HE ER SU PPDU的前导码中的HE-SIG-A域的长度为16微秒。
如图9所示,HE-TB PPDU的前导码包括L-STF(长度为8微秒)、L-LTF(长度为8微秒)、L-SIG域(长度为4微秒)、RL-SIG域(长度为4微秒)、HE-SIG-A域(长度为8微秒)、HE-STF(长度为8微秒)以及一个或多个HE-LTF(长度为4微秒)。HE-TB PPDU的前导码与HE SU PPDU的前导码的不同之处在于,HE SU PPDU的前导码中的HE-STF的长度为4微秒,HE-TB PPDU的前导码中的HE-STF的长度为8微秒。
但是有些情况下,通信设备接收到PPDU时,可能无法在8微秒内完成AGC调整,这会影响WLAN中的正常通讯。例如,基于毫米波的WLAN(WLAN over millimeter wave)系统依然采用WLAN协议进行通信,而通信设备采用的射频芯片工作在毫米波频段上,即通信设备采用毫米波射频芯片。受限于目前毫米波射频芯片的接口速度、接口适配和硬件成本等问题,基于毫米波的WLAN系统中的通信设备难以实现将AGC调整过程控制在WLAN协议规定的8微秒内,从而导致该WLAN系统无法正常通讯。
基于此,本申请实施例提供了一种PPDU,该PPDU的前导码包括开始字段和紧接在该开始字段之后的L-LTF。该开始字段的长度大于8微秒,且该开始字段中有连续8微秒内容与L-STF的内容相同。可选地,该开始字段用于AGC调整。
本申请实施例中,通过在PPDU的前导码中用开始字段替换传统短训练域。该开始字段包括传统短训练域的内容,以利于兼容。并且,该开始字段比传统短训练域更长,因此放宽了对接收方利用该字段完成相应功能(例如,同步、信号检测、AGC等)的时间约束,可满足不同性能的硬件执行同步、信号检测、AGC等功能的时间需求,从而提高WLAN在不同应用场景下的通讯可靠性。本申请只需改变前导码中的第一个字段即可,对后续字段无影响,因此不会改变通信设备对PPDU的后续处理,实现简单。
可选地,开始字段可以被定义为一个字段,或者也可以被定义为由多个字段组成的字段组合。例如,PPDU的前导码包括开始字段和紧接在该开始字段之后的L-LTF。开始字段的长度大于8微秒,且该开始字段中有连续8微秒内容与L-STF的内容相同。换句话来说,该PPDU的前导码包括目标域、L-STF和L-LTF。目标域为开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容。目标域与L-STF相邻,且目标域和L-STF在L-LTF之前。目标域的长度大于0。相应地,目标域和L-STF共同用于自动增益控制调整。目标域的长度和内容可由协议规定,或者也可自定义。本申请实施例对目标域的长度和具体内容均不做限定。目标域例如可命名为私有训练域(private training field,PTF)。
可选地,开始字段中前8微秒内容与L-STF的内容相同,和/或,开始字段中后8微秒内容与L-STF的内容相同。换句话来说,开始字段由L-STF和目标域构成,目标域在L-STF之前,或者,目标域在L-STF之后。本申请实施例也不排除开始字段的中间8微秒内容与L-STF的内容相同的情况。
一种实现方式,目标域在L-STF之前,也即是,目标域为PPDU的前导码中的第一个字段。这种实现方式下,PPDU的前导码从左至右依次包括目标域、L-STF和L-LTF。目标域还用于信号检测。例如,图10是本申请实施例提供的一种PPDU的结构示意图。如图10所示,该PPDU包括前导码和数据域。前导码依次包括目标域、L-STF、L-LTF和L-SIG。其中,目标域的长度大于0,相应地,由目标域和L-STF组成的开始字段的长度大于8微秒。可选地,PPDU还包括位于数据域之后的PE域。
另一种实现方式,目标域在L-STF之后,也即是,目标域位于L-STF和L-LTF之间。这种实现方式下,PPDU的前导码从左至右依次包括L-STF、目标域和L-LTF。例如,图11是本申请实施例提供的另一 种PPDU的结构示意图。如图11所示,该PPDU包括前导码和数据域。前导码依次包括L-STF、目标域、L-LTF和L-SIG。其中,目标域的长度大于0,相应地,由目标域和L-STF组成的开始字段的长度大于8微秒。可选地,PPDU还包括位于数据域之后的PE域。
在本申请实施例提供的PPDU中,该PPDU的前导码的开始字段中有连续8微秒内容与L-STF的内容相同,即该开始字段中有一个L-STF的内容。本申请实施例对该开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容的长度和具体内容都不做限定,可由协议规定或者由通信双方协商确定。可选地,该开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容包括一种或多种字段的部分或全部内容,该一种或多种字段包括但不限于L-STF、L-LTF、L-SIG域、HE-STF或HE-LTF。也即是,开始字段可以由多个L-STF组成,或者由M个L-STF和N个L-LTF组成,又或者由P个L-STF和Q个L-SIG域组成,又或者由X个L-STF、Y个L-LTF和Z个L-SIG域组成,等等。M、N、P、Q、X、Y、Z均为正数,且M、P和X均大于或等于1。
