WO2021179453A1 - 信号处理方法、接入网设备及多制式接入网设备 - Google Patents

信号处理方法、接入网设备及多制式接入网设备 Download PDF

Info

Publication number
WO2021179453A1
WO2021179453A1 PCT/CN2020/094771 CN2020094771W WO2021179453A1 WO 2021179453 A1 WO2021179453 A1 WO 2021179453A1 CN 2020094771 W CN2020094771 W CN 2020094771W WO 2021179453 A1 WO2021179453 A1 WO 2021179453A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
protocol
downlink baseband
downlink
uplink
Prior art date
Application number
PCT/CN2020/094771
Other languages
English (en)
French (fr)
Inventor
刘震
徐慧俊
区洋
钟梓滢
杨波
方绍湖
李馨
Original Assignee
京信通信技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2021179453A1 publication Critical patent/WO2021179453A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • H04W28/065Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/08Protocols for interworking; Protocol conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/18Multiprotocol handlers, e.g. single devices capable of handling multiple protocols

Definitions

  • This application relates to the field of communication technology, and in particular to a signal processing method, access network equipment, and multi-standard access network equipment.
  • a signal processing method including:
  • the first host unit receives the first downlink baseband data sent by the core network device;
  • the first host unit receives the second downlink baseband data from the second host unit, and determines the data combination position in the second downlink baseband data according to the data protocol format adopted by the second downlink baseband data; the first downlink baseband data It is different from the data protocol format adopted by the second downlink baseband data;
  • the first host unit After inserting the first downlink baseband data into the data combining position, the first host unit sends the obtained first recombined data to the remote unit; wherein, the remote unit is used to split the first recombined data and send it to the corresponding Terminal equipment.
  • the first downlink baseband data is downlink data using the eCPRI protocol
  • the second downlink baseband data is downlink data using the CPRI protocol
  • the foregoing is determined according to the data protocol format used by the second downlink baseband data
  • the data combination location in the second downlink baseband data includes:
  • the position of the Ethernet data field in the second downlink baseband data is determined as the data combined position according to the CPRI protocol adopted by the second downlink baseband data.
  • the above-mentioned Ethernet data field includes the control management data in the second downlink baseband data
  • the above-mentioned inserting the first downlink baseband data into the data combining position includes:
  • the above method further includes:
  • the first host unit receives the second recombined data sent by the remote unit; where the second recombined data is obtained by combining the uplink data using the eCPRI protocol and the uplink data using the CPRI protocol by the remote unit;
  • the first host unit splits the second recombined data according to the position of the Ethernet data field in the second recombined data and the data length of the uplink data using the eCPRI protocol to obtain the first uplink baseband data sent to the core network device and send it to The second uplink baseband data of the second host unit.
  • the position of the Ethernet data field includes the start position of the Ethernet data field
  • the first host unit is based on the position of the Ethernet data field in the second reassembled data and the position of the uplink data using the eCPRI protocol.
  • the first host unit obtains the start position of the uplink data using the eCPRI protocol according to the start position of the Ethernet data field in the second recombined data and the length of the control management data in the Ethernet data field;
  • the second recombined data is split to obtain the first uplink baseband data sent to the core network device and the first uplink baseband data sent to the second host unit. Two uplink baseband data.
  • a signal processing method including:
  • the remote unit receives the first recombined data sent by the first host unit, where the first recombined data is that the first host unit combines the first downlink baseband data and the second downlink baseband data based on the determined data combining position.
  • the data combination position is determined by the first host unit according to the data protocol format adopted by the second downlink baseband data, the first downlink baseband data is sent by the core network equipment, and the second downlink baseband data is the second Sent by the host unit; the data protocol format used by the first downlink baseband data and the second downlink baseband data is different;
  • the remote unit splits the first recombined data and sends it to the corresponding terminal device.
  • the first downlink baseband data is downlink data using the eCPRI protocol
  • the second downlink baseband data is downlink data using the CPRI protocol
  • the remote unit splits the first recombined data, including :
  • the remote unit splits the first recombined data according to the position of the Ethernet data field in the first recombined data and the data length of the downlink data using the eCPRI protocol.
  • the above-mentioned Ethernet data field includes control management data in the second downlink baseband data, and the above-mentioned is based on the position of the Ethernet data field in the first reassembled data and the data length of the downlink data using the eCPRI protocol, Split the first reorganized data, including:
  • the first recombined data is split.
  • the above method further includes:
  • the remote unit receives the uplink data using the eCPRI protocol and the uplink data using the CPRI protocol, and determines the data combination position in the uplink data using the CPRI protocol according to the CPRI protocol;
  • the remote unit After the remote unit inserts the uplink data using the eCPRI protocol into the data combination position in the uplink data using the CPRI protocol, the obtained second recombined data is sent to the first host unit; wherein, the first host unit is used to connect the second host unit The reorganized data is split and sent to the core network device and the second host unit.
  • the foregoing determination according to the CPRI protocol to determine the location of the data combination in the uplink data using the CPRI protocol includes:
  • the position of the Ethernet data field in the uplink data using the CPRI protocol is determined to be the data combined position.
  • the Ethernet data field includes the control management data in the uplink data of the CPRI protocol, and the above inserting the uplink data using the eCPRI protocol into the data combination position in the uplink data using the CPRI protocol includes:
  • an access network device including a first host unit and a remote unit,
  • the first host unit is configured to execute the above-mentioned signal processing method on the side of the first host unit;
  • the remote unit is used to execute the above-mentioned signal processing method on the remote unit side.
  • a first host unit including a high-level protocol processing module and a first signal processing module,
  • the high-level protocol processing module is used to receive the first downlink baseband data issued by the core network device, and perform high-level protocol processing on the first downlink baseband data to obtain the downlink baseband data processed by the high-level protocol;
  • the first signal processing module is used to receive the downlink baseband data processed by the high-level protocol to obtain the first downlink baseband data; and to receive the second downlink baseband data from the second host unit, according to the second downlink baseband data used
  • the data protocol format determines the data combining position in the second downlink baseband data; and after inserting the first downlink baseband data into the data combining position, the obtained first recombined data is sent to the remote unit; the first downlink baseband data It is different from the data protocol format adopted by the second downlink baseband data; wherein, the remote unit is used to split the first reassembled data and send it to the corresponding terminal device.
  • a remote unit which includes a second signal processing module and a low-level protocol processing module,
  • the second signal processing module is used to receive the first recombined data sent by the first host unit, split the first recombined data and send it to the corresponding second terminal device and the lower layer protocol processing module; wherein, the first recombined data It is obtained by the first host unit combining the first downlink baseband data and the second downlink baseband data based on the determined data combining position; the data combining position is obtained by the first host unit according to the second downlink baseband data.
  • the adopted data protocol format is determined, the first downlink baseband data is sent by the core network device, the second downlink baseband data is sent by the second host unit; the data used by the first downlink baseband data and the second downlink baseband data
  • the protocol format is different;
  • the low-level protocol processing module is used to perform low-level protocol processing on the data obtained after the first recombined data is split to obtain the first downstream baseband data processed by the low-level protocol, and to process the first downstream baseband data after the low-level protocol processing Send to the corresponding first terminal device.
  • a multi-standard access network device which includes at least one of the above-mentioned access network device, a first host unit, and a remote unit, and a second host unit.
  • the combined position of the first downlink baseband data and the second downlink baseband data is determined by the data protocol format of the second downlink baseband data, and the first download The line baseband data is directly inserted into the combined position to realize the simultaneous interpretation of two different protocol format data. Therefore, this method does not need to unpack and group the first downlink baseband data and the second downlink baseband data. , That is, the simultaneous interpretation of data in two different protocol formats can be realized without modifying the existing host unit, thereby reducing the hardware cost of the access network equipment.
  • FIG. 1 is a schematic diagram of a functional division option between a centralized unit and a remote unit in the prior art
  • Fig. 2 is a schematic diagram of the functional division options between eREC and eRE in the prior art
  • FIG. 3 is a schematic diagram of the internal function division option of the physical layer supported by eCPRI in the prior art
  • Fig. 4 is a schematic structural diagram of a multi-standard access network device in an embodiment
  • Fig. 5a is a schematic flowchart of a signal processing method on the side of the first host unit in an embodiment
  • Figure 5b is a schematic structural diagram of the CPRI protocol format in an embodiment
  • FIG. 6 is a schematic flowchart of a signal processing method on the side of the first host unit in another embodiment
  • FIG. 7 is a schematic flowchart of a signal processing method on the remote unit side in an embodiment
  • FIG. 8 is a schematic flowchart of a signal processing method on the remote unit side in another embodiment
  • Figure 9 is a schematic structural diagram of a first host unit in an embodiment
  • Figure 10 is a schematic structural diagram of a remote unit in an embodiment
  • FIG. 11 is a schematic diagram of a specific structure of a multi-standard access network device in an embodiment.
  • the 5G era With the rapid development of mobile communications, the 5G era has come, and various operators and equipment vendors are actively promoting the construction of 5G experimental networks.
  • the common public radio interface CPRI
  • the CPRI interface provides the wireless equipment control center (REC) and the wireless equipment (RE) to exchange user platform data (IQ data). ), the specification and link of control and management information, and synchronization information.
  • REC wireless equipment control center
  • RE wireless equipment
  • IQ data user platform data
  • IQ data user platform data
  • the bandwidth due to the addition of large-scale antenna technology, the bandwidth has increased sharply, and the transmission capacity requirements of the fronthaul architecture have increased.
  • the 3GPP protocol specification proposes a variety of functional segmentation methods, and the fronthaul is converted to a packet mode (Ethernet), with different functions
  • the reduction of the fronthaul capacity in the split mode is different.
  • a variety of split methods can be used between the centralized unit (CU) and the remote unit (DU), such as RRC (Radio Resource Control Protocol) and PDCP ( Between Packet Convergence Protocol), between PDCP and RLC (Radio Link Control Protocol), between RLC and MAC (physical network address), between MAC and PHY (physical layer), inside PHY, etc., their corresponding CU
  • RRC Radio Resource Control Protocol
  • PDCP Between Packet Convergence Protocol
  • RLC Radio Link Control Protocol
  • RLC and MAC Physical network address
  • MAC and PHY physical layer
  • inside PHY etc.
  • the eCPRI V1.0 specification uses a split method within the physical layer.
  • the eCPRI interface supports flexible functional decomposition. There are multiple splitting methods.
  • the current standard supports split within the physical layer. mode I D, II D, I U , in FIG. 2, FIG. 3, eCPRI packetized interface with the Ethernet interface, the number of antenna decoupling bandwidth, before transmission to reduce the transmission bandwidth.
  • the embodiments of the present application provide a signal processing method, an access network device, and a multi-standard access network device, aiming to solve the above technical problems.
  • the signal processing method provided in this embodiment can be applied to a multi-standard access network device as shown in FIG. 4, and the multi-standard access network device may include an access network device composed of a first host unit 10 and a remote unit 11. , It may also include a second host unit 12.
  • the first host unit 10 is connected to the second host unit 12 and the remote unit 11, and communicates with the second host unit 12 and the remote unit 11 through the network.
  • the first host The unit 10 may be connected to a core network device for transmitting and receiving data with the core network device.
  • the first host unit 10 and the second host unit 12 can be a baseband processing unit BBU, a centralized unit CU, a near-end unit, etc.
  • the remote unit 11 can be a remote radio unit RRU, a remote unit DU, a remote unit, etc.
  • the number of remote units 11 connected to the first host unit 10 can be one or more, and the number of second host units 12 connected to the first host unit 10 can also be one or more.
  • the first host unit 10 may include an interface subsystem, an OAM (Operation Administration and Maintenance) subsystem, and a RAN (Radio Access Network, radio access network) protocol stack subsystem.
  • the interface subsystem realizes the analysis and encapsulation of data packets such as CPRI data packets and eCPRI data packets, and performs data transmission with the remote unit 11 based on the data packets;
  • the OAM subsystem realizes software management, configuration management, fault management, and performance management functions;
  • the RAN protocol stack subsystem may include: PHY-H subsystem, MAC (Media Access Control) layer subsystem, RLC layer subsystem, PDCP (Packet Data Convergence Protocol, packet data convergence protocol layer) subsystem, SDAP (Service Data Adaptation Protocol, service data adaptation protocol layer) subsystem, scheduler subsystem, L3 (Layer 3) subsystem, etc.
  • the first host unit 10 may be implemented by a server, FPGA (Field-Programmable Gate Array, Field-Programmable Gate Array), etc.
  • the function and structure of the second host unit 12 are similar to those of the first host unit 10, and will not be repeated here.
  • the remote unit 11 may generally include a digital intermediate frequency module, a transceiver module, a power amplifier, and a filter module. Frequency conversion, A/D conversion, etc., to obtain the intermediate frequency signal, the transceiver module is used to complete the conversion of the intermediate frequency signal to the radio frequency signal, and the power amplifier and filter module are used to amplify the power of the radio frequency signal and transmit it through the antenna port. It should be noted that the remote unit 11 here may also include a radio frequency conversion module, which can convert radio frequency signals of different standards sent by the power amplifier and filter module, and then distribute them to terminal devices of the corresponding standards.
  • a radio frequency conversion module which can convert radio frequency signals of different standards sent by the power amplifier and filter module, and then distribute them to terminal devices of the corresponding standards.
  • the executor of the embodiment of the present application may be the access network device, or the first host unit and the remote unit in the access network device.
  • the following embodiments of the present application use the first host unit and the remote unit respectively
  • the remote unit as the main body of execution, explains the method of this application from both sides.
