WO2015118667A1 - Method for manufacturing lens, resin starting material used therein, and lens obtained by said manufacturing method - Google Patents

Method for manufacturing lens, resin starting material used therein, and lens obtained by said manufacturing method Download PDF

Info

Publication number
WO2015118667A1
WO2015118667A1 PCT/JP2014/052953 JP2014052953W WO2015118667A1 WO 2015118667 A1 WO2015118667 A1 WO 2015118667A1 JP 2014052953 W JP2014052953 W JP 2014052953W WO 2015118667 A1 WO2015118667 A1 WO 2015118667A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens precursor
mold
compression
precursor
Prior art date
Application number
PCT/JP2014/052953
Other languages
French (fr)
Japanese (ja)
Inventor
一喜 大松
圭吾 二俣
淑弘 山本
Original Assignee
住友化学株式会社
嶋田プレシジョン株式会社
東芝機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 嶋田プレシジョン株式会社, 東芝機械株式会社 filed Critical 住友化学株式会社
Priority to PCT/JP2014/052953 priority Critical patent/WO2015118667A1/en
Priority to JP2015561120A priority patent/JP6345712B2/en
Publication of WO2015118667A1 publication Critical patent/WO2015118667A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/02Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore of moulding techniques only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00432Auxiliary operations, e.g. machines for filling the moulds
    • B29D11/00442Curing the lens material