可选地,开始字段的长度可变,即上述目标域的长度可变。
可选地,开始字段的长度为预先定义的,或者由通信双方协商确定。开始字段的长度为预先定义的,包括:开始字段的长度在WLAN协议中预先定义。开始字段的长度由通信双方协商确定,包括:在通信双方开始通信之前,在双方通信设备中预先配置开始字段的长度,或者,双方通信设备通过消息交互的方式协商确定开始字段的长度,例如双方通信设备可以在建立通信连接的过程中通过消息协商确定开始字段的长度。
可选地,开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容包括以下一项或多项:至少6个L-STF的内容,至少6个L-LTF的内容,至少12个L-SIG域的内容,或者,至少3个L-STF的内容和至少3个L-LTF的内容的组合。上述这些例子中,开始字段的长度不小于56微秒。例如,开始字段的长度为56微秒、60微秒、64微秒或80微秒等。
例如,开始字段的长度为56微秒,该开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容还可以包括6个L-STF的内容,或者包括6个L-LTF的内容,或者包括12个L-SIG域的内容,或者包括3个L-STF的内容和3个L-LTF的内容的组合。例如,图12至图15分别是本申请实施例提供的一种开始字段的结构示意图。如图12所示,开始字段包括连续的7个L-STF。如图13所示,开始字段包括连续的6个L-LTF和1个L-STF。如图14所示,开始字段包括连续的12个L-SIG域和1个L-STF。如图15所示,开始字段包括连续的3个L-LTF和4个L-STF。
又例如,开始字段的长度为88微秒,该开始字段中除一个L-STF的内容(上述连续8微秒内容)以外的其它内容还可以包括10个L-STF的内容,或者包括10个L-LTF的内容,或者包括20个L-SIG域的内容,或者包括5个L-STF的内容和5个L-LTF的内容的组合。
可选地,开始字段的长度也可以大于8微秒且小于56微秒。例如,开始字段的长度为24微秒、32微秒、40微秒或48微秒等。
例如,开始字段的长度为24微秒,该开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容还可以包括2个L-STF的内容,或者包括2个L-LTF的内容,或者包括4个L-SIG域的内容,或者包括1个L-STF的内容和1个L-LTF的内容的组合。
本申请实施例对开始字段中除一个L-STF的内容(上述连续8微秒内容)以外的其它内容的长度和组成部分不做限定,任何容易想到的方案都应在本申请保护范围之内,例如开始字段中除一个L-STF的内容(上述连续8微秒内容)以外的其它内容可以包括2~10个L-STF,本申请实施例在此不再一一举例说明。
可选地,本申请实施例提供的PPDU的前导码的开始字段中与L-STF的内容相同的连续8微秒内容与该PPDU中位于开始字段之后的内容组成Non-HT PPDU(如图3所示)、HT-MF PPDU(如图4所示)、VHT PPDU(如图5所示)、HE SU PPDU(如图6示)、HE MU PPDU(如图7所示)、HE ER SU PPDU(如图8所示)或HE-TB PPDU(如图9所示)。也可以理解为,本申请实施例提供的PPDU是在如图3至图9任一所示的PPDU的基础上增加目标域得到的。
图16是本申请实施例提供的一种WLAN中的通信方法的流程示意图。第一通信设备和第二通信设备均为WLAN中的通信设备。该方法例如可以应用于如图1所示的应用场景中。如图16所示,该方法包括:
步骤1601、第一通信设备生成PPDU,该PPDU的前导码包括开始字段和紧接在该开始字段之后的L- LTF,该开始字段的长度大于8微秒,且该开始字段中有连续8微秒内容与L-STF的内容相同。
这里PPDU的结构可参考上述实施例中的相关描述,本申请实施例在此不再赘述。例如该PPDU可以是如图10或图11所示的PPDU。
步骤1602、第一通信设备向第二通信设备发送该PPDU。
可选地,第一通信设备在毫米波频段上向第二通信设备发送PPDU。相应地,第二通信设备在毫米波频段上接收来自第一通信设备的PPDU。
步骤1603、第二通信设备根据该PPDU中开始字段的长度,对该PPDU的接收信号功率进行自动增益控制调整。
步骤1603也即是,第二通信设备在接收该PPDU的开始字段的接收时长内,对该PPDU的接收信号功率进行自动增益控制调整。第二通信设备对该PPDU的接收信号功率完成自动增益控制调整之后,继续接收该PPDU的剩余内容,并按照WLAN协议解析和处理该PPDU。