  • a signal processing method is provided. This embodiment relates to how the first host unit determines the location of the data combination during the downlink from the first host unit to the remote unit, and combines the first host unit The specific process of sending the downlink baseband data and the second downlink baseband data to the remote unit after being combined according to the combined position. As shown in Figure 5a, the method may include the following steps:
  • S202 The first host unit receives first downlink baseband data sent by the core network device.
  • the first host unit can be connected to the core network device and receive downlink baseband data from the protocol IP network (core network device) interconnected between the networks.
  • the first host unit can be connected to the core network device.
  • the uplink/downlink baseband data is transmitted between, where the baseband data issued by the core network device received by the first host unit is recorded as the first downlink baseband data.
  • the first host unit receives the second downlink baseband data from the second host unit, and determines the data combination position in the second downlink baseband data according to the data protocol format adopted by the second downlink baseband data; The data protocol format adopted by the baseband data and the second downlink baseband data is different.
  • the second host unit may also be connected to another core network device, and receive downlink baseband data from the other core network device through the protocol IP network, which is recorded as second downlink baseband data.
  • the core network device connected to the first host unit is different from the core network device connected to the second host unit. It may be that the protocol format of the downlink baseband data sent to the corresponding host unit is different, that is, the first downlink baseband data and the second The data protocol format of the downlink baseband data is different, or the format of the downlink baseband data sent to the corresponding host unit is different.
  • the data protocol format adopted by the first downlink baseband data is the eCPRI protocol format
  • the second downlink baseband data may be a CPRI protocol format, etc., assuming that the format of the first downlink baseband data is 5G, and the format of the second downlink baseband data may be at least one of 4G, 3G, 2G, and the like.
  • the first host unit After the first host unit receives the second downlink baseband data sent by the second host unit, it can obtain the data protocol format used by the first downlink baseband data and the data protocol format used by the second downlink baseband data at the same time , Then the first host unit can find the position of the data packet with the same data protocol format as the first downlink baseband data in the protocol format of the second downlink baseband data, and use this position as the data combined position.
  • the first host unit After inserting the first downlink baseband data into the data combining position, the first host unit sends the obtained first reassembled data to the remote unit; wherein the remote unit is used to split the first reassembled data and send it To the corresponding terminal device.
  • the remote unit corresponding to the first host unit may be one or more. If there are more than one, the first host unit can send the first reorganized data to the multiple remote units at the same time, that is, each remote unit The received data is the same; each remote unit corresponds to one or more terminal devices. If there are multiple terminal devices, the data protocol format or standard that each terminal device can receive can be the same, or It may be different. For example, taking the standard as an example, the multiple terminal devices may include 5G terminals, 4G terminals, 3G terminals, 2G terminals, and so on.
  • the first host unit can put the first downlink baseband data into the data combination location of the second downlink baseband data.
  • the data is put into the second downlink baseband data before the original data at the data combined location, or after the original data of the second downlink baseband data at the data combined location, of course, it can also be combined with the second downlink baseband.
  • the data is interleaved with the original data at the location where the data is combined, and it may even be placed in other ways, which is not specifically limited in this embodiment.
  • the first downlink baseband data is put into the data combination position in the second downlink baseband data, the data in the data combination position and the second downlink baseband data can be excluded from the data combination position.
  • the data outside the data is recombined into new baseband data, which is recorded as the first recombined data.
  • the data protocol format of the first recombined data is the data protocol format used by the second downlink baseband data, so that the first recombined data can be directly converted It is sent to the remote unit corresponding to the first host unit through the original interface.
  • the remote unit After the remote unit receives the first recombined data, it can split the first recombined data into downlink data corresponding to the data protocol format of the first downlink baseband data, and send it to the data protocol format corresponding to the data protocol format.
  • the terminal device and the downlink data corresponding to the data protocol format split into the second downlink baseband data are sent to the terminal device corresponding to the data protocol format.
  • the first host unit can receive the baseband data of the 5G standard.
  • the first host unit can also receive the 4G baseband data sent by the 4G standard host unit, and then the first host unit can determine the data combination position from the 4G standard baseband data, and insert the received 5G standard baseband data into the At the data combining position, the 4G standard baseband data after the recombination of the 4G standard baseband data and the 5G standard baseband data is obtained, and then the first host unit can send the recombined 4G standard baseband data to the remote unit.
  • the end unit can split the recombined 4G standard baseband data, separate the 4G standard baseband data and the 5G standard baseband data, and send the 4G standard baseband data to the 4G standard terminal, and transfer the 5G standard baseband data.
  • the baseband data is sent to the 5G standard terminal.
  • this method does not need to redeploy the new access network equipment, and can realize the compatibility of the data of the two different standards of 4G and 5G, so it can reduce the cost of the access network equipment. Hardware cost.
  • the combined position of the first downlink baseband data and the second downlink baseband data is determined by the data protocol format of the second downlink baseband data, and the first downlink baseband data is directly inserted into the combined position, It can realize the simultaneous transmission of data in two different protocol formats. Therefore, this method does not require unpacking and grouping operations on the first downlink baseband data and the second downlink baseband data, that is, it does not need to perform operations on the existing host unit.
  • the transformation can realize the simultaneous interpretation of data in two different protocol formats, thereby reducing the hardware cost of the access network equipment.
  • another signal processing method is provided. This embodiment relates to if the first downlink baseband data is downlink data using the eCPRI protocol, and the second downlink baseband data is downlink data using the CPRI protocol, Then, how the first host unit determines a possible implementation manner of the data combination position in the second downlink baseband data according to the data protocol format adopted by the second downlink baseband data.
  • the foregoing S204 may include the following step A:
  • Step A Determine the position of the Ethernet data field in the second downlink baseband data as the data combined position according to the CPRI protocol adopted by the second downlink baseband data.
  • CPRI defines the physical layer (Layer 1) and data link layer (Layer 2) protocols.
  • Layer 1 The protocol structure is shown in Figure 5b.
  • the information flow supported by the interface includes IQ data, synchronization, layer 1 in-band protocol, vendor-specific information, control and Management data (C&M), etc., among which, IQ data: data (digital baseband signal) format under in-phase and quadrature modulation used for user platform information; synchronization: synchronization data for frame and time adjustment; layer 1 in-band protocol: The signal transmission information related to the link and directly transmitted by the physical layer is used for system startup, physical layer link maintenance, and the transmission of time-critical information closely related to physical layer user data; vendor-specific information: this information flow is for Vendor-specific information is reserved; control and management (C&M) data is transmitted as a band protocol (time-critical information data) or a layer 3 protocol (not defined by the CPRI specification, located at the top of the appropriate data link layer), some additional C&M Data and IQ data are multiplexed at regular intervals.
  • CPRI supports two different data link layer protocols for C&M data transmission: a subset of high-speed data link control (HD
  • the channel where the fast C&M data in the second downlink baseband data is located is the Ethernet channel, that is, the field corresponding to the Ethernet channel is the Ethernet data field, and the above-mentioned first downlink baseband data is in the eCPRI protocol format. All are Ethernet data, and the II D /I U splitting method is adopted, then the first downlink baseband data can be directly put into the Ethernet channel of the second downlink baseband data, that is, the data in the second downlink baseband data The position of the Ethernet channel is determined as the data combined position.
  • the Ethernet data field includes the control management data in the second downlink baseband data
  • the first downlink baseband data can be inserted after the control management data in the Ethernet data field.
  • the first downlink baseband data can be directly placed into the fast C&M data in the Ethernet channel, where the first downlink baseband data can also be called It is an eCPRI data packet.
  • the eCPRI data packet and fast C&M data form a class of C&M data. This class of C&M data and other data in the second downlink baseband data (such as I/Q data, synchronization, etc.) are recombined together to obtain the first recombination data.
  • the first downlink baseband data is downlink data using the eCPRI protocol
  • the second downlink baseband data is downlink data using the CPRI protocol
  • it can be based on the CPRI protocol used by the second downlink baseband data It is determined that the position of the Ethernet data field in the second downlink baseband data is the data combined position.
  • the position of the Ethernet data field can be directly determined as the data combined position, and the first downlink baseband data is the Ethernet data packet, it is convenient to quickly put the first downlink baseband data directly into the data packet.
  • the position of the Ethernet data field improves the efficiency of overall signal processing.
  • another signal processing method is provided. This embodiment relates to how the first host unit performs the reassembly data sent by the remote unit during the uplink process from the remote unit to the first host unit.
  • the foregoing method may further include the following steps:
  • the first host unit receives the second recombined data sent by the remote unit; where the second recombined data is obtained by combining the uplink data using the eCPRI protocol and the uplink data using the CPRI protocol by the remote unit.
  • the second reorganized data may include at least one set of uplink data using the eCPRI protocol and at least one set of uplink data using the CPRI protocol.
  • the uplink data using the eCPRI protocol uses the II D /I U splitting method. Uplink data using the eCPRI protocol can be sent to the remote unit by a terminal device using the eCPRI protocol, and uplink data using the CPRI protocol can be sent to the remote unit by a terminal device using the CPRI protocol; the remote unit is using the eCPRI protocol.
  • the second reorganized data based on the CPRI protocol format is obtained.
  • the first host unit and the remote unit may be connected by a CPRI interface. Then, after the remote unit obtains the second reorganized data based on the CPRI protocol format, it can use the second reorganized data based on the CPRI protocol format. It is sent to the first host unit through the CPRI interface between the first host unit and the remote unit.
  • the first host unit splits the second recombined data according to the position of the Ethernet data field in the second recombined data and the data length of the uplink data using the eCPRI protocol to obtain the first uplink baseband data and data sent to the core network device.
  • the splitting of the second recombined data may include the following steps B1 and B2:
  • Step B1 The first host unit obtains the start position of the uplink data using the eCPRI protocol according to the start position of the Ethernet data field in the second recombined data and the length of the control management data in the Ethernet data field.
  • Step B2 According to the start position of the uplink data using the eCPRI protocol and the data length of the uplink data using the eCPRI protocol, the second reassembled data is split to obtain the first uplink baseband data sent to the core network device and sent to the second host The second uplink baseband data of the unit.
  • the control management data in the Ethernet data field here refers to the fast C&M data mentioned above.
  • the start position of the Ethernet data field is the start position of the fast C&M data
  • the second host unit receives the second
  • the starting position of the fast C&M data in the second recombined data can be found.
  • the remote unit After the remote unit receives the uplink data using the CPRI protocol, it can also obtain the fast C&M data in the uplink data using the CPRI protocol.
  • the length of the fast C&M data can be obtained.
  • the remote unit will send the length of the fast C&M data to the first host unit, and the first host unit can In the Ethernet channel, start from the start position of the fast C&M data, and count the length of the fast C&M data from the next, the position obtained after that is the start position of the uplink data using the eCPRI protocol. For example, assuming that the starting position of the fast C&M data is 1, and the length of the fast C&M data is 5, then starting from position 1 and counting 5 digits, the obtained position 6 is the starting position of the uplink data using the eCPRI protocol.
  • the above remote unit receives the uplink data using the eCPRI protocol, it can also obtain the data length of the uplink data using the eCPRI protocol, and then can also send the data length of the uplink data using the eCPRI protocol to the first host unit , The first host unit can split the second recombined data based on the data length of the uplink data using the eCPRI protocol and combining the above-mentioned starting position of the uplink data using the eCPRI protocol. Start from the start position of the uplink data of the eCPRI protocol, and count the data length of the uplink data that adopts the eCPRI protocol.
  • This part of the data is separated from the second recombined data to obtain the first uplink baseband data, which is sent to the core network equipment
  • the first host unit can combine the data in the second recombined data except the uplink data using the eCPRI protocol to obtain the second baseband data, and send the second baseband data to the second host unit.
  • the first host unit can receive the second recombined data sent by the remote unit, and according to the Ethernet in the second recombined data
  • the position of the data field and the data length of the uplink data using the eCPRI protocol are split into the second recombined data to obtain the first uplink baseband data sent to the core network device and the second uplink baseband data sent to the second host unit, where,
  • the second recombined data is obtained by combining the uplink data using the eCPRI protocol and the uplink data using the CPRI protocol by the remote unit.
  • the first host unit can receive the second recombined data in two different protocol formats, and the position of the Ethernet data field and the data length of the uplink data using the eCPRI protocol are used to directly respond to the second recombined data in the uplink.
  • the splitting can realize the simultaneous transmission and splitting of data in two different protocol formats without modifying the hardware of the existing first host unit. Therefore, this method can reduce the hardware cost of the access network equipment.
  • a signal processing method is provided. This embodiment relates to the remote unit receiving the first recombined data sent by the first host unit during the downlink process from the first host unit to the remote unit. And the specific process of splitting the first reorganized data and sending it to the corresponding terminal device. As shown in Figure 7, the method may include the following steps:
  • the remote unit receives the first recombined data sent by the first host unit, where the first recombined data is that the first host unit combines the first downlink baseband data with the second downlink baseband data based on the determined data combining position.
