WO2009101890A1 - Injection molding method - Google Patents

Injection molding method Download PDF

Info

Publication number
WO2009101890A1
WO2009101890A1 PCT/JP2009/051942 JP2009051942W WO2009101890A1 WO 2009101890 A1 WO2009101890 A1 WO 2009101890A1 JP 2009051942 W JP2009051942 W JP 2009051942W WO 2009101890 A1 WO2009101890 A1 WO 2009101890A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
movable
fixed
mold
resin
Prior art date
Application number
PCT/JP2009/051942
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuma Kurihara
Takashi Nakano
Junji Tominaga
Yuji Saito
Hirohisa Kato
Shogo Makihara
Norito Soma
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Itoh Optical Industrial Co., Ltd.
Tokai Seimitsu Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Itoh Optical Industrial Co., Ltd., Tokai Seimitsu Industrial Co., Ltd. filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2009101890A1 publication Critical patent/WO2009101890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • B29C45/372Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings provided with means for marking or patterning, e.g. numbering articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7393Heating or cooling of the mould alternately heating and cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C45/7312Construction of heating or cooling fluid flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Definitions

  • the present invention relates to an injection molding method for a molded product such as an optical element or an optical component having a nanometer-sized structure (hereinafter referred to as “nanostructure”) having an aspect ratio of 1 or more and 10 or less.
  • nanostructure a nanometer-sized structure
  • the structure can be reduced by press molding, injection molding, cast molding, etc., using a mold having a nanostructure with an aspect ratio of 1 or more on the surface. It is expected to be realized at a cost.
  • Patent Documents 5 and 6 injection molding of a molded product such as an optical disk substrate using a mold having a low aspect ratio nanostructure with an aspect ratio of 0.5 or less, This can be realized by optimizing the resin temperature, optimizing the mold temperature, controlling the release timing by air, and the like (see Patent Document 5 and Patent Document 6).
  • Patent Documents 5 and 6 As in the conventional example, it has been possible to injection-mold a molded product using a mold having a low aspect ratio nanostructure with an aspect ratio of 0.5 or less (Patent Documents 5 and 6). reference).
  • the resin is not sufficiently filled to the deep part of the nanostructure mold with a high aspect ratio, and the molded product has a low aspect ratio nanostructure on the surface. Therefore, there is a problem that good optical characteristics cannot be obtained.
  • the high aspect ratio structure is filled with resin or the like in detail, so that there is a problem that release is impossible.
  • the present invention aims to solve the above problems, and enables filling of the resin up to the deep part of the nanostructure with respect to the mold (fixed side core and movable side core) having a high aspect ratio nanostructure, Furthermore, an object of the present invention is to realize an injection molding method for manufacturing a molded article of an antireflection nanostructure having an aspect ratio of 1 or more while maintaining high productivity without using a release agent or the like.
  • the present invention provides a fixed-side core and a movable-side core provided with a nanometer-sized structure on the surface, heating means for heating the surfaces of the fixed-side core and the movable-side core, and the fixed-side
  • the surface of the mold is heated to a temperature higher than the softening temperature of the resin to be molded, and then the fixed side core and the movable side core are clamped, and after the mold clamping, the resin is placed in the fixed side core and the movable side core.
  • the mold After filling, holding the filled resin while cooling the fixed side core and the movable side core to a temperature lower than the softening temperature of the resin, holding the resin molded product cooled at the low temperature, The fixed core and the movable core The mold is opened to provide an injection molding method of the molded article having a structure of nanometer size on a surface characterized by.
  • the temperature higher than the softening temperature of the resin is preferably lower than the decomposition temperature of the resin.
  • the temperature lower than the softening temperature of the resin is preferably 60 ° C. lower than the softening temperature of the resin.
  • the average pitch of the nanometer-sized structures formed on the surfaces of the fixed core and the movable core is 30 nm to 1000 nm, and the aspect ratio is preferably 1 or more.
  • the injection molding method according to the present invention has the following effects. (1) The surfaces of the fixed core and the movable core are heated to a temperature higher than the softening temperature of the resin to be molded, the fixed core and the movable core are clamped, filled with resin, and fixed after filling. Holding the filled resin while cooling the side core and the movable side core to a temperature lower than the softening temperature of the resin, holding the resin molded product in a cooled state, and then opening the mold, the filling rate and releasability are improved, It is possible to mold a molded product having a nanostructure with an aspect ratio of 1 or more on the surface and having good optical characteristics.
  • the fixed side mold and the movable side mold are partially made of a material having a lower thermal conductivity than the metal material forming the fixed side mold and the movable side mold (low thermal conductivity material).
  • the heat capacity of the surface side of the fixed side core and the surface side of the movable side core can be reduced, and when heat energy is applied, the surface side of the fixed side core and The surface of the movable core can be heated at a high speed, and molding can be performed in a short time.
  • molding cycle can be shortened and productivity of shaping
  • a nanostructure that imparts a high-precision antireflection function even on a large area, curved surface, and micrometer-sized uneven surface can be formed in a high molding cycle (one molding cycle can be shortened). Meaning that it is possible to repeatedly perform a number of molding cycles in a certain time.), And is extremely useful for an optical element having an antireflection structure and an injection molding method of an optical component.
  • FIG. 1 It is a figure which shows the structure of the injection molding apparatus for enforcing the injection molding method which concerns on this invention, (a) provides a heating means inside a metal mold
  • the injection molding apparatus 20 includes a fixed-side mold 21 and a movable-side mold 22 that are a pair facing each other.
  • the fixed-side mold 21 and the movable-side mold 22 include a fixed-side core 4 and a movable-side core 5, and further, a fixed-side base mold so as to surround the fixed-side core 4 and the movable-side core 5 from around.
  • a group 23 and a movable base mold group 24 are provided.
  • Nanostructures are formed on the surface 6 of the fixed core 4 and the surface of the movable core 5 facing each other.
  • This nanostructure has an irregular surface configuration with an aspect ratio of 1 or more, and the surface of the resin filled between the fixed core 4 and the movable core 5 is molded, and the aspect ratio is 1 or more. It forms a molded article such as an optical element or optical component having an uneven surface of nanostructure.
  • the average pitch of such nanostructures is 30 nm to 1000 nm.
  • the fixed-side base mold group 23 includes one or a plurality of fixed-side base molds 2, and a resin introduction path 1 is formed in the fixed-side base mold 2.
  • the movable side base mold group 24 includes one or a plurality of movable side base molds 2.
  • the movable base mold 3 is formed with a cavity 14 communicating with the resin introduction path 1 and the molding space of the fixed core 4 and the movable core 5.
  • the cavity 14 may be provided not in the movable side base mold 3 but in the fixed side base mold 2, or may be provided in both the fixed side base mold 2 and the movable side base mold 3.
  • An in-cavity vacuum exhaust passage 12 communicating with the cavity 14 is formed in the movable-side base mold 3.
  • the cavity 14 may be provided in the fixed base mold 2.
  • Extrusion pins 10 and 11 are provided so that the front end faces the surface of the fixed core 4 so as to be able to slide through the movable base mold 3 and the movable core 5.
  • the projecting pins 10 and 11 are used by abutting against the stationary core 4 when the stationary mold 21 and the movable mold 22 are opened.
  • the fixed-side base mold group 23 and the movable-side mold group 22 are provided with heating means 15A and 15B, temperature sensors and cooling means 8 and 9, respectively.
  • the heating means 15A and 15B heat the surfaces of the fixed side core 4 and the movable side core 5, and the temperature sensor measures the temperature of the surfaces of the fixed side core 4 and the movable side core 5, and the cooling means. 8 and 9 cool the fixed core 4 and the movable core 5.
  • the heating means 15A and 15B have heaters such as heaters embedded in the fixed base mold 2 and the movable base mold 3, respectively. It is good also as a structure.
  • the heating means 15A and 15B are formed on the surfaces of the fixed-side base mold 2 and the movable-side base mold 3, for example, infrared rays, electromagnetic waves, laser beams, etc.
  • the heater may be embedded.
  • heaters such as infrared rays, electromagnetic waves, and laser beams are provided as the heating means 15A and 15B
  • the opposed fixed-side molds face each other. 21 and the movable mold 22 approach each other.
  • multiple reflections such as infrared rays, electromagnetic waves, and laser beams occur between the fixed mold 21 and the movable mold 22, and the surfaces 6 and 7 of the fixed core 4 and the movable core 5 are uniformly and efficiently heated. This produces an effect (see FIG. 4B).
  • the reflecting mirror 13 when the reflecting mirror 13 is provided around the heater using infrared rays in the heating means 15A and 15B, the heating effect is further increased.
  • the reflecting mirror 13 has a substantially V-shaped cross-section and is embedded so as to be in contact with the recesses of the substantially V-shaped cross sections of the fixed-side base mold 2 and the movable-side base mold 3.
  • the fixed mold 21 and the movable mold 22 are partially embedded with a material having a lower thermal conductivity (low thermal conductivity material) than the metal material forming the fixed mold 21 and the movable mold 22.
  • a low thermal conductivity material is partially embedded in all or any of the fixed side base mold 2, the movable side base mold 3, the fixed side core 4, and the movable side core 5.
  • the heat capacities of the fixed core 4 and the movable core 5 are reduced, and between the fixed base mold 2 and the fixed core 4 and between the movable base mold 3 and the movable core 5.
  • a low thermal conductivity material is embedded to prevent heat dissipation from the fixed side core 4 and the movable side core 5 due to heat conduction.
  • the low thermal conductivity material is embedded in the fixed base mold 2 and the movable base mold 3 so that the fixed core 4 and the movable core 5 are surrounded by the embedded low thermal conductivity material. Is preferred.
  • the heat capacities of the fixed side core 4 and the movable side core 5 are reduced, and further, between the fixed side base mold 2 and the fixed side core 4, and By embedding a low thermal conductivity material between the movable base mold 3 and the movable core 5, heat conduction (dissipation) to the outside of the fixed core 4 and the movable core 5 is reduced. That is, the fixed-side core 4 and the movable-side core 5 have a low heat capacity due to the low thermal conductivity material embedded in them, and the fixed-side base mold 2 and the movable-side base mold 3 are embedded in them. The heat capacity is reduced by the low thermal conductivity material, and heat conduction (dissipation) from the fixed core 4 and the movable core 5 can be suppressed.
  • the fixed side core 4 and the movable side core 5 having nanostructures on their surfaces are embedded with a low thermal conductivity material in themselves, so that the volume of the original material portion of the fixed side core 4 and the movable side core 5 is reduced. Since the heat capacity is reduced because it becomes smaller, the fixed base mold 2 and the movable base mold 3 are similarly reduced in volume and heat capacity due to the low thermal conductivity material embedded in them.
  • the fixed side core 4 and the movable side core 5 Since the low thermal conductivity material is embedded between the side base mold 2 and the fixed side core 4 and between the movable side base mold 3 and the movable side core 5, the fixed side core 4 and the movable side core Since the loss due to heat conduction (dissipation) from 5 to the fixed base mold 2 and the movable base mold 3 side is reduced, the fixed core 4 and the movable core 5 eventually gave the same thermal energy. Place A, can be heated to a high speed, I am possible to short molding.
  • the low thermal conductivity material is a material having a lower thermal conductivity than the metal material forming the fixed side core, the movable side core, the fixed side base mold, and the movable side base mold.
  • Materials, organic materials, etc. are effective. Specifically, glass, quartz, alumina, forsterite, zirconia, zircon, mullite, cordierite, silicon nitride, silicon carbide and the like are effective.
  • the cooling means includes a back surface of the fixed side core 4 and the movable side core 5 (surfaces on which the fixed side and the movable side face each other).
  • the cooling medium flow paths 8 and 9 are formed on the opposite surface), and the cooling medium flow is circulated through the cooling medium flow paths 8 and 9 by a pump provided outside.
  • the cooling medium water, alcohol, or a gas such as carbon dioxide, air, or nitrogen is useful.
  • the cooling means flows the cooling medium flow paths 8 and 9 formed on the back surfaces of the fixed side core 4 and the movable side core 5 to cool the molded product in which the nanostructure is formed. Since the surface portion can be rapidly cooled, a short molding cycle can be realized.
  • the cooling medium water, alcohol, or a gas such as carbon dioxide, air, or nitrogen is useful.
  • the fixed mold 21 and the movable mold 22 are partially made of a material having a lower thermal conductivity (low thermal conductivity material) than the metal material forming the fixed mold 21 and the movable mold 22. Is embedded. Specifically, all of the fixed-side base mold 2, the movable-side base mold 3, the fixed-side core 4 and the movable-side core 5 configured in the fixed-side mold 21 and the movable-side mold 22 or the For any of these, the low thermal conductivity material is embedded so as to surround the fixed side core 4 and the movable side core 5 partially or with a low thermal conductivity material, and is configured to prevent dissipation due to thermal conduction. In particular, when the low thermal conductivity material is embedded in the fixed side core 4 and the movable side core 5, the overall heat capacity is smaller than when the low thermal conductivity material is not embedded.
  • the surface 6 side of the fixed side core 4 and the surface 7 side of the movable side core 5 are absorbed when the same heat energy is absorbed. Cooling at high speed enables molding in a short time. Similarly to the heating means, the cooling means can be cooled at a high speed and can be molded in a short time when the same thermal energy is applied.
  • the cooling means includes cooling medium flow paths 8 and 9 formed on the back surfaces of the fixed side core 4 and the movable side core 5, respectively.
  • a configuration in which a cooling medium is allowed to flow toward the periphery of the cavity 14 may be added. That is, as shown in FIGS. 9A and 9B, the cooling medium may be introduced into the cooling medium passage 25 from the cooling medium introduction port 16 and discharged from the cooling medium discharge port 17 through the cooling medium passage 25. .
  • the cooling medium passage 25 is disposed around the cavity 14, so that the cooling medium flows around the cavity 14.
  • a wall of about 10 ⁇ m to 500 ⁇ m is formed between the cavity 14 and the cooling medium passage 25.
  • the resin is filled from the resin introduction path 1 through the cavity 14.
  • the fixed base mold is set at a temperature higher than the softening temperature of the resin.
  • the viscosity of the resin increases in relation to the flow length and flow velocity, and a solidified layer is formed on the surface. Fill while forming.
  • the solidified layer on the resin surface is caused, the nanostructure is insufficiently filled with respect to the fixed core 4 and the movable core 5 formed on the surface, and when the aspect ratio becomes 1 or more, the nanostructure is formed. Insufficient transfer of the structure (molded product that is not sufficiently filled in the irregularities of the nanostructure and does not correspond precisely to the irregularities of the nanostructure) occurs.
  • the surface temperatures of the fixed core 4 and the movable core 5 are set to a temperature T1 that is higher than the softening temperature of the resin and lower than the temperature at which the resin is decomposed, and the filling speed is 30 mm / s or less.
  • the resin is not cooled to a temperature lower than the softening temperature, and formation of a solidified layer can be prevented.
  • the filling speed is set to 30 mm / s or less, it becomes possible to suppress the influence of the stay gas due to the nanostructure of the fixed side core 4 and the movable side core 5.
  • the resin when the resin is filled at a speed of 30 mm / s or more, the resin has a large force in the flow rate direction.
  • the resin flows on the surface of the core having a nanostructure formed on the surface, the resin does not fill the details of the nanostructure, and the resin flows only near the top of the nanostructure.
  • the bottom of the nanostructure is capped with a filled resin, and residual gas accumulates. Therefore, the residual gas capped with the resin is affected, and the filling rate of the resin into the nanostructure is low.
  • the filling speed of 30 mm / s or less as the filling speed becomes slower, the force in the flow direction decreases, and the resin flows in the direction of divergence from the flow direction.
  • the bottom and top of the nanostructure are uniformly filled. It is discharged out of the tee 14. Therefore, the influence of the gas remaining in the nanostructure is reduced, so that the nanostructure having an aspect ratio of 1 or more can be sufficiently filled. Therefore, since filling of a molded product having a nanostructure having a high aspect ratio can be realized, a molded product having good optical characteristics can be realized.
  • Cooling process After the resin is filled, the fixed core 4 and the movable core 5 are kept in the mold-clamped state, and the resin is cooled to a temperature T2 lower than the softening temperature of the resin while maintaining the filling pressure to the resin (holding pressure). Cool the molded resin product.
  • the mold temperature is constant, and when the nanostructure has a high aspect ratio structure, a liquid or monomolecular release film is applied to the surfaces of the fixed core 4 and the movable core 5. Otherwise, it cannot be released.
  • the surface temperature of the fixed core 4 and the movable core 5 can be heated and cooled during molding, so that the surface portion of the molded product with the nanostructure formed on the surface can be obtained. Since the shrinkage of the resin can be made larger than usual, it is possible to easily release the nanostructure having an aspect ratio of 1 or more.
  • Mold opening process Finally, after the fixed side core 4 and the movable side core 5 are cooled, the protruding pins 10 and 11 are abutted against the fixed side core 4 to open the fixed side mold 21 and the movable side mold 22, and the aspect A molded product in which a nanostructure having a ratio of 1 or more is formed is taken out.
  • the fixed-side mold 21 and the movable-side mold 22 are partially made of a material having a lower thermal conductivity (low thermal conductivity material) than the metal material forming the fixed-side mold 21 and the movable-side mold 22. (For example, embedded).
  • the low thermal conductivity material is embedded so as to surround the fixed side core 4 and the movable side core 5 partially or with a low thermal conductivity material, and is configured to prevent dissipation due to thermal conduction, and fixed
  • the low thermal conductivity material is embedded in the side core 4 and the movable side core 5, the overall heat capacity is smaller than when the low thermal conductivity material is not embedded.
  • the surface 6 side of the fixed side core 4 and the surface 7 side of the movable side core 5 are absorbed when the same heat energy is absorbed. Cooling at high speed enables molding in a short time. Similarly to the heating means, the cooling means can be cooled at a high speed and can be molded in a short time when the same thermal energy is applied.
  • the aspect ratio is 1 or more according to a series of molding steps shown in FIG. 4 using the fixed side core 4 and the movable side core 5 having nanostructures with an aspect ratio of 1 or more and 10 or less on the surface. Create a molded product of optical elements with nanostructures on the surface.
  • the fixed core 4 and the movable core 5 are nanostructures having an aspect ratio of 1.5, and the pitch of the nanostructures is about 100 nm and the depth is about 200 nm.
  • Table 1 shows typical molding conditions in the injection molding method according to the present invention.
  • the resin used for the injection molding is Acrypet Grade VH (hereinafter referred to as “Acrypet VH”), a product manufactured by Mitsubishi Rayon. Table 1 shows the molding conditions.
  • the heating and cooling of the mold temperature (referred to as “the mold temperature of the core surface”) on the surfaces of the fixed core 4 and the movable core 5 to be heated and cooled in the molding step are as shown in the flow diagram of FIG. To do.
  • the core surface is heated to a set temperature T1 before filling with resin, and then the base mold is clamped.
  • the resin is filled. Thereafter, the mold clamping state is maintained, the filled resin is held (meaning to maintain the pressure with respect to the filled resin), and the fixed core 4 and the movable core 5 are set to a predetermined temperature lower than the softening temperature of the resin. While cooling to temperature T2, this temperature is maintained and the formed resin molded product is cooled. After such a resin molded product is cooled, the mold is opened and the molded product is taken out.
  • the temperature of the fixed base mold 2 and the movable base mold 3 is set to 95 ° C., which is a normal molding condition.
  • the resin is filled after the surface temperature of the fixed core 4 and the movable core 5 before filling the resin is raised to a softening temperature of 107 ° C. or higher.
  • the surface temperatures of the fixed core 4 and the movable core 5 are cooled to a predetermined temperature lower than the softening temperature 107 ° C. of the resin.
  • the present inventor empirically implements the embodiment described above, and the effects of the temperature conditions of the fixed core 4 and the movable core 5 on the transfer characteristics (referring to the state of the filling rate) are described below. We examined as follows.
  • FIG. 5 shows a graph of the surface temperature of the fixed core 4 and the movable core 5 (“mold temperature of the core surface” in FIG. 5) and the filling rate (also referred to as “transfer rate”).
  • the filling rate refers to the rate at which the resin fills the uneven space in the nanostructure.
  • the filling rate is improved by the increase of the mold temperature on the core surface, which is improved. Furthermore, when the mold temperature on the core surface is set to a temperature higher than the softening temperature of the resin, the filling rate is rapidly improved.
  • the filling rate can be dramatically improved by maintaining the pressure without increasing the pressure.
  • the filling rate increased from the softening temperature of the resin to around + 30 ° C., and good transfer characteristics were exhibited.
  • the mold-clamping state of the core surface is set higher than the softening temperature of the resin while maintaining the mold-clamping state of the fixed core 4 and the movable core 5 and holding (holding pressure) the filling pressure to the resin.
  • the temperature is set lower than the decomposition temperature and the resin is filled and then cooled to a predetermined temperature lower than the softening temperature of the resin
  • the mold temperature on the core surface is lower than the softening temperature of the resin (normal molding)
  • FIG. 6 shows the appearance inspection result of the molded product when it is set to “Condition” and cooled after filling with resin.
  • FIG. 6 shows the results when using Acrypet VH (softening temperature is approximately 107 ° C.). From FIG. 6, when the mold temperature on the core surface before resin filling is lower than the softening temperature of the resin, the nanostructure is 40 ° C. or higher (in this case, “resin softening temperature ⁇ 67 ° C.”). Although the resin shrinkage of the portion was small, it was impossible to release the mold, but it was confirmed that the mold could be released at a temperature lower than 40 ° C. Eventually, it was confirmed that the cooling temperature is preferably 67 ° C. lower than the softening temperature of the resin.
  • the mold temperature on the core surface is set to a temperature higher than the softening temperature of the resin before filling the resin and the core surface is cooled after filling the resin, the shrinkage of the resin in the nanostructure portion increases. It was confirmed that good release characteristics were obtained.
  • the core surface mold temperature is set to a temperature higher than the softening temperature of the resin, the resin is filled, and then cooled to a temperature lower than the softening temperature of the resin.
  • the present invention is useful as an injection molding method of a high aspect ratio nanostructure having an aspect ratio of 1 or more.
  • the heating means is important.
  • the heating means 15A and 15B as shown in FIGS. 1B and 2B, the surfaces of the fixed base mold 2 and the movable base mold 3 that face the infrared lamp main body, respectively. It was set as the structure embedded in.
  • the multiple reflection between the fixed mold 21 and the movable mold 22 occurs when the fixed mold 21 and the movable mold 22 facing each other approach each other during the mold clamping operation.
  • the surfaces of the fixed side core 4 and the movable side core 5 can be heated from room temperature to 120 ° C., which is higher than the softening temperature of the resin.
  • the temperature of the surface of the core is 120 ° C. which is higher than the softening temperature of the resin from room temperature in 10 seconds. It was confirmed that the temperature could be increased up to (see the fourth column from the top of the heating modes in the table of FIG. 7). Therefore, it has been confirmed that the use of such a heating means is effective in performing high-throughput cycle molding.
  • Modification 1 will be described as another embodiment of the heating means 15A and 15B.
  • this modification 1 has a configuration in which a heater is provided inside the fixed side base mold 2 and the movable side base mold 3, and the heater is There is a configuration in which a heater (electric heating rod heater) is embedded.
  • a heater electric heating rod heater
  • the arrival time up to 120 ° C. is 5 minutes as described above, and the temperature of the entire fixed side core 4 and the movable side core 5 with the nanostructures formed on the surface is increased.
  • the time required to reach the mold temperature distribution on the core surface was 6 minutes (see the first column from the top in the heating format in the table of FIG. 7).
  • Modification 2 will be described as another embodiment of the heating means 15A and 15B.
  • this modification 2 has a configuration in which a heater is provided inside the fixed side base mold 2 and the movable side base mold 3, and the heater is an infrared ray.
  • a lamp is embedded.
  • the mold temperature on the core surface was raised from room temperature to 120 ° C., which is higher than the softening temperature of the resin.
  • this heating means a rapid temperature increase is possible as compared with a heating means using a heater, and the time required to reach a uniform mold temperature distribution on the core surface as a whole is about 1 minute 30 seconds. (Refer to the second column from the top among the heating modes in the table of FIG. 7).
  • an infrared lamp is disposed on the side of the fixed mold 21 and the movable mold 22 and heated from the side surfaces of the fixed base mold 2 and the movable base mold 3.
  • the surface of the fixed side core 4 and the movable side core 5 was heated from room temperature to 120 ° C., which is higher than the softening temperature of the resin.
  • the time required to reach a uniform core surface mold temperature distribution was about 1 minute 30 seconds (see the third column from the top of the heating formats in the table of FIG. 7). ).
  • the four heating means described above that is, the configuration in which the infrared lamp main body is embedded in the respective surfaces of the fixed base mold 2 and the movable base mold 3 facing each other, and the heating means of the first to third modifications, Any of them can be applied as a heating means in the present invention.
  • the cooling means flows the cooling medium flow paths 8 and 9 formed on the back surfaces of the fixed side core 4 and the movable side core 5 to cool the molded product in which the nanostructure is formed. It was confirmed that the surface portion can be rapidly cooled and a short molding cycle can be realized.
  • cooling medium water, alcohol, carbon dioxide, air, nitrogen and other gases were examined and confirmed to be useful in any case.
  • the fixed side base mold 2 and the movable side base mold are used. It was found that the surface portions of the fixed-side core 4 and the movable-side core 5 can be cooled approximately five times faster than when a configuration in which a flow path for cooling is formed inside 3 is adopted.
  • the fixed-side mold 21 and the movable-side mold 22 are partially made of a material having a lower thermal conductivity (low thermal conductivity) than the metal material forming the fixed-side mold 21 and the movable-side mold 22. Material) is embedded.
  • the low thermal conductivity material is embedded so as to surround the fixed side core 4 and the movable side core 5 partially or with a low thermal conductivity material, and is configured to prevent dissipation due to thermal conduction, and fixed
  • the low thermal conductivity material is embedded in the side core 4 and the movable side core 5, the overall heat capacity is smaller than when the low thermal conductivity material is not embedded.
  • the surface 6 side of the fixed-side core 4 and the surface 7 side of the movable-side core 5 Cooling at high speed enables molding in a short time.
  • the cooling means can be cooled at a high speed and can be molded in a short time when the same thermal energy is applied.
  • FIG. 8 shows optical characteristics of an antireflection structure, which is an optical element having a nanostructure, obtained by the conventional injection molding method and the injection molding method of the present invention.
  • the anti-reflection effect due to the nanostructure is such that the higher the aspect ratio structure, the lower the reflectivity.
  • the filling rate and releasability of the nanostructures are improved, and a molded product having a high aspect ratio structure can be produced, which is better than the conventional molding method. A good antireflection effect could be obtained.
  • a highly accurate optical element such as an antireflection structure, an optical component, etc. can be formed even on a large surface and a curved surface, so that an antireflection effect is required. It can be widely applied to optical elements such as lenses, prisms, mirrors, and lens barrels, optical components, and the like.
  • the injection molding method according to the present invention includes an optical pickup optical system of an optical reproduction recording apparatus in which these optical elements are used, a photographing optical system such as a digital still camera, a projection system and an illumination system of a projector, an optical scanning optical system, It is suitable for manufacturing fields such as displays, panels, IU filters, and LEDs.

Abstract

A molded product of an antireflection nanostructure having an aspect ratio of 1 or above is produced while a high productivity is maintained without using a mold release agent or the like by making it possible to fill a die having a nanostructure of high aspect ratio with resin up to the deep part of the nanostructure. After heating the surfaces of a core (4) on the fixed side and a core (5) on the movable side to a temperature higher than the softening temperature of resin being molded, the core (4) on the fixed side and the core (5) on the movable side are mold-clamped, the core (4) on the fixed side and the core (5) on the movable side are filled with resin following the mold clamping, the pressure of the filling resin is held while the core (4) on the fixed side and the core (5) on the movable side are cooled down to a temperature lower than the softening temperature of the resin, the resin molding is held at a low temperature and then the core (4) on the fixed side and the core (5) on the movable side are mold-opened, thus injection molding a molded product having a structure of nanometer size on the surface thereof.

Description

射出成形方法Injection molding method
 本発明は、アスペクト比が、1以上であって10以下のナノメータサイズの構造物(以下、「ナノ構造物」という。)を備えた光学素子、光学部品等の成型品の射出成形方法に関する。 The present invention relates to an injection molding method for a molded product such as an optical element or an optical component having a nanometer-sized structure (hereinafter referred to as “nanostructure”) having an aspect ratio of 1 or more and 10 or less.
 従来、ガラスや樹脂等から成る光学素子において、表面反射による戻り光を減少させ、且つ透過光を増加させるために、表面処理が行われている。この表面処理の具体的な方法として、光学素子表面に微細、且つ緻密な凹凸形状を形成する方法が知られている。 Conventionally, in an optical element made of glass, resin, or the like, surface treatment is performed in order to reduce return light due to surface reflection and increase transmitted light. As a specific method of this surface treatment, a method of forming a fine and dense uneven shape on the surface of the optical element is known.
 このように光学素子表面に周期的な凹凸形状を設けた場合、光は、光学素子表面を透過するときに回折し、透過光の直進成分が大幅に減少するが、光学素子表面に形成された凹凸形状のピッチが透過する光が波長よりも短い凹凸形状の短形としたときには、光は回折しないために、そのピッチや深さ等に対応する単一波長の光に対して有効な反射防止効果を得ることができる。 When a periodic uneven shape is provided on the surface of the optical element in this way, the light is diffracted when passing through the surface of the optical element, and the linear component of the transmitted light is greatly reduced, but it is formed on the surface of the optical element. When the light transmitted through the concavo-convex pitch is a short concavo-convex shape that is shorter than the wavelength, the light is not diffracted, so effective antireflection for light of a single wavelength corresponding to the pitch, depth, etc. An effect can be obtained.
 さらに、凹凸形状を短形とするのではなく、山と谷、すなわち光学素子材料側と空気側の体積比が連続的に変化するような、いわゆる錐形状(錐形状のパターン)とすることにより、広い波長域を有する光に対しても反射防止効果を得ることができることが知られている(例えば、特許文献1、特許文献2参照)。 Furthermore, instead of shortening the concave and convex shape, by forming a so-called cone shape (cone-shaped pattern) in which the volume ratio between the crest and trough, that is, the optical element material side and the air side, changes continuously. It is known that an antireflection effect can be obtained even for light having a wide wavelength range (see, for example, Patent Document 1 and Patent Document 2).
 このような広波長域に対して反射防止する構造を実現するためには、波長以下の微細なパターンで、且つかつアスペクト比が1以上のナノ構造物が必要とされることが知られている。 In order to realize such a structure for preventing reflection with respect to a wide wavelength range, it is known that a nanostructure having a fine pattern of a wavelength or less and an aspect ratio of 1 or more is required. .
 そのため、これら反射防止する構造を低コストで実現するためには、アスペクト比1以上のナノ構造物が表面に構成された金型を用いて、プレス成形、射出成形、キャスト成形等することにより低コストで実現することが期待されている。 Therefore, in order to realize these anti-reflection structures at low cost, the structure can be reduced by press molding, injection molding, cast molding, etc., using a mold having a nanostructure with an aspect ratio of 1 or more on the surface. It is expected to be realized at a cost.
 また、微細構造物が構成された光学部品として、高密度化した光ディスク基板等がある。例えば、ブルーレイディスクでは、最短ピット幅は150nmであり、そのときのピット深さは、トラッキング制御の為に、(λ/4n~λ/8n:λ=405,n=1.5)に設計され、67.5nm~33.75nmであり、ナノ構造物のアスペクト比が0.45~0.22程度の低アスペクト比のナノ構造物を金型に利用して、低コストに射出成形することを実現している(特許文献3、特許文献4参照)。 Also, as an optical component having a fine structure, there is a high-density optical disk substrate or the like. For example, in a Blu-ray disc, the shortest pit width is 150 nm, and the pit depth at that time is designed to be (λ / 4n to λ / 8n: λ = 405, n = 1.5) for tracking control. It is possible to perform injection molding at a low cost by using a nanostructure having a low aspect ratio of about 0.45 to 0.22 having a nanostructure aspect ratio of about 0.45 to 0.22 that is 67.5 nm to 33.75 nm. (Refer to Patent Document 3 and Patent Document 4).
 光ディスク基板のような成型物を、アスペクト比が0.5以下の低アスペクト比ナノ構造を持つ金型を利用して、射出成形することは、特許文献5、6に記載されているように、樹脂温度の最適化、金型温度の最適化、エアーによる離型のタイミング等を制御することにより、実現可能である(特許文献5、特許文献6参照)。 As described in Patent Documents 5 and 6, injection molding of a molded product such as an optical disk substrate using a mold having a low aspect ratio nanostructure with an aspect ratio of 0.5 or less, This can be realized by optimizing the resin temperature, optimizing the mold temperature, controlling the release timing by air, and the like (see Patent Document 5 and Patent Document 6).
特開2001-272505号公報JP 2001-272505 A 特開2006-243633号公報JP 2006-243633 A 特開平8-281692号公報Japanese Patent Laid-Open No. 8-281692 特開平11-314256号公報JP 11-31256 A 特開平8-197593号公報JP-A-8-197593 特開平11-45463号公報JP-A-11-45463
 上記従来例のように、アスペクト比が0.5以下の低アスペクト比ナノ構造を持つ金型を利用して、成型品を射出成形することは、従来も可能であった(特許文献5、6参照)。 As in the conventional example, it has been possible to injection-mold a molded product using a mold having a low aspect ratio nanostructure with an aspect ratio of 0.5 or less (Patent Documents 5 and 6). reference).
 しかしながら、反射防止機能を持つ光学素子について、より低反射率特性でかつ高透過率特性の良好な光学特性を得るためには、アスペクト比が1以上のナノ構造金型を用いて、成形を行う必要がある。 However, for an optical element having an antireflection function, in order to obtain an optical characteristic having a low reflectance characteristic and a high transmittance characteristic, molding is performed using a nanostructure mold having an aspect ratio of 1 or more. There is a need.
 そのため、高アスペクト比構造の金型に、光ディスク成形法を用いた場合には、高アスペクト比のナノ構造金型の深部まで樹脂が十分充填されず、低アスペクト比ナノ構造を表面にもつ成型品になるため、良好な光学特性が得られない、という問題があった。 Therefore, when the optical disk molding method is used for a mold with a high aspect ratio structure, the resin is not sufficiently filled to the deep part of the nanostructure mold with a high aspect ratio, and the molded product has a low aspect ratio nanostructure on the surface. Therefore, there is a problem that good optical characteristics cannot be obtained.
 また、仮に高アスペクト比の構造の転写が実現できたとしても、高アスペクト比の構造物に樹脂等が細部まで充填することから、離型ができなくなる問題も発生している。 Also, even if transfer of a high aspect ratio structure can be realized, the high aspect ratio structure is filled with resin or the like in detail, so that there is a problem that release is impossible.
 さらに、高アスペクト比の構造物に樹脂が細部まで充填されても、離型する技術として、金型表面に離型剤を塗布し離型を実現することなどが開発されているが、離型剤の耐用回数が少なく、生産性が維持できない等の問題がある。 Furthermore, even if a resin with a high aspect ratio is filled with resin, it has been developed to release the mold by applying a release agent to the mold surface. There is a problem that the service life of the agent is small and productivity cannot be maintained.
 本発明は、上記問題を解決することを目的とし、高アスペクト比のナノ構造を持つ金型(固定側コアと可動側コア)に対して、ナノ構造物の深部まで樹脂の充填を可能にし、さらに、離型剤等を使用しないで、高生産性を維持しアスペクト比1以上の反射防止ナノ構造物の成型品を製造する射出成形方法を実現することを課題とする。 The present invention aims to solve the above problems, and enables filling of the resin up to the deep part of the nanostructure with respect to the mold (fixed side core and movable side core) having a high aspect ratio nanostructure, Furthermore, an object of the present invention is to realize an injection molding method for manufacturing a molded article of an antireflection nanostructure having an aspect ratio of 1 or more while maintaining high productivity without using a release agent or the like.
 本発明は上記課題を解決するために、ナノメータサイズの構造物を表面に備えた固定側コアと可動側コアと、該固定側コアと可動側コアの表面を加熱する加熱手段と、該固定側コアと可動側コアを冷却する冷却手段とを備えた射出成形装置を使用し、表面にナノメータサイズの構造物を有する成型品を成形する射出成形方法であって、前記固定側コアと可動側コアの表面を、成形されるべき樹脂の軟化温度より高い温度に加熱してから前記固定側コアと可動側コアを型締めし、該型締め後に、前記固定側コアと可動側コア内に樹脂を充填し、該充填後に、前記固定側コアと可動側コアを前記樹脂の軟化温度より低い温度まで冷却しながら充填された樹脂を保圧し、該低い温度で樹脂成型品を冷却保持し、その後、前記固定側コアと可動側コアを型開きすることを特徴とするナノメータサイズの構造物を表面に有する成型品の射出成形法を提供する。 In order to solve the above problems, the present invention provides a fixed-side core and a movable-side core provided with a nanometer-sized structure on the surface, heating means for heating the surfaces of the fixed-side core and the movable-side core, and the fixed-side An injection molding method for molding a molded product having a nanometer-sized structure on the surface using an injection molding apparatus comprising a core and a cooling means for cooling the movable core, wherein the fixed core and the movable core The surface of the mold is heated to a temperature higher than the softening temperature of the resin to be molded, and then the fixed side core and the movable side core are clamped, and after the mold clamping, the resin is placed in the fixed side core and the movable side core. After filling, holding the filled resin while cooling the fixed side core and the movable side core to a temperature lower than the softening temperature of the resin, holding the resin molded product cooled at the low temperature, The fixed core and the movable core The mold is opened to provide an injection molding method of the molded article having a structure of nanometer size on a surface characterized by.
 前記樹脂の軟化温度より高い温度は、樹脂の分解温度より低い温度であることが好ましい。 The temperature higher than the softening temperature of the resin is preferably lower than the decomposition temperature of the resin.
 前記樹脂の軟化温度より低い温度は、樹脂の軟化温度より60℃低い温度であることが好ましい。 The temperature lower than the softening temperature of the resin is preferably 60 ° C. lower than the softening temperature of the resin.
 前記固定側コアと可動側コアの表面に形成されたナノメータサイズの構造物の平均ピッチは、30nm~1000nmであり、アスペクト比1以上であることが好ましい。 The average pitch of the nanometer-sized structures formed on the surfaces of the fixed core and the movable core is 30 nm to 1000 nm, and the aspect ratio is preferably 1 or more.
 本発明に係る射出成形方法よれば、次のような効果を奏する。
(1)固定側コアと可動側コアの表面を、成形されるべき樹脂の軟化温度より高い温度に加熱してから固定側コアと可動側コアを型締めし樹脂を充填し、充填後に、固定側コアと可動側コアを樹脂の軟化温度より低い温度まで冷却しながら充填された樹脂を保圧し、樹脂成型品を冷却保持し、その後型開きするから、充填率と離型性が向上され、アスペクト比1以上のナノ構造を表面にもつ良好な光学特性を持つ成型品を成形することができる。
The injection molding method according to the present invention has the following effects.
(1) The surfaces of the fixed core and the movable core are heated to a temperature higher than the softening temperature of the resin to be molded, the fixed core and the movable core are clamped, filled with resin, and fixed after filling. Holding the filled resin while cooling the side core and the movable side core to a temperature lower than the softening temperature of the resin, holding the resin molded product in a cooled state, and then opening the mold, the filling rate and releasability are improved, It is possible to mold a molded product having a nanostructure with an aspect ratio of 1 or more on the surface and having good optical characteristics.
(2)この射出成形方法では、固定側金型と可動側金型は、部分的に、固定側金型と可動側金型を形成する金属材料より熱伝導率の低い材料(低熱伝導率材料)で形成したものを使用するから、固定側コアの表面側及び可動側コアの表面側については、その熱容量が小さくすることができ、熱エネルギーを与えた場合に、固定側コアの表面側及び可動側コアの表面を高速に昇温させ短時間の成形が可能となる。これにより、成形サイクルを短くすることができ、ナノ構造物を表面に備えた光学素子、光学部品等の成形の生産性を高めることができる。 (2) In this injection molding method, the fixed side mold and the movable side mold are partially made of a material having a lower thermal conductivity than the metal material forming the fixed side mold and the movable side mold (low thermal conductivity material). ), The heat capacity of the surface side of the fixed side core and the surface side of the movable side core can be reduced, and when heat energy is applied, the surface side of the fixed side core and The surface of the movable core can be heated at a high speed, and molding can be performed in a short time. Thereby, a shaping | molding cycle can be shortened and productivity of shaping | molding of an optical element, an optical component, etc. which were equipped with the nanostructure on the surface can be improved.
(3)ナノ構造金型として、ナノメータサイズの構造物を表面に備えた固定側コアと可動側コアを用いることで、低反射率でかつ、良好な光学特性を有する光学素子、光学部品等を成形することができる。 (3) By using a fixed-side core and a movable-side core with nanometer-sized structures on the surface as nanostructure molds, optical elements, optical components, etc. that have low reflectivity and good optical properties can be obtained. Can be molded.
(4)従って、大面積、曲面形状、かつマイクロメートルサイズの凹凸の表面であっても高精度な反射防止機能を付与するナノ構造物を高成形サイクル(1回の成形サイクルを短時間とできるから一定の時間でより多数回の成形サイクルを繰り返して行うことができる意味。)で成形可能であり、反射防止構造体を備えた光学素子、光学部品の射出成形方法にきわめて有用である。 (4) Therefore, a nanostructure that imparts a high-precision antireflection function even on a large area, curved surface, and micrometer-sized uneven surface can be formed in a high molding cycle (one molding cycle can be shortened). Meaning that it is possible to repeatedly perform a number of molding cycles in a certain time.), And is extremely useful for an optical element having an antireflection structure and an injection molding method of an optical component.
本発明に係る射出成形方法を実施するための射出成形装置の構成を示す図であり、(a)は金型内部に加熱手段を設け、コアの背面に冷却手段(冷却媒体流路)を設けた構成を示し、(b)は金型表面に加熱手段を設け、コアの背面に冷却手段(冷却媒体流路)を設けた構成を示す。It is a figure which shows the structure of the injection molding apparatus for enforcing the injection molding method which concerns on this invention, (a) provides a heating means inside a metal mold | die, and provides a cooling means (cooling medium flow path) in the back surface of a core. (B) shows the structure which provided the heating means in the metal mold | die surface, and provided the cooling means (cooling medium flow path) in the back surface of the core. 本発明に係る射出成形方法を実施するための射出成形装置の別の構成例を示す図であり、(a)は金型内部に加熱手段を設け、キャビティーの周囲にも冷却手段(冷却媒体通路)を設けた構成を示し、(b)は金型表面に加熱手段を設け、キャビティーの周囲にも冷却手段(冷却媒体通路)を設けた構成を示す。It is a figure which shows another structural example of the injection molding apparatus for enforcing the injection molding method which concerns on this invention, (a) provides a heating means inside a metal mold | die, a cooling means (cooling medium) also around a cavity (B) shows a configuration in which heating means is provided on the mold surface, and cooling means (cooling medium passage) is also provided around the cavity. 本発明に係る射出成形方法の一連の工程を示すとともに、コア表面の金型温度を示すフロー図である。It is a flowchart which shows the series of process of the injection molding method which concerns on this invention, and shows the mold temperature of the core surface. 本発明に係る射出成形方法の一連の工程を説明する図である。It is a figure explaining a series of processes of the injection molding method concerning the present invention. 本発明に係る射出成形方法を採用したことによるコア表面の金型温度と成型品の充填率を示す図である。It is a figure which shows the mold temperature of the core surface by having employ | adopted the injection molding method which concerns on this invention, and the filling rate of a molded article. 本発明に係る射出成形方法により得られたる成型品の外観検査結果を示す表である。It is a table | surface which shows the external appearance test result of the molded article obtained by the injection molding method which concerns on this invention. 本発明に係る射出成形方法による昇温時間を示す表である。It is a table | surface which shows the temperature rising time by the injection molding method which concerns on this invention. 本発明に係る射出成形方法により得られた光学素子のナノ構造物の反射防止効果を示す図である。It is a figure which shows the antireflection effect of the nanostructure of the optical element obtained by the injection molding method which concerns on this invention. 図2(b)に示すキャビティーの周囲に設けた冷却手段(冷却媒体通路)の構成を説明するための射出成形装置の断面図であり、(a)は垂直断面を、(b)は水平断面をそれぞれ示す図である。It is sectional drawing of the injection molding apparatus for demonstrating the structure of the cooling means (cooling medium channel | path) provided in the circumference | surroundings of the cavity shown in FIG.2 (b), (a) is a vertical cross section, (b) is horizontal. It is a figure which shows a cross section, respectively.
符号の説明Explanation of symbols
 1 樹脂導入路
 2 固定側ベース金型
 3 可動側ベース金型
 4 固定側コア
 5 可動側コア
 6 固定側コア表面(ナノ構造物)
 7 可動側コア表面(ナノ構造物)
 8、9 冷却媒体流路
 10、11 突き出しピン
 12 キャビティー内真空引き排出路
 13 反射鏡                        
 14 キャビティー
 15A 加熱手段(ベース内部に設置時)
 15B 加熱手段(ベース表面に設置時)
 16 冷却媒体導入口
 17 冷却媒体排出口
 20 射出成形装置
 21 固定側金型(固定側コアと固定側ベース金型群から成るもの)
 22 可動側金型(可動側コアと可動側ベース金型群から成るもの)
 23 固定側ベース金型群(複数の固定側ベース金型から成るもの)
 24 可動側ベース金型群(複数の可動側ベース金型から成るもの
 25 冷却媒体通路
DESCRIPTION OF SYMBOLS 1 Resin introduction path 2 Fixed side base metal mold 3 Movable side base metal mold 4 Fixed side core 5 Movable side core 6 Fixed side core surface (nanostructure)
7 Movable core surface (nanostructure)
8, 9 Cooling medium flow path 10, 11 Extrusion pin 12 Vacuum discharge path 13 in the cavity 13 Reflecting mirror
14 Cavity 15A Heating means (when installed inside the base)
15B Heating means (when installed on the base surface)
16 Cooling medium introduction port 17 Cooling medium discharge port 20 Injection molding device 21 Fixed side mold (consisting of a fixed side core and a fixed side base mold group)
22 Movable mold (consisting of movable core and movable base mold group)
23 Fixed-side base mold group (consisting of multiple fixed-side base molds)
24 Movable base mold group (consisting of a plurality of movable base molds 25 Cooling medium passage
 本発明に係る射出成形方法を実施するための最良の形態を実施例に基づき図面を参照して、以下説明する。 The best mode for carrying out the injection molding method according to the present invention will be described below with reference to the drawings based on the embodiments.
 図1、図2は、本発明に係る射出成形方法に使用する射出成形装置20を示す。この射出成形装置20は、互いに対向する対となった固定側金型21と可動側金型22とを備えている。固定側金型21と可動側金型22は、固定側コア4と可動側コア5を備えており、さらに、固定側コア4と可動側コア5を周りから囲うように、固定側ベース金型群23と可動側ベース金型群24を備えている。 1 and 2 show an injection molding apparatus 20 used in an injection molding method according to the present invention. The injection molding apparatus 20 includes a fixed-side mold 21 and a movable-side mold 22 that are a pair facing each other. The fixed-side mold 21 and the movable-side mold 22 include a fixed-side core 4 and a movable-side core 5, and further, a fixed-side base mold so as to surround the fixed-side core 4 and the movable-side core 5 from around. A group 23 and a movable base mold group 24 are provided.
 固定側コア4と可動側コア5は、図1(a)、(b)、図2(a)、(b)に示す例では2対設けているが、1対又は複数対設ける。互いに対向する固定側コア4の表面6及び可動側コア5の表面には、それぞれナノ構造物が形成されている。 In the example shown in FIGS. 1A, 1B, 2A, and 2B, two pairs of the fixed core 4 and the movable core 5 are provided, but one pair or a plurality of pairs are provided. Nanostructures are formed on the surface 6 of the fixed core 4 and the surface of the movable core 5 facing each other.
 このナノ構造物は、アスペクト比は1以上である凹凸面の構成をしており、その固定側コア4と可動側コア5の間に充填された樹脂の表面を成形し、アスペクト比が1以上のナノ構造の凹凸表面を持つ光学素子、光学部品など成型品を形成するものである。このようなナノ構造物の平均ピッチは、30nm~1000nmである。 This nanostructure has an irregular surface configuration with an aspect ratio of 1 or more, and the surface of the resin filled between the fixed core 4 and the movable core 5 is molded, and the aspect ratio is 1 or more. It forms a molded article such as an optical element or optical component having an uneven surface of nanostructure. The average pitch of such nanostructures is 30 nm to 1000 nm.
 固定側ベース金型群23は、1又は複数の固定側ベース金型2を備えており、固定側ベース金型2には樹脂導入路1が形成されている。可動側ベース金型群24は、1又は複数の可動側ベース金型2から構成される。 The fixed-side base mold group 23 includes one or a plurality of fixed-side base molds 2, and a resin introduction path 1 is formed in the fixed-side base mold 2. The movable side base mold group 24 includes one or a plurality of movable side base molds 2.
 可動側ベース金型3には、樹脂導入路1及び固定側コア4と可動側コア5の成形空間内に連通するキャビティー14が形成されている。キャビティー14は、可動側ベース金型3ではなく、固定側ベース金型2に設けてもよいし、或いは固定側ベース金型2及び可動側ベース金型3の両方に設けてもよい。 The movable base mold 3 is formed with a cavity 14 communicating with the resin introduction path 1 and the molding space of the fixed core 4 and the movable core 5. The cavity 14 may be provided not in the movable side base mold 3 but in the fixed side base mold 2, or may be provided in both the fixed side base mold 2 and the movable side base mold 3.
 なお、キャビティー14に連通するキャビティー内真空引き排出路12が、可動側ベース金型3に形成されている。このキャビティー14は、固定側ベース金型2に設ける構成としてもよい。 An in-cavity vacuum exhaust passage 12 communicating with the cavity 14 is formed in the movable-side base mold 3. The cavity 14 may be provided in the fixed base mold 2.
 可動側ベース金型3及び可動側コア5を貫通して摺動可能に、先端が固定側コア4の表面に対向するように、突き出しピン10、11が設けられている。突き出しピン10、11は、固定側金型21と可動側金型22の型開きを行う際に、固定側コア4に突き当てて使用するものである。 Extrusion pins 10 and 11 are provided so that the front end faces the surface of the fixed core 4 so as to be able to slide through the movable base mold 3 and the movable core 5. The projecting pins 10 and 11 are used by abutting against the stationary core 4 when the stationary mold 21 and the movable mold 22 are opened.
 固定側ベース金型群23と可動側金型22群には、それぞれ加熱手段15A、15B、温度センサー及び冷却手段8、9と、が設けられている。加熱手段15A、15Bは、固定側コア4、可動側コア5の表面を加熱するものであり、温度センサーは固定側コア4、可動側コア5の表面の温度を計測するものであり、冷却手段8、9は、固定側コア4及び可動側コア5を冷却するものである。 The fixed-side base mold group 23 and the movable-side mold group 22 are provided with heating means 15A and 15B, temperature sensors and cooling means 8 and 9, respectively. The heating means 15A and 15B heat the surfaces of the fixed side core 4 and the movable side core 5, and the temperature sensor measures the temperature of the surfaces of the fixed side core 4 and the movable side core 5, and the cooling means. 8 and 9 cool the fixed core 4 and the movable core 5.
 図1(a)、図2(a)に示すように、加熱手段15A、15Bは、固定側ベース金型2と可動側ベース金型3の内部に、ヒータ等の加熱器を内部に埋設した構成としてもよい。 As shown in FIGS. 1A and 2A, the heating means 15A and 15B have heaters such as heaters embedded in the fixed base mold 2 and the movable base mold 3, respectively. It is good also as a structure.
 或いは、図1(b)、図2(b)に示すように、加熱手段15A、15Bは、例えば、固定側ベース金型2と可動側ベース金型3の表面に、赤外線、電磁波、レーザー光線等の加熱器を埋込む構成としてもよい。 Alternatively, as shown in FIGS. 1B and 2B, the heating means 15A and 15B are formed on the surfaces of the fixed-side base mold 2 and the movable-side base mold 3, for example, infrared rays, electromagnetic waves, laser beams, etc. The heater may be embedded.
 加熱手段15A、15Bとして、赤外線、電磁波、レーザー光線等の加熱器を設けた構成では、固定側金型21と可動側金型22を対向して型締め動作する際に、対向する固定側金型21と可動側金型22が接近する。すると、固定側金型21及び可動側金型22の間で、赤外線、電磁波、レーザー光線等の多重反射が生じ、固定側コア4及び可動側コア5の表面6、7を均一に効率的に加熱するという効果が生じる(図4(b)参照)。 In the configuration in which heaters such as infrared rays, electromagnetic waves, and laser beams are provided as the heating means 15A and 15B, when the fixed-side mold 21 and the movable-side mold 22 face each other and perform the clamping operation, the opposed fixed-side molds face each other. 21 and the movable mold 22 approach each other. Then, multiple reflections such as infrared rays, electromagnetic waves, and laser beams occur between the fixed mold 21 and the movable mold 22, and the surfaces 6 and 7 of the fixed core 4 and the movable core 5 are uniformly and efficiently heated. This produces an effect (see FIG. 4B).
 なお、加熱手段15A、15Bには、例えば、赤外線を利用した加熱器の周囲に反射鏡13を設けると、さらに加熱効果が上昇する。この反射鏡13は、断面略V字型であり固定側ベース金型2と可動側ベース金型3の断面略V字型凹所内に当接するように埋め込まれた構成である。 In addition, for example, when the reflecting mirror 13 is provided around the heater using infrared rays in the heating means 15A and 15B, the heating effect is further increased. The reflecting mirror 13 has a substantially V-shaped cross-section and is embedded so as to be in contact with the recesses of the substantially V-shaped cross sections of the fixed-side base mold 2 and the movable-side base mold 3.
 固定側金型21と可動側金型22は、部分的に、固定側金型21と可動側金型22を形成する金属材料より熱伝導率の低い材料(低熱伝導率材料)が埋め込まれている。具体的には、固定側ベース金型2、可動側ベース金型3、固定側コア4及び可動側コア5の全てについて、又はそのいずれかについて、部分的に、低熱伝導率材料が埋め込まれており、固定側コア4及び可動側コア5の熱容量を小さくして、また、固定側ベース金型2と固定側コア4の間、及び、可動側ベース金型3と可動側コア5の間に、低熱伝導率材料を埋め込むみ、熱伝導による固定側コア4及び可動側コア5からの熱の放散を防止する構成である。特に、固定側ベース金型2、可動側ベース金型3へ低熱伝導率材料を埋め込む構成としては、埋め込む低熱伝導率材料で固定側コア4及び可動側コア5を囲むこような配置とすることが好ましい。 The fixed mold 21 and the movable mold 22 are partially embedded with a material having a lower thermal conductivity (low thermal conductivity material) than the metal material forming the fixed mold 21 and the movable mold 22. Yes. Specifically, a low thermal conductivity material is partially embedded in all or any of the fixed side base mold 2, the movable side base mold 3, the fixed side core 4, and the movable side core 5. The heat capacities of the fixed core 4 and the movable core 5 are reduced, and between the fixed base mold 2 and the fixed core 4 and between the movable base mold 3 and the movable core 5. In this configuration, a low thermal conductivity material is embedded to prevent heat dissipation from the fixed side core 4 and the movable side core 5 due to heat conduction. In particular, the low thermal conductivity material is embedded in the fixed base mold 2 and the movable base mold 3 so that the fixed core 4 and the movable core 5 are surrounded by the embedded low thermal conductivity material. Is preferred.
 これにより、低熱伝導率材料が埋め込まれていない場合に較べて、固定側コア4及び可動側コア5の熱容量が小さくなり、さらに、固定側ベース金型2と固定側コア4の間、及び、可動側ベース金型3と可動側コア5の間に、低熱伝導率材料を埋め込むことにより、固定側コア4及び可動側コア5の外部への熱伝導(放散)が小さくなる。即ち、固定側コア4及び可動側コア5は、それらに埋め込まれた低熱伝導率材料により熱容量が小さくなり、また、固定側ベース金型2及び可動側ベース金型3は、それらに埋め込まれた低熱伝導率材料により熱容量が小さくなるとともに、固定側コア4及び可動側コア5からの熱伝導(放散)を抑制することが可能となる。 Thereby, compared with the case where the low thermal conductivity material is not embedded, the heat capacities of the fixed side core 4 and the movable side core 5 are reduced, and further, between the fixed side base mold 2 and the fixed side core 4, and By embedding a low thermal conductivity material between the movable base mold 3 and the movable core 5, heat conduction (dissipation) to the outside of the fixed core 4 and the movable core 5 is reduced. That is, the fixed-side core 4 and the movable-side core 5 have a low heat capacity due to the low thermal conductivity material embedded in them, and the fixed-side base mold 2 and the movable-side base mold 3 are embedded in them. The heat capacity is reduced by the low thermal conductivity material, and heat conduction (dissipation) from the fixed core 4 and the movable core 5 can be suppressed.
 そのため、表面にナノ構造が構成された固定側コア4及び可動側コア5は、それら自体に低熱伝導率材料が埋め込まれているから固定側コア4及び可動側コア5本来の材料部分の体積が小さくなるから熱容量が小さくなり、そして、固定側ベース金型2及び可動側ベース金型3は、それら自体に埋め込まれている低熱伝導率材料により同様に体積が小さくなり熱容量が小さくなるとともに、固定側ベース金型2と固定側コア4の間、及び、可動側ベース金型3と可動側コア5の間に、低熱伝導率材料を埋め込まれていることにより、固定側コア4及び可動側コア5から固定側ベース金型2及び可動側ベース金型3側への熱の伝導(放散)による損失を少なくするから、結局、固定側コア4及び可動側コア5は、同じ熱エネルギーを与えた場合に、高速に昇温することができ、短時間の成形が可能となる。 Therefore, the fixed side core 4 and the movable side core 5 having nanostructures on their surfaces are embedded with a low thermal conductivity material in themselves, so that the volume of the original material portion of the fixed side core 4 and the movable side core 5 is reduced. Since the heat capacity is reduced because it becomes smaller, the fixed base mold 2 and the movable base mold 3 are similarly reduced in volume and heat capacity due to the low thermal conductivity material embedded in them. Since the low thermal conductivity material is embedded between the side base mold 2 and the fixed side core 4 and between the movable side base mold 3 and the movable side core 5, the fixed side core 4 and the movable side core Since the loss due to heat conduction (dissipation) from 5 to the fixed base mold 2 and the movable base mold 3 side is reduced, the fixed core 4 and the movable core 5 eventually gave the same thermal energy. Place A, can be heated to a high speed, I am possible to short molding.
 ここでいう、低熱伝導率材料とは、固定側コア、可動側コア、固定側ベース金型及び可動側ベース金型を形成する金属材料より熱伝導率の低い材料であって、セラミック、ファインセラミックス材料、有機材料等が有効である。具体的には、ガラス、石英、アルミナ、フォルステライト、ジルコニア、ジルコン、ムライト、コーディエライト、窒化ケイ素、炭化ケイ素などが効果的である。 Here, the low thermal conductivity material is a material having a lower thermal conductivity than the metal material forming the fixed side core, the movable side core, the fixed side base mold, and the movable side base mold. Materials, organic materials, etc. are effective. Specifically, glass, quartz, alumina, forsterite, zirconia, zircon, mullite, cordierite, silicon nitride, silicon carbide and the like are effective.
 冷却手段は、図1(a)、(b)及び図2(a)、(b)図に示すように、固定側コア4及び可動側コア5の背面(固定側と可動側が互いに対向する面と反対の面)に、冷却媒体流路8、9が形成されており、この冷却媒体流路8、9に、外部に設けたポンプにより冷却媒体が循環して流されるようにした構成である。冷却媒体としては、水、アルコール、又は二酸化炭素、空気、窒素などの気体が有用である。 As shown in FIGS. 1 (a), 1 (b), 2 (a), and 2 (b), the cooling means includes a back surface of the fixed side core 4 and the movable side core 5 (surfaces on which the fixed side and the movable side face each other). The cooling medium flow paths 8 and 9 are formed on the opposite surface), and the cooling medium flow is circulated through the cooling medium flow paths 8 and 9 by a pump provided outside. . As the cooling medium, water, alcohol, or a gas such as carbon dioxide, air, or nitrogen is useful.
 冷却手段は、前記のとおり、固定側コア4及び可動側コア5の背面に形成された冷却媒体流路8、9に冷却媒体を流して冷却することにより、ナノ構造が形成された成型品の表面部分を急速に冷却することが実現できるために、短時間の成形サイクルが実現できる。冷却媒体としては、水、アルコール、又は二酸化炭素、空気、窒素のような気体などが有用である。 As described above, the cooling means flows the cooling medium flow paths 8 and 9 formed on the back surfaces of the fixed side core 4 and the movable side core 5 to cool the molded product in which the nanostructure is formed. Since the surface portion can be rapidly cooled, a short molding cycle can be realized. As the cooling medium, water, alcohol, or a gas such as carbon dioxide, air, or nitrogen is useful.
 前記のとおり、固定側金型21と可動側金型22は、部分的に、固定側金型21と可動側金型22を形成する金属材料より熱伝導率の低い材料(低熱伝導率材料)が埋め込まれている。具体的には、固定側金型21及び可動側金型22内に構成される固定側ベース金型2、可動側ベース金型3、固定側コア4及び可動側コア5の全てについて、又はそのいずれかについて、部分的に、又は低熱伝導率材料で固定側コア4及び可動側コア5を囲むこように、低熱伝導率材料が埋め込まれており、熱伝導による放散を防止する構成であり、特に、固定側コア4及び可動側コア5に低熱伝導率材料が埋め込まれている場合は、その全体の熱容量が、低熱伝導率材料が埋め込まれていない場合に較べて小さくなる。 As described above, the fixed mold 21 and the movable mold 22 are partially made of a material having a lower thermal conductivity (low thermal conductivity material) than the metal material forming the fixed mold 21 and the movable mold 22. Is embedded. Specifically, all of the fixed-side base mold 2, the movable-side base mold 3, the fixed-side core 4 and the movable-side core 5 configured in the fixed-side mold 21 and the movable-side mold 22 or the For any of these, the low thermal conductivity material is embedded so as to surround the fixed side core 4 and the movable side core 5 partially or with a low thermal conductivity material, and is configured to prevent dissipation due to thermal conduction. In particular, when the low thermal conductivity material is embedded in the fixed side core 4 and the movable side core 5, the overall heat capacity is smaller than when the low thermal conductivity material is not embedded.
 特に、固定側コア4の表面6側及び可動側コア5の表面7側の熱容量が小さくなると、同じ熱エネルギーを吸収した場合に、固定側コア4の表面6側及び可動側コア5の表面7高速に冷却させ短時間の成形が可能となる。冷却手段についても加熱手段と同様に、同じ熱エネルギーを与えた場合に、高速に冷却させ短時間の成形が可能となる。 In particular, when the heat capacities on the surface 6 side of the fixed side core 4 and the surface 7 side of the movable side core 5 are reduced, the surface 6 side of the fixed side core 4 and the surface 7 of the movable side core 5 are absorbed when the same heat energy is absorbed. Cooling at high speed enables molding in a short time. Similarly to the heating means, the cooling means can be cooled at a high speed and can be molded in a short time when the same thermal energy is applied.
 冷却手段は、図2(a)、(b)及び図9(a)、(b)に示すように、固定側コア4及び可動側コア5の背面に形成された冷却媒体流路8、9を設ける構成に加えて、キャビティー14の周囲に向けて冷却媒体を流す構成をさらに付加した構成としてもよい。即ち、図9(a)、(b)に示すように、冷却媒体導入口16から冷却媒体通路25に冷却媒体を導入し、冷却媒体通路25を通して冷却媒体排出口17から排出する構成としてもよい。 As shown in FIGS. 2A and 2B and FIGS. 9A and 9B, the cooling means includes cooling medium flow paths 8 and 9 formed on the back surfaces of the fixed side core 4 and the movable side core 5, respectively. In addition to the configuration in which the cooling medium is provided, a configuration in which a cooling medium is allowed to flow toward the periphery of the cavity 14 may be added. That is, as shown in FIGS. 9A and 9B, the cooling medium may be introduced into the cooling medium passage 25 from the cooling medium introduction port 16 and discharged from the cooling medium discharge port 17 through the cooling medium passage 25. .
 ここで、冷却媒体通路25はキャビティー14の周囲に配置されており、これにより、冷却媒体がキャビティー14の周り流されることとなる。また、キャビティー14と冷却媒体通路25の間には、10μm~500μm程度の壁が構成されており、壁を通して充填された樹脂を冷却することにより、高速冷却が可能になる。 Here, the cooling medium passage 25 is disposed around the cavity 14, so that the cooling medium flows around the cavity 14. In addition, a wall of about 10 μm to 500 μm is formed between the cavity 14 and the cooling medium passage 25. By cooling the resin filled through the wall, high-speed cooling is possible.
(成形方法)
 以上の射出成形装置を用いた本発明の射出成形方法によれば、短時間にアスペクト比1以上のナノ構造を表面に持つ光学素子、光学部品等の成型品の成形が可能になる。以下、この射出成形方法を、図4及び図3に示す射出成形方法の一連の工程とコア表面の金型温度を示すフロー図を参照して説明する。
(Molding method)
According to the injection molding method of the present invention using the above-described injection molding apparatus, it is possible to mold a molded product such as an optical element or an optical component having a nanostructure with an aspect ratio of 1 or more on the surface in a short time. Hereinafter, this injection molding method will be described with reference to a flow chart showing a series of steps of the injection molding method shown in FIGS. 4 and 3 and a mold temperature on the core surface.
チャージ工程(準備工程):
 成形するに際して、まず最初に、対向する固定側金型21と可動側金型22の型締め前に、加熱手段によって、固定側コア4及び可動側コア5の表面の金型温度を、樹脂の軟化温度より高く且つ樹脂の分解温度より低い温度T1まで昇温する。
Charging process (preparation process):
When molding, first, before the clamping of the fixed side mold 21 and the movable side mold 22 facing each other, the mold temperatures of the surfaces of the fixed side core 4 and the movable side core 5 are set by heating means. The temperature is raised to a temperature T1 that is higher than the softening temperature and lower than the decomposition temperature of the resin.
 そして、この温度T1において固定側コア4及び可動側コア5の設定された状態において、固定側金型21と可動側金型22の型締め(当然、固定側コア4及び可動側コア5の型締めされる。)を完了する。 Then, in a state where the fixed side core 4 and the movable side core 5 are set at the temperature T1, the fixed side mold 21 and the movable side mold 22 are clamped (of course, the molds of the fixed side core 4 and the movable side core 5). To complete.)
射出工程:
 型締めを完了した後に、樹脂を樹脂導入路1からキャビティー14を通して充填を行う。ここで、従来は、固定側ベース金型2と可動側ベース金型3の温度は、樹脂の軟化温度より低い温度に設定されているために、樹脂の軟化温度より高い温度で固定側ベース金型2のキャビティー14内から固定側コア4及び可動側コア5に射出されても、樹脂は冷却され、樹脂の粘性は流動長及び流動速度に関係して増加し、その表面に固化層を形成しながら充填される。
Injection process:
After completing the mold clamping, the resin is filled from the resin introduction path 1 through the cavity 14. Here, conventionally, since the temperature of the fixed base mold 2 and the movable base mold 3 is set to a temperature lower than the softening temperature of the resin, the fixed base mold is set at a temperature higher than the softening temperature of the resin. Even when injected into the fixed core 4 and the movable core 5 from the cavity 14 of the mold 2, the resin is cooled, the viscosity of the resin increases in relation to the flow length and flow velocity, and a solidified layer is formed on the surface. Fill while forming.
 ここで、従来の手段で成形を行うと、樹脂表面の固化層が起因し、ナノ構造が表面に構成された固定側コア4及び可動側コア5にたいして充填不足となり、アスペクト比1以上になるとナノ構造の転写不良(ナノ構造の凹凸内に十分充填されずナノ構造の凹凸に精密に対応されない成型品が成形される。)が発生してしまう。 Here, when the molding is performed by the conventional means, the solidified layer on the resin surface is caused, the nanostructure is insufficiently filled with respect to the fixed core 4 and the movable core 5 formed on the surface, and when the aspect ratio becomes 1 or more, the nanostructure is formed. Insufficient transfer of the structure (molded product that is not sufficiently filled in the irregularities of the nanostructure and does not correspond precisely to the irregularities of the nanostructure) occurs.
 そこで、本発明では、固定側コア4及び可動側コア5の表面温度を、樹脂の軟化温度より高く且つ樹脂の分解される温度より低い温度T1に設定し、かつ充填速度を30mm/s以下することにより、樹脂が軟化温度より低い温度に冷却されることが無くなり、固化層の形成を防ぐことができる。 Therefore, in the present invention, the surface temperatures of the fixed core 4 and the movable core 5 are set to a temperature T1 that is higher than the softening temperature of the resin and lower than the temperature at which the resin is decomposed, and the filling speed is 30 mm / s or less. As a result, the resin is not cooled to a temperature lower than the softening temperature, and formation of a solidified layer can be prevented.
 さらに、充填速度を30mm/s以下にすることにより、固定側コア4及び可動側コア5のナノ構造による滞在ガスの影響を抑えることが可能になる。具体的には、30mm/s以上の速度で充填される場合には、樹脂は、流速方向に大きな力を持つ。表面にナノ構造が構成されたコア表面に樹脂が流れる場合には、ナノ構造の細部にまで樹脂が充填されず、ナノ構造の最上部付近のみに樹脂が流れる。 Furthermore, by setting the filling speed to 30 mm / s or less, it becomes possible to suppress the influence of the stay gas due to the nanostructure of the fixed side core 4 and the movable side core 5. Specifically, when the resin is filled at a speed of 30 mm / s or more, the resin has a large force in the flow rate direction. When the resin flows on the surface of the core having a nanostructure formed on the surface, the resin does not fill the details of the nanostructure, and the resin flows only near the top of the nanostructure.
 そのために、ナノ構造を持つ固定側コア4及び可動側コア5を用いて成形を行った場合には、ナノ構造の底辺部は充填された樹脂にキャップされ残留ガスが溜まる。従って、樹脂によりキャップされた残留ガスが影響し、ナノ構造への樹脂の充填率は低い。しかしながら、30mm/s以下の充填速度で充填した場合は、充填速度が遅くなるにつれ、流速方向の力は減少し、流速方向から発散する方向にも樹脂は流れる効果が働く。 Therefore, when molding is performed using the fixed core 4 and the movable core 5 having a nanostructure, the bottom of the nanostructure is capped with a filled resin, and residual gas accumulates. Therefore, the residual gas capped with the resin is affected, and the filling rate of the resin into the nanostructure is low. However, when filling at a filling speed of 30 mm / s or less, as the filling speed becomes slower, the force in the flow direction decreases, and the resin flows in the direction of divergence from the flow direction.
 そのため、ナノ構造を持つ固定側コア4及び可動側コア5を用いて成形を行った場合には、ナノ構造の底辺部、最上部に均一に充填されるため、残留ガスは樹脂の充填とともにキャビティー14の外に排出される。そのことから、ナノ構造に残留するガスの影響が低減されることから、アスペクト比が1以上のナノ構造への充填が十分行うことできる。そのため、高アスペクト比を持つナノ構造を持つ成型品の充填が実現できるために、良好な光学特性を持つ成型品が実現できる。 Therefore, when molding is performed using the stationary core 4 and the movable core 5 having a nanostructure, the bottom and top of the nanostructure are uniformly filled. It is discharged out of the tee 14. Therefore, the influence of the gas remaining in the nanostructure is reduced, so that the nanostructure having an aspect ratio of 1 or more can be sufficiently filled. Therefore, since filling of a molded product having a nanostructure having a high aspect ratio can be realized, a molded product having good optical characteristics can be realized.
冷却工程:
 樹脂充填後に、固定側コア4及び可動側コア5の型締め状態を維持し、樹脂への充填圧力を保持(保圧)しながら、樹脂の軟化温度より低い温度T2まで冷却し、さらに形成された樹脂成型品の冷却を行う。
Cooling process:
After the resin is filled, the fixed core 4 and the movable core 5 are kept in the mold-clamped state, and the resin is cooled to a temperature T2 lower than the softening temperature of the resin while maintaining the filling pressure to the resin (holding pressure). Cool the molded resin product.
 ここで、従来の成形プロセスでは、金型温度は一定であり、高アスペクト比構造のナノ構造になると、液状又は単分子層の離型膜を固定側コア4及び可動側コア5の表面に塗布しなければ、離型することができない。 Here, in the conventional molding process, the mold temperature is constant, and when the nanostructure has a high aspect ratio structure, a liquid or monomolecular release film is applied to the surfaces of the fixed core 4 and the movable core 5. Otherwise, it cannot be released.
 しかしながら、本発明に係る射出成形方法では、固定側コア4及び可動側コア5の表面温度を成形中に加熱及び冷却可能とすることにより、ナノ構造が表面に形成された成型品の表面部分の樹脂の収縮を通常よりも大きくすることができるために、アスペクト比1以上のナノ構造の離型が容易に行える。 However, in the injection molding method according to the present invention, the surface temperature of the fixed core 4 and the movable core 5 can be heated and cooled during molding, so that the surface portion of the molded product with the nanostructure formed on the surface can be obtained. Since the shrinkage of the resin can be made larger than usual, it is possible to easily release the nanostructure having an aspect ratio of 1 or more.
型開き工程:
 最後に、固定側コア4及び可動側コア5の冷却後に、突き出しピン10、11を、固定側コア4に突き当てて、固定側金型21と可動側金型22の型開きを行い、アスペクト比1以上のナノ構造物が構成された成型品の取り出しを行う。
Mold opening process:
Finally, after the fixed side core 4 and the movable side core 5 are cooled, the protruding pins 10 and 11 are abutted against the fixed side core 4 to open the fixed side mold 21 and the movable side mold 22, and the aspect A molded product in which a nanostructure having a ratio of 1 or more is formed is taken out.
 前述のとおり、 固定側金型21と可動側金型22は、部分的に、固定側金型21と可動側金型22を形成する金属材料より熱伝導率の低い材料(低熱伝導率材料)で形成されている(例えば埋め込まれている)。 As described above, the fixed-side mold 21 and the movable-side mold 22 are partially made of a material having a lower thermal conductivity (low thermal conductivity material) than the metal material forming the fixed-side mold 21 and the movable-side mold 22. (For example, embedded).
 具体的には、 固定側金型21及び可動側金型22内に構成される固定側ベース金型2、可動側ベース金型3、固定側コア4及び可動側コア5の全てについて、又はそのいずれかについて、部分的に、又は低熱伝導率材料で固定側コア4及び可動側コア5を囲むように、低熱伝導率材料が埋め込まれており、熱伝導による放散を防止する構成であり、固定側コア4及び可動側コア5に低熱伝導率材料が埋め込まれている場合は、その全体の熱容量が、低熱伝導率材料が埋め込まれていない場合に較べて小さくなる。 Specifically, all of the fixed-side base mold 2, the movable-side base mold 3, the fixed-side core 4 and the movable-side core 5 configured in the fixed-side mold 21 and the movable-side mold 22 or the In either case, the low thermal conductivity material is embedded so as to surround the fixed side core 4 and the movable side core 5 partially or with a low thermal conductivity material, and is configured to prevent dissipation due to thermal conduction, and fixed When the low thermal conductivity material is embedded in the side core 4 and the movable side core 5, the overall heat capacity is smaller than when the low thermal conductivity material is not embedded.
 特に、固定側コア4の表面6側及び可動側コア5の表面7側の熱容量が小さくなると、同じ熱エネルギーを吸収した場合に、固定側コア4の表面6側及び可動側コア5の表面7高速に冷却させ短時間の成形が可能となる。冷却手段についても加熱手段と同様に、同じ熱エネルギーを与えた場合に、高速に冷却させ短時間の成形が可能となる。 In particular, when the heat capacities on the surface 6 side of the fixed side core 4 and the surface 7 side of the movable side core 5 are reduced, the surface 6 side of the fixed side core 4 and the surface 7 of the movable side core 5 are absorbed when the same heat energy is absorbed. Cooling at high speed enables molding in a short time. Similarly to the heating means, the cooling means can be cooled at a high speed and can be molded in a short time when the same thermal energy is applied.
 本発明に係る射出成形方法について、実施例を説明する。この実施例では、アスペクト比が1以上で10以内のナノ構造が表面に有する固定側コア4と可動側コア5を使用して、図4に示す一連の成形工程に従って、アスペクト比が1以上のナノ構造を表面にもつ光学素子の成型品を作成する。 Embodiments of the injection molding method according to the present invention will be described. In this example, the aspect ratio is 1 or more according to a series of molding steps shown in FIG. 4 using the fixed side core 4 and the movable side core 5 having nanostructures with an aspect ratio of 1 or more and 10 or less on the surface. Create a molded product of optical elements with nanostructures on the surface.
 この実施例では、固定側コア4と可動側コア5のアスペクト比は1.5のナノ構造物であり、そのナノ構造物のピッチは約100nm、深さは約200nmである。表1本発明に係る射出成形方法における代表的な成形条件を示す。射出成形に用いた樹脂は、三菱レイヨン製の商品であるアクリペットのグレードVH(以下、「アクリペットVH」という)を用いる。成形条件を表1に示す。 In this embodiment, the fixed core 4 and the movable core 5 are nanostructures having an aspect ratio of 1.5, and the pitch of the nanostructures is about 100 nm and the depth is about 200 nm. Table 1 shows typical molding conditions in the injection molding method according to the present invention. The resin used for the injection molding is Acrypet Grade VH (hereinafter referred to as “Acrypet VH”), a product manufactured by Mitsubishi Rayon. Table 1 shows the molding conditions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 成形工程における、加熱及び冷却される固定側コア4と可動側コア5の表面の金型温度(「コア表面の金型温度」という。)の加熱及び冷却は、図3のフロー図に示すように行う。本発明に係る射出成形方法では、図3に示すように、樹脂の充填前にコア表面を設定温度T1まで昇温し、その後、ベース金型の型締めを行う。 The heating and cooling of the mold temperature (referred to as “the mold temperature of the core surface”) on the surfaces of the fixed core 4 and the movable core 5 to be heated and cooled in the molding step are as shown in the flow diagram of FIG. To do. In the injection molding method according to the present invention, as shown in FIG. 3, the core surface is heated to a set temperature T1 before filling with resin, and then the base mold is clamped.
 そして、型締めが完了した後に、樹脂の充填を行う。その後、型締め状態を維持して、充填した樹脂を保圧(充填している樹脂に対する圧力を保持する意味)し、固定側コア4と可動側コア5を、樹脂の軟化温度より低い所定の温度T2まで冷却するとともに、この温度を維持し、形成された樹脂成型品の冷却を行う。このような樹脂成型品の冷却後に、型開きを行い、成型品の取り出しを行う。 And after the mold clamping is completed, the resin is filled. Thereafter, the mold clamping state is maintained, the filled resin is held (meaning to maintain the pressure with respect to the filled resin), and the fixed core 4 and the movable core 5 are set to a predetermined temperature lower than the softening temperature of the resin. While cooling to temperature T2, this temperature is maintained and the formed resin molded product is cooled. After such a resin molded product is cooled, the mold is opened and the molded product is taken out.
 具体的には、アクリペットVHの軟化温度は、およそ107℃であることから、固定側ベース金型2及び可動側ベース金型3の温度を通常の成形条件である95℃に設定する。 Specifically, since the softening temperature of the Acripet VH is approximately 107 ° C., the temperature of the fixed base mold 2 and the movable base mold 3 is set to 95 ° C., which is a normal molding condition.
 そして、図3のフロー図で示すように、樹脂の充填前の固定側コア4及び可動側コア5の表面温度を樹脂の軟化温度107℃以上に昇温してから樹脂の充填を行う。次に、樹脂の充填後に、固定側コア4及び可動側コア5の表面温度を樹脂の軟化温度107℃より低い所定の温度まで冷却する。 Then, as shown in the flowchart of FIG. 3, the resin is filled after the surface temperature of the fixed core 4 and the movable core 5 before filling the resin is raised to a softening temperature of 107 ° C. or higher. Next, after filling the resin, the surface temperatures of the fixed core 4 and the movable core 5 are cooled to a predetermined temperature lower than the softening temperature 107 ° C. of the resin.
 最後に、型開きを行い成型品の取り出しを行う。 Finally, open the mold and take out the molded product.
 本発明者は、以上説明した実施例を実証的に実施することにより、固定側コア4及び可動側コア5の温度条件の転写特性(充填率の状態を言う。)への影響などについて、以下のとおり検討した。 The present inventor empirically implements the embodiment described above, and the effects of the temperature conditions of the fixed core 4 and the movable core 5 on the transfer characteristics (referring to the state of the filling rate) are described below. We examined as follows.
 図5は、固定側コア4及び可動側コア5の表面温度(図5中の「コア表面の金型温度」)と充填率(「転写率」とも言う。)のグラフを示す。なお、ここで充填率とは、ナノ構造における凹凸の空間内への樹脂が充填される率を言う。 FIG. 5 shows a graph of the surface temperature of the fixed core 4 and the movable core 5 (“mold temperature of the core surface” in FIG. 5) and the filling rate (also referred to as “transfer rate”). Here, the filling rate refers to the rate at which the resin fills the uneven space in the nanostructure.
 図5によると、射出される樹脂温度が250℃の場合においては、コア表面の金型温度の上昇により、充填率が改善され、より良好になっていることが分かる。さらに、樹脂の軟化温度より高い温度にコア表面の金型温度を設定した時には、急激に充填率が改善される。 Referring to FIG. 5, it can be seen that when the resin temperature to be injected is 250 ° C., the filling rate is improved by the increase of the mold temperature on the core surface, which is improved. Furthermore, when the mold temperature on the core surface is set to a temperature higher than the softening temperature of the resin, the filling rate is rapidly improved.
 即ち、樹脂の軟化温度より高い温度にコア表面の金型温度を設定することにより、樹脂の固化層の発生を防げることから、樹脂温度、成形圧力(充填してからさらに樹脂にかける圧力)等をあげることなく保圧することで、充填率を飛躍的に向上できることが確認できた。最適な転写温度範囲について検討した結果、樹脂の軟化温度から+30℃付近までについては充填率が上昇し、良好な転写特性を示した。 That is, by setting the mold temperature on the core surface to a temperature higher than the softening temperature of the resin, it is possible to prevent the formation of a solidified layer of the resin, so that the resin temperature, molding pressure (pressure applied to the resin after filling), etc. It was confirmed that the filling rate can be dramatically improved by maintaining the pressure without increasing the pressure. As a result of examining the optimum transfer temperature range, the filling rate increased from the softening temperature of the resin to around + 30 ° C., and good transfer characteristics were exhibited.
 なお、成形材料として、樹脂をアクリルから、ポリカーボネイト、アートン、ゼオネックスに変更した場合において検討した。このとき、ポリカーボネイトは、三菱エンジニアリングプラスチック社製のユーピロン、グレードH-3000R(いずれも商品名)、アートンはJSR株式会社の(商品名)、ゼオネックスは日本ゼオン社製のゼオネックス、グレード330R(いずれも商品名)、について検討を行い、アクリルの場合と同様の効果があることを確認した。 In addition, the case where the resin was changed from acrylic to polycarbonate, arton, ZEONEX as the molding material was examined. At this time, polycarbonate is Iupil, grade H-3000R (all trade name) manufactured by Mitsubishi Engineering Plastics, Arton is (trade name) JSR Corporation, ZEONEX is ZEONEX, grade 330R (manufactured by ZEON Japan) The product name) was examined, and it was confirmed that there was an effect similar to that of acrylic.
 次に、固定側コア4及び可動側コア5の型締め状態を維持し、樹脂への充填圧力を保持(保圧)しながら、コア表面の金型温度を樹脂の軟化温度より高く且つ樹脂の分解温度より低い温度に設定し、樹脂の充填を行った後に、樹脂の軟化温度より低い所定温度までに冷却を行った時と、コア表面の金型温度を樹脂の軟化温度以下(通常の成形条件)に設定し、樹脂の充填を行った後に冷却を行った時との成型品の外観検査結果を、図6に示す。 Next, the mold-clamping state of the core surface is set higher than the softening temperature of the resin while maintaining the mold-clamping state of the fixed core 4 and the movable core 5 and holding (holding pressure) the filling pressure to the resin. When the temperature is set lower than the decomposition temperature and the resin is filled and then cooled to a predetermined temperature lower than the softening temperature of the resin, the mold temperature on the core surface is lower than the softening temperature of the resin (normal molding) FIG. 6 shows the appearance inspection result of the molded product when it is set to “Condition” and cooled after filling with resin.
 図6は、アクリペットVH(軟化温度は、およそ107℃)を用いた時の結果である。図6から、樹脂の充填前のコア表面の金型温度が樹脂の軟化温度より低い温度の場合において、40℃以上(この場合、「樹脂の軟化温度-67℃」)であると、ナノ構造部分の樹脂の収縮が小さく離型ができない結果であったが、40℃より低い温度になると離型ができることが確認された。結局、冷却温度は、樹脂の軟化温度より67℃低い温度であることが好ましいことが確認できた。 FIG. 6 shows the results when using Acrypet VH (softening temperature is approximately 107 ° C.). From FIG. 6, when the mold temperature on the core surface before resin filling is lower than the softening temperature of the resin, the nanostructure is 40 ° C. or higher (in this case, “resin softening temperature−67 ° C.”). Although the resin shrinkage of the portion was small, it was impossible to release the mold, but it was confirmed that the mold could be released at a temperature lower than 40 ° C. Eventually, it was confirmed that the cooling temperature is preferably 67 ° C. lower than the softening temperature of the resin.
 しかしながら、大面積になると離型不足から一部欠陥等の発生があった。一方、樹脂の充填前にコア表面の金型温度を樹脂の軟化温度より高い温度に設定し、樹脂の充填後にコア表面の冷却を行った場合には、ナノ構造部分の樹脂の収縮が大きくなり、良好な離型特性が得られることが確認できた。 However, when the area is large, some defects occur due to insufficient release. On the other hand, if the mold temperature on the core surface is set to a temperature higher than the softening temperature of the resin before filling the resin and the core surface is cooled after filling the resin, the shrinkage of the resin in the nanostructure portion increases. It was confirmed that good release characteristics were obtained.
 このことからも、樹脂の軟化温度より高い温度にコア表面の金型温度を設定し、樹脂の充填を行い、その後に、樹脂の軟化温度より低い温度まで冷却を行い、型開きし成型品の取り出しを行う本発明では、アスペクト比1以上の高アスペクト比ナノ構造の射出成形方法として有用であることが確認できた。 This also indicates that the core surface mold temperature is set to a temperature higher than the softening temperature of the resin, the resin is filled, and then cooled to a temperature lower than the softening temperature of the resin. In the present invention for taking out, it was confirmed that the present invention is useful as an injection molding method of a high aspect ratio nanostructure having an aspect ratio of 1 or more.
 また、本発明に係る射出成形方法によると、さらに高いナノ構造の成形を行った結果、アスペクト比10までの成形において、良好な成形特性が得られることを確認した。 Further, according to the injection molding method according to the present invention, as a result of molding a higher nanostructure, it was confirmed that good molding characteristics were obtained in molding up to an aspect ratio of 10.
(加熱、冷却手段等)
 本発明に係る射出成形方法の上記実施例について、以下において、主に射出成形装置の加熱、冷却手段等の構成が本発明に係る射出成形方法に与える影響という観点から説明する。
(Heating, cooling means, etc.)
The above embodiments of the injection molding method according to the present invention will be described below mainly from the viewpoint of the influence of the configuration of the heating and cooling means of the injection molding apparatus on the injection molding method according to the present invention.
 本発明に係る射出成形方法を効果的行うためには、加熱手段は重要である。本発明では、加熱手段15A、15Bとして、図1(b)、図2(b)に示すように、赤外線ランプ本体を対向する固定側ベース金型2と可動側ベース金型3のそれぞれの表面に埋込する構成とした。 In order to effectively perform the injection molding method according to the present invention, the heating means is important. In the present invention, as the heating means 15A and 15B, as shown in FIGS. 1B and 2B, the surfaces of the fixed base mold 2 and the movable base mold 3 that face the infrared lamp main body, respectively. It was set as the structure embedded in.
 このような構成とすることで、型締め動作時に、互いに対向する固定側金型21と可動側金型22が接近することにより、固定側金型21と可動側金型22間の、多重反射が生じ、固定側コア4と可動側コア5の表面を室温から樹脂の軟化温度より高い温度である120℃まで昇温が可能となる。 By adopting such a configuration, the multiple reflection between the fixed mold 21 and the movable mold 22 occurs when the fixed mold 21 and the movable mold 22 facing each other approach each other during the mold clamping operation. Thus, the surfaces of the fixed side core 4 and the movable side core 5 can be heated from room temperature to 120 ° C., which is higher than the softening temperature of the resin.
 このような金型間の、固定側金型21と可動側金型22間の多重反射による昇温においては、10秒で、コアの表面を室温から樹脂の軟化温度より高い温度である120℃まで昇温が行えることが確認できた(図7の表の加熱形式のうち上から4番目の欄参照)。そのため、このような加熱手段を採用すると、高スループットのサイクル成形を行う上で効果的であることが確認できた。 In such a temperature rise due to multiple reflection between the fixed side mold 21 and the movable side mold 22 between the molds, the temperature of the surface of the core is 120 ° C. which is higher than the softening temperature of the resin from room temperature in 10 seconds. It was confirmed that the temperature could be increased up to (see the fourth column from the top of the heating modes in the table of FIG. 7). Therefore, it has been confirmed that the use of such a heating means is effective in performing high-throughput cycle molding.
 加熱手段15A、15Bの別の実施態様として変形例1を説明する。この変形例1は、図1(a)、図2(a)に示すように、固定側ベース金型2と可動側ベース金型3の内部に加熱器を設ける構成とし、加熱器としては、ヒータ(電熱棒ヒータ)を埋込んでなる構成がある。このような加熱手段によって、コア表面の金型温度を、室温から樹脂の軟化温度より高い温度である120℃まで昇温を行った。 Modification 1 will be described as another embodiment of the heating means 15A and 15B. As shown in FIGS. 1 (a) and 2 (a), this modification 1 has a configuration in which a heater is provided inside the fixed side base mold 2 and the movable side base mold 3, and the heater is There is a configuration in which a heater (electric heating rod heater) is embedded. By such heating means, the mold temperature on the core surface was raised from room temperature to 120 ° C., which is higher than the softening temperature of the resin.
 この加熱手段によると、上記のように120℃までの到達時間は5分であり、ナノ構造が表面に構成された固定側コア4と可動側コア5全体を昇温し、全体的に均一なコア表面の金型温度分布になるまでの到達時間は6分であった(図7の表の加熱形式のうち上から1番目の欄参照)。 According to this heating means, the arrival time up to 120 ° C. is 5 minutes as described above, and the temperature of the entire fixed side core 4 and the movable side core 5 with the nanostructures formed on the surface is increased. The time required to reach the mold temperature distribution on the core surface was 6 minutes (see the first column from the top in the heating format in the table of FIG. 7).
 さらに加熱手段15A、15Bの別の実施態様として、変形例2を説明する。この変形例2は、図1(a)、図2(a)に示すように、固定側ベース金型2と可動側ベース金型3内部に加熱器を設ける構成とし、加熱器としては、赤外線ランプを埋込んでなる構成がある。この加熱手段によって、この加熱手段によって、コア表面の金型温度を、室温から樹脂の軟化温度より高い温度である120℃まで昇温を行った。 Modification 2 will be described as another embodiment of the heating means 15A and 15B. As shown in FIGS. 1 (a) and 2 (a), this modification 2 has a configuration in which a heater is provided inside the fixed side base mold 2 and the movable side base mold 3, and the heater is an infrared ray. There is a configuration in which a lamp is embedded. With this heating means, the mold temperature on the core surface was raised from room temperature to 120 ° C., which is higher than the softening temperature of the resin.
 この加熱手段によると、ヒータを利用した加熱手段に比べて急激な昇温が可能であり、全体的に均一なコア表面の金型温度分布になるまでの到達時間は1分30秒程度であった(図7の表の加熱形式のうち上から2番目の欄参照)。 According to this heating means, a rapid temperature increase is possible as compared with a heating means using a heater, and the time required to reach a uniform mold temperature distribution on the core surface as a whole is about 1 minute 30 seconds. (Refer to the second column from the top among the heating modes in the table of FIG. 7).
 さらに加熱手段15A、15Bの別の実施態様として、変形例3を説明する。この変形例3は、図示はしないが、固定側金型21と可動側金型22の側方に赤外線ランプを配置し、固定側ベース金型2と可動側ベース金型3の側面から加熱する構成であり、この加熱手段により、固定側コア4と可動側コア5の表面を、室温から樹脂の軟化温度より高い温度である120℃まで昇温を行った。この加熱手段によると、全体的に均一なコア表面の金型温度分布になるまでの到達時間は1分30秒程度であった(図7の表の加熱形式のうち上から3番目の欄参照)。 Further, as another embodiment of the heating means 15A and 15B, Modification 3 will be described. In the third modification, although not shown, an infrared lamp is disposed on the side of the fixed mold 21 and the movable mold 22 and heated from the side surfaces of the fixed base mold 2 and the movable base mold 3. The surface of the fixed side core 4 and the movable side core 5 was heated from room temperature to 120 ° C., which is higher than the softening temperature of the resin. According to this heating means, the time required to reach a uniform core surface mold temperature distribution was about 1 minute 30 seconds (see the third column from the top of the heating formats in the table of FIG. 7). ).
 以上説明した4つの加熱手段、即ち、赤外線ランプ本体を対向する固定側ベース金型2と可動側ベース金型3のそれぞれの表面に埋込する構成と、変形例1~3の加熱手段は、いずれも本発明で加熱手段として適用できる。なお、上記赤外線ランプ本体を対向する固定側ベース金型2と可動側ベース金型3のそれぞれの表面に埋込みする構成は、図7の表でも示されているとおり、昇温時間が特に短く、高スループットのサイクルを実現する手段として特に適している。 The four heating means described above, that is, the configuration in which the infrared lamp main body is embedded in the respective surfaces of the fixed base mold 2 and the movable base mold 3 facing each other, and the heating means of the first to third modifications, Any of them can be applied as a heating means in the present invention. The structure in which the infrared lamp body is embedded in the surfaces of the fixed base mold 2 and the movable base mold 3 facing each other, as shown in the table of FIG. It is particularly suitable as a means for realizing a high-throughput cycle.
 冷却手段は、前記のとおり、固定側コア4及び可動側コア5の背面に形成された冷却媒体流路8、9に冷却媒体を流して冷却することにより、ナノ構造が形成された成型品の表面部分を急速に冷却することができ、短時間の成形サイクルが実現できることを確認した。 As described above, the cooling means flows the cooling medium flow paths 8 and 9 formed on the back surfaces of the fixed side core 4 and the movable side core 5 to cool the molded product in which the nanostructure is formed. It was confirmed that the surface portion can be rapidly cooled and a short molding cycle can be realized.
 冷却媒体としては、水、アルコール、二酸化炭素、空気、窒素などの気体などについて検討し、いずれの場合においても有用であることを確認した。 As the cooling medium, water, alcohol, carbon dioxide, air, nitrogen and other gases were examined and confirmed to be useful in any case.
 また、冷却手段として、本発明のように固定側コア4及び可動側コア5の背面に冷却媒体流路8、9を形成する構成を採用すると、固定側ベース金型2と可動側ベース金型3の内部に冷却の為の流路を形成するような構成を採用する場合に比べて、固定側コア4及び可動側コア5の表面部分をおよそ5倍高速で冷却できることが分かった。 Further, when the cooling medium flow path 8 or 9 is formed on the back surface of the fixed side core 4 and the movable side core 5 as the cooling means as in the present invention, the fixed side base mold 2 and the movable side base mold are used. It was found that the surface portions of the fixed-side core 4 and the movable-side core 5 can be cooled approximately five times faster than when a configuration in which a flow path for cooling is formed inside 3 is adopted.
さらに、前記のとおり、固定側金型21と可動側金型22は、部分的に、固定側金型21と可動側金型22を形成する金属材料より熱伝導率の低い材料(低熱伝導率材料)が埋め込まれている。具体的には、固定側金型21及び可動側金型22内に構成される固定側ベース金型2、可動側ベース金型3、固定側コア4及び可動側コア5の全てについて、又はそのいずれかについて、部分的に、又は低熱伝導率材料で固定側コア4及び可動側コア5を囲むように、低熱伝導率材料が埋め込まれており、熱伝導による放散を防止する構成であり、固定側コア4及び可動側コア5に低熱伝導率材料が埋め込まれている場合は、その全体の熱容量が、低熱伝導率材料が埋め込まれていない場合に較べて小さくなる。 Furthermore, as described above, the fixed-side mold 21 and the movable-side mold 22 are partially made of a material having a lower thermal conductivity (low thermal conductivity) than the metal material forming the fixed-side mold 21 and the movable-side mold 22. Material) is embedded. Specifically, all of the fixed-side base mold 2, the movable-side base mold 3, the fixed-side core 4 and the movable-side core 5 configured in the fixed-side mold 21 and the movable-side mold 22 or the In either case, the low thermal conductivity material is embedded so as to surround the fixed side core 4 and the movable side core 5 partially or with a low thermal conductivity material, and is configured to prevent dissipation due to thermal conduction, and fixed When the low thermal conductivity material is embedded in the side core 4 and the movable side core 5, the overall heat capacity is smaller than when the low thermal conductivity material is not embedded.
 特に、固定側コア4の表面6側及び可動側コア5の表面7側の熱容量が小さくあると、同じ熱エネルギーを吸収した場合に、固定側コア4の表面6側及び可動側コア5の表面7高速に冷却させ短時間の成形が可能となる。冷却手段についても加熱手段と同様に、同じ熱エネルギーを与えた場合に、高速に冷却させ短時間の成形が可能となる。 In particular, if the heat capacities on the surface 6 side of the fixed-side core 4 and the surface 7 side of the movable-side core 5 are small, when the same thermal energy is absorbed, the surface 6 side of the fixed-side core 4 and the surface of the movable-side core 5 7 Cooling at high speed enables molding in a short time. Similarly to the heating means, the cooling means can be cooled at a high speed and can be molded in a short time when the same thermal energy is applied.
 以上説明した本発明に係る射出成形方法により、高アスペクト比のナノ構造を持つ、良好な光学特性が得られる成型品を成形することができる。図8は、従来の射出成形方法と本発明の射出成形方法でそれぞれ得られたナノ構造を持つ光学素子である反射防止構造体の光学特性を図8に示す。 By the injection molding method according to the present invention described above, a molded product having a high aspect ratio nanostructure and good optical characteristics can be molded. FIG. 8 shows optical characteristics of an antireflection structure, which is an optical element having a nanostructure, obtained by the conventional injection molding method and the injection molding method of the present invention.
 ナノ構造による反射防止効果は高いアスペクト比の構造体になるほど、反射率の低減効果があることが一般的に知られている。図8に示すように、本発明に係る成型方法によれば、ナノ構造への充填率及び離型性が向上され、高アスペクト比構造の成型品が作製できることから、従来の成形法にくらべ良好な反射防止効果が得られることができた。 It is generally known that the anti-reflection effect due to the nanostructure is such that the higher the aspect ratio structure, the lower the reflectivity. As shown in FIG. 8, according to the molding method of the present invention, the filling rate and releasability of the nanostructures are improved, and a molded product having a high aspect ratio structure can be produced, which is better than the conventional molding method. A good antireflection effect could be obtained.
以上、本発明に係る射出成形方法を実施するための最良の形態を実施例に基づいて説明したが、本発明はこのような実施例に限定されるものではなく、特許請求の範囲に記載された技術的事項の範囲内でいろいろな実施例があることは言うまでもない。 The best mode for carrying out the injection molding method according to the present invention has been described based on the embodiments. However, the present invention is not limited to such embodiments, and is described in the claims. It goes without saying that there are various embodiments within the scope of technical matters.
 本発明に係る射出成形方法を利用すれば、大面積かつ曲面形状の表面であっても、高精度な反射防止構造体等の光学素子、光学部品等を形成できるので、反射防止効果が要求されるレンズ、プリズム、ミラー、レンズ鏡筒などの光学素子、光学部品等に広く適用可能である。 If the injection molding method according to the present invention is used, a highly accurate optical element such as an antireflection structure, an optical component, etc. can be formed even on a large surface and a curved surface, so that an antireflection effect is required. It can be widely applied to optical elements such as lenses, prisms, mirrors, and lens barrels, optical components, and the like.
 従って、本発明に係る射出成形方法は、これらの光学素子が用いられる光再生記録装置の光ピックアップ光学系、デジタルスチルカメラなどの撮影光学系、プロジェクタの投影系及び照明系、光走査光学系、ディスプレー、パネル、IUフィルター、LED等の製造分野に好適である。 Therefore, the injection molding method according to the present invention includes an optical pickup optical system of an optical reproduction recording apparatus in which these optical elements are used, a photographing optical system such as a digital still camera, a projection system and an illumination system of a projector, an optical scanning optical system, It is suitable for manufacturing fields such as displays, panels, IU filters, and LEDs.

Claims (4)

  1.  ナノメータサイズの構造物を表面に備えた固定側コアと可動側コアと、該固定側コアと可動側コアの表面を加熱する加熱手段と、該固定側コアと可動側コアを冷却する冷却手段とを備えた射出成形装置を使用し、表面にナノメータサイズの構造物を有する成型品を成形する射出成形方法であって、
     前記固定側コアと可動側コアの表面を、成形されるべき樹脂の軟化温度より高い温度に加熱してから前記固定側コアと可動側コアを型締めし、
     該型締め後に、前記固定側コアと可動側コア内に樹脂を充填し、
     該充填後に、前記固定側コアと可動側コアを前記樹脂の軟化温度より低い温度まで冷却しながら充填された樹脂を保圧し、該低い温度で樹脂成型品を冷却保持し、その後、前記固定側コアと可動側コアを型開きすることを特徴とするナノメータサイズの構造物を表面に有する成型品の射出成形法。
    A fixed-side core and a movable-side core provided with a nanometer-sized structure on the surface; heating means for heating the surfaces of the fixed-side core and the movable-side core; and cooling means for cooling the fixed-side core and the movable-side core; An injection molding method for molding a molded product having a nanometer-sized structure on the surface using an injection molding apparatus comprising:
    After heating the surfaces of the fixed core and the movable core to a temperature higher than the softening temperature of the resin to be molded, the fixed core and the movable core are clamped,
    After the mold clamping, the fixed side core and the movable side core are filled with resin,
    After the filling, the filled resin is held while cooling the fixed side core and the movable side core to a temperature lower than the softening temperature of the resin, the resin molded product is cooled and held at the low temperature, and then the fixed side An injection molding method for a molded article having a nanometer-sized structure on the surface, wherein the core and the movable core are opened.
  2.  前記樹脂の軟化温度より高い温度は、樹脂の分解温度より低い温度であることを特徴とする請求項1記載の成型品の射出成形法。 The method for injection molding of a molded product according to claim 1, wherein the temperature higher than the softening temperature of the resin is lower than the decomposition temperature of the resin.
  3.  前記樹脂の軟化温度より低い温度は、樹脂の軟化温度より67℃低い温度であることを特徴とする請求項1記載の成型品の射出成形法。 The method for injection molding of a molded product according to claim 1, wherein the temperature lower than the softening temperature of the resin is 67 ° C lower than the softening temperature of the resin.
  4.  前記固定側コアと可動側コアの表面に形成されたナノメータサイズの構造物の平均ピッチは、30nm~1000nmであり、アスペクト比1以上であることを特徴とする請求項1記載の射出成形法。 The injection molding method according to claim 1, wherein an average pitch of the nanometer-sized structures formed on the surfaces of the fixed side core and the movable side core is 30 nm to 1000 nm and an aspect ratio is 1 or more.
PCT/JP2009/051942 2008-02-14 2009-02-05 Injection molding method WO2009101890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008033664A JP2009190276A (en) 2008-02-14 2008-02-14 Injection molding method
JP2008-033664 2008-02-14

Publications (1)

Publication Number Publication Date
WO2009101890A1 true WO2009101890A1 (en) 2009-08-20

Family

ID=40956922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051942 WO2009101890A1 (en) 2008-02-14 2009-02-05 Injection molding method

Country Status (3)

Country Link
JP (1) JP2009190276A (en)
KR (1) KR20100114041A (en)
WO (1) WO2009101890A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010127990A1 (en) * 2009-05-07 2010-11-11 Kraussmaffei Technologies Gmbh Control device for an injection molding machine
CN103406736A (en) * 2013-08-15 2013-11-27 苏州大学 Technology for machining lens cone plastic mould precise assembly of digital camera

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5543810B2 (en) * 2010-03-16 2014-07-09 スタンレー電気株式会社 Optical deflector package
JP2019072989A (en) * 2017-10-16 2019-05-16 トリニティ工業株式会社 Decorative parts and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046159A (en) * 2000-05-26 2002-02-12 Sumitomo Chem Co Ltd Method for producing large-size light guide plate having pattern
JP2004145064A (en) * 2002-10-25 2004-05-20 Dainippon Printing Co Ltd Method for manufacturing diffraction optical element, diffraction optical element, optical system, and optical pickup device
JP2006044244A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Mold for injection molding and injection molding method
JP2006142521A (en) * 2004-11-17 2006-06-08 Ricoh Co Ltd Injection molding method, mold and molded product
JP2006255923A (en) * 2005-03-15 2006-09-28 Ricoh Co Ltd Optical element, manufacturing method of optical element, mirror lens and scanning lens
JP2007001181A (en) * 2005-06-24 2007-01-11 Sony Corp Apparatus and method for molding

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002046159A (en) * 2000-05-26 2002-02-12 Sumitomo Chem Co Ltd Method for producing large-size light guide plate having pattern
JP2004145064A (en) * 2002-10-25 2004-05-20 Dainippon Printing Co Ltd Method for manufacturing diffraction optical element, diffraction optical element, optical system, and optical pickup device
JP2006044244A (en) * 2004-06-29 2006-02-16 Konica Minolta Opto Inc Mold for injection molding and injection molding method
JP2006142521A (en) * 2004-11-17 2006-06-08 Ricoh Co Ltd Injection molding method, mold and molded product
JP2006255923A (en) * 2005-03-15 2006-09-28 Ricoh Co Ltd Optical element, manufacturing method of optical element, mirror lens and scanning lens
JP2007001181A (en) * 2005-06-24 2007-01-11 Sony Corp Apparatus and method for molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010127990A1 (en) * 2009-05-07 2010-11-11 Kraussmaffei Technologies Gmbh Control device for an injection molding machine
CN103406736A (en) * 2013-08-15 2013-11-27 苏州大学 Technology for machining lens cone plastic mould precise assembly of digital camera
CN103406736B (en) * 2013-08-15 2016-07-06 苏州大学 Lens tube of digital camera plastic mould precise molectron processing technique

Also Published As

Publication number Publication date
JP2009190276A (en) 2009-08-27
KR20100114041A (en) 2010-10-22

Similar Documents

Publication Publication Date Title
US7794643B2 (en) Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same
US7383697B2 (en) Optical element molding method
EP2637846B1 (en) Method of producing composite optical element
WO2009101890A1 (en) Injection molding method
JP5009635B2 (en) Manufacturing method and manufacturing apparatus for resin molded product
JP3867966B2 (en) OPTICAL ELEMENT, MOLD FOR MOLDING, AND METHOD FOR PRODUCING OPTICAL ELEMENT
JP2010099861A (en) Resin molding rubber mold, resin molding apparatus, and resin molding method
JP5120752B2 (en) Injection molding equipment
JP4919413B2 (en) Method and apparatus for manufacturing plastic molded product
JP4714491B2 (en) Manufacturing method of resin molded product, mold for resin molding, plastic optical element and display device, and image forming apparatus
JP2001158044A (en) Method for molding processing of plastic material
JP4057385B2 (en) Molding method of plastic molded product and injection mold
JP2009045816A (en) Method and apparatus for manufacture of plastic molding
JP2006327147A (en) Forming method of plastic lens and plastic lens
JP2007076178A (en) Manufacturing equipment and manufacturing method for molded body
JP2006142521A (en) Injection molding method, mold and molded product
JP3729351B2 (en) Molding method and molding apparatus for molded body having fine structure on surface layer
JP2001219438A (en) Plastic optical element, molding mold for the element, and method for molding the element
JP4895348B2 (en) Plastic molded product, manufacturing apparatus and manufacturing method thereof
JP4168705B2 (en) Optical element and mold for molding the same
JP3869296B2 (en) Plastic optical element and manufacturing method thereof
JP2009113227A (en) Method of manufacturing plastic molded article, plastic molding device, and plastic molded article
JP2003181897A (en) Plastic optical element and method for manufacturing the same
JP5162768B2 (en) Mold
JPH07323486A (en) Manufacture of plastic molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09711033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107016196

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09711033

Country of ref document: EP

Kind code of ref document: A1