在本申请实施例提供的通信方法中,第一通信设备通过在向第二通信设备发送的PPDU的前导码中用开始字段替换传统短训练域。该开始字段包括传统短训练域的内容,以利于兼容。并且,该开始字段比传统短训练域更长,因此放宽了对第二通信设备利用该字段完成相应功能(例如,同步、信号检测、AGC等)的时间约束,可满足不同性能的硬件执行同步、信号检测、AGC等功能的时间需求,从而提高WLAN在不同应用场景下的通讯可靠性。本申请实施例只需改变前导码中的第一个字段即可,对后续字段无影响,因此对于第二通信设备而言,除了增加了利用该字段完成相应功能的时长以外,第二通信设备对PPDU的后续处理无需做任何改变,实现简单。
图17和图18分别是本申请实施例提供的一种WLAN中的通信设备的结构示意图。图17和图18所示的模块也可以集成在一台通信设备中。
如图17所示,通信设备1700包括:生成模块1701和发送模块1702。生成模块1701,用于生成PPDU,该PPDU的前导码包括开始字段和紧接在开始字段之后的L-LTF,该开始字段的长度大于8微秒,且该开始字段中有连续8微秒内容与L-STF的内容相同。发送模块1702,用于向WLAN中的另一通信设备发送PPDU。
如图18所示,通信设备1800包括:接收模块1801和AGC调整模块1802。接收模块1801,用于接收来自该WLAN中的另一通信设备的PPDU,该PPDU的前导码包括开始字段和紧接在该开始字段之后的L-LTF,开始字段的长度大于8微秒,且该开始字段中有连续8微秒内容与L-STF的内容相同。AGC调整模块1802,用于根据该开始字段的长度,对该PPDU的接收信号功率进行自动增益控制调整。
可选地,开始字段中前8微秒内容与L-STF的内容相同,和/或,开始字段中后8微秒内容与L-STF的内容相同。
可选地,开始字段用于自动增益控制调整。
可选地,开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容包括一种或多种字段的部分或全部内容,一种或多种字段包括L-STF、L-LTF、L-SIG域、HE-STF或HE-LTF。
可选地,开始字段中除与L-STF的内容相同的连续8微秒内容以外的其它内容包括以下一项或多项:至少6个L-STF的内容,至少6个L-LTF的内容,至少12个L-SIG域的内容,或者,至少3个L-STF的内容和至少3个L-LTF的内容的组合。
可选地,在如图17所示的通信设备中,发送模块1702,用于在毫米波频段上向另一通信设备发送PPDU。在如图18所示的通信设备中,接收模块1801,用于在毫米波频段上接收来自另一通信设备的PPDU。
可选地,开始字段的长度为预先定义的,或者由通信设备双方协商确定。
可选地,PPDU的前导码的开始字段中与L-STF的内容相同的连续8微秒内容与该PPDU中位于开始字段之后的内容组成Non-HT PPDU、HT-MF PPDU、VHT PPDU、HE SU PPDU、HE MU PPDU、HE ER SU PPDU或HE-TB PPDU。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本申请实施例还提供了一种WLAN中的通信设备,包括:收发器和天线。该收发器用于用天线收发 PPDU。该PPDU的前导码包括开始字段和紧接在该开始字段之后的L-LTF。该开始字段的长度大于8微秒,且该开始字段中有连续8微秒内容与L-STF的内容相同。
可选地,收发器包括毫米波射频芯片。
例如,该通信设备可以是如图2所示的通信设备。
本申请实施例还提供了一种WLAN,包括:第一通信设备和第二通信设备。第一通信设备用于向第二通信设备发送PPDU,该PPDU的前导码包括开始字段和紧接在该开始字段之后的L-LTF,该开始字段的长度大于8微秒,且该开始字段中有连续8微秒内容与L-STF的内容相同。第二通信设备用于根据该开始字段的长度,对该PPDU的接收信号功率进行自动增益控制调整。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本申请实施例中,术语“第一”、“第二”和“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种无线局域网(WLAN)中的通信方法,其特征在于,所述方法包括:
    所述WLAN中的第一通信设备向所述WLAN中的第二通信设备发送物理层协议数据单元(PPDU),所述PPDU的前导码包括开始字段和紧接在所述开始字段之后的传统长训练域(L-LTF),所述开始字段的长度大于8微秒,且所述开始字段中有连续8微秒内容与传统短训练域(L-STF)的内容相同。