  • the data combined position is determined by the first host unit according to the data protocol format adopted by the second downlink baseband data, the first downlink baseband data is sent by the core network equipment, and the second downlink baseband data is Sent by the second host unit; the data protocol format used by the first downlink baseband data and the second downlink baseband data is different.
  • the first host unit can determine the data combined location according to the data protocol format of the second downlink baseband data sent by the second host unit, and use the data combined location to communicate with the core network
  • the first downlink baseband data sent by the device and the second downlink baseband data sent by the second host unit are combined to obtain the first recombined data, and the first recombined data is passed between the first host unit and the remote unit.
  • the interface is sent to the remote unit so that the remote unit can receive the first reassembled data.
  • the remote unit splits the first reassembled data and sends it to the corresponding terminal device.
  • the remote unit can split the first recombined data into downlink data corresponding to the data protocol format of the first downlink baseband data, and concurrently send Give the terminal device corresponding to the data protocol format and the downlink data corresponding to the data protocol format split into the second downlink baseband data, and send it to the terminal device corresponding to the data protocol format here.
  • the first downlink baseband data can be directly inserted into At the combined position, the simultaneous transmission of data in two different protocol formats can be realized. Therefore, this method does not need to unpack and group the first downlink baseband data and the second downlink baseband data, that is, there is no need to The hardware modification of the existing host unit and remote unit can realize the simultaneous transmission and splitting of data in two different protocol formats, thereby reducing the hardware cost of the access network equipment.
  • another signal processing method is provided. This embodiment relates to if the first downlink baseband data is downlink data using the eCPRI protocol, and the second downlink baseband data is downlink data using the CPRI protocol, Then how to split the first reorganized data by the remote unit is a possible implementation manner.
  • the foregoing S404 may include the following step D:
  • Step D The remote unit splits the first recombined data according to the position of the Ethernet data field in the first recombined data and the data length of the downlink data using the eCPRI protocol.
  • the position of the Ethernet data field in the first reassembled data and the value in the Ethernet data field may be Control the management data and the data length of the downlink data using the eCPRI protocol, and split the first recombined data.
  • the first host unit receives the first downlink baseband data, that is, receives the downlink data using the eCPRI protocol.
  • the data length of the downlink data using the eCPRI protocol can also be obtained, and the data length of the downlink data using the eCPRI protocol can be sent to the remote unit.
  • the first host unit can also use the second downlink baseband data according to the In the downlink data of the CPRI protocol, the position of the Ethernet data field is obtained.
  • the position of the Ethernet data field includes the start position of the Ethernet data field.
  • the start position of the Ethernet data field is the start position of the fast C&M data. It is also possible to perform data analysis on the fast C&M data in the Ethernet data field to obtain the length of the fast C&M data, and send the length of the fast C&M data to the remote unit, then the remote unit receives the first reassembled data . After the data length of the downlink data using the eCPRI protocol, the starting position of the fast C&M data, and the length of the fast C&M data, you can start from the starting position of the fast C&M data in the first recombined data, and count the fast C&M from the next The length of the data, the starting position of the downlink data using the eCPRI protocol is obtained, and the starting position of the downlink data using the eCPRI protocol is started, and the data length of the downlink data using the eCPRI protocol is counted later, and this part of the data is from The first recombined data is disassembled to obtain the downlink data corresponding to the data protocol format
  • the remote unit in the downlink process from the first host unit to the remote unit, can be based on the position of the Ethernet data field in the first reassembled data and the data of the downlink data using the eCPRI protocol. Length, split the first reorganized data.
  • the remote unit since the remote unit can directly split the first recombined data through the position of the Ethernet data field and the data length of the downlink data using the eCPRI protocol, the hardware of the existing remote unit is not required. The modification can realize the simultaneous interpretation and splitting of data in two different protocol formats, so this method can reduce the hardware cost of the access network equipment.
  • another signal processing method is provided. This embodiment relates to how the remote unit determines the location of the data combination during the uplink from the remote unit to the first host unit, and uses The specific process in which the uplink data of the eCPRI protocol and the uplink data using the CPRI protocol are combined according to the data combined position and sent to the first host unit. As shown in Figure 8, the method may further include the following steps:
  • the remote unit receives the uplink data using the eCPRI protocol and the uplink data using the CPRI protocol, and determines, according to the CPRI protocol, a data combination location in the uplink data using the CPRI protocol.
  • the remote unit may determine the position of the Ethernet data field in the uplink data using the CPRI protocol as the data combined position according to the CPRI protocol.
  • the protocol structure of the uplink data using the CPRI protocol is the same as that of Figure 5b, then the remote unit can obtain that the channel where the fast C&M data in the uplink data using the CPRI protocol is located is the Ethernet channel, and the corresponding field is the Ethernet data field.
  • the uplink data using the eCPRI protocol here is Ethernet data, and the II D /I U splitting method is used, then the uplink data using the eCPRI protocol can be directly put into the Ethernet channel of the uplink data using the CPRI protocol.
  • the position of the Ethernet channel of the uplink data using the CPRI protocol is determined to be the position of the uplink data combination here.
  • the remote unit After the remote unit inserts the uplink data using the eCPRI protocol into the data combination position in the uplink data using the CPRI protocol, it sends the obtained second recombined data to the first host unit; wherein the first host unit is used for pairing The second reorganized data is split and sent to the core network device and the second host unit.
  • the uplink data using the eCPRI protocol can be inserted after the control management data in the Ethernet data field.
  • the uplink data using the eCPRI protocol can be directly placed after the fast C&M data in the uplink Ethernet channel, and then the uplink data and the eCPRI protocol can be used.
  • the fast C&M data in the uplink Ethernet channel composes class C&M data.
  • This class of C&M data is recombined with other data (such as I/Q data, synchronization, etc.) in the uplink data using the CPRI protocol to obtain the second recombined data.
  • the data protocol format of the second reorganization data is the CPRI protocol format, so that the remote unit can directly send the second reorganization data to the corresponding first host unit through the original interface.
  • the first host unit can split the second recombined data into eCPRI protocol uplink data, and send it to the core network device corresponding to the eCPRI protocol format, and split it into The uplink data of the CPRI protocol is concurrently sent to the second host unit corresponding to the CPRI protocol format.
  • the remote unit receives the uplink data using the eCPRI protocol and the uplink data using the CPRI protocol, and determines to use the CPRI protocol according to the CPRI protocol And after inserting the uplink data using the eCPRI protocol into the data combining position in the uplink data using the CPRI protocol, the obtained second recombined data is sent to the first host unit, the first host The unit splits the second recombined data and sends it to the core network device and the second host unit.
  • steps in the flowcharts of FIGS. 5a and 6-8 are displayed in sequence as indicated by the arrows, these steps are not necessarily executed in sequence in the order indicated by the arrows. Unless specifically stated in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least part of the steps in Figures 5a and 6-8 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but can be executed at different times. These sub-steps Or the execution order of the stages is not necessarily carried out sequentially, but may be executed alternately or alternately with at least a part of other steps or sub-steps or stages of other steps.
  • a first host unit 10 is provided. As shown in FIG. 9, it includes a high-level protocol processing module 101 and a first signal processing module 102,
  • the high-level protocol processing module 101 is configured to receive first downlink baseband data issued by a core network device, and perform high-level protocol processing on the first downlink baseband data to obtain downlink baseband data processed by the high-level protocol;
  • the first signal processing module 102 is used to receive the downlink baseband data processed by the high-level protocol to obtain the first downlink baseband data; and to receive the second downlink baseband data from the second host unit, which is used according to the second downlink baseband data
  • the data protocol format determines the data combining position in the second downlink baseband data; and after inserting the first downlink baseband data into the data combining position, the obtained first recombined data is sent to the remote unit; the first downlink baseband
  • the data protocol format used by the data and the second downlink baseband data is different; wherein, the remote unit is used to split the first reassembled data and send it to the corresponding terminal device.
  • the above-mentioned first host unit 10 may also include a network protocol processing module 103 and an upper layer protocol processing module 104, where:
  • the network protocol processing module 103 is used to receive the downlink baseband data sent from the core network device based on the protocol IP network for interconnection between networks during the downlink, and perform network protocol conversion on the downlink baseband data sent by the protocol IP network to obtain the network
  • the downlink baseband data after protocol conversion is sent to the upper layer protocol processing module 104; and in the uplink, the network protocol conversion is performed on the uplink data processed by the upper layer protocol processing module 104 to obtain the uplink data after the network protocol conversion, and send To core network equipment;
  • the upper layer protocol processing module 104 is used to receive the downlink baseband data after network protocol conversion sent by the network protocol processing module 103, and perform upper layer protocol processing on the downlink baseband data after the network protocol conversion, to obtain the downlink baseband data processed by the upper layer protocol , And sent to the above-mentioned high-level protocol processing module 101 for processing; and in the uplink, the upstream data processed by the high-level protocol processing module 101 is subjected to upstream protocol processing to obtain the upstream data processed by the upper-layer protocol, and sent to the network protocol processing module 103;
  • the above-mentioned high-level protocol processing module 101 is used to perform high-level protocol processing on the first uplink baseband data sent by the first signal processing module 102 during the uplink to obtain the uplink baseband data, which is recorded as the uplink data processed by the high-level protocol processing module and sent To the upper layer protocol processing module 104;
  • the above-mentioned first signal processing module 102 is configured to receive the second recombined data sent by the remote unit during uplink; the second recombined data is that the remote unit combines the uplink data using the eCPRI protocol with the uplink data using the CPRI protocol. According to the position of the Ethernet data field in the second recombined data and the data length of the uplink data using the eCPRI protocol, the second recombined data is split to obtain the first uplink baseband data and the second uplink baseband data, and The first uplink baseband data is sent to the higher layer protocol processing module 101, and the second uplink baseband data is sent to the second host unit.
  • the signal processing module determines the combined position of the first downlink baseband data and the second downlink baseband data through the data protocol format of the second downlink baseband data, and combines the first downlink baseband data It can be inserted directly into the combined position to realize the simultaneous transmission of data in two different protocol formats. Therefore, there is no need to unpack and group the first downlink baseband data and the second downlink baseband data, that is, there is no need to pair
  • the modification of the existing first host unit can realize the simultaneous interpretation of data in two different protocol formats, thereby reducing the hardware cost of the access network equipment.
  • a remote unit 11 is provided. As shown in FIG. 10, the remote unit 11 includes a second signal processing module 111 and a low-level protocol processing module 112,
  • the second signal processing module 111 is configured to receive the first recombined data sent by the first host unit, split the first recombined data and send it to the corresponding second terminal device and the lower-layer protocol processing module; wherein, the first recombination The data is obtained by the first host unit combining the first downlink baseband data and the second downlink baseband data based on the determined data combining position; the data combining position is the first host unit according to the second downlink baseband data
  • the adopted data protocol format is determined, the first downlink baseband data is sent by the core network device, the second downlink baseband data is sent by the second host unit; the first downlink baseband data and the second downlink baseband data are used The data protocol format is different;
  • the low-level protocol processing module 112 is configured to perform low-level protocol processing on the data obtained after the first recombined data is split to obtain the first downlink baseband data processed by the low-level protocol, and to process the first downlink baseband after the low-level protocol processing The data is sent to the corresponding first terminal device.
  • the remote unit 11 may also include a group unpacking module 113, which is used to convert the first downlink baseband data processed by the low-layer protocol into a CPRI format during downlink.
  • the above-mentioned low-level protocol processing module 112 is also used to perform low-level protocol processing on the uplink data using the eCPRI protocol sent by the group unpacking module 113 during the uplink, to obtain the uplink data using the eCPRI protocol after the low-level protocol processing, and send it to the second Signal processing module 111;
  • the above-mentioned second signal processing module 111 is also used to receive the uplink data using the eCPRI protocol and the uplink data using the CPRI protocol processed by the low-level protocol during the uplink, and determine the data combination in the uplink data using the CPRI protocol according to the CPRI protocol Position, and after inserting the uplink data using the eCPRI protocol into the data combination position in the uplink data using the CPRI protocol, the obtained second recombined data is sent to the first host unit; wherein, the first host unit is used to compare the second The reorganized data is split and sent to the core network device and the second host unit.
  • the signal processing module determines the combined position of the first downlink baseband data and the second downlink baseband data according to the data protocol format of the second downlink baseband data, and can combine the first downlink baseband data It can be inserted directly into the combined position to realize the simultaneous transmission of data in two different protocol formats. Therefore, there is no need to unpack and group the first downlink baseband data and the second downlink baseband data.
  • the hardware modification of the existing remote unit can realize the simultaneous interpretation of data in two different protocol formats, thereby reducing the hardware cost of the access network equipment.
  • an access network device which includes the first host unit 10 and the remote unit 11 described above.
  • a multi-standard access network device is provided. As shown in FIG. 11, it includes the aforementioned host unit 10 and the aforementioned remote unit 11, the second host unit 12, and the terminal device 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请涉及一种信号处理方法、接入网设备及多制式接入网设备。所述方法包括:第一主机单元接收核心网设备发送的第一下行基带数据;所述第一主机单元接收来自于第二主机单元的第二下行基带数据,并根据所述第二下行基带数据所采用的数据协议格式确定所述第二下行基带数据中的数据合路位置;所述第一下行基带数据和所述第二下行基带数据所采用的数据协议格式不同;所述第一主机单元将所述第一下行基带数据插入所述数据合路位置后,将得到的第一重组数据发送至远端单元;其中,所述远端单元用于对所述第一重组数据进行拆分后发送至对应的终端设备。采用本方法能够节省接入网设备的硬件成本。

Description

信号处理方法、接入网设备及多制式接入网设备 技术领域
本申请涉及通信技术领域,特别是涉及一种信号处理方法、接入网设备及多制式接入网设备。
背景技术
随着通信技术的不断发展,更高速率、更低时延、更大容量的通信技术越来越受欢迎,随之也出现了不同于之前的数据协议格式,用于承载更高速率、更低时延、更大容量数据的协议格式,从数据通信协议格式演进的历史经验和平滑需求看,不同的数据协议格式在很长一段时间内还会共存,因此这要求通信网络需要具备多频多模的能力。
相关技术中在实现不同数据协议格式的信号进行同传时,大多是通过改造现有的接入网设备,或者重新部署新的接入网设备,以便满足不同数据协议格式的信号进行同传。
然而上述技术存在接入网设备硬件成本较高的问题。
发明内容
基于此,有必要针对上述技术问题,提供一种信号处理方法、接入网设备及多制式接入网设备。
第一方面,提供一种信号处理方法,该方法包括:
第一主机单元接收核心网设备发送的第一下行基带数据;
第一主机单元接收来自于第二主机单元的第二下行基带数据,并根据第二下行基带数据所采用的数据协议格式确定第二下行基带数据中的数据合路位置;第一下行基带数据和第二下行基带数据所采用的数据协议格式不同;
第一主机单元将第一下行基带数据插入数据合路位置后,将得到的第一重组数据发送至远端单元;其中,远端单元用于对第一重组数据进行拆分后发送至对应的终端设备。
在其中一个实施例中,上述第一下行基带数据为采用eCPRI协议的下行数据,上述第二下行基带数据为采用CPRI协议的下行数据,上述根据第二下行基带数据所采用的数据协议格式确定第二下行基带数据中的数据合路位置,包括:
根据第二下行基带数据所采用的CPRI协议确定第二下行基带数据中的以太网数据字段的位置为数据合路位置。
在其中一个实施例中,上述以太网数据字段中包括第二下行基带数据中的控制管理数据,上述将第一下行基带数据插入数据合路位置,包括:
将第一下行基带数据插入以太网数据字段中的控制管理数据之后。
在其中一个实施例中,上述方法还包括:
第一主机单元接收远端单元发送的第二重组数据;其中,第二重组数据为远端单元将采用eCPRI协议的上行数据与采用CPRI协议的上行数据进行合路得到的;
第一主机单元根据第二重组数据中的以太网数据字段的位置以及采用eCPRI协议的上行数据的数据长度,拆分第二重组数据,得到发送给核心网设备的第一上行基带数据和发送给 第二主机单元的第二上行基带数据。
在其中一个实施例中,上述以太网数据字段的位置包括以太网数据字段的起始位置,上述第一主机单元根据第二重组数据中的以太网数据字段的位置以及采用eCPRI协议的上行数据的数据长度,拆分第二重组数据,得到发送给核心网设备的第一上行基带数据和发送给第二主机单元的第二上行基带数据,包括:
第一主机单元根据第二重组数据中的以太网数据字段的起始位置以及以太网数据字段中的控制管理数据的长度,得到采用eCPRI协议的上行数据的起始位置;
根据采用eCPRI协议的上行数据的起始位置和采用eCPRI协议的上行数据的数据长度,拆分第二重组数据,得到发送给核心网设备的第一上行基带数据和发送给第二主机单元的第二上行基带数据。
第二方面,提供一种信号处理方法,该方法包括:
远端单元接收第一主机单元发送的第一重组数据,其中,第一重组数据为第一主机单元基于所确定的数据合路位置,将第一下行基带数据和第二下行基带数据进行合路处理得到的;数据合路位置为第一主机单元根据第二下行基带数据所采用的数据协议格式确定的,第一下行基带数据为核心网设备发送的,第二下行基带数据为第二主机单元发送的;第一下行基带数据和第二下行基带数据所采用的数据协议格式不同;
远端单元对第一重组数据进行拆分后发送至对应的终端设备。
在其中一个实施例中,上述第一下行基带数据为采用eCPRI协议的下行数据,上述第二下行基带数据为采用CPRI协议的下行数据,上述远端单元对第一重组数据进行拆分,包括:
远端单元根据第一重组数据中的以太网数据字段的位置以及采用eCPRI协议的下行数据的数据长度,对第一重组数据进行拆分。
在其中一个实施例中,上述以太网数据字段中包括第二下行基带数据中的控制管理数据,上述根据第一重组数据中的以太网数据字段的位置以及采用eCPRI协议的下行数据的数据长度,对第一重组数据进行拆分,包括:
根据第一重组数据中的以太网数据字段的位置和以太网数据字段中的控制管理数据,以及采用eCPRI协议的下行数据的数据长度,对第一重组数据进行拆分。
在其中一个实施例中,上述方法还包括:
远端单元接收采用eCPRI协议的上行数据和采用CPRI协议的上行数据,并根据CPRI协议确定采用CPRI协议的上行数据中的数据合路位置;
远端单元将采用eCPRI协议的上行数据插入采用CPRI协议的上行数据中的数据合路位置后,将得到的第二重组数据发送至第一主机单元;其中,第一主机单元用于对第二重组数据进行拆分发送至核心网设备和第二主机单元。
在其中一个实施例中,上述根据CPRI协议确定采用CPRI协议的上行数据中的数据合路位置,包括:
根据CPRI协议,确定采用CPRI协议的上行数据中的以太网数据字段的位置为数据合路位置。
在其中一个实施例中,上述以太网数据字段中包括CPRI协议的上行数据中的控制管理数据,上述将采用eCPRI协议的上行数据插入采用CPRI协议的上行数据中的数据合路位置, 包括:
将采用eCPRI协议的上行数据插入以太网数据字段中的控制管理数据之后。
第三方面,提供一种接入网设备,包括第一主机单元、远端单元,
第一主机单元,用于执行上述第一主机单元侧的信号处理方法;
远端单元,用于执行上述远端单元侧的信号处理方法。
第四方面,提供一种第一主机单元,包括高层协议处理模块和第一信号处理模块,
高层协议处理模块,用于接收核心网设备下发的第一下行基带数据,并对第一下行基带数据进行高层协议处理,得到高层协议处理后的下行基带数据;
第一信号处理模块,用于接收高层协议处理后的下行基带数据,得到第一下行基带数据;并接收来自于第二主机单元的第二下行基带数据,根据第二下行基带数据所采用的数据协议格式确定第二下行基带数据中的数据合路位置;以及将第一下行基带数据插入数据合路位置后,将得到的第一重组数据发送至远端单元;第一下行基带数据和第二下行基带数据所采用的数据协议格式不同;其中,远端单元用于对第一重组数据进行拆分后发送至对应的终端设备。
第五方面,提供一种远端单元,包括第二信号处理模块和低层协议处理模块,
第二信号处理模块,用于接收第一主机单元发送的第一重组数据,并对第一重组数据进行拆分后发送至对应的第二终端设备和低层协议处理模块;其中,第一重组数据为第一主机单元基于所确定的数据合路位置,将第一下行基带数据和第二下行基带数据进行合路处理得到的;数据合路位置为第一主机单元根据第二下行基带数据所采用的数据协议格式确定的,第一下行基带数据为核心网设备发送的,第二下行基带数据为第二主机单元发送的;第一下行基带数据和第二下行基带数据所采用的数据协议格式不同;
低层协议处理模块,用于对第一重组数据进行拆分后得到的数据进行低层协议处理,得到低层协议处理后的第一下行基带数据,并将低层协议处理后的第一下行基带数据发送至对应的第一终端设备。
第六方面,提供一种多制式接入网设备,包括上述接入网设备、第一主机单元、远端单元中的至少一项,以及第二主机单元。
上述信号处理方法、接入网设备及多制式接入网设备,通过第二下行基带数据的数据协议格式确定第一下行基带数据和第二下行基带数据的合路位置,并将第一下行基带数据直接插入到合路位置上,即可实现两种不同协议格式数据的同传,因此,该方法不需要对第一下行基带数据和第二下行基带数据进行解包和组包操作,即不需要对现有的主机单元进行改造就可实现两种不同协议格式数据的同传,从而可以降低接入网设备的硬件成本。
附图说明
图1为现有技术中集中单元和远端单元间功能分割选项示意图;
图2为现有技术中eREC和eRE间功能分割选项示意图;
图3为现有技术中的eCPRI支持的物理层内部功能分割选项示意图;
图4为一个实施例中多制式接入网设备的结构示意图;
图5a为一个实施例中第一主机单元侧的信号处理方法的流程示意图;
图5b为一个实施例中CPRI协议格式的结构示意图;
图6为另一个实施例中第一主机单元侧的信号处理方法的流程示意图;
图7为一个实施例中远端单元侧的信号处理方法的流程示意图;
图8为另一个实施例中远端单元侧的信号处理方法的流程示意图;
图9为一个实施例中第一主机单元的结构示意图;
图10为一个实施例中远端单元的结构示意图;
图11为一个实施例中多制式接入网设备的具体结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
随着移动通信的高速发展,5G时代已经来临,各运营商和设备商都在积极推进5G实验网络建设。在LTE时代,4G的基带处理单元和射频拉远单元之间采用通用公共无线接口(CPRI),CPRI接口为无线设备控制中心(REC)和无线设备(RE)提供了交换用户平台数据(IQ数据)、控制与管理信息、同步信息的规范与链路。在5G时代,由于大规模天线技术的加入,带宽急剧增加,前传架构的传输容量需求增大,因此3GPP协议规范提出了多种功能分割方式,并且将前传转为分组方式(Ethernet),不同功能分割方式下的前传容量降低程度有所不同,如图1所示,集中单元(CU)与远端单元(DU)之间可以采用多种分割方式,如RRC(无线资源控制协议)与PDCP(分组汇聚协议)之间、PDCP与RLC(无线链路控制协议)之间、RLC与MAC(物理网络地址)之间、MAC与PHY(物理层)之间、PHY内部等,它们所对应的CU功能逐渐增强,DU功能逐渐减弱,从而CU与DU接口上的前传容量需求逐渐增大,时延需求越来越小。为了支持5G前传,提出了eCPRI技术,eCPRI V1.0规范使用的是在物理层内部切分的方式,eCPRI接口支持灵活的功能分解,存在多种切割方式,目前标准支持在物理层内部的分割方式I D、II D、I U,如图2、图3所示,eCPRI接口采用分组化以太网接口,带宽与天线数解耦,以减小前传传输带宽。由此可见,如果5G前传网络采用物理层内部切分方式的eCPRI接口,旧有的4G前传网络架构无法做到4G、5G两种制式的兼容,那么为了实现不同数据协议格式的信号同传,就需要针对4G/5G双模室分系统改造,即需要对现有的接入网设备进行改造,或者重新部署新的接入网设备,以便满足不同数据协议格式的信号进行同传。可见现有技术存在接入网设备硬件成本较高的问题。因此,本申请实施例提供一种信号处理方法、接入网设备及多制式接入网设备,旨在解决上述技术问题。
本实施例提供的信号处理方法,可以应用于如图4所示的多制式接入网设备,该多制式接入网设备可以包括第一主机单元10和远端单元11组成的接入网设备,还可以包括第二主机单元12,第一主机单元10和第二主机单元12以及远端单元11连接,并通过网络与第二主机单元12以及远端单元11进行通信,另外,第一主机单元10可以与核心网设备连接,用于和核心网设备进行数据的收发。其中,第一主机单元10和第二主机单元12可以是基带处理单元BBU、集中单元CU、近端机等,远端单元11可以是射频拉远单元RRU、远端单元 DU、远端机等,与第一主机单元10连接的远端单元11的数量可以是一个或多个,与第一主机单元10连接的第二主机单元12的数量也可以是一个或多个。
另外,以第一主机单元10为例,第一主机单元10可以包括接口子系统、OAM(Operation Administration and Maintenance)子系统,以及RAN(Radio Access Network,无线接入网)协议栈子系统。其中,接口子系统实现CPRI数据包、eCPRI数据包等数据包的解析与封装,与远端单元11基于数据包进行数据传输;OAM子系统实现软件管理、配置管理以及故障管理、性能管理功能;RAN协议栈子系统可以包括:PHY-H子系统、MAC(Media Access Control,媒体介入控制层)层子系统、RLC层子系统、PDCP(Packet Data Convergence Protocol,分组数据汇聚协议层)子系统、SDAP(Service Data Adaptation Protocol,服务数据自适应协议层)子系统、调度器子系统、L3(Layer 3,层3)子系统等。示例性地,第一主机单元10可以通过服务器和FPGA(Field-Programmable Gate Array,现场可编程门阵列)等实现。第二主机单元12与第一主机单元10的功能和结构类似,这里不再赘述。