Definitions

  • the present invention relates to a lens manufacturing method, a resin raw material used therefor, and a lens obtained by the manufacturing method. More specifically, the present invention relates to a method for producing a plastic lens used as an optical element and a resin material used therefor, and also relates to a plastic lens obtained by such a production method.
  • Lens is generally used as an optical element.
  • plastic lenses are used for various optical system applications because they have a specific gravity smaller than that of glass lenses and are lighter in weight, have good moldability and high impact resistance.
  • Plastic lenses can be obtained through molding. That is, a plastic lens can be obtained by imparting a desired lens shape to the resin material using a mold.
  • a process of subjecting a resin material to injection molding and then compression molding can be considered. That is, after obtaining a lens precursor as a base of a plastic lens with an injection mold, the lens precursor is compressed with a compression mold to obtain a plastic lens.
  • plastic lenses have a need for mass production while maintaining high quality.
  • a main object of the present invention is to provide a lens manufacturing method that can suitably satisfy the needs of mass production without deteriorating lens quality.
  • the lens manufacturing method of the present invention includes: (I) a step of performing injection molding using a thermoplastic resin raw material to obtain a lens precursor in an injection mold, and (ii) placing the lens precursor in a compression mold and compressing the lens precursor. Comprising the step of subjecting to molding, In transferring the lens precursor from the injection molding in the step (i) to the compression molding in the step (ii), the lens precursor is obtained when the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin raw material. Is taken out from the injection mold.
  • the lens manufacturing method of the present invention is characterized by taking out the lens precursor from the injection mold. Specifically, in the production method of the present invention, when the lens precursor is transferred from the injection mold to the compression mold, the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material. The lens precursor is removed from the injection mold.
  • lens substantially means a plastic lens used as an optical element.
  • the “lens precursor” refers to an injection molded body that is molded to obtain a desired lens. That is, a resin molded body that is preliminarily molded by injection molding to obtain a lens corresponds to a “lens precursor”.
  • the center temperature of the lens precursor in the injection mold is indirectly determined based on Equation 1.
  • the center temperature of the lens precursor in the injection mold is indirectly grasped, so that the center temperature of the lens precursor becomes “above the midpoint glass transition temperature of the thermoplastic resin raw material”. At some point, the lens precursor is removed from the injection mold.
  • a plurality of lenses are manufactured in parallel.
  • a thermoplastic resin raw material is subsequently injected as quickly as possible to an injection mold in which a certain lens precursor is taken out above its midpoint glass transition temperature to obtain another lens precursor.
  • the lens precursor is subjected to cooling in a state of being taken out from the injection mold prior to being subjected to the compression molding in the step (ii). That is, the lens precursor is not subjected to substantial cooling in the injection mold, but the lens precursor is subjected to substantial cooling in an atmosphere after being taken out (for example, in an ambient atmosphere).
  • the lens precursor taken out from the injection mold is transferred to the compression mold without being particularly cooled. That is, the lens precursor taken out from the injection mold without subjecting the lens precursor to substantial cooling is charged into the compression mold as quickly as possible.
  • thermoplastic resin raw material used in step (i) has a Vicat softening temperature measured by JIS K7206 (B50 method) of 105 ° C. or higher and 120 ° C. or lower, and JIS K7210 A thermoplastic resin material having a measured melt mass flow rate of 1 g / 10 min or more and 20 g / 10 min or less is used.
  • a (meth) acrylic resin is used as the thermoplastic resin material used in step (i).
  • the (meth) acrylic resin may be, for example, a copolymer composed of “methacrylic acid ester” and “monomer other than methacrylic acid ester”.
  • the maximum thickness dimension is 10 mm or more and 150 mm or less
  • the maximum width dimension is 10 mm or more and 200 mm or less.
  • the lens precursor having such a maximum dimension is taken out from the injection mold under the condition of the intermediate glass transition temperature or higher of the raw material resin.
  • step (ii) the relationship between the mold temperature Tp (° C.) of the compression mold and the intermediate glass transition temperature Tmg (° C.) of the thermoplastic resin material is Tmg + 45 ⁇ Tp ⁇ Tmg + 85.
  • the compression pressure of the compression mold is 15 kN or more and 80 kN or less, and the lens precursor is subjected to compression molding under the condition that the compression time by the compression mold is 110 seconds or more and 200 seconds or less.
  • Step (ii) of the production method of the present invention comprises: (A) a sub-step of subjecting the lens precursor to heating in a compression mold; (B) a sub-step of subjecting the heated lens precursor to compression molding, and (c) a sub-step of subjecting the lens obtained by compression molding of the lens precursor to cooling in a compression mold. It may be.
  • a heating process for preheating the lens precursor, a compression molding process for compressing the lens precursor so heated, and a lens obtained by the compression molding are performed. It is preferable that the cooling process to cool is included.
  • the heating sub-step (a), the compression-molding sub-step (b), and the cooling sub-step (c) are sequentially performed in a state where the compression-molding mold charged with the lens precursor is conveyed.
  • the compression molding mold in which the lens precursor is present is continuously conveyed in this order in the steps of “heating”, “compression molding”, and “cooling”.
  • thermoplastic resin material suitably used in the above production method is also provided. More specifically, a (meth) acrylic resin used in the above lens manufacturing method is provided in the present invention.
  • the present invention also provides a lens obtained by the above manufacturing method.
  • the lens obtained by the above manufacturing method is a vehicle lamp lens.
  • the lens precursor is taken out from the injection mold. It can be used quickly for the formation of lens precursors and contributes to the realization of efficient mass production.
  • the lens precursor is taken out of the injection mold at such an early stage, the quality as a finally obtained lens product cannot be substantially lowered.
  • the lens precursor taken out from the injection mold is subjected to compression molding under the condition that the glass transition temperature is higher than the midpoint glass transition temperature, the quality as a final lens product is not particularly unexpectedly lowered and is realistic.
  • the present inventors have found that this is particularly desirable as a simple lens manufacturing process.
  • the present invention suitably satisfies the needs for mass production while satisfying the lens quality.
  • FIG. 1 is a schematic diagram for explaining the concept of the present invention.
  • FIG. 2 is a calorimetric analysis graph (DSC curve) for explaining the “midpoint glass transition temperature (Tmg)”.
  • FIG. 3 is a schematic diagram of a lens precursor (FIG. 3A: perspective view, FIG. 3B and FIG. 3C: cross-sectional view).
  • FIG. 4 is a perspective view schematically showing one aspect of a sub-process that can be performed in the compression molding process.
  • FIG. 5 is a perspective view schematically showing one aspect of a sub-process that can be performed in the compression molding process.
  • FIG. 6 is a schematic diagram of a lens (FIG. 6A: perspective view, FIG. 6B cross-sectional view).
  • the lens manufacturing method according to the present invention the resin raw material used in the lens manufacturing method, and the lens obtained by the manufacturing method will be described in detail. It should be noted that the forms shown in the drawings are merely schematically shown for the purpose of understanding the present invention, and the dimensional ratio, appearance, and the like may be different from the actual ones.
  • the method for producing a lens of the present invention comprises a step (i) of obtaining a lens precursor in an injection mold by performing injection molding using a thermoplastic resin material, and the lens precursor thus obtained is compression-molded. And at least a step (ii) of subjecting the mold to compression molding.
  • the lens precursor is handled under specific conditions. Specifically, when the lens precursor is transferred from the injection mold in step (i) to the compression mold in step (ii), the center temperature of the lens precursor is the midpoint glass transition of the thermoplastic resin material. When the temperature is above the temperature, the lens precursor is removed from the injection mold.
  • FIG. 1 schematically shows the concept of the present invention.
  • the present invention does not dare to subject the lens precursor to sufficient cooling in the injection mold, and the lens precursor is ejected early when the lens precursor is at or above the midpoint glass transition temperature. Remove from the mold. In other words, the lens precursor is taken out from the injection mold under conditions that are equal to or higher than the midpoint glass transition temperature in the stage before sufficient cooling, and the lens precursor thus taken out is charged into the compression mold.
  • the lens precursor is taken out from the injection mold when the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material.
  • the inventors of the present application have found that the quality is not particularly deteriorated as a final lens product. That is, when the lens precursor is taken out from the injection mold under the condition of the intermediate glass transition temperature or higher, and the lens precursor taken out under such conditions is charged into the compression mold, the lens is obtained. It was found that there was no particular problem with the quality as a lens product, and it was sufficiently meaningful as a lens manufacturing process.
  • the injection mold after removal can be quickly used to form another lens precursor, which has greatly contributed to the realization of efficient mass production, and has also been found to have great benefits ([Prior Art In Patent Documents 1 to 4 cited in [Literature], such lens manufacturing productivity is not particularly considered).
  • the manufacturing method of the present invention is characterized in that a lens precursor obtained by an injection mold is taken out only under specific conditions.
  • the lens precursor is removed from the injection mold under the condition that the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin raw material.
  • the conditions are such that “the center temperature of the lens precursor is not lower than the midpoint glass transition temperature of the thermoplastic resin material” and “the center temperature of the lens precursor is not higher than 200 ° C.”.
  • the lens from the injection mold is used under the condition that the center temperature of the lens precursor is 200 ° C. or lower. It is preferable to take out the precursor.
  • the upper limit of the above extraction temperature is “the central temperature of the lens precursor is 200 ° C. or less”, but preferably “the central temperature of the lens precursor” Is 190 ° C. or lower ”, more preferably“ center temperature of lens precursor is 180 ° C. or lower ”, and further preferably“ center temperature of lens precursor is 170 ° C. or lower ”.
  • step (i) of the lens manufacturing method according to the present invention injection molding is performed using a thermoplastic resin material to obtain a lens precursor in an injection mold. Specifically, a thermoplastic resin material is injected into an injection mold to obtain a lens precursor.
  • the injection mold in step (i) is a “mold for plastic molding” provided in a so-called injection molding machine. Therefore, the injection mold in the present invention is typically composed of a fixed mold and a movable mold.
  • the injection molding machine itself includes a hopper portion serving as a raw material inlet, a cylinder portion (for example, a screw / cylinder portion) in which the raw material is melted, and a mold into which the molten raw material is injected.
  • the mold opening / closing mechanism of the injection molding machine is not particularly limited, but may be electric or hydraulic.
  • Resin raw material used in step (i) is a thermoplastic resin.
  • a resin material that softens and melts when heated, but solidifies when cooled is injected into an injection mold.
  • the thermoplastic resin raw material may be input to an injection molding machine in the form of pellets, for example. That is, the pellet-shaped thermoplastic resin raw material may be charged into the hopper of the injection molding machine, whereby the thermoplastic resin raw material is melted in a cylinder (for example, a screw cylinder), and the molten thermoplastic resin raw material is It will be injected into the injection mold.
  • the cylinder temperature, the mold temperature of the injection mold and the injection speed can be considered. Those process conditions may be appropriately adjusted in view of, for example, the midpoint glass transition temperature of the thermoplastic resin raw material.
  • the cylinder temperature may be about 180 ° C. or more and 250 ° C. or less, preferably about 180 ° C. or more and about 240 ° C. or less, and more preferably about 180 ° C. or more and about 230 ° C. or less.
  • the mold temperature of the injection mold may be about 60 ° C. or higher and 120 ° C. or lower, preferably 70 ° C. or higher and 110 ° C. or lower, more preferably 80 ° C. or higher and 100 ° C. or lower.
  • the injection speed is 0.1 mm / s or more and 2.0 mm / s or less, preferably 0.1 mm / s or more and 1.5 mm / s or less, more preferably 0.2 mm / s or more and 1.0 mm / s. It is about the following.
  • thermoplastic resin raw material examples include (meth) acrylic resin, polycarbonate resin, and modified polyolefin resin.
  • the Vicat softening temperature measured by JIS K7206 (B50 method) is 105 ° C. or more and 120 ° C. or less
  • the melt mass flow rate measured by JIS K7210 is 1 g / 10 min or more and 20 g / 10 min or less.
  • a thermoplastic resin raw material When such a resin raw material is used, it contributes not only to the viewpoint of the manufacturing process but also to the quality improvement of the obtained lens product.
  • the lens precursor can be taken out earlier in step (i).
  • the resin temperature after the thermoplastic resin raw material is injected into the injection mold is efficiently lowered, and as a result, the lens precursor is injection molded under the condition of the midpoint glass transition temperature or higher.
  • the time until removal from the mold can be further shortened.
  • the melt mass flow rate (JIS K7210) of the thermoplastic resin raw material is more preferably 1.5 g / 10 min or more and 15 g / 10 min or less, and further preferably 1.5 g / 10 min or more and 13 g / 10 min or less.
  • the Vicat softening temperature of the thermoplastic resin raw material is 105 ° C. or higher and 120 ° C. or lower
  • the lens obtained by the production method of the present invention is more excellent in heat resistance. Since the heat resistance of the lens is more excellent, the lens can be suitably disposed for a long time in the vicinity of the light source where the surrounding environment becomes high temperature.
  • the Vicat softening temperature (JIS K7206 (B50 method)) of the thermoplastic resin raw material is more preferably 105 ° C. or higher and 118 ° C. or lower, and further preferably 106 ° C. or higher and 115 ° C. or lower.
  • (Meth) acrylic resin is particularly suitable as the thermoplastic resin material used in step (i). This is because it has properties such as high transmittance, low birefringence, high hardness and scratch resistance.
  • the (meth) acrylic resin having such properties is not only particularly preferable for the lens as the final product, but also “when the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin raw material. It is also preferable from the viewpoint of the characteristic process aspect of the present invention, such as “take out the lens precursor from the injection mold”.
  • the weight average molecular weight of the (meth) acrylic resin is preferably 50,000 or more and 200,000 or less, more preferably 60000 or more and 180000 or less, and still more preferably. Is 70000 or more and 150,000 or less.
  • the (meth) acrylic resin for example, a homopolymer of (meth) acrylic monomers such as (meth) acrylic acid, (meth) acrylic ester, (meth) acrylonitrile, or a copolymer of two or more thereof, Examples include copolymers of (meth) acrylic monomers and other monomers.
  • the term “(meth) acryl” substantially means “acryl” or “methacryl”, and therefore, (meth) acryl can be simply referred to as “acrylic resin”. .
  • the methacrylic resin is a polymer obtained by polymerizing a monomer mainly composed of methacrylic acid ester, for example, a homopolymer of methacrylic acid ester and a copolymer composed of two or more methacrylic acid esters.
  • a methacryl resin the copolymer etc. which consist of monomers other than methacrylic ester and methacrylic ester are also preferable.
  • the methacrylic acid ester is 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight based on the total amount of monomers.
  • monomers other than methacrylic acid ester are 50% by weight or less, preferably 30% by weight or less, more preferably 10% by weight or less.
  • methacrylic acid ester examples include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, hexyl methacrylate, heptyl methacrylate, 2-ethylhexyl methacrylate, Examples include n-octyl methacrylate, n-nonyl methacrylate, isononyl methacrylate, decyl methacrylate, undecyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, lauryl methacrylate and the like. Among these, alkyl methacrylate having 1 to 8 carbon atoms in the alkyl group portion is preferable, and methyl methacrylate is more preferable. Methacrylic acid esters may be used alone or in combination of two or more.
  • Examples of monomers other than methacrylic acid esters include acrylic acid esters, aromatic vinyl monomers, unsaturated nitrile monomers, ethylenically unsaturated carboxylic acid hydroxyalkyl ester monomers, and ethylenically unsaturated carboxylic acids.
  • Amide monomer ethylenically unsaturated acid monomer, ethylenically unsaturated sulfonic acid ester monomer, ethylenically unsaturated alcohol and its ester monomer, ethylenically unsaturated ether monomer, ethylenically unsaturated
  • Examples include amine monomers, ethylenically unsaturated silane monomers, vinyl halide monomers, and aliphatic conjugated diene monomers.
  • acrylic acid esters are preferably used.
  • Monomers other than methacrylic acid esters may be used alone or in combination of two or more.
  • acrylate ester examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, heptyl acrylate, and 2-ethylhexyl acrylate.
  • alkyl acrylates having 1 to 8 carbon atoms in the alkyl group are preferable, and include methyl acrylate, ethyl acrylate, n-propyl acrylate, propyl acrylate, n-butyl acrylate, and isobutyl acrylate. Is more preferable, and methyl acrylate is more preferable.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, o-ethylstyrene, p-ethylstyrene, o-chlorostyrene, p-chlorostyrene, p- Methoxystyrene, p-aminostyrene, p-acetoxystyrene, sodium styrenesulfonate, ⁇ -vinylnaphthalene, sodium 1-vinylnaphthalene-4-sulfonate, 2-vinylfluorene, 2-vinylpyridine, 4-vinylpyridine, etc. Can be mentioned. Of these, styrene is preferred.
  • Examples of the unsaturated nitrile monomer include acrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -methoxyacrylonitrile, methacrylonitrile, vinylidene cyanide, and the like.
  • Examples of the ethylenically unsaturated carboxylic acid hydroxyalkyl ester monomer include hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, and hydroxybutyl methacrylate.
  • Examples of the ethylenically unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-butoxymethyl acrylamide, N-butoxymethyl methacrylamide, N-butoxyethyl acrylamide, N-butoxyethyl methacrylamide, N-methoxymethyl.
  • Examples of the ethylenically unsaturated acid monomer include acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, maleic anhydride, vinyl sulfonic acid, and isoprene sulfonic acid. Unsaturated sulfonic acid and the like.
  • the ethylenically unsaturated acid monomer may be neutralized with an alkali metal such as sodium or potassium, ammonia or the like.
  • Examples of the ethylenically unsaturated sulfonate monomer include alkyl vinyl sulfonate and alkyl isoprene sulfonate.
  • ethylenically unsaturated alcohols and ester monomers thereof include allyl alcohol, methallyl alcohol, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl stearate, vinyl benzoate, allyl acetate, methallyl caproate, and lauric acid.
  • examples include allyl, allyl benzoate, vinyl alkyl sulfonate, allyl alkyl sulfonate, and vinyl aryl sulfonate.
  • ethylenically unsaturated ether monomer examples include methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, methyl allyl ether, ethyl allyl ether, and the like.
  • Examples of the ethylenically unsaturated amine monomer include vinyldimethylamine, vinyldiethylamine, vinyldiphenylamine, allyldimethylamine, and methallyldiethylamine.
  • Examples of the ethylenically unsaturated silane compound include vinyltriethylsilane, methylvinyldichlorosilane, dimethylallylchlorosilane, and vinyltrichlorosilane.
  • vinyl halide monomer examples include vinyl chloride, vinylidene chloride, 1,2-dichloroethylene, vinyl bromide, vinylidene bromide, 1,2-dibromoethylene, and the like.
  • Examples of the aliphatic conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, and 2-neopentyl-1,3-butadiene.
  • a (meth) acrylic resin is used as a thermoplastic resin raw material
  • a methyl methacrylate homopolymer polymethyl methacrylate
  • a copolymer composed of a (meth) acrylic acid ester other than methyl methacrylate is particularly preferred.
  • a copolymer comprising 80 to 99.9% by mass of methyl methacrylate and 0.1 to 20% by mass of (meth) acrylic acid ester other than methyl methacrylate is a compound other than methyl methacrylate and methyl methacrylate ( When the total amount with the (meth) acrylic acid ester is 100% by weight, methyl methacrylate is contained in a proportion of 80 to 99.9% by weight, and (meth) acrylic acid ester other than methyl methacrylate is 0.1 to 20%. It is a copolymer obtained by polymerizing a monomer mixture contained in a proportion by weight. In this monomer mixture, methyl methacrylate is preferably contained in a proportion of 85 to 99.5% by mass, more preferably 90 to 99.5% by mass.
  • the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material.
  • the lens precursor is removed from the injection mold.
  • the “midpoint glass transition temperature” in the present invention substantially means the glass transition temperature Tmg published in JIS K7121. More specifically, in the calorimetric analysis result (DSC curve) as shown in FIG. 2, a straight line equidistant from the extended straight line of each base line in the vertical axis direction and a step-like change in glass transition The temperature at the point where the partial curve intersects corresponds to the “midpoint glass transition temperature (Tmg)” in the present invention.
  • Tmg glass transition temperature
  • “extrapolated glass transition start temperature” a straight line obtained by extending the base line on the low temperature side to the high temperature side, and the steps of the glass transition.
  • T eg the temperature at the point of intersection with the tangent drawn at the point where the gradient of the curve of the shape change portion is maximized.
  • T eg the temperature at the point of intersection with the tangent drawn at the point where the gradient of the curve of the shape change portion is maximized.
  • extrapolated glass transition end temperature a straight line obtained by extending the base line on the high temperature side to the low temperature side, and the steps of the glass transition.
  • slope of the curve of Jo change portion is at a temperature of intersection of the tangent drawn at a point that maximizes (extrapolated glass transition end temperature T eg in the case of peak on the high-temperature side of the step change appears in the high temperature-side Is the temperature at the intersection of a straight line that extends the base line to the low temperature side and a tangent line drawn at the point where the gradient is maximum on the high temperature curve of the peak).
  • the “center temperature of the lens precursor” in the present invention refers to the temperature at the center of the lens precursor.
  • the “center temperature of the lens precursor” refers to the curved surface top point A of the lens precursor 100 ′ and the tangent line of the top point A, as shown in FIG. 3 (particularly FIG. 3B). Is a temperature at a point located in the middle of the lens bottom point B located in a direction perpendicular to the lens.
  • the center temperature of the lens precursor in the injection mold may be directly measured by various thermometers
  • the inventors of the present application have conducted an intensive study and found that such temperature is indirectly measured from another scale. It was found that an efficient manufacturing process can be realized by grasping the above.
  • the inventors of the present application have found that the center temperature of the lens precursor in the injection mold can be indirectly grasped based on the following formula 1 and thereby the timing for taking out the lens precursor can be determined. It was. That is, in a particularly preferred aspect of the present invention, the center temperature of the lens precursor in the injection mold is indirectly grasped based on the formula 1, and the temperature thus grasped is “ The lens precursor is taken out from the injection mold when it is "midpoint glass transition temperature or higher".
  • t la is the cooling time provided to the lens precursor in the injection mold. Specifically, t la is the elapsed time starting from the time when the injected resin raw material stopped flowing, that is, the time from when the filling of the thermoplastic resin raw material into the injection mold was completed.
  • Means. S [mm] is the maximum thickness of the lens precursor. That is, the maximum thickness T′max of the lens precursor shown in FIG. 3C corresponds to “S” (note that T′max is indirectly grasped from the cavity dimensions of the injection mold). Is possible).
  • ⁇ [mm 2 / s] is the thermal diffusivity of the thermoplastic resin raw material at the surface temperature of the injection mold.
  • ⁇ e [° C.] is the center temperature of the lens precursor in the injection mold. That is, ⁇ e indicates the temperature at the center of the lens precursor, and for convenience, the “center temperature of the lens precursor” includes the curved surface top point A of the lens and its top point, as shown in FIG. A temperature at an intermediate point positioned between the lens bottom point B positioned in a direction perpendicular to the tangent to A can be set.
  • ⁇ m [° C.] is the surface temperature of the injection mold. More specifically, it is the cavity surface temperature of the injection mold.
  • the lens precursor taken out from the injection mold may be immediately placed in the compression mold, or may be placed in the compression mold after being cooled. Also good.
  • the lens precursor taken out from the injection mold is transferred to the compression mold without being subjected to substantial cooling.
  • the expression “without being subjected to cooling” here substantially means that the lens precursor taken out from the injection mold is not actively subjected to cooling in an external atmosphere. That is, it means that the lens precursor taken out from the injection mold is continuously charged into the compression mold as soon as possible.
  • the lens precursor taken out from the injection mold is preferably transferred to the compression mold under the condition that the center temperature is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material.
  • the lens precursor is subjected to cooling in a state of being taken out from the injection mold prior to being subjected to the compression molding in the step (ii). That is, the lens precursor is not subjected to substantial cooling in the injection mold, but the lens precursor is subjected to substantial cooling in an atmosphere after being taken out of the lens precursor.
  • the lens precursor taken out from the injection mold is cooled to a temperature lower than the center glass transition temperature of the thermoplastic resin material and transferred to the compression mold.
  • the cooling method prior to the compression molding in the step (ii) is not particularly limited as long as it can cool the lens precursor to lower the center temperature. For example, the lens precursor is taken out.
  • Examples include a method of standing in an environment, a method of throwing a lens precursor into water, a method of spraying water, air, or nitrogen onto the lens precursor, a method of standing a lens precursor in a low temperature environment, etc. It is done.
  • the inventors of the present invention cool the lens precursor to the same temperature in the injection mold when the lens precursor is cooled in the atmosphere after being taken out from the injection mold.
  • the lens precursor is cooled to the same temperature in the injection mold even when the lens precursor is cooled by being left in an external atmosphere.
  • the cooling time was shorter than the time required for That is, according to this aspect, even in the case where a cooling process is additionally provided between the step (i) and the step (ii), the lens manufacturing time is shorter than that of the conventional manufacturing method, which is efficient. Production has been realized.
  • such cooling in the atmosphere outside the injection mold forms the “surface that forms the lens convex portion 101 ′” and “the lens bottom portion 102 ′ from the viewpoint of obtaining a lens having a good appearance with reduced surface irregularities. It is preferable to cool the lens precursor while inverting the “surface” (see FIG. 3C).
  • the lens precursor it is preferable to cool while changing the direction of the lens precursor. If the lens precursor is cooled in a state in which the lens precursor is not inverted upside down and maintained in a certain direction, the surface of the lens precursor may be deformed. In some cases, the deformation cannot be corrected even by the compression molding in the step (ii). This is because there is a concern that the surface may remain uneven.
  • the manufacturing method of the present invention can obtain a plurality of lenses in parallel.
  • another lens precursor can be obtained by subsequently injecting a thermoplastic resin material into an injection mold in which a certain lens precursor is taken out at or above its midpoint glass transition temperature.
  • a certain lens precursor is taken out at or above its midpoint glass transition temperature.
  • the injection mold thus taken out is used as soon as possible for the molding of the next lens precursor.
  • the injection mold can be efficiently used for molding a plurality of lens precursors, and as a result, efficient mass production of a plurality of lenses can be realized.
  • the present invention is also considered in view of such productivity, and the present invention is also beneficial in this respect.
  • the manufacturing time per lens is considerably reduced as compared with the prior art. Specifically, when manufacturing lenses via injection molding and compression molding, according to the method of the present invention, the manufacturing time per lens can be reduced by at least 20% over prior art techniques under similar conditions. Can be reduced, preferably by at least 30%, more preferably by at least 40%, and even more preferably by at least 50% (eg, by about 60%).
  • a lens precursor is removed from an injection mold at a temperature above its midpoint glass transition temperature, and continues at a time when the center temperature of the lens precursor is still “above the midpoint glass transition temperature of the thermoplastic resin raw material”.
  • a thermoplastic resin material may be injected.
  • the injection mold may be used for the next lens precursor molding.
  • the lens precursor obtained in step (i) of the production method of the present invention has a maximum thickness (specifically, as shown in FIGS. 3B and 3C), the tangent to the curved surface top point A of the lens.
  • the maximum thickness “T′max” of the lens in the direction perpendicular to the lens is preferably larger than the maximum thickness Tmax (see FIG. 6) of the lens obtained in the step (ii). This is because the lens precursor is easily subjected to sufficient compression in the compression mold of step (ii), and as a result, the cavity shape in the compression mold, that is, the shape of the desired lens is obtained. This is because it becomes easy to be molded with high accuracy.
  • the maximum thickness dimension (for example, the maximum thickness of the lens precursor 100 ′ shown in FIG. 3C) is obtained for the lens precursor obtained in the step (i).
  • T′max is preferably 10 mm or more and 150 mm or less, more preferably 10 mm or more and 130 mm or less, and further preferably 10 mm or more and 100 mm or less.
  • the maximum width dimension of the lens precursor obtained in the step (i) (for example, excluding the flange portion 102 ′ shown in FIG. 3C).
  • the effective maximum width W′max of the lens body is preferably 10 mm or more and 200 mm or less, more preferably 20 mm or more and 130 mm or less, and further preferably 30 mm or more and 120 mm or less.
  • the lens precursor obtained in step (i) has a maximum thickness dimension of 10 mm to 150 mm and a maximum width dimension of 10 mm to 200 mm. That is, in a preferred aspect of the manufacturing method of the present invention, an injection mold having a mold cavity capable of obtaining a lens precursor having such a maximum thickness dimension and maximum width dimension is used in step (i). It will be.
  • step (ii) is performed. That is, the lens precursor is placed in a compression mold and the lens precursor is subjected to compression molding.
  • the handling of the lens precursor when transferring from the injection mold in the step (i) to the compression mold in the step (ii) will be mentioned.
  • the lens precursor taken out from the injection mold that is, the lens precursor released from the injection mold is chucked on the outer periphery, or the flange portion of the lens precursor is removed with a dedicated jig. By receiving several points from below, it can be transferred to a compression mold. Even if this point is taken out from the injection mold under the condition of “midpoint glass transition temperature or higher”, by using the handling means or moving means, the lens precursor is suitably compressed as a result.
  • the lens precursor can be suitably held during the handling operation. Therefore, smoother charging into the compression mold can be assisted.
  • the compression mold itself used in the step (ii) is not particularly limited as long as it can apply a compression pressure to the lens precursor and thereby obtain a lens product.
  • the compression molding die in the present invention is typically composed of at least a “fixed side” and a “moving side”, as long as compression pressure can be applied to the lens precursor by clamping. Good.
  • the mold can be moved independently, not a mold fixed to a molding machine equipped with a mold clamping mechanism. A mold is preferred.
  • the mold temperature Tp (° C.) of the compression mold in the step (ii) preferably satisfies the relationship of Tmg + 45 ⁇ Tp ⁇ Tmg + 85 with respect to the midpoint glass transition temperature Tmg (° C.) of the thermoplastic resin raw material. More preferably, the relationship of Tmg + 50 ⁇ Tp ⁇ Tmg + 80 is satisfied. If the mold temperature of the compression mold is too high, the lens precursor will be heated excessively to the center of the lens precursor, and it may take excessive time for subsequent cooling, while the mold temperature of the compression mold is too low. This is because sufficient surface accuracy may be difficult to obtain.
  • the compression pressure by the compression mold in the step (ii) is preferably 15 kN or more and 80 kN or less, more preferably 20 kN or more and 50 kN or less.
  • the compression pressure by the compression molding die is too large, the compression molding die and the lens precursor are in close contact with each other, and the lens may be damaged when the lens is taken out from the compression molding die. This is because if the compression pressure is too small, it may be difficult to obtain sufficient surface accuracy.
  • the compression time by the compression mold in the step (ii) is preferably 110 seconds or more and 200 seconds or less, more preferably 120 seconds or more and 190 seconds or less. If the compression time by the compression mold is too long, it may take extra time for subsequent cooling or foaming may occur in the resulting lens, while the compression time by the compression mold is short. This is because if it is too large, a desired lens shape and surface accuracy cannot be secured.
  • the relationship between the mold temperature (Tp) of the compression mold and the glass transition temperature (Tmg) of the thermoplastic resin raw material is Tmg + 45 ⁇ Tp ⁇ Tmg + 85 (the unit is “° C.”).
  • the lens precursor is subjected to compression molding under the conditions that the compression pressure of the compression mold becomes 15 kN or more and 80 kN or less, and the compression time by the compression mold becomes 110 seconds or more and 200 seconds or less.
  • the compression mold used in step (ii) may be one in which one lens precursor can be installed, or one in which two or more lens precursors can be installed.
  • a compression molding die in which two or more lens precursors can be installed is preferable.
  • Step (ii) of the manufacturing method according to the present invention may heat the lens precursor in the compression mold prior to compression molding and / or cool the lens in the compression mold after compression molding.
  • the step (ii) includes (a) a sub-step of heating and preheating the lens precursor in a compression mold, (B) a sub-step of compressing and molding the heated / preheated lens precursor, and (c) a sub-step of cooling the lens obtained by compression molding of the lens precursor in a compression molding die.
  • the sub-steps (a) to (c) are sequentially performed by conveying a compression molding die charged with a lens precursor.
  • the compression molding mold charged with the lens precursor is conveyed to the heating sub-step (a) and heated to a predetermined temperature. Thereby, the lens precursor existing in the compression mold is heated and preheated.
  • the compression molding die is conveyed to the compression molding sub-step (b).
  • the lens precursor is subjected to pressurization at a predetermined temperature and a predetermined pressure, and as a result, the lens is subjected to compression molding in the compression molding die.
  • the compression molding sub-step (b) surface defects of the lens precursor are reduced, and a highly accurate lens can be obtained.
  • the compression molding sub-step (b) corrects the shape displacement that can be caused to the lens precursor taken out from the injection mold at the intermediate glass transition temperature or higher, thereby obtaining a desired lens. Become. Subsequently, the compression molding die is conveyed to the cooling sub-step (c). In the cooling sub-step (c), the lens is cooled to a predetermined temperature in the compression molding die. The cooled lens is finally taken out from the compression mold.
  • Examples of methods for conveying the compression mold include a belt conveyor and a robot arm.
  • the compression mold is conveyed by using a belt conveyor. If a belt conveyor is used, it will become possible to convey a compression molding metal mold
  • sequential conveyance becomes possible, so that each sub-process can be performed in parallel, and a plurality of lenses can be manufactured suitably.
  • the compression molding die that has undergone the heating sub-step (a) and the compression molding sub-step (b) is used for the cooling sub-step (c)
  • the heating sub-step (a) is performed in parallel with this.
  • Step (ii) of the embodiment shown in FIG. 4 includes at least a heating sub-step (a) 30, a compression molding sub-step (b) 40, a first cooling sub-step (c) 50A, and a second cooling sub-step (c) 50B.
  • the compression molding die 20 that is configured and charged with the lens precursor is conveyed while the sub-processes are sequentially applied in this order (30 ⁇ 40 ⁇ 50A ⁇ 50B).
  • the process (ii) of the embodiment shown in FIG. 5 includes a first heating sub-process (a) 30A, a second heating sub-process (a) 30B, a first compression molding sub-process (b) 40A, and a second compression molding sub.
  • Compression comprising at least a step (b) 40B, a first cooling sub-step (c) 50A, a second cooling sub-step (c) 50B, and a third cooling sub-step (c) 50C, in which a lens precursor is charged
  • the molding die 20 is conveyed while the sub-processes are sequentially applied in this order (30A ⁇ 30B ⁇ 40A ⁇ 40B ⁇ 40C ⁇ 50A ⁇ 50B ⁇ 50C).
  • step (ii) Detailed description of “heating”, “compression molding”, and “cooling” that can be performed in step (ii) will be given.
  • the sub-step (a) is preferably heated so that the mold temperature of the compression mold becomes a predetermined temperature.
  • the heating means for example, an infrared heater may be used.
  • the mold temperature rises due to such heating the temperature of the lens precursor inherent in the compression mold rises. At this time, the temperature of the lens precursor and the mold temperature do not need to match.
  • the compression mold is continuously conveyed at a constant conveyance speed as described above, it may take some time for the lens precursor to be heated to a predetermined temperature in the compression mold. In such a case, since the heating time may be insufficient in one heating step, for example, heating may be performed in two or more stages.
  • two or more heating sub-steps (a) may be provided.
  • conditions such as heating temperature and heating time in the heating sub-steps may be the same or different.
  • the preferred specific heating temperature is as described above. That is, the heating temperature is preferable so that the mold temperature Tp (° C.) of the compression mold and the intermediate glass transition temperature Tmg (° C.) of the thermoplastic resin material satisfy the relationship of Tmg + 45 ⁇ Tp ⁇ Tmg + 85.
  • the time for heating is preferably 120 seconds or more and 190 seconds or less, and more preferably 130 seconds or more and 180 seconds or less. If the heating time is too long, the center of the lens precursor is heated excessively, and cooling may take time.
  • the total time obtained by adding all the times required for the heating in the plurality of stages is preferably 120 seconds or more and 190 seconds or less, and more preferably 130 seconds or more and 180 seconds or less.
  • the compression pressure by the compression molding die is preferably 15 kN to 80 kN
  • the compression time by the compression molding die is preferably 110 seconds or more and 200 seconds or less.
  • the compression pressure can be controlled by adjusting the clamping force of the compression mold. Similar to the heating sub-step described above, for example, when compression molding takes time, the compression molding may be performed in two or more stages. That is, two or more compression molding sub-steps (b) may be provided.
  • conditions such as mold temperature and compression pressure in the compression molding sub-steps may be the same or different.
  • the total time obtained by adding all the times required for the compression molding of the plurality of stages is 110 seconds or more and 200 seconds or less.
  • the lens is preferably cooled in a compression mold as a sub-step (c).
  • cooling may be natural cooling, cooling may be forcibly performed from outside the mold using a cooler means or the like.
  • the temperature of the lens precursor present in the compression mold decreases as the mold temperature decreases.
  • a preferable target cooling temperature is, for example, 80 ° C. or higher and 130 ° C. or lower, and more preferably 90 ° C. or higher and 120 ° C. or lower.
  • the cooling time is preferably 100 seconds or more and 300 seconds or less, and more preferably 110 seconds or more and 290 seconds or less. In cooling, the temperature of the lens precursor and the mold temperature do not need to match.
  • the compression mold In the aspect in which the compression mold is continuously conveyed at a constant conveyance speed as described above, it may take time to cool the lens precursor to a predetermined temperature in the compression mold. In such a case, since the cooling time may be insufficient in one cooling step, for example, the cooling may be performed in two or more stages. That is, two or more cooling sub-steps (c) may be provided. When two or more cooling sub-steps are provided, conditions such as mold temperature in the cooling sub-steps may be the same or different. In the case where a plurality of cooling steps are provided, it is preferable that the total time obtained by adding all the times required for cooling the plurality of stages is 100 seconds or more and 300 seconds or less as described above.
  • step (ii) in addition to the heating sub-step (a), compression molding sub-step (b), and cooling sub-step (c), one or more other sub-steps may be included.
  • additional sub-steps can include stabilization sub-steps.
  • the stabilization sub-step is intended to sufficiently exert a process operation such as heating, compression molding or cooling on the entire lens precursor / entire lens.
  • the stabilization sub-step is performed after the heating sub-step, the operation of maintaining the preceding heating temperature is stable so that the heat is sufficiently transferred to the inside of the lens precursor charged in the compression mold. Can be performed in the sub-step.
  • thermoplastic resin raw material of the present invention is a resin raw material used in the above-described lens manufacturing method. Specifically, it is a thermoplastic resin material used for obtaining a lens precursor by being injected into an injection mold in the step (i). Therefore, the thermoplastic resin raw material of the present invention has, for example, a pellet form, and may be particularly suitable for introduction into an injection molding machine.
  • the thermoplastic resin raw material of the present invention is a (meth) acrylic resin.
  • (meth) acryl as used herein substantially means “acryl” or “methacryl”.
  • resin raw materials include homopolymers of (meth) acrylic monomers such as (meth) acrylic acid, (meth) acrylic acid esters, (meth) acrylonitrile, and copolymers of two or more of these (meth) Examples thereof include a copolymer of an acrylic monomer and other monomers.
  • the (meth) acrylic resin of the present invention is preferably a methacrylic resin from the viewpoint of having excellent hardness, weather resistance, transparency and the like.
  • the methacrylic resin is a polymer obtained by polymerizing a monomer mainly composed of methacrylic acid ester, for example, a homopolymer of methacrylic acid ester and a copolymer composed of two or more methacrylic acid esters.
  • the copolymer etc. which consist of monomers other than methacrylic acid ester and methacrylic acid ester are preferable.
  • the methacrylic acid ester is 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight based on the total amount of monomers.
  • monomers other than methacrylic acid ester are 50% by weight or less, preferably 30% by weight or less, more preferably 10% by weight or less.
  • the (meth) acrylic resin of the present invention has a Vicat softening temperature measured by JIS K7206 (B50 method) of 105 ° C. or more and 120 ° C. or less, and a melt mass flow rate measured by JIS K7210 of 1 g / 10 min or more and 20 g / Those having a temperature of 10 min or less (more preferably 105 ° C. or more and 118 ° C. or less, more preferably 106 ° C. or more and 115 ° C. or less) are preferable.
  • the lens precursor can be taken out earlier in step (i) of the above-described lens manufacturing method, while the Vicat softening temperature is 105 ° C. or more and 120
  • the lens obtained by the above-described lens manufacturing method becomes superior in heat resistance when the temperature is not higher than ° C.
  • the lens 100 of the present invention is a lens obtained by the above-described lens manufacturing method.
  • FIG. 6 exemplarily shows the lens of the present invention.
  • the lens of the present invention includes, for example, a lens unit 101, a lens unit 102, and a flange unit 103.
  • the lens unit 101 has a height dimension larger than that of the lens unit 102, and the lens unit 101 and the lens unit 102 are connected to each other via a flange unit 103.
  • the lens shape is not limited to this, and can be appropriately changed according to the intended use.
  • the lens unit 102 has a convex surface according to the form shown in FIG. 6, but is not limited thereto, and may have a concave surface or a flat surface according to desired lens performance. It may be.
  • the lens of the present invention is a lens obtained by the above-described lens manufacturing method, it corresponds to a so-called “plastic lens”.
  • the lens of the present invention is a transparent plastic lens made of (meth) acrylic resin.
  • the lens of the present invention can be used for applications where such a lens shape is required.
  • the lens of the present invention can be used as an optical element.
  • the lens as the optical element is used as, for example, various lenses for a camera, a projector, a copier, a printer, or a lighting device in addition to a vehicle lamp / lens (one example is a vehicle headlamp / lens).
  • a lens made of (meth) acrylic resin is preferably used as a vehicle lamp / lens (for example, a vehicle headlamp / lens).
  • the maximum thickness Tmax (see FIG. 6) from the lens unit 101 to the lens unit 103 is preferably 10 mm or more and 150 mm or less, more preferably 10 mm or more and 130 mm or less. More preferably, it is 100 mm or less.
  • the maximum width Wmax of the lens (that is, the effective maximum width dimension of the lens body excluding the flange portion 102 (see FIG. 6)) is preferably 10 mm or more and 200 mm or less, more preferably 20 mm or more and 130 mm or less. More preferably, they are 30 mm or more and 120 mm or less. Such dimensions contribute to the short time production of a lens with a good appearance. The dimensional difference from the lens precursor will be described in detail.
  • the maximum dimension of the lens (for example, likewise the maximum thickness Tmax and the maximum width Wmax) is preferably 0.2% to 10% compared to the maximum dimension of the lens precursor (for example, maximum thickness T'max and maximum width W'max).
  • % Can be as small as 0.5%, more preferably as small as 0.5% to 6%, and even more preferably as small as 0.8% to 4%.
  • 1st aspect It is a method of manufacturing a lens, Comprising : (I) a step of performing injection molding using a thermoplastic resin raw material to obtain a lens precursor in an injection mold, and (ii) placing the lens precursor in a compression mold and compressing the lens precursor.
  • a step for molding In transferring the lens precursor from the injection molding in the step (i) to the compression molding in the step (ii), the lens precursor is obtained when the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin raw material.
  • a method for producing a lens wherein the lens is taken out from an injection mold.
  • Second aspect The lens manufacturing method according to the first aspect, wherein the center temperature of the lens precursor in the injection mold is indirectly grasped based on Formula 1.
  • Third aspect In the first aspect or the second aspect, a plurality of lenses are manufactured in parallel, It is characterized in that another lens precursor is obtained by injecting a thermoplastic resin raw material as soon as possible to an injection mold in which a lens precursor is taken out above its midpoint glass transition temperature.
  • Fourth aspect In any one of the first to third aspects, the lens precursor is subjected to cooling in a state of being taken out from the injection mold before being subjected to the compression molding in the step (ii). A lens manufacturing method.
  • the lens according to any one of the first to third aspects wherein the lens precursor taken out from the injection mold is transferred to a compression mold without being subjected to substantial cooling. Production method.
  • the Vicat softening temperature measured by JIS K7206 (B50 method) is 105 ° C or higher and 120 ° C or lower as the thermoplastic resin material used in step (i). And using a thermoplastic resin material having a melt mass flow rate measured by JIS K7210 of 1 g / 10 min or more and 20 g / 10 min or less.
  • the lens precursor obtained in step (i) has a maximum thickness dimension of 10 mm to 150 mm and a maximum width dimension (there is a flange portion) In the case, the lens maximum width dimension (excluding the flange portion) is 10 mm or more and 200 mm or less.
  • step (ii) in step (ii), the mold temperature Tp (° C) of the compression mold and the intermediate glass transition temperature Tmg (° C) of the thermoplastic resin material Satisfying the relationship of “Tmg + 45 ⁇ Tp ⁇ Tmg + 85”, the compression pressure by the compression mold is 15 kN or more and 80 kN or less, and the compression time by the compression mold is 110 seconds or more and 200 seconds or less.
  • a lens manufacturing method comprising subjecting a lens precursor to compression molding.
  • the step (ii) comprises: (A) a sub-step of subjecting the lens precursor to heating in a compression mold; (B) a sub-step of subjecting the heated lens precursor to compression molding, and (c) a sub-step of subjecting the lens obtained by compression molding of the lens precursor to cooling in a compression mold.
  • Twelfth aspect In the eleventh aspect, the sub-step (a), the sub-step (b), and the sub-step (c) are sequentially performed while the compression molding die charged with the lens precursor is conveyed or moved.
  • Thirteenth aspect A (meth) acrylic resin used in the lens manufacturing method of the seventh aspect.
  • Fourteenth aspect A lens obtained by the lens manufacturing method according to any one of the first aspect to the twelfth aspect.
  • Fifteenth aspect A lens according to the fourteenth aspect, wherein the lens is a vehicle lamp lens.
  • the present invention is not limited to lens manufacturing but can be similarly applied to manufacturing other resin molded products.
  • the center temperature of the precursor is the midpoint glass of the thermoplastic resin raw material.
  • the precursor may be removed from the injection mold when it is above the transition temperature.
  • VST ⁇ Vicat softening temperature
  • a test piece using a (meth) acrylic resin as a raw material resin was obtained. Specifically, a 10 cm square resin plate having a thickness of 3 mm was press-molded to obtain a test piece. About the obtained test piece, based on JIS K7206 B50 method, Vicat softening temperature (VST) was measured under conditions of a load of 50 N and a heating rate of 50 ° C./hour.
  • ⁇ Center temperature and cooling time of lens precursor> Sumipex MHF (manufactured by Sumitomo Chemical Co., Ltd.) was used as the (meth) acrylic resin. Such a thermoplastic resin raw material was injected into an injection mold to obtain a lens precursor. The relationship between the center temperature of the lens precursor present in the injection mold and the cooling time was calculated from Equation 1.
  • t la S 2 / ( ⁇ 2 ⁇ ⁇ ) ln (8 / ⁇ 2 ⁇ ( ⁇ r ⁇ m ) / ( ⁇ e ⁇ m )) (Formula 1)
  • t la is the cooling time (s) of the lens intermediate
  • ⁇ e the center temperature (° C.) of the lens intermediate.
  • S 23 mm
  • 0.66 mm 2 / s
  • ⁇ r 230 ° C.
  • ⁇ m 80 ° C.
  • the lens precursor was taken out from the injection mold when the center temperature of the lens precursor was equal to or higher than the midpoint glass transition temperature Tmg of the thermoplastic resin material.
  • the center temperature of the lens precursor in the injection mold is indirectly grasped based on the above formula 1, and as a result, the lens precursor is subjected to cooling by the injection mold for “180 seconds”.
  • the lens precursor was released from the injection mold (here, “cooling” is caused by exposing the resin material to the temperature environment of the injection mold, and the above “180”.
  • “Second” is the elapsed time from the point at which the injected resin raw material stopped flowing, that is, the elapsed time from the point at which filling of the thermoplastic resin raw material into the injection mold was completed).
  • the lens precursor could be taken out from the injection mold when the center temperature of the lens precursor was equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material.
  • the taken out lens precursor is composed of a lens portion 101 ′, a lens portion 103 ′, and a flange portion 102 ′ in the same manner as the lens as the final product, and the lens portion 101 ′ and the lens portion 103 ′ are respectively in contact with the flange portion. Both diameters were about 60 mm, and the maximum thickness from the lens portion 101 ′ to the lens portion 103 ′ was about 23 mm (see FIG. 3).
  • Table 1 shows the results obtained based on Equation 1 regarding the relationship between the center temperature of the lens precursor present in the injection mold and the cooling time of the lens precursor in the injection mold. From Table 1, it can be seen that the central temperature of the lens precursor when cooled for 180 seconds is 170 ° C. or higher, and therefore Tmg or higher.
  • Compression molding stage (process (ii))
  • the compression molding process was carried out using a mobile high-precision glass molding apparatus (manufactured by Toshiba Machine Co., Ltd.). Specifically, the lens precursor taken out from the injection mold was charged into a compression mold, and the compression molding process was carried out while the compression mold thus charged was conveyed by a belt conveyor. More specifically, the heating sub-process, the stabilization sub-process, the compression sub-process, and the first to third cooling sub-processes are performed in this order while the compression mold containing the lens precursor is conveyed by a belt conveyor. It carried out sequentially. Table 2 shows the conditions of the sub-process.
  • a lens having a good appearance whose surface irregularities were reduced by such compression molding (irregularities on the lens surface were reduced) could be finally obtained.
  • the obtained lens was subjected to a durability evaluation test (results are shown in Table 2).
  • Example 2 A lens was obtained in the same manner as in Example 1 except that the compression molding process was a heating sub-process, a stabilization sub-process, a first to second compression molding sub-process, and a first to third cooling sub-process. Table 2 shows the conditions in each sub-step of the compression molding. Finally, a lens having a good appearance with reduced surface irregularities (reduced irregularities on the lens surface) could be obtained. The results of durability evaluation of the obtained lens are also shown in Table 2.
  • Example 1 A lens was obtained in the same manner as in Example 1 except that the lens precursor was taken out from the injection mold when the center temperature of the lens precursor was lower than the midpoint glass transition temperature Tmg of the thermoplastic resin material. Specifically, based on Equation 1 above, the center temperature of the lens precursor in the injection mold is indirectly grasped, and as a result, the lens precursor is cooled for 1105 seconds with the injection mold. The lens precursor was removed from the injection mold. Finally, a lens having the same appearance as Example 1 and Example 2 with reduced surface irregularities (reduced irregularities on the lens surface) could be obtained. The results of durability evaluation of the obtained lens are also shown in Table 2.
  • the injection mold can be quickly used to form another lens precursor, which can contribute to the realization of efficient mass production. I understand.
  • the lenses obtained by the present invention are various plastic lenses used as optical elements.
  • the manufacturing time can be shortened for a lens having a desired quality (for example, a lens having excellent durability), which is particularly suitable for mass production.
  • the obtained lens is particularly excellent in transparency by using, for example, (meth) acrylic resin as a raw material resin, and the appearance is improved by reducing surface irregularities. It can be particularly suitably used as an industrial lens.

Abstract

 This method for manufacturing a lens comprises (i) a step for injection molding using a thermoplastic resin starting material and obtaining a lens precursor in an injection mold, and (ii) a step for arranging the lens precursor in a compression mold and compression-molding the lens precursor. When the lens precursor is moved from the injection molding of step (i) to the compression molding of step (ii), the lens precursor is removed from the injection mold when the center temperature of the lens precursor is equal to or greater than the intermediate-point glass transition temperature of the thermoplastic resin starting material.

Description

レンズ製造方法、それに用いられる樹脂原料およびその製造方法によって得られるレンズLens manufacturing method, resin raw material used therefor and lens obtained by the manufacturing method
 本発明は、レンズ製造方法、それに用いられる樹脂原料およびその製造方法によって得られるレンズに関する。より詳細には、本発明は、光学素子として使用されるプラスチック・レンズの製造方法、及びそれに用いられる樹脂原料に関すると共に、かかる製造方法によって得られるプラスチック・レンズにも関する。 The present invention relates to a lens manufacturing method, a resin raw material used therefor, and a lens obtained by the manufacturing method. More specifically, the present invention relates to a method for producing a plastic lens used as an optical element and a resin material used therefor, and also relates to a plastic lens obtained by such a production method.
 レンズは一般的には光学素子として使用される。特にプラスチック・レンズは、比重がガラス・レンズよりも小さく軽量であって、成形加工性が良く、耐衝撃性が高いなどいった理由から、様々な光学系用途に用いられている。 Lens is generally used as an optical element. In particular, plastic lenses are used for various optical system applications because they have a specific gravity smaller than that of glass lenses and are lighter in weight, have good moldability and high impact resistance.
 プラスチック・レンズは、成形を通じて得ることができる。つまり、金型を用いて樹脂原料に所望のレンズ形状を付与してプラスチック・レンズが得られる。 Plastic lenses can be obtained through molding. That is, a plastic lens can be obtained by imparting a desired lens shape to the resin material using a mold.
特開2007-331311号公報JP 2007-331311 A 特開2009-061676号公報JP 2009-061676 A 特開2011-167988号公報Japanese Patent Laid-Open No. 2011-167988 特開2012-183835号公報JP 2012-183835 A
 光学素子として使用されるプラスチック・レンズの製造方法としては、樹脂原料を射出成形に付した後で圧縮成形に付すプロセスが考えられる。つまり、射出成形用金型でプラスチック・レンズの元となるレンズ前駆体を得た後、かかるレンズ前駆体を圧縮成形金型でもって圧縮することによってプラスチック・レンズを得る。 As a method of manufacturing a plastic lens used as an optical element, a process of subjecting a resin material to injection molding and then compression molding can be considered. That is, after obtaining a lens precursor as a base of a plastic lens with an injection mold, the lens precursor is compressed with a compression mold to obtain a plastic lens.
 かかる製造方法では、射出成形金型から圧縮成形金型へとレンズ前駆体を移すに際して、ハンドリングおよび製品品質などの観点から射出成形用金型内にてレンズ前駆体を十分に冷却する必要があると一般に考えられている。つまり、かかるレンズ前駆体は十分な冷却に付した後で射出成形金型から取り出されることになる。なぜなら、十分に冷却しないままレンズ前駆体を射出成形金型から取り出すと、レンズ前駆体が依然軟性を有し得、時間の経過に伴ってレンズ前駆体の形状が変化してしまう虞があると考えられているからである。また、そのように十分に冷却しないと、“軟性”ゆえにレンズ前駆体の把持が困難となるだけでなく、かかる把持によってレンズ前駆体の形状が局所的に変形してしまう虞もあると考えられている。 In such a manufacturing method, when transferring the lens precursor from the injection mold to the compression mold, it is necessary to sufficiently cool the lens precursor in the injection mold from the viewpoint of handling and product quality. It is generally considered. That is, such a lens precursor is taken out from the injection mold after being sufficiently cooled. Because if the lens precursor is taken out from the injection mold without sufficiently cooling, the lens precursor may still have flexibility, and the shape of the lens precursor may change over time. Because it is considered. In addition, if it is not sufficiently cooled, it is considered that not only the lens precursor is difficult to grip due to “softness” but also the shape of the lens precursor may be locally deformed by such gripping. ing.
 一方で、プラスチック・レンズは、高い品質を保持しながらも、大量生産を行うニーズがある。効率良く大量生産を行うには、繰り返し行う射出成形・圧縮成形のサイクル単位を短くする必要があるものの、過度に短いサイクル単位は品質低下につながり得ると考えられている。 On the other hand, plastic lenses have a need for mass production while maintaining high quality. In order to efficiently mass-produce, it is necessary to shorten the cycle unit of repeated injection molding / compression molding, but it is considered that an excessively short cycle unit can lead to quality deterioration.
 本発明はかかる事情に鑑みて為されたものである。本発明の主たる目的は、レンズ品質を低下させず大量生産のニーズを好適に満たすことができるレンズ製造方法を提供することである。 The present invention has been made in view of such circumstances. A main object of the present invention is to provide a lens manufacturing method that can suitably satisfy the needs of mass production without deteriorating lens quality.
 本願発明者らは、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記目的の達成を試みた。その結果、かかる目的が達成されたレンズ製造方法の発明に至った。 The inventors of the present application tried to achieve the above object by addressing in a new direction rather than responding on the extension of the prior art. As a result, the present invention of the lens manufacturing method has been achieved.
具体的には、本発明のレンズ製造方法は、
 (i)熱可塑性樹脂原料を用いて射出成形を行い射出成形金型内でレンズ前駆体を得る工程、および
 (ii)レンズ前駆体を圧縮成形金型内へと配置し、レンズ前駆体を圧縮成形に付す工程
を含んで成り、
 工程(i)の射出成形から工程(ii)の圧縮成形へとレンズ前駆体を移すに際しては、レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上であるときにレンズ前駆体を射出成形金型から取り出す。
Specifically, the lens manufacturing method of the present invention includes:
(I) a step of performing injection molding using a thermoplastic resin raw material to obtain a lens precursor in an injection mold, and (ii) placing the lens precursor in a compression mold and compressing the lens precursor. Comprising the step of subjecting to molding,
In transferring the lens precursor from the injection molding in the step (i) to the compression molding in the step (ii), the lens precursor is obtained when the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin raw material. Is taken out from the injection mold.
 本発明のレンズ製造方法は、射出成形金型からのレンズ前駆体の取出しに特徴の1つがある。具体的には、本発明の製造方法では、射出成形金型から圧縮成形金型へとレンズ前駆体を移すに際してレンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上であるときにレンズ前駆体を射出成形金型から取り出す。 The lens manufacturing method of the present invention is characterized by taking out the lens precursor from the injection mold. Specifically, in the production method of the present invention, when the lens precursor is transferred from the injection mold to the compression mold, the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material. The lens precursor is removed from the injection mold.
 本明細書において「レンズ」とは、光学素子として利用されるプラスチック・レンズのことを実質的に意味している。 In this specification, “lens” substantially means a plastic lens used as an optical element.
 また、本明細書において「レンズ前駆体」とは、所望のレンズを得るべく成形される射出成形体のことを指している。つまり、レンズを得るべく射出成形で予め成形付与された樹脂成形体が「レンズ前駆体」に相当する。 In addition, in this specification, the “lens precursor” refers to an injection molded body that is molded to obtain a desired lens. That is, a resin molded body that is preliminarily molded by injection molding to obtain a lens corresponds to a “lens precursor”.
 ある好適な態様において、射出成形金型内のレンズ前駆体の中心温度は式1に基づいて間接的に把握する。
Figure JPOXMLDOC01-appb-I000002

 つまり、式1に基づいて射出成形金型内のレンズ前駆体の中心温度を間接的に把握し、それによって、レンズ前駆体の中心温度が「熱可塑性樹脂原料の中間点ガラス転移温度以上」にあるときにレンズ前駆体を射出成形金型から取り出す。
In a preferred embodiment, the center temperature of the lens precursor in the injection mold is indirectly determined based on Equation 1.
Figure JPOXMLDOC01-appb-I000002

In other words, based on Equation 1, the center temperature of the lens precursor in the injection mold is indirectly grasped, so that the center temperature of the lens precursor becomes “above the midpoint glass transition temperature of the thermoplastic resin raw material”. At some point, the lens precursor is removed from the injection mold.
 別のある好適な態様においては、複数のレンズを並列的に製造する。かかる態様では、あるレンズ前駆体をその中間点ガラス転移温度以上で取り出した射出成形金型に対して、引き続き可及的に速やかに熱可塑性樹脂原料を射出して別のレンズ前駆体を得る。 In another preferred embodiment, a plurality of lenses are manufactured in parallel. In such an embodiment, a thermoplastic resin raw material is subsequently injected as quickly as possible to an injection mold in which a certain lens precursor is taken out above its midpoint glass transition temperature to obtain another lens precursor.
 更に別のある好適な態様では、工程(ii)の圧縮成形に付すに先立ってレンズ前駆体を射出成形金型から取り出した状態で冷却に付す。つまり、射出成形金型内にてレンズ前駆体を実質的な冷却に付すのではなく、それから取り出した後の雰囲気下(例えば外界雰囲気下)でレンズ前駆体を実質的な冷却に付す。 In still another preferred embodiment, the lens precursor is subjected to cooling in a state of being taken out from the injection mold prior to being subjected to the compression molding in the step (ii). That is, the lens precursor is not subjected to substantial cooling in the injection mold, but the lens precursor is subjected to substantial cooling in an atmosphere after being taken out (for example, in an ambient atmosphere).
 更に別のある好適な態様では、射出成形金型から取り出したレンズ前駆体を特に冷却に付すことなく、圧縮成形金型に移す。つまり、レンズ前駆体を実質的な冷却に付さずに射出成形金型内から取り出したレンズ前駆体を可及的速やかに圧縮成形金型へと仕込む。 In yet another preferred embodiment, the lens precursor taken out from the injection mold is transferred to the compression mold without being particularly cooled. That is, the lens precursor taken out from the injection mold without subjecting the lens precursor to substantial cooling is charged into the compression mold as quickly as possible.
 更に別のある好適な態様において、工程(i)で用いる熱可塑性樹脂原料としては、JIS K7206(B50法)で測定したビカット軟化温度が105℃以上かつ120℃以下であり、また、JIS K7210で測定したメルトマスフローレイトが1g/10min以上かつ20g/10min以下となった熱可塑性樹脂原料を用いる。 In yet another preferred embodiment, the thermoplastic resin raw material used in step (i) has a Vicat softening temperature measured by JIS K7206 (B50 method) of 105 ° C. or higher and 120 ° C. or lower, and JIS K7210 A thermoplastic resin material having a measured melt mass flow rate of 1 g / 10 min or more and 20 g / 10 min or less is used.
 更に別のある好適な態様において、工程(i)で用いる熱可塑性樹脂原料として(メタ)アクリル樹脂を用いる。かかる態様では、(メタ)アクリル樹脂は、例えば、「メタクリル酸エステル」と「メタクリル酸エステル以外の単量体」とからなる共重合体であってよい。 In yet another preferred embodiment, a (meth) acrylic resin is used as the thermoplastic resin material used in step (i). In such an embodiment, the (meth) acrylic resin may be, for example, a copolymer composed of “methacrylic acid ester” and “monomer other than methacrylic acid ester”.
 工程(i)で得られるレンズ前駆体の好適な態様としては、最大厚み寸法が10mm以上かつ150mm以下であり、最大幅寸法が10mm以上かつ200mm以下である。つまり、ある好適な態様では、このような最大寸法を有するレンズ前駆体をその原料樹脂の中間点ガラス転移温度以上の条件下で射出成形金型から取り出すことになる。 As a suitable aspect of the lens precursor obtained in step (i), the maximum thickness dimension is 10 mm or more and 150 mm or less, and the maximum width dimension is 10 mm or more and 200 mm or less. In other words, in a preferred embodiment, the lens precursor having such a maximum dimension is taken out from the injection mold under the condition of the intermediate glass transition temperature or higher of the raw material resin.
 更に別のある好適な態様において、工程(ii)では圧縮成形金型の金型温度Tp(℃)と熱可塑性樹脂原料の中間点ガラス転移温度Tmg(℃)とがTmg+45≦Tp≦Tmg+85の関係を満たし、圧縮成形金型の圧縮圧力が15kN以上かつ80kN以下となり、また、圧縮成形金型による圧縮時間が110秒以上かつ200秒以下となる条件でもってレンズ前駆体を圧縮成形に付す。 In yet another preferred embodiment, in step (ii), the relationship between the mold temperature Tp (° C.) of the compression mold and the intermediate glass transition temperature Tmg (° C.) of the thermoplastic resin material is Tmg + 45 ≦ Tp ≦ Tmg + 85. And the compression pressure of the compression mold is 15 kN or more and 80 kN or less, and the lens precursor is subjected to compression molding under the condition that the compression time by the compression mold is 110 seconds or more and 200 seconds or less.
 本発明の製造方法の工程(ii)は、
 (a)圧縮成形金型内でレンズ前駆体を加熱に付すサブ工程、
 (b)加熱されたレンズ前駆体を圧縮成形に付すサブ工程、および
 (c)レンズ前駆体の圧縮成形で得られたレンズを圧縮成形金型内にて冷却に付すサブ工程
を含んで成るものであってよい。換言すれば、工程(ii)の圧縮成形では、レンズ前駆体を予め加熱する加熱工程、そのように予め加熱されたレンズ前駆体を圧縮成形する圧縮成形工程、および圧縮成形により得られたレンズを冷却する冷却工程を含んでいることが好ましい。かかる場合、レンズ前駆体が仕込まれた圧縮成形金型を搬送した状態でもって、加熱サブ工程(a)、圧縮成形サブ工程(b)および冷却サブ工程(c)を順次実施することが好ましい。つまり、レンズ前駆体が内在する圧縮成形金型は、“加熱”、“圧縮成形”および“冷却”の各工程に、この順に連続して搬送させることが好ましい。
Step (ii) of the production method of the present invention comprises:
(A) a sub-step of subjecting the lens precursor to heating in a compression mold;
(B) a sub-step of subjecting the heated lens precursor to compression molding, and (c) a sub-step of subjecting the lens obtained by compression molding of the lens precursor to cooling in a compression mold. It may be. In other words, in the compression molding of the step (ii), a heating process for preheating the lens precursor, a compression molding process for compressing the lens precursor so heated, and a lens obtained by the compression molding are performed. It is preferable that the cooling process to cool is included. In such a case, it is preferable that the heating sub-step (a), the compression-molding sub-step (b), and the cooling sub-step (c) are sequentially performed in a state where the compression-molding mold charged with the lens precursor is conveyed. In other words, it is preferable that the compression molding mold in which the lens precursor is present is continuously conveyed in this order in the steps of “heating”, “compression molding”, and “cooling”.
 本発明では、上記の製造方法で好適に使用される熱可塑性樹脂原料も提供される。より具体的には、上記レンズ製造方法で使用される(メタ)アクリル樹脂が本発明では提供される。 In the present invention, a thermoplastic resin material suitably used in the above production method is also provided. More specifically, a (meth) acrylic resin used in the above lens manufacturing method is provided in the present invention.
 更に本発明では、上記の製造方法で得られるレンズも提供される。ある好適な態様では上記の製造方法で得られるレンズは、車両ランプ・レンズである。 Furthermore, the present invention also provides a lens obtained by the above manufacturing method. In a preferred embodiment, the lens obtained by the above manufacturing method is a vehicle lamp lens.
 本発明に従えば、レンズ品質を実質的に低下させることなく、効率良くレンズ生産を行うことができる。具体的には、レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上であるときにレンズ前駆体を射出成形金型から取り出すので、その取り出した後の射出成形金型を別のレンズ前駆体形成へと速やかに利用でき、効率的な大量生産の実現に資する。 According to the present invention, it is possible to efficiently produce a lens without substantially reducing the lens quality. Specifically, when the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material, the lens precursor is taken out from the injection mold. It can be used quickly for the formation of lens precursors and contributes to the realization of efficient mass production.
 また、本発明では、そのように早期にレンズ前駆体を射出成形金型から取り出すにも拘わらず、最終的に得られるレンズ品としての品質は実質的に低下し得ない。つまり、中間点ガラス転移温度以上の条件で射出成形金型から取り出したレンズ前駆体を圧縮成形に付した場合には予想外にも最終的なレンズ品としての品質は特に低下せず、現実的なレンズ製造プロセスとして特に望ましいことを本願発明者らは見出した。 Further, in the present invention, although the lens precursor is taken out of the injection mold at such an early stage, the quality as a finally obtained lens product cannot be substantially lowered. In other words, when the lens precursor taken out from the injection mold is subjected to compression molding under the condition that the glass transition temperature is higher than the midpoint glass transition temperature, the quality as a final lens product is not particularly unexpectedly lowered and is realistic. The present inventors have found that this is particularly desirable as a simple lens manufacturing process.
 このように本発明は、レンズ品質を満たしながらも、大量生産を行うニーズをも好適に満たしたものとなっている。 As described above, the present invention suitably satisfies the needs for mass production while satisfying the lens quality.
図1は、本発明の概念を説明するための模式図である。FIG. 1 is a schematic diagram for explaining the concept of the present invention. 図2は、「中間点ガラス転移温度(Tmg)」を説明するための熱量分析グラフ(DSC曲線)である。FIG. 2 is a calorimetric analysis graph (DSC curve) for explaining the “midpoint glass transition temperature (Tmg)”. 図3は、レンズ前駆体の模式図である(図3(a):斜視図、図3(b)および図3(c):断面図)FIG. 3 is a schematic diagram of a lens precursor (FIG. 3A: perspective view, FIG. 3B and FIG. 3C: cross-sectional view). 図4は、圧縮成形工程で実施され得るサブ工程のある一態様を模式的に示した斜視図である。FIG. 4 is a perspective view schematically showing one aspect of a sub-process that can be performed in the compression molding process. 図5は、圧縮成形工程で実施され得るサブ工程のある一態様を模式的に示した斜視図である。FIG. 5 is a perspective view schematically showing one aspect of a sub-process that can be performed in the compression molding process. 図6は、レンズの模式図である(図6(a):斜視図、図6(b)断面図)FIG. 6 is a schematic diagram of a lens (FIG. 6A: perspective view, FIG. 6B cross-sectional view).
 以下にて、本発明に係るレンズ製造方法、それに用いられる樹脂原料およびその製造方法によって得られるレンズを詳細に説明する。尚、図面に示す形態などは、本発明の理解のために模式的に示したにすぎず、寸法比や外観などは実物と異なり得ることに留意されたい。 Hereinafter, the lens manufacturing method according to the present invention, the resin raw material used in the lens manufacturing method, and the lens obtained by the manufacturing method will be described in detail. It should be noted that the forms shown in the drawings are merely schematically shown for the purpose of understanding the present invention, and the dimensional ratio, appearance, and the like may be different from the actual ones.
[本発明のレンズ製造方法]
 本発明のレンズ製造方法は、熱可塑性樹脂原料を用いて射出成形を行い射出成形金型内でレンズ前駆体を得る工程(i)と、そのようにして得られたレンズ前駆体を圧縮成形金型で圧縮成形に付す工程(ii)とを少なくとも有する。特に本発明のレンズ製造方法では、レンズ前駆体の取り扱いを特定の条件下で行う。具体的には、工程(i)における射出成形金型から工程(ii)における圧縮成形金型へとレンズ前駆体を移すに際しては、レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上であるときにレンズ前駆体を射出成形金型から取り出す。図1には本発明の概念を模式的に表している。
[Lens Manufacturing Method of the Present Invention]
The method for producing a lens of the present invention comprises a step (i) of obtaining a lens precursor in an injection mold by performing injection molding using a thermoplastic resin material, and the lens precursor thus obtained is compression-molded. And at least a step (ii) of subjecting the mold to compression molding. In particular, in the lens manufacturing method of the present invention, the lens precursor is handled under specific conditions. Specifically, when the lens precursor is transferred from the injection mold in step (i) to the compression mold in step (ii), the center temperature of the lens precursor is the midpoint glass transition of the thermoplastic resin material. When the temperature is above the temperature, the lens precursor is removed from the injection mold. FIG. 1 schematically shows the concept of the present invention.
 このように本発明では、射出成形用金型内でレンズ前駆体を十分な冷却に付すことを敢えて行わず、レンズ前駆体が中間点ガラス転移温度以上であるときにレンズ前駆体を早期に射出成形金型から取り出す。換言すれば、十分な冷却に付す前段階にある中間点ガラス転移温度以上の条件でレンズ前駆体を射出成形金型から取り出し、そのように取り出したレンズ前駆体を圧縮成形金型へと仕込む。 As described above, the present invention does not dare to subject the lens precursor to sufficient cooling in the injection mold, and the lens precursor is ejected early when the lens precursor is at or above the midpoint glass transition temperature. Remove from the mold. In other words, the lens precursor is taken out from the injection mold under conditions that are equal to or higher than the midpoint glass transition temperature in the stage before sufficient cooling, and the lens precursor thus taken out is charged into the compression mold.
 ここで従来技術における当業者の認識について説明しておく。従来においては、射出成形から圧縮成形へと射出成形体を移すに際しては特段の検討が及ぶものではなく、射出成形体を射出成形金型から取り出して圧縮成形金型へと仕込むといった操作以上の考慮は特に及んでいなかった。また、仮に考慮が及んだとしても、射出成形金型から圧縮成形金型へと射出成形体を移すに際してはハンドリングおよび製品品質などの観点から射出成形用金型内において射出成形体を十分に冷却する必要がある、との当業者の認識が一般的であった。この点につき、本願発明者らが鋭意検討した結果、レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上であるときにレンズ前駆体を射出成形金型から取り出すと、予想外にも最終的なレンズ品として品質が特に低下しないことを本願発明者らは見出した。つまり、中間点ガラス転移温度以上の条件でレンズ前駆体を射出成形金型から取り出し、そのような条件で取り出されたレンズ前駆体を圧縮成形金型へと仕込んでレンズを得た場合には、レンズ品としての品質に特に問題はなく、レンズ製造プロセスとして十分に意義を有するものであることが分かった。特に、取り出した後の射出成形金型を別のレンズ前駆体形成へと速やかに利用できるので、効率的な大量生産の実現に大きく寄与し、その有益性が大きいことも見出した([先行技術文献]で挙げた特許文献1~4では、このようなレンズ製造の生産性については特に考慮されていない)。 Here, the recognition of those skilled in the art in the prior art will be described. Conventionally, there is no special consideration when transferring an injection molded product from injection molding to compression molding. Considerations beyond the operation of taking the injection molded product out of the injection mold and charging it into the compression mold. Did not reach in particular. Even if consideration is given, when transferring an injection molded product from an injection mold to a compression mold, the injection molded product must be sufficiently contained in the injection mold from the viewpoint of handling and product quality. It was common for those skilled in the art to recognize that cooling was necessary. As a result of intensive studies by the inventors of the present invention, it is unexpected if the lens precursor is taken out from the injection mold when the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material. In addition, the inventors of the present application have found that the quality is not particularly deteriorated as a final lens product. That is, when the lens precursor is taken out from the injection mold under the condition of the intermediate glass transition temperature or higher, and the lens precursor taken out under such conditions is charged into the compression mold, the lens is obtained. It was found that there was no particular problem with the quality as a lens product, and it was sufficiently meaningful as a lens manufacturing process. In particular, the injection mold after removal can be quickly used to form another lens precursor, which has greatly contributed to the realization of efficient mass production, and has also been found to have great benefits ([Prior Art In Patent Documents 1 to 4 cited in [Literature], such lens manufacturing productivity is not particularly considered).
 このように案出されたものゆえ、本発明の製造方法は、射出成形金型で得られたレンズ前駆体をあくまでも特定の条件下で取り出すことを特徴としている。 Since the invention has been devised in this way, the manufacturing method of the present invention is characterized in that a lens precursor obtained by an injection mold is taken out only under specific conditions.
 ここで、本発明の製造方法は、射出成形金型からのレンズ前駆体の取出しを「レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上」の条件下で行うが、より好ましくは「レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上」かつ「レンズ前駆体の中心温度が200℃以下」の条件で行う。つまり「レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上」であることを前提として、「レンズ前駆体の中心温度が200℃以下」の条件で射出成形金型からのレンズ前駆体の取出しを行うことが好ましい。なぜなら、レンズ前駆体の中心温度が200℃よりも高いと、レンズ前駆体の取出し時にレンズ前駆体の形状が崩れることがあるだけでなく、取出し後において収縮に起因した真空ボイドがレンズ前駆体の中央部に発生することがあるからである。尚、上記の取出し温度(レンズ前駆体を射出成形金型から取り出す際の温度)の上限値は「レンズ前駆体の中心温度が200℃以下」であるが、好ましくは「レンズ前駆体の中心温度が190℃以下」、より好ましくは「レンズ前駆体の中心温度が180℃以下」、更に好ましくは「レンズ前駆体の中心温度が170℃以下」である。 Here, in the production method of the present invention, the lens precursor is removed from the injection mold under the condition that the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin raw material. Preferably, the conditions are such that “the center temperature of the lens precursor is not lower than the midpoint glass transition temperature of the thermoplastic resin material” and “the center temperature of the lens precursor is not higher than 200 ° C.”. In other words, assuming that the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material, the lens from the injection mold is used under the condition that the center temperature of the lens precursor is 200 ° C. or lower. It is preferable to take out the precursor. This is because when the center temperature of the lens precursor is higher than 200 ° C., not only the shape of the lens precursor may be collapsed when the lens precursor is taken out, but also the vacuum voids caused by the shrinkage after taking out the lens precursor. This is because it may occur in the center. The upper limit of the above extraction temperature (the temperature at which the lens precursor is extracted from the injection mold) is “the central temperature of the lens precursor is 200 ° C. or less”, but preferably “the central temperature of the lens precursor” Is 190 ° C. or lower ”, more preferably“ center temperature of lens precursor is 180 ° C. or lower ”, and further preferably“ center temperature of lens precursor is 170 ° C. or lower ”.
 本発明を更に詳細に説明していく。本発明に係るレンズ製造方法の工程(i)では、熱可塑性樹脂原料を用いて射出成形を行い射出成形金型内でレンズ前駆体を得る。具体的には、熱可塑性樹脂原料を射出成形金型内へと射出してレンズ前駆体を得る。 The present invention will be described in more detail. In step (i) of the lens manufacturing method according to the present invention, injection molding is performed using a thermoplastic resin material to obtain a lens precursor in an injection mold. Specifically, a thermoplastic resin material is injected into an injection mold to obtain a lens precursor.
 工程(i)の射出成形金型は、いわゆる射出成形機に備えられている“プラスチック成形用の金型”である。それゆえ、本発明における射出成形金型は、典型的には固定側金型と可動側金型とから構成されている。射出成形機自体は、原料投入口となるホッパー部、原料が溶融されるシリンダ部(例えばスクリュー・シリンダ部)、溶融された原料が注入される金型を有して成る。射出成形機の型開閉機構は、特に制限されるものではないが、電動式または油圧式であってよい。 The injection mold in step (i) is a “mold for plastic molding” provided in a so-called injection molding machine. Therefore, the injection mold in the present invention is typically composed of a fixed mold and a movable mold. The injection molding machine itself includes a hopper portion serving as a raw material inlet, a cylinder portion (for example, a screw / cylinder portion) in which the raw material is melted, and a mold into which the molten raw material is injected. The mold opening / closing mechanism of the injection molding machine is not particularly limited, but may be electric or hydraulic.
 工程(i)で用いられる樹脂原料は、熱可塑性樹脂である。つまり、熱をかけると軟化・溶融するが、これを冷却すると固化する樹脂原料を射出成形金型内へと射出する。熱可塑性樹脂原料は、例えば、ペレット形態として射出成形機に投入してよい。つまり、ペレット状の熱可塑性樹脂原料を射出成形機のホッパー部へと投入してよく、それによって、熱可塑性樹脂原料がシリンダ(例えばスクリュー・シリンダー)で溶融させられ、溶融した熱可塑性樹脂原料が射出成形金型内へと射出されることになる。 Resin raw material used in step (i) is a thermoplastic resin. In other words, a resin material that softens and melts when heated, but solidifies when cooled, is injected into an injection mold. The thermoplastic resin raw material may be input to an injection molding machine in the form of pellets, for example. That is, the pellet-shaped thermoplastic resin raw material may be charged into the hopper of the injection molding machine, whereby the thermoplastic resin raw material is melted in a cylinder (for example, a screw cylinder), and the molten thermoplastic resin raw material is It will be injected into the injection mold.
 射出成形のプロセス条件としては、例えば、シリンダ温度、射出成形金型の金型温度および射出速度などが考えられる。それらのプロセス条件は、例えば熱可塑性樹脂原料の中間点ガラス転移温度に鑑みて適宜調整すればよい。あくまでも例示にすぎないが、シリンダー温度は180℃以上かつ250℃以下程度であってよく、好ましくは180℃以上かつ240℃以下程度、更に好ましくは180℃以上かつ230℃以下程度である。射出成形金型の金型温度は、60℃以上かつ120℃以下程度であってよく、好ましくは70℃以上かつ110℃以下程度、より好ましくは80℃以上かつ100℃以下程度である。射出速度は0.1mm/s以上かつ2.0mm/s以下程度、好ましくは0.1mm/s以上かつ1.5mm/s以下程度、より好ましくは0.2mm/s以上かつ1.0mm/s以下程度である。 As the process conditions for injection molding, for example, the cylinder temperature, the mold temperature of the injection mold and the injection speed can be considered. Those process conditions may be appropriately adjusted in view of, for example, the midpoint glass transition temperature of the thermoplastic resin raw material. The cylinder temperature may be about 180 ° C. or more and 250 ° C. or less, preferably about 180 ° C. or more and about 240 ° C. or less, and more preferably about 180 ° C. or more and about 230 ° C. or less. The mold temperature of the injection mold may be about 60 ° C. or higher and 120 ° C. or lower, preferably 70 ° C. or higher and 110 ° C. or lower, more preferably 80 ° C. or higher and 100 ° C. or lower. The injection speed is 0.1 mm / s or more and 2.0 mm / s or less, preferably 0.1 mm / s or more and 1.5 mm / s or less, more preferably 0.2 mm / s or more and 1.0 mm / s. It is about the following.
 熱可塑性樹脂原料としては、例えば、(メタ)アクリル樹脂、ポリカーボネート樹脂、変性ポリオレフィン樹脂などを挙げることができる。 Examples of the thermoplastic resin raw material include (meth) acrylic resin, polycarbonate resin, and modified polyolefin resin.
 特に本発明では、JIS K7206(B50法)で測定したビカット軟化温度が105℃以上かつ120℃以下であり、また、JIS K7210で測定したメルトマスフローレイトが1g/10min以上かつ20g/10min以下となった熱可塑性樹脂原料を用いることが好ましい。かかる樹脂原料を用いた場合では、製造プロセスの観点のみならず、得られるレンズ品の品質向上に寄与する。 In particular, in the present invention, the Vicat softening temperature measured by JIS K7206 (B50 method) is 105 ° C. or more and 120 ° C. or less, and the melt mass flow rate measured by JIS K7210 is 1 g / 10 min or more and 20 g / 10 min or less. It is preferable to use a thermoplastic resin raw material. When such a resin raw material is used, it contributes not only to the viewpoint of the manufacturing process but also to the quality improvement of the obtained lens product.
 具体的には、熱可塑性樹脂原料のメルトマスフローレイトが1g/10min以上かつ20g/10min以下となることで、工程(i)におけるレンズ前駆体の取り出し時期を更に早くすることができる。つまり、かかる条件では熱可塑性樹脂原料を射出成形金型内に射出した後における樹脂温度が効率よく低下するようになり、結果的に、中間点ガラス転移温度以上の条件でレンズ前駆体を射出成形金型から取り出すまでの時間を更に短縮することができる。熱可塑性樹脂原料のメルトマスフローレイト(JIS K7210)は、より好ましくは1.5g/10min以上かつ15g/10min以下であり、更に好ましくは1.5g/10min以上かつ13g/10min以下である。 Specifically, when the melt mass flow rate of the thermoplastic resin raw material is 1 g / 10 min or more and 20 g / 10 min or less, the lens precursor can be taken out earlier in step (i). In other words, under these conditions, the resin temperature after the thermoplastic resin raw material is injected into the injection mold is efficiently lowered, and as a result, the lens precursor is injection molded under the condition of the midpoint glass transition temperature or higher. The time until removal from the mold can be further shortened. The melt mass flow rate (JIS K7210) of the thermoplastic resin raw material is more preferably 1.5 g / 10 min or more and 15 g / 10 min or less, and further preferably 1.5 g / 10 min or more and 13 g / 10 min or less.
 一方、熱可塑性樹脂原料のビカット軟化温度が105℃以上かつ120℃以下となることで、本発明の製造方法で得られるレンズが耐熱性により優れたものとなる。レンズの耐熱性がより優れることで、周辺環境が高温となる光源近傍においてレンズを好適に長時間配置することができる。熱可塑性樹脂原料のビカット軟化温度(JIS K7206(B50法))は、より好ましくは105℃以上かつ118℃以下であり、更に好ましくは106℃以上かつ115℃以下である。 On the other hand, when the Vicat softening temperature of the thermoplastic resin raw material is 105 ° C. or higher and 120 ° C. or lower, the lens obtained by the production method of the present invention is more excellent in heat resistance. Since the heat resistance of the lens is more excellent, the lens can be suitably disposed for a long time in the vicinity of the light source where the surrounding environment becomes high temperature. The Vicat softening temperature (JIS K7206 (B50 method)) of the thermoplastic resin raw material is more preferably 105 ° C. or higher and 118 ° C. or lower, and further preferably 106 ° C. or higher and 115 ° C. or lower.
 工程(i)で用いる熱可塑性樹脂原料として特に好適なものは、(メタ)アクリル樹脂である。なぜなら、高透過率、低複屈折、高硬度および耐擦傷性などの性質を有するからである。そのような性質を有する(メタ)アクリル樹脂は、結果的に、最終製品たるレンズにとって特に好ましいだけでなく、「レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上であるときにレンズ前駆体を射出成形金型から取り出す」といった本発明の特徴的なプロセス態様の点からも好ましくなる。特に得られるレンズの耐熱性および機械特性を特に重視する場合、(メタ)アクリル樹脂の重量平均分子量は、好ましくは50000以上かつ200000以下であり、より好ましくは60000以上かつ180000以下であり、更に好ましくは70000以上かつ150000以下である。 (Meth) acrylic resin is particularly suitable as the thermoplastic resin material used in step (i). This is because it has properties such as high transmittance, low birefringence, high hardness and scratch resistance. As a result, the (meth) acrylic resin having such properties is not only particularly preferable for the lens as the final product, but also “when the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin raw material. It is also preferable from the viewpoint of the characteristic process aspect of the present invention, such as “take out the lens precursor from the injection mold”. In particular, when the heat resistance and mechanical properties of the obtained lens are particularly emphasized, the weight average molecular weight of the (meth) acrylic resin is preferably 50,000 or more and 200,000 or less, more preferably 60000 or more and 180000 or less, and still more preferably. Is 70000 or more and 150,000 or less.
 (メタ)アクリル樹脂としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリロニトリルなどの(メタ)アクリル系モノマーの単独重合体またはそれらの2種以上の共重合体、(メタ)アクリル系モノマーとその他のモノマーとの共重合体などが挙げられる。なお、本明細書において『(メタ)アクリル』といった用語は「アクリル」または「メタクリル」を実質的に意味し、それゆえ、簡易的には(メタ)アクリルを“アクリル樹脂”と称すこともできる。 As the (meth) acrylic resin, for example, a homopolymer of (meth) acrylic monomers such as (meth) acrylic acid, (meth) acrylic ester, (meth) acrylonitrile, or a copolymer of two or more thereof, Examples include copolymers of (meth) acrylic monomers and other monomers. In the present specification, the term “(meth) acryl” substantially means “acryl” or “methacryl”, and therefore, (meth) acryl can be simply referred to as “acrylic resin”. .
 (メタ)アクリル樹脂としては、優れた硬度、耐候性、透明性および耐熱性などを有する点から、メタクリル樹脂を用いることが好ましい。メタクリル樹脂は、メタクリル酸エステルを主体とする単量体を重合して得られる重合体であり、例えば、メタクリル酸エステルの単独重合体、2種以上のメタクリル酸エステルからなる共重合体である。また、メタクリル樹脂としては、メタクリル酸エステルとメタクリル酸エステル以外の単量体とからなる共重合体なども好ましい。メタクリル酸エステルとメタクリル酸エステル以外の単量体とからなる共重合体の場合、単量体総量に対して、メタクリル酸エステルが50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上であり、メタクリル酸エステル以外の単量体が50重量%以下、好ましくは30質量%以下、より好ましくは10質量%以下である。 As the (meth) acrylic resin, it is preferable to use a methacrylic resin from the viewpoint of having excellent hardness, weather resistance, transparency, heat resistance and the like. The methacrylic resin is a polymer obtained by polymerizing a monomer mainly composed of methacrylic acid ester, for example, a homopolymer of methacrylic acid ester and a copolymer composed of two or more methacrylic acid esters. Moreover, as a methacryl resin, the copolymer etc. which consist of monomers other than methacrylic ester and methacrylic ester are also preferable. In the case of a copolymer composed of a methacrylic acid ester and a monomer other than the methacrylic acid ester, the methacrylic acid ester is 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight based on the total amount of monomers. % And monomers other than methacrylic acid ester are 50% by weight or less, preferably 30% by weight or less, more preferably 10% by weight or less.
 メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸ヘキシル、メタクリル酸ヘプチル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチル、メタクリル酸n-ノニル、メタクリル酸イソノニル、メタクリル酸デシル、メタクリル酸ウンデシル、メタクリル酸n-アミル、メタクリル酸イソアミル、メタクリル酸ラウリルなどが挙げられる。これらの中でも、アルキル基部分の炭素数が1~8個のメタクリル酸アルキルが好ましく、メタクリル酸メチルがより好ましい。メタクリル酸エステルは単独で使用してもよく、2種以上を併用してもよい。 Examples of the methacrylic acid ester include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, hexyl methacrylate, heptyl methacrylate, 2-ethylhexyl methacrylate, Examples include n-octyl methacrylate, n-nonyl methacrylate, isononyl methacrylate, decyl methacrylate, undecyl methacrylate, n-amyl methacrylate, isoamyl methacrylate, lauryl methacrylate and the like. Among these, alkyl methacrylate having 1 to 8 carbon atoms in the alkyl group portion is preferable, and methyl methacrylate is more preferable. Methacrylic acid esters may be used alone or in combination of two or more.
 メタクリル酸エステル以外の単量体としては、例えば、アクリル酸エステル、芳香族ビニル単量体、不飽和ニトリル単量体、エチレン性不飽和カルボン酸ヒドロキシアルキルエステル単量体、エチレン性不飽和カルボン酸アミド単量体、エチレン性不飽和酸単量体、エチレン性不飽和スルホン酸エステル単量体、エチレン性不飽和アルコールおよびそのエステル単量体、エチレン性不飽和エーテル単量体、エチレン性不飽和アミン単量体、エチレン性不飽和シラン単量体、ハロゲン化ビニル系単量体、脂肪族共役ジエン系単量体などが挙げられる。これらの中でも、アクリル酸エステルが好ましく用いられる。メタクリル酸エステル以外の単量体は単独で使用してもよく、2種以上を併用してもよい。 Examples of monomers other than methacrylic acid esters include acrylic acid esters, aromatic vinyl monomers, unsaturated nitrile monomers, ethylenically unsaturated carboxylic acid hydroxyalkyl ester monomers, and ethylenically unsaturated carboxylic acids. Amide monomer, ethylenically unsaturated acid monomer, ethylenically unsaturated sulfonic acid ester monomer, ethylenically unsaturated alcohol and its ester monomer, ethylenically unsaturated ether monomer, ethylenically unsaturated Examples include amine monomers, ethylenically unsaturated silane monomers, vinyl halide monomers, and aliphatic conjugated diene monomers. Among these, acrylic acid esters are preferably used. Monomers other than methacrylic acid esters may be used alone or in combination of two or more.
 アクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸磯プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸ヘキシル、アクリル酸ヘプチル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸n-ノニル、アクリル酸イソノニル、アクリル酸デシル、アクリル酸ウンデシル、アクリル酸n-アミル、アクリル酸イソアミル、アクリル酸ラウリルなどが挙げられる。これらの中でも、アルキル基部分の炭素数が1~8個のアクリル酸アルキルが好ましく、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸磯プロピル、アクリル酸n-ブチル、アクリル酸イソブチルがより好ましく、アクリル酸メチルがさらに好ましい。 Examples of the acrylate ester include methyl acrylate, ethyl acrylate, n-propyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, hexyl acrylate, heptyl acrylate, and 2-ethylhexyl acrylate. N-octyl acrylate, n-nonyl acrylate, isononyl acrylate, decyl acrylate, undecyl acrylate, n-amyl acrylate, isoamyl acrylate, lauryl acrylate, and the like. Among these, alkyl acrylates having 1 to 8 carbon atoms in the alkyl group are preferable, and include methyl acrylate, ethyl acrylate, n-propyl acrylate, propyl acrylate, n-butyl acrylate, and isobutyl acrylate. Is more preferable, and methyl acrylate is more preferable.
 芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、o-エチルスチレン、p-エチルスチレン、o-クロロスチレン、p-クロロスチレン、p-メトキシスチレン、p-アミノスチレン、p-アセトキシスチレン、スチレンスルホン酸ナトリウム、α-ビニルナフタレン、1-ビニルナフタレン-4-スルホン酸ナトリウム、2-ビニルフルオレン、2-ビニルピリジン、4-ビニルビリジンなどが挙げられる。この中でもスチレンが好ましい。 Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, o-methylstyrene, p-methylstyrene, o-ethylstyrene, p-ethylstyrene, o-chlorostyrene, p-chlorostyrene, p- Methoxystyrene, p-aminostyrene, p-acetoxystyrene, sodium styrenesulfonate, α-vinylnaphthalene, sodium 1-vinylnaphthalene-4-sulfonate, 2-vinylfluorene, 2-vinylpyridine, 4-vinylpyridine, etc. Can be mentioned. Of these, styrene is preferred.
 不飽和ニトリル単量体としては、例えば、アクリロニトリル、α-クロロアクリロニトリル、α-メトキシアクリロニトリル、メタクリロニトリル、シアン化ビニリデンなどが挙げられる。 Examples of the unsaturated nitrile monomer include acrylonitrile, α-chloroacrylonitrile, α-methoxyacrylonitrile, methacrylonitrile, vinylidene cyanide, and the like.
 エチレン性不飽和カルボン酸ヒドロキシアルキルエステル単量体としては、例えば、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレートなどが挙げられる。 Examples of the ethylenically unsaturated carboxylic acid hydroxyalkyl ester monomer include hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, and hydroxybutyl methacrylate.
 エチレン性不飽和カルボン酸アミド単量体としては、例えば、アクリルアミド、メタクリルアミド、N-ブトキシメチルアクリルアミド、N-ブトキシメチルメタクリルアミド、N-ブトキシエチルアクリルアミド、N-ブトキシエチルメタクリルアミド、N-メトキシメチルアクリルアミド、N-メトキシメチルメタクリルアミド、N-n-プロピオキシメチルアクリルアミド、N-n-プロピオキシメチルメタクリルアミド、N-メチルアクリルアミド、N-メチルメタクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N,N-ジエチルアクリルアミド、N,N-ジエチルメタクリルアミドなどが挙げられる。 Examples of the ethylenically unsaturated carboxylic acid amide monomer include acrylamide, methacrylamide, N-butoxymethyl acrylamide, N-butoxymethyl methacrylamide, N-butoxyethyl acrylamide, N-butoxyethyl methacrylamide, N-methoxymethyl. Acrylamide, N-methoxymethylmethacrylamide, Nn-propoxymethylacrylamide, Nn-propoxymethylmethacrylamide, N-methylacrylamide, N-methylmethacrylamide, N, N-dimethylacrylamide, N, N- Examples thereof include dimethylmethacrylamide, N, N-diethylacrylamide, N, N-diethylmethacrylamide and the like.
 エチレン性不飽和酸単量体としては、例えば、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸、無水マレイン酸、ビニルスルホン酸、イソプレンスルホン酸のようなエチレン性不飽和カルボン酸、エチレン性不飽和スルホン酸などが挙げられる。エチレン性不飽和酸単量体は、ナトリウム、カリウムなどのアルカリ金属、アンモニアなどで中和されていてもよい。 Examples of the ethylenically unsaturated acid monomer include acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, maleic anhydride, vinyl sulfonic acid, and isoprene sulfonic acid. Unsaturated sulfonic acid and the like. The ethylenically unsaturated acid monomer may be neutralized with an alkali metal such as sodium or potassium, ammonia or the like.
 エチレン性不飽和スルホン酸エステル単量体としては、例えば、ビニルスルホン酸アルキル、イソプレンスルホン酸アルキルなどが挙げられる。 Examples of the ethylenically unsaturated sulfonate monomer include alkyl vinyl sulfonate and alkyl isoprene sulfonate.
 エチレン性不飽和アルコールおよびそのエステル単量体としては、例えば、アリルアルコール、メタリルアルコール、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ステアリン酸ビニル、安息香酸ビニル、酢酸アリル、カプロン酸メタリル、ラウリン酸アリル、安息香酸アリル、アルキルスルホン酸ビニル、アルキルスルホン酸アリル、アリールスルホン酸ビニルなどが挙げられる。 Examples of ethylenically unsaturated alcohols and ester monomers thereof include allyl alcohol, methallyl alcohol, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl stearate, vinyl benzoate, allyl acetate, methallyl caproate, and lauric acid. Examples include allyl, allyl benzoate, vinyl alkyl sulfonate, allyl alkyl sulfonate, and vinyl aryl sulfonate.
 エチレン性不飽和エーテル単量体としては、例えば、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、メチルアリルエーテル、エチルアリルエーテルなどが挙げられる。 Examples of the ethylenically unsaturated ether monomer include methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, methyl allyl ether, ethyl allyl ether, and the like.
 エチレン性不飽和アミン単量体としては、例えば、ビニルジメチルアミン、ビニルジエチルアミン、ビニルジフェニルアミン、アリルジメチルアミン、メタリルジエチルアミンなどが挙げられる。 Examples of the ethylenically unsaturated amine monomer include vinyldimethylamine, vinyldiethylamine, vinyldiphenylamine, allyldimethylamine, and methallyldiethylamine.
 エチレン性不飽和シラン化合物としては、例えば、ビニルトリエチルシラン、メチルビニルジクロロシラン、ジメチルアリルクロロシラン、ビニルトリクロロシランなどが挙げられる。 Examples of the ethylenically unsaturated silane compound include vinyltriethylsilane, methylvinyldichlorosilane, dimethylallylchlorosilane, and vinyltrichlorosilane.
 ハロゲン化ビニル単量体としては、例えば、塩化ビニル、塩化ビニリデン、1,2-ジクロロエチレン、臭化ビニル、臭化ビニリデン、1,2-ジブロモエチレンなどが挙げられる。 Examples of the vinyl halide monomer include vinyl chloride, vinylidene chloride, 1,2-dichloroethylene, vinyl bromide, vinylidene bromide, 1,2-dibromoethylene, and the like.
 脂肪族共役ジエン系単量体としては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-ネオペンチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,2-ジクロロ-1,3-ブタジエン、2,3-ジクロロ-1,3-ブタジエン、2-ブロモ-1,3-ブタジエン、2-シアノ-1,3-ブタジエン、置換直鎖共役ペンタジエン類、直鎖および側鎖共役ヘキサジエンなどが挙げられる。 Examples of the aliphatic conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, and 2-neopentyl-1,3-butadiene. 2-chloro-1,3-butadiene, 1,2-dichloro-1,3-butadiene, 2,3-dichloro-1,3-butadiene, 2-bromo-1,3-butadiene, 2-cyano-1 , 3-butadiene, substituted linear conjugated pentadienes, linear and side chain conjugated hexadienes, and the like.
 熱可塑性樹脂原料として(メタ)アクリル樹脂を用いる場合、メタクリル酸メチルの単独重合体(ポリメタクリル酸メチル)、または、80~99.9重量%のメタクリル酸メチルと0.1~20重量%のメタクリル酸メチル以外の(メタ)アクリル酸エステルとからなる共重合体が特に好ましい。80~99.9質量%のメタクリル酸メチルと0.1~20質量%のメタクリル酸メチル以外の(メタ)アクリル酸エステルとからなる共重合体とは、メタクリル酸メチルとメタクリル酸メチル以外の(メタ)アクリル酸エステルとの合計を100重量%とするとき、メタクリル酸メチルが80~99.9重量%の割合で含有され、メタクリル酸メチル以外の(メタ)アクリル酸エステルが0.1~20重量%の割合で含有される単量体混合物を重合させて得られる共重合体である。この単量体混合物中に、メタクリル酸メチルが好ましくは85~99.5質量%の割合で含有され、より好ましくは90~99.5質量%の割合で含有される。 When a (meth) acrylic resin is used as a thermoplastic resin raw material, a methyl methacrylate homopolymer (polymethyl methacrylate), or 80 to 99.9% by weight methyl methacrylate and 0.1 to 20% by weight A copolymer composed of a (meth) acrylic acid ester other than methyl methacrylate is particularly preferred. A copolymer comprising 80 to 99.9% by mass of methyl methacrylate and 0.1 to 20% by mass of (meth) acrylic acid ester other than methyl methacrylate is a compound other than methyl methacrylate and methyl methacrylate ( When the total amount with the (meth) acrylic acid ester is 100% by weight, methyl methacrylate is contained in a proportion of 80 to 99.9% by weight, and (meth) acrylic acid ester other than methyl methacrylate is 0.1 to 20%. It is a copolymer obtained by polymerizing a monomer mixture contained in a proportion by weight. In this monomer mixture, methyl methacrylate is preferably contained in a proportion of 85 to 99.5% by mass, more preferably 90 to 99.5% by mass.
 本発明に係るレンズ製造方法では、工程(i)の射出成形から工程(ii)の圧縮成形へとレンズ前駆体を移すに際してレンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上であるときにレンズ前駆体を射出成形金型から取り出す。 In the lens manufacturing method according to the present invention, when the lens precursor is transferred from the injection molding in step (i) to the compression molding in step (ii), the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material. The lens precursor is removed from the injection mold.
 ここで、本発明における「中間点ガラス転移温度」とは、JIS K7121に掲載されているガラス転移温度Tmgのことを実質的に意味している。より具体的に説明しておくと、図2に示すような熱量分析結果(DSC曲線)において、各ベースラインの延長した直線から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度が、本発明における「中間点ガラス転移温度(Tmg)」に相当する。尚、図2のグラフ中に示された『Tig』は“補外ガラス転移開始温度”と称されるものであり、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線のこう配が最大になるような点で引いた接線との交点の温度である。また、図2のグラフ中に示された『Teg』は“補外ガラス転移終了温度”と称されるものであり、高温側のベースラインを低温側に延長した直線と、ガラス転移の階段状変化部分の曲線のこう配が最大になるような点で引いた接線との交点の温度である(階段状変化の高温側にピークが現れる場合の補外ガラス転移終了温度Tegは、高温側のベースラインを低温側に延長した直線と、ピークの高温側の曲線にこう配が最大になるような点で引いた接線との交点の温度となる)。 Here, the “midpoint glass transition temperature” in the present invention substantially means the glass transition temperature Tmg published in JIS K7121. More specifically, in the calorimetric analysis result (DSC curve) as shown in FIG. 2, a straight line equidistant from the extended straight line of each base line in the vertical axis direction and a step-like change in glass transition The temperature at the point where the partial curve intersects corresponds to the “midpoint glass transition temperature (Tmg)” in the present invention. Note that “T ig ” shown in the graph of FIG. 2 is called “extrapolated glass transition start temperature”, a straight line obtained by extending the base line on the low temperature side to the high temperature side, and the steps of the glass transition. This is the temperature at the point of intersection with the tangent drawn at the point where the gradient of the curve of the shape change portion is maximized. In addition, “T eg ” shown in the graph of FIG. 2 is called “extrapolated glass transition end temperature”, a straight line obtained by extending the base line on the high temperature side to the low temperature side, and the steps of the glass transition. slope of the curve of Jo change portion is at a temperature of intersection of the tangent drawn at a point that maximizes (extrapolated glass transition end temperature T eg in the case of peak on the high-temperature side of the step change appears in the high temperature-side Is the temperature at the intersection of a straight line that extends the base line to the low temperature side and a tangent line drawn at the point where the gradient is maximum on the high temperature curve of the peak).
 また、本発明における「レンズ前駆体の中心温度」は、レンズ前駆体の中央部の温度のことを指している。簡易的にいうと、「レンズ前駆体の中心温度」は、図3(特に図3(b))に示されるように、レンズ前駆体100’の曲面頂部ポイントAと、その頂部ポイントAの接線に対して垂直な方向に位置するレンズ底ポイントBとの中間に位置するポイントにおける温度である。 In addition, the “center temperature of the lens precursor” in the present invention refers to the temperature at the center of the lens precursor. In simple terms, the “center temperature of the lens precursor” refers to the curved surface top point A of the lens precursor 100 ′ and the tangent line of the top point A, as shown in FIG. 3 (particularly FIG. 3B). Is a temperature at a point located in the middle of the lens bottom point B located in a direction perpendicular to the lens.
 「射出成形金型内におけるレンズ前駆体の中心温度」は、各種サーモメーターで直接的に測定してもよいものの、本願発明者らは、鋭意検討した結果、かかる温度を別の尺度から間接的に把握することによって効率的な製造プロセスが実現できることが分かった。具体的には、射出成形金型内のレンズ前駆体の中心温度は以下の式1に基づいて間接的に把握し、それによって、レンズ前駆体の取出し時期を判断できることを本願発明者らは見出した。
Figure JPOXMLDOC01-appb-I000003

 つまり、本発明の特に好適な態様では、式1に基づいて射出成形金型内のレンズ前駆体の中心温度を間接的に把握し、そのようにして把握された温度が熱可塑性樹脂原料の“中間点ガラス転移温度以上”であるときにレンズ前駆体を射出成形金型から取り出す。
Although the “center temperature of the lens precursor in the injection mold” may be directly measured by various thermometers, the inventors of the present application have conducted an intensive study and found that such temperature is indirectly measured from another scale. It was found that an efficient manufacturing process can be realized by grasping the above. Specifically, the inventors of the present application have found that the center temperature of the lens precursor in the injection mold can be indirectly grasped based on the following formula 1 and thereby the timing for taking out the lens precursor can be determined. It was.
Figure JPOXMLDOC01-appb-I000003

That is, in a particularly preferred aspect of the present invention, the center temperature of the lens precursor in the injection mold is indirectly grasped based on the formula 1, and the temperature thus grasped is “ The lens precursor is taken out from the injection mold when it is "midpoint glass transition temperature or higher".
 上記式1につき詳述しておく。tlaは射出成形金型内のレンズ前駆体にもたらされる冷却時間である。具体的には、tlaは、射出された樹脂原料が流動停止した時点を起点にした経過時間であり、即ち、射出成形金型内への熱可塑性樹脂原料の充填が完了した時点からの時間を意味している。S[mm]はレンズ前駆体の最大厚みである。つまり、図3(c)で示されるレンズ前駆体の最大厚さT'maxが“S”に相当する(尚、かかるT'maxは射出成形金型のキャビティ寸法からも間接的に把握することができる)。α[mm/s]は射出成形金型の表面温度における熱可塑性樹脂原料の熱拡散率である。具体的には、α[mm/s]は、射出成形金型のキャビティ表面温度における熱可塑性樹脂原料の熱拡散率のことを意味している。“α”自体は以下の式から算出することができる。

α=λ/(c・ρ)
 λ[kcal/m・h・℃]:熱可塑性樹脂原料の熱伝導率、
 c[kcal/kg・℃]:熱可塑性樹脂原料の比熱
 ρ[kg/m]:熱可塑性樹脂原料の密度

また、θr[℃]は射出成形金型へと射出される熱可塑性樹脂原料温度である。便宜上は、θrとして射出成形機のシリンダ温度を用いることができる。θ[℃]は、射出成形金型内のレンズ前駆体の中心温度である。つまり、θはレンズ前駆体の中央部の温度のことを指しており、便宜上「レンズ前駆体の中心温度」は、図3に示されるように、レンズの曲面頂部ポイントAと、その頂部ポイントAの接線に対して垂直な方向に位置するレンズ底ポイントBとの間に位置する中間ポイントでの温度とすることができる。θ[℃]は射出成形金型の表面温度である。より具体的には、射出成形金型のキャビティ表面温度である。
Formula 1 will be described in detail. t la is the cooling time provided to the lens precursor in the injection mold. Specifically, t la is the elapsed time starting from the time when the injected resin raw material stopped flowing, that is, the time from when the filling of the thermoplastic resin raw material into the injection mold was completed. Means. S [mm] is the maximum thickness of the lens precursor. That is, the maximum thickness T′max of the lens precursor shown in FIG. 3C corresponds to “S” (note that T′max is indirectly grasped from the cavity dimensions of the injection mold). Is possible). α [mm 2 / s] is the thermal diffusivity of the thermoplastic resin raw material at the surface temperature of the injection mold. Specifically, α [mm 2 / s] means the thermal diffusivity of the thermoplastic resin raw material at the cavity surface temperature of the injection mold. “Α” itself can be calculated from the following equation.

α = λ / (c · ρ)
λ [kcal / m · h · ° C.]: Thermal conductivity of thermoplastic resin raw material,
c [kcal / kg · ° C.]: Specific heat of thermoplastic resin raw material ρ [kg / m 3 ]: Density of thermoplastic resin raw material

Θr [° C.] is the temperature of the thermoplastic resin material injected into the injection mold. For convenience, the cylinder temperature of the injection molding machine can be used as θr. θ e [° C.] is the center temperature of the lens precursor in the injection mold. That is, θ e indicates the temperature at the center of the lens precursor, and for convenience, the “center temperature of the lens precursor” includes the curved surface top point A of the lens and its top point, as shown in FIG. A temperature at an intermediate point positioned between the lens bottom point B positioned in a direction perpendicular to the tangent to A can be set. θ m [° C.] is the surface temperature of the injection mold. More specifically, it is the cavity surface temperature of the injection mold.
 本発明の製造方法では、射出成形金型から取り出したレンズ前駆体は、直ちに圧縮成形金型内へと配置してもよく、あるいは、冷却に付した後で圧縮成形金型内に設置してもよい。 In the production method of the present invention, the lens precursor taken out from the injection mold may be immediately placed in the compression mold, or may be placed in the compression mold after being cooled. Also good.
 前者の場合、射出成形金型から取り出したレンズ前駆体を実質的な冷却に付すことなく、圧縮成形金型に移すことになる。ここでいう「冷却に付すことなく」といった表現は、射出成形金型から取り出されたレンズ前駆体を外界雰囲気下で積極的に冷却に付さないことを実質的に意味している。つまり、射出成形金型から取り出したレンズ前駆体を引き続き可及的速やかに圧縮成形金型へと仕込むことを意味している。かかる場合、射出成形金型から取り出したレンズ前駆体は、好ましくはその中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上となった条件下で圧縮成形金型へと移されることになる。 In the former case, the lens precursor taken out from the injection mold is transferred to the compression mold without being subjected to substantial cooling. The expression “without being subjected to cooling” here substantially means that the lens precursor taken out from the injection mold is not actively subjected to cooling in an external atmosphere. That is, it means that the lens precursor taken out from the injection mold is continuously charged into the compression mold as soon as possible. In this case, the lens precursor taken out from the injection mold is preferably transferred to the compression mold under the condition that the center temperature is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material.
 一方、後者の場合、工程(ii)の圧縮成形に付すに先立ってレンズ前駆体は射出成形金型から取り出された状態で冷却に付されることになる。つまり、射出成形金型内においてレンズ前駆体を実質的な冷却に付すのではなく、それから取り出した後の雰囲気下でレンズ前駆体を実質的な冷却に付す。かかる場合、射出成形金型から取り出したレンズ前駆体は、その中心温度が熱可塑性樹脂原料の中間点ガラス転移温度未満にまで降温されて圧縮成形金型へと移されることが好ましい。工程(ii)の圧縮成形に付すに先立っての冷却法としては、レンズ前駆体を冷却して中心温度を低下させることができる手法であれば特に限定されず、例えば、レンズ前駆体を取り出した環境下に静置する手法、水中にレンズ前駆体を投入する手法、水、空気または窒素などをレンズ前駆体へと吹き付ける手法、温度の低い環境下にレンズ前駆体を静置する手法などが挙げられる。ここで、本願発明者らは、射出成形金型から取り出した後の雰囲気下でレンズ前駆体を冷却するのに要する時間は、射出成形金型内でレンズ前駆体を同一温度にまで冷却するのに要する時間よりも短くなることを見出した(特に、外界雰囲気下に静置してレンズ前駆体を冷却する場合であっても、射出成形金型内でレンズ前駆体を同一温度にまで冷却するのに要する時間よりも冷却時間が短くなることが分かった)。つまり、かかる態様によれば、工程(i)と工程(ii)との間に冷却プロセスを付加的に有する場合であっても、レンズ製造時間は従来の製造方法によりも短くなり、効率的な生産が実現されることが分かった。尚、このような射出成形金型外の雰囲気下における冷却は、表面凹凸が減じられた外観が良好なレンズを得る観点から「レンズ凸部101’を成す面」と「レンズ底部102’を成す面」とを反転させながら(図3(c)参照)、レンズ前駆体を冷却することが好ましい。つまり、レンズ前駆体の向きを変えながら冷却することが好ましい。レンズ前駆体を上下反転させず一定向きを維持した状態で冷却を行うと、レンズ前駆体の表面が変形し得、場合によってはその変形が工程(ii)の圧縮成形でも修正できずに、レンズ表面に凹凸として残ることが懸念されるからである。 On the other hand, in the latter case, the lens precursor is subjected to cooling in a state of being taken out from the injection mold prior to being subjected to the compression molding in the step (ii). That is, the lens precursor is not subjected to substantial cooling in the injection mold, but the lens precursor is subjected to substantial cooling in an atmosphere after being taken out of the lens precursor. In such a case, it is preferable that the lens precursor taken out from the injection mold is cooled to a temperature lower than the center glass transition temperature of the thermoplastic resin material and transferred to the compression mold. The cooling method prior to the compression molding in the step (ii) is not particularly limited as long as it can cool the lens precursor to lower the center temperature. For example, the lens precursor is taken out. Examples include a method of standing in an environment, a method of throwing a lens precursor into water, a method of spraying water, air, or nitrogen onto the lens precursor, a method of standing a lens precursor in a low temperature environment, etc. It is done. Here, the inventors of the present invention cool the lens precursor to the same temperature in the injection mold when the lens precursor is cooled in the atmosphere after being taken out from the injection mold. (In particular, the lens precursor is cooled to the same temperature in the injection mold even when the lens precursor is cooled by being left in an external atmosphere.) It was found that the cooling time was shorter than the time required for That is, according to this aspect, even in the case where a cooling process is additionally provided between the step (i) and the step (ii), the lens manufacturing time is shorter than that of the conventional manufacturing method, which is efficient. Production has been realized. In addition, such cooling in the atmosphere outside the injection mold forms the “surface that forms the lens convex portion 101 ′” and “the lens bottom portion 102 ′ from the viewpoint of obtaining a lens having a good appearance with reduced surface irregularities. It is preferable to cool the lens precursor while inverting the “surface” (see FIG. 3C). That is, it is preferable to cool while changing the direction of the lens precursor. If the lens precursor is cooled in a state in which the lens precursor is not inverted upside down and maintained in a certain direction, the surface of the lens precursor may be deformed. In some cases, the deformation cannot be corrected even by the compression molding in the step (ii). This is because there is a concern that the surface may remain uneven.
 本発明の製造方法は、複数のレンズを並列的に得ることができる。具体的には、あるレンズ前駆体がその中間点ガラス転移温度以上で取り出された射出成形金型に対して、引き続いて熱可塑性樹脂原料を射出して別のレンズ前駆体を得ることができる。つまり、射出成形用金型内でレンズ前駆体を十分な冷却に付すことを敢えて行わず、レンズ前駆体が中間点ガラス転移温度以上であるときにレンズ前駆体を早期に射出成形金型から取り出し、そのように取り出された射出成形金型を次のレンズ前駆体の成形に可及的速やかに利用する。かかる場合、射出成形用金型を複数のレンズ前駆体成形に効率的に供することができ、結果として、複数のレンズの効率的な大量生産が実現され得る。このようにレンズの並列的な大量生産を効率良く行う観点からの検討は従来技術では十分になされていないところ、本発明はかかる生産性にも鑑みており、その点でも本発明は有益である。 The manufacturing method of the present invention can obtain a plurality of lenses in parallel. Specifically, another lens precursor can be obtained by subsequently injecting a thermoplastic resin material into an injection mold in which a certain lens precursor is taken out at or above its midpoint glass transition temperature. In other words, do not dare to subject the lens precursor to sufficient cooling in the injection mold, and when the lens precursor is above the midpoint glass transition temperature, the lens precursor is quickly removed from the injection mold. The injection mold thus taken out is used as soon as possible for the molding of the next lens precursor. In such a case, the injection mold can be efficiently used for molding a plurality of lens precursors, and as a result, efficient mass production of a plurality of lenses can be realized. Thus, although examination from the viewpoint of efficiently performing mass production of lenses in parallel is not sufficiently performed in the prior art, the present invention is also considered in view of such productivity, and the present invention is also beneficial in this respect. .
 生産性につき詳述しておくと、本発明ではレンズ1個当たりの製造時間が従来技術より相当に減じられることになる。具体的には、射出成形および圧縮成形を経てレンズ製造を行う場合、本発明の方法に従えば、同様の条件下の従来技術の手法よりもレンズ1個当たりの製造時間を少なくとも20%減じることができ、好ましくは少なくとも30%減じる、より好ましくは少なくとも40%減じる、更に好ましくは少なくとも50%減じることができる(例えば、約60%減じることができる)。 Describing in detail about productivity, in the present invention, the manufacturing time per lens is considerably reduced as compared with the prior art. Specifically, when manufacturing lenses via injection molding and compression molding, according to the method of the present invention, the manufacturing time per lens can be reduced by at least 20% over prior art techniques under similar conditions. Can be reduced, preferably by at least 30%, more preferably by at least 40%, and even more preferably by at least 50% (eg, by about 60%).
 例えば、あるレンズ前駆体をその中間点ガラス転移温度以上で射出成形金型から取り出し、そのレンズ前駆体の中心温度が依然「熱可塑性樹脂原料の中間点ガラス転移温度以上」である時期に、引き続いて別のレンズ前駆体を得るべく熱可塑性樹脂原料を射出してよい。換言すれば、取り出されたレンズ前駆体が十分な冷却に付される前(例えば、射出成形金型から取り出されたレンズ前駆体を圧縮成形金型へと仕込む前、あるいは、圧縮成形へと仕込むに先立ってレンズ前駆体を射出成形金型外で十分な冷却に付す前など)に、射出成形金型を次のレンズ前駆体成形に供してよい。 For example, a lens precursor is removed from an injection mold at a temperature above its midpoint glass transition temperature, and continues at a time when the center temperature of the lens precursor is still “above the midpoint glass transition temperature of the thermoplastic resin raw material”. In order to obtain another lens precursor, a thermoplastic resin material may be injected. In other words, before the taken out lens precursor is subjected to sufficient cooling (for example, before the lens precursor taken out from the injection mold is charged into the compression mold or into the compression molding). Before the lens precursor is sufficiently cooled outside the injection mold, the injection mold may be used for the next lens precursor molding.
 本発明の製造方法の工程(i)で得られるレンズ前駆体は、最大厚み(具体的には、図3(b)および3(c)に示されるように、レンズの曲面頂部ポイントAの接線に対して垂直な方向におけるレンズの最大厚さ「T’max」)が、工程(ii)で得られるレンズにおける最大厚みTmax(図6参照)よりも大きいことが好ましい。何故なら、工程(ii)の圧縮成形金型内で十分な圧縮にレンズ前駆体が付され易くなるからであり、結果的に、圧縮成形金型内のキャビティ形状、すなわち所望するレンズの形状の通り精度良く成形され易くなるからである。 The lens precursor obtained in step (i) of the production method of the present invention has a maximum thickness (specifically, as shown in FIGS. 3B and 3C), the tangent to the curved surface top point A of the lens. The maximum thickness “T′max” of the lens in the direction perpendicular to the lens is preferably larger than the maximum thickness Tmax (see FIG. 6) of the lens obtained in the step (ii). This is because the lens precursor is easily subjected to sufficient compression in the compression mold of step (ii), and as a result, the cavity shape in the compression mold, that is, the shape of the desired lens is obtained. This is because it becomes easy to be molded with high accuracy.
 外観の良好なレンズを短時間で製造する観点からいえば、工程(i)で得られるレンズ前駆体について最大厚み寸法(例えば、図3(c)に示されるレンズ前駆体100’の最大厚さT'max)は10mm以上かつ150mm以下であることが好ましく、より好ましくは10mm以上かつ130mm以下であり、更に好ましくは10mm以上かつ100mm以下である。同様に、外観の良好なレンズを短時間で製造する観点からいえば、工程(i)で得られるレンズ前駆体について最大幅寸法(例えば、図3(c)に示されるフランジ部102’を除いたレンズ体の有効最大幅寸法W'max)は10mm以上かつ200mm以下であることが好ましく、より好ましくは20mm以上かつ130mm以下であり、更に好ましくは30mm以上かつ120mm以下である。このような具体的寸法の如くレンズ前駆体の最大厚みや最大幅を小さくすることで、レンズ前駆体またはそれから得られるレンズの冷却に要する時間をより短縮することができる。 From the viewpoint of manufacturing a lens having a good appearance in a short time, the maximum thickness dimension (for example, the maximum thickness of the lens precursor 100 ′ shown in FIG. 3C) is obtained for the lens precursor obtained in the step (i). T′max) is preferably 10 mm or more and 150 mm or less, more preferably 10 mm or more and 130 mm or less, and further preferably 10 mm or more and 100 mm or less. Similarly, from the viewpoint of manufacturing a lens having a good appearance in a short time, the maximum width dimension of the lens precursor obtained in the step (i) (for example, excluding the flange portion 102 ′ shown in FIG. 3C). The effective maximum width W′max of the lens body is preferably 10 mm or more and 200 mm or less, more preferably 20 mm or more and 130 mm or less, and further preferably 30 mm or more and 120 mm or less. By reducing the maximum thickness and maximum width of the lens precursor as in such specific dimensions, the time required for cooling the lens precursor or the lens obtained therefrom can be further shortened.
 ある好適な態様では、工程(i)で得られるレンズ前駆体については、最大厚み寸法が10mm以上かつ150mm以下であると共に、最大幅寸法が10mm以上かつ200mm以下である。つまり、本発明の製造方法のある好適な態様では、そのような最大厚み寸法および最大幅寸法のレンズ前駆体を得ることができる金型キャビティを備えた射出成形金型を工程(i)で用いることになる。 In a preferred embodiment, the lens precursor obtained in step (i) has a maximum thickness dimension of 10 mm to 150 mm and a maximum width dimension of 10 mm to 200 mm. That is, in a preferred aspect of the manufacturing method of the present invention, an injection mold having a mold cavity capable of obtaining a lens precursor having such a maximum thickness dimension and maximum width dimension is used in step (i). It will be.
 工程(i)に引き続いて工程(ii)を実施する。つまり、レンズ前駆体を圧縮成形金型内に配置し、レンズ前駆体を圧縮成形に付す。工程(i)における射出成形金型から工程工程(ii)の圧縮成形金型へと移す際のレンズ前駆体のハンドリングについて触れておく。射出成形金型から取り出されたレンズ前駆体、即ち、射出成形金型から離型処理されたレンズ前駆体は、その外周をチャッキングしたり、あるいは、専用治具でレンズ前駆体のフランジ部を下方から数点受けたりすることによって圧縮成形金型へと移すことができる。この点「中間点ガラス転移温度以上」の条件で射出成形金型から取り出されたものであっても、上記ハンドリング手段ないしは移動手段を用いることによって結果としては好適にレンズ前駆体を圧縮成形金型へと仕込むことができる。特にレンズ前駆体の中心温度を「中間点ガラス転移温度以上」かつ「200℃以下」の条件で射出成形金型から取り出された場合では、ハンドリング操作に際してレンズ前駆体を好適に把持することができ、よりスムーズな圧縮成形金型への仕込みが助力され得る。 Next to step (i), step (ii) is performed. That is, the lens precursor is placed in a compression mold and the lens precursor is subjected to compression molding. The handling of the lens precursor when transferring from the injection mold in the step (i) to the compression mold in the step (ii) will be mentioned. The lens precursor taken out from the injection mold, that is, the lens precursor released from the injection mold is chucked on the outer periphery, or the flange portion of the lens precursor is removed with a dedicated jig. By receiving several points from below, it can be transferred to a compression mold. Even if this point is taken out from the injection mold under the condition of “midpoint glass transition temperature or higher”, by using the handling means or moving means, the lens precursor is suitably compressed as a result. Can be charged. In particular, when the lens precursor is taken out of the injection mold under the conditions of “midpoint glass transition temperature or higher” and “200 ° C. or lower” at the center temperature, the lens precursor can be suitably held during the handling operation. Therefore, smoother charging into the compression mold can be assisted.
 工程(ii)で用いる圧縮成形金型自体は、レンズ前駆体に圧縮圧力を及ぼすことができ、それによって、レンズ品を得ることができるものであれば特に制限はない。つまり、本発明における圧縮成形金型は、典型的には“固定側”と“移動側”とから少なくとも構成されており、型締めによってレンズ前駆体に圧縮圧力を加えることができるものであればよい。尚、後述するように圧縮成形金型を搬送しながら工程(ii)を実施する態様では、型締め機構を備えた成形機に固定化された金型でなく、単独で移動させることができる金型であることが好ましい。 The compression mold itself used in the step (ii) is not particularly limited as long as it can apply a compression pressure to the lens precursor and thereby obtain a lens product. In other words, the compression molding die in the present invention is typically composed of at least a “fixed side” and a “moving side”, as long as compression pressure can be applied to the lens precursor by clamping. Good. In the embodiment in which the step (ii) is performed while the compression mold is being conveyed as will be described later, the mold can be moved independently, not a mold fixed to a molding machine equipped with a mold clamping mechanism. A mold is preferred.
 工程(ii)における圧縮成形金型の金型温度Tp(℃)は、熱可塑性樹脂原料の中間点ガラス転移温度Tmg(℃)に対してTmg+45≦Tp≦Tmg+85の関係を満足することが好ましく、より好ましくはTmg+50≦Tp≦Tmg+80の関係を満足することである。圧縮成形金型の金型温度が高すぎると、レンズ前駆体の中心まで過度に加熱され、後刻の冷却において時間を過度に要することがある一方、圧縮成形金型の金型温度が低すぎると、十分な面精度が得られにくいことがあるからである。 The mold temperature Tp (° C.) of the compression mold in the step (ii) preferably satisfies the relationship of Tmg + 45 ≦ Tp ≦ Tmg + 85 with respect to the midpoint glass transition temperature Tmg (° C.) of the thermoplastic resin raw material. More preferably, the relationship of Tmg + 50 ≦ Tp ≦ Tmg + 80 is satisfied. If the mold temperature of the compression mold is too high, the lens precursor will be heated excessively to the center of the lens precursor, and it may take excessive time for subsequent cooling, while the mold temperature of the compression mold is too low. This is because sufficient surface accuracy may be difficult to obtain.
 工程(ii)における圧縮成形金型による圧縮圧力は、15kN以上かつ80kN以下であることが好ましく、より好ましくは20kN以上かつ50kN以下である。圧縮成形金型による圧縮圧力が大きすぎると、圧縮成形金型とレンズ前駆体とが密着し、圧縮成形金型からレンズを取り出す際にレンズが損傷し得ることがある一方、圧縮成形金型による圧縮圧力が小さすぎると、十分な面精度が得られにくいことがあるからである。 The compression pressure by the compression mold in the step (ii) is preferably 15 kN or more and 80 kN or less, more preferably 20 kN or more and 50 kN or less. When the compression pressure by the compression molding die is too large, the compression molding die and the lens precursor are in close contact with each other, and the lens may be damaged when the lens is taken out from the compression molding die. This is because if the compression pressure is too small, it may be difficult to obtain sufficient surface accuracy.
 工程(ii)における圧縮成形金型による圧縮時間は、110秒以上かつ200秒以下であることが好ましく、より好ましくは120秒以上かつ190秒以下である。圧縮成形金型による圧縮時間が長すぎると、後刻の冷却に余分な時間がかかってしまったり、得られるレンズにて発泡現象が生じるおそれがあったりする一方、圧縮成形金型による圧縮時間が短すぎると所望のレンズ形状および面精度などを確保できなくなるからである。 The compression time by the compression mold in the step (ii) is preferably 110 seconds or more and 200 seconds or less, more preferably 120 seconds or more and 190 seconds or less. If the compression time by the compression mold is too long, it may take extra time for subsequent cooling or foaming may occur in the resulting lens, while the compression time by the compression mold is short. This is because if it is too large, a desired lens shape and surface accuracy cannot be secured.
 ある好適な態様では、圧縮成形金型の金型温度(Tp)と熱可塑性樹脂原料の中間点ガラス転移温度(Tmg)とがTmg+45≦Tp≦Tmg+85の関係(単位は「℃」である)を満たすと共に、圧縮成形金型の圧縮圧力が15kN以上かつ80kN以下となり、更には、圧縮成形金型による圧縮時間が110秒以上かつ200秒以下となる条件でもってレンズ前駆体を圧縮成形に付す。 In a preferred embodiment, the relationship between the mold temperature (Tp) of the compression mold and the glass transition temperature (Tmg) of the thermoplastic resin raw material is Tmg + 45 ≦ Tp ≦ Tmg + 85 (the unit is “° C.”). In addition, the lens precursor is subjected to compression molding under the conditions that the compression pressure of the compression mold becomes 15 kN or more and 80 kN or less, and the compression time by the compression mold becomes 110 seconds or more and 200 seconds or less.
 尚、工程(ii)で用いる圧縮成形金型は、レンズ前駆体を1個設置できるものでもよいし、あるいは、レンズ前駆体を2個以上設置できるものでもよい。生産性の観点を特に重視する場合、レンズ前駆体を2個以上設置できる圧縮成形金型が好ましいといえる。 Note that the compression mold used in step (ii) may be one in which one lens precursor can be installed, or one in which two or more lens precursors can be installed. When the viewpoint of productivity is particularly important, it can be said that a compression molding die in which two or more lens precursors can be installed is preferable.
 本発明に係る製造方法の工程(ii)は、圧縮成形に先立って圧縮成形金型内でレンズ前駆体を加熱してよく、および/または、圧縮成形後において圧縮成形金型内でレンズを冷却に付してもよい。つまり、ある好適な態様では、工程(ii)が
 (a)圧縮成形金型内でレンズ前駆体を加熱・予熱するサブ工程、
 (b)加熱・予熱されたレンズ前駆体を圧縮成形するサブ工程、および
 (c)レンズ前駆体の圧縮成形により得られたレンズを圧縮成形金型内で冷却するサブ工程
を含んで成る。かかる場合、レンズ前駆体が仕込まれた圧縮成形金型を搬送することを通じてサブ工程(a)~(c)を順次実施することが好ましい。
Step (ii) of the manufacturing method according to the present invention may heat the lens precursor in the compression mold prior to compression molding and / or cool the lens in the compression mold after compression molding. You may attach to. That is, in a preferable aspect, the step (ii) includes (a) a sub-step of heating and preheating the lens precursor in a compression mold,
(B) a sub-step of compressing and molding the heated / preheated lens precursor, and (c) a sub-step of cooling the lens obtained by compression molding of the lens precursor in a compression molding die. In such a case, it is preferable that the sub-steps (a) to (c) are sequentially performed by conveying a compression molding die charged with a lens precursor.
 サブ工程(a)~(c)につき経時的に説明する。まず、レンズ前駆体が仕込まれた圧縮成形金型は、加熱サブ工程(a)へと搬送されて、所定の温度に加熱される。これにより、圧縮成形用金型に内在するレンズ前駆体が加熱・予熱される。次いで、圧縮成形金型は、圧縮成形サブ工程(b)へと搬送される。圧縮成形サブ工程(b)ではレンズ前駆体が所定温度および所定圧力でもって加圧に付され、その結果、圧縮成形金型内でレンズが圧縮成形に付される。圧縮成形サブ工程(b)によって、レンズ前駆体の表面欠陥が減じられ、高精度なレンズを得ることができる。また、圧縮成形サブ工程(b)によって、中間点ガラス転移温度以上で射出成形金型から取り出されたレンズ前駆体にもたらされ得る形状変位などが矯正され、所望のレンズが得られることにもなる。引き続いて、圧縮成形金型は、冷却サブ工程(c)へと搬送される。かかる冷却サブ工程(c)では、圧縮成形金型内においてレンズが所定温度にまで冷却される。冷却後のレンズは、最終的には圧縮成形金型から取り出される。 Sub processes (a) to (c) will be described over time. First, the compression molding mold charged with the lens precursor is conveyed to the heating sub-step (a) and heated to a predetermined temperature. Thereby, the lens precursor existing in the compression mold is heated and preheated. Next, the compression molding die is conveyed to the compression molding sub-step (b). In the compression molding sub-step (b), the lens precursor is subjected to pressurization at a predetermined temperature and a predetermined pressure, and as a result, the lens is subjected to compression molding in the compression molding die. By the compression molding sub-step (b), surface defects of the lens precursor are reduced, and a highly accurate lens can be obtained. In addition, the compression molding sub-step (b) corrects the shape displacement that can be caused to the lens precursor taken out from the injection mold at the intermediate glass transition temperature or higher, thereby obtaining a desired lens. Become. Subsequently, the compression molding die is conveyed to the cooling sub-step (c). In the cooling sub-step (c), the lens is cooled to a predetermined temperature in the compression molding die. The cooled lens is finally taken out from the compression mold.
 圧縮成形金型の搬送方法としては、例えば、ベルトコンベアー、ロボットアーム等を挙げることができる。ある好適な態様では、ベルトコンベアーを用いることによって圧縮成形金型を搬送する。ベルトコンベアーを用いれば、圧縮成形金型を各工程へと連続して好適に搬送することが可能となり、生産性が向上し得る。また、レンズ前駆体が仕込まれた圧縮成形金型を複数用いると、逐次搬送が可能となるので、各サブ工程を並行して行うことができ、複数のレンズ製造を好適に実施することができる。例示すると、加熱サブ工程(a)および圧縮成形サブ工程(b)を経た圧縮成形金型が冷却サブ工程(c)に供されているとき、これと並行して、加熱サブ工程(a)を経た別の圧縮成形金型を圧縮成形サブ工程(b)に供すことができるだけでなく、更に別の圧縮成形金型を加熱サブ工程(a)に供すことができる。尚、ベルトコンベアーを使用して圧縮成形金型を各工程間連続して搬送するとき、各工程での圧縮成形金型の搬送速度は一定であってよい。 Examples of methods for conveying the compression mold include a belt conveyor and a robot arm. In a preferred embodiment, the compression mold is conveyed by using a belt conveyor. If a belt conveyor is used, it will become possible to convey a compression molding metal mold | die continuously to each process suitably, and productivity can improve. In addition, when a plurality of compression molds loaded with lens precursors are used, sequential conveyance becomes possible, so that each sub-process can be performed in parallel, and a plurality of lenses can be manufactured suitably. . Illustratively, when the compression molding die that has undergone the heating sub-step (a) and the compression molding sub-step (b) is used for the cooling sub-step (c), the heating sub-step (a) is performed in parallel with this. Not only can another compression molding die passed be subjected to the compression molding sub-step (b), but still another compression molding die can be subjected to the heating sub-step (a). In addition, when a compression mold is conveyed continuously between processes using a belt conveyor, the conveyance speed of the compression mold in each process may be constant.
 工程(ii)でサブ工程(a)~(c)を実施する場合、各サブ工程は1つに限らず、複数に分けたものであってもよい。つまり、サブ工程(a)、サブ工程(b)およびサブ工程(c)のそれぞれにつき、1回実施することのみならず、複数回実施する態様であってもよい。あくまでも例示にすぎないが、例えば図4および図5に示すようなサブ工程の態様が考えられる。図4に示す態様の工程(ii)は、加熱サブ工程(a)30、圧縮成形サブ工程(b)40、第1冷却サブ工程(c)50Aおよび第2冷却サブ工程(c)50Bから少なくとも構成されており、レンズ前駆体が仕込まれた圧縮成形金型20は、各サブ工程をこの順(30→40→50A→50B)で逐次付されながら搬送されることになる。一方、図5に示す態様の工程(ii)は、第1加熱サブ工程(a)30A、第2加熱サブ工程(a)30B、第1圧縮成形サブ工程(b)40A、第2圧縮成形サブ工程(b)40B、第1冷却サブ工程(c)50A、第2冷却サブ工程(c)50Bおよび第3冷却サブ工程(c)50Cから少なくとも構成されており、レンズ前駆体が仕込まれた圧縮成形金型20は、各サブ工程をこの順(30A→30B→40A→40B→40C→50A→50B→50C)で逐次付されながら搬送されることになる。 When the sub-steps (a) to (c) are performed in the step (ii), the number of sub-steps is not limited to one and may be divided into a plurality. In other words, each of the sub-step (a), the sub-step (b), and the sub-step (c) may be performed not only once but also a plurality of times. Although it is only an example to the last, the aspect of a sub process as shown, for example in FIG. 4 and FIG. 5 can be considered. Step (ii) of the embodiment shown in FIG. 4 includes at least a heating sub-step (a) 30, a compression molding sub-step (b) 40, a first cooling sub-step (c) 50A, and a second cooling sub-step (c) 50B. The compression molding die 20 that is configured and charged with the lens precursor is conveyed while the sub-processes are sequentially applied in this order (30 → 40 → 50A → 50B). On the other hand, the process (ii) of the embodiment shown in FIG. 5 includes a first heating sub-process (a) 30A, a second heating sub-process (a) 30B, a first compression molding sub-process (b) 40A, and a second compression molding sub. Compression comprising at least a step (b) 40B, a first cooling sub-step (c) 50A, a second cooling sub-step (c) 50B, and a third cooling sub-step (c) 50C, in which a lens precursor is charged The molding die 20 is conveyed while the sub-processes are sequentially applied in this order (30A → 30B → 40A → 40B → 40C 50A 50B → 50C).
 工程(ii)で実施し得る“加熱”、“圧縮成形”および“冷却”について詳述しておく。 Detailed description of “heating”, “compression molding”, and “cooling” that can be performed in step (ii) will be given.
 上述した如く工程(ii)では、好ましくはサブ工程(a)として圧縮成形金型の金型温度が所定温度となるように加熱する。加熱手段としては、例えば赤外線ヒーターを用いてよい。このような加熱による金型温度の上昇に伴って圧縮成形金型に内在するレンズ前駆体の温度が上昇することになる。この時、レンズ前駆体の温度と金型温度とが一致する必要はない。上述の如く圧縮成形金型を連続して一定の搬送速度で搬送する態様においては、レンズ前駆体が圧縮成形金型内で所定温度まで加熱されるのにある程度の時間を要する場合があり得る。かかる場合、1の加熱工程では加熱時間が不足し得るので、例えば加熱を2段階以上で実施してよい。即ち、加熱サブ工程(a)を2つ以上設けてよい。2以上の加熱サブ工程(a)を設ける場合、その加熱サブ工程における加熱温度や加熱時間等の条件は互いに同一であってもよいし、あるいは、異なっていてもよい。尚、好ましい具体的な加熱温度は上述した通りである。つまり、圧縮成形金型の金型温度Tp(℃)と熱可塑性樹脂原料の中間点ガラス転移温度Tmg(℃)とがTmg+45≦Tp≦Tmg+85の関係を満足するような加熱温度が好ましい。また、加熱のための時間は、120秒以上かつ190秒以下であることが好ましく、130秒以上かつ180秒以下であることがより好ましい。加熱時間が長すぎるとレンズ前駆体の中心が過度に加熱され、冷却に時間を要することがある一方、加熱時間が短すぎると、十分な面精度が得られにくいことがある。加熱工程を複数段設ける場合、複数段の加熱に要する時間を全て足し合わせた合計時間が120秒以上かつ190秒以下であることが好ましく、130秒以上かつ180秒以下であることがより好ましい。 As described above, in the step (ii), the sub-step (a) is preferably heated so that the mold temperature of the compression mold becomes a predetermined temperature. As the heating means, for example, an infrared heater may be used. As the mold temperature rises due to such heating, the temperature of the lens precursor inherent in the compression mold rises. At this time, the temperature of the lens precursor and the mold temperature do not need to match. In the aspect in which the compression mold is continuously conveyed at a constant conveyance speed as described above, it may take some time for the lens precursor to be heated to a predetermined temperature in the compression mold. In such a case, since the heating time may be insufficient in one heating step, for example, heating may be performed in two or more stages. That is, two or more heating sub-steps (a) may be provided. When two or more heating sub-steps (a) are provided, conditions such as heating temperature and heating time in the heating sub-steps may be the same or different. The preferred specific heating temperature is as described above. That is, the heating temperature is preferable so that the mold temperature Tp (° C.) of the compression mold and the intermediate glass transition temperature Tmg (° C.) of the thermoplastic resin material satisfy the relationship of Tmg + 45 ≦ Tp ≦ Tmg + 85. The time for heating is preferably 120 seconds or more and 190 seconds or less, and more preferably 130 seconds or more and 180 seconds or less. If the heating time is too long, the center of the lens precursor is heated excessively, and cooling may take time. On the other hand, if the heating time is too short, sufficient surface accuracy may not be obtained. When the heating process is provided in a plurality of stages, the total time obtained by adding all the times required for the heating in the plurality of stages is preferably 120 seconds or more and 190 seconds or less, and more preferably 130 seconds or more and 180 seconds or less.
 工程(ii)では、好ましくはサブ工程(b)として圧縮成形金型でレンズ前駆体を圧縮成形に付してレンズを得る。かかる圧縮成形の具体的な条件として、圧縮成形金型による圧縮圧力は15kN~80kNであることが好ましく、また、圧縮成形金型による圧縮時間は110秒以上かつ200秒以下であることが好ましい。圧縮圧力は、圧縮成形金型の型締め力を調整することによって制御できる。上述の加熱サブ工程と同様、例えば圧縮成形に時間を要するときなど、かかる圧縮成形を2段以上で実施してよい。即ち、圧縮成形サブ工程(b)を2つ以上設けてよい。2以上の圧縮成形サブ工程を設けるとき、その圧縮成形サブ工程における金型温度や圧縮圧力等の条件は互いに同一であってもよいし、あるいは、異なっていてもよい。圧縮成形工程を複数段設ける場合、複数段の圧縮成形に要する時間を全て足し合わせた合計時間が110秒以上かつ200秒以下となることが好ましい。 In step (ii), preferably, as a sub-step (b), the lens precursor is subjected to compression molding with a compression molding die to obtain a lens. As specific conditions for such compression molding, the compression pressure by the compression molding die is preferably 15 kN to 80 kN, and the compression time by the compression molding die is preferably 110 seconds or more and 200 seconds or less. The compression pressure can be controlled by adjusting the clamping force of the compression mold. Similar to the heating sub-step described above, for example, when compression molding takes time, the compression molding may be performed in two or more stages. That is, two or more compression molding sub-steps (b) may be provided. When two or more compression molding sub-steps are provided, conditions such as mold temperature and compression pressure in the compression molding sub-steps may be the same or different. In the case where a plurality of compression molding steps are provided, it is preferable that the total time obtained by adding all the times required for the compression molding of the plurality of stages is 110 seconds or more and 200 seconds or less.
 工程(ii)では、好ましくはサブ工程(c)として圧縮成形金型内でレンズを冷却に付す。冷却は自然冷却でよいものの、クーラー手段などを用いて金型外部から強制的に冷却を行ってもよい。このようなサブ工程では金型温度の下降に伴って圧縮成形金型に内在するレンズ前駆体の温度が下がることになる。好ましい目標冷却温度は例えば80℃以上かつ130℃以下であり、より好ましくは90℃以上かつ120℃以下である。また、冷却のための時間は100秒以上かつ300秒以下であることが好ましく、110秒以上かつ290秒以下であることがより好ましい。冷却に際しては、レンズ前駆体の温度と金型温度とが一致する必要はない。上述の如く圧縮成形金型を連続して一定の搬送速度で搬送する態様において、レンズ前駆体が圧縮成形金型内で所定温度まで冷却されるのに時間を要する場合があり得る。かかる場合、1の冷却工程では冷却時間が不足し得るので、例えば冷却を2段以上で実施してよい。即ち、冷却サブ工程(c)を2つ以上設けてよい。2以上の冷却サブ工程を設けるとき、その冷却サブ工程における金型温度等の条件は互いに同一であってもよいし、あるいは、異なっていてもよい。冷却工程を複数段設ける場合では、複数段の冷却に要する時間を全て足し合わせた合計時間が上記の如く100秒以上かつ300秒以下となることが好ましい。 In step (ii), the lens is preferably cooled in a compression mold as a sub-step (c). Although cooling may be natural cooling, cooling may be forcibly performed from outside the mold using a cooler means or the like. In such a sub-process, the temperature of the lens precursor present in the compression mold decreases as the mold temperature decreases. A preferable target cooling temperature is, for example, 80 ° C. or higher and 130 ° C. or lower, and more preferably 90 ° C. or higher and 120 ° C. or lower. Further, the cooling time is preferably 100 seconds or more and 300 seconds or less, and more preferably 110 seconds or more and 290 seconds or less. In cooling, the temperature of the lens precursor and the mold temperature do not need to match. In the aspect in which the compression mold is continuously conveyed at a constant conveyance speed as described above, it may take time to cool the lens precursor to a predetermined temperature in the compression mold. In such a case, since the cooling time may be insufficient in one cooling step, for example, the cooling may be performed in two or more stages. That is, two or more cooling sub-steps (c) may be provided. When two or more cooling sub-steps are provided, conditions such as mold temperature in the cooling sub-steps may be the same or different. In the case where a plurality of cooling steps are provided, it is preferable that the total time obtained by adding all the times required for cooling the plurality of stages is 100 seconds or more and 300 seconds or less as described above.
 工程(ii)においては、加熱サブ工程(a)、圧縮成形サブ工程(b)および冷却サブ工程(c)に加えて、他の付加的なサブ工程を1以上含んでいてもよい。かかる付加的なサブ工程としては安定化サブ工程を挙げることができる。かかる安定化サブ工程は、例えば、加熱、圧縮成形または冷却などのプロセス操作をレンズ前駆体全体/レンズ全体に十分に及ぼすことを目的にしたものである。かかる場合、安定化サブ工程では、好ましくは「レンズ前駆体/レンズを内在した圧縮成形金型」に対して先行のプロセス条件をそのまま維持することが行われる。例えば、加熱サブ工程後に安定化サブ工程を実施する場合では、圧縮成形金型内に仕込まれているレンズ前駆体の内部にまで熱が十分に伝わるように先行の加熱温度を維持する操作が安定化サブ工程で実施され得る。 In step (ii), in addition to the heating sub-step (a), compression molding sub-step (b), and cooling sub-step (c), one or more other sub-steps may be included. Such additional sub-steps can include stabilization sub-steps. The stabilization sub-step is intended to sufficiently exert a process operation such as heating, compression molding or cooling on the entire lens precursor / entire lens. In such a case, in the stabilization sub-step, it is preferable to maintain the previous process conditions as it is with respect to the “lens precursor / lens compression molding mold”. For example, when the stabilization sub-step is performed after the heating sub-step, the operation of maintaining the preceding heating temperature is stable so that the heat is sufficiently transferred to the inside of the lens precursor charged in the compression mold. Can be performed in the sub-step.
[本発明の熱可塑性樹脂原料]
 本発明の熱可塑性樹脂原料は、上述のレンズ製造方法に使用される樹脂原料である。具体的には、工程(i)において射出成形金型内へと射出してレンズ前駆体を得るために用いられる熱可塑性樹脂原料である。それゆえ、本発明の熱可塑性樹脂原料は、例えばペレット形態を有しており、射出成形機への投入に特に適したものであってよい。
[Thermoplastic resin raw material of the present invention]
The thermoplastic resin raw material of the present invention is a resin raw material used in the above-described lens manufacturing method. Specifically, it is a thermoplastic resin material used for obtaining a lens precursor by being injected into an injection mold in the step (i). Therefore, the thermoplastic resin raw material of the present invention has, for example, a pellet form, and may be particularly suitable for introduction into an injection molding machine.
 好ましくは、本発明の熱可塑性樹脂原料は(メタ)アクリル樹脂である。上述した如く、ここでいう『(メタ)アクリル』といった用語は「アクリル」または「メタクリル」を実質的に意味する。かかる樹脂原料としては、例えば(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリロニトリルなどの(メタ)アクリル系モノマーの単独重合体またはそれらの2種以上の共重合体、(メタ)アクリル系モノマーとその他のモノマーとの共重合体などを挙げることができる。 Preferably, the thermoplastic resin raw material of the present invention is a (meth) acrylic resin. As described above, the term “(meth) acryl” as used herein substantially means “acryl” or “methacryl”. Examples of such resin raw materials include homopolymers of (meth) acrylic monomers such as (meth) acrylic acid, (meth) acrylic acid esters, (meth) acrylonitrile, and copolymers of two or more of these (meth) Examples thereof include a copolymer of an acrylic monomer and other monomers.
 本発明の(メタ)アクリル樹脂は、優れた硬度、耐候性、透明性などを有する点から、メタクリル樹脂であることが好ましい。メタクリル樹脂は、メタクリル酸エステルを主体とする単量体を重合して得られる重合体であり、例えば、メタクリル酸エステルの単独重合体、2種以上のメタクリル酸エステルからなる共重合体である。また、メタクリル樹脂原料としては、メタクリル酸エステルとメタクリル酸エステル以外の単量体とからなる共重合体なども好ましい。メタクリル酸エステルとメタクリル酸エステル以外の単量体とからなる共重合体の場合、単量体総量に対して、メタクリル酸エステルが50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上であり、メタクリル酸エステル以外の単量体が50重量%以下、好ましくは30質量%以下、より好ましくは10質量%以下である。尚、「メタクリル酸エステル」および「メタクリル酸エステル以外の単量体」などのより具体的な事項については[本発明のレンズ製造方法]で上述した事項がそのまま当てはまるので重複を避けるべく記載を省略する。 The (meth) acrylic resin of the present invention is preferably a methacrylic resin from the viewpoint of having excellent hardness, weather resistance, transparency and the like. The methacrylic resin is a polymer obtained by polymerizing a monomer mainly composed of methacrylic acid ester, for example, a homopolymer of methacrylic acid ester and a copolymer composed of two or more methacrylic acid esters. Moreover, as a methacrylic resin raw material, the copolymer etc. which consist of monomers other than methacrylic acid ester and methacrylic acid ester are preferable. In the case of a copolymer composed of a methacrylic acid ester and a monomer other than the methacrylic acid ester, the methacrylic acid ester is 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight based on the total amount of monomers. % And monomers other than methacrylic acid ester are 50% by weight or less, preferably 30% by weight or less, more preferably 10% by weight or less. For more specific matters such as “methacrylic acid ester” and “monomer other than methacrylic acid ester”, the above-mentioned matters in the “lens manufacturing method of the present invention” are applied as they are, so that the description is omitted to avoid duplication. To do.
 本発明の(メタ)アクリル樹脂は、JIS K7206(B50法)で測定したビカット軟化温度が105℃以上かつ120℃以下となり、また、JIS K7210で測定したメルトマスフローレイトが1g/10min以上かつ20g/10min以下(より好ましくは105℃以上かつ118℃以下となり、更に好ましくは106℃以上かつ115℃以下)となるものが好ましい。メルトマスフローレイトが1g/10min以上かつ20g/10min以下となることで、上述のレンズ製造方法の工程(i)におけるレンズ前駆体の取り出し時期をより早くできる一方、ビカット軟化温度が105℃以上かつ120℃以下となることで上述のレンズ製造方法により得られるレンズが耐熱性により優れるものとなる。 The (meth) acrylic resin of the present invention has a Vicat softening temperature measured by JIS K7206 (B50 method) of 105 ° C. or more and 120 ° C. or less, and a melt mass flow rate measured by JIS K7210 of 1 g / 10 min or more and 20 g / Those having a temperature of 10 min or less (more preferably 105 ° C. or more and 118 ° C. or less, more preferably 106 ° C. or more and 115 ° C. or less) are preferable. When the melt mass flow rate is 1 g / 10 min or more and 20 g / 10 min or less, the lens precursor can be taken out earlier in step (i) of the above-described lens manufacturing method, while the Vicat softening temperature is 105 ° C. or more and 120 The lens obtained by the above-described lens manufacturing method becomes superior in heat resistance when the temperature is not higher than ° C.
[本発明のレンズ]
 本発明のレンズ100は、上述のレンズ製造方法で得られるレンズである。図6には本発明のレンズが例示的に示されている。本発明のレンズは、例えば、レンズ部101、レンズ部102およびフランジ部103から構成される。具体的には、レンズ部101はレンズ部102よりも高さ寸法が大きくなっており、レンズ部101とレンズ部102とがフランジ部103を介在して相互に連結されている。なお、本発明においてレンズ形状は、これに限定されるものではなく、用いられる用途に応じて適宜変更され得る。例えば、レンズ部102は、図6に示される形態に従うと凸面を有するものの、これに限定されず、所望のレンズ性能に応じて、凹面を有していてよいし、あるいは、フラット面を有するものであってもよい。
[Lens of the present invention]
The lens 100 of the present invention is a lens obtained by the above-described lens manufacturing method. FIG. 6 exemplarily shows the lens of the present invention. The lens of the present invention includes, for example, a lens unit 101, a lens unit 102, and a flange unit 103. Specifically, the lens unit 101 has a height dimension larger than that of the lens unit 102, and the lens unit 101 and the lens unit 102 are connected to each other via a flange unit 103. In the present invention, the lens shape is not limited to this, and can be appropriately changed according to the intended use. For example, the lens unit 102 has a convex surface according to the form shown in FIG. 6, but is not limited thereto, and may have a concave surface or a flat surface according to desired lens performance. It may be.
 本発明のレンズは、上述のレンズ製造方法で得られるレンズであるので、いわゆる“プラスチック・レンズ”に相当する。ある好適な態様では、本発明のレンズは、(メタ)アクリル樹脂製の透明プラスチック・レンズである。 Since the lens of the present invention is a lens obtained by the above-described lens manufacturing method, it corresponds to a so-called “plastic lens”. In a preferred embodiment, the lens of the present invention is a transparent plastic lens made of (meth) acrylic resin.
 本発明のレンズは、そのようなレンズ形状が必要とされる用途に対して用いることができる。特に制限されないものの、本発明のレンズは光学素子として用いることができる。光学素子としてのレンズは、例えば、車両ランプ・レンズ(1つ例示すると車両ヘッドランプ・レンズ)の他、カメラ用、プロジェクター用、コピー機、プリンター用または照明装置用の各種レンズなどとして用いることができる。特に、(メタ)アクリル樹脂製のレンズは、車両ランプ・レンズ(例えば車両ヘッドランプ・レンズ)として好ましく用いられる。 The lens of the present invention can be used for applications where such a lens shape is required. Although not particularly limited, the lens of the present invention can be used as an optical element. The lens as the optical element is used as, for example, various lenses for a camera, a projector, a copier, a printer, or a lighting device in addition to a vehicle lamp / lens (one example is a vehicle headlamp / lens). it can. In particular, a lens made of (meth) acrylic resin is preferably used as a vehicle lamp / lens (for example, a vehicle headlamp / lens).
 光学素子としてのレンズについていえば、レンズ部101からレンズ部103までの最大厚みTmax(図6参照)は、10mm以上150mm以下であることが好ましく、10mm以上130mm以下であることがより好ましく、10mm以上100mm以下であることが更に好ましい。また、レンズの最大幅Wmax(即ち、フランジ部102を除いたレンズ体の有効最大幅寸法(図6参照))は、10mm以上200mm以下であることが好ましく、より好ましくは20mm以上130mm以下であり、更に好ましくは30mm以上120mm以下である。このような寸法は、外観が良好なレンズの短時間製造に資することになる。尚、レンズ前駆体との寸法相違について詳述しておく。レンズ前駆体の最大寸法(例えば最大厚みT'maxおよび最大幅W'maxなど)に比べてレンズの最大寸法(例えば同様に最大厚みTmaxおよび最大幅Wmaxなど)は好ましくは0.2%~10%程度小さいもの、より好ましくは0.5%~6%程度小さいもの、更に好ましくは0.8%~4%程度小さいものとなり得る。 Regarding the lens as an optical element, the maximum thickness Tmax (see FIG. 6) from the lens unit 101 to the lens unit 103 is preferably 10 mm or more and 150 mm or less, more preferably 10 mm or more and 130 mm or less. More preferably, it is 100 mm or less. The maximum width Wmax of the lens (that is, the effective maximum width dimension of the lens body excluding the flange portion 102 (see FIG. 6)) is preferably 10 mm or more and 200 mm or less, more preferably 20 mm or more and 130 mm or less. More preferably, they are 30 mm or more and 120 mm or less. Such dimensions contribute to the short time production of a lens with a good appearance. The dimensional difference from the lens precursor will be described in detail. The maximum dimension of the lens (for example, likewise the maximum thickness Tmax and the maximum width Wmax) is preferably 0.2% to 10% compared to the maximum dimension of the lens precursor (for example, maximum thickness T'max and maximum width W'max). % Can be as small as 0.5%, more preferably as small as 0.5% to 6%, and even more preferably as small as 0.8% to 4%.
 最後に、本発明は下記の態様を有するものであることを確認的に付言しておく。
第1態様:レンズを製造する方法であって、
 (i)熱可塑性樹脂原料を用いて射出成形を行い射出成形金型内でレンズ前駆体を得る工程、および
 (ii)レンズ前駆体を圧縮成形金型内へと配置し、レンズ前駆体を圧縮成形に付す工程
を有して成り、
 工程(i)の射出成形から工程(ii)の圧縮成形へとレンズ前駆体を移すに際しては、レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上であるときにレンズ前駆体を射出成形金型から取り出すことを特徴とする、レンズ製造方法。
第2態様:上記第1態様において、射出成形金型内におけるレンズ前駆体の中心温度を式1に基づいて間接的に把握することを特徴とするレンズ製造方法。
Figure JPOXMLDOC01-appb-I000004

第3態様:上記第1態様または上記第2態様において、複数のレンズを並列的に製造しており、
 あるレンズ前駆体をその中間点ガラス転移温度以上で取り出した射出成形金型に対して、引き続いて可及的速やかに熱可塑性樹脂原料を射出して別のレンズ前駆体を得ることを特徴とするレンズ製造方法。
第4態様:上記第1態様~上記第3態様のいずれかにおいて、工程(ii)の圧縮成形に付すに先立ってはレンズ前駆体を射出成形金型から取り出した状態で冷却に付すことを特徴とするレンズ製造方法。
第5態様:上記第1態様~上記第3態様のいずれかにおいて、射出成形金型から取り出したレンズ前駆体を実質的な冷却に付すことなく、圧縮成形金型に移すことを特徴とするレンズ製造方法。
第6態様:上記第1態様~上記第5態様のいずれかにおいて、工程(i)で用いる熱可塑性樹脂原料として、JIS K7206(B50法)で測定したビカット軟化温度が105℃以上かつ120℃以下であり、JIS K7210で測定したメルトマスフローレイトが1g/10min以上かつ20g/10min以下である熱可塑性樹脂原料を用いることを特徴とするレンズ製造方法。
第7態様:上記第1態様~上記第6態様のいずれかにおいて、工程(i)で用いる熱可塑性樹脂原料として、(メタ)アクリル樹脂を用いることを特徴とするレンズ製造方法。
第8態様:上記第7態様において、(メタ)アクリル樹脂が、メタクリル酸エステルとメタクリル酸エステル以外の単量体とからなる共重合体であることを特徴とするレンズ製造方法。
第9態様:上記第1態様~上記第8態様のいずれかにおいて、工程(i)により得られるレンズ前駆体につき、最大厚み寸法が10mm以上かつ150mm以下であり、最大幅寸法(フランジ部がある場合には、そのフランジ部を除いて考えたレンズ最大幅寸法)が10mm以上かつ200mm以下であることを特徴とするレンズ製造方法。
第10態様:上記第1態様~上記第9態様のいずれかにおいて、工程(ii)において圧縮成形金型の金型温度Tp(℃)と熱可塑性樹脂原料の中間点ガラス転移温度Tmg(℃)とが「Tmg+45≦Tp≦Tmg+85」の関係を満たし、圧縮成形金型による圧縮圧力が15kN以上かつ80kN以下となり、また、圧縮成形金型による圧縮時間が110秒以上かつ200秒以下となる条件でレンズ前駆体を圧縮成形に付すことを特徴とするレンズ製造方法。
第11態様:上記第1態様~上記第10態様のいずれかにおいて、工程(ii)が、
 (a)圧縮成形金型内でレンズ前駆体を加熱に付すサブ工程、
 (b)加熱されたレンズ前駆体を圧縮成形に付すサブ工程、および
 (c)レンズ前駆体の圧縮成形により得られたレンズを圧縮成形金型内にて冷却に付すサブ工程
を含んで成ることを特徴とするレンズ製造方法。
第12態様:上記第11態様において、レンズ前駆体が仕込まれた圧縮成形金型を搬送ないしは移動させながら、サブ工程(a)、サブ工程(b)およびサブ工程(c)を順次実施することを特徴とするレンズ製造方法。
第13態様:上記第7態様のレンズ製造方法で使用される(メタ)アクリル樹脂。
第14態様:上記第1態様~上記第12態様のいずれかのレンズ製造方法によって得られるレンズ。
第15態様:上記第14態様において、レンズが車両ランプ・レンズであることを特徴とするレンズ。
Finally, it should be confirmed that the present invention has the following aspects.
1st aspect : It is a method of manufacturing a lens, Comprising :
(I) a step of performing injection molding using a thermoplastic resin raw material to obtain a lens precursor in an injection mold, and (ii) placing the lens precursor in a compression mold and compressing the lens precursor. Comprising a step for molding,
In transferring the lens precursor from the injection molding in the step (i) to the compression molding in the step (ii), the lens precursor is obtained when the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin raw material. A method for producing a lens, wherein the lens is taken out from an injection mold.
Second aspect : The lens manufacturing method according to the first aspect, wherein the center temperature of the lens precursor in the injection mold is indirectly grasped based on Formula 1.
Figure JPOXMLDOC01-appb-I000004

Third aspect : In the first aspect or the second aspect, a plurality of lenses are manufactured in parallel,
It is characterized in that another lens precursor is obtained by injecting a thermoplastic resin raw material as soon as possible to an injection mold in which a lens precursor is taken out above its midpoint glass transition temperature. Lens manufacturing method.
Fourth aspect : In any one of the first to third aspects, the lens precursor is subjected to cooling in a state of being taken out from the injection mold before being subjected to the compression molding in the step (ii). A lens manufacturing method.
Fifth aspect : The lens according to any one of the first to third aspects, wherein the lens precursor taken out from the injection mold is transferred to a compression mold without being subjected to substantial cooling. Production method.
Sixth aspect : In any one of the first to fifth aspects, the Vicat softening temperature measured by JIS K7206 (B50 method) is 105 ° C or higher and 120 ° C or lower as the thermoplastic resin material used in step (i). And using a thermoplastic resin material having a melt mass flow rate measured by JIS K7210 of 1 g / 10 min or more and 20 g / 10 min or less.
Seventh aspect : A lens manufacturing method according to any one of the first to sixth aspects, wherein a (meth) acrylic resin is used as the thermoplastic resin material used in step (i).
Eighth aspect : The method for producing a lens according to the seventh aspect, wherein the (meth) acrylic resin is a copolymer composed of a methacrylic acid ester and a monomer other than the methacrylic acid ester.
Ninth aspect : In any one of the first to eighth aspects, the lens precursor obtained in step (i) has a maximum thickness dimension of 10 mm to 150 mm and a maximum width dimension (there is a flange portion) In the case, the lens maximum width dimension (excluding the flange portion) is 10 mm or more and 200 mm or less.
Tenth aspect : In any one of the first to ninth aspects, in step (ii), the mold temperature Tp (° C) of the compression mold and the intermediate glass transition temperature Tmg (° C) of the thermoplastic resin material Satisfying the relationship of “Tmg + 45 ≦ Tp ≦ Tmg + 85”, the compression pressure by the compression mold is 15 kN or more and 80 kN or less, and the compression time by the compression mold is 110 seconds or more and 200 seconds or less. A lens manufacturing method comprising subjecting a lens precursor to compression molding.
Eleventh aspect : In any one of the first to tenth aspects, the step (ii) comprises:
(A) a sub-step of subjecting the lens precursor to heating in a compression mold;
(B) a sub-step of subjecting the heated lens precursor to compression molding, and (c) a sub-step of subjecting the lens obtained by compression molding of the lens precursor to cooling in a compression mold. A lens manufacturing method.
Twelfth aspect : In the eleventh aspect, the sub-step (a), the sub-step (b), and the sub-step (c) are sequentially performed while the compression molding die charged with the lens precursor is conveyed or moved. A lens manufacturing method.
Thirteenth aspect : A (meth) acrylic resin used in the lens manufacturing method of the seventh aspect.
Fourteenth aspect : A lens obtained by the lens manufacturing method according to any one of the first aspect to the twelfth aspect.
Fifteenth aspect : A lens according to the fourteenth aspect, wherein the lens is a vehicle lamp lens.
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられることを当業者は容易に理解されよう。 As mentioned above, although the embodiment of the present invention has been described, a typical example is merely illustrated. Therefore, those skilled in the art will easily understand that the present invention is not limited to this, and various modes are conceivable.
 例えば、本発明はレンズ製造に限らず、他の樹脂成形品の製造にも同様に適用できる。つまり、熱可塑性樹脂原料を用いた射出成形で得られた前駆体を圧縮成形に付すことによって他の樹脂成形体を得る場合においては、その前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上であるときに前駆体を射出成形金型から取り出すことを行ってよい。 For example, the present invention is not limited to lens manufacturing but can be similarly applied to manufacturing other resin molded products. In other words, in the case where another resin molded body is obtained by subjecting a precursor obtained by injection molding using a thermoplastic resin raw material to compression molding, the center temperature of the precursor is the midpoint glass of the thermoplastic resin raw material. The precursor may be removed from the injection mold when it is above the transition temperature.
 以下では「実施例」および「比較例」を挙げて本発明をさらに具体的に説明する。尚、本発明は、これら実施例および比較例に特に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to “Examples” and “Comparative Examples”. The present invention is not particularly limited to these examples and comparative examples.
《本発明に従ったレンズ製造および従来技術のレンズ製造》
 熱可塑性樹脂原料として(メタ)アクリル樹脂を用いた。かかる(メタ)アクリル樹脂およびそれから得られたレンズの各種物性の測定および評価は以下の通りである。
<< Lens manufacturing according to the present invention and prior art lens manufacturing >>
A (meth) acrylic resin was used as a thermoplastic resin raw material. Measurements and evaluations of various physical properties of the (meth) acrylic resin and lenses obtained therefrom are as follows.
<ビカット軟化温度(VST)>
 (メタ)アクリル樹脂を原料樹脂とした試験片を得た。具体的には厚さが3mmの10cm四方の樹脂板をプレス成形して試験片を得た。得られた試験片について、JIS K7206のB50法に準拠して、荷重50Nおよび昇温速度50℃/時の条件下でビカット軟化温度(VST)を測定した。
<Vicat softening temperature (VST)>
A test piece using a (meth) acrylic resin as a raw material resin was obtained. Specifically, a 10 cm square resin plate having a thickness of 3 mm was press-molded to obtain a test piece. About the obtained test piece, based on JIS K7206 B50 method, Vicat softening temperature (VST) was measured under conditions of a load of 50 N and a heating rate of 50 ° C./hour.
<メルトマスフローレイト(MFR)>
 (メタ)アクリル樹脂について、JIS K7210に準拠して、温度230℃、荷重3.8kgの条件で測定した。
<Melt Mass Flow Rate (MFR)>
The (meth) acrylic resin was measured under the conditions of a temperature of 230 ° C. and a load of 3.8 kg in accordance with JIS K7210.
<中間点ガラス転移温度(Tmg)>
 (メタ)アクリル樹脂について、セイコーインスツールメント製の示差走査熱分析装置を用い、昇温速度10℃/min、窒素雰囲気下の条件で測定した。
<Intermediate glass transition temperature (Tmg)>
The (meth) acrylic resin was measured using a differential scanning calorimeter manufactured by Seiko Instruments Inc. under conditions of a temperature rising rate of 10 ° C./min and a nitrogen atmosphere.
<レンズ前駆体の中心温度と冷却時間>
 (メタ)アクリル樹脂としてはSumipex MHF(住友化学株式会社製)を用いた。かかる熱可塑性樹脂原料を射出成形金型内へと射出してレンズ前駆体を得た。射出成形金型に内在するレンズ前駆体の中心温度と冷却時間との関係については、式1から算出した。

la=S/(π・α)ln(8/π・(θ-θ)/(θ-θ))  (式1)

 式中、tlaはレンズ中間体の冷却時間(s)であり、θがレンズ中間体の中心温度(℃)である。また、S=23mm、α=0.66mm/s、θ=230℃、θ=80℃となった。
<Center temperature and cooling time of lens precursor>
Sumipex MHF (manufactured by Sumitomo Chemical Co., Ltd.) was used as the (meth) acrylic resin. Such a thermoplastic resin raw material was injected into an injection mold to obtain a lens precursor. The relationship between the center temperature of the lens precursor present in the injection mold and the cooling time was calculated from Equation 1.

t la = S 2 / (π 2 · α) ln (8 / π 2 · (θ r −θ m ) / (θ e −θ m )) (Formula 1)

In the formula, t la is the cooling time (s) of the lens intermediate, and θ e is the center temperature (° C.) of the lens intermediate. In addition, S = 23 mm, α = 0.66 mm 2 / s, θ r = 230 ° C., θ m = 80 ° C.
<耐久性評価>
 得られたレンズについて、90℃のオーブン中にて100時間静置した。静置後に、レンズが変形していなければ“○”、変形していれば“×”と評価した。
<Durability evaluation>
About the obtained lens, it left still in 90 degreeC oven for 100 hours. After standing, it was evaluated as “◯” if the lens was not deformed, and “×” if it was deformed.
[実施例1]
射出成形段階(工程(i))
 射出成形機EC180SX-6A(東芝機械株式会社製)を用いた。熱可塑性樹脂原料のSumipex MHF(VST=約110℃、MFR=約2g/10min、Tmg=約111℃、住友化学株式会社製)を、レンズ形状の金型キャビティを1つ備えた射出成形金型へと射出(シリンダ温度:約230℃、射出速度:約0.6mm/s、射出成形金型の表面温度:約80℃)してレンズ前駆体を得た。次いで、レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度Tmg以上であるときにレンズ前駆体を射出成形金型から取り出した。具体的には、上記の式1に基づいて射出成形金型内のレンズ前駆体の中心温度を間接的に把握し、その結果、“180秒間”射出成形金型でレンズ前駆体を冷却に付した後でレンズ前駆体を射出成形金型から離型した(ここでの“冷却”は、樹脂原料が射出成形金型の温度環境下にさらされることによってもたらされるものである。そして上記“180秒”は、射出された樹脂原料が流動停止した時点からの経過時間であり、即ち、射出成形金型内への熱可塑性樹脂原料の充填が完了した時点からの経過時間である)。このような操作によって、レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上であるときにレンズ前駆体を射出成形金型から取り出すことができた。取り出されたレンズ前駆体は、最終品たるレンズと同様にレンズ部101’、レンズ部103’およびフランジ部102’から構成され、レンズ部101’およびレンズ部103’が各々フランジ部と接する面の直径が共に約60mmであり、レンズ部101’からレンズ部103’までの最大厚みが約23mmであった(図3参照)。
[Example 1]
Injection molding stage (process (i))
An injection molding machine EC180SX-6A (manufactured by Toshiba Machine Co., Ltd.) was used. Injection mold with thermoplastic lens raw material Sumipex MHF (VST = about 110 ° C., MFR = about 2 g / 10 min, Tmg = about 111 ° C., manufactured by Sumitomo Chemical Co., Ltd.) and one lens-shaped mold cavity The lens precursor was obtained by injection (cylinder temperature: about 230 ° C., injection speed: about 0.6 mm / s, injection mold surface temperature: about 80 ° C.). Next, the lens precursor was taken out from the injection mold when the center temperature of the lens precursor was equal to or higher than the midpoint glass transition temperature Tmg of the thermoplastic resin material. Specifically, the center temperature of the lens precursor in the injection mold is indirectly grasped based on the above formula 1, and as a result, the lens precursor is subjected to cooling by the injection mold for “180 seconds”. After that, the lens precursor was released from the injection mold (here, “cooling” is caused by exposing the resin material to the temperature environment of the injection mold, and the above “180”. "Second" is the elapsed time from the point at which the injected resin raw material stopped flowing, that is, the elapsed time from the point at which filling of the thermoplastic resin raw material into the injection mold was completed). By such an operation, the lens precursor could be taken out from the injection mold when the center temperature of the lens precursor was equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material. The taken out lens precursor is composed of a lens portion 101 ′, a lens portion 103 ′, and a flange portion 102 ′ in the same manner as the lens as the final product, and the lens portion 101 ′ and the lens portion 103 ′ are respectively in contact with the flange portion. Both diameters were about 60 mm, and the maximum thickness from the lens portion 101 ′ to the lens portion 103 ′ was about 23 mm (see FIG. 3).
 射出成形金型に内在するレンズ前駆体の中心温度と射出成形金型内でのレンズ前駆体の冷却時間との関係について式1に基づいて得られた結果を以下の表1に示す。表1から、180秒間冷却したときのレンズ前駆体の中心温度は170℃以上であり、それゆえTmg以上であることが分かる。
Figure JPOXMLDOC01-appb-T000005
Table 1 below shows the results obtained based on Equation 1 regarding the relationship between the center temperature of the lens precursor present in the injection mold and the cooling time of the lens precursor in the injection mold. From Table 1, it can be seen that the central temperature of the lens precursor when cooled for 180 seconds is 170 ° C. or higher, and therefore Tmg or higher.
Figure JPOXMLDOC01-appb-T000005
圧縮成形段階(工程(ii))
 移動式高精度ガラス成形装置(東芝機械株式会社製)を用いて圧縮成形工程を実施した。具体的には、射出成形金型から取り出したレンズ前駆体を圧縮成形金型へと仕込んで、そのように仕込んだ圧縮成形金型をベルトコンベヤーで搬送しながら圧縮成形プロセスを実施した。より具体的には、レンズ前駆体を内在する圧縮成形金型をベルトコンベヤーで搬送しながら加熱サブ工程、安定化サブ工程、圧縮成形サブ工程、および第1~第3冷却サブ工程を、この順で逐次実施した。かかるサブ工程の条件を表2に示す。
Compression molding stage (process (ii))
The compression molding process was carried out using a mobile high-precision glass molding apparatus (manufactured by Toshiba Machine Co., Ltd.). Specifically, the lens precursor taken out from the injection mold was charged into a compression mold, and the compression molding process was carried out while the compression mold thus charged was conveyed by a belt conveyor. More specifically, the heating sub-process, the stabilization sub-process, the compression sub-process, and the first to third cooling sub-processes are performed in this order while the compression mold containing the lens precursor is conveyed by a belt conveyor. It carried out sequentially. Table 2 shows the conditions of the sub-process.
 このような圧縮成形によって表面凹凸が減じられた(レンズ表面における凹凸が減じられた)外観が良好なレンズを最終的に得ることができた。得られたレンズについては耐久性評価の試験に付した(結果は表2中に示す)。 A lens having a good appearance whose surface irregularities were reduced by such compression molding (irregularities on the lens surface were reduced) could be finally obtained. The obtained lens was subjected to a durability evaluation test (results are shown in Table 2).
[実施例2]
 圧縮成形工程について、加熱サブ工程、安定化サブ工程、第1~第2圧縮成形サブ工程、および第1~第3冷却サブ工程とした以外は、実施例1と同様にレンズを得た。かかる圧縮成形の各サブ工程での条件を表2に示す。最終的には表面凹凸が減じられた(レンズ表面における凹凸が減じられた)外観が良好なレンズを得ることができた。尚、得られたレンズの耐久性評価の結果は同じく表2中に示す。
[Example 2]
A lens was obtained in the same manner as in Example 1 except that the compression molding process was a heating sub-process, a stabilization sub-process, a first to second compression molding sub-process, and a first to third cooling sub-process. Table 2 shows the conditions in each sub-step of the compression molding. Finally, a lens having a good appearance with reduced surface irregularities (reduced irregularities on the lens surface) could be obtained. The results of durability evaluation of the obtained lens are also shown in Table 2.
[比較例1]
 レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度Tmg未満であるときに射出成形金型からレンズ前駆体を取り出したこと以外は、実施例1と同様にレンズを得た。具体的には、上記式1に基づいて射出成形金型内のレンズ前駆体の中心温度を間接的に把握し、その結果、1105秒間射出成形金型でレンズ前駆体を冷却に付した後でレンズ前駆体を射出成形金型から取り出した。最終的には実施例1および実施例2と同様の表面凹凸が減じられた(レンズ表面における凹凸が減じられた)外観が良好なレンズを得ることができた。尚、得られたレンズの耐久性評価の結果は同じく表2中に示す。
[Comparative Example 1]
A lens was obtained in the same manner as in Example 1 except that the lens precursor was taken out from the injection mold when the center temperature of the lens precursor was lower than the midpoint glass transition temperature Tmg of the thermoplastic resin material. Specifically, based on Equation 1 above, the center temperature of the lens precursor in the injection mold is indirectly grasped, and as a result, the lens precursor is cooled for 1105 seconds with the injection mold. The lens precursor was removed from the injection mold. Finally, a lens having the same appearance as Example 1 and Example 2 with reduced surface irregularities (reduced irregularities on the lens surface) could be obtained. The results of durability evaluation of the obtained lens are also shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上より、「レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度Tmg」以上の条件下で射出成形金型からレンズ前駆体の取り出しを取り出した場合であっても、「レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度Tmg」未満で射出成形金型からレンズ前駆体の取り出しを取り出した場合と同様の品質が保持されたレンズを最終的に得られることが分かった。また、そのように早期にレンズ前駆体が取り出された場合ではその射出成形金型を別のレンズ前駆体形成へと速やかに利用することができ、効率的な大量生産の実現に寄与し得ることも分かった。 As described above, even when the lens precursor is taken out from the injection mold under the condition that the center temperature of the lens precursor is equal to or higher than the glass transition temperature Tmg of the thermoplastic resin raw material, A lens having the same quality as when the lens precursor is taken out from the injection mold when the center temperature of the body is lower than the midpoint glass transition temperature Tmg of the thermoplastic resin raw material can be finally obtained. I understood. In addition, when the lens precursor is taken out at such an early stage, the injection mold can be quickly used to form another lens precursor, which can contribute to the realization of efficient mass production. I understand.
《レンズ生産性の検討》
 「本発明に従ったレンズ製造」と「従来技術のレンズ製造」とにつき、レンズ1個当たりの製造時間を調べた。
《Examination of lens productivity》
The manufacturing time per lens was investigated for “lens manufacturing according to the present invention” and “prior art lens manufacturing”.
 具体的には、下記条件において製造試験(射出成形→圧縮生成)を行い、各成形に要した時間からレンズ1個当たりの製造時間を求めた。

 ・原料樹脂:Sumipex MHF(住友化学社製)
 ・射出成形金型温度:約80℃
 ・射出成形金型:6個取り金型
 ・レンズ品の肉厚(最大厚みTmax):約23mm
 ・圧縮成形金型:レンズ前駆体の1個仕込みタイプ
Specifically, a manufacturing test (injection molding → compression generation) was performed under the following conditions, and the manufacturing time per lens was determined from the time required for each molding.

・ Raw material resin: Sumipex MHF (manufactured by Sumitomo Chemical Co., Ltd.)
・ Injection mold temperature: about 80 ℃
・ Injection mold: 6 molds ・ Lens thickness (maximum thickness Tmax): approx. 23 mm
・ Compression mold: Single lens precursor type
 結果を表3に示す。表3の結果に示されているように、本発明の製法ではレンズ1個当たりの製造時間を従来技術よりも約60%減じることができることが分かった。
Figure JPOXMLDOC01-appb-T000007
The results are shown in Table 3. As shown in the results of Table 3, it was found that the manufacturing time per lens can be reduced by about 60% compared to the prior art in the manufacturing method of the present invention.
Figure JPOXMLDOC01-appb-T000007
 本発明で得られるレンズは、光学素子として使用される各種プラスチック・レンズである。特に、本発明に従えば、所望の品質を保持したレンズ(例えば耐久性の優れたレンズ)につき製造時間を短くすることができ、大量生産にとって特に好適である。また、得られるレンズは、例えば(メタ)アクリル樹脂を原料樹脂とすることで、透明性に特に優れることになり、また、表面凹凸が減じられて外観が良好となることから、各種の車両ランプ用レンズとして特に好適に使用することができる。 The lenses obtained by the present invention are various plastic lenses used as optical elements. In particular, according to the present invention, the manufacturing time can be shortened for a lens having a desired quality (for example, a lens having excellent durability), which is particularly suitable for mass production. In addition, the obtained lens is particularly excellent in transparency by using, for example, (meth) acrylic resin as a raw material resin, and the appearance is improved by reducing surface irregularities. It can be particularly suitably used as an industrial lens.
 10 射出成形金型
 20 圧縮成形金型
 30 加熱サブ工程
 30A 第1加熱サブ工程
 30B 第2加熱サブ工程
 40 圧縮成形サブ工程
 40A 第1圧縮成形サブ工程
 40B 第2圧縮成形サブ工程
 50 冷却サブ工程
 50A 第1冷却サブ工程
 50B 第2冷却サブ工程
 50C 第3冷却サブ工程
 100’ レンズ前駆体
 100 レンズ
 101 上側レンズ部(レンズ凸部を成す部分)
 102 下側レンズ部(レンズ底部を成す部分)
 103 レンズ・フランジ部
DESCRIPTION OF SYMBOLS 10 Injection mold 20 Compression molding die 30 Heating sub process 30A 1st heating sub process 30B 2nd heating sub process 40 Compression molding sub process 40A 1st compression molding sub process 40B 2nd compression molding sub process 50 Cooling sub process 50A First cooling sub-process 50B Second cooling sub-process 50C Third cooling sub-process 100 ′ Lens precursor 100 Lens 101 Upper lens portion (portion forming lens convex portion)
102 Lower lens part (the part that forms the bottom of the lens)
103 Lens flange part

Claims (15)

  1. レンズを製造する方法であって、
     (i)熱可塑性樹脂原料を用いて射出成形を行い射出成形金型内でレンズ前駆体を得る工程、および
     (ii)レンズ前駆体を圧縮成形金型内へと配置し、レンズ前駆体を圧縮成形に付す工程
    を含んで成り、
     工程(i)の射出成形から工程(ii)の圧縮成形へとレンズ前駆体を移すに際しては、レンズ前駆体の中心温度が熱可塑性樹脂原料の中間点ガラス転移温度以上にあるときにレンズ前駆体を射出成形金型から取り出すことを特徴とする、レンズ製造方法。
    A method of manufacturing a lens, comprising:
    (I) a step of performing injection molding using a thermoplastic resin raw material to obtain a lens precursor in an injection mold, and (ii) placing the lens precursor in a compression mold and compressing the lens precursor. Comprising the step of subjecting to molding,
    When the lens precursor is transferred from the injection molding in step (i) to the compression molding in step (ii), the lens precursor is when the center temperature of the lens precursor is equal to or higher than the midpoint glass transition temperature of the thermoplastic resin material. A method for producing a lens, wherein the lens is taken out from an injection mold.
  2. 射出成形金型内におけるレンズ前駆体の中心温度を式1に基づいて間接的に把握することを特徴とする、請求項1に記載のレンズ製造方法。
    Figure JPOXMLDOC01-appb-I000001
    The lens manufacturing method according to claim 1, wherein the center temperature of the lens precursor in the injection mold is indirectly grasped based on Equation 1.
    Figure JPOXMLDOC01-appb-I000001
  3. 複数のレンズを並列的に製造しており、
     あるレンズ前駆体をその中間点ガラス転移温度以上で取り出した射出成形金型に対して、引き続いて熱可塑性樹脂原料を射出して別のレンズ前駆体を得ることを特徴とする、請求項1に記載のレンズ製造方法。
    Several lenses are manufactured in parallel,
    2. The method according to claim 1, wherein another lens precursor is obtained by subsequently injecting a thermoplastic resin material to an injection mold in which a lens precursor is taken out at a glass transition temperature higher than its intermediate point. The lens manufacturing method as described.
  4. 工程(ii)の圧縮成形に付すに先立ってはレンズ前駆体を射出成形金型から取り出した状態で冷却に付すことを特徴とする、請求項1に記載のレンズ製造方法。 The lens manufacturing method according to claim 1, wherein the lens precursor is subjected to cooling in a state of being taken out of the injection mold before being subjected to the compression molding in the step (ii).
  5. 射出成形金型から取り出したレンズ前駆体を冷却に付すことなく、圧縮成形金型へと移すことを特徴とする、請求項1に記載のレンズ製造方法。 The lens manufacturing method according to claim 1, wherein the lens precursor taken out from the injection mold is transferred to a compression mold without being cooled.
  6. 工程(i)で用いる熱可塑性樹脂原料として、JIS K7206(B50法)で測定したビカット軟化温度が105℃以上かつ120℃以下であり、JIS K7210で測定したメルトマスフローレイトが1g/10min以上かつ20g/10min以下である熱可塑性樹脂原料を用いることを特徴とする、請求項1に記載のレンズ製造方法。 As a thermoplastic resin raw material used in step (i), the Vicat softening temperature measured by JIS K7206 (B50 method) is 105 ° C. or more and 120 ° C. or less, and the melt mass flow rate measured by JIS K7210 is 1 g / 10 min or more and 20 g. The method for manufacturing a lens according to claim 1, wherein a thermoplastic resin material having a length of / 10 min or less is used.
  7. 工程(i)で用いる熱可塑性樹脂原料として、(メタ)アクリル樹脂を用いることを特徴とする、請求項1に記載のレンズ製造方法。 The lens manufacturing method according to claim 1, wherein a (meth) acrylic resin is used as the thermoplastic resin material used in step (i).
  8. (メタ)アクリル樹脂が、メタクリル酸エステルとメタクリル酸エステル以外の単量体とからなる共重合体であることを特徴とする、請求項7に記載のレンズ製造方法。 The lens production method according to claim 7, wherein the (meth) acrylic resin is a copolymer composed of a methacrylic acid ester and a monomer other than the methacrylic acid ester.
  9. 工程(i)により得られるレンズ前駆体につき、最大厚み寸法が10mm以上かつ150mm以下であり、最大幅寸法が10mm以上かつ200mm以下であることを特徴とする、請求項1に記載のレンズ製造方法。 The lens manufacturing method according to claim 1, wherein the lens precursor obtained in step (i) has a maximum thickness dimension of 10 mm to 150 mm and a maximum width dimension of 10 mm to 200 mm. .
  10. 工程(ii)において圧縮成形金型の金型温度Tp(℃)と熱可塑性樹脂原料の中間点ガラス転移温度Tmg(℃)とがTmg+45≦Tp≦Tmg+85の関係を満たし、圧縮成形金型による圧縮圧力が15kN以上かつ80kN以下となり、また、圧縮成形金型による圧縮時間が110秒以上かつ200秒以下となる条件でレンズ前駆体を圧縮成形に付すことを特徴とする、請求項1に記載のレンズ製造方法。 In step (ii), the mold temperature Tp (° C.) of the compression molding mold and the intermediate glass transition temperature Tmg (° C.) of the thermoplastic resin material satisfy the relationship of Tmg + 45 ≦ Tp ≦ Tmg + 85, and compression by the compression molding mold The lens precursor is subjected to compression molding under a condition that the pressure is 15 kN or more and 80 kN or less and the compression time by the compression molding die is 110 seconds or more and 200 seconds or less. Lens manufacturing method.
  11. 工程(ii)が、
     (a)圧縮成形金型内でレンズ前駆体を加熱に付すサブ工程、
     (b)加熱されたレンズ前駆体を圧縮成形に付すサブ工程、および
     (c)レンズ前駆体の圧縮成形により得られたレンズを圧縮成形金型内で冷却に付すサブ工程
    を含んで成ることを特徴とする、請求項1に記載のレンズ製造方法。
    Step (ii)
    (A) a sub-step of subjecting the lens precursor to heating in a compression mold;
    (B) a sub-step of subjecting the heated lens precursor to compression molding, and (c) a sub-step of subjecting the lens obtained by compression molding of the lens precursor to cooling in a compression molding die. The lens manufacturing method according to claim 1, wherein the lens manufacturing method is characterized.
  12. レンズ前駆体が仕込まれた圧縮成形金型を搬送しながら、サブ工程(a)、サブ工程(b)およびサブ工程(c)を順次実施することを特徴とする、請求項11に記載のレンズ製造方法。 The lens according to claim 11, wherein the sub-step (a), the sub-step (b), and the sub-step (c) are sequentially performed while conveying the compression mold in which the lens precursor is charged. Production method.
  13. 請求項7に記載のレンズ製造方法で使用される(メタ)アクリル樹脂。 A (meth) acrylic resin used in the lens manufacturing method according to claim 7.
  14. 請求項1に記載のレンズ製造方法によって得られるレンズ。 A lens obtained by the lens manufacturing method according to claim 1.
  15. レンズが車両ランプ・レンズであることを特徴とする、請求項14に記載のレンズ。 15. Lens according to claim 14, characterized in that the lens is a vehicle lamp lens.
PCT/JP2014/052953 2014-02-07 2014-02-07 Method for manufacturing lens, resin starting material used therein, and lens obtained by said manufacturing method WO2015118667A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/052953 WO2015118667A1 (en) 2014-02-07 2014-02-07 Method for manufacturing lens, resin starting material used therein, and lens obtained by said manufacturing method
JP2015561120A JP6345712B2 (en) 2014-02-07 2014-02-07 Lens manufacturing method, resin raw material used therefor and lens obtained by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052953 WO2015118667A1 (en) 2014-02-07 2014-02-07 Method for manufacturing lens, resin starting material used therein, and lens obtained by said manufacturing method

Publications (1)

Publication Number Publication Date
WO2015118667A1 true WO2015118667A1 (en) 2015-08-13

Family

ID=53777495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052953 WO2015118667A1 (en) 2014-02-07 2014-02-07 Method for manufacturing lens, resin starting material used therein, and lens obtained by said manufacturing method

Country Status (2)

Country Link
JP (1) JP6345712B2 (en)
WO (1) WO2015118667A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021051898A (en) * 2019-09-25 2021-04-01 パナソニックIpマネジメント株式会社 Illuminating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336833A (en) * 1995-06-09 1996-12-24 Canon Inc Method for molding lens blank and method for compression molding of plastic optical element and its molding system
JPH0931134A (en) * 1995-07-13 1997-02-04 Kuraray Co Ltd Methacrylic resin for light transmitter
JP2008230025A (en) * 2007-03-20 2008-10-02 Fujifilm Corp Plastic lens molding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101847658B1 (en) * 2010-02-01 2018-05-24 디비엠 리플렉스 엔터프라이즈스 인크. Thick lens molded with embedded layers of the same resin using a two step injection molding process
JP2011170005A (en) * 2010-02-17 2011-09-01 Sekisui Chem Co Ltd Optical sheet and method for manufacturing the same
JP2013254650A (en) * 2012-06-07 2013-12-19 Sharp Corp Light source device, surface light source device, display device and lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08336833A (en) * 1995-06-09 1996-12-24 Canon Inc Method for molding lens blank and method for compression molding of plastic optical element and its molding system
JPH0931134A (en) * 1995-07-13 1997-02-04 Kuraray Co Ltd Methacrylic resin for light transmitter
JP2008230025A (en) * 2007-03-20 2008-10-02 Fujifilm Corp Plastic lens molding method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021051898A (en) * 2019-09-25 2021-04-01 パナソニックIpマネジメント株式会社 Illuminating device
JP7349634B2 (en) 2019-09-25 2023-09-25 パナソニックIpマネジメント株式会社 lighting equipment

Also Published As

Publication number Publication date
JPWO2015118667A1 (en) 2017-03-23
JP6345712B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
KR101206328B1 (en) Cover glass manufacturing device
US8003186B2 (en) Preform for optical element and optical element
TW200427569A (en) Process for producing light transmitting plate
JP4335225B2 (en) Method and apparatus for manufacturing resin molded body
JP2008273194A (en) Method and apparatus for manufacturing preform, preform, and optical member
JP6345712B2 (en) Lens manufacturing method, resin raw material used therefor and lens obtained by the manufacturing method
JP5845496B1 (en) Sheet glass bending apparatus and method
JP2008279685A (en) Vacuum forming method and vacuum forming apparatus of plastic sheet
TW201412434A (en) Metal molding system with increased production speed
WO2009101890A1 (en) Injection molding method
CN1237017C (en) Pressure forming equipment and method for optical element
JPWO2010095402A1 (en) Manufacturing method of optical member with surface shape and manufacturing apparatus thereof
CN210121948U (en) Movable cavity mold with hydraulic device
JP5114272B2 (en) Pressure molding apparatus and pressure molding method
KR101819916B1 (en) Manufacturing method of reflective sheet forming layer
CN218139549U (en) High-temperature injection molding light guide plate forming mold device
ITRM20110218A1 (en) PROCEDURE FOR PRECISION MOLDING OF LARGE SIZE GLASS MANUFACTURED PRODUCTS, IN LICENSES IN PARTICULAR
TWM380223U (en) Alternate-type material-feeding press-forming machine
JP2010089293A (en) Molding method
JP3875326B2 (en) Injection molding method and optical component
JP6016523B2 (en) Plastic optical component press mold and plastic optical component manufacturing method
CN102069587A (en) Manufacturing method of plastic plate with surface microstructure
CN102884013A (en) Optical element manufacturing method and optical element manufacturing device
CN1789181A (en) Continuous glass mold forming system
CN206188641U (en) Continuous forming device&#39;s of three -dimensional glass of model cooling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561120

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881901

Country of ref document: EP

Kind code of ref document: A1