WO2015117512A1 - 一种多轴飞行器 - Google Patents

一种多轴飞行器 Download PDF

Info

Publication number
WO2015117512A1
WO2015117512A1 PCT/CN2014/094284 CN2014094284W WO2015117512A1 WO 2015117512 A1 WO2015117512 A1 WO 2015117512A1 CN 2014094284 W CN2014094284 W CN 2014094284W WO 2015117512 A1 WO2015117512 A1 WO 2015117512A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing pulley
synchronous transmission
motor
bracket
disposed
Prior art date
Application number
PCT/CN2014/094284
Other languages
English (en)
French (fr)
Inventor
杨华东
Original Assignee
杨华东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨华东 filed Critical 杨华东
Publication of WO2015117512A1 publication Critical patent/WO2015117512A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • B64C27/14Direct drive between power plant and rotor hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/58Transmitting means, e.g. interrelated with initiating means or means acting on blades
    • B64C27/59Transmitting means, e.g. interrelated with initiating means or means acting on blades mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/296Rotors with variable spatial positions relative to the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/20Transmission of mechanical power to rotors or propellers
    • B64U50/27Transmission of mechanical power to rotors or propellers with a single motor serving two or more rotors or propellers

Definitions

  • This application belongs to the field of aerial photography, and in particular relates to a variable-width multi-axis aircraft.
  • Each of the shafts of the multi-axle aircraft of the prior art solution consists of a corresponding propeller and a motor that drives the respective propeller.
  • the attitude maintenance and maneuvering of the flight of the aircraft is to control the speed of each motor through the flight control system (the rotation directions of the individual motors of the existing multi-axis aircraft are opposite in pairs to counteract the spin torque) to achieve the attitude and motion control of the aircraft. of.
  • the attitude of the vertical take-off and landing aircraft includes horizontal and inclined. Maneuvers include level flight, ascent, descent, and spin (around the Z axis of the body, the vertical axis of the horizontal plane of the body structure).
  • the ascending and descending action of the multi-axis aircraft is achieved by synchronously raising or lowering the rotational speeds of all the motors; the horizontal flight of the aircraft is to increase the rotational speed difference of the two motors on the diagonal in pairs so that the aircraft maintains a certain horizontal tilt posture along the diagonal
  • the line is driven by the high speed motor pointing in the direction of the low speed motor; the clockwise (counterclockwise) spin is to simultaneously increase (reduce) all clockwise (counterclockwise) rotation of the motor and reduce (increase) the whole machine. All counterclockwise (clockwise) rotation of the motor speed is achieved.
  • the lift generated by each motor-driven propeller is used as a force of different magnitudes.
  • the rotational speed of each motor is taken as a positive and negative moment.
  • the attitude and action of controlling the aircraft are to continuously increase or decrease the magnitude of each force and the various moments. The size is achieved.
  • the prior art solution is driven by a motor separately for each propeller.
  • the aeronautical brushless motor cannot keep the rotational speeds of all the motors consistent due to its working principle, and the existing manufacturing process makes the difference in the rotational speed of each motor larger.
  • the existing technical solutions if all the motor speeds are consistent or the difference is small, it is very advantageous for the various types of flight control software currently used to control them. At this time, the power utilization efficiency of the whole machine is the highest. If the speed of each motor varies greatly, it will increase the burden of the flight control software, because it will stabilize a naturally unstable flight platform. Although this can also fly, However, if combined with various maneuvers, the flight control will perform very frequent motor speed control to speed up the power consumption of the whole machine.
  • the object of the present invention is to provide a multi-axis aircraft that solves the problems of heavy weight, unsatisfactory aerial photography, fast power consumption, difficulty in controlling rotor synchronism, and inability to change the distance in the prior art.
  • the present invention provides the following technical solutions:
  • the embodiment of the present application discloses a multi-axis aircraft, including:
  • the bracket includes a first side rod and a second side rod disposed in parallel, and a main rod fixed between the first side rod and the second side rod, the two ends of the main rod are respectively fixed at the The middle of the first side bar and the second side bar;
  • the synchronous transmission mechanism includes a main shaft that can be driven to rotate by the motor.
  • a synchronous transmission belt is respectively disposed between the main shaft and each of the rotary shafts.
  • a belt is disposed in the first side rail or the second side rail.
  • the first timing pulley and the second timing pulley are respectively fixed on the rotor and the main shaft, and two ends of the synchronous transmission belt are respectively sleeved on the first timing belt.
  • the inner surface of the synchronous transmission belt is provided with a tooth groove, and the outer surfaces of the first timing pulley and the second timing pulley are respectively provided with the inner surface of the synchronous transmission belt Engaged slots.
  • the bracket further includes four first brackets, and the four first brackets are respectively mounted on the four ends of the first side rod and the second side rod,
  • the first bracket has a first protection space, and the first timing pulley is disposed in the first protection space.
  • the bracket further includes two second brackets, the two Two second brackets are respectively fixed between the first side bar and the main pole, and between the second side bar and the main pole, the second bracket has a second protection space, and the second synchronous pulley Provided in the second protection space.
  • guide wheels are provided on both sides of the synchronous transmission belt.
  • a second transmission mechanism is coupled between the main shaft and the motor, and the second transmission mechanism includes a third timing pulley and a fourth timing pulley, and the third timing belt
  • the wheel is fixed on an output shaft of the motor
  • the fourth timing pulley is fixed on the main shaft
  • a second synchronous transmission belt is connected between the third timing pulley and the fourth timing pulley.
  • each of the rotors includes a drive shaft, a first fin, a second fin, a hub, and a driving portion, the hub being fixed to the drive shaft,
  • the first fin and the second fin are symmetrically disposed on two sides of the hub, and the driving portion can simultaneously act on the first fin and the second fin and drive the first fin and the second flap
  • the flaps are flipped in opposite clockwise directions.
  • the first paddle and the second paddle are respectively rotatably provided on two sides of the hub, and the first fin and the second fin are respectively fixed at the The first paddle collet and the second paddle collet are described.
  • the driving portion includes a first sliding member, the first sliding member is sleeved on the driving shaft, and is located below the hub, the first sliding a first crab claw and a second crab claw respectively extending on two sides of the symmetry of the drive shaft, wherein the first paddle head and the second paddle chuck are respectively provided with a first rotating portion and a second rotating portion, wherein the first a first connecting member is rotatably coupled between a rotating portion and the first claw claw, and a second connecting member is rotatably coupled between the second rotating portion and the second claw claw, the driving portion further comprising a driveable portion A power unit in which the first slider is raised.
  • the power unit includes a second sliding member, a variable pitch rocker arm, a connecting rod and a steering gear
  • the second sliding member is sleeved on the driving shaft and located at the First slide Below the piece
  • the variable pitch rocker arm is rotatably mounted on the bracket, and one end of the rocker arm is rotatably connected to the first sliding member
  • the connecting rod is connected to the steering gear and the rocker arm Between one end.
  • the UAV of the present invention is provided with a motor, and all the rotors are driven to rotate synchronously by the motor. Since only one motor is provided, the cost is low and the weight is light; and the high frequency vibration generated by one motor relative to the plurality of motors The effect on the sharpness of the aerial image is greatly weakened; in addition, the rotation of each rotor is almost identical by driving all the rotors simultaneously by one motor.
  • variable pitch rotor of the present invention can act to optimize the aerodynamics of the airfoil by varying the pitch over a range of rotational speeds, with the aircraft of the present invention having a higher efficiency relative to an aircraft having a variable pitch.
  • the invention provides a synchronous transmission belt in a cavity between the first side rod and the second side rod, and the first timing belt wheel is disposed in the first protection space of the first bracket, and can effectively protect when the aircraft accidentally collides Synchronous drive belt and first timing pulley.
  • the spacing between the belts can be effectively limited to avoid contact with the first side bar or the second side bar.
  • FIG. 1 is a schematic perspective view showing the structure of an aircraft in a specific embodiment of the present invention.
  • Figure 2 is a side elevational view of the aircraft in accordance with a particular embodiment of the present invention.
  • Figure 3 is a perspective exploded view of the drive system in accordance with an embodiment of the present invention.
  • Figure 4 is a perspective view showing a rotor of a specific embodiment of the present invention.
  • Figure 5 is a schematic view showing the explosion of the rotor in a specific embodiment of the present invention.
  • the aircraft includes a bracket 10, and a drive system 20 and a rotor 30 mounted to the bracket.
  • the bracket 10 is a supporting platform, and a landing gear, an aerial camera head and the like can be fixed under the bracket 10, and the power supply, the circuit board and the like can be carried on the upper part.
  • the bracket 10 includes a first side rod 11 and a second side rod 12 which are disposed in parallel, and the first side rod 11 and the second side rod 12 are two hollow round rods having the same length and the same diameter.
  • a main rod 13 is fixed between the first side rod 11 and the second side rod 12, and the main rod 13 is a hollow round rod, and two ends thereof are respectively fixed at an intermediate position between the first side rod 11 and the second side rod 12, and
  • the main rod 13 is preferably perpendicular to the first side rod 11 and the second side rod 12.
  • the bracket 10 further includes four first brackets 14 respectively mounted on the four ends of the first side bar 11 and the second side bar 12, and the first bracket 14 is formed with a first protection space 141 in the middle thereof. .
  • the bracket 10 further includes two second brackets 15 fixed between the first side rod 11 and the main rod 13 and between the second side rod 12 and the main rod 13 respectively, and the second bracket 15 is centrally A second protection space 151 is formed.
  • the main rod 13 may also not be perpendicular to the first side rod 11 and the second side rod 12.
  • the material of the first side rod 11, the second side rod 12 and the main rod is preferably carbon fiber, and it is conceivable that the first side rod 11, the second side rod 12 and the main rod 13 can be used under the premise of satisfying the supporting strength.
  • Other materials, such as aluminum, are as light as possible.
  • the above-mentioned bracket 10 is fixed in an H shape by only three round rods, has a simple structure and is maximized. Reduced weight.
  • the drive system 20 includes a motor 21, a third timing pulley 22, a fourth timing pulley 23, a second synchronous transmission belt 24, and a spindle 25.
  • the third timing pulley 22 is mounted on the output shaft of the motor 21, the spindle 25 is rotatably disposed in the main rod 13, the fourth timing pulley 23 is sleeved on the spindle 25 and fixed to the spindle 25, and the third timing pulley 22 is located. Directly above the fourth timing pulley 23, the third timing belt 22 and the fourth timing pulley 23 are interlocked by the second synchronous transmission belt 24.
  • a phase is provided between the inner surface of the second synchronous transmission belt 24 and the outer surface of the third timing pulley 22.
  • the meshing cogging, the outer surface of the fourth timing pulley 23 is also provided with a tooth groove that meshes with the inner surface of the second synchronous transmission belt 24.
  • the motor 21 is powered by a power source, the motor 21 can directly drive the third timing pulley 22 to rotate, and the third timing pulley 22 drives the fourth timing pulley 23 to rotate by the second synchronous transmission belt 24, and the fourth timing pulley 23 is rotated. Rotation then drives the spindle 25 to rotate.
  • the rotors 30 are mounted on the first brackets 14.
  • Each of the rotors 30 includes a drive shaft 31 in a vertical direction.
  • the bottom end of the drive shaft 31 is sleeved and fixed with a first timing pulley 32.
  • the first timing pulley 32 protects. It is disposed in the first protection space 141.
  • Four second timing pulleys 26 are fixed on the main shaft 25, and a synchronous transmission belt 27 is disposed between each of the second timing pulleys 26 and the first timing pulley 32 of the corresponding rotor.
  • the first timing pulley 32 and the second timing pulley 26 are disposed on the inner surface of the synchronous transmission belt 27, and the outer surfaces of the first timing pulley 32 and the second timing pulley 26 are respectively provided and synchronized.
  • Two second timing pulleys 26 are disposed at two ends of the main shaft 25, wherein two second timing pulleys 26 at one end are protectively disposed in the second protection space 151, and two second synchronizations at one end
  • the pulley 26 is placed in close proximity, preferably in one piece.
  • the synchronous transmission belt 27 is to pass through the inside of the first side rod 11 and the second side rod 12.
  • the diameter of the first timing pulley 32 is relatively large, so that the synchronous transmission belt 27 is easy to be connected with the first side rod. 11 or contact occurs at the inner wall surface or opening of the second side bar 12, and the synchronous transmission belt 27 is easily damaged at high speed.
  • a pair of guide wheels 28 are respectively disposed at two ends of the synchronous transmission belt 27, and each pair of guide wheels 28 are disposed on both sides of the timing belt 27 to control the spacing of the ends of the timing belts, thereby The contact of the synchronous drive belt 27 with the first side bar 11 or the second side bar 12 is avoided to increase the service life of the synchronous drive belt 27.
  • the operation principle of the above-mentioned driving system is as follows: the motor 21 is powered by the power source, and directly drives the third timing pulley 22 to rotate; the third timing pulley 22 further drives the fourth timing pulley 23 to rotate through the second synchronous transmission belt 24.
  • the rotation speed ratio can be controlled; since the fourth timing pulley 23 is fixed to the main shaft 25, the main shaft 25 can be further driven to rotate; the main shaft 25 is driven and fixed.
  • the four second timing pulleys 26 on the main shaft are synchronously rotated, and each of the second timing pulleys 26 is respectively driven by a synchronous transmission belt 27 to rotate the corresponding first timing pulley 32.
  • the first timing pulley 32 is rotated. In turn, the corresponding fins are rotated.
  • the driving force is output to the main shaft by a motor, and the rotation of the main shaft is controlled.
  • the main shaft further outputs power to the four rotors through four synchronous transmission belts. Therefore, it is conceivable that the technical solution of the present invention can also be applied to an aircraft having other numbers of rotors.
  • the main shaft can be provided with the same number of synchronous wheels according to the number of the rotors. For example, a pair of seconds can be added in the middle of the main shaft.
  • the central position of the main rod can vertically fix a round rod, and the two ends of the round rod are respectively rotated to provide a rotor, so that the main shaft can simultaneously drive six rotors for synchronous rotation.
  • the UAV of the present invention is provided with a motor, and all the rotors are driven to rotate synchronously by the motor. Since only one motor is provided, the cost is low and the weight is light; and the high frequency vibration generated by one motor relative to the plurality of motors The influence on the definition of aerial photography is greatly weakened; in addition, the synchronization is easily controlled by driving all the rotors simultaneously by one motor.
  • the rotor 30 includes a drive shaft 31, a first timing pulley 32, and a first wing. 331.
  • the first timing pulley 32 is fixed to the bottom end of the drive shaft 31, and driven by the synchronous transmission belt 27, the drive shaft 31 can be rotated together.
  • the hub 34 is a cylinder whose axis vertically drives the axis of the shaft 31.
  • the middle portion of the hub 34 is provided with a through hole or a groove in the vertical direction, and is sleeved on the top end of the drive shaft 31 through the through hole or groove. Formed in a fixed manner, the rotation of the drive shaft 31 can drive the hub 34 to rotate together.
  • a first paddle 351 and a second paddle 352 are respectively rotatably disposed on two sides of the hub 34.
  • the first paddle 351 and the second paddle 352 are respectively provided with clamping portions, and the first blade
  • the 331 and the second flap 332 are detachably fixed to the two clamping portions by screws, respectively.
  • the driving portion includes a first sliding member 36.
  • the first sliding member 36 is sleeved on the driving shaft 31 and located below the hub 34.
  • the first sliding member 36 extends on the symmetrical sides of the driving shaft 31 to respectively extend the first crab claw. 361 and the second crab claw 362, the first paddle chuck 351 and the second paddle chuck 352 are respectively provided with a first rotating portion 3511 and a second rotating portion 3521, and between the first rotating portion 3511 and the first claw claw 361
  • a first connecting member 371 is rotatably connected, and a second connecting member 372 is rotatably coupled between the second rotating portion 3521 and the second claw 362.
  • the drive portion also includes a power unit that can drive the first slider 36 to rise.
  • the power unit includes a second sliding member 381, a variable pitch rocker arm 382, a connecting rod 383 and a steering gear 384.
  • the second sliding member 381 is sleeved on the driving shaft 31 and located below the first sliding member 36.
  • the 382 is rotatably mounted on the bracket 10, and the first end of the variable pitch rocker arm 382 is rotatably coupled to the first slider 36, and the link 383 is coupled between the steering gear and the second end of the variable pitch rocker arm 382.
  • the two sides of the second sliding member 381 are symmetrically disposed with a first connecting portion 3811 and a second connecting portion 3812.
  • the variable pitch rocker arm 382 has a first arm 3821 rotatably coupled to the first connecting portion 3811 and is rotatably coupled to the second connection.
  • variable pitch rocker arm 382 can simultaneously act on the symmetrical sides of the second sliding member 381 during the rotation process.
  • the double push structure makes the force of the variable pitch rocker acting on the second sliding member 381 symmetrical, and even if there is a gap between the entire set of variable pitch parts, it can ensure that the rotation of the two sides of the rotor does not occur periodically during one rotation. At the same time, the service life of the power unit is increased.
  • the driving portion can simultaneously act on the first flap 331 and the second flap 332 and drive the first flap 331 and the second flap 332 to flip in opposite clockwise directions. Thereby the control of the blade pitch is achieved.
  • variable pitch multi-axis aircraft of the present invention has the advantages of:
  • the flight control system does not need to change the rotation speed of each motor frequently in order to control the posture and movement of the whole machine, which saves the power consumption of the whole machine and delays the battery life;
  • the single-motor-driven variable-distance multi-axis aircraft is low in cost, such as a crash.
  • the prior art solution is that each motor is hard-wired to each propeller. Once the propeller crashes, the propeller hits any object due to high-speed inertia and is immediately damaged. The motor that is hard-wired to the propeller will be further damaged, so that the cost of parts replaced during the repair process will be greatly increased;
  • variable pitch propeller can make the motor optimize the aerodynamic effect of the propeller at different speeds
  • variable pitch propeller control makes the aircraft's action attitude correspondingly much faster than the prior art scheme, which increases the maneuverability of the aircraft and can achieve reverse flight;
  • variable pitch propeller is used to reduce the loss of the motor and prolong the service life of the multi-axis aircraft.
  • the body crossbar of the H-type fixed propeller and the longitudinal rod of the body have certain flexibility.
  • the body crossbar will be deformed around the longitudinal rod of the body. Of course, this deformation will be restored when the asymmetrical thrust of the body is small. This slight and recoverable structural deformation of the body is the key to solving the spin action of the variable-distance multi-axis H-shaped body layout scheme.
  • the synchronous transmission belt is disposed in the cavity between the first side rod and the second side rod, and the first timing belt wheel is disposed in the first protection space of the first bracket, and can be effectively protected when the aircraft accidentally collides. Synchronous drive belt and first timing pulley. In addition, by providing a guide wheel, the spacing between the belts can be effectively limited to avoid contact with the first side bar or the second side bar.
  • variable pitch rocker arm has a double push structure, so that the force acting on the second sliding member of the variable pitch rocker is symmetrical, which increases the service life of the power device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Toys (AREA)

Abstract

一种多轴飞行器,包括:支架(10),支架包括平行设置的第一侧杆(11)和第二侧杆(12),以及固定于第一侧杆和第二侧杆之间的主杆(13),主杆的两端分别固定于第一侧杆和第二侧杆的中部;驱动系统(20),安装于支架上,驱动系统包括一电机(21)和四个旋翼(30),四个旋翼分别安装于第一侧杆和第二侧杆的四个端部,电机通过同步传动机构驱动多个旋翼同步进行转动,同步传动机构包括可被电机驱动转动的主轴(25),主轴与每个旋翼之间分别设有一同步传动皮带,同步传动皮带设于所述第一侧杆或第二侧杆内。同步传动皮带设置于第一侧杆和第二侧杆中间的腔体中,第一同步带轮设于第一支架的第一保护空间内,在飞行器意外发生碰撞时,可有效保护同步传动皮带和第一同步带轮。

Description

一种多轴飞行器 技术领域
本申请属于航拍领域,特别是涉及一种可变距的多轴飞行器。
背景技术
现有的技术方案中的多轴飞行器的每个轴由相应的螺旋桨和驱动相应螺旋桨的电机组成。飞行器飞行的姿态保持和机动动作是通过飞行控制系统分别控制各个电机转速(现有多轴飞行器的各个电机的转动方向是成对相反的,以抵消自旋力矩)来达成对飞行器姿态和动作控制的。垂直起降飞行器的姿态包括水平,倾斜。机动动作包括平飞,上升,下降,自旋(绕自身Z轴、即机体结构水平面的垂直轴)。多轴飞行器的上升与下降动作是使所有电机的转速同步提升或下降来实现;飞行器的水平飞行是成对得增加对角线上两个电机的转速差使飞机保持一定水平倾斜姿态沿该对角线的由高转速电机指向低转速电机方向移动来实现的;顺时针(逆时针)自旋是同时增加(减少)整机所有顺时针(逆时针)转动电机转速且同时减少(增加)整机所有逆时针(顺时针)转动电机转速来实现的。把每个电机驱动的螺旋桨产生的升力作为一个大小不同的作用力,把每个电机的转速作为一个个正反力矩,控制飞机的姿态和动作就是不断增减各个作用力的大小和各个力矩的大小来实现的。
现有技术方案是通过每个螺旋桨单独用电动机驱动的,航空无刷电机由于其工作原理导致无法让所有电机的转速保持一致,而现有的制造工艺让各个电机的转速差异更大。现有的技术方案中,倘若全部电机转速一致或者差异很小,非常有利于当前使用的各类飞行控制软件来对其进行控制,此时整机的电能利用效率最高。倘若各个电机的转速差异很大,就会加重飞行控制软件的负担,因为它要让一个天生就非常不稳定的飞行平台保持稳定。虽然这样也能飞行, 但是如果配合各种不同的机动动作,飞控将进行非常频繁的各个电机转速控制,加快整机的电能消耗速度。
发明内容
本发明的目的提供一种多轴飞行器,解决现有技术中无人飞行器重量大、航拍不清晰、电力消耗快、旋翼同步性难控制以及无法变距的问题。
为实现上述目的,本发明提供如下技术方案:
本申请实施例公开了一种多轴飞行器,包括:
支架,所述支架包括平行设置的第一侧杆和第二侧杆,以及固定于所述第一侧杆和第二侧杆之间的主杆,所述主杆的两端分别固定于所述第一侧杆和第二侧杆的中部;
驱动系统,安装于所述支架上,所述驱动系统包括一电机和四个旋翼,所述四个旋翼分别安装于所述第一侧杆和第二侧杆的四个端部,所述电机通过同步传动机构驱动所述多个旋翼同步进行转动,所述同步传动机构包括可被所述电机驱动转动的主轴,所述主轴与每个旋翼之间分别设有一同步传动皮带,所述同步传动皮带设于所述第一侧杆或第二侧杆内。
优选的,在上述的多轴飞行器中,所述旋翼和主轴上分别固定有第一同步带轮和第二同步带轮,所述同步传动皮带的两端分别套设于所述第一同步带轮和第二同步带轮上,所述同步传动皮带的内表面设有齿槽,所述第一同步带轮和第二同步带轮的外表面分别设有与所述同步传动皮带内表面相啮合的齿槽。
优选的,在上述的多轴飞行器中,所述支架还包括四个第一支架,所述四个第一支架分别安装于所述第一侧杆和第二侧杆的四个端部,所述第一支架具有第一保护空间,所述第一同步带轮设于所述第一保护空间内。
优选的,在上述的多轴飞行器中,所述支架还包括两个第二支架,所述两 个第二支架分别固定于所述第一侧杆与主杆之间、以及所述第二侧杆与主杆之间,所述第二支架具有第二保护空间,所述第二同步带轮设于所述第二保护空间内。
优选的,在上述的多轴飞行器中,所述同步传动皮带的两侧设有导轮。
优选的,在上述的多轴飞行器中,所述主轴和电机之间连接有第二传动机构,所述第二传动机构包括第三同步带轮和第四同步带轮,所述第三同步带轮固定于所述电机的输出轴上,所述第四同步带轮固定于所述主轴上,所述第三同步带轮和第四同步带轮之间连接有第二同步传动皮带。
优选的,在上述的多轴飞行器中,所述每个旋翼包括驱动轴、第一翼片、第二翼片、桨毂和驱动部,所述桨毂固定于所述驱动轴上,所述第一翼片和第二翼片对称设于所述桨毂的两侧,所述驱动部可同时作用于所述第一翼片和第二翼片并驱动所述第一翼片和第二翼片沿相反的时针方向翻动。
优选的,在上述的多轴飞行器中,所述桨毂的两侧分别可转动设有第一桨夹头和第二桨夹头,所述第一翼片和第二翼片分别固定于所述第一桨夹头和第二桨夹头上。
优选的,在上述的多轴飞行器中,所述驱动部包括第一滑动件,所述第一滑动件套设于所述驱动轴上,且位于所述桨毂的下方,所述第一滑动件于驱动轴的对称两侧分别延伸有第一蟹爪和第二蟹爪,所述第一桨夹头和第二桨夹头分别设有第一转动部和第二转动部,所述第一转动部和第一蟹爪之间可转动连接有第一连接件,所述第二转动部和第二蟹爪之间可转动连接有第二连接件,所述驱动部还包括可驱动所述第一滑动件上升的动力装置。
优选的,在上述的多轴飞行器中,所述动力装置包括第二滑动件、变距摇臂、连杆和舵机,所述第二滑动件套设于所述驱动轴上,且位于所述第一滑动 件的下方,所述变距摇臂可转动安装于所述支架上,且所述摇臂的一端与第一滑动件可转动连接,所述连杆连接于所述舵机和摇臂的另一端之间。
与现有技术相比,本发明的优点在于:
本发明的无人飞行器设置有一个电机,并通过该电机驱动所有的旋翼同步进行转动,由于仅设置一个电机,成本低,重量轻;而且相对于多个电机,一个电机所产生的高频振动对航拍清晰度的影响得到较大的削弱;另外,通过一个电机同时驱动所有旋翼进行转动,各旋翼同步性几乎完全一致。
本发明的变距旋翼可以在转速一段范围内通过改变螺距而起到使翼片气动力最优的作用,相对于螺距不可变的飞行器,本发明的飞行器具有更高的效率。
本发明将同步传动皮带设置于第一侧杆和第二侧杆中间的腔体中,第一同步带轮设于第一支架的第一保护空间内,在飞行器意外发生碰撞时,可有效保护同步传动皮带和第一同步带轮。另外通过设置导轮,可有效限制皮带之间的间距,避免其与第一侧杆或第二侧杆的接触。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1所示为本发明具体实施例中飞行器的立体结构示意图;
图2所示为本发明具体实施例中飞行器的侧视图;
图3所示为本发明具体实施例中驱动系统的立体爆炸图;
图4所示为本发明具体实施例中旋翼的立体示意图;
图5所示为本发明具体实施例中旋翼的爆炸示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详细的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
参图1至图5所示,飞行器包括支架10、以及安装于支架上的驱动系统20和旋翼30。
支架10为一支撑平台,其下方可以固定有起落架、航拍云台等,其上方可以承载电源、电路板等部件。
支架10包括平行设置的第一侧杆11和第二侧杆12,第一侧杆11和第二侧杆12是两根长度相同、直径相同的空心圆杆。第一侧杆11和第二侧杆12之间固定有主杆13,主杆13为一空心圆杆,其两端分别固定于第一侧杆11和第二侧杆12的中间位置,且主杆13优选垂直于第一侧杆11和第二侧杆12。
支架10还包括四个第一支架14,四个第一支架14分别安装于第一侧杆11和第二侧杆12的四个端部,第一支架14的中部形成有第一保护空间141。
支架10还包括两个第二支架15,两个第二支架15分别固定于第一侧杆11与主杆13之间、以及第二侧杆12与主杆13之间,第二支架15中部形成有第二保护空间151。
在其他实施例中,主杆13也可以不垂直于第一侧杆11和第二侧杆12。第一侧杆11、第二侧杆12以及主杆的材质优选为碳纤维,易于想到的是,在满足支撑强度的前提下,第一侧杆11、第二侧杆12以及主杆13可以采用其他材质,例如铝材质,越轻越好。
上述的支架10,仅仅采用三根圆杆呈H形固定,结构简单,而且最大化的 降低了重量。
参图3所示,驱动系统20包括一电机21、第三同步带轮22、第四同步带轮23、第二同步传动皮带24和一主轴25。第三同步带轮22安装于电机21的输出轴上,主轴25转动设于主杆13内,第四同步带轮23套设于主轴25上并与主轴25固定,第三同步带轮22位于第四同步带轮23的正上方,第三同步带轮22和第四同步带轮23之间通过第二同步传动皮带24实现联动。为了防止第二同步传动皮带24与第三同步带轮22以及第四同步带轮23之间打滑,第二同步传动皮带24的内表面与第三同步带轮22的外表面之间设有相啮合的齿槽,第四同步带轮23的外表面也设有与第二同步传动皮带24内表面相啮合的齿槽。
电机21由电源进行供电,电机21可以直接驱动第三同步带轮22进行转动,第三同步带轮22通过第二同步传动皮带24驱动第四同步带轮23进行转动,第四同步带轮23转动进而带动主轴25进行转动。
旋翼30安装于第一支架14上,每个旋翼30包括一沿竖直方向的驱动轴31,驱动轴31的底端套设并固定一第一同步带轮32,第一同步带轮32保护性地设于第一保护空间141内。主轴25上固定有四个第二同步带轮26,每个第二同步带轮26与对应旋翼的第一同步带轮32之间设有一同步传动皮带27,同步传动皮带27的两端分别套设于第一同步带轮32和第二同步带轮26上,同步传动皮带27的内表面设有齿槽,第一同步带轮32和第二同步带轮26的外表面分别设有与同步传动皮带27内表面相啮合的齿槽。主轴25的两端各设有两个第二同步带轮26,其中位于一端的两个第二同步带轮26保护性地设于第二保护空间151内,且位于一端的两个第二同步带轮26紧靠设置,优选为一体成型。
同步传动皮带27要穿过第一侧杆11和第二侧杆12内部,为了配合减速作用,第一同步带轮32的直径设置比较大,使得同步传动皮带27易与第一侧杆 11或第二侧杆12的内壁表面或开口处发生接触,在高速运转时,同步传动皮带27很容易损坏。为了提高同步传动皮带的使用寿命,在同步传动皮带27的两端分别设有一对导轮28,每一对导轮28设置于同步皮带27的两侧,以控制同步皮带端部的间距,从而避免同步传动皮带27与第一侧杆11或第二侧杆12的接触,提高同步传动皮带27的使用寿命。
上述的驱动系统的作动原理如下:电机21由电源供电,直接带动第三同步带轮22进行转动;第三同步带轮22通过第二同步传动皮带24进一步带动第四同步带轮23进行转动,通过调整第三同步带轮22和第四同步带轮23的直径比,可以控制转速比;由于第四同步带轮23与主轴25固定,因此可进一步带动主轴25进行转动;主轴25带动固定于主轴上的四个第二同步带轮26进行同步转动,每个第二同步带轮26又分别通过一个同步传动皮带27带动相应的第一同步带轮32进行转动,第一同步带轮32进而带动相应的翼片转动。
通过一个电机将驱动力输出至主轴,并控制主轴的转动,主轴通过四个同步传动皮带进一步将动力输出至四个旋翼。由此可以想到,本发明的技术方案同样可以适用于具有其他数量旋翼的飞行器,主轴上可以依据旋翼的数量,对应设有相同数目的同步轮,例如:可以在主轴的中部增加一对第二同步带轮,同时,主杆的中部位置可以垂直固定一圆杆,该圆杆的两端分别转动设置一旋翼,如此,主轴可以同时驱动六个旋翼进行同步转动。
本发明的无人飞行器设置有一个电机,并通过该电机驱动所有的旋翼同步进行转动,由于仅设置一个电机,成本低,重量轻;而且相对于多个电机,一个电机所产生的高频振动对航拍清晰度的影响得到较大的削弱;另外,通过一个电机同时驱动所有旋翼进行转动,同步性容易控制。
参图4和图5所示,旋翼30包括驱动轴31、第一同步带轮32、第一翼片 331、第二翼片332、桨毂34和驱动部。
第一同步带轮32固定于驱动轴31的底端,在同步传动皮带27的驱动下,可带动驱动轴31一起转动。
桨毂34为一圆柱体,其轴线垂直驱动轴31的轴线,桨毂34的中部沿竖直方向开设有通孔或凹槽,并通过该通孔或凹槽套设于驱动轴31的顶端形成固定,驱动轴31的转动可带动桨毂34一起转动。
桨毂34的两侧分别可转动设有第一桨夹头351和第二桨夹头352,第一桨夹头351和第二桨夹头352上分别设有夹持部,第一翼片331和第二翼片332分别通过螺钉可拆卸固定于两个夹持部上。
驱动部包括第一滑动件36,第一滑动件36套设于驱动轴31上,且位于桨毂34的下方,第一滑动件36于驱动轴31的对称两侧分别延伸有第一蟹爪361和第二蟹爪362,第一桨夹头351和第二桨夹头352分别设有第一转动部3511和第二转动部3521,第一转动部3511和第一蟹爪361之间可转动连接有第一连接件371,第二转动部3521和第二蟹爪362之间可转动连接有第二连接件372。
驱动部还包括可驱动第一滑动件36上升的动力装置。动力装置包括第二滑动件381、变距摇臂382、连杆383和舵机384,第二滑动件381套设于驱动轴31上,且位于第一滑动件36的下方,变距摇臂382可转动安装于支架10上,且变距摇臂382的第一端与第一滑动件36可转动连接,连杆383连接于舵机和变距摇臂382的第二端之间。
第二滑动件381的两侧对称设有第一连接部3811和第二连接部3812,变距摇臂382具有转动连接于第一连接部3811的第一支臂3821和转动连接于第二连接部3812的第二支臂3822。
变距摇臂382在转动过程中,可同时作用于第二滑动件381的对称两侧, 这种双推结构使得变距摇臂作用于第二滑动件381上的力对称了,即使在整套变距零件有间隙的情况下,也能保证两边旋翼旋转一周中不会出现升力周期性变化,同时增大了动力装置的使用寿命。
驱动部可同时作用于第一翼片331和第二翼片332并驱动第一翼片331和第二翼片332沿相反的时针方向翻动。从而实现对翼片螺距的控制。
综上所述,本发明的变距多轴飞行器,其优点在于:
1、飞控系统不用再为了控制整机的姿态和动作而频繁改变各电机的转速,节省了整机的电力消耗,延迟了续航时间;
2、降低了对飞控软件的性能要求,使得多轴飞行器的飞控软件开发和使用成本降低很多;
3、单电机驱动的变距多轴飞行器在发生诸如坠毁时成本低,现有技术方案是每个电机通过硬连接每个螺旋桨,一旦坠毁时螺旋桨由于高转速惯性碰到任何物体即刻损坏,同时会进一步损毁与螺旋桨硬连接的各个电机,这样整机在修复过程中更换的零配件的成本将大大增加;
4、采用变距螺旋桨可以让电机在不同转速下使螺旋桨的气动力作用最优;
5、采用变距螺旋桨控制使飞机的动作姿态相应速度比现有技术方案灵敏很多,增加了飞机的机动性能,可以实现倒过来飞行;
6、采用变距螺旋桨,减少了对电机使用的损耗,延长了多轴飞行器的使用寿命;
7、H型的固定螺旋桨的机体横杆和机体纵杆有一定的柔性。当机体横杆的一端的螺旋桨变距增加推力时,将使机体横杆绕机体纵杆发生一定的变形,当然此变形在机体不对称的推力小时候将恢复。这种轻微且可以恢复的机体结构变形正是解决可变距多轴H型机体布局方案实现自旋动作的关键。
8、将同步传动皮带设置于第一侧杆和第二侧杆中间的腔体中,第一同步带轮设于第一支架的第一保护空间内,在飞行器意外发生碰撞时,可有效保护同步传动皮带和第一同步带轮。另外通过设置导轮,可有效限制皮带之间的间距,避免其与第一侧杆或第二侧杆的接触。
9、变距摇臂为双推结构,使得变距摇臂作用于第二滑动件上的力对称,增大了动力装置的使用寿命。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

  1. 一种多轴飞行器,其特征在于,包括:
    支架,所述支架包括平行设置的第一侧杆和第二侧杆,以及固定于所述第一侧杆和第二侧杆之间的主杆,所述主杆的两端分别固定于所述第一侧杆和第二侧杆的中部;
    驱动系统,安装于所述支架上,所述驱动系统包括一电机和四个旋翼,所述四个旋翼分别安装于所述第一侧杆和第二侧杆的四个端部,所述电机通过同步传动机构驱动所述多个旋翼同步进行转动,所述同步传动机构包括可被所述电机驱动转动的主轴,所述主轴与每个旋翼之间分别设有一同步传动皮带,所述同步传动皮带设于所述第一侧杆或第二侧杆内。
  2. 根据权利要求1所述的多轴飞行器,其特征在于:所述旋翼和主轴上分别固定有第一同步带轮和第二同步带轮,所述同步传动皮带的两端分别套设于所述第一同步带轮和第二同步带轮上,所述同步传动皮带的内表面设有齿槽,所述第一同步带轮和第二同步带轮的外表面分别设有与所述同步传动皮带内表面相啮合的齿槽。
  3. 根据权利要求2所述的多轴飞行器,其特征在于:所述支架还包括四个第一支架,所述四个第一支架分别安装于所述第一侧杆和第二侧杆的四个端部,所述第一支架具有第一保护空间,所述第一同步带轮设于所述第一保护空间内。
  4. 根据权利要求2所述的多轴飞行器,其特征在于:所述支架还包括两个第二支架,所述两个第二支架分别固定于所述第一侧杆与主杆之间、以及所述第二侧杆与主杆之间,所述第二支架具有第二保护空间,所述第二同步带轮设于所述第二保护空间内。
  5. 根据权利要求1所述的多轴飞行器,其特征在于:所述同步传动皮带的两侧设有导轮。
  6. 根据权利要求1所述的多轴飞行器,其特征在于:所述主轴和电机之间连接有第二传动机构,所述第二传动机构包括第三同步带轮和第四同步带轮,所述第三同步带轮固定于所述电机的输出轴上,所述第四同步带轮固定于所述主轴上,所述第三同步带轮和第四同步带轮之间连接有第二同步传动皮带。
  7. 根据权利要求1所述的多轴飞行器,其特征在于:所述每个旋翼包括驱动轴、第一翼片、第二翼片、桨毂和驱动部,所述桨毂固定于所述驱动轴上,所述第一翼片和第二翼片对称设于所述桨毂的两侧,所述驱动部可同时作用于所述第一翼片和第二翼片并驱动所述第一翼片和第二翼片沿相反的时针方向翻动。
  8. 根据权利要求7所述的多轴飞行器,其特征在于:所述桨毂的两侧分别可转动设有第一桨夹头和第二桨夹头,所述第一翼片和第二翼片分别固定于所述第一桨夹头和第二桨夹头上。
  9. 根据权利要求7所述的变距飞行器,其特征在于:所述驱动部包括第一滑动件,所述第一滑动件套设于所述驱动轴上,且位于所述桨毂的下方,所述第一滑动件于驱动轴的对称两侧分别延伸有第一蟹爪和第二蟹爪,所述第一桨夹头和第二桨夹头分别设有第一转动部和第二转动部,所述第一转动部和第一蟹爪之间可转动连接有第一连接件,所述第二转动部和第二蟹爪之间可转动连接有第二连接件,所述驱动部还包括可驱动所述第一滑动件上升的动力装置。
  10. 根据权利要求9所述的变距飞行器,其特征在于:所述动力装置包括第二滑动件、变距摇臂、连杆和舵机,所述第二滑动件套设于所述驱动轴上,且位于所述第一滑动件的下方,所述变距摇臂可转动安装于所述支架上,且所述摇臂的一端与第一滑动件可转动连接,所述连杆连接于所述舵机和摇臂的另一端之间。
PCT/CN2014/094284 2014-02-08 2014-12-19 一种多轴飞行器 WO2015117512A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410045372.6A CN103786878A (zh) 2014-02-08 2014-02-08 一种多轴飞行器
CN201410045372.6 2014-02-08

Publications (1)

Publication Number Publication Date
WO2015117512A1 true WO2015117512A1 (zh) 2015-08-13

Family

ID=50663043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094284 WO2015117512A1 (zh) 2014-02-08 2014-12-19 一种多轴飞行器

Country Status (2)

Country Link
CN (1) CN103786878A (zh)
WO (1) WO2015117512A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107161330A (zh) * 2017-05-27 2017-09-15 四川建筑职业技术学院 一种可变异型结构的变距多旋翼无人机
CN111516903A (zh) * 2020-05-15 2020-08-11 蜂巢航宇科技(北京)有限公司 一种倾转旋翼无人机测试台架
CN112298540A (zh) * 2020-11-06 2021-02-02 广东国士健科技发展有限公司 一种单发三旋翼飞行器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103921933A (zh) 2013-01-10 2014-07-16 深圳市大疆创新科技有限公司 飞行器变形结构及微型飞行器
CN103786878A (zh) * 2014-02-08 2014-05-14 江苏艾锐泰克无人飞行器科技有限公司 一种多轴飞行器
CN103786879B (zh) * 2014-02-08 2015-09-30 江苏艾锐泰克无人飞行器科技有限公司 一种变距飞行器
CN103935513B (zh) * 2014-05-13 2015-10-28 江苏艾锐泰克无人飞行器科技有限公司 多旋翼变距飞行器的控制方法和控制装置
EP3509172B1 (en) 2014-06-26 2022-03-16 SZ DJI Technology Co., Ltd. An aerial vehicle and a signal line protection assembly thereof
CN104507800B (zh) 2014-06-26 2016-08-31 深圳市大疆创新科技有限公司 变形飞行器
CN104176248B (zh) * 2014-07-16 2016-05-25 沈阳航空航天大学 双发动机四轴四旋翼无人机
CN104709464B (zh) * 2015-03-12 2017-03-22 江苏艾锐泰克无人飞行器科技有限公司 多旋翼无人飞行器
CN104691754B (zh) * 2015-03-12 2017-01-18 江苏艾锐泰克无人飞行器科技有限公司 电机安装座、以及多旋翼无人飞行器
EP3400171B1 (en) * 2016-02-05 2021-03-31 Autel Robotics Co., Ltd. Multirotor aircraft
CN105752331A (zh) * 2016-04-26 2016-07-13 北京理工大学 一种基于变桨距控制的单内燃机动力多旋翼无人飞行器
CN108045586B (zh) * 2017-12-11 2020-08-18 深圳市旗客智能技术有限公司 无人机动力旋翼的同步机构和无人机
CN109484629A (zh) * 2018-09-13 2019-03-19 嘉兴职业技术学院 一种变桨距四旋翼飞行器
CN110550201A (zh) * 2019-10-14 2019-12-10 贾伟杰 球笼万向节构成的操纵系统及油动三旋翼无人机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100243794A1 (en) * 2009-03-24 2010-09-30 Alien Technologies Ltd Flying apparatus
CN202717030U (zh) * 2012-07-25 2013-02-06 上海工程技术大学 八轴旋翼飞行器
CN103072688A (zh) * 2013-01-22 2013-05-01 西安交通大学 可倾转四旋翼飞行器
CN203318679U (zh) * 2012-09-13 2013-12-04 吴松 共引擎多轴多旋翼飞行器
CN103786878A (zh) * 2014-02-08 2014-05-14 江苏艾锐泰克无人飞行器科技有限公司 一种多轴飞行器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005010336B4 (de) * 2004-11-06 2007-09-06 Dolch, Stefan, Dipl.-Ing. (FH) Drehzahlgesteuerter Hubschrauber
CN103466089A (zh) * 2013-09-26 2013-12-25 许庆松 快速飞行直升机
CN103754361A (zh) * 2014-01-10 2014-04-30 江苏艾锐泰克无人飞行器科技有限公司 垂直起降无人飞行器
CN203638092U (zh) * 2014-01-10 2014-06-11 江苏艾锐泰克无人飞行器科技有限公司 垂直起降无人飞行器
CN103786888A (zh) * 2014-01-17 2014-05-14 江苏艾锐泰克无人飞行器科技有限公司 变距飞行器
CN203753399U (zh) * 2014-01-17 2014-08-06 江苏艾锐泰克无人飞行器科技有限公司 垂直起降无人飞行器
CN103786880A (zh) * 2014-01-17 2014-05-14 江苏艾锐泰克无人飞行器科技有限公司 垂直起降无人飞行器
CN203638099U (zh) * 2014-01-17 2014-06-11 江苏艾锐泰克无人飞行器科技有限公司 变距飞行器
CN203753398U (zh) * 2014-02-08 2014-08-06 江苏艾锐泰克无人飞行器科技有限公司 一种多轴飞行器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100243794A1 (en) * 2009-03-24 2010-09-30 Alien Technologies Ltd Flying apparatus
CN202717030U (zh) * 2012-07-25 2013-02-06 上海工程技术大学 八轴旋翼飞行器
CN203318679U (zh) * 2012-09-13 2013-12-04 吴松 共引擎多轴多旋翼飞行器
CN103072688A (zh) * 2013-01-22 2013-05-01 西安交通大学 可倾转四旋翼飞行器
CN103786878A (zh) * 2014-02-08 2014-05-14 江苏艾锐泰克无人飞行器科技有限公司 一种多轴飞行器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107161330A (zh) * 2017-05-27 2017-09-15 四川建筑职业技术学院 一种可变异型结构的变距多旋翼无人机
CN111516903A (zh) * 2020-05-15 2020-08-11 蜂巢航宇科技(北京)有限公司 一种倾转旋翼无人机测试台架
CN112298540A (zh) * 2020-11-06 2021-02-02 广东国士健科技发展有限公司 一种单发三旋翼飞行器

Also Published As

Publication number Publication date
CN103786878A (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2015117509A1 (zh) 一种变距飞行器
WO2015117512A1 (zh) 一种多轴飞行器
WO2015172559A1 (zh) 多旋翼变距飞行器的控制方法和控制装置
WO2015172558A1 (zh) 变距飞行器的控制方法和控制装置
CN105882959B (zh) 能够垂直起降的飞行设备
CN102582832B (zh) 一种类扑翼飞行器
JP2013032147A (ja) 転換式航空機
WO2016062223A1 (zh) 一种垂直起降飞行器
CN107672802A (zh) 开槽涵道式卷流旋翼飞行器
WO2016054863A1 (zh) 一种多旋翼飞行器
CN110171568A (zh) 一种可悬停扑翼飞行器
CN106379532A (zh) 一种扑翼变扑动角度机构
CN103318410A (zh) 一种无舵面垂直起降微型飞行器
CN202828092U (zh) 自主旋翼无尾桨直升飞机
CN106143899A (zh) 变距旋翼及包括该变距旋翼的多旋翼飞行器及其飞行方法
CN108045572A (zh) 一种横列式复合推力高速直升机
CN103754360B (zh) 一种类飞碟式旋翼机
WO2019052530A1 (zh) 油电混合动力无人机
CN103786888A (zh) 变距飞行器
US20240158077A1 (en) Flapping rotor device with uplink vertical rotation and downlink horizontal rotation
CN203753398U (zh) 一种多轴飞行器
CN208993923U (zh) 螺旋桨、动力组件及无人飞行器
KR101067017B1 (ko) 끝단의 후퇴각을 능동적으로 변동시킬 수 있는 회전익항공기용 회전익
CN105523172B (zh) 迎角控制系统及迎角控制方法
JP2022530223A (ja) 垂直離着陸航空機、および関連する制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.03.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14881764

Country of ref document: EP

Kind code of ref document: A1