以远端单元11为例,远端单元一般可以包括数字中频模块、收发信机模块、功放和滤波模块,其中数字中频模块用于对从主机单元接收到的光信号进行调制解调、数字上下变频、A/D转换等,得到中频信号,收发信机模块用于完成中频信号到射频信号的变换,功放和滤波模块,用于将射频信号进行功率放大后通过天线口发射出去。需要说明的是,这里的远端单元11也可以包括射频转化模块,该射频转化模块可以将功放和滤波模块发送的不同制式的射频信号进行制式转化,然后再分发至对应制式的终端设备。
需要说明的是,本申请实施例的执行主体可以是接入网设备,也可以是接入网设备中的第一主机单元和远端单元,下面本申请实施例就分别以第一主机单元和远端单元作为执行主体从两侧对本申请的方法进行说明。
首先以第一主机单元为执行主体对本申请实施例的信号处理方法进行说明。
在一个实施例中,提供了一种信号处理方法,本实施例涉及的是在从第一主机单元到远端单元的下行过程中,第一主机单元如何确定数据合路位置,并将第一下行基带数据和第二下行基带数据根据合路位置合路后发送至远端单元的具体过程。如图5a所示,该方法可以包括以下步骤:
S202,第一主机单元接收核心网设备发送的第一下行基带数据。
在本步骤中,第一主机单元可以与核心网设备连接,接收来自网络之间互连的协议IP网络(核心网设备)下发的下行基带数据,第一主机单元可以与该核心网设备之间进行上/下行基带数据的传输,这里第一主机单元接收到的核心网设备下发的基带数据记为第一下行基带数据。
S204,第一主机单元接收来自于第二主机单元的第二下行基带数据,并根据第二下行基带数据所采用的数据协议格式确定第二下行基带数据中的数据合路位置;第一下行基带数据和第二下行基带数据所采用的数据协议格式不同。
其中,第二主机单元也可以与另一核心网设备连接,接收来自该另一核心网设备通过协议IP网络下发的下行基带数据,记为第二下行基带数据。这里与第一主机单元连接的核心网设备和与第二主机单元连接的核心网设备不同,可以是给对应主机单元发送的下行基带数据的协议格式不同,即第一下行基带数据和第二下行基带数据数据协议格式不同,也可以是给 对应主机单元发送的下行基带数据的制式不同,示例地,假设第一下行基带数据所采用的数据协议格式为eCPRI协议格式,第二下行基带数据所采用的数据协议格式可以是CPRI协议格式等,假设第一下行基带数据的制式为5G,第二下行基带数据的制式可以为4G、3G、2G等制式中的至少一种。
具体的,第一主机单元在接收到第二主机单元发送的第二下行基带数据后,同时可以得到第一下行基带数据所采用的数据协议格式以及第二下行基带数据所采用的数据协议格式,那么第一主机单元可以在第二下行基带数据的协议格式中找到和第一下行基带数据的数据协议格式相同的数据包的位置,并将该位置作为数据合路位置。
S206,第一主机单元将第一下行基带数据插入数据合路位置后,将得到的第一重组数据发送至远端单元;其中,远端单元用于对第一重组数据进行拆分后发送至对应的终端设备。
其中,第一主机单元对应的远端单元可以为一个或多个,若为多个,那么第一主机单元可以将第一重组数据同时发送给该多个远端单元,即每个远端单元接收到的数据都是相同的;每个远端单元对应的终端设备也可以是一个或多个,若为多个终端设备,那么每个终端设备能够接收的数据协议格式或制式可以相同,也可以不同,示例地,以制式为例,多个终端设备中可以有5G终端、4G终端、3G终端、2G终端等等。
具体的,第一主机单元在找到数据合路位置之后,可以将第一下行基带数据放入到第二下行基带数据的数据合路位置上,在放置时,可以是将第一下行基带数据放入第二下行基带数据在该数据合路位置上原本的数据之前,也可以放入第二下行基带数据在该数据合路位置上原本的数据之后,当然还可以是与第二下行基带数据在该数据合路位置上原本的数据进行穿插放置,甚至还可以是其他放置方式,本实施例对此不作具体限定。在将第一下行基带数据放入到第二下行基带数据中的数据合路位置上之后,就可以将该数据合路位置上的数据以及第二下行基带数据中除数据合路位置上的数据外的数据重新组合成新的基带数据,记为第一重组数据,该第一重组数据的数据协议格式为第二下行基带数据所采用的数据协议格式,这样就可以直接将第一重组数据通过原来的接口发送至第一主机单元对应的远端单元。远端单元在接收到第一重组数据后,就可以对第一重组数据进行拆分,拆分成第一下行基带数据的数据协议格式对应的下行数据,并发给与该数据协议格式对应的终端设备,以及拆分成第二下行基带数据的数据协议格式对应的下行数据,并发给与该数据协议格式对应的终端设备。
示例地,以第一主机单元5G制式的主机单元,第二主机单为4G制式的主机单元为例,在各主机单元和远端单元通信过程中,第一主机单元可以接收5G制式的基带数据,同时也可以接收4G制式的主机单元发送的4G制式的基带数据,然后第一主机单元可以从该4G制式的基带数据中确定数据合路位置,并将接收的5G制式的基带数据插入到该数据合路位置上,得到4G制式的基带数据和5G制式的基带数据重组后的4G制式的基带数据,之后第一主机单元可以将该重组后的4G制式的基带数据发送给远端单元,远端单元可以对该重组后的4G制式的基带数据进行拆分,拆出4G制式的基带数据和5G制式的基带数据,并将4G制式的基带数据发送给4G制式的终端,以及将5G制式的基带数据发送给5G制式的终端。在该通信过程中,可以看出,不需要对现有的第一主机单元和第二主机单元进行硬件改造,即可将4G制式的基带数据和5G制式的基带数据同时传输给远端单元,并通过远端单元分发给对应制式的终端,也就是说本方法不需要重新部署新的接入网设备,就可以实现4G和5G 两个不同制式数据的兼容,因此可以降低接入网设备的硬件成本。
上述信号处理方法中,通过第二下行基带数据的数据协议格式确定第一下行基带数据和第二下行基带数据的合路位置,并将第一下行基带数据直接插入到合路位置上,即可实现两种不同协议格式数据的同传,因此,该方法不需要对第一下行基带数据和第二下行基带数据进行解包和组包操作,即不需要对现有的主机单元进行改造就可实现两种不同协议格式数据的同传,从而可以降低接入网设备的硬件成本。
在另一个实施例中,提供了另一种信号处理方法,本实施例涉及的是若第一下行基带数据为采用eCPRI协议的下行数据,第二下行基带数据为采用CPRI协议的下行数据,那么第一主机单元如何根据第二下行基带数据所采用的数据协议格式确定第二下行基带数据中的数据合路位置的一种可能的实施方式。在上述实施例的基础上,上述S204可以包括以下步骤A:
步骤A,根据第二下行基带数据所采用的CPRI协议确定第二下行基带数据中的以太网数据字段的位置为数据合路位置。
在本实施例中,根据CPRI标准的定义,REC与Iub传输、无线基站控制和管理、数字基带处理有关,而RE模拟无线频率功能,如滤波、调制、频率转换和功率放大。CPRI定义物理层(Layer 1)和数据链路层(Layer 2)协议,协议结构如图5b所示,接口支持的信息流包括IQ数据、同步、层1带内协议、厂商特定信息、控制和管理数据(C&M)等,其中,IQ数据:用户平台信息所用的同相和正交调制下的数据(数字基带信号)格式;同步:用于帧和时间调整的同步数据;层1带内协议:与链路有关且直接被物理层传送的信号传输信息,用于系统启动、物理层链路维护和与物理层用户数据密切联系的时间关键信息的传输;厂商特定信息:这种信息流是为厂商特定信息保留的;控制和管理(C&M)数据被作为频带协议(时间关键信息化数据)或层3协议(非CPRI规范所定义,位于适当的数据链路层顶部)传送,一些附加的C&M数据与IQ数据一起定时多路传输,CPRI支持两种不同的用于C&M数据传送的数据链路层协议:高速数据链路控制(HDLC)的子集和以太网,基于HDLC信道的是慢速C&M数据,基于高数据速率以太网信道的快速C&M数据。
由上可知,第二下行基带数据中的快速C&M数据所在的信道为以太网信道,即以太网信道所对应的字段为以太网数据字段,而上述第一下行基带数据为eCPRI协议格式,一般都为以太网数据,且采用II D/I U切分方式,那么就可以将第一下行基带数据直接放入到第二下行基带数据的以太网信道中,即将第二下行基带数据中的以太网信道的位置确定为数据合路位置。
在找到数据合路位置后,可选的,以太网数据字段中包括第二下行基带数据中的控制管理数据,那么可以将第一下行基带数据插入以太网数据字段中的控制管理数据之后。也就是说,在找到第二下行基带数据的以太网信道之后,可以将第一下行基带数据直接放置到该以太网信道中的快速C&M数据之后,这里的第一下行基带数据也可以称为eCPRI数据包,该eCPRI数据包和快速C&M数据一块组成类C&M数据,该类C&M数据和第二下行基带数据中的其他数据(例如I/Q数据、同步等)一块重组,得到第一重组数据。
本实施例提供的信号处理方法,若第一下行基带数据为采用eCPRI协议的下行数据,第二下行基带数据为采用CPRI协议的下行数据,那么可以根据第二下行基带数据所采用的 CPRI协议确定第二下行基带数据中的以太网数据字段的位置为数据合路位置。在本实施例中,由于可以直接确定以太网数据字段的位置为数据合路位置,而第一下行基带数据为以太网数据包,这样可以便于后续快速将第一下行基带数据直接放入该以太网数据字段的位置中,提高整体信号处理的效率。
在一个实施例中,提供了另一种信号处理方法,本实施例涉及的是在从远端单元到第一主机单元的上行过程中,第一主机单元如何对远端单元发送的重组数据进行拆分,并将拆分后的数据发送至对应的核心网设备和第二主机单元的具体过程。在上述实施例的基础上,如图6所示,上述方法方法还可以包括以下步骤:
S302,第一主机单元接收远端单元发送的第二重组数据;其中,第二重组数据为远端单元将采用eCPRI协议的上行数据与采用CPRI协议的上行数据进行合路得到的。
其中,第二重组数据中可以包括至少一组采用eCPRI协议的上行数据与至少一组采用CPRI协议的上行数据,其中的采用eCPRI协议的上行数据使用的是II D/I U切分方式,该采用eCPRI协议的上行数据可以是采用eCPRI协议的终端设备发送给远端单元的,采用CPRI协议的上行数据可以是采用CPRI协议的终端设备发送给远端单元的;远端单元在对采用eCPRI协议的上行数据与采用CPRI协议的上行数据进行合路时,也可以采用与上述步骤A相同的方式,在采用CPRI协议的上行数据中找到以太网数据字段的位置,并将采用eCPRI协议的上行数据插入到太网字段的位置中的控制管理数据之后,得到基于CPRI协议格式的第二重组数据。
具体的,第一主机单元与远端单元之间可以是采用CPRI接口连接,那么远端单元在得到基于CPRI协议格式的第二重组数据之后,就可以将该基于CPRI协议格式的第二重组数据通过第一主机单元与远端单元之间的CPRI接口发送给第一主机单元。
S304,第一主机单元根据第二重组数据中的以太网数据字段的位置以及采用eCPRI协议的上行数据的数据长度,拆分第二重组数据,得到发送给核心网设备的第一上行基带数据和发送给第二主机单元的第二上行基带数据。
在本步骤中,可选的,若上述以太网数据字段的位置包括以太网数据字段的起始位置,则上述拆分第二重组数据可以包括如下步骤B1和B2:
步骤B1,第一主机单元根据第二重组数据中的以太网数据字段的起始位置以及以太网数据字段中的控制管理数据的长度,得到采用eCPRI协议的上行数据的起始位置。
步骤B2,根据采用eCPRI协议的上行数据的起始位置和采用eCPRI协议的上行数据的数据长度,拆分第二重组数据,得到发送给核心网设备的第一上行基带数据和发送给第二主机单元的第二上行基带数据。