  2. 根据权利要求1所述的方法,其特征在于,所述开始字段中前8微秒内容与所述L-STF的内容相同,和/或,所述开始字段中后8微秒内容与所述L-STF的内容相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述开始字段用于自动增益控制调整。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述开始字段中除所述连续8微秒内容以外的其它内容包括一种或多种字段的部分或全部内容,所述一种或多种字段包括L-STF、L-LTF、传统信号(L-SIG)域、高效短训练域(HE-STF)或高效长训练域(HE-LTF)。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述开始字段中除所述连续8微秒内容以外的其它内容包括以下一项或多项:至少6个L-STF的内容,至少6个L-LTF的内容,至少12个L-SIG域的内容,或者,至少3个L-STF的内容和至少3个L-LTF的内容的组合。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述WLAN中的第一通信设备向所述WLAN中的第二通信设备发送物理层协议数据单元(PPDU),包括:
    所述第一通信设备在毫米波频段上向所述第二通信设备发送所述PPDU。
  7. 根据权利要求1至6任一所述的方法,其特征在于,所述开始字段的长度为预先定义的,或者由所述第一通信设备和所述第二通信设备协商确定。
  8. 根据权利要求1至7任一所述的方法,其特征在于,所述连续8微秒内容与所述PPDU中位于所述开始字段之后的内容组成非高吞吐量(Non-HT)PPDU、高吞吐量混合格式(HT-MF)PPDU、极高吞吐量(VHT)PPDU、高效单用户(HE SU)PPDU、高效多用户(HE MU)PPDU、高效扩展距离单用户(HE ER SU)PPDU或高效触发(HE-TB)PPDU。
  9. 一种无线局域网(WLAN)中的通信设备,其特征在于,所述通信设备包括:
    生成模块,用于生成物理层协议数据单元(PPDU),所述PPDU的前导码包括开始字段和紧接在所述开始字段之后的传统长训练域(L-LTF),所述开始字段的长度大于8微秒,且所述开始字段中有连续8微秒内容与传统短训练域(L-STF)的内容相同;
    发送模块,用于向所述WLAN中的另一通信设备发送所述PPDU。
  10. 根据权利要求9所述的通信设备,其特征在于,所述开始字段中前8微秒内容与所述L-STF的内容相同,和/或,所述开始字段中后8微秒内容与所述L-STF的内容相同。
  11. 根据权利要求9或10所述的通信设备,其特征在于,所述开始字段用于自动增益控制调整。
  12. 根据权利要求9至11任一所述的通信设备,其特征在于,所述开始字段中除所述连续8微秒内容以外的其它内容包括一种或多种字段的部分或全部内容,所述一种或多种字段包括L-STF、L-LTF、传统信号(L-SIG)域、高效短训练域(HE-STF)或高效长训练域(HE-LTF)。
  13. 根据权利要求9至12任一所述的通信设备,其特征在于,所述开始字段中除所述连续8微秒内容以外的其它内容包括以下一项或多项:至少6个L-STF的内容,至少6个L-LTF的内容,至少12个L-SIG域的内容,或者,至少3个L-STF的内容和至少3个L-LTF的内容的组合。
  14. 根据权利要求9至13任一所述的通信设备,其特征在于,
    所述发送模块,用于在毫米波频段上向所述另一通信设备发送所述PPDU。
  15. 根据权利要求9至14任一所述的通信设备,其特征在于,所述开始字段的长度为预先定义的,或者由所述第一通信设备和所述第二通信设备协商确定。
  16. 根据权利要求9至15任一所述的通信设备,其特征在于,所述连续8微秒内容与所述PPDU中位于所述开始字段之后的内容组成非高吞吐量(Non-HT)PPDU、高吞吐量混合格式(HT-MF)PPDU、极高吞吐量(VHT)PPDU、高效单用户(HE SU)PPDU、高效多用户(HE MU)PPDU、高效扩展距离单用户(HE ER SU)PPDU或高效触发(HE-TB)PPDU。
  17. 一种无线局域网(WLAN)中的通信设备,其特征在于,包括:收发器和天线;
    所述收发器用于用所述天线收发物理层协议数据单元(PPDU),所述PPDU的前导码包括开始字段和紧接在所述开始字段之后的传统长训练域(L-LTF),所述开始字段的长度大于8微秒,且所述开始字段中有连续8微秒内容与传统短训练域(L-STF)的内容相同。
  18. 根据权利要求17所述的通信设备,其特征在于,所述收发器包括毫米波射频芯片。
PCT/CN2023/118378 2022-09-29 2023-09-12 无线局域网中的通信方法及装置 WO2024067077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211197919.5 2022-09-29
CN202211197919.5A CN117793794A (zh) 2022-09-29 2022-09-29 无线局域网中的通信方法及装置

Publications (1)

Publication Number Publication Date
WO2024067077A1 true WO2024067077A1 (zh) 2024-04-04

Family

ID=90378657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118378 WO2024067077A1 (zh) 2022-09-29 2023-09-12 无线局域网中的通信方法及装置

Country Status (2)

Country Link
CN (1) CN117793794A (zh)
WO (1) WO2024067077A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160119933A1 (en) * 2014-10-28 2016-04-28 Qualcomm Incorporated Null data packet frame structure for wireless communication
WO2018031134A1 (en) * 2016-08-09 2018-02-15 Intel IP Corporation Preamble for extended range mode packet detection
US20190132729A1 (en) * 2018-01-05 2019-05-02 Intel IP Corporation Apparatus, system and method of communication over a 6 gigahertz (ghz) wireless frequency band

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160119933A1 (en) * 2014-10-28 2016-04-28 Qualcomm Incorporated Null data packet frame structure for wireless communication
WO2018031134A1 (en) * 2016-08-09 2018-02-15 Intel IP Corporation Preamble for extended range mode packet detection
US20190132729A1 (en) * 2018-01-05 2019-05-02 Intel IP Corporation Apparatus, system and method of communication over a 6 gigahertz (ghz) wireless frequency band

Also Published As

Publication number Publication date
CN117793794A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US10581496B2 (en) Apparatus, system and method of multi-user wireless communication
US20230380011A1 (en) Methods and apparatuses for sending and receiving physical layer protocol data unit
US20160249276A1 (en) 802.11 Phy Hashed SSID
US10129069B2 (en) Data transmission method and apparatus
JP2009540718A (ja) Wlan内のノード,ポイント又は端末内に配信待ちデータがある各グループアドレスについての情報を提供する方法及び装置
US20160352553A1 (en) Data transmission method and apparatus
US20220132419A1 (en) Device and method for multi-link communications
JP2022050526A (ja) 受信されたフレームのベーシックサービスセット識別情報判断を利用した無線通信方法及び無線通信端末
WO2021179453A1 (zh) 信号处理方法、接入网设备及多制式接入网设备
US20220345342A1 (en) Method and apparatus for transmitting physical layer protocol data unit
WO2021197352A1 (zh) 一种远端单元和传输信息的方法
WO2024067077A1 (zh) 无线局域网中的通信方法及装置
WO2020143432A1 (zh) 一种同步广播信息发送、检测方法及装置
EP4178314A1 (en) Response frame replying method and apparatus, and access point system
WO2022062819A1 (zh) 一种符号应用方法及通信装置
WO2024103226A1 (zh) 通信方法、电子设备及存储介质
CN107078984B (zh) 无线局域网中的用于自动增益控制的方法和通信设备
WO2023279291A1 (zh) 信号处理方法及装置、电子设备及存储介质
WO2023044864A1 (zh) 数据传输方法、装置及存储介质
CN113162957B (zh) 物理层协议数据单元ppdu的传输方法、装置及系统
WO2023030089A1 (zh) 保护符号配置方法以及通信装置
WO2024103229A1 (zh) 通信方法、电子设备及存储介质
WO2023044610A1 (zh) 一种识别mac ce类型的方法及装置、终端设备、网络设备
WO2024104320A1 (zh) 通信方法、装置、系统及存储介质
EP4297495A1 (en) Communication method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870314

Country of ref document: EP

Kind code of ref document: A1