WO2015115479A1 - Metal air cell - Google Patents

Metal air cell Download PDF

Info

Publication number
WO2015115479A1
WO2015115479A1 PCT/JP2015/052355 JP2015052355W WO2015115479A1 WO 2015115479 A1 WO2015115479 A1 WO 2015115479A1 JP 2015052355 W JP2015052355 W JP 2015052355W WO 2015115479 A1 WO2015115479 A1 WO 2015115479A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
electrolytic solution
ion concentration
electrode
air battery
Prior art date
Application number
PCT/JP2015/052355
Other languages
French (fr)
Japanese (ja)
Inventor
宏隆 水畑
吉田 章人
将史 村岡
友春 新井
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015559977A priority Critical patent/JP6333863B2/en
Publication of WO2015115479A1 publication Critical patent/WO2015115479A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5044Cells or batteries structurally combined with cell condition indicating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes

Definitions

  • the present invention relates to a metal-air battery.
  • a metal-air battery generates electricity by using a metal electrode containing an electrode active material and being disposed in an electrolyte as an anode and an air electrode as a cathode.
  • a zinc-air battery using metal zinc as an electrode active material can be mentioned.
  • an electrode reaction of the following chemical formula 1 proceeds at the cathode.
  • an electrode reaction as represented by the following chemical formula 2 proceeds at the anode.
  • Chemical formula 2 Zn + 4OH ⁇ ⁇ Zn (OH) 4 2 ⁇ + 2e ⁇
  • the electrode active material of the metal electrode is consumed and gradually decreases.
  • the concentration of metal-containing ions (Zn (OH) 4 2 ⁇ ) in the electrolyte solution gradually increases, and when saturation is reached, a reaction such as the following chemical formula 3 or chemical formula 4 proceeds and uniform nucleation or Heterogeneous nucleation occurs. Then, as the produced nucleus grows, a metal oxide or metal hydroxide precipitate is deposited and accumulated in the electrolytic solution tank as a used active material.
  • the amount of the electrode active material contained in the metal electrode decreases as the electrode reaction proceeds, it is necessary to replace the used metal electrode with a reduced amount of the electrode active material with a new metal electrode. Furthermore, since water contained in the electrolytic solution is lost due to battery reaction or evaporation at the air electrode, it is necessary to replenish the electrolytic solution tank with water or electrolytic solution. As described above, in the metal-air battery, it is necessary to perform maintenance such as discharge of the used active material, replacement of the metal electrode, and replenishment of water or electrolyte at an appropriate time. However, it is difficult for the user to grasp this appropriate time.
  • Patent Document 1 a metal-air battery that notifies the user of the replacement time of the metal electrode based on the battery capacity detected by a battery capacity detection circuit or the like is known (for example, Patent Document 1).
  • the present invention relates to an electrolytic solution tank that contains an electrolytic solution, a metal electrode that is provided in the electrolytic solution tank and has an electrode active material and serves as an anode, an air electrode that serves as a cathode, and the electrolytic solution to be measured
  • a metal-air battery comprising: a first measurement unit that includes: a notification unit that notifies battery information based on a measurement result of the first measurement unit.
  • a metal tank includes an electrolyte tank that contains an electrolyte, a metal electrode that is provided in the electrolyte tank and has an electrode active material and serves as an anode, and an air electrode that serves as a cathode.
  • the anode reaction can proceed at the electrode, and the cathode reaction can proceed at the air electrode.
  • an electromotive force can be generated between the metal electrode and the air electrode.
  • physical property values such as pH value, electroconductivity, viscosity, or density of electrolyte solution, can be measured by a 1st measurement part.
  • the notification unit that notifies the battery information based on the measurement result of the first measurement unit since the notification unit that notifies the battery information based on the measurement result of the first measurement unit is provided, the information indicating the dischargeable time calculated from the measurement result of the first measurement unit, the ion concentration of the electrolytic solution Battery information such as information that represents information and information that represents the time when the electrolytic solution or water is supplied to the electrolytic solution tank can be notified to a user or the like. Moreover, since this battery information is calculated from the measurement result for the electrolytic solution, more accurate information can be notified to the user or the like. As a result, the user or the like can know an appropriate time for performing maintenance, and can perform maintenance at an appropriate time.
  • FIG. 3 is a graph showing changes in Zn (OH) 4 2- ion concentration in discharge experiment 1.
  • FIG. 4 is a graph showing changes in OH ⁇ ion concentration in discharge experiment 1.
  • FIG. 6 is a graph showing the relationship between the Zn (OH) 4 2- ion concentration measured in the discharge experiment 3 and the conductivity of the electrolytic solution.
  • An electrolytic solution tank that contains an electrolytic solution, a metal electrode that is provided in the electrolytic solution tank and has an electrode active material and serves as an anode, an air electrode that serves as a cathode, and a first electrode that uses the electrolytic solution as a measurement target
  • a measurement unit and / or a second measurement unit for measuring a discharge current of the metal-air battery and a notification unit for notifying battery information based on a measurement result of the first measurement unit and / or the second measurement unit. It is characterized by providing.
  • the first measurement unit is a measurement unit that measures at least a pH value, conductivity, viscosity, or density related to the electrolytic solution
  • the battery information includes information indicating a dischargeable time, the electrolysis It is preferable that the information represents the ion concentration of the liquid or the information indicating the time when the electrolytic solution or water is supplied to the electrolytic solution tank. According to such a configuration, the user or the like can know the dischargeable time, the ion concentration of the electrolyte, or the time to replenish the electrolyte or water in the electrolyte bath, and can perform maintenance at an appropriate time. .
  • the first measurement unit is a measurement unit that measures the electrical conductivity of the electrolytic solution
  • the battery information is information representing a dischargeable time. According to such a configuration, the user or the like can know the dischargeable time, and the metal electrode can be replaced at an appropriate time.
  • the notification unit is a notification unit that notifies battery information based on a measurement result of the first measurement unit and / or the second measurement unit, and the battery information is included in the metal electrode.
  • Information representing the remaining amount of the electrode active material, information representing the amount of precipitate generated from the electrode active material, or information representing the discharge timing of the deposit is preferable. According to such a configuration, the remaining amount of the electrode active material contained in the metal electrode, the amount of precipitate generated from the electrode active material, or the discharge timing of the precipitate can be known, and maintenance is performed at an appropriate time. be able to.
  • the notification unit is preferably a notification unit that notifies battery information to a remote place using a data communication line.
  • a remote user or administrator can know the battery information, and can monitor the metal-air battery. This enables, for example, a remote manager or management company to manage and maintain the metal-air battery. In addition, a remote administrator or management company can simultaneously monitor a plurality of metal-air batteries.
  • FIG. 1 is a schematic sectional view of a metal-air battery according to this embodiment.
  • the metal-air battery 30 according to the present embodiment includes an electrolytic solution tank 2 that contains an electrolytic solution 3, a metal electrode 5 that is provided in the electrolytic solution tank 2 and has an electrode active material and serves as an anode, and air that serves as a cathode. It is provided with the pole 9, the 1st measurement part 24 which makes the electrolyte solution 3 measurement object, and the notification part 27 which notifies the battery information based on the measurement result of the 1st measurement part 24, It is characterized by the above-mentioned.