具体的,这里以太网数据字段中的控制管理数据指的是上述提到的快速C&M数据,以太网数据字段的起始位置即快速C&M数据的起始位置,在第一主机单元接收到第二重组数据之后,就可以找到第二重组数据中快速C&M数据的起始位置,同时远端单元在接收到采用CPRI协议的上行数据后,也可得到该采用CPRI协议的上行数据中的快速C&M数据的数据内容,通过对该快速C&M数据的数据内容进行解析,就可以得到快速C&M数据的长度,同时远端单元会把该快速C&M数据的长度发送给第一主机单元,第一主机单元就可以在以 太网信道中,从快速C&M数据的起始位置开始,往后数快速C&M数据的长度,之后得到的位置就是采用eCPRI协议的上行数据的起始位置。示例地,假设快速C&M数据的起始位置为1,快速C&M数据的长度为5,那么从位置1开始往后数5位,得到的位置6就是采用eCPRI协议的上行数据的起始位置。
接着,上述远端单元在接收采用eCPRI协议的上行数据后,也可以得到该采用eCPRI协议的上行数据的数据长度,然后也可以把该采用eCPRI协议的上行数据的数据长度发送给第一主机单元,第一主机单元就可以基于该采用eCPRI协议的上行数据的数据长度,并结合上述得到采用eCPRI协议的上行数据的起始位置,对第二重组数据进行拆分,拆分时可以是从采用eCPRI协议的上行数据的起始位置开始,往后数该采用eCPRI协议的上行数据的数据长度,把这一部分数据从第二重组数据中拆开,得到第一上行基带数据,发送给核心网设备,同时第一主机单元可以将第二重组数据中除采用eCPRI协议的上行数据外的数据进行组合,得到第二基带数据,并将第二基带数据发送给第二主机单元。
本实施例提供的信号处理方法,在从远端单元到第一主机单元的上行过程中,第一主机单元可以接收远端单元发送的第二重组数据,并根据第二重组数据中的以太网数据字段的位置以及采用eCPRI协议的上行数据的数据长度,拆分第二重组数据,得到发送给核心网设备的第一上行基带数据和发送给第二主机单元的第二上行基带数据,其中,第二重组数据为远端单元将采用eCPRI协议的上行数据与采用CPRI协议的上行数据进行合路得到的。在本实施例中,由于第一主机单元可以接收两种不同协议格式的第二重组数据,并通过以太网数据字段的位置以及采用eCPRI协议的上行数据的数据长度,直接对上行第二重组数据进行拆分,而不需要对现有的第一主机单元的硬件进行改造即可实现两种不同协议格式的数据的同传和拆分,因此该方法可以降低接入网设备的硬件成本。
接下来以远端单元为执行主体对本申请实施例的信号处理方法进行说明。
在一个实施例中,提供了一种信号处理方法,本实施例涉及的是在从第一主机单元到远端单元的下行过程中,远端单元接收第一主机单元发送的第一重组数据,并将第一重组数据拆分后发送至对应的终端设备的具体过程。如图7所示,该方法可以包括以下步骤:
S402,远端单元接收第一主机单元发送的第一重组数据,其中,第一重组数据为第一主机单元基于所确定的数据合路位置,将第一下行基带数据和第二下行基带数据进行合路处理得到的;数据合路位置为第一主机单元根据第二下行基带数据所采用的数据协议格式确定的,第一下行基带数据为核心网设备发送的,第二下行基带数据为第二主机单元发送的;第一下行基带数据和第二下行基带数据所采用的数据协议格式不同。
在本步骤中,与上述S202-S206对应,第一主机单元可以根据第二主机单元发送的第二下行基带数据的数据协议格式,确定数据合路位置,并利用该数据合路位置对核心网设备发送的第一下行基带数据和第二主机单元发送的第二下行基带数据进行合路,得到第一重组数据,并将该第一重组数据通过第一主机单元和远端单元之间的接口发送给远端单元,这样远端单元就可以接收到第一重组数据。
S404,远端单元对第一重组数据进行拆分后发送至对应的终端设备。
具体的,与上述S206对应,远端单元在接收到第一重组数据后,就可以对第一重组数据 进行拆分,拆分成第一下行基带数据的数据协议格式对应的下行数据,并发给与该数据协议格式对应的终端设备,以及拆分成第二下行基带数据的数据协议格式对应的下行数据,并发给与这里的数据协议格式对应的终端设备。
本实施例提供的信号处理方法,由于通过根据第二下行基带数据的数据协议格式确定的第一下行基带数据和第二下行基带数据的合路位置,可以将第一下行基带数据直接插入到合路位置上,即可实现两种不同协议格式数据的同传,因此,该方法不需要对第一下行基带数据和第二下行基带数据进行解包和组包操作,即不需要对现有的主机单元和远端单元进行硬件改造就可实现两种不同协议格式数据的同传和拆分,从而可以降低接入网设备的硬件成本。
在另一个实施例中,提供了另一种信号处理方法,本实施例涉及的是若第一下行基带数据为采用eCPRI协议的下行数据,第二下行基带数据为采用CPRI协议的下行数据,那么远端单元如何对第一重组数据进行拆分的一种可能的实施方式。在上述实施例的基础上,上述S404可以包括以下步骤D:
步骤D,远端单元根据第一重组数据中的以太网数据字段的位置以及采用eCPRI协议的下行数据的数据长度,对第一重组数据进行拆分。
在本步骤中,可选的,若上述以太网数据字段中包括第二下行基带数据中的控制管理数据,那么可以根据第一重组数据中的以太网数据字段的位置和以太网数据字段中的控制管理数据,以及采用eCPRI协议的下行数据的数据长度,对第一重组数据进行拆分。
具体的,与上述S304对第二重组数据的拆分方式对应,这里对第一重组数据进行拆分,第一主机单元在接收到第一下行基带数据,即接收到采用eCPRI协议的下行数据时,也可以得到该采用eCPRI协议的下行数据的数据长度,并将该采用eCPRI协议的下行数据的数据长度发送给远端单元,同时第一主机单元也可以根据第二下行基带数据,即采用CPRI协议的下行数据,得到其中以太网数据字段的位置,该以太网数据字段的位置包括以太网数据字段的起始位置,以太网数据字段的起始位置就是快速C&M数据的起始位置,同时也可以对以太网数据字段中的快速C&M数据进行数据解析,得到快速C&M数据的长度,并将该快速C&M数据的长度一并发送给远端单元,那么远端单元在接收到第一重组数据、采用eCPRI协议的下行数据的数据长度、快速C&M数据的起始位置、快速C&M数据的长度之后,就可以在第一重组数据中,从快速C&M数据的起始位置开始,往后数快速C&M数据的长度,得到采用eCPRI协议的下行数据的起始位置,并从该采用eCPRI协议的下行数据的起始位置开始,往后数该采用eCPRI协议的下行数据的数据长度,把这一部分数据从第一重组数据中拆开,得到第一下行基带数据的数据协议格式对应的下行数据,并发给与该数据协议格式对应的终端设备,以及得到第二下行基带数据的数据协议格式对应的下行数据,并发给与该数据协议格式对应的终端设备。
本实施例提供的信号处理方法,在从第一主机单元到远端单元的下行过程中,远端单元可以根据第一重组数据中的以太网数据字段的位置以及采用eCPRI协议的下行数据的数据长度,对第一重组数据进行拆分。在本实施例中,由于远端单元可以通过以太网数据字段的位置以及采用eCPRI协议的下行数据的数据长度,直接对第一重组数据拆分,而不需要对现有的远端单元的硬件进行改造即可实现两种不同协议格式的数据的同传和拆分,因此该方法可 以降低接入网设备的硬件成本。
在另一个实施例中,提供了另一种信号处理方法,本实施例涉及的是在从远端单元到第一主机单元的上行过程中,远端单元如何确定数据合路位置,并将采用eCPRI协议的上行数据和采用CPRI协议的上行数据根据数据合路位置合路后发送至第一主机单元的具体过程。如图8所示,该方法还可以包括以下步骤:
S502,远端单元接收采用eCPRI协议的上行数据和采用CPRI协议的上行数据,并根据CPRI协议确定采用CPRI协议的上行数据中的数据合路位置。
在本步骤中,与上述步骤A确定下行基带数据中的数据合路位置相对应,这里对上行数据中的数据合路位置进行确定。可选的,远端单元可以根据CPRI协议,确定采用CPRI协议的上行数据中的以太网数据字段的位置为数据合路位置。该采用CPRI协议的上行数据的协议结构和图5b相同,那么远端单元可以得到该采用CPRI协议的上行数据中的快速C&M数据所在的信道为以太网信道,对应的字段为以太网数据字段,这里的采用eCPRI协议的上行数据为以太网数据,且采用II D/I U切分方式,那么就可以将采用eCPRI协议的上行数据直接放入到采用CPRI协议的上行数据的以太网信道中,即将采用CPRI协议的上行数据的以太网信道的位置确定为这里上行的数据合路位置。
S504,远端单元将采用eCPRI协议的上行数据插入采用CPRI协议的上行数据中的数据合路位置后,将得到的第二重组数据发送至第一主机单元;其中,第一主机单元用于对第二重组数据进行拆分发送至核心网设备和第二主机单元。
在本步骤中,可选的,若上述以太网数据字段中包括CPRI协议的上行数据中的控制管理数据,那么就可以将采用eCPRI协议的上行数据插入以太网数据字段中的控制管理数据之后。也就是说,在找到采用CPRI协议的上行数据的以太网信道之后,可以将采用eCPRI协议的上行数据直接放置到该上行以太网信道中的快速C&M数据之后,然后将采用eCPRI协议的上行数据和上行以太网信道中的快速C&M数据组成类C&M数据,该类C&M数据和采用CPRI协议的上行数据中的其他数据(例如I/Q数据、同步等)一块重组,得到第二重组数据,该第二重组数据的数据协议格式为CPRI协议格式,这样远端单元就可以直接将第二重组数据通过原来的接口发送至对应的第一主机单元。
第一主机单元在接收到第二重组数据后,就可以对第二重组数据进行拆分,拆分成eCPRI协议的上行数据,并发给与该eCPRI协议格式对应的核心网设备,以及拆分成CPRI协议的上行数据,并发给与该CPRI协议格式对应的第二主机单元。
本实施例提供的信号处理方法,在从远端单元到第一主机单元的上行过程中,远端单元接收采用eCPRI协议的上行数据和采用CPRI协议的上行数据,并根据CPRI协议确定采用CPRI协议的上行数据中的数据合路位置,以及将采用eCPRI协议的上行数据插入采用CPRI协议的上行数据中的数据合路位置后,将得到的第二重组数据发送至第一主机单元,第一主机单元对第二重组数据进行拆分发送至核心网设备和第二主机单元。在本实施例中,由于通过CPRI协议格式直接可以确定CPRI上行数据和eCPRI上行数据的合路位置,并将eCPRI上行数据直接插入到合路位置上,即可在远端单元上实现两种不同协议格式数据的同传,因此,该方法不需要对CPRI上行数据和eCPRI上行数据进行解包和组包操作,即不需要对现 有的远端单元进行硬件改造就可实现两种不同协议格式数据的同传,从而可以降低接入网设备的硬件成本。
应该理解的是,虽然图5a、6-8的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图5a、6-8中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,提供了一种第一主机单元10,参见图9所示,包括高层协议处理模块101和第一信号处理模块102,
高层协议处理模块101,用于接收核心网设备下发的第一下行基带数据,并对第一下行基带数据进行高层协议处理,得到高层协议处理后的下行基带数据;
第一信号处理模块102,用于接收高层协议处理后的下行基带数据,得到第一下行基带数据;并接收来自于第二主机单元的第二下行基带数据,根据第二下行基带数据所采用的数据协议格式确定第二下行基带数据中的数据合路位置;以及将第一下行基带数据插入数据合路位置后,将得到的第一重组数据发送至远端单元;第一下行基带数据和第二下行基带数据所采用的数据协议格式不同;其中,远端单元用于对第一重组数据进行拆分后发送至对应的终端设备。
继续参见图9所示,上述第一主机单元10还可以包括网络协议处理模块103和上层协议处理模块104,其中:
网络协议处理模块103,用于在下行时,接收来自核心网设备基于网络之间互联的协议IP网络发送的下行基带数据,并对该协议IP网络发送的下行基带数据进行网络协议转化,得到网络协议转换后的下行基带数据,并发送至上层协议处理模块104;以及在上行时,对经过上层协议处理模块104处理后的上行数据进行网络协议转化,得到网络协议转换后的上行数据,并发送至核心网设备;
上层协议处理模块104,用于接收网络协议处理模块103发送的网络协议转换后的下行基带数据,并对该网络协议转换后的下行基带数据进行上层协议处理,得到上层协议处理后的下行基带数据,并发送至上述高层协议处理模块101进行处理;以及在上行时,对高层协议处理模块101处理后的上行数据进行上行协议处理,得到上层协议处理后的上行数据,并发送至网络协议处理模块103;
上述高层协议处理模块101,用于在上行时对第一信号处理模块102发送的第一上行基带数据进行高层协议处理,得到上行基带数据,记为高层协议处理模块处理后的上行数据,并发送至上层协议处理模块104;
上述第一信号处理模块102,用于在上行时,接收远端单元发送的第二重组数据;该第二重组数据为远端单元将采用eCPRI协议的上行数据与采用CPRI协议的上行数据进行合路得到的,并根据第二重组数据中的以太网数据字段的位置以及采用eCPRI协议的上行数据的数据长度,拆分第二重组数据,得到第一上行基带数据和第二上行基带数据,并将第一上行 基带数据发送给高层协议处理模块101,将第二上行基带数据发送至第二主机单元。
本实施例的第一主机单元,其中的信号处理模块通过第二下行基带数据的数据协议格式确定第一下行基带数据和第二下行基带数据的合路位置,并将第一下行基带数据直接插入到合路位置上,即可实现两种不同协议格式数据的同传,因此,不需要对第一下行基带数据和第二下行基带数据进行解包和组包操作,即不需要对现有的第一主机单元进行改造就可实现两种不同协议格式数据的同传,从而可以降低接入网设备的硬件成本。
在一个实施例中,提供了一种远端单元11,参见图10所示,包括第二信号处理模块111和低层协议处理模块112,
第二信号处理模块111,用于接收第一主机单元发送的第一重组数据,并对第一重组数据进行拆分后发送至对应的第二终端设备和低层协议处理模块;其中,第一重组数据为第一主机单元基于所确定的数据合路位置,将第一下行基带数据和第二下行基带数据进行合路处理得到的;数据合路位置为第一主机单元根据第二下行基带数据所采用的数据协议格式确定的,第一下行基带数据为核心网设备发送的,第二下行基带数据为第二主机单元发送的;第一下行基带数据和第二下行基带数据所采用的数据协议格式不同;
低层协议处理模块112,用于对第一重组数据进行拆分后得到的数据进行低层协议处理,得到低层协议处理后的第一下行基带数据,并将低层协议处理后的第一下行基带数据发送至对应的第一终端设备。
继续参见图10所示,上述远端单元11还可以包括组解包模块113,该组解包模块113,用于在下行时将低层协议处理后的第一下行基带数据转化成CPRI格式的第一下行基带数据;以及在上行时,将采用CPRI协议的上行数据转化成采用eCPRI协议的上行数据,并发送至低层协议处理模块112;
上述低层协议处理模块112,还用于在上行时对组解包模块113发送的采用eCPRI协议的上行数据进行低层协议处理,得到低层协议处理后的采用eCPRI协议的上行数据,并发送至第二信号处理模块111;
上述第二信号处理模块111,还用于在上行时接收低层协议处理后的采用eCPRI协议的上行数据和采用CPRI协议的上行数据,并根据CPRI协议确定采用CPRI协议的上行数据中的数据合路位置,以及将采用eCPRI协议的上行数据插入采用CPRI协议的上行数据中的数据合路位置后,将得到的第二重组数据发送至第一主机单元;其中,第一主机单元用于对第二重组数据进行拆分发送至核心网设备和第二主机单元。
本实施例的远端单元,其中的信号处理模块通过根据第二下行基带数据的数据协议格式确定第一下行基带数据和第二下行基带数据的合路位置,可以将第一下行基带数据直接插入到合路位置上,即可实现两种不同协议格式数据的同传,因此,不需要对第一下行基带数据和第二下行基带数据进行解包和组包操作,即不需要对现有的远端单元进行硬件改造就可实现两种不同协议格式数据的同传,从而可以降低接入网设备的硬件成本。
在一个实施例中,提供了一种接入网设备,包括上述第一主机单元10和上述远端单元11。
在一个实施例中,提供了一种多制式接入网设备,参见图11所示,包括上述主机单元10和上述远端单元11、第二主机单元12、终端设备13。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种信号处理方法,其特征在于,所述方法包括:
    第一主机单元接收核心网设备发送的第一下行基带数据;
    所述第一主机单元接收来自于第二主机单元的第二下行基带数据,并根据所述第二下行基带数据所采用的数据协议格式确定所述第二下行基带数据中的数据合路位置;所述第一下行基带数据和所述第二下行基带数据所采用的数据协议格式不同;
    所述第一主机单元将所述第一下行基带数据插入所述数据合路位置后,将得到的第一重组数据发送至远端单元;其中,所述远端单元用于对所述第一重组数据进行拆分后发送至对应的终端设备。
  2. 根据权利要求1所述的信号处理方法,其特征在于,所述第一下行基带数据为采用eCPRI协议的下行数据,所述第二下行基带数据为采用CPRI协议的下行数据,所述根据所述第二下行基带数据所采用的数据协议格式确定所述第二下行基带数据中的数据合路位置,包括:
    根据所述第二下行基带数据所采用的CPRI协议确定所述第二下行基带数据中的以太网数据字段的位置为所述数据合路位置。
  3. 根据权利要求2所述的信号处理方法,其特征在于,所述以太网数据字段中包括第二下行基带数据中的控制管理数据,所述将所述第一下行基带数据插入所述数据合路位置,包括:
    将所述第一下行基带数据插入所述以太网数据字段中的控制管理数据之后。
  4. 根据权利要求3所述的信号处理方法,其特征在于,所述方法还包括:
    所述第一主机单元接收所述远端单元发送的第二重组数据;其中,所述第二重组数据为所述远端单元将采用eCPRI协议的上行数据与采用CPRI协议的上行数据进行合路得到的;
    所述第一主机单元根据所述第二重组数据中的以太网数据字段的位置以及所述采用eCPRI协议的上行数据的数据长度,拆分所述第二重组数据,得到发送给所述核心网设备的第一上行基带数据和发送给所述第二主机单元的第二上行基带数据。
  5. 根据权利要求4所述的信号处理方法,其特征在于,所述以太网数据字段的位置包括所述以太网数据字段的起始位置,所述第一主机单元根据所述第二重组数据中的以太网数据字段的位置以及所述采用eCPRI协议的上行数据的数据长度,拆分所述第二重组数据,得到发送给所述核心网设备的第一上行基带数据和发送给所述第二主机单元的第二上行基带数据,包括:
    所述第一主机单元根据所述第二重组数据中的以太网数据字段的起始位置以及所述以太网数据字段中的控制管理数据的长度,得到所述采用eCPRI协议的上行数据的起始位置;
    根据所述采用eCPRI协议的上行数据的起始位置和所述采用eCPRI协议的上行数据的数据长度,拆分所述第二重组数据,得到发送给所述核心网设备的第一上行基带数据和发送给所述第二主机单元的第二上行基带数据。
  6. 一种信号处理方法,其特征在于,包括:
    远端单元接收第一主机单元发送的第一重组数据,其中,所述第一重组数据为所述第一主机单元基于所确定的数据合路位置,将第一下行基带数据和第二下行基带数据进行合路处理得到的;所述数据合路位置为所述第一主机单元根据第二下行基带数据所采用的数据协议格式确定的,所述第一下行基带数据为所述核心网设备发送的,所述第二下行基带数据为第二主机单元发送的;所述第一下行基带数据和所述第二下行基带数据所采用的数据协议格式不同;
    所述远端单元对所述第一重组数据进行拆分后发送至对应的终端设备。
  7. 根据权利要求6所述的信号处理方法,其特征在于,所述第一下行基带数据为采用eCPRI协议的下行数据,所述第二下行基带数据为采用CPRI协议的下行数据,所述远端单元对所述第一重组数据进行拆分,包括:
    所述远端单元根据所述第一重组数据中的以太网数据字段的位置以及所述采用eCPRI协议的下行数据的数据长度,对所述第一重组数据进行拆分。
  8. 根据权利要求7所述的信号处理方法,其特征在于,所述以太网数据字段中包括第二下行基带数据中的控制管理数据,所述根据所述第一重组数据中的以太网数据字段的位置以及所述采用eCPRI协议的下行数据的数据长度,对所述第一重组数据进行拆分,包括:
    根据所述第一重组数据中的以太网数据字段的位置和所述以太网数据字段中的控制管理数据,以及所述采用eCPRI协议的下行数据的数据长度,对所述第一重组数据进行拆分。
  9. 根据权利要求8所述的信号处理方法,其特征在于,所述方法还包括:
    所述远端单元接收采用eCPRI协议的上行数据和采用CPRI协议的上行数据,并根据所述CPRI协议确定所述采用CPRI协议的上行数据中的数据合路位置;
    所述远端单元将所述采用eCPRI协议的上行数据插入所述采用CPRI协议的上行数据中的数据合路位置后,将得到的第二重组数据发送至所述第一主机单元;其中,所述第一主机单元用于对所述第二重组数据进行拆分发送至核心网设备和第二主机单元。
  10. 根据权利要求9所述的信号处理方法,其特征在于,所述根据所述CPRI协议确定所述采用CPRI协议的上行数据中的数据合路位置,包括:
    根据所述CPRI协议,确定所述采用CPRI协议的上行数据中的以太网数据字段的位置为所述数据合路位置。
  11. 根据权利要求10所述的信号处理方法,其特征在于,所述以太网数据字段中包括 CPRI协议的上行数据中的控制管理数据,所述将所述采用eCPRI协议的上行数据插入所述采用CPRI协议的上行数据中的数据合路位置,包括:
    将所述采用eCPRI协议的上行数据插入所述以太网数据字段中的控制管理数据之后。
  12. 一种接入网设备,包括第一主机单元、远端单元,其特征在于,
    所述第一主机单元,用于执行权利要求1至5中任一项所述的方法的步骤;
    所述远端单元,用于执行权利要求6至11中任一项所述的方法的步骤。
  13. 一种第一主机单元,包括高层协议处理模块和第一信号处理模块,其特征在于,
    所述高层协议处理模块,用于接收核心网设备下发的第一下行基带数据,并对所述第一下行基带数据进行高层协议处理,得到高层协议处理后的下行基带数据;
    所述第一信号处理模块,用于接收所述高层协议处理后的下行基带数据,得到第一下行基带数据;并接收来自于第二主机单元的第二下行基带数据,根据所述第二下行基带数据所采用的数据协议格式确定所述第二下行基带数据中的数据合路位置;以及将所述第一下行基带数据插入所述数据合路位置后,将得到的第一重组数据发送至远端单元;所述第一下行基带数据和所述第二下行基带数据所采用的数据协议格式不同;其中,所述远端单元用于对所述第一重组数据进行拆分后发送至对应的终端设备。
  14. 一种远端单元,包括第二信号处理模块和低层协议处理模块,其特征在于,
    所述第二信号处理模块,用于接收第一主机单元发送的第一重组数据,并对所述第一重组数据进行拆分后发送至对应的第二终端设备和所述低层协议处理模块;其中,所述第一重组数据为所述第一主机单元基于所确定的数据合路位置,将第一下行基带数据和第二下行基带数据进行合路处理得到的;所述数据合路位置为所述第一主机单元根据第二下行基带数据所采用的数据协议格式确定的,所述第一下行基带数据为所述核心网设备发送的,所述第二下行基带数据为第二主机单元发送的;所述第一下行基带数据和所述第二下行基带数据所采用的数据协议格式不同;
    所述低层协议处理模块,用于对所述第一重组数据进行拆分后得到的数据进行低层协议处理,得到低层协议处理后的第一下行基带数据,并将所述低层协议处理后的第一下行基带数据发送至对应的第一终端设备。
  15. 一种多制式接入网设备,其特征在于,包括权利要求12所述的接入网设备,以及所述第二主机单元。
PCT/CN2020/094771 2020-03-09 2020-06-05 信号处理方法、接入网设备及多制式接入网设备 WO2021179453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010156932.0 2020-03-09
CN202010156932.0A CN111372287B (zh) 2020-03-09 2020-03-09 信号处理方法、接入网设备及多制式接入网设备

Publications (1)

Publication Number Publication Date
WO2021179453A1 true WO2021179453A1 (zh) 2021-09-16

Family

ID=71210473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094771 WO2021179453A1 (zh) 2020-03-09 2020-06-05 信号处理方法、接入网设备及多制式接入网设备

Country Status (2)

Country Link
CN (1) CN111372287B (zh)
WO (1) WO2021179453A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007280A (zh) * 2021-11-01 2022-02-01 深圳市佳贤通信设备有限公司 一种5g和4g双模2t2r基站信号射频接收发射系统
CN114466470A (zh) * 2021-12-27 2022-05-10 华为技术有限公司 信号处理设备及数据传输方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111372287B (zh) * 2020-03-09 2021-09-28 京信网络系统股份有限公司 信号处理方法、接入网设备及多制式接入网设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130170353A1 (en) * 2010-08-27 2013-07-04 Huawei Technologies Co., Ltd. Method and Apparatus for Transmitting Baseband Signals
CN105430666A (zh) * 2015-11-02 2016-03-23 中国联合网络通信集团有限公司 一种小区接入的方法及光纤分布系统
CN109982338A (zh) * 2019-03-26 2019-07-05 广州开信通讯系统有限公司 多制式数字光纤分布系统、利用其对下行链路、上行链路进行信号覆盖的方法
CN111372287A (zh) * 2020-03-09 2020-07-03 京信通信技术(广州)有限公司 信号处理方法、接入网设备及多制式接入网设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014190512A1 (zh) * 2013-05-29 2014-12-04 华为技术有限公司 数据传输的方法、装置、设备及基站
CN105682106B (zh) * 2014-11-18 2019-01-18 中国移动通信集团上海有限公司 一种多制式兼容的室内覆盖设计方法及装置
CN107103543B (zh) * 2016-02-23 2021-03-30 平安科技(深圳)有限公司 协议数据处理方法和系统
CN107360142B (zh) * 2017-06-26 2019-10-08 京信通信系统(中国)有限公司 基于cpri架构的多制式混合组网传输系统及传输方法
CN108965345B (zh) * 2018-09-30 2021-09-07 武汉斗鱼网络科技有限公司 一种小信令网络数据包的优化方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130170353A1 (en) * 2010-08-27 2013-07-04 Huawei Technologies Co., Ltd. Method and Apparatus for Transmitting Baseband Signals
CN105430666A (zh) * 2015-11-02 2016-03-23 中国联合网络通信集团有限公司 一种小区接入的方法及光纤分布系统
CN109982338A (zh) * 2019-03-26 2019-07-05 广州开信通讯系统有限公司 多制式数字光纤分布系统、利用其对下行链路、上行链路进行信号覆盖的方法
CN111372287A (zh) * 2020-03-09 2020-07-03 京信通信技术(广州)有限公司 信号处理方法、接入网设备及多制式接入网设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007280A (zh) * 2021-11-01 2022-02-01 深圳市佳贤通信设备有限公司 一种5g和4g双模2t2r基站信号射频接收发射系统
CN114466470A (zh) * 2021-12-27 2022-05-10 华为技术有限公司 信号处理设备及数据传输方法

Also Published As

Publication number Publication date
CN111372287A (zh) 2020-07-03
CN111372287B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2021179453A1 (zh) 信号处理方法、接入网设备及多制式接入网设备
JP7186868B2 (ja) サービスデータの伝送方法及びその装置、コンピュータ機器並びにコンピュータプログラム
US6873611B2 (en) Multiprotocol WLAN access point devices
KR101909038B1 (ko) 이동통신 시스템에서 단말의 성능을 보고하는 방법 및 장치
US11134415B2 (en) Method and apparatus for processing PDCP control data in system supporting high-reliability low-latency service
CN112425202A (zh) 下一代移动通信系统中分类和处理sdap控制pdu的方法及相关装置
WO2018202102A1 (zh) 数据传输方法及通信设备
US20110090840A1 (en) Communication system for removing transmission overhead
WO2021232568A1 (zh) 无线局域网收发数据的方法、终端和系统及网络接入设备
JP2004506382A (ja) 無線通信システム
US11477306B2 (en) Wireless communication methods and devices
WO2014180339A1 (zh) 远端射频单元、基带单元和分布式基站
US20210352522A1 (en) Method and device for transmitting and receiving data in wireless communication system
KR20200017282A (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
US20200374962A1 (en) Communication method, first terminal device, and second terminal device
US20220394606A1 (en) Methods and Apparatus for Flexible Aggregation of Communications Channels
CN111585906A (zh) 一种面向工业互联网的低时延自适应数据分流传输方法
CN112567881A (zh) 在下一代移动通信系统中支持无丢失的pdcp版本改变的方法和设备
US8050219B2 (en) Logical protocol architecture for wireless metropolitan area networks
JPWO2019087395A1 (ja) 基地局装置、端末装置、無線通信システム及び接続設定方法
CN114885039A (zh) 一种数据传输方法、装置及存储介质
JP6156843B2 (ja) 無線通信方法、そのシステムおよび無線基地局
WO2021062717A1 (zh) 一种缓冲区状态报告传输方法及装置
WO2017193313A1 (zh) 数字单元、无线单元、基站及数据传输方法
KR20050089700A (ko) 광대역 무선 접속 시스템에서 호환성 있는 매체 접근 제어확장 헤더 사용 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20924344

Country of ref document: EP

Kind code of ref document: A1