WO2021197352A1 - 一种远端单元和传输信息的方法 - Google Patents
一种远端单元和传输信息的方法 Download PDFInfo
- Publication number
- WO2021197352A1 WO2021197352A1 PCT/CN2021/084155 CN2021084155W WO2021197352A1 WO 2021197352 A1 WO2021197352 A1 WO 2021197352A1 CN 2021084155 W CN2021084155 W CN 2021084155W WO 2021197352 A1 WO2021197352 A1 WO 2021197352A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frame
- module
- signal
- remote unit
- channel
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 96
- 230000005540 biological transmission Effects 0.000 title claims abstract description 59
- 238000001514 detection method Methods 0.000 claims abstract description 66
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims description 45
- 230000015654 memory Effects 0.000 claims description 35
- 238000005538 encapsulation Methods 0.000 claims description 31
- 238000012549 training Methods 0.000 claims description 30
- 238000006243 chemical reaction Methods 0.000 claims description 21
- 238000004590 computer program Methods 0.000 claims description 14
- 238000010586 diagram Methods 0.000 description 20
- 230000006870 function Effects 0.000 description 16
- 230000008569 process Effects 0.000 description 15
- 238000004891 communication Methods 0.000 description 14
- 238000013461 design Methods 0.000 description 7
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000009432 framing Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000006837 decompression Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 230000010363 phase shift Effects 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0808—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
- H04W74/0816—Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/06—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
- H04W28/065—Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information using assembly or disassembly of packets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/085—Access point devices with remote components
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the field of communication technology of the present application particularly relates to a remote unit and a method for transmitting information.
- the distributed architecture can coordinate multiple distributed nodes in space, which can avoid the problems of excessively large and complex single devices, and can also make full use of spatial multiplexing and diversity gains.
- Easy to expand and deploy flexibly it is especially suitable for high-traffic areas such as shopping malls, airports, stations, etc. to increase capacity. It can also improve coverage quality for areas where signals are difficult to reach, such as corporate headquarters, office buildings, or underground parking lots.
- a distributed architecture In a distributed architecture, the complete functions of a traditional access point (Access Point, referred to as AP) are divided into two, and are deployed in a distributed manner in a central unit (Center Unit, referred to as CU) and a remote unit (Remote Unit, referred to as RU). Because the CU and RU are distributed devices and are no longer in a tightly coupled relationship, when data is transmitted in downlink or received in uplink, there is a round-trip delay of several microseconds between the RU and the CU. In the WiFi scenario, there are unique delay constraints such as Carrier Sense Multiple Access with Collision Avoid (CSMA/CA) delay constraints.
- CSMA/CA Carrier Sense Multiple Access with Collision Avoid
- the device In the process of channel competition, the device first waits for a fixed random back-off time (Arbitration Inter-Frame Spacing, AIFS). During this period, if the detection channel remains idle, it enters the random backoff phase (backoff phase, including N) Time of the time slot). In each time slot (slot), it will detect whether the channel is free. When the backoff reaches the end of the last slot, if the Clear Channel Assessment (CCA) module detects that the channel is free, it will end in the last slot. At the boundary, information transmission must be initiated.
- AIFS Arbitr Inter-Frame Spacing
- the CCA module, the Media Access Control (Media Access Control, abbreviated) processing module, and the baseband module are set on the CU side.
- the CCA can notify the MAC processing module after detecting that the channel is idle.
- the MAC processing module performs MAC transmission processing and generates the information to be sent, and then sends it to the baseband module.
- the baseband module generates a digital baseband in-phase quadrature (IQ) signal based on the information to be sent and outputs it to the RU side.
- the RU side sends the information to the external device, and during this sending process, the RU needs to exchange information with the CU. There will be a certain round-trip delay in these information interactions, causing the RU side to send information to the external device when the time cannot meet the CSMA/CA. Delay constraints, and the competing channels may also be occupied by other devices, causing information transmission failure.
- the technical problem to be solved by the embodiments of the present application is to provide a remote unit and a method for transmitting information to meet the CSMA/CA delay constraint in a WiFi scenario and ensure the normal transmission of information.
- an embodiment of the present application provides a remote unit, which may include:
- Idle channel assessment CCA module used to perform carrier sense multiple access/collision avoidance CSMA/CA channel detection when competing for channels, and determine the busy and idle status of the channel;
- the signal generator is used to send a channel occupancy signal at the end boundary of the last time slot in which channel detection is performed when the CCA module determines that the channel is idle.
- the signal generator sends the channel-occupied signal to occupy the channel, which can buy time for the central unit side to generate and transmit the information to be sent, and ensure that the channel is not competed by other devices under the premise of meeting the CSMA/CA delay constraint , Thus avoiding competition and interference from other devices, and realizing the normal transmission of information.
- the remote unit further includes:
- the media access control MAC proxy module is used to receive the channel contention message sent by the central unit, forward the channel contention message to the CCA module, receive the channel contention result output by the CCA module and send it to the central unit.
- the MAC proxy function for message forwarding can be provided between the central unit and the remote unit to ensure the normal transmission of specific information between the two.
- the remote unit further includes:
- the radio frequency module is configured to send an 802.11 frame through the channel occupied by the signal generator, and the 802.11 frame contains the digital baseband in-phase quadrature IQ signal generated by the central unit.
- the remote unit further includes:
- the first encapsulation module is used to encapsulate the signal sent by the remote unit to the central unit;
- the first decapsulation module is configured to perform decapsulation processing on the signal sent by the central unit to the remote unit.
- the first decapsulation module is specifically configured to receive and decapsulate the encapsulated data message sent by the central unit to obtain the digital baseband contained in the data message.
- the remote unit can be informed of the sending start point and the sending end point of the 802.11 frame, so that it can be used in conjunction with the signal generator to stop the signal generator from sending the channel occupancy signal and start to transmit the 802.11 frame by using the sending start point. And stop sending the 802.11 frame at the end of the transmission, so as to realize the normal transmission of the signal.
- the signal generator is further configured to stop the transmission of the channel occupation signal at the transmission starting point.
- the radio frequency module is further configured to stop sending the 802.11 frame at the sending end point.
- the MAC proxy module is further configured to control the signal generator according to the channel contention result or the control word obtained by decapsulation by the first decapsulation module.
- the signal transmitted between the remote unit and the central unit is a digital baseband frequency domain IQ signal
- the remote unit further includes:
- Fast Fourier Transform/Inverse Fast Fourier Transform FFT/IFFT module used to perform Fast Fourier Transform/Inverse Fast Fourier Transform processing on the 802.11 frames received by the radio frequency module to complete the 802.11 frame from Time domain to frequency domain conversion, obtaining the long training domain LTF field and the content of the following fields in the converted 802.11 frame and sending it to the first encapsulation module, and the first encapsulation module is also used for the long training domain LTF
- the content of the field and the following fields are encapsulated and sent to the central unit, and the signal SIG field in the converted 802.11 frame is obtained and sent to the SIG detection module;
- the SIG detection module is configured to demodulate and decode the SIG field, complete the format detection of the 802.11 frame, and send the decoding result to the first encapsulation module, and the first encapsulation module also It is used to encapsulate the decoding result and send it to the central unit.
- the digital baseband frequency domain IQ signal can be transmitted between the two, and the SIG detection can be completed on the remote unit side to realize the first and first AGC. Second adjustment.
- the signal transmitted between the remote unit and the central unit is a digital baseband time domain IQ signal
- the remote unit further includes:
- the synchronization module is used to detect the validity and start boundary of the 802.11 frame, and perform frame synchronization and symbol synchronization on the 802.11 frame;
- the first decapsulation module is also configured to receive the encapsulated decoding result sent by the central unit, and send it to the automatic gain control AGC adjustment module after decapsulation; the decoding result is processed by the central unit to the 802.11 FFT/IFFT conversion is performed on the frame, the SIG field in the 802.11 frame is obtained and the SIG detection is performed;
- the automatic gain control AGC adjustment module is configured to generate an automatic gain control command according to the decoding result
- the AGC module is used to receive the automatic gain control command, perform automatic gain control on the signal power of the 802.11 frame, and adjust the power of the signal input to the digital-to-analog/analog-to-digital converter.
- the digital baseband time domain IQ signal can be transmitted between the two, and by adding the AGC adjustment module on the remote unit side, the translation of the SIG detection module can be obtained.
- the control of the AGC module can be realized, the AGC adjustment command can be generated, and the first and second/third AGC adjustments can be completed.
- the synchronization module is specifically configured to instruct the AGC module to perform the first step on the signal power of the 802.11 frame when the L-STF field of the traditional short training field is detected in the 802.11 frame.
- the decoding result is the traditional signal domain L-SIG field of the 802.11 frame and the decoding result of the first three orthogonal frequency division multiplexing OFDM symbols after the L-SIG field obtained by the central unit;
- the AGC adjustment module is specifically configured to run a local AGC state machine according to the decoding result when the decoding result meets a preset condition, and generate a second automatic gain control command or a third automatic gain control command.
- the embodiments of the present application provide a method for transmitting information, which may include:
- the remote unit performs carrier sense multiple access/conflict avoiding CSMA/CA channel detection when competing for channels, and determines the busy and idle status of the channel;
- the channel occupancy signal is sent at the end boundary of the last time slot in which channel detection is performed.
- the method further includes:
- the remote unit receives the channel contention message sent by the central unit
- the channel contention result is sent to the central unit, where the central unit is connected to the remote unit.
- the method further includes:
- the remote unit sends an 802.11 frame by sending the channel occupied by the channel occupation signal, and the 802.11 frame includes the digital baseband in-phase quadrature IQ signal generated by the central unit.
- the method further includes:
- the remote unit encapsulates the signal sent by the remote unit to the central unit;
- the remote unit decapsulates the signal sent by the central unit to the remote unit.
- the method further includes:
- the remote unit receives and decapsulates the encapsulated data message sent by the central unit, and obtains the digital baseband IQ signal and control word contained in the data message, and the control word is used to indicate all The sending start point and the sending end point of the 802.11 frame carried in the data message.
- the method further includes:
- the remote unit stops the transmission of the channel occupation signal at the transmission starting point.
- the method further includes:
- the remote unit stops sending the 802.11 frame at the sending end point.
- the method further includes:
- the remote unit controls whether to send the channel occupation signal according to the channel contention result or the control word obtained by decapsulation.
- the signal transmitted between the remote unit and the central unit is a digital baseband frequency domain IQ signal
- the method further includes:
- the remote unit performs fast Fourier transform/inverse fast Fourier transform processing on the received 802.11 frame, completes the conversion of the 802.11 frame from the time domain to the frequency domain, and obtains the long training in the converted 802.11 frame
- the contents of the field LTF field and the following fields are encapsulated and sent to the central unit, and the signal SIG field in the converted 802.11 frame is obtained, and the SIG field is demodulated and decoded to complete the 802.11 frame
- the format is detected, and the decoding result is sent to the central unit.
- the signal transmitted between the remote unit and the central unit is a digital baseband time domain IQ signal
- the method further includes:
- the remote unit detects the validity and start boundary of the 802.11 frame, and performs synchronization
- the encapsulated decoding result sent by the central unit is received, and the decoding result is obtained after decapsulation; the central unit performs FFT/IFFT conversion on the 802.11 frame to obtain the 802.11 frame.
- the SIG field in the frame is obtained after performing SIG detection;
- automatic gain control is performed on the signal power of the 802.11 frame, and the power of the signal input to the digital-analog/analog-to-digital converter is adjusted.
- the remote unit detects the traditional short training field L-STF field in the 802.11 frame, it performs the first automatic gain control on the signal power of the 802.11 frame;
- the decoding result is the traditional signal domain L-SIG field of the 802.11 frame and the decoding result of the first three orthogonal frequency division multiplexing OFDM symbols after the L-SIG field obtained by the central unit;
- the remote unit runs a local AGC state machine according to the decoding result to generate a second automatic gain control or third automatic gain control command.
- an access point which may include:
- the remote unit includes:
- Idle channel assessment CCA module used to perform carrier sense multiple access/collision avoidance CSMA/CA channel detection when competing for channels, and determine the busy and idle status of the channel;
- a signal generator configured to send a channel occupancy signal at the end boundary of the last time slot in which channel detection is performed when the CCA module determines that the channel is idle;
- the central unit includes:
- the media access control MAC processing module is used to generate a channel contention message and send it to the CCA module, receive the channel contention result sent by the CCA module, and perform MAC transmission processing and MAC reception processing; for example, in downlink transmission, After receiving the channel contention result, it sends MAC to generate the information to be sent, and sends the information to be sent to the baseband module, instructing the baseband module to generate and output digital baseband in-phase quadrature IQ signals; when receiving uplink, receive the information from the baseband module Output information and perform MAC receiving processing;
- the baseband module is responsible for the generation, transmission and reception processing of digital baseband IQ signals, including baseband transmission channels and baseband reception channels. In the downstream direction, it receives commands and data from the MAC processing module to generate and output digital baseband IQ signals; in the upstream direction, the digital baseband IQ signals are received and processed, and then sent to the MAC processing module.
- the baseband module can be divided into:
- Baseband transmission channel used to send digital baseband IQ signals
- the baseband receiving channel is used to receive digital baseband IQ signals.
- the remote unit further includes:
- the radio frequency module is configured to send an 802.11 frame through the channel occupied by the signal generator, and the 802.11 frame contains the digital baseband IQ signal generated by the baseband module.
- a radio frequency signal can be used for transmission; for example, in downlink transmission, the digital baseband IQ signal is transmitted through D/A digital-to-analog conversion and up-conversion through the channel occupied by the signal generator.
- the digital baseband IQ signal can also be used to receive radio frequency signals, which are subsequently converted into the digital baseband IQ signal through down-conversion and A/D analog-to-digital conversion.
- the central unit further includes:
- the first encapsulation module is configured to encapsulate the signal sent by the central unit to the remote unit;
- the first decapsulation module is configured to perform decapsulation processing on the signal sent by the remote unit to the central unit;
- the remote unit further includes:
- the second encapsulation module is used to encapsulate the signal sent by the remote unit to the central unit;
- the second decapsulation module is configured to perform decapsulation processing on the signal sent by the central unit to the remote unit.
- the first encapsulation module is specifically configured to encapsulate the digital baseband IQ signal into a data message, add a control word and output it, wherein the control word is used to indicate the data The sending start point and the sending end point of the 802.11 frame carried in the message;
- the second decapsulation module is specifically configured to decapsulate the data message to obtain the digital baseband IQ signal and the control word.
- the signal generator is further configured to stop the sending of the channel occupation signal at the sending start point according to the sending start point of the 802.11 frame obtained by the second decapsulation module .
- the radio frequency module is further configured to stop sending the 802.11 frame at the sending end point.
- the remote unit further includes:
- the MAC proxy module is configured to receive the channel contention message sent by the central unit, forward the channel contention message to the CCA module, receive the channel contention result output by the CCA module, and send the central unit;
- the MAC proxy module is further configured to control the signal generator according to the channel contention result or the control word obtained by the second decapsulation module.
- the signal transmitted between the remote unit and the central unit is a digital baseband frequency domain IQ signal
- the remote unit further includes:
- Fast Fourier Transform/Inverse Fast Fourier Transform FFT/IFFT module used to perform Fast Fourier Transform/Inverse Fast Fourier Transform processing on the 802.11 frames received by the radio frequency module to complete the 802.11 frame from Time domain to frequency domain conversion, obtain the long training domain LTF field and the content of the following fields in the converted 802.11 frame, and send them to the second encapsulation module, and the second encapsulation module is also used for the long training domain LTF
- the content of the field and the following fields are encapsulated and sent to the central unit, and the signal SIG field in the converted 802.11 frame is obtained and sent to the SIG detection module;
- the SIG detection module is configured to demodulate and decode the SIG field, complete the format detection of the 802.11 frame, and send the decoding result to the second encapsulation module, the second encapsulation module It is also used to encapsulate the decoding result and send it to the central unit.
- the signal transmitted between the remote unit and the central unit is a digital baseband time domain IQ signal
- the central unit further includes:
- Fast Fourier Transform/Inverse Fast Fourier Transform FFT/IFFT module used to perform Fast Fourier Transform/Inverse Fast Fourier Transform processing on the 802.11 frames received from the remote unit to complete the 802.11 Frame conversion from time domain to frequency domain, obtain the SIG field in the converted 802.11 frame and send it to the SIG detection module;
- the SIG detection module is configured to demodulate and decode the SIG field, complete the format detection of the 802.11 frame, and send the decoding result to the first encapsulation module, and the first encapsulation module also For encapsulating the decoding result and sending it to the remote unit;
- the remote unit further includes:
- the synchronization module is used to detect the validity and start boundary of the 802.11 frame, and perform frame synchronization and symbol synchronization on the 802.11 frame;
- the automatic gain control AGC adjustment module is used to obtain the decoding result after the second decapsulation module of the remote unit decapsulates the encapsulated decoding result, and generate an automatic Command for gain control;
- the AGC module is used to receive the automatic gain control command, perform automatic gain control on the signal power of the 802.11 frame, and adjust the power of the signal input to the digital-to-analog/analog-to-digital converter.
- the synchronization module is specifically configured to instruct the AGC module to perform the first step on the signal power of the 802.11 frame when the L-STF field of the traditional short training field is detected in the 802.11 frame.
- the SIG detection module is specifically configured to obtain the traditional signal domain L-SIG field of the 802.11 frame and the decoding results of the first three orthogonal frequency division multiplexing OFDM symbols after the L-SIG field, and combine all Sending the decoding result to the AGC adjustment module;
- the AGC adjustment module is specifically configured to run the local AGC state machine according to the decoding result to generate the second automatic gain control or the third automatic gain control command.
- an embodiment of the present application provides a method for transmitting information, which may include:
- the remote unit of the access point performs carrier sense multiple access/collision avoiding CSMA/CA channel detection when competing for channels, and determines the busy and idle status of the channel;
- the remote unit When it is determined that the channel is idle, the remote unit sends a channel occupancy signal at the end boundary of the last time slot in which channel detection is performed;
- the central unit of the access point After receiving the channel contention result, the central unit of the access point generates and outputs a digital baseband in-phase quadrature IQ signal;
- the remote unit sends the digital baseband IQ signal through the channel occupied by the signal generator.
- the method further includes:
- the central unit encapsulates the digital baseband IQ signal into a data message, adds a control word and outputs it, wherein the control word is used to indicate the transmission start point and the transmission end point of the 802.11 frame carried in the data message ;
- the remote unit decapsulates the data message to obtain the digital baseband IQ signal and the control word.
- the method further includes:
- the remote unit stops the transmission of the channel occupation signal at the transmission starting point according to the transmission starting point of the 802.11 frame obtained by decapsulation.
- the method further includes:
- the remote unit stops sending the 802.11 frame at the sending end point.
- the method before the remote unit performs CCA detection, the method further includes:
- the method further includes:
- the remote unit sends the channel contention result to the central unit, and controls whether to send the channel occupation symbol according to the channel contention result or the control word obtained by decapsulation.
- the signal transmitted between the remote unit and the central unit is a digital baseband frequency domain IQ signal
- the method further includes:
- the remote unit performs fast Fourier transform/inverse fast Fourier transform processing on the received 802.11 frame, completes the conversion of the 802.11 frame from the time domain to the frequency domain, and obtains the long training in the converted 802.11 frame
- the contents of the field LTF field and the following fields are encapsulated, and the contents of the encapsulated LTF field and the following fields are sent to the central unit, and the signal SIG field in the converted 802.11 frame is obtained and the SIG field is decoded.
- Decoding complete detection of the format of the 802.11 frame, and encapsulate the decoding result and send it to the central unit.
- the signal transmitted between the remote unit and the central unit is a digital baseband time domain IQ signal
- the method further includes:
- the remote unit sends the 802.11 frame to the central unit
- the central unit performs fast Fourier transform/inverse fast Fourier transform processing on the 802.11 frame, completes the conversion of the 802.11 frame from the time domain to the frequency domain, obtains the SIG field in the converted 802.11 frame, and corrects
- the SIG field is demodulated and decoded, the format detection of the 802.11 frame is completed, and the decoded result is encapsulated and sent to the remote unit;
- the remote unit detects the start boundary of the 802.11 frame, obtains the decoding result through decapsulation, and generates an automatic gain control command according to the decoding result; according to the automatic gain control command, the The signal power of the 802.11 frame performs automatic gain control to adjust the power of the signal input to the digital-to-analog/analog-to-digital converter.
- the remote unit when the remote unit detects the start boundary of the 802.11 frame, if it weakly detects the L-STF field of the traditional short training field in the 802.11 frame, it indicates that it is The signal power of the frame performs the first automatic gain control;
- the local AGC After obtaining the decoding result of the traditional signal domain L-SIG field of the 802.11 frame and the first three orthogonal frequency division multiplexing OFDM symbols after the L-SIG field, the local AGC is run according to the decoding result
- the state machine After obtaining the decoding result of the traditional signal domain L-SIG field of the 802.11 frame and the first three orthogonal frequency division multiplexing OFDM symbols after the L-SIG field, the local AGC is run according to the decoding result
- the state machine After obtaining the decoding result of the traditional signal domain L-SIG field of the 802.11 frame and the first three orthogonal frequency division multiplexing OFDM symbols after the L-SIG field, the local AGC is run according to the decoding result
- the state machine After obtaining the decoding result of the traditional signal domain L-SIG field of the 802.11 frame and the first three orthogonal frequency division multiplexing OFDM symbols after the L-SIG field, the local AGC is run according to the decoding result
- an embodiment of the present application provides a remote unit, which may include:
- a processor, a memory, and a bus The processor and the memory are connected by a bus, wherein the memory is used to store a set of program codes, and the processor is used to call the program codes stored in the memory to execute as in the second aspect Or the method of any one of the second aspect.
- an embodiment of the present application provides a device.
- the device provided in the present application has the function of realizing the behavior of the remote unit in the above method, and it includes means for executing the steps or functions described in the above method.
- the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
- the foregoing device includes one or more processors and communication units.
- the one or more processors are configured to support the device to perform corresponding functions of the remote unit in the above method.
- the device may further include one or more memories, where the memory is used for coupling with the processor and stores necessary program instructions and/or data for the device.
- the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
- the device may be a router, a switch, a computer or an intelligent terminal, etc.
- the communication unit may be a transceiver, or a transceiver circuit.
- the transceiver may also be an input/output circuit or interface.
- the device may also be a communication chip.
- the communication unit may be an input/output circuit or interface of a communication chip.
- the above device includes a transceiver, a processor, and a memory.
- the processor is used to control the transceiver or the input/output circuit to send and receive signals
- the memory is used to store a computer program
- the processor is used to run the computer program in the memory, so that the device executes any of the second aspect or the second aspect It is possible to implement the method performed by the remote unit in the mode.
- a system which includes an access point composed of the above remote unit and a central unit, and a station.
- a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the second aspect or the method in any one of the possible implementation manners of the second aspect.
- a computer program product comprising: computer program code, which when the computer program code runs on a computer, causes the computer to execute any one of the above-mentioned second aspect or the second aspect The method in the possible implementation mode.
- FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
- FIG. 2 is a schematic diagram of the architecture composition of a remote unit and a central unit provided by an embodiment of the application;
- FIG. 3 is a schematic flowchart of a method for transmitting information according to an embodiment of this application.
- FIG. 5 is a schematic diagram of a time sequence of an RU sending a channel occupation signal according to an embodiment of the application
- FIG. 6 is a schematic diagram of a time sequence of another RU sending a channel occupation signal according to an embodiment of the application
- FIG. 7 is a schematic diagram of fields received and processed on the RU side and the CU side in different frame formats according to an embodiment of the application;
- FIG. 8 is a schematic diagram of another architecture composition of a remote unit and a central unit provided by an embodiment of the application.
- FIG. 9 is a schematic flowchart of a method for AGC adjustment provided by an embodiment of the application.
- FIG. 10 is a schematic diagram of the second/third time sequence of AGC adjustment when receiving 802.11 frames of different formats according to an embodiment of the application;
- FIG. 11 is a schematic flowchart of an AGC adjustment provided by an embodiment of this application.
- FIG. 12 is a schematic diagram of the composition of another remote unit provided by an embodiment of the application.
- FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
- FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
- FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
- FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of this application.
- only one central unit and three remote units are shown in the architecture shown in FIG.
- the communication between the central unit and the remote unit is illustrated as an example. It is understandable that in actual scenarios, the situation of one or more remote units may also be included.
- the embodiments of this application do not make any limitation.
- an AP serves multiple stations (Stations, STAs for short) within the coverage area, and different APs work at the same frequency or different frequency points, and all STAs/APs compete for access channels in a CSMA/CA manner.
- the complete functions of the traditional AP are divided into two, and they are distributed in the central unit and the remote unit.
- FIG. 1 under the architecture shown in FIG. 1, it is composed of a central unit 10, a number of remote units 20, and a number of sites 30.
- the central unit 10 and the remote unit 20 form an access point of a distributed design, which is a device that can be a wireless local area network (Wireless Local Area Network, WLAN for short) user terminal 30 to access the network. It can be a communication server, router, switch, network bridge, computer, mobile phone, etc.
- WLAN Wireless Local Area Network
- the remote unit 20 can communicate with the site 30.
- the site 30 can also be a user terminal.
- the user terminal can also be called a mobile terminal, terminal device, user equipment, etc., which can be a computer, a mobile phone, a tablet computer, a handheld device, an augmented reality (AR) device, and a virtual device.
- Virtual Reality referred to as VR equipment, machine type communication terminal or other equipment that can be connected to the network.
- the station 30 is located within the signal coverage area of the remote unit 20.
- it can send data to the remote unit 20, and the remote unit 20 sends data to the central unit 10 for baseband processing; during downlink transmission , The central unit 10 can send the data to the remote unit 20, and then the remote unit 20 sends the data to the site 30.
- analog signal and digital signal There are two forms of signal transmission between the central unit 10 and the remote unit 20: analog signal and digital signal.
- the analog signal remote methods mainly include RF remote and IF remote:
- the so-called remote radio frequency refers to that the antenna and radio frequency module (including the radio frequency front-end power amplifier) are in the remote unit 20, and the other parts are in the central unit 10, and the radio frequency is remote in the manner of coaxial cable.
- the disadvantage is that as the radio frequency increases, the loss of the coaxial cable increases, so the long distance is limited.
- the so-called remote intermediate frequency refers to that the antenna and the radio frequency module (including the radio frequency front-end power amplifier and the radio frequency transceiver) are in the remote unit 20, and the others are in the central unit 10, and the distance is carried out in the manner of an Ethernet twisted pair. Since the remote unit 20 part needs to perform complex analog domain signal equalization and filtering, it is difficult to reduce the cost.
- the third method of using digital signals for remote transmission is usually the baseband remote transmission method of optical fiber or Ethernet twisted pair. In this way, baseband data can be transmitted over a long distance without signal attenuation.
- this application designs an architecture based on digital baseband IQ signal remote control in a WiFi scenario.
- the central unit 10 and the remote unit 20 are distributed devices and are no longer in a tightly coupled relationship, there is a round trip delay of several microseconds between the remote unit 2 and the central unit 10 when data is transmitted in downlink or received in uplink.
- the WiFi scenario is different from cellular communication, and has its unique delay constraints. Therefore, when considering the division of functions, it is necessary to design a digital baseband remote program and a method of transmitting messages that meet the WiFi timing requirements.
- FIG. 2 is a schematic diagram of the architecture composition of a remote unit and a central unit provided by an embodiment of the application. As shown in FIG. 2, in a distributed design access point composed of RU and CU:
- the RU side can mainly include the following parts:
- Radio frequency module used to send/receive radio frequency signals.
- the digital baseband IQ signal is converted into an analog signal through digital-to-analog, and is up-converted to the radio frequency band, and then sent out through the radio frequency module;
- the received wireless analog radio frequency signal is down-converted to the baseband through the radio frequency module , And converted to digital signal through analog-to-digital.
- AD/DA Digital-to-analog/analog-to-digital converter
- the Digital Front End (DFE for short) of the transceiver is located between AD/DA and the digital baseband, acting as a bridge.
- the DFE includes components that process baseband signals of various channels and provide up-conversion digital signals in the digital domain; in the receiver, the DFE includes components that process Radio Frequency (RF) demodulation digital signals.
- RF Radio Frequency
- the Clear Channel Assessment (CCA) module is used to perform carrier sense multiple access/collision avoidance (CSMA/CA) channel detection when competing for channels to determine the busy and idle status of the channel.
- CSMA/CA carrier sense multiple access/collision avoidance
- the signal generator is used to send a channel occupancy signal at the end boundary of the last time slot in which channel detection is performed when the CCA module determines that the channel is idle.
- the Media Access Control (MAC) proxy module is used to receive the channel contention message sent by the central unit, forward the channel contention message to the CCA module, receive the channel contention result output by the CCA module, and Send to the central unit.
- MAC Media Access Control
- the synchronization (SYNC) module is used to detect the validity and start boundary of the received 802.11 frame, and perform frame synchronization and symbol synchronization on the 802.11 frame.
- Frame synchronization specifically refers to detecting whether the 802.11 frame has arrived and determining the starting position of the 802.11 frame to achieve relatively rough time synchronization in signal processing;
- symbol synchronization refers to accurately determining each orthogonal frequency division in the 802.11 frame Multiplexing (Orthogonal Frequency Division Multiplexing, OFDM for short) symbol boundaries to achieve relatively fine time synchronization in signal processing.
- the timing positioning basis for signal processing can be provided for subsequent related modules. For example, field positions can be determined after synchronization, field types can be detected, and related fields can be demodulated and decoded.
- the synchronization module can also be used to instruct the Automatic Gain Control (AGC) module to perform the first AGC adjustment.
- AGC Automatic Gain Control
- the AGC module is used to perform automatic gain control on the signal power of the received 802.11 frame, and adjust the power of the signal input to the digital-to-analog/analog-to-digital converter.
- FFT/IFFT Fast Fourier Transform/Inverse Fast Fourier Transform
- the inverse transformation process is to complete the conversion of the 802.11 frame from the time domain to the frequency domain, and obtain the field content contained in the converted 802.11 frame. For example, obtaining the contents of the Short Training Field (Short Training Field, abbreviation) LTF field and the following fields in the converted 802.11 frame and sending it to the central unit, and obtaining the signal (Signal, abbreviation) in the converted 802.11 frame SIG) field and sent to the SIG detection module.
- Short Training Field Short Training Field, abbreviation
- the LTF field here can also be described as an X-LTF field corresponding to various formats, which may be a traditional Long Training Field (L-LTF) field; in more application scenarios now and in the future, It may also be the LTF under the higher version of the 802.11 protocol, such as the High Throughput Long Training Field (HT-LTF), and the Very High Throughput Long Training Field (HT-LTF) for short.
- VHT-LTF High Efficient Long Training Field
- EHT-LTF Extremely Throughout Long Training Field
- X-LTF will be collectively referred to in this application.
- the SIG detection module is used to demodulate and decode the SIG field in the 802.11 frame to complete the format detection of the 802.11 frame. And send the decoding result to the central unit. According to the decoding result, the AGC module is instructed to perform the second AGC adjustment.
- the first encapsulation module is used to encapsulate the signal sent by the remote unit to the central unit; for example, the channel contention result sent by the remote unit to the central unit, the X-LTF field in the 802.11 frame, and thereafter
- the first encapsulation module may include a first framing sub-module and a first compression sub-module, the first framing sub-module is used to perform framing processing of 802.11 frames on the received signal, and the first compression sub-module is used To compress the received signal.
- the first decapsulation module is used to decapsulate the signal sent by the central unit to the remote unit, for example, the channel contention message, data message, and the central unit sent by the central unit to the remote unit perform SIG detection Decoding results at the time, etc.
- the first decapsulation module may include a first deframing submodule and a first decompression submodule, the first deframing submodule is used to deframe the received 802.11 frame, and the first decompression submodule Used to decompress the received signal.
- the MAC proxy module is also configured to control the signal generator according to the channel contention result or the control word obtained by the decapsulation of the first decapsulation module.
- the signal generator is further configured to stop the transmission of the channel occupation signal at the transmission starting point according to the transmission starting point of the 802.11 frame obtained by the first decapsulation module.
- the signal processing and flow direction mainly involved on the RU side include:
- the CU sends a channel contention message to the RU to let the RU start channel contention.
- the first decapsulation module of the RU receives the channel contention message sent by the central unit, and outputs it to the MAC proxy module of the RU through decapsulation.
- the MAC proxy module receives the channel contention message, informs the CCA module to start channel detection, obtains the channel busy/idle status from the CCA module, and obtains the channel contention message result, the MAC proxy module outputs the channel contention message result to the encapsulation module for encapsulation, and then sends it to The central unit reports the result of the channel contention message.
- the main signal flow on the RU side is: central unit-first decapsulation module-MAC proxy module-CCA module-MAC proxy module-first encapsulation module-central unit.
- the MAC agent After the MAC agent obtains the channel contention result, it sends a control command to the signal generator, which controls the signal generator to send the channel occupation signal.
- the first decapsulation module After the first decapsulation module obtains the sending start point of the data message, it notifies the MAC proxy module, the MAC proxy module sends a control command to the signal generator, and the signal generator stops sending the channel occupation signal.
- the main signal flow on the RU side is: central unit-first decapsulation module-MAC proxy module-signal generator.
- the Fast Fourier Transform/Inverse Fast Fourier Transform (FFT/IFFT) module When the Fast Fourier Transform/Inverse Fast Fourier Transform (FFT/IFFT) module receives an 802.11 frame, it will pass the X-LTF field after FFT and the content of the following fields (such as X-LTF IQ, Data IQ, The digital baseband frequency domain IQ format) is sent to the first packaging module for packaging, and then sent to the CU via the PHY interface for remote transmission.
- FFT/IFFT Fast Fourier Transform/Inverse Fast Fourier Transform
- the main signal flow on the RU side is: RU's DFE receiver-FFT/IFFT module-first encapsulation module.
- the signal flow on the RU side is: RU DFE receiver-FFT/IFFT module-SIG detection module.
- the signal flow on the RU side is: FFT/IFFT module-SIG detection module-first encapsulation module -Central unit.
- the first decapsulation module decapsulates to obtain the digital baseband frequency domain IQ data, and sends it to the FFT/IFFT module to complete the conversion from the frequency domain to the time domain.
- the signal flow on the RU side is: central unit-first decapsulation module-FFT/IFFT module-RU's DFE transmitter.
- the CU side can mainly include the following parts:
- the MAC processing module is used to generate a channel contention message and send it to the CCA module, receive the channel contention result sent by the CCA module, and perform MAC transmission processing and MAC reception processing; for example, in downlink transmission, when channel competition is received After the result, MAC transmission is performed to generate the information to be sent, and the information to be sent is sent to the baseband module, and the baseband module is notified to generate a digital baseband IQ signal and output; when receiving the uplink, receive the output information from the baseband module, and perform MAC receiving processing ;
- Baseband module responsible for the generation, transmission and reception processing of digital baseband IQ signals, including baseband transmission channels and baseband reception channels. In the downstream direction, it receives commands and data from the MAC processing module to generate and output digital baseband IQ signals; in the upstream direction, the digital baseband IQ signals are received and processed, and then sent to the MAC processing module.
- the baseband module can be specifically divided into: baseband transmission channel, used to send digital baseband IQ signals; baseband receiving channel, used to receive digital baseband IQ signals.
- the second encapsulation module is used to encapsulate the signals sent from the CU side, such as possible channel contention messages, data messages, and decoding results when the central unit performs SIG detection.
- the central unit may include a second framing sub-module and a second compression sub-module.
- the second decapsulation module is used to decapsulate the received signal, such as the possible received channel contention result, the content of the X-LTF field and subsequent fields in the 802.11 frame, and the decoding result of the SIG field.
- the first decapsulation module may include a second deframing sub-module and a second decompression sub-module.
- the signal transmitted between the remote unit and the central unit is a digital baseband frequency domain IQ signal.
- the access point needs to send information to the station, because the CCA module for channel contention is located on the RU side, the information to be sent is generated
- the MAC processing module and the baseband module that generates the digital baseband IQ signal according to the information to be sent are all located on the CU side.
- the feedback of the channel contention result, the information to be sent, the generation and transmission of the digital baseband IQ signal all require time, so it will not be able to meet CSMA/ The delay constraint of CA. Therefore, in this application, a method of transmitting information as shown in Figure 3 can be used for information transmission, which may specifically include the following steps:
- the remote unit performs carrier sense multiple access/collision avoidance (CSMA/CA) channel detection when competing for a channel, and determines the busy and idle state of the channel;
- CSMA/CA carrier sense multiple access/collision avoidance
- the channel occupation signal can be a single tone signal, which can occupy the channel by means of energy detection; the channel occupation signal can also be the traditional short training field (L-STF) field of the 802.11 frame, that is, the 802.11 frame
- L-STF short training field
- the preamble part can occupy the channel through signal detection of a specific signal type.
- Fig. 4 is another method for transmitting information provided in this embodiment of the application, which specifically includes the following steps:
- S401 The central unit sends a channel contention message to the remote unit.
- the remote unit performs carrier sense multiple access/collision avoidance (CSMA/CA) channel detection when competing for a channel, and determines the busy and idle state of the channel.
- CSMA/CA carrier sense multiple access/collision avoidance
- S405 The central unit generates a digital baseband IQ signal, encapsulates it into a data message, and adds a control word.
- S406 The central unit sends the data message to the remote unit.
- the remote unit decapsulates the data message, and obtains a digital baseband IQ signal and a control word, where the control word is used to indicate the transmission start point and the transmission end point of the 802.11 frame carried in the data message.
- the remote unit stops sending the channel occupation signal according to the sending start point of the 802.11 frame in the control word;
- the remote unit sends the digital baseband IQ signal generated by the central unit in the form of an 802.11 frame by sending the channel occupied by the channel occupation signal, and stops sending the 802.11 frame according to the sending end point of the 802.11 frame in the control word.
- step S404 the specific timing diagram of sending the channel occupation signal can be seen in Figure 5.
- the CCA detects that the channel is busy (CCA BUSY)
- CCA BUSY CCA BUSY
- the backoff time is usually Arbitration Inter-Frame Spacing (AIFS).
- AIFS Arbitration Inter-Frame Spacing
- the detection channel remains idle, it enters the random backoff phase, which includes N time slots (slots). )time.
- the CCA module will detect whether the channel is free. When the backoff reaches the end of the last slot, if the CCA module detects that the channel is free, it will start the transmission of the channel occupied symbols at the end of the last slot.
- time point 1 indicates that the RU judges that the channel is idle in the last slot of backoff;
- time point 2 indicates that the RU feeds back the channel contention result to the CU and prepares to generate a channel occupancy signal;
- time point 3 indicates the last time slot for performing channel detection At the end boundary of the backoff, the RU sends the channel occupation signal at the time point 3 when the last slot of the backoff ends to occupy the channel.
- time point 4 indicates that when the RU receives a data message encapsulated with a digital baseband IQ signal, the RU decapsulates and learns the 802.11 frame through the control word Send the starting point.
- stop sending the channel occupation signal pass the decapsulated digital baseband IQ signal through the subsequent sending unit of the RU, and finally send it out through the radio frequency module, and stop sending the 802.11 frame according to the sending end point of the 802.11 frame in the control word.
- the RU in order to occupy the channel, the RU usually sends the channel occupation signal continuously.
- the L-STF field is a schematic diagram of the timing of sending the channel occupation signal in this embodiment of the application, as shown in FIG.
- the RU when it does not receive the data message of the CU, it will continuously send the L-STF field to occupy the channel until it receives the data message and knows the start point of the 802.11 frame contained in the control word. Stop sending the L-STF field. And start to send the information in the 802.11 frame, such as the L-LTF field and so on.
- the RU can also send the channel occupation signal based on the period or an interval less than the period; or the access point knows that no other devices compete for the channel within a certain period of time.
- the RU may not send the channel occupation signal during this time period, but send the channel occupation signal when the time period is exceeded; or, in some cases, the access point can use the channel within the preset time after successfully competing for the channel. Then, the RU may not send the channel occupation signal within the preset time period, and send the channel occupation signal after the preset time period is reached.
- the embodiments of this application do not make any limitations.
- the modules related to AGC adjustment are all located on the RU side. After the X-LTF and subsequent fields are converted to digital baseband frequency domain IQ signals by FFT on the RU side, they are encapsulated into data packets by the first encapsulation module , And send it to CU through remote transmission. After decapsulation by the second decapsulation module, the CU side obtains the X-LTF in the form of digital baseband frequency domain IQ and the following field content, and the CU end completes the baseband receiving process. The SIG detection is completed on the RU side, and the result is encapsulated and sent to the CU; the L-STF and X-STF are terminated on the RU side to complete the AGC adjustment.
- FIG. 7 is a schematic diagram of the fields received and processed by the RU side and the CU side in different frame formats.
- FIG. 7 only takes the frame format corresponding to the 802.11ax and previous standards as an example, and the embodiment of the present application can also be applied to the frame format corresponding to the 802.11be and later standards.
- the signal generator on the RU side can be used.
- the last slot ends the boundary to start the transmission of channel-occupied signals, occupying the channel, thereby solving the CSMA/CA timing problem of downlink signal transmission, and at the same time providing enough time for the CU side to prepare 802.11 frames.
- FIG. 8 is a schematic diagram of another architecture composition of a remote unit and a central unit provided by an embodiment of this application.
- the FFT/IFFT module and the SIG detection module on the RU side in FIG. 2 are configured On the CU side, an AGC adjustment module was added on the RU side.
- the information output by the SIG detection module to the RU side also needs to undergo the packaging process of the second packaging module, which is represented by a dotted line in order to facilitate the drawing.
- the signal transmitted between the remote unit and the central unit is a digital baseband time domain IQ signal.
- the 802.11 frame can be divided into two parts: a preamble part and a data part.
- the short training field (Short Training Field, referred to as STF)
- the X-STF field of various formats are used in WiFi, such as High Throughput Short Training Field (High Throughput Short Training Field).
- STF Short Training Field
- VHT-STF Very High Throughput Short Training Field
- HE-STF High Efficient Short Training Field
- the first AGC is the first AGC adjustment using the L-STF sequence during the demodulation of the L-STF.
- This adjustment can roughly adjust the signal to within the dynamic range of the ADC; after that, use the HT-STF/VHT-STF /HE-STF performs the second AGC adjustment.
- the second adjustment of AGC is determined according to the determined frame structure type. From judging the frame structure to the second AGC execution, a certain amount of time is needed to buffer to ensure enough time for AGC adjustment.
- the synchronization module, FFT/IFFT module, SIG detection module, and AGC module related to AGC adjustment are all located on the RU side. Therefore, there is no delay constraint problem of AGC adjustment.
- the FFT/IFFT module and SIG detection module are configured on the CU side. Therefore, the CU notifies the detection result of the RU frame format that a certain transmission delay may be required.
- the time delay constraint problem of AGC adjustment is configured on the CU side.
- an AGC adjustment module is configured on the RU side to receive the encapsulated decoding result sent by the central unit from the first decapsulation module, and generate an automatic gain control command according to the decoding result
- the decoding result is obtained after the central unit performs FFT/IFFT conversion on the 802.11 frame, obtains the SIG field in the 802.11 frame and performs SIG detection;
- the AGC module in the embodiment of the present application is also used to receive the automatic gain control command, perform automatic gain control on the signal power of the 802.11 frame, and adjust the input digital analog/analog The power of the converter's signal.
- the synchronization module is specifically configured to instruct the AGC module to perform the first automatic gain control on the signal power of the 802.11 frame when the L-STF field is detected in the 802.11 frame;
- the decoding result is the Legacy Signal Field (L-SIG) field of the 802.11 frame acquired by the central unit and the first three orthogonal frequency division multiplexing after the L-SIG field OFDM symbol decoding result;
- L-SIG Legacy Signal Field
- the AGC adjustment module is specifically configured to run a local AGC state machine according to the decoding result when the decoding result meets a preset condition, and generate a second automatic gain control command or a third automatic gain control command.
- FIG. 9 is a schematic flow diagram of a method for AGC adjustment provided in an embodiment of this application, which specifically includes the following steps:
- the remote unit encapsulates the digital baseband IQ signal contained in the 802.11 frame into a data message, and adds a control word.
- the central unit decapsulates the data message, learns the start point and end point of the 802.11 frame according to the control word, demodulates and decodes the 802.11 frame, and encapsulates the decoding results of the L-SIG and the following three OFDM symbols Into a control message.
- the remote unit decapsulates the control message, obtains the decoding result, and runs the local AGC state machine according to the decoding result to generate the second/third AGC adjustment command.
- S907 Perform the second/third AGC adjustment according to the AGC adjustment command.
- FIG. 10 it is a schematic diagram of the second/third time sequence of AGC adjustment when receiving 802.11 frames of different formats.
- the length of the field before HT-STF/VHT-STF/HE-STF is usually an integer multiple of 4us.
- the L-STF can be detected, so that the start and end points of a valid 802.11 frame can be determined.
- the RU encapsulates the received 802.11 frame into a data message and sends it to the CU.
- t00, t10, t20, and t30 respectively represent the time points when the L-SIG and the following three OFDM symbols are transmitted to the CU.
- t01, t11, t21, and t31 respectively represent the time when the L-SIG and the following three OFDM symbols are demodulated and encapsulated into a control message and sent to the RU point.
- t02, t12, t22, and t32 respectively represent the time points when the RU side obtains the decoding results of the L-SIG and the following three OFDM symbols.
- step S906 the newly added AGC adjustment module executes the local AGC state machine to generate the second/third AGC adjustment commands for a schematic diagram, which can be seen in Figure 11.
- Figure 11 is a schematic diagram of the AGC adjustment process, including the first AGC adjustment and The second/third AGC adjustment.
- the first AGC adjustment will be made when the RU detects the L-STF.
- the RU judges whether the modulation mode of the L-SIG is Binary Phase Shift Keying (BPSK for short).
- BPSK Binary Phase Shift Keying
- the L-SIG modulation mode is BPSK
- L-DATARATE is the value indicated by the RATE field in the L-SIG field, which represents the data rate.
- the RATE field in the L-SIG is a fixed value of 6Mbps, that is, the L-DATARATE is 6Mbps.
- the Mode may be HT, VHT, HE format, or Non-HT format modulated by BPSK data. According to the demodulation result of L-SIG, it is decided to make the second AGC adjustment. And further get the demodulation result of the first symbol after L-SIG at 16us.
- RX receiving
- the Mode may be Non-HT modulated by non-BPSK data, or HT-MF format. Further, according to CCA detection, it is determined whether the bandwidth BW is 40 MHz and valid L-SIGs are detected on the primary and secondary channels. If it is, the Mode is the HT-MF format, and according to the demodulation result of the L-SIG, it is determined to make the second AGC adjustment; if it is not, it cannot be determined whether it is the Non-HT or HT-MF format. Do not make the second AGC adjustment.
- the L-SIG modulation mode is Quadrature Binary Phase Shift Keying (Quadrature Binary Phase Shift Keying, QBPSK for short), then the Mode is HT-GF. No need to make the second AGC adjustment.
- the embodiment of the application adds an AGC adjustment module on the RU side, and uses the interaction of control messages between the CU and the RU, and the CU transmits the L-SIG and the subsequent three to the RU.
- the decoding result of 10 symbols assist the RU to make the second/third AGC adjustment when receiving the 802.11 frame, thereby solving the AGC timing problem;
- FIG. 12 is a schematic diagram of the composition of a remote unit provided by an embodiment of this application; it may include:
- the processor 110, the memory 120, and the bus 130 are connected by a bus 130, the memory 120 is used to store instructions, and the processor 110 is used to execute the instructions stored in the memory 120 to implement the remote end in the method corresponding to Figure 3 and Figure 4 to Figure 9 above. The steps performed by the unit.
- the remote unit may also include an input port 140 and an output port 150.
- the processor 110, the memory 120, the input port 140, and the output port 150 may be connected by a bus 130.
- the processor 110 is configured to execute instructions stored in the memory 120 to control the input port 140 to receive signals, and to control the output port 150 to send signals, so as to complete the steps performed by the remote unit in the foregoing method.
- the input port 140 and the output port 150 may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as input and output ports.
- the memory 120 may be integrated in the processor 110, or may be provided separately from the processor 110.
- the functions of the input port 140 and the output port 150 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
- the processor 110 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
- a general-purpose computer can be considered to implement the remote unit provided in the embodiment of the present application.
- the program codes for realizing the functions of the processor 110, the input port 140 and the output port 150 are stored in the memory.
- the general-purpose processor implements the functions of the processor 110, the input port 140 and the output port 150 by executing the code in the memory.
- FIG. 12 Those skilled in the art can understand that, for ease of description, only one memory and a processor are shown in FIG. 12. In an actual controller, there can be multiple processors and memories.
- the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
- the processor may be a central processing unit (Central Processing Unit, CPU for short), and the processor may also be other general-purpose processors, digital signal processors (Digital Signal Processing, DSP for short), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
- CPU Central Processing Unit
- DSP Digital Signal Processing
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
- the memory may include a read-only memory and a random access memory, and provides instructions and data to the processor.
- a part of the memory may also include a non-volatile random access memory.
- the bus may also include a power bus, a control bus, and a status signal bus.
- a power bus may also include a power bus, a control bus, and a status signal bus.
- various buses are marked as buses in the figure.
- each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
- the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
- the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
- the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
- the embodiment of the present application also provides an access point, including the aforementioned remote unit and central unit.
- the embodiment of the present application also provides a system including the aforementioned access point and station.
- the size of the sequence number of the above-mentioned processes does not imply the order of execution.
- the execution order of each process should be determined by its function and internal logic, and should not correspond to the implementation process of the embodiments of the present application. Constitute any limitation.
- ILB illustrative logical blocks
- steps described in the embodiments disclosed herein can be implemented by electronic hardware or a combination of computer software and electronic hardware. accomplish. Whether these functions are executed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
- the disclosed system, device, and method can be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
- the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
- the computer program product includes one or more computer instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
- the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
- the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例公开了一种远端单元和传输信息的方法,该远端单元包括:空闲信道评估CCA模块,用于在竞争信道时执行载波侦听多路访问/冲突避免CSMA/CA的信道检测,确定信道的忙闲状态;信号发生器,用于在所述CCA模块确定信道空闲时,在执行信道检测的最后一个时隙的结束边界发送信道占用信号。采用本申请实施例,可满足WiFi场景下的CSMA/CA时延约束,确保信息正常传输。
Description
本申请要求于2020年03月31日提交中国专利局、申请号为202010246510.2、申请名称为“一种远端单元和传输信息的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请通信技术领域,尤其涉及一种远端单元和传输信息的方法。
随着无线局域网(Wireless Local Area Network,简称WLAN)技术的发展,协作和多天线技术成为主流的演进方向之一。分布式架构可以协调多个空间上分布部署的节点,既可以避免单设备尺寸过大、复杂度过高的问题,又可以充分利用空间复用和分集增益。易于扩展和灵活部署,特别适用于购物中心、机场、车站等人流密集区以提高容量,还可以为企业总部、办公楼或地下停车场等信号难以到达的区域提高覆盖质量。在分布式架构中,传统接入点(Access Point,简称AP)的完整功能一分为二,分布式部署在中心单元(Center Unit,简称CU)和远端单元(Remote Unit,简称RU)。由于CU和RU属于分布式设备,不再是紧耦合关系,当数据下行传输或上行接收时,数据在RU和CU之间存在数微秒的往返时延。而WiFi场景下存在其特有的时延约束如载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoid,简称CSMA/CA)时延约束。设备在信道竞争过程中,首先等待固定随机回退时间(Arbitration Inter-Frame Spacing,简称AIFS),在此期间,若检测信道一直保持空闲状态,则进入随机回退阶段(backoff阶段,含N个时隙的时间)。在每个时隙(slot)里会去检测信道是否空闲,当退避到最后一个slot结束的时候,若空闲信道评估(Clear Channel Assessment,简称CCA)模块检测判定信道空闲,则在最后一个slot结束边界,必须启动信息发送。
在现有技术中,将CCA模块和媒体接入控制(Media Access Control,简称)处理模块、基带模块设置在CU侧,这样需要向外部设备发送信息时,CCA检测信道空闲后可以通知MAC处理模块,MAC处理模块进行MAC发送处理并生成待发送信息,进而送给基带模块,基带模块基于待发送信息生成数字基带同相正交(In-phase Quadrature,简称IQ)信号并输出到RU侧,最后由RU侧发送给外部设备,而在这个发送过程中,RU需要与CU进行信息交互,这些信息交互会存在一定的往返时延,导致RU侧向外部设备发送信息的时间无法满足CSMA/CA的时延约束,且竞争到的信道也可能被其他设备占用,造成信息发送失败。
发明内容
本申请实施例所要解决的技术问题在于,提供一种远端单元和传输信息的方法,以满足WiFi场景下的CSMA/CA时延约束,确保信息正常传输。
第一方面,本申请的实施例提供了一种远端单元,可包括:
空闲信道评估CCA模块,用于在竞争信道时执行载波侦听多路访问/冲突避免CSMA/CA的信道检测,确定信道的忙闲状态;
信号发生器,用于在所述CCA模块确定信道空闲时,在执行信道检测的最后一个时隙的结束边界发送信道占用信号。
这样,通过信号发生器发送信道占用信号占住信道,可以为中心单元侧生成待发送信息以及传输待发送信息争取时间,在满足CSMA/CA时延约束的前提下,确保信道不被其他设备竞争,从而避免了其他设备的竞争干扰,实现了信息的正常传输。
在一种可能的实现方式中,所述远端单元还包括:
媒体接入控制MAC代理模块,用于接收中心单元发送的信道竞争消息,将所述信道竞争消息转发给所述CCA模块,接收所述CCA模块输出的信道竞争结果并发送给所述中心单元。
通过配置MAC代理模块,可以为中心单元和远端单元之间提供消息转发的MAC代理功能,确保二者之间特定信息的正常传输。
在一种可能的实现方式中,所述远端单元还包括:
射频模块,用于通过所述信号发生器占用的信道发送802.11帧,所述802.11帧中包含所述中心单元生成的数字基带同相正交IQ信号。
在一种可能的实现方式中,所述远端单元还包括:
第一封装模块,用于对所述远端单元发送给所述中心单元的信号进行封装处理;
第一解封装模块,用于对所述中心单元发送给所述远端单元的信号进行解封装处理。
在一种可能的实现方式中,所述第一解封装模块具体用于接收所述中心单元发送的封装后的数据报文并进行解封装,获取所述数据报文中包含的所述数字基带IQ信号和控制字,所述控制字用于指示所述数据报文中携带的802.11帧的发送起始点和发送结束点。
通过携带控制字,可以告知远端单元发送802.11帧的发送起始点和发送结束点,从而可以和信号发生器进行配合使用,利用发送起始点停止信号发生器发送信道占用信号并开始传输802.11帧,并在发送结束点停止发送802.11帧,从而实现信号的正常传输。
在一种可能的实现方式中,所述信号发生器还用于在所述发送起始点停止所述信道占用信号的发送。
在一种可能的实现方式中,所述射频模块还用于在所述发送结束点停止发送所述802.11帧。
在一种可能的实现方式中,所述MAC代理模块还用于根据所述信道竞争结果或所述第一解封装模块解封装获得的所述控制字,控制所述信号发生器。
在一种可能的实现方式中,所述远端单元与所述中心单元之间传输的信号为数字基带频域IQ信号,所述远端单元还包括:
快速傅里叶变换/快速傅里叶反变换FFT/IFFT模块,用于对所述射频模块接收到的802.11帧进行快速傅里叶变换/快速傅里叶反变换处理,完成所述802.11帧从时域到频域的转换,获取转换后的802.11帧中的长训练域LTF字段及其之后字段内容并发送给所述第一封装模块,所述第一封装模块还用于对长训练域LTF字段及其之后字段内容进行封装并发送给所述中心单元,以及,获取转换后的802.11帧中的信号SIG字段并发送给SIG检测模 块;
所述SIG检测模块,用于对所述SIG字段进行解调译码,完成对所述802.11帧的格式检测,并将译码结果发送给所述第一封装模块,所述第一封装模块还用于将所述译码结果封装后发送给所述中心单元。
通过将FFT/IFFT模块和SIG模块设置在远端单元,从而可以实现二者之间传输数字基带频域IQ信号,并可以在远端单元侧完成SIG检测,以实现AGC的第一次和第二次调整。
在一种可能的实现方式中,所述远端单元与所述中心单元之间传输的信号为数字基带时域IQ信号,所述远端单元还包括:
同步模块,用于检测所述802.11帧的有效性和起始边界,对所述802.11帧进行帧同步和符号同步;
所述第一解封装模块还用于接收所述中心单元发送的封装后的译码结果,解封装后发送给自动增益控制AGC调整模块;所述译码结果由所述中心单元对所述802.11帧进行FFT/IFFT转换,获取所述802.11帧中SIG字段并执行SIG检测后得到;
所述自动增益控制AGC调整模块,用于根据所述译码结果生成自动增益控制的命令;
AGC模块,用于接收所述自动增益控制的命令,对所述802.11帧的信号功率进行自动增益控制,调整输入数模/模数转换器的信号的功率。
通过将FFT/IFFT模块和SIG检测模块设置在中心单元侧,从而可以实现在二者之间传输数字基带时域IQ信号,并通过在远端单元侧增加AGC调整模块,获取SIG检测模块的译码结果之后,便可以实现对AGC模块的控制,生成AGC调整的命令,完成第一次,第二次/第三次AGC调整。
在一种可能的实现方式中,所述同步模块具体用于在所述802.11帧中检测到传统短训练域L-STF字段时,指示所述AGC模块对所述802.11帧的信号功率进行第一次自动增益控制;
所述译码结果为所述中心单元获取的所述802.11帧的传统信号域L-SIG字段及其所述L-SIG字段后的前三个正交频分复用OFDM符号的译码结果;
所述AGC调整模块,具体用于在所述译码结果符合预设条件时,根据所述译码结果运行本地AGC状态机,生成第二次自动增益控制或第三次自动增益控制的命令。
第二方面,本申请的实施例提供了一种传输信息的方法,可包括:
远端单元在竞争信道时执行载波侦听多路访问/冲突避免CSMA/CA的信道检测,确定信道的忙闲状态;
当确定信道空闲时,在执行信道检测的最后一个时隙的结束边界发送信道占用信号。
在一种可能的实现方式中,所述方法还包括:
所述远端单元接收中心单元发送的信道竞争消息;
将信道竞争结果发送给所述中心单元,其中,所述中心单元与所述远端单元连接。
在一种可能的实现方式中,所述方法还包括:
所述远端单元通过发送所述信道占用信号占用的信道,发送802.11帧,所述802.11帧中包含所述中心单元生成的数字基带同相正交IQ信号。
在一种可能的实现方式中,所述方法还包括:
所述远端单元对所述远端单元发送给所述中心单元的信号进行封装处理;
所述远端单元对所述中心单元发送给所述远端单元的信号进行解封装处理。
在一种可能的实现方式中,所述方法还包括:
所述远端单元接收所述中心单元发送的封装后的数据报文并进行解封装,获取所述数据报文中包含的所述数字基带IQ信号和控制字,所述控制字用于指示所述数据报文中携带的802.11帧的发送起始点和发送结束点。
在一种可能的实现方式中,所述方法还包括:
所述远端单元在所述发送起始点停止所述信道占用信号的发送。
在一种可能的实现方式中,所述方法还包括:
所述远端单元在所述发送结束点停止发送所述802.11帧。
在一种可能的实现方式中,所述方法还包括:
所述远端单元根据所述信道竞争结果或解封装获得的所述控制字,控制是否发送所述信道占用信号。
在一种可能的实现方式中,所述远端单元与所述中心单元之间传输的信号为数字基带频域IQ信号,所述方法还包括:
所述远端单元对接收到的802.11帧进行快速傅里叶变换/快速傅里叶反变换处理,完成所述802.11帧从时域到频域的转换,获取转换后的802.11帧中的长训练域LTF字段及其之后字段内容并进行封装,发送给所述中心单元,以及,获取转换后的802.11帧中的信号SIG字段,对所述SIG字段进行解调译码,完成对所述802.11帧的格式检测,并将译码结果发送给所述中心单元。
在一种可能的实现方式中,所述远端单元与所述中心单元之间传输的信号为数字基带时域IQ信号,所述方法还包括:
所述远端单元检测所述802.11帧的有效性和起始边界,进行同步;
接收所述中心单元发送的封装后的译码结果,进行解封装后获得所述译码结果;所述译码结果由所述中心单元对所述802.11帧进行FFT/IFFT转换,获取所述802.11帧中SIG字段并执行SIG检测后得到;
根据所述译码结果生成自动增益控制的命令;
根据所述自动增益控制的命令,对所述802.11帧的信号功率进行自动增益控制,调整输入数模/模数转换器的信号的功率。
在一种可能的实现方式中,若所述远端单元在所述802.11帧中检测到传统短训练域L-STF字段时,则对所述802.11帧的信号功率进行第一次自动增益控制;
所述译码结果为所述中心单元获取的所述802.11帧的传统信号域L-SIG字段及其所述L-SIG字段后的前三个正交频分复用OFDM符号的译码结果;
在所述译码结果符合预设条件时,所述远端单元根据所述译码结果运行本地AGC状态机,生成第二次自动增益控制或第三次自动增益控制的命令。
第三方面,本申请的实施例提供了一种接入点,可包括:
远端单元和中心单元;
所述远端单元包括:
空闲信道评估CCA模块,用于在竞争信道时执行载波侦听多路访问/冲突避免CSMA/CA的信道检测,确定信道的忙闲状态;
信号发生器,用于在所述CCA模块确定信道空闲时,在执行信道检测的最后一个时隙的结束边界发送信道占用信号;
所述中心单元包括:
媒体接入控制MAC处理模块,用于生成信道竞争消息并发送给所述CCA模块,接收所述CCA模块发送的信道竞争结果,并进行MAC发送处理和MAC接收处理;例如在下行发送时,在接收到信道竞争结果后,进行MAC发送,生成待发送信息,并将待发送信息发送给基带模块,通知基带模块生成数字基带同相正交IQ信号并输出;在上行接收时,接收来自基带模块的输出信息,进行MAC接收处理;
基带模块,负责数字基带IQ信号的生成,发送和接收处理,包括基带发送通道和基带接收通道。下行方向,接收来自MAC处理模块的命令和数据,生成数字基带IQ信号并输出;上行方向,对数字基带IQ信号进行接收处理,然后送给MAC处理模块。基带模块具体可以分为:
基带发送通道,用于发送数字基带IQ信号;
基带接收通道,用于接收数字基带IQ信号。
所述远端单元还包括:
射频模块,用于通过所述信号发生器占用的信道,发送802.11帧,所述802.11帧中包含所述基带模块生成的数字基带IQ信号。
具体地,可采用发送射频信号的方式进行发送;例如在下行发送时,通过所述信号发生器占用的信道,发送所述数字基带IQ信号经过D/A数模转换以及上变频之后的射频信号;此外,在上行接收时,还可以用于接收射频信号,后续通过下变频以及A/D模数转换成所述数字基带IQ信号。
在一种可能的实现方式中,所述中心单元还包括:
第一封装模块,用于对所述中心单元发送给所述远端单元的信号进行封装处理;
第一解封装模块,用于对所述远端单元发送给所述中心单元的信号进行解封装处理;
所述远端单元还包括:
第二封装模块,用于对所述远端单元发送给所述中心单元的信号进行封装处理;
第二解封装模块,用于对所述中心单元发送给所述远端单元的信号进行解封装处理。
在一种可能的实现方式中,所述第一封装模块,具体用于将所述数字基带IQ信号封装成数据报文,加入控制字并输出,其中,所述控制字用于指示所述数据报文中携带的802.11帧的发送起始点和发送结束点;
所述第二解封装模块,具体用于将所述数据报文进行解封装,获得所述数字基带IQ信号和所述控制字。
在一种可能的实现方式中,所述信号发生器还用于根据所述第二解封装模块获得的所述802.11帧的发送起始点,在所述发送起始点停止所述信道占用信号的发送。
在一种可能的实现方式中,所述射频模块还用于在所述发送结束点停止发送所述802.11帧。
在一种可能的实现方式中,所述远端单元还包括:
MAC代理模块,用于接收所述中心单元发送的信道竞争消息,将所述信道竞争消息转发给所述CCA模块,接收所述CCA模块输出的信道竞争结果并发送所述中心单元;
所述MAC代理模块还用于根据所述信道竞争结果或所述第二解封装模块解封装获得的所述控制字,控制所述信号发生器。
在一种可能的实现方式中,所述远端单元与所述中心单元之间传输的信号为数字基带频域IQ信号,所述远端单元还包括:
快速傅里叶变换/快速傅里叶反变换FFT/IFFT模块,用于对所述射频模块接收到的802.11帧进行快速傅里叶变换/快速傅里叶反变换处理,完成所述802.11帧从时域到频域的转换,获取转换后的802.11帧中的长训练域LTF字段及其之后字段内容并发送给所述第二封装模块,所述第二封装模块还用于对长训练域LTF字段及其之后字段内容进行封装并发送给所述中心单元,以及,获取转换后的802.11帧中的信号SIG字段并发送给SIG检测模块;
所述SIG检测模块,用于对所述SIG字段进行解调译码,完成对所述802.11帧的格式检测,并将译码结果进行发送给所述第二封装模块,所述第二封装模块还用于将所述译码结果封装后发送给所述中心单元。
在一种可能的实现方式中,所述远端单元与所述中心单元之间传输的信号为数字基带时域IQ信号,所述中心单元还包括:
快速傅里叶变换/快速傅里叶反变换FFT/IFFT模块,用于对从所述远端单元接收到的802.11帧进行快速傅里叶变换/快速傅里叶反变换处理,完成所述802.11帧从时域到频域的转换,获取转换后的802.11帧中的SIG字段并发送给SIG检测模块;
所述SIG检测模块,用于对所述SIG字段进行解调译码,完成对所述802.11帧的格式检测,并将译码结果发送给所述第一封装模块,所述第一封装模块还用于将所述译码结果封装后发送给所述远端单元;
所述远端单元还包括:
同步模块,用于检测所述802.11帧的有效性和起始边界,对所述802.11帧进行帧同步和符号同步;
自动增益控制AGC调整模块,用于在所述远端单元的第二解封装模块对所述封装后的译码结果进行解封装后,获取所述译码结果,根据所述译码结果生成自动增益控制的命令;
AGC模块,用于接收所述自动增益控制的命令,对所述802.11帧的信号功率进行自动增益控制,调整输入数模/模数转换器的信号的功率。
在一种可能的实现方式中,所述同步模块具体用于在所述802.11帧中检测到传统短训练域L-STF字段时,指示所述AGC模块对所述802.11帧的信号功率进行第一次自动增益控制;
所述SIG检测模块,具体用于获取所述802.11帧的传统信号域L-SIG字段及其所述L-SIG字段后的前三个正交频分复用OFDM符号的译码结果,将所述译码结果发送给所述AGC调整模块;
所述AGC调整模块,具体用于根据所述译码结果运行本地AGC状态机,生成第二次 自动增益控制或第三次自动增益控制的命令。
第四方面,本申请的实施例提供了一种传输信息的方法,可包括:
接入点的远端单元在竞争信道时执行载波侦听多路访问/冲突避免CSMA/CA的信道检测,确定信道的忙闲状态;
当确定信道空闲时,所述远端单元在执行信道检测的最后一个时隙的结束边界发送信道占用信号;
所述接入点的中心单元在接收到信道竞争结果后,生成数字基带同相正交IQ信号并输出;
所述远端单元通过所述信号发生器占用的信道,发送所述数字基带IQ信号。
在一种可能的实现方式中,所述方法还包括:
所述中心单元将所述数字基带IQ信号封装成数据报文,加入控制字并输出,其中,所述控制字用于指示所述数据报文中携带的802.11帧的发送起始点和发送结束点;
所述远端单元将所述数据报文进行解封装,获得所述数字基带IQ信号和所述控制字。
在一种可能的实现方式中,所述方法还包括:
所述远端单元根据解封装获得的所述802.11帧的发送起始点,在所述发送起始点停止所述信道占用信号的发送。
在一种可能的实现方式中,所述方法还包括:
所述远端单元在所述发送结束点停止发送所述802.11帧。
在一种可能的实现方式中,在所述远端单元执行CCA检测之前,所述方法还包括:
所述远端单元接收所述中心单元发送的信道竞争消息;
在所述远端单元执行CCA检测之前,所述方法还包括:
所述远端单元将信道竞争结果发送给所述中心单元,根据所述信道竞争结果或解封装获得的所述控制字,控制是否发送信道占用符号。
在一种可能的实现方式中,所述远端单元与所述中心单元之间传输的信号为数字基带频域IQ信号,所述方法还包括:
所述远端单元对接收到的802.11帧进行快速傅里叶变换/快速傅里叶反变换处理,完成所述802.11帧从时域到频域的转换,获取转换后的802.11帧中的长训练域LTF字段及其之后字段内容并进行封装,将封装的LTF字段及其之后字段内容发送给所述中心单元,以及,获取转换后的802.11帧中的信号SIG字段并对所述SIG字段进行解调译码,完成对所述802.11帧的格式检测,将译码结果进行封装后发送给所述中心单元。
在一种可能的实现方式中,所述远端单元与所述中心单元之间传输的信号为数字基带时域IQ信号,所述方法还包括:
所述远端单元将所述802.11帧发送给所述中心单元;
所述中心单元对所述802.11帧进行快速傅里叶变换/快速傅里叶反变换处理,完成所述802.11帧从时域到频域的转换,获取转换后的802.11帧中的SIG字段,对所述SIG字段进行解调译码,完成对所述802.11帧的格式检测,并将译码结果封装后发送给所述远端单元;
所述远端单元检测所述802.11帧的起始边界,通过解封装获得所述译码结果,根据所述译码结果生成自动增益控制的命令;根据所述自动增益控制的命令,对所述802.11帧的 信号功率进行自动增益控制,调整输入数模/模数转换器的信号的功率。
在一种可能的实现方式中,所述远端单元在检测所述802.11帧的起始边界时,弱在所述802.11帧中检测到传统短训练域L-STF字段,则指示对所述802.11帧的信号功率进行第一次自动增益控制;
在获取所述802.11帧的传统信号域L-SIG字段及其所述L-SIG字段后的前三个正交频分复用OFDM符号的译码结果后,根据所述译码结果运行本地AGC状态机,生成第二次自动增益控制或第三次自动增益控制的命令,对所述802.11帧进行第二次自动增益控制或第三次自动增益控制。
第五方面,本申请实施例提供了一种远端单元,可包括:
处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行如第二方面或第二方面任一项所述的方法。
第六方面,本申请实施例提供了一种装置。本申请提供的装置具有实现上述方法方面中远端单元行为的功能,其包括用于执行上述方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述装置包括一个或多个处理器和通信单元。所述一个或多个处理器被配置为支持所述装置执行上述方法中远端单元相应的功能。可选的,所述装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
所述装置可以为路由器、交换机、计算机或智能终端等,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
所述装置还可以为通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第二方面或第二方面中任一种可能实现方式中远端单元完成的方法。
第七方面,提供了一种系统,该系统包括上述远端单元和中心单元组成的接入点,以及站点。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面中任一种可能实现方式中的方法的指令。
第九方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面或第二方面中任一种可能实现方式中的方法。
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种通信系统的架构示意图;
图2为本申请实施例提供的一种远端单元与中心单元的架构组成示意图;
图3为本申请实施例提供的一种传输信息的方法的流程示意图;
图4为本申请实施例提供的另一种传输信息的方法的流程示意图;
图5为本申请实施例提供的一种RU发送信道占用信号的时序示意图;
图6为本申请实施例提供的另一种RU发送信道占用信号的时序示意图;
图7为本申请实施例提供的不同帧格式下RU侧和CU侧接收处理的字段示意图;
图8为本申请实施例提供的另一种远端单元与中心单元的架构组成示意图;
图9为本申请实施例提供的一种进行AGC调整的方法流程示意图;
图10为本申请实施例提供的接收不同格式的802.11帧时第二次/第三次AGC调整的时序示意图;
图11为本申请实施例提供的一种AGC调整的流程示意图;
图12为本申请实施例提供的另一种远端单元的组成示意图。
下面结合本申请实施例中的附图对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参照图1,为本申请实施例提供的一种通信系统的架构示意图,为了便于描述和理解,在图1所示的架构中仅示出了一个中心单元和三个远端单元,并以中心单元与远端单元之间的通信进行举例说明。可以理解的是,在实际场景中,还可以包括一个或更多个远端单元的情况。本申请实施例不作任何限定。
在传统WiFi场景下,一个AP覆盖范围内服务于多个站点(Station,简称STA),不同AP工作在同频点或异频点,所有STA/AP均以CSMA/CA方式竞争访问信道。在WiFi拉远场景下,传统AP的完整功能一分为二,分布式部署在中心单元和远端单元。
例如,如图1所示,在图1所示架构下,由中心单元10和若干远端单元20和若干站点30组成。
中心单元10和远端单元20组成分布式设计的接入点,是可以为无线局域网(Wireless Local Area Network,简称WLAN)用户终端30接入网络的设备。其可以是通信服务器、路由器、交换机、网桥、计算机、手机等。
远端单元20可与站点30进行通信。站点30又可以是用户终端,用户终端又可以称为移动终端、终端设备、用户设备等,其可以是计算机、手机、平板型电脑、手持设备、增强现实(Augmented Reality,简称AR)设备、虚拟现实(Virtual Reality,简称VR设备、机器 类型通信终端或是其他可以接入网络的设备。
在本申请实施例中,站点30位于远端单元20的信号覆盖范围内,上行传输时,可以向远端单元20发送数据,远端单元20再发送给中心单元10进行基带处理;下行传输时,中心单元10可以将数据发送给远端单元20,再由远端单元20发送给站点30。
中心单元10和远端单元20之间传递信号的形式有模拟信号和数字信号两种。模拟信号拉远方式主要有射频拉远和中频拉远:
所谓射频拉远,是指天线和射频模块(包括射频前端功放)在远端单元20,其他部分在中心单元10,以同轴电缆方式进行射频拉远。缺点是同轴电缆随着射频升高,损耗增大,因此拉远距离有限。
所谓中频拉远,是指天线、射频模块(包括射频前端功放和射频收发信机)在远端单元20,其他在中心单元10,以以太双绞线方式进行拉远。由于远端单元20部分需要进行复杂的模拟域信号均衡和滤波,成本难以降低。
第三种以数字信号进行拉远传输的方式,通常是以光纤或以太双绞线进行传输的基带拉远方式。此方式基带数据可以传输较远的距离,不存在信号的衰减。
基于此,本申请设计了一种WiFi场景下基于数字基带IQ信号拉远的架构。
由于中心单元10和远端单元20属于分布式设备,不再是紧耦合关系,当下行传输或上行接收时,数据在远端单元2和中心单元10之间存在数微秒的往返时延。而WiFi场景不同于蜂窝通信,存在其特有的时延约束。因此在考虑功能划分时,必须设计出满足WiFi时序要求的数字基带拉远方案和传输报文的方法。
下面结合图2-图10对本申请的架构实现、远端单元的组成和中心单元的组成进行详细描述。
请参见图2,图2为本申请实施例提供的一种远端单元与中心单元的架构组成示意图,如图2所示,在由RU和CU组成的分布式设计的接入点中:
RU侧可主要包括以下部分:
射频模块,用于发送/接收射频信号。在发送方向:数字基带IQ信号通过数模转换成模拟信号,并通过上变频到射频频带,经过射频模块发送出去;在接收方向:接收到的无线模拟射频信号,经过射频模块,下变频到基带,并通过模数转换成数字信号。
数模/模数转换器(AD/DA),用于对接收或发送到的信号进行数模/模数转换。
收发信机数字前端(Digital Front End,简称DFE),处于AD/DA与数字基带之间,起到桥梁作用。在发射机中,DFE包括数字域中处理各种信道的基带信号并提供上变频数字信号的部件;在接收机中,DFE包括处理射频(Radio Frequency,简称RF)解调数字化信号的部件。
空闲信道评估(Clear Channel Assessment,简称CCA)模块,用于在竞争信道时执行载波侦听多路访问/冲突避免(CSMA/CA)的信道检测,确定信道的忙闲状态。
信号发生器,用于在所述CCA模块确定信道空闲时,在执行信道检测的最后一个时隙的结束边界发送信道占用信号。
媒体接入控制(Media Access Control,简称MAC)代理模块,用于接收中心单元发送的信道竞争消息,将所述信道竞争消息转发给所述CCA模块,接收所述CCA模块输出的 信道竞争结果并发送给所述中心单元。
同步(SYNC)模块,用于检测接收到的802.11帧的有效性和起始边界,对所述802.11帧进行帧同步和符号同步。进行帧同步具体是指检测到802.11帧是否到来并确定802.11帧的起始位置,以实现信号处理上的相对粗略的时间同步;符号同步是指精确的确定802.11帧中每个正交分频分复用(Orthogonal Frequency Division Multiplexing,简称OFDM)符号的边界,以实现信号处理上相对精细的时间同步。通过帧同步和符号同步之后,可以为后续的相关模块提供信号处理的时序定位基础,如进行同步后可确定字段位置,进而检测字段类型、对相关字段解调译码等。此外,同步模块还可用于指示自动增益控制(Automatic Gain Control,简称AGC)模块进行第一次AGC调整。
AGC模块,用于对接收到的802.11帧的信号功率进行自动增益控制,调整输入数模/模数转换器的信号的功率。
快速傅里叶变换/快速傅里叶反变换(Fast Fourier Transform/Inverse Fast Fourier Transform,简称FFT/IFFT)模块,用于对射频模块接收到的802.11帧进行快速傅里叶变换/快速傅里叶反变换处理,完成所述802.11帧从时域到频域的转换,获取转换后的802.11帧中包含的字段内容。例如,获取转换后的802.11帧中的长训练域(Short Training Field,简称)LTF字段及其之后字段内容并发送给所述中心单元,以及,获取转换后的802.11帧中的信号(Signal,简称SIG)字段并发送给SIG检测模块。由于802.11帧的帧格式可能有多种,因此对应的长训练域也包括多种。此处的LTF字段也可描述为对应各种格式的X-LTF字段,其可能是传统长训练域(Legacy Long Training Field,简称L-LTF)字段;在现在及未来更多的应用场景下,其也可能是更高版本的802.11协议下的LTF,如高吞吐量长训练域(High Throughput Long Training Field,简称HT-LTF),超高吞吐量长训练域(Very High Throughput Long Training Field,简称VHT-LTF),高效长训练域(High Efficient Long Training Field,简称HE-LTF),极高吞吐量长训练域(Extremely Throughout Long Training Field,简称EHT-LTF),还可能是未来通信技术发展后形成的更高版本802.11协议中的LTF。为了便于简洁的描述,在本申请中以X-LTF进行统称。
SIG检测模块,用于对802.11帧中的SIG字段进行解调译码,完成对802.11帧的格式检测。并将译码结果发送给所述中心单元。根据译码结果指示AGC模块进行第二次AGC调整。
第一封装模块,用于对所述远端单元发送给所述中心单元的信号进行封装处理;例如,远端单元向中心单元发送的信道竞争结果、802.11帧中的X-LTF字段及其之后字段内容、SIG字段的译码结果等,都需要通过第一封装模块的封装后继续发送。
可选地,第一封装模块可以包括第一编帧子模块和第一压缩子模块,第一编帧子模块用于对接收到的信号进行802.11帧的编帧处理,第一压缩子模块用于对接收到的信号进行压缩处理。
第一解封装模块,用于对所述中心单元发送给所述远端单元的信号进行解封装处理,例如,中心单元向远端单元发送的信道竞争消息、数据报文、中心单元进行SIG检测时的译码结果等。可选地,第一解封装模块可以包括第一解帧子模块和第一解压缩子模块,第一解帧子模块用于对接收到的802.11帧进行解帧处理,第一解压缩子模块用于对接收到的 信号进行解压缩处理。
此外,所述MAC代理模块还用于根据所述信道竞争结果或所述第一解封装模块解封装获得的所述控制字,控制所述信号发生器。
所述信号发生器还用于根据所述第一解封装模块获得的802.11帧的发送起始点,在所述发送起始点停止所述信道占用信号的发送。
RU侧主要涉及的信号处理和流向包括:
在下行发送时,CU向RU发送信道竞争消息,让RU启动信道竞争。具体是,RU的第一解封装模块接收到所述中心单元发送的信道竞争消息,通过解封装,输出给RU的MAC代理模块。MAC代理模块接收信道竞争消息,通知CCA模块启动信道检测,从CCA模块处得到信道忙闲状态,得到信道竞争消息结果后,MAC代理模块将信道竞争消息结果输出给封装模块进行封装,进而发送给中心单元以上报信道竞争消息结果。
RU侧主要的信号流向为:中心单元-第一解封装模块-MAC代理模块-CCA模块-MAC代理模块-第一封装模块-中心单元。
与此同时,MAC代理得到信道竞争结果后,发送控制命令给信号发生器,控制信号发生器发送信道占用信号。当第一解封装模块得到数据报文的发送起始点之后,通知给MAC代理模块,MAC代理模块发送控制命令给信号发生器,控制信号发生器停止发送信道占用信号。
RU侧主要的信号流向为:中心单元-第一解封装模块-MAC代理模块-信号发生器。
当快速傅里叶变换/快速傅里叶反变换(FFT/IFFT)模块,在接收802.11帧时,将经过FFT之后的X-LTF字段及其之后字段内容(例如X-LTF IQ,Data IQ,数字基带频域IQ形式)送给第一封装模块进行封装,然后经过PHY接口拉远传输送给CU。
RU侧主要的信号流向为:RU的DFE接收机-FFT/IFFT模块-第一封装模块。
将经过FFT模块之后的SIG字段内容(SIG IQ,数字基带频域IQ信号形式)送给SIG检测模块时,RU侧的信号流向为:RU的DFE接收机-FFT/IFFT模块-SIG检测模块。
将SIG的译码结果通过解析然后送给第一封装模块进行封装,然后经过PHY接口拉远传输送给CU时,RU侧的信号流向为:FFT/IFFT模块-SIG检测模块-第一封装模块-中心单元。
在发送802.11帧时,由第一解封装模块解封装得到数字基带频域IQ数据,送给FFT/IFFT模块完成频域到时域的转换。RU侧信号流向为:中心单元-第一解封装模块-FFT/IFFT模块-RU的DFE发射机。
CU侧可主要包括以下部分:
MAC处理模块,用于生成信道竞争消息并发送给所述CCA模块,接收所述CCA模块发送的信道竞争结果,并进行MAC发送处理和MAC接收处理;例如在下行发送时,在接收到信道竞争结果后,进行MAC发送,生成待发送信息,并将待发送信息发送给基带模块,通知基带模块生成数字基带IQ信号并输出;在上行接收时,接收来自基带模块的输出信息,进行MAC接收处理;
基带模块:负责数字基带IQ信号的生成,发送和接收处理,包括基带发送通道和基带接收通道。下行方向,接收来自MAC处理模块的命令和数据,生成数字基带IQ信号并输 出;上行方向,对数字基带IQ信号进行接收处理,然后送给MAC处理模块。基带模块具体可以分为:基带发送通道,用于发送数字基带IQ信号;基带接收通道,用于接收数字基带IQ信号。
第二封装模块,用于对CU侧发出的信号进行封装处理,如可能发送的信道竞争消息、数据报文、中心单元进行SIG检测时的译码结果等。可选地,与第一解封装模块类似地,其可以包括第二编帧子模块和第二压缩子模块。
第二解封装模块,用于对接收到的信号进行解封装处理,如可能接收到的信道竞争结果、802.11帧中的X-LTF字段及其之后字段内容、SIG字段的译码结果等。可选地,与第一解封装模块类似地,其可以包括第二解帧子模块和第二解压缩子模块。
在该架构下,远端单元与中心单元之间传输的信号为数字基带频域IQ信号,当接入点需要向站点发送信息时,由于进行信道竞争的CCA模块位于RU侧,生成待发送信息的MAC处理模块以及根据待发送信息生成数字基带IQ信号的基带模块均位于CU侧,信道竞争结果的反馈、待发送信息、数字基带IQ信号的生成和传输都需要时间,因此将无法满足CSMA/CA的时延约束。因此在本申请中,可以采用如图3所示的一种传输信息的方法来进行信息传输,具体可包括如下步骤:
S301,远端单元在竞争信道时执行载波侦听多路访问/冲突避免(CSMA/CA)的信道检测,确定信道的忙闲状态;
S302,当确定信道空闲时,在执行信道检测的最后一个时隙的结束边界发送信道占用信号。
可选地,信道占用信号可以是单音信号,可通过能量检测的方式占用信道;信道占用信号也可以是802.11帧的传统短训练域(Legacy Short Training Field,简称L-STF)字段即802.11帧的前导码部分,可通过特定信号类型的信号检测来占用信道。
这样,可以实现在RU和CU的信息交互时间内,将RU竞争到的信道进行持续占用,确保了CU侧的待发送信息在满足CSMA/CA时延约束的前提下进行发送。
具体的发送流程可参见图4,为本申请实施例提供的另一种传输信息的方法,具体可包括如下步骤:
S401,中心单元向远端单元发送信道竞争消息。
S402,远端单元在竞争信道时执行载波侦听多路访问/冲突避免(CSMA/CA)的信道检测,确定信道的忙闲状态。
S403,远端单元向中心单元发送信道竞争结果。
S404,当确定信道空闲时,在执行信道检测的最后一个时隙的结束边界发送信道占用信号。
S405,中心单元生成数字基带IQ信号,封装成数据报文,并加入控制字。
S406,中心单元将数据报文发送给远端单元。
S407,远端单元解封装数据报文,获取数字基带IQ信号和控制字,所述控制字用于指示所述数据报文中携带的802.11帧的发送起始点和发送结束点。
S408,远端单元根据控制字中802.11帧的发送起始点停止发送信道占用信号;
S409,远端单元通过发送所述信道占用信号占用的信道,以802.11帧的形式发送所述 中心单元生成的数字基带IQ信号,并根据控制字中802.11帧的发送结束点停止发送802.11帧。
其中,在步骤S404中,发送信道占用信号的具体时序图可参见图5,如图5所示,在CCA检测信道为忙碌状态(CCA BUSY)时,等待固定随机回退时间,等待的固定随机回退时间通常为仲裁帧间隔时间(Arbitration Inter-Frame Spacing,简称AIFS),在此期间,若检测信道一直保持空闲状态,则进入随机回退阶段(backoff)阶段,包含N个时隙(slot)的时间。在每个slot里CCA模块会去检测信道是否空闲,当退避到最后一个slot结束的时候,若CCA模块检测判定信道空闲,则在最后一个slot结束边界,启动信道占用符号的发送。其中,时间点1的位置表示RU在backoff最后一个slot判断出信道空闲;时间点2表示RU向CU反馈信道竞争结果,同时准备生成信道占用信号;时间点3表示执行信道检测的最后一个时隙的结束边界,RU在backoff最后一个slot结束的时间点3发送信道占用信号,占住信道。与此同时,为CU准备数据报文并经拉远传输给RU争取时间;时间点4表示当RU收到封装了数字基带IQ信号的数据报文,RU解封装,通过控制字获知802.11帧的发送起始点。此时停止发送信道占用信号,将解封装的数字基带IQ信号经过RU后续发送单元,最后通过射频模块发送出去,并根据控制字中的802.11帧的发送结束点,停止发送802.11帧。
需要说明的是,为了占住信道,RU发送信道占用信号通常是持续发送的,以发送L-STF字段为例,可参见图6,为本申请实施例发送信道占用信号的时序示意图,如图所示,当RU未接收到CU的数据报文时,将连续的发送L-STF字段以占住信道,直到接收到数据报文并获知控制字中包含的802.11帧的发送起始点后,再停止发送L-STF字段。并开始发送802.11帧中的信息如L-LTF字段等内容。
当然,如果其他设备竞争信道是根据一定周期来进行的,则RU也可以根据该周期或小于该周期的间隔来发送信道占用信号;或者,接入点已知在一定时间内没有其他设备竞争信道,则RU在该时段内也可以不发送信道占用信号,而在超出该时段时发送信道占用信号;或者,在一些情况下,接入点竞争信道成功后能在预设时长内使用该信道,则在该预设时长内RU也可以不发送信道占用信号,在达到预设时长后发送信道占用信号。本申请实施例不做任何限定。
在该架构下,与AGC调整相关的模块均位于RU侧,X-LTF及其之后的字段内容在RU侧经过FFT转换成数字基带频域IQ信号后,经过第一封装模块封装成数据报文,并通过拉远传输发送给CU。CU侧经过第二解封装模块解封装后得到数字基带频域IQ形式的X-LTF及其之后的字段内容,CU端完成基带接收处理。而SIG检测在RU侧完成,并将结果经过封装后发送给CU;L-STF以及X-STF在RU侧终结,完成AGC调整。不同帧格式下,RU侧和CU侧接收处理的字段可参见图7,图7为不同帧格式下RU侧和CU侧接收处理的字段示意图。
需要说明的是,图7仅以802.11ax及其之前的标准对应的帧格式为例,本申请实施例还可以应用到802.11be及其之后的标准对应的帧格式。
在本申请实施例中,通过将与DFE紧耦合的AGC模块、CCA模块和SYNC模块设置在RU段,并且新增信号发生器,当检测到信道空闲后,利用RU侧的信号发生器,可以 在随机退避阶段最后一个slot结束边界启动信道占用信号的发送,占住信道,从而解决了下行信号发送的CSMA/CA时序问题,同时为CU侧准备802.11帧提供足够的时间。
请参见图8,为本申请实施例提供的另一种远端单元与中心单元的架构组成示意图,与图2相比,在图2中位于RU侧的FFT/IFFT模块和SIG检测模块被配置到了CU侧,并在RU侧新增了AGC调整模块。需要说明的是,SIG检测模块输出到RU侧的信息同样需要经过第二封装模块的封装处理,为了便于绘图用虚线加以表示。在该架构下,远端单元与中心单元之间传输的信号为数字基带时域IQ信号。
由于在WLAN系统中,接收机需要对接收到的802.11帧进行功率增益调整,使得信号以合适的功率进入AD/DA。而802.11帧可分为两个部分:前导(Preamble)部分和数据(Data)部分。WLAN系统的接收机接收802.11帧时,为了调整接收信号功率,WiFi中使用短训练符(Short Training Field,简称STF)和各个格式的X-STF字段,如高吞吐量短训练域(High Throughput Short Training Field,简称HT-STF)字段,超高吞吐量短训练域(Very High Throughput Short Training Field,简称VHT-STF)字段,高效短训练域(High Efficient Short Training Field,简称HE-STF)等进行两次AGC调整。第一次AGC是在解调L-STF过程中,利用L-STF序列进行第一次AGC调整,该调整可将信号大致调整到ADC的动态范围内;之后,利用HT-STF/VHT-STF/HE-STF进行第二次AGC调整。可见第二次AGC的调整是要根据判断出的帧结构类型来决定的。从判断出帧结构到第二次AGC执行需要有一定的时间缓冲来保证足够的时间做AGC调整。在图2所示的架构中,涉及AGC调整的同步模块、FFT/IFFT模块、SIG检测模块、AGC模块均位于RU侧,因此不存在AGC调整的时延约束问题,而在本申请实施例中,为了实现RU与CU之间以数字基带时域IQ信号传输,FFT/IFFT模块和SIG检测模块被配置在了CU侧,因此CU通知RU帧格式的检测结果需要一定的传输时延,可能存在AGC调整的时延约束问题。
因此,在本申请实施例中,在RU侧配置了AGC调整模块,用于从第一解封装模块接收中心单元发送的封装后的译码结果,根据所述译码结果生成自动增益控制的命令;所述译码结果由所述中心单元对所述802.11帧进行FFT/IFFT转换,获取所述802.11帧中SIG字段并执行SIG检测后得到;
相对于图2中的AGC模块,本申请实施例中的AGC模块,还用于接收所述自动增益控制的命令,对所述802.11帧的信号功率进行自动增益控制,调整输入数模/模数转换器的信号的功率。
所述同步模块具体用于在所述802.11帧中检测到L-STF字段时,指示所述AGC模块对所述802.11帧的信号功率进行第一次自动增益控制;
所述译码结果为所述中心单元获取的所述802.11帧的传统信号域(Legacy Signal Field,简称L-SIG)字段及其所述L-SIG字段后的前三个正交频分复用OFDM符号的译码结果;
所述AGC调整模块,具体用于在所述译码结果符合预设条件时,根据所述译码结果运行本地AGC状态机,生成第二次自动增益控制或第三次自动增益控制的命令。
具体的方法流程请参见图9,为本申请实施例提供的一种进行AGC调整的方法流程示意图,具体包括如下步骤:
S901,远端单元接收802.11帧,检测到L-STF字段时,进行第一次AGC调整。
S902,远端单元将802.11帧中包含的数字基带IQ信号,封装成数据报文,并加入控制字。
S903,远端单元将数据报文发送给中心单元。
S904,中心单元解封装数据报文,根据控制字获知802.11帧的发送起始点和结束点,对802.11帧进行解调译码,将L-SIG及其之后的三个OFDM符号的译码结果封装成控制报文.
S905,中心单元向远端单元发送控制报文。
S906,远端单元解封装控制报文,获得译码结果,根据译码结果运行本地AGC状态机,生成第二次/第三次AGC调整命令。
S907,根据AGC调整命令进行第二次/第三次AGC调整。
由于802.11帧的格式存在多种,不同格式的802.11帧进行第二次/第三次AGC调整的示意图请参见图10。
如图10所示,为接收不同格式的802.11帧时第二次/第三次AGC调整的时序示意图。对于各种格式的报文,HT-STF/VHT-STF/HE-STF之前的字段长度通常为4us的整数倍。
因RU侧存在同步(SYNC)模块,可以检测到L-STF,从而可以判断出有效的802.11帧的起始点和结束点。RU会将接收到的802.11帧封装成数据报文传给CU。如图所示,t00,t10,t20,t30分别表示L-SIG及其之后三个OFDM符号传输给CU的时间点。考虑拉远传输时延以及CU接收后的解调处理时延,t01,t11,t21,t31分别表示解调出L-SIG以及其之后三个OFDM符号并封装成控制报文送给RU的时间点。考虑拉远传输时延,t02,t12,t22,t32分别表示RU侧获得L-SIG及其之后三个OFDM符号的译码结果的时间点。
在步骤S906中,新增的AGC调整模块执行本地AGC状态机生成第二次/第三次AGC调整命令的示意图可参见图11,图11为AGC调整的流程示意图,包括第一次AGC调整和第二次/第三次AGC调整。如图11所示,当RU检测在L-STF时会做第一次AGC调整。然后RU在收到L-SIG的译码结果之后,即在t02处,判断L-SIG的调制方式是否为二进制相移键控(Binary Phase Shift Keying,简称BPSK)。
如果L-SIG的调制方式是BPSK,则进一步判段L-DATARATE是否为6Mbps,其中,L-DATARATE是L-SIG字段里RATE域所指示的值,表示数据速率。在HT/VHT/HE格式的PPDU报文中,L-SIG中的RATE字段是固定值6Mbps,也即L-DATARATE为6Mbps。如果L-DATARATE为6Mbps,则Mode可能为HT,VHT,HE格式,或者BPSK数据调制的Non-HT格式。根据L-SIG的解调结果,判定做第二次AGC调整。并进一步在16us处得到L-SIG之后第一个符号的解调结果。判断L-SIG之后第一个符号的内容是否与L-SIG相同。如果不同则结束,如果相同,则Mode是HE。判断LENGTH mod 3==1还是==2,其中,LENGTH是L-SIG字段中的LENGTH域,表示PPDU中携带负载的物理层业务数据单元(PHY Service Data Unit,简称PSDU)的字节数。如果LENGTH等于1,则进一步根据接收(RX)状态机判断是HE TB还是HE SU,如果是HE SU,则在16us处根据L-SIG之后第一个符号结果判定做第三次AGC调整。如果是HE TB,则在20us处根据收到L-SIG之后第二个符号结果,判定做第三次AGC调整。如果LENGTH mod 3==2,则为HE ER SU格式。在24us处得到L-SIG之后第三个符号的解调结果并进一步判断L-SIG之后第三个符 号的调制方式,如果调制方式是QBPSK,则在确认为HE ER SU格式的基础上,在24us处根据收到L-SIG之后第三个符号结果,判定做第三次AGC调整。
如果L-SIG的调制方式是BPSK,且L-DATARATE不等于6Mbps,则Mode可能是非BPSK数据调制的Non-HT,或者HT-MF格式。进一步根据CCA检测判断带宽BW是否为40MHz且主辅信道上都检测到有效的L-SIG。如果是,则Mode是HT-MF格式,根据L-SIG的解调结果,判定做第二次AGC调整;如果否,则无法判定是Non-HT还是HT-MF格式。不做第二次AGC调整。
如果L-SIG的调制方式是正交二进制相移键控(Quadrature binary phase shift keying,简称QBPSK),则Mode为HT-GF。不用做第二次AGC调整。
在解决了CSMA/CA时延约束的基础上,本申请实施例通过在RU侧新增AGC调整模块,利用CU和RU之间控制报文的交互,CU向RU传输L-SIG及其后续三个符号的译码结果,辅助RU接收802.11帧时做第二次/第三次AGC调整,从而解决了AGC时序问题;
请参照图12,为本申请实施例提供的一种远端单元的组成示意图;可包括:
处理器110、存储器120和总线130。处理器110和存储器120通过总线130连接,该存储器120用于存储指令,该处理器110用于执行该存储器120存储的指令,以实现如上图3,图4-图9对应的方法中远端单元执行的步骤。
进一步的,该远端单元还可以包括输入口140和输出口150。其中,处理器110、存储器120、输入口140和输出口150可以通过总线130相连。
处理器110用于执行该存储器120存储的指令,以控制输入口140接收信号,并控制输出口150发送信号,完成上述方法中远端单元执行的步骤。其中,输入口140和输出口150可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为输入输出口。所述存储器120可以集成在所述处理器110中,也可以与所述处理器110分开设置。
作为一种实现方式,输入口140和输出口150的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器110可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的远端单元。即将实现处理器110,输入口140和输出口150功能的程序代码存储在存储器中,通用处理器通过执行存储器中的代码来实现处理器110,输入口140和输出口150的功能。
该远端单元所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于远端单元相关内容的描述,此处不做赘述。
本领域技术人员可以理解,为了便于说明,图12中仅示出了一个存储器和处理器。在实际的控制器中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
应理解,在本申请实施例中,处理器可以是中央处理单元(Central Processing Unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现成可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。
该总线除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例提供的方法,本申请实施例还提供一种接入点,包括前述的远端单元和中心单元。
根据本申请实施例提供的方法,本申请实施例还提供一种系统,包括前述的接入点和站点。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block,简称ILB)和步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质 可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (27)
- 一种远端单元,其特征在于,包括:空闲信道评估CCA模块,用于在竞争信道时执行载波侦听多路访问/冲突避免CSMA/CA的信道检测,确定信道的忙闲状态;信号发生器,用于在所述CCA模块确定信道空闲时,在执行信道检测的最后一个时隙的结束边界发送信道占用信号。
- 根据权利要求1所述的远端单元,其特征在于,所述远端单元还包括:媒体接入控制MAC代理模块,用于接收中心单元发送的信道竞争消息,将所述信道竞争消息转发给所述CCA模块,接收所述CCA模块输出的信道竞争结果并发送给所述中心单元。
- 根据权利要求1或2所述的远端单元,其特征在于,所述远端单元还包括:射频模块,用于通过所述信号发生器占用的信道发送802.11帧,所述802.11帧中包含所述中心单元生成的数字基带同相正交IQ信号。
- 根据权利要求2或3所述的远端单元,其特征在于,所述远端单元还包括:第一封装模块,用于对所述远端单元发送给所述中心单元的信号进行封装处理;第一解封装模块,用于对所述中心单元发送给所述远端单元的信号进行解封装处理。
- 如权利要求4所述的远端单元,其特征在于,所述第一解封装模块具体用于接收所述中心单元发送的封装后的数据报文并进行解封装,获取所述数据报文中包含的所述数字基带IQ信号和控制字,所述控制字用于指示所述数据报文中携带的802.11帧的发送起始点和发送结束点。
- 根据权利要求5所述的远端单元,其特征在于,所述信号发生器还用于在所述发送起始点停止所述信道占用信号的发送。
- 根据权利要求5所述的远端单元,其特征在于,所述射频模块还用于在所述发送结束点停止发送所述802.11帧。
- 根据权利要求2-7任一项所述的远端单元,其特征在于,所述MAC代理模块还用于根据所述信道竞争结果或所述第一解封装模块解封装获得的所述控制字,控制所述信号发生器。
- 根据权利要求4-8任一项所述的远端单元,其特征在于,所述远端单元与所述中心单元之间传输的信号为数字基带频域IQ信号,所述远端单元还包括:快速傅里叶变换/快速傅里叶反变换FFT/IFFT模块,用于对所述射频模块接收到的802.11帧进行快速傅里叶变换/快速傅里叶反变换处理,完成所述802.11帧从时域到频域的转换,获取转换后的802.11帧中的长训练域LTF字段及其之后字段内容并发送给所述第一封装模块,所述第一封装模块还用于对LTF字段及其之后字段内容进行封装并发送给所述中心单元,以及,获取转换后的802.11帧中的信号SIG字段并发送给SIG检测模块;所述SIG检测模块,用于对所述SIG字段进行解调译码,完成对所述802.11帧的格式检测,并将译码结果发送给所述第一封装模块,所述第一封装模块还用于将所述译码结果封装后发送给所述中心单元。
- 根据权利要求4-8任一项所述的远端单元,其特征在于,所述远端单元与所述中心单元之间传输的信号为数字基带时域IQ信号,所述远端单元还包括:同步模块,用于检测所述802.11帧的有效性和起始边界,对所述802.11帧进行帧同步和符号同步;所述第一解封装模块还用于接收所述中心单元发送的封装后的译码结果,解封装后发送给自动增益控制AGC调整模块;所述译码结果由所述中心单元对所述802.11帧进行FFT/IFFT转换,获取所述802.11帧中SIG字段并执行SIG检测后得到;所述自动增益控制AGC调整模块,用于根据所述译码结果生成自动增益控制的命令;AGC模块,用于接收所述自动增益控制的命令,对所述802.11帧的信号功率进行自动增益控制,调整输入数模/模数转换器的信号的功率。
- 根据权利要求10所述的远端单元,其特征在于,所述同步模块具体用于在所述802.11帧中检测到传统短训练域L-STF字段时,指示所述AGC模块对所述802.11帧的信号功率进行第一次自动增益控制;所述译码结果为所述中心单元获取的所述802.11帧的传统信号域L-SIG字段及其所述L-SIG字段后的前三个正交频分复用OFDM符号的译码结果;所述AGC调整模块,具体用于在所述译码结果符合预设条件时,根据所述译码结果运行本地AGC状态机,生成第二次自动增益控制或第三次自动增益控制的命令。
- 一种传输信息的方法,其特征在于,包括:远端单元在竞争信道时执行载波侦听多路访问/冲突避免CSMA/CA的信道检测,确定信道的忙闲状态;当确定信道空闲时,在执行信道检测的最后一个时隙的结束边界发送信道占用信号。
- 根据权利要求12所述的方法,其特征在于,所述方法还包括:所述远端单元接收中心单元发送的信道竞争消息;将信道竞争结果发送给所述中心单元。
- 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:所述远端单元通过发送所述信道占用信号占用的信道,发送802.11帧,所述802.11帧中包含所述中心单元生成的数字基带同相正交IQ信号。
- 根据权利要求13或14所述的方法,其特征在于,所述方法还包括:所述远端单元对所述远端单元发送给所述中心单元的信号进行封装处理;所述远端单元对所述中心单元发送给所述远端单元的信号进行解封装处理。
- 如权利要求15所述的方法,其特征在于,所述方法还包括:所述远端单元接收所述中心单元发送的封装后的数据报文并进行解封装,获取所述数据报文中包含的所述数字基带IQ信号和控制字,所述控制字用于指示所述数据报文中携带的802.11帧的发送起始点和发送结束点。
- 根据权利要求16所述的方法,其特征在于,所述方法还包括:所述远端单元在所述发送起始点停止所述信道占用信号的发送。
- 根据权利要求16所述的方法,其特征在于,所述方法还包括:所述远端单元在所述发送结束点停止发送所述802.11帧。
- 根据权利要求13-18任一项所述的方法,其特征在于,所述方法还包括:所述远端单元根据所述信道竞争结果或解封装获得的所述控制字,控制是否发送所述信道占用信号。
- 根据权利要求15-19任一项所述的方法,其特征在于,所述远端单元与所述中心单元之间传输的信号为数字基带频域IQ信号,所述方法还包括:所述远端单元对接收到的802.11帧进行快速傅里叶变换/快速傅里叶反变换处理,完成所述802.11帧从时域到频域的转换,获取转换后的802.11帧中的长训练域LTF字段及其之后字段内容并进行封装,发送给所述中心单元,以及,获取转换后的802.11帧中的信号SIG字段,对所述SIG字段进行解调译码,完成对所述802.11帧的格式检测,并将译码结果发送给所述中心单元。
- 根据权利要求15-19任一项所述的方法,其特征在于,所述远端单元与所述中心单元之间传输的信号为数字基带时域IQ信号,所述方法还包括:所述远端单元检测所述802.11帧的有效性和起始边界,对所述802.11帧进行帧同步和符号同步;接收所述中心单元发送的封装后的译码结果,进行解封装后获得所述译码结果;所述译码结果由所述中心单元对所述802.11帧进行FFT/IFFT转换,获取所述802.11帧中SIG字段并执行SIG检测后得到;根据所述译码结果生成自动增益控制的命令;根据所述自动增益控制的命令,对所述802.11帧的信号功率进行自动增益控制,调整输入数模/模数转换器的信号的功率。
- 根据权利要求21所述的方法,其特征在于,若所述远端单元在所述802.11帧中检测到传统短训练域L-STF字段时,则对所述802.11帧的信号功率进行第一次自动增益控制;所述译码结果为所述中心单元获取的所述802.11帧的传统信号域L-SIG字段及其所述L-SIG字段后的前三个正交频分复用OFDM符号的译码结果;在所述译码结果符合预设条件时,所述远端单元根据所述译码结果运行本地AGC状态机,生成第二次自动增益控制或第三次自动增益控制的命令。
- 一种远端单元,其特征在于,包括:处理器、存储器和总线,所述处理器和存储器通过总线连接,其中,所述存储器用于存储一组程序代码,所述处理器用于调用所述存储器中存储的程序代码,执行如权利要求12-22任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,包括:所述计算机可读存储介质中存储有指令,当其在计算机上运行时,实现如权利要求12-22任一项所述的方法。
- 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机实现如权利要求12-22中任一项所述的方法。
- 一种芯片,包括一个或多个处理电路,其中,所述一个或多个处理电路用于实现如权利要求12-22中任一项所述的方法。
- 一种装置,其特征在于,用于执行如权利要求12-22中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010246510.2A CN113473530B (zh) | 2020-03-31 | 2020-03-31 | 一种远端单元和传输信息的方法 |
CN202010246510.2 | 2020-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021197352A1 true WO2021197352A1 (zh) | 2021-10-07 |
Family
ID=77865661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/084155 WO2021197352A1 (zh) | 2020-03-31 | 2021-03-30 | 一种远端单元和传输信息的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113473530B (zh) |
WO (1) | WO2021197352A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114554572B (zh) * | 2022-04-27 | 2022-08-05 | 广州世炬网络科技有限公司 | 远端场景下的终端接入方法及网络设备部署方法 |
CN116248144B (zh) * | 2022-12-30 | 2024-07-23 | 中国联合网络通信集团有限公司 | 一种通信设备、通信设备性能调优方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106559843A (zh) * | 2015-09-25 | 2017-04-05 | 上海贝尔股份有限公司 | 一种用于在会话前侦听的操作中支持多种QoS的方法 |
WO2017206102A1 (zh) * | 2016-06-01 | 2017-12-07 | 华为技术有限公司 | 信道竞争方法及装置 |
US20180139761A1 (en) * | 2016-11-16 | 2018-05-17 | Intel Corporation | Method of coexistance for narrowband transmissions in 2.4/5 ghz bands |
CN108476503A (zh) * | 2016-01-08 | 2018-08-31 | 高通股份有限公司 | 信道感知资源分配 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105282749B (zh) * | 2014-07-15 | 2018-10-26 | 财团法人工业技术研究院 | 基站及其通信方法 |
TWI628926B (zh) * | 2016-09-30 | 2018-07-01 | 聯發科技股份有限公司 | 通道估計增強的方法及無線設備 |
CN109905218B (zh) * | 2017-12-08 | 2022-04-12 | 苹果公司 | 用于发送与传统802.11系统兼容的测距分组的装置和方法 |
US11025456B2 (en) * | 2018-01-12 | 2021-06-01 | Apple Inc. | Time domain resource allocation for mobile communication |
-
2020
- 2020-03-31 CN CN202010246510.2A patent/CN113473530B/zh active Active
-
2021
- 2021-03-30 WO PCT/CN2021/084155 patent/WO2021197352A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106559843A (zh) * | 2015-09-25 | 2017-04-05 | 上海贝尔股份有限公司 | 一种用于在会话前侦听的操作中支持多种QoS的方法 |
CN108476503A (zh) * | 2016-01-08 | 2018-08-31 | 高通股份有限公司 | 信道感知资源分配 |
WO2017206102A1 (zh) * | 2016-06-01 | 2017-12-07 | 华为技术有限公司 | 信道竞争方法及装置 |
US20180139761A1 (en) * | 2016-11-16 | 2018-05-17 | Intel Corporation | Method of coexistance for narrowband transmissions in 2.4/5 ghz bands |
Non-Patent Citations (1)
Title |
---|
SHARP: "Intra-operator LAA frequency reuse considerations", 3GPP DRAFT; R1-153056, vol. RAN WG1, 15 May 2015 (2015-05-15), Fukuoka, Japan, pages 1 - 4, XP050968912 * |
Also Published As
Publication number | Publication date |
---|---|
CN113473530B (zh) | 2023-03-28 |
CN113473530A (zh) | 2021-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3986062B1 (en) | Data transmission method and apparatus | |
US8948102B2 (en) | Channel access method for very high throughput (VHT) wireless local access network system | |
US8937922B2 (en) | Method and apparatus for transmitting data frame in WLAN system | |
US11553065B2 (en) | Packet formats for vehicular networks | |
WO2021197352A1 (zh) | 一种远端单元和传输信息的方法 | |
US10764413B2 (en) | Frame transmission method and apparatus in wireless local area network | |
US11611462B2 (en) | Padding and backoff operations when transmitting via multiple frequency segments in a WLAN | |
US11438204B2 (en) | Physical layer convergence procedure protocol data unit communication method and related apparatus | |
US11997541B2 (en) | Enhanced bandwidth negotiation | |
CN107852222B (zh) | 通过频率分集进行传输的系统和方法 | |
TW202320566A (zh) | 受限目標喚醒時間(r-twt)服務時段的協調式排程及訊號傳遞 | |
US10136450B2 (en) | Multiuser frame transmission method in wireless lan system | |
WO2017113989A1 (zh) | 一种无线局域网中帧传输的方法及装置 | |
US20240204965A1 (en) | Cross-Link Acknowledgement | |
US20230023779A1 (en) | Map coordination of nstr constrained links | |
US20240163787A1 (en) | Multi link device cooperation in wireless communication networks | |
TW202428061A (zh) | 用於非主通道的封包偵測 | |
TW202320579A (zh) | 對不支援受限目標喚醒時間(r-twt)操作的無線站(sta)的傳輸量管理 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21780741 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21780741 Country of ref document: EP Kind code of ref document: A1 |