  • the metal-air battery 30 of this embodiment will be described.
  • the metal-air battery 30 of the present embodiment is a battery in which the metal electrode 5 containing a metal serving as an electrode active material is a negative electrode (anode) and the air electrode 9 is a positive electrode (cathode).
  • the metal-air battery 30 of the present embodiment may be a primary battery.
  • the metal-air battery 30 has a metal-air battery body composed of the electrolytic solution tank 2, the air electrode 9 and the like, and a structure that can be attached to and detached from the metal-air battery body. You may comprise from an electrode holder.
  • the cell is a structural unit of the metal-air battery 30, and has an electrode pair that is provided in the electrolytic solution tank 2 (electrolytic solution chamber) and includes a metal electrode 5 serving as an anode and an air electrode 9 serving as a cathode.
  • the cell may have, for example, an electrode pair in which one air electrode 9 and one metal electrode 5 are provided so as to sandwich the electrolytic solution 3, and 2 cells like the metal-air battery 30 shown in FIG.
  • One air electrode 9 may have an electrode pair provided so as to sandwich one metal electrode 5.
  • the cell may include an electrolytic solution tank 2 or an electrolytic solution chamber, a metal electrode 5 provided in the electrolytic solution tank 2 or the electrolytic solution chamber and serving as an anode, and an air electrode 9 serving as a cathode.
  • the cell assembly has a stack structure in which a plurality of cells are stacked.
  • a plurality of cells may be provided in one electrolytic solution tank 2, and each cell may have the electrolytic solution tank 2 or the electrolytic solution chamber.
  • the number of cells constituting the cell assembly is not particularly limited, and the number of cells may be determined according to the required power generation capacity.
  • the electrolytic solution tank 2 included in each cell may be provided in a common housing 1, and each cell has the housing 1.
  • the casing 1 may be provided with an electrolytic solution tank 2. Note that two or three cells may be provided in one casing 1, and a plurality of such casings 1 may be combined to form a cell aggregate.
  • the electrode pairs of a plurality of cells included in the cell assembly may be connected in series or in parallel.
  • Electrolytic Solution Electrolytic Solution Tank
  • the electrolytic solution 3 is a liquid having an ionic conductivity by dissolving an electrolyte in a solvent.
  • the electrolytic solution 3 is stored in the electrolytic solution tank 2 or circulates in the electrolytic solution tank 2.
  • the type of the electrolytic solution 3 is different depending on the type of the electrode active material contained in the metal electrode 5, but may be an electrolytic solution (aqueous electrolyte solution) using a water solvent.
  • the electrolytic solution 3 is a measurement target of the first measurement unit 24.
  • an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution can be used as the electrolytic solution.
  • An aqueous sodium chloride solution can be used.
  • the electrolytic solution tank 2 is an electrolytic cell that stores or distributes the electrolytic solution 3 and has corrosion resistance to the electrolytic solution. Moreover, the electrolytic solution tank 2 can have an electrolytic solution chamber. The electrolytic solution tank 2 or the electrolytic solution chamber has a structure in which the metal electrode 5 can be installed so that it can be taken out. The electrolyte bath 2 can be provided in the metal-air battery main body. Moreover, the electrolytic solution tank 2 may have a plurality of electrolytic solution chambers.
  • the metal-air battery 30 may have a mechanism for causing the electrolytic solution 3 in the electrolytic solution tank 2 to flow. As a result, the anode reaction at the metal electrode 5 can be promoted, and the performance of the metal-air battery 30 can be improved.
  • the electrolytic solution 3 may be circulated using a pump and a circulation flow path, and the electrolytic solution 3 in the electrolytic solution tank 2 may be flowed.
  • the metal air battery 30 may be provided with a movable part that can physically move the electrolyte 3 in the electrolyte bath 2 such as a stirrer and a vibrator.
  • the material of the housing 1 constituting the electrolytic solution tank 2 is not particularly limited as long as the material has corrosion resistance to the electrolytic solution.
  • the material of the housing 1 constituting the electrolytic solution tank 2 is not particularly limited as long as the material has corrosion resistance to the electrolytic solution.
  • polyvinyl chloride (PVC) polyvinyl alcohol (PVA), polyvinyl acetate, ABS, vinylidene chloride, polyacetal, polyethylene, polypropylene, polyisobutylene, fluororesin, epoxy resin, etc.
  • the metal electrode 5 is an electrode that serves as an anode, and includes a metal that is an electrode active material of the anode. Moreover, the metal electrode 5 can be provided in the electrolyte solution tank 2 so that it can be taken out.
  • the metal electrode 5 may be, for example, a metal plate containing a metal that is an electrode active material.
  • the metal electrode 5 may include, for example, a metal electrode current collector and an electrode active material layer provided on the metal electrode current collector.
  • the electrode active material contained in the metal electrode 5 is a metal that generates a charge in the metal electrode 5 by an anodic reaction and dissolves in the electrolyte as metal-containing ions.
  • the electrode active material contained in the metal electrode 5 is gradually consumed as the anode reaction proceeds.
  • the electrode active material contained in the metal electrode 5 decreases, the charge generated in the metal electrode 5 decreases and the metal electrode 5 is used.
  • the charge generated in the metal electrode 5 is output to the outside as a discharge current and then used for the cathode reaction in the air electrode 9. This discharge current is a measurement target of the second measurement unit 25.
  • the metal-containing ions When the concentration of the metal-containing ions generated in the electrolytic solution 3 by the anodic reaction exceeds the saturation concentration, the metal-containing ions may be deposited in the electrolytic solution 3 as fine particles of metal oxide or metal hydroxide (precipitate 17). . Further, when the concentration of the metal-containing ions reaches the passivating concentration, the metal-containing ions may be deposited on the surface of the metal electrode 5 as a metal oxide or metal hydroxide passivated (precipitate 17). . Therefore, the precipitate 17 may be deposited as fine particles floating in the electrolyte solution or settling on the bottom of the electrolyte solution tank, and may be deposited as a passive material adhering to the surface of the metal electrode 5.
  • the fine particles of the precipitate 17 adhere to the pores of the porous air electrode 9, thereby preventing oxygen gas diffusion.
  • the fine particles of the precipitate 17 adhering to the pores of the porous separator 14 the ion conduction path of OH ⁇ ions is hindered.
  • the output of the metal-air battery 30 decreases. For this reason, when the fine particles of the precipitate 17 accumulate in the electrolytic solution, it is necessary to remove the fine particles from the electrolytic solution 3.
  • the electrode active material is metallic zinc, and zinc hydroxide or zinc oxide is deposited in the electrolytic solution.
  • the electrode active material is metallic aluminum, and aluminum hydroxide is deposited in the electrolytic solution.
  • the electrode active material is metallic iron, and iron oxide hydroxide or iron oxide is deposited in the electrolytic solution.
  • the electrode active material is metallic magnesium, and magnesium hydroxide is deposited in the electrolyte.
  • the electrode active materials are metallic lithium, metallic sodium, and metallic calcium, respectively, and oxides and hydroxides of these metals are contained in the electrolyte. Precipitate.
  • a solid electrolyte membrane may be provided between the metal electrode 5 and the electrolytic solution. Thereby, it can suppress that an electrode active material is corroded by electrolyte solution. In this case, the electrode active material is dissolved in the electrolytic solution after ion conduction through the solid electrolyte membrane.
  • an electrode active material is not limited to these examples, What is necessary is just a metal air battery.
  • the electrode active material contained in the metal electrode 5 mentioned the metal which consists of a kind of metal element in said example the electrode active material contained in the metal electrode 5 may be an alloy.
  • the metal electrode current collector has conductivity. Further, the shape of the metal electrode current collector is preferably a plate shape, a shape provided with a hole penetrating in the thickness direction of the plate, an expanded metal or a mesh. In addition, the metal electrode current collector can be formed of, for example, a metal having corrosion resistance against the electrolytic solution.
  • the material of the metal electrode current collector is, for example, nickel, gold, silver, copper, stainless steel or the like.
  • the metal electrode current collector may be a nickel-plated, gold-plated, silver-plated, or copper-plated conductive substrate. For this conductive substrate, iron, nickel, stainless steel, or the like can be used.
  • the electrode active material layer may be fixed on the main surface of the metal electrode current collector, for example, by pressing metal particles or lumps that are electrode active materials against the surface of the metal electrode current collector.
  • a metal may be deposited on the current collector by plating or the like.
  • the shape of the metal electrode current collector the plate shape is preferable from the viewpoint of conductivity when the electrode active material is deposited by plating, and when the metal particles or lump is fixed, the particles or lump is dropped. From the viewpoint of preventing this, a plate provided with a through hole, or an expanded metal or mesh is preferable.
  • the metal electrode 5 can constitute a metal electrode holder together with the metal electrode support.
  • the metal electrode holder is provided so that the metal electrode 5 can be inserted into the electrolytic solution tank 2 and the used metal electrode 5 can be extracted from the electrolytic solution tank 2.
  • the electrode active material can be supplied to the metal-air battery 30.
  • a metal electrode support body can be provided so that it may become a lid
  • the metal electrode 5 can be inserted into the electrolytic solution tank 2 and the electrode insertion port can be covered, and the reaction between the components in the atmosphere and the electrolytic solution 3 can be suppressed.
  • Air electrode The air electrode 9 is an electrode having an air electrode catalyst and serving as a cathode. Further, the air electrode 9 may include a porous gas diffusion layer 8 and a porous air electrode catalyst layer 7 provided on the gas diffusion layer 8. In the air electrode 9, water supplied from the electrolytic solution 3 and the like, oxygen gas supplied from the atmosphere, and electrons react on the air electrode catalyst to generate hydroxide ions (OH ⁇ ) (cathode reaction). That is, the cathode reaction proceeds at the three-phase interface of the air electrode 9.
  • the air electrode 9 is provided so that oxygen gas contained in the atmosphere can diffuse into the air electrode 9.
  • the air electrode 9 can be provided so that at least a part of the surface of the air electrode 9 is exposed to the atmosphere.
  • a plurality of holes 23 are provided in the housing 1, and oxygen gas contained in the atmosphere can diffuse into the air electrode 9 through the holes 23. Further, for example, an air flow path through which air flows may be formed and oxygen gas may be supplied to the air electrode 9. Note that water may be supplied to the air electrode 9 through this air flow path.
  • the air electrode catalyst layer 7 may include, for example, a conductive porous carrier and an air electrode catalyst supported on the porous carrier. This makes it possible to form a three-phase interface in which oxygen gas, water, and electrons coexist on the air electrode catalyst, thereby allowing the cathode reaction to proceed.
  • the air electrode catalyst layer 7 may contain a binder.
  • the air electrode 9 composed of the air electrode catalyst layer 7 and the gas diffusion layer 8 is produced by applying a porous carrier carrying the air electrode catalyst to the conductive porous substrate (gas diffusion layer 8). May be.
  • the air electrode 9 can be produced by applying carbon carrying an air electrode catalyst to carbon paper or carbon felt.
  • the gas diffusion layer 8 may function as an air electrode current collector.
  • the thickness of the air electrode 9 can be, for example, not less than 300 ⁇ m and not more than 3 mm.
  • the air electrode 9 can be electrically connected to the air electrode terminal 10. Thereby, the electric charge generated in the air electrode catalyst layer 7 can be taken out to the external circuit.
  • the metal-air battery 30 may include an air electrode current collector that collects charges generated in the air electrode catalyst layer 7. As a result, charges generated in the air electrode catalyst layer 7 can be efficiently taken out to the external circuit.
  • the material of the air electrode current collector is not particularly limited as long as it has corrosion resistance with respect to the electrolytic solution 3, and examples thereof include nickel, gold, silver, copper, and stainless steel.
  • the air electrode current collector may be a nickel-plated, gold-plated, silver-plated, or copper-plated conductive substrate. For this conductive substrate, iron, nickel, stainless steel, or the like can be used.
  • the shape of the air electrode current collector can be, for example, a plate shape, a mesh shape, a punching metal, or the like.
  • the air electrode 9 included in one cell may be provided only on one side of the metal electrode 5, or may be provided on both sides of the metal electrode 5 as shown in FIG.
  • Examples of the porous carrier contained in the air electrode catalyst layer 7 include carbon black such as acetylene black, furnace black, channel black and ketjen black, and conductive carbon particles such as graphite and activated carbon.
  • carbon fibers such as vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanowire, and the like can be used.
  • the air electrode catalyst include fine particles made of platinum, iron, cobalt, nickel, palladium, silver, ruthenium, iridium, molybdenum, manganese, lanthanum, these metal compounds, and alloys containing two or more of these metals.
  • This alloy is preferably an alloy containing at least two of platinum, iron, cobalt, and nickel.
  • the binder contained in the air electrode catalyst layer 7 is, for example, polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF). Further, the porous carrier contained in the air electrode catalyst layer 7 may be subjected to a surface treatment so that a cationic group exists as a fixed ion on the surface thereof.
  • the air electrode catalyst layer 7 may have an anion exchange resin supported on a porous carrier. Thereby, since hydroxide ions can be conducted through the anion exchange resin, the hydroxide ions generated on the air electrode catalyst are easily moved.
  • the air electrode catalyst layer 7 may be provided so as to be in contact with the electrolytic solution 3 in the electrolytic solution tank 2. Thus, hydroxide ions generated in the air electrode catalyst layer 7 can easily move to the electrolyte solution 3. Further, water necessary for the electrode reaction in the air electrode catalyst layer 7 is easily supplied from the electrolytic solution 3 to the air electrode catalyst layer 7.
  • the air electrode catalyst layer 7 may be provided so as to be in contact with the separator 14 that is in contact with the electrolytic solution 3 accommodated in the electrolytic solution tank 2.
  • the separator 14 can be a porous resin membrane, an ion exchange membrane or a nonwoven fabric of resin fibers.
  • the separator 14 can be provided so as to partition the electrolytic solution 3 in the electrolytic solution tank 2 and the air electrode catalyst layer 7.
  • the separator 14 as an ion exchange membrane, the ion species moving between the air electrode catalyst layer 7 and the electrolytic solution 3 can be limited.
  • the separator 14 may be an anion exchange membrane.
  • hydroxide ions generated in the air electrode catalyst layer 7 can conduct through the anion exchange membrane and move to the electrolytic solution. Since the anion exchange membrane has a cation group which is a fixed ion, the cation in the electrolytic solution 3 cannot be conducted to the air electrode catalyst layer 7.
  • the hydroxide ions generated in the air electrode catalyst layer 7 are anions, they can be conducted to the electrolytic solution 3.
  • the battery reaction of the metal-air battery 30 can proceed, and the cations in the electrolyte aqueous solution 3 can be prevented from moving to the air electrode catalyst layer 7. Thereby, precipitation of the metal and carbonate compound in the air electrode catalyst layer 7 can be suppressed.
  • the material of the porous resin film or the nonwoven fabric of resin fibers used for the separator 14 can be an alkali-resistant resin, for example, polyethylene, polypropylene, nylon 6, nylon 66, polyolefin, polyvinyl acetate, polyvinyl alcohol-based material. And polytetrafluoroethylene (PTFE).
  • the pore diameter of the pores of the separator 14 is not particularly limited, but is preferably 30 ⁇ m or less.
  • the separator 14 is preferably subjected to a hydrophilic treatment so as to improve the flow of the electrolytic solution.
  • ion exchange membrane used in the separator 14 examples include perfluorosulfonic acid, perfluorocarboxylic acid, styrene vinylbenzene, and quaternary ammonium solid polymer electrolyte membranes (anion exchange membranes).
  • the 1st measurement part 24 is provided so that the physical property value etc. can be measured by making the electrolyte solution 3 into a measuring object.
  • the first measuring unit 24 may be provided so as to measure the physical property value of the electrolytic solution 3 in the electrolytic solution tank 2 like the metal-air battery 30 shown in FIG.
  • the liquid 3 may be sampled so that the physical property value of the electrolytic solution 3 can be measured. Further, when the electrolytic solution 3 in the electrolytic solution tank 2 is circulated by the circulation flow path and the pump, the first measurement unit 24 may be provided so that the physical property value of the electrolytic solution 3 can be measured in the circulation flow path.
  • the electrolytic solution 3 in the circulation channel may be sampled so that the physical property value of the electrolytic solution 3 can be measured.
  • the 1st measurement part 24 is good also considering only the electrolyte solution 3 as a measuring object, and is good also considering the mixture of the electrolyte solution 3 and the microparticles
  • the first measurement unit 24 can measure physical property values such as pH value, ORP, conductivity, viscosity, density, etc., with the electrolytic solution 3 as a measurement target.
  • the first measurement unit 24 may be provided to measure other physical property values that are related to the OH ⁇ ion concentration or the metal-containing ion concentration in the electrolytic solution.
  • the 1st measurement part 24 may be provided so that two or more types of physical property values can be measured.
  • the first measurement unit 24 is, for example, a pH meter, an ORP meter, a conductivity meter, a viscometer, a density meter, or the like.
  • the second measuring unit 25 is provided so that the current value, voltage value, discharge capacity, integrated discharge capacity, and the like can be measured using the discharge current of the metal-air battery 30 as a measurement target.
  • the 2nd measurement part 25 can be provided in the circuit which outputs the electromotive force between the metal electrode 5 and the air electrode 9, for example.
  • the second measuring unit 25 is an ammeter, for example.
  • the metal-air battery 30 may include an arithmetic circuit 26 that calculates battery information from the measurement result of the first measurement unit 24 or the measurement result of the second measurement unit 25.
  • the arithmetic circuit 26 may be provided so as to calculate battery information from both the measurement result of the first measurement unit 24 and the measurement result of the second measurement unit 25.
  • the metal-air battery 30 may include a storage medium 28 from which the arithmetic circuit 26 can read data. In the storage medium 28, the measurement result of the first measurement unit 24, the measurement result of the second measurement unit 25, the battery information calculated from these measurement results, the data of the calibration curve necessary for calculation by the arithmetic circuit 26, etc. Can be recorded.
  • the battery information includes, for example, information indicating the remaining amount of the electrode active material contained in the metal electrode 5, information indicating the dischargeable time, information indicating the ion concentration of the electrolytic solution 3, and the amount of the precipitate 17 generated from the electrode active material.
  • the arithmetic circuit 26 or the storage medium 28 may be included in the first measurement unit 24 or the second measurement unit 25 or may be included in the notification unit 27. The arithmetic circuit 26 may be provided so as to output the calculated battery information to the notification unit 27.
  • the notification unit 27 is provided to notify a user or the like of battery information based on the measurement result of the first measurement unit 24. Further, the notification unit 27 may be provided so as to notify the user or the like of battery information based on the measurement result of the second measurement unit 25. Further, the notification unit 27 may be provided so as to notify a user or the like of battery information based on both the measurement result of the first measurement unit 24 and the measurement result of the second measurement unit 25. The notification unit 27 may be provided to notify the battery information calculated by the arithmetic circuit 26.
  • the notification unit 27 may include a display unit for notifying the user of battery information. By displaying the battery information on the display unit, the battery information can be notified to the user or the like.
  • the display unit may be a display or a lamp.
  • the notification unit 27 may include an audio output unit for notifying a user or the like of battery information. The battery information can be notified to the user or the like by outputting the battery information from the voice output unit as voice.
  • the notification unit 27 may be provided so as to notify battery information to a remote user or administrator using a data communication line.
  • a remote user or administrator can know the battery information and can monitor the metal-air battery 30.
  • a remote administrator or management company can manage and maintain the metal-air battery 30.
  • a remote manager or management company can simultaneously monitor the plurality of metal air batteries 30.
  • the notification unit 27 can include a communication port such as a LAN port or a wireless communication port. The battery information can be communicated from the communication port to a server or the like installed at a remote place, and the battery information can be displayed or output by the server.
  • the 1st measurement part 24 can be provided so that the pH value of the electrolyte solution 3 can be measured, for example. Further, the first measuring unit 24 may be provided so as to measure the ORP of the electrolytic solution 3. In this case, the first measurement unit 24 is a pH meter or an ORP meter. Further, the first measurement unit 24 may be a pH meter having a glass electrode or a pH meter having an ion response field effect transistor. Further, the first measuring unit 24 can continuously measure the pH value of the electrolytic solution 3.
  • the pH value of the electrolytic solution 3 is a value reflecting the OH ⁇ ion concentration of the electrolytic solution 3. For this reason, there is a correlation between the pH value of the electrolytic solution 3 and the OH ⁇ ion concentration. Therefore, when the relationship between the OH ⁇ ion concentration of the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the pH value of the electrolytic solution 3 is measured in advance and a calibration curve is prepared, the measurement result of the first measuring unit 24 is obtained.
  • the OH ⁇ ion concentration of the electrolytic solution 3 can be calculated from the pH value of the electrolytic solution 3.
  • the OH ⁇ ion concentration can be calculated by the arithmetic circuit 26.
  • the calculated OH ⁇ ion concentration can be notified to the user or the like by the notification unit 27. Further, by continuously measuring the pH value of the electrolytic solution 3, it is possible to notify the user of the fluctuation of the OH ⁇ ion concentration. In addition, since there is a correlation between the OH ⁇ ion concentration and the metal-containing ion concentration of the electrolytic solution, there is also a correlation between the pH value of the electrolytic solution 3 and the metal-containing ion concentration. For this reason, when the relationship between the pH value of the electrolytic solution 3 and the metal-containing ion concentration is measured in advance and a calibration curve is prepared, the metal-containing ion concentration can be calculated from the pH value of the electrolytic solution 3. The notification unit 27 may notify the user or the like of this metal-containing ion concentration. Note that calibration curve data and the like can be stored in the storage medium 28.
  • the 1st measurement part 24 can be provided so that the electrical conductivity of the electrolyte solution 3 can be measured, for example.
  • the first measuring unit 24 may measure the conductivity of the electrolytic solution 3 including the fine particles of the precipitate 17.
  • the 1st measurement part 24 may be provided so that electrical conductivity may be measured by the alternating current 2 electrode method, and may be provided so that electrical conductivity may be measured by an electromagnetic induction method.
  • the conductivity of the electrolytic solution 3 reflects the concentration of ions having the highest transport number in the electrolytic solution.
  • the electrolytic solution 3 is an alkaline aqueous solution such as an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution
  • the conductivity of the electrolytic solution 3 reflects the OH ⁇ ion concentration.
  • the OH ⁇ ion concentration of the electrolytic solution 3 can be calculated from the conductivity of the electrolytic solution 3.
  • the OH ⁇ ion concentration can be calculated by the arithmetic circuit 26. Further, the calculated OH ⁇ ion concentration can be notified to the user or the like by the notification unit 27 as information indicating the ion concentration.
  • the notification unit 27 can notify the user of fluctuations in the OH ⁇ ion concentration.
  • there is a correlation between the OH ⁇ ion concentration and the metal-containing ion concentration of the electrolytic solution there is also a correlation between the conductivity of the electrolytic solution 3 and the metal-containing ion concentration.
  • the metal-containing ion concentration can be calculated from the electrical conductivity of the electrolytic solution 2.
  • the notification unit 27 may notify the user or the like of this metal-containing ion concentration.
  • the 1st measurement part 24 can be provided so that the viscosity of the electrolyte solution 3 may be measured, for example.
  • the first measurement unit 24 may measure the viscosity of the electrolytic solution 3 including the fine particles of the precipitate 17.
  • the first measuring unit 24 is, for example, a tuning fork vibration type viscometer.
  • the viscosity of the electrolytic solution 3 is a value that reflects the amount of the heaviest metal-containing ions in the electrolytic solution.
  • the viscosity of the electrolytic solution 3 is a value that reflects the amount of Zn (OH) 4 2- ion concentration. For this reason, there is a correlation between the viscosity of the electrolytic solution 3 and the metal-containing ion concentration. Therefore, when the relationship between the metal-containing ion concentration of the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the viscosity of the electrolytic solution 3 is measured in advance and a calibration curve is prepared, the electrolysis that is the measurement result of the first measuring unit 24 is obtained.
  • the metal-containing ion concentration of the electrolytic solution 3 can be calculated from the viscosity of the liquid 3.
  • the metal-containing ion concentration can be calculated by the arithmetic circuit 26.
  • the calculated metal-containing ion concentration can be notified to the user or the like by the notification unit 27 as information representing the ion concentration.
  • the OH ⁇ ion concentration and the metal-containing ion concentration of the electrolytic solution are correlated, there is also a correlation between the viscosity of the electrolytic solution 3 and the OH ⁇ ion concentration.
  • the OH ⁇ ion concentration can be calculated from the viscosity of the electrolytic solution 2.
  • the notification unit 27 may notify the user or the like of the OH ⁇ ion concentration.
  • the 1st measurement part 24 can be provided so that the density of the electrolyte solution 3 may be measured, for example.
  • the first measuring unit 24 may measure the density of the electrolytic solution 3 including the fine particles of the precipitate 17.
  • the first measurement unit 24 is, for example, a vibration type density meter.
  • the density of the electrolytic solution 3 is a value that reflects the amount of the heaviest metal-containing ions in the electrolytic solution.
  • the density of the electrolytic solution 3 is a value that reflects the amount of Zn (OH) 4 2- ion concentration. For this reason, there is a correlation between the density of the electrolytic solution 3 and the metal-containing ion concentration. Therefore, when the relationship between the metal-containing ion concentration of the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the density of the electrolytic solution 3 is measured in advance and a calibration curve is created, the electrolysis that is the measurement result of the first measuring unit 24 is obtained.
  • the metal-containing ion concentration of the electrolytic solution 3 can be calculated from the density of the liquid 3.
  • the metal-containing ion concentration can be calculated by the arithmetic circuit 26.
  • the calculated metal-containing ion concentration can be notified to the user or the like by the notification unit 27 as information representing the ion concentration. Further, by continuously measuring the density of the electrolytic solution 3, it is possible to notify the user of fluctuations in the metal-containing ion concentration. Further, since the OH ⁇ ion concentration and the metal-containing ion concentration of the electrolytic solution are correlated, there is also a correlation between the density of the electrolytic solution 3 and the OH ⁇ ion concentration.
  • the notification unit 27 may notify the user or the like of the OH ⁇ ion concentration.
  • the arithmetic circuit 26 is provided to calculate the OH ⁇ ion concentration or the metal-containing ion concentration from two or more physical property values. May be. As a result, a more accurate OH - ion concentration or metal-containing ion concentration can be calculated.
  • the 2nd measurement part 25 can be provided so that the integrated discharge capacity of the metal air battery 30 can be measured, for example.
  • the electrode active material and OH ⁇ ions react to generate a charge on the metal electrode 5. Since this electric charge is discharged to an external circuit, there is a correlation between the integrated discharge capacity and the consumption of the electrode active material. For this reason, the consumption amount of the electrode active material can be calculated from the accumulated discharge capacity measured by the second measuring unit 25. Further, the remaining amount of the electrode active material contained in the metal electrode 5 can be calculated from the amount of the electrode active material contained in the metal electrode 5 before discharge and the consumption of the electrode active material.
  • the electrode active material contained in the metal electrode 5 before discharge is M1
  • the consumption of the electrode active material calculated from the accumulated discharge capacity measured by the second measuring unit 25 is M2
  • the calculated remaining amount of the electrode active material can be notified to the user or the like by the notification unit 27 as information indicating the remaining amount of the electrode active material. Note that the remaining amount of the electrode active material may be calculated / notified with the unit of Ah.
  • the notification unit 27 that notifies the user of the remaining amount is a display, a lamp, and an audio output unit.
  • the information to be notified is quantitative numerical information regarding the remaining amount, the non-determining information indicating whether the remaining amount has approached zero, or whether the remaining amount has reached zero. Also good.
  • Notification of quantitative numerical information includes a method of displaying the numerical value itself or a figure obtained by converting the numerical information into a length and an angle on a display, or displaying by lighting a lamp composed of a plurality of segments.
  • the control unit may stop the power output from the metal-air battery together with the notification. By stopping the power output, overdischarge of the metal electrode 5 can be suppressed, and deterioration of the metal electrode 5 can be suppressed.
  • the notification unit 27 may be provided so as to notify a user or the like of information indicating the dischargeable time based on the measurement result of the first measurement unit 24 or the second measurement unit 25.
  • the information indicating the dischargeable time may be, for example, the remaining dischargeable time or a numerical value indicating the dischargeable time.
  • the dischargeable time is the remaining time that can be discharged by the metal-air battery 30. In the metal-air battery 30, when the remaining amount of the electrode active material contained in the metal electrode 5 becomes small, it becomes impossible to discharge, and the precipitate 17 is deposited on the surface of the metal electrode 5 as a passive state by the precipitation reaction. There are cases where discharge cannot be performed due to inhibition of the reaction.
  • the notification unit 27 can notify information indicating the dischargeable time based on the measurement result of the second measurement unit 25.
  • the notification unit 27 2 Notifies the dischargeable time calculated based on the measurement result of the measurement unit 25.
  • the notification unit 27 notifies the dischargeable time.
  • the selection of the dischargeable time can be OR controlled.
  • the notification unit 27 that notifies the user of information indicating the dischargeable time is a display, a lamp, or an audio output unit.
  • the information to be notified is quantitative numerical information related to the dischargeable time, non-determination information indicating whether the dischargeable time has approached zero, or whether the dischargeable time has been reached. May be.
  • Notification of quantitative numerical information includes a method of displaying the numerical value itself or a figure obtained by converting the numerical information into a length and an angle on a display, or displaying by lighting a lamp composed of a plurality of segments.
  • a message indicating that the dischargeable time satisfies the non-judgment condition is displayed on the display or notified by voice.
  • the control unit may stop the power output from the metal-air battery together with the notification. By stopping the power output, it is possible to suppress the surface of the metal electrode 5 from being covered with the passive state, and the utilization factor of the electrode active material contained in the metal electrode 5 can be increased.
  • the dischargeable time is the remaining time until the surface of the metal electrode 5 is covered with the passivation of the precipitate 17.
  • the chemical reaction as in Chemical Formula 2 proceeds and the metal-containing ion concentration exceeds the saturation concentration, the precipitation reaction as shown in Chemical Formula 3 and Chemical Formula 4 proceeds.
  • the reaction rate of the precipitation reaction in which the fine particle precipitates 17 are deposited in the electrolytic solution is very slow. Even if the concentration of the metal-containing ion exceeds the saturation concentration, the concentration of the metal-containing ion increases. becomes oversaturated.
  • the metal-containing ion concentration reaches a threshold value at which a passive state is formed, the precipitate 17 is deposited on the surface of the metal electrode 5 as a passive state, and the anode reaction is considered to be inhibited.
  • the OH ⁇ ion concentration falls below the threshold value, the supply of OH ⁇ ions necessary for the anode reaction is insufficient, so that the precipitate 17 is deposited on the surface of the metal electrode 5 as a passive state, thereby inhibiting the anode reaction. It is thought that it is done.
  • the metal-containing ion concentration or OH - threshold passivation is formed of the ion concentration is thought to depend on the temperature.
  • the pH value and conductivity of the electrolytic solution 3 are values that reflect the OH ⁇ ion concentration of the electrolytic solution 3, and the viscosity and density of the electrolytic solution 3 are values that reflect the metal-containing ion concentration of the electrolytic solution.
  • Passivity is formed when the pH value, conductivity, viscosity or density of the electrolyte 3 reaches or falls below a certain threshold. Accordingly, the pH value, conductivity, viscosity, or density threshold at which passivity is formed can be measured in advance and stored in the storage medium 28.
  • the notification unit 27 can notify the user or the like of information indicating the dischargeable time.
  • the user or the like can know the discharge stop time in advance. In addition, it becomes possible to stop the discharge before the surface of the metal electrode 5 is covered with the passive state, and it is possible to prevent the surface of the metal electrode 5 from being covered with the passive state.
  • a discharge stop period can be provided.
  • this discharge stop period it is considered that the precipitation reaction in which the fine particles 17 precipitate in the electrolytic solution proceeds, so that the metal-containing ion concentration decreases and the OH ⁇ ion concentration increases. For this reason, it becomes possible to perform re-discharge after a discharge stop period, and the utilization efficiency of the electrode active material contained in the metal electrode 5 can be raised.
  • the notification unit 27 since the metal-containing ion concentration or the OH ⁇ ion concentration during the discharge stop period can be measured by the first measurement unit 24, the notification unit 27 notifies the user or the like with information indicating the time when re-discharge is possible. Also good.
  • the notification unit 27 that notifies the user of information indicating when discharge is stopped or when re-discharge is possible is a display, a lamp, or a sound output unit.
  • the information to be notified may be quantitative numerical information related to the time, the non-determining information indicating whether the time has approached, or whether the time has been reached.
  • Notification of quantitative numerical information includes a method of displaying the numerical value itself or a figure obtained by converting the numerical information into a length and an angle on a display, or displaying by lighting a lamp composed of a plurality of segments.
  • the notification of information in the case of being applicable indicates that the discharge stop timing or the time during which re-discharge can be performed satisfies the non-determination condition.
  • a sentence is displayed on the display, or is notified by voice, a discharge stop time, or an icon that has a one-to-one correspondence with the non-determination of re-dischargeable time, a discharge stop time, or Lamps that have a one-to-one correspondence with the non-determination of re-discharging time are generated, and a sound pattern that has a one-to-one correspondence with the non-determination of the discharge stop timing or re-dischargeable time is generated.
  • the control unit may stop the power output from the metal-air battery together with the notification.
  • the power output from the metal-air battery may be resumed by the control unit together with the notification. By restarting the power output, the opportunity for power supply from the metal-air battery can be maximized, which increases the convenience for the user.
  • the relationship between the pH, conductivity, viscosity or density of the electrolyte and the dischargeable time can be measured in advance, and a calibration curve or the like based on the measurement result can be recorded in the storage medium 28.
  • the first measuring unit 24 may include a thermometer that measures the temperature of the electrolytic solution 3. This makes it possible to accurately predict the threshold value at which passivity is formed.
  • the notification unit 27 may be provided so as to notify the user or the like of information indicating the dischargeable time as a dischargeable amount (%).
  • the metal-containing ion concentration reaches the threshold value at which passivity is formed.
  • the OH ion concentration, conductivity, viscosity or density calculated from the pH of the electrolyte solution is y
  • the OH ion concentration, conductivity, viscosity or density calculated from the pH measured by the first measurement unit 24 is When z is assumed, the dischargeable amount (%) can be expressed as follows.
  • Dischargeable amount (%) (
  • the threshold value y at which the passivation is formed is that the metal-air battery is a zinc-air battery, and a 5 to 10M potassium hydroxide aqueous solution is used as the electrolytic solution.
  • 0.25 S / cm or more and 0.35 S / cm or less is desirable, and more preferably 0.3 S / cm or more and 0.33 S / cm or less.
  • the amount of metal-containing ions in the electrolytic solution can be calculated by multiplying the concentration of metal-containing ions in the electrolytic solution by the amount of electrolytic solution 3 in the electrolytic solution tank 2.
  • the metal-containing ion concentration is correlated with the pH value, conductivity, viscosity, or density of the electrolytic solution as described above. Accordingly, the metal-containing ion concentration is calculated from the measurement result of the first measurement unit 24 by measuring the relationship between the pH value, conductivity, viscosity or density of the electrolytic solution and the metal-containing ion concentration in advance and creating a calibration curve. be able to.
  • the calculation circuit 26 determines the precipitate 17 based on the measurement result of the first measurement unit 24 and the measurement result of the second measurement unit 25.
  • the amount can be calculated.
  • the notification unit 27 can notify a user or the like of information indicating the amount of the precipitate 17 in the electrolytic solution tank 2. Thereby, the user etc. can perform the maintenance which removes the deposit 17 in the electrolyte tank 2 at an appropriate time. Further, the information indicating the amount of the precipitate 17 may be an accumulation rate (%) of the precipitate 17.
  • the accumulation rate of the precipitate 17 can be calculated from the accumulation amount Q and the amount P of the precipitate 17 by previously determining the accumulation amount Q for discharging the precipitate 17 from the electrolytic solution tank 2. For example, it can be calculated by the following equation.
  • the notification unit 27 notifies the user or the like of information indicating the discharge timing of the precipitate 17 in the electrolytic solution tank 2 based on the measurement result of the first measurement unit 24 and the measurement result of the second measurement unit 25. It may be provided. In this case, when the accumulation rate (%) of the precipitates 17 reaches 100%, the notification unit 27 can be provided so as to display the discharge time on the display, the lamp, and the audio output unit. Thus, the user or the like can know that the time for discharging the precipitate 17 has come, and can discharge the precipitate 17 from the electrolytic solution tank 2 at an appropriate time.
  • the information to be notified is quantitative numerical information regarding the accumulation rate (%) of the precipitates 17, whether or not the accumulation rate (%) of the precipitation portion 17 has approached 100%, or has reached 100%. It may be the non-determination information indicating whether or not.
  • Notification of quantitative numerical information includes a method of displaying the numerical value itself or a figure obtained by converting the numerical information into a length and an angle on a display, or displaying by lighting a lamp composed of a plurality of segments.
  • the control unit may stop the power output from the metal-air battery together with the notification. By stopping the power output, the dissolution of the metal-containing ions accompanying the discharge from the metal-air battery is stopped, so that it is possible to prevent excessive formation of the precipitate 17.
  • the notification unit 27 notifies the user or the like of information indicating the time when the electrolyte solution 2 is replenished with the electrolyte or water. May be provided.
  • the information indicating the time when the electrolytic solution or water is supplied may be, for example, a display indicating that the supply time has come, or a display indicating the time until the supply time.
  • the measurement results of the first measurement unit 24 and the second measurement unit 25 are obtained by measuring the relationship between the pH value, conductivity, viscosity or density of the electrolytic solution and the water level of the electrolytic solution in advance and creating a calibration curve. From the above, the water level of the electrolyte can be calculated.
  • the notification unit 27 can notify the user or the like of information that represents the time when the electrolytic solution tank 2 is replenished with the electrolytic solution or water.
  • a value for replenishing the electrolytic solution or water to the electrolytic solution tank 2 is determined in advance, and when the pH value, conductivity, viscosity, or density of the electrolytic solution reaches this value, the notification unit 27 enters the electrolytic solution tank 2.
  • the user or the like can replenish the electrolytic solution tank 2 with the electrolytic solution or water at an appropriate time.
  • it can suppress that the area of the metal electrode 5 which contacts the electrolyte solution 3 by the fall of the water level of the electrolyte solution 3 can be suppressed, and it can suppress that the output of the metal air battery 30 falls.
  • the first measurement unit 24 is preferably a pH meter.
  • the pH meter responds linearly to changes in the OH ⁇ ion concentration in the region where the OH ⁇ ion concentration is high. For this reason, it is possible to accurately calculate the water level of the electrolytic solution from the measurement result of the pH meter.
  • 0.7 (mol / L) is the saturation concentration of zinc-containing ions when a 7M potassium hydroxide aqueous solution is used, and 2 is consumed from the electrolyte as 1 mol of zinc is dissolved. Is the number of moles of OH ⁇ ions to be produced.
  • the notification unit 27 can be provided so as to display the replacement time on the display, the lamp, and the sound output unit.
  • the user or the like can know that it is time to replenish, and can replenish the electrolyte in the electrolyte tank 2 at an appropriate time.
  • the information to be notified may be quantitative numerical information related to the water level (%), or the non-determining information indicating whether the water level (%) has approached the threshold value or has reached the threshold value. good.
  • Notification of quantitative numerical information includes a method of displaying the numerical value itself or a figure obtained by converting the numerical information into a length and an angle on a display, or displaying by lighting a lamp composed of a plurality of segments.
  • the water level (%) threshold is preferably 70 to 95%, more preferably 80 to 90%.
  • Discharge experiment 1 A zinc-air battery as shown in FIG. 1 was prepared, and the change in the conductivity of the electrolytic solution accompanying the discharge of the zinc-air battery was measured. Note that the manufactured zinc-air battery is not provided with the arithmetic circuit 26, the storage medium 28, the notification unit 27, and the like.
  • the metal electrode 5 a zinc plate having a thickness of 10 mm was used. Further, the size of the portion of the metal electrode 5 immersed in the electrolytic solution was 50 mm ⁇ 50 mm.
  • the air electrode 9 an air electrode catalyst layer 7 and a gas diffusion layer 8 laminated are used. The air electrode 9 had a thickness of about 300 ⁇ m and a size of 50 mm ⁇ 50 mm.
  • 35BC consists of a carbon fiber and a microporous layer, and the microporous layer is a layer made of carbon black and a water repellent resin (PTFE).
  • PTFE water repellent resin
  • As the electrolytic solution a 7M KOH aqueous solution in which zinc oxide was dissolved to 0.7 mol / L, which is the saturation solubility of zinc oxide, was used.
  • a conductivity meter was provided as the first measuring unit 24 so that the sensor unit was immersed in the electrolytic solution 3 in the electrolytic solution tank 2.
  • An ammeter is provided as the second measuring unit 25.
  • Example 1 a zinc-air battery was prepared in which the dischargeable amount was displayed on the display as the notification unit 27 based on the measurement result of the conductivity meter.
  • the dischargeable amount is 0.5 S / cm (conductivity of the electrolytic solution in which zinc oxide is dissolved up to 0.7 mol / L, which is the saturation solubility of zinc oxide in a 7 M KOH aqueous solution), and is 0.3 S / cm (
  • the conductivity of the surface of the metal electrode on which the passive film is formed is X2, and the conductivity measured by the conductivity meter is X3, which is calculated by the following formula and displayed on the display.
  • Dischargeable amount (X3 ⁇ X2) ⁇ (X1 ⁇ X2) ⁇ 100
  • the dischargeable amount refers to the time required to reach a state where no further discharge is possible with the formation of the passive film on the surface of the metal electrode even when the electrode active material remains on the metal electrode 5. It is a value used for Discharge was performed with the produced zinc-air battery. The discharge was stopped before the dischargeable amount displayed on the display as the notification unit 27 became zero. As a result, the discharge can be stopped before the Zn (OH) 4 2 ⁇ ion concentration reaches the threshold value for depositing the passivation, and the metal electrode 5 can be prevented from being covered with the passivation film. It was.
  • the Zn (OH) 4 2- ion concentration gradually increases during discharge.
  • the Zn (OH) 4 2 ⁇ ion concentration gradually decreases. Therefore, it is considered that the discharge can be performed again if a sufficient discharge interval is provided.
  • the OH ⁇ ion concentration in the electrolytic solution is considered to change as shown in FIG. That is, the OH ⁇ ion concentration during discharge gradually decreases.
  • the electrode active material contained in the metal electrode 5 can be efficiently used for the battery reaction by repeating the discharge at intervals of the discharge.
  • the user can know an appropriate discharge interval from the dischargeable amount displayed on the display as the notification unit 27.
  • Comparative Example 1 a zinc-air battery that did not include the first measurement unit 24, the arithmetic circuit 26, the storage medium 28, and the notification unit 27 was produced. Other configurations are the same as those of the zinc-air battery of Example 1. Discharge was performed with the produced zinc-air battery. After several hours, the discharge output of the metal-air battery became zero and the discharge stopped. At this time, it was confirmed that the surface of the metal electrode 5 was covered with the passive film of the precipitate 17. Further, in this zinc-air battery, since the notification unit 27 is not provided, the user cannot know the dischargeable amount and can stop the discharge before the metal electrode 5 is covered with the passive film. There wasn't.
  • Discharge experiment 2 As Example 2, an ammeter that is the second measurement unit 25 that measures the discharge current is provided, and the remaining amount of the electrode active material is displayed on the display that is the notification unit 27 based on the measurement result of the ammeter.
  • a zinc-air battery was prepared.
  • the metal electrode 5 used what contained 10g of metal zinc which is an electrode active material.
  • a 7M KOH aqueous solution in which zinc oxide was not dissolved was used as the electrolytic solution.
  • Other configurations are the same as those of the zinc-air battery of Example 1.
  • the remaining amount of the electrode active material contained in the metal electrode 5 is the cumulative discharge capacity Y (Ah) measured by the second measuring unit 25, the mass of metal zinc contained in the metal electrode 5 (10 g), and the Faraday constant (96500).
  • Remaining amount of electrode active material (%) (10 ⁇ Y ⁇ 3600 ⁇ 96500 ⁇ 2 ⁇ 65.4) ⁇ 100 Discharge was performed with the produced zinc-air battery. Moreover, during discharge, the dischargeable amount and the remaining amount of the electrode active material were displayed on the display serving as the notification unit. Further, the metal electrode 5 was replaced with a new metal electrode 5 when the remaining amount of the electrode active material displayed on the display decreased.
  • the metal electrode 5 can be replaced before the discharge output of the metal-air battery decreases, and the discharge accompanying the replacement of the metal electrode 5 The outage period could be shortened.
  • the remaining amount of the electrode active material was reset to the initial value.
  • a zinc-air battery that did not include the first measurement unit 24, the arithmetic circuit 26, the storage medium 28, and the notification unit 27 was produced.
  • Other configurations are the same as those of the zinc-air battery of Example 2. Discharge was performed with the produced zinc-air battery. After several hours, the discharge output of the metal-air battery became zero and the discharge stopped. After that, the metal electrode 5 that has consumed the electrode active material was replaced with a new metal electrode 5. In this metal-air battery, since the notification unit 27 is not provided, the remaining amount of the electrode active material cannot be known, and the discharge stop period associated with the replacement of the metal electrode 5 becomes long.
  • Discharge experiment 3 A zinc-air battery similar to that in discharge experiment 1 was prepared, and the calibration curve was prepared by measuring the change in the Zn (OH) 4 2- ion concentration of the electrolyte and the change in the conductivity of the electrolyte due to the discharge.
  • the prepared calibration curve is shown in FIG. It was found that the conductivity of the electrolyte gradually decreased as the Zn (OH) 4 2- ion concentration increased. This is presumably because the OH ⁇ ion concentration decreases as the Zn (OH) 4 2 ⁇ ion concentration increases with the progress of the battery reaction.
  • Example 3 a conductivity meter for measuring the electrolyte and an ammeter for measuring the discharge current are provided, and a notification unit based on both the measurement result of the conductivity meter and the measurement result of the ammeter A zinc-air battery was prepared in which the display 27 was notified of the discharge timing of the precipitate 17. Other configurations are the same as those of the zinc-air battery of Example 1.
  • the precipitation amount P (mol) of the precipitate 17 is determined from the consumption (mol) of the electrode active material calculated from the integrated discharge capacity Z (Ah) measured by an ammeter, the Faraday constant (96500), etc. It can be determined by subtracting the amount (mol) of Zn (OH) 4 2- ion.
  • the amount (mol) of Zn (OH) 4 2- ion in the electrolyte is based on the calibration curve shown in FIG. 5, and the concentration C1 of Zn (OH) 4 2- ion is determined from the conductivity measured by the conductivity meter. (Mol / L) can be calculated, and this concentration can be calculated by multiplying the total amount of electrolyte V1 (L). Specifically, the precipitation amount P was calculated from the following equation.
  • Precipitation amount P (mol) Z ⁇ 3600 ⁇ 96500 ⁇ 2-C1 ⁇ V1
  • the accumulation amount Q was set to an amount capable of recovering the fine particulate precipitate 17 in the electrolytic solution tank 2 without hindrance. When the accumulation rate reaches 100%, the notification unit 27 is provided so that the display indicates that it is the discharge time.
  • Discharge was performed with the produced zinc-air battery.
  • the accumulation rate reaches 100%, it is displayed on the display as the display unit 27 that it is the discharge time.
  • the precipitate 17 was discharged together with the electrolytic solution 3 from the electrolytic solution tank 2 to the collecting unit 37.
  • the electrolyte solution was filtered in the collection
  • the fine particle precipitate 17 could be discharged from the electrolyte bath 2 at an appropriate time.
  • the accumulated amount of the precipitate 17 was reset to zero after the precipitate 17 was discharged from the electrolytic solution tank 2.
  • Comparative Example 3 a zinc-air battery that did not include the first measurement unit 24, the arithmetic circuit 26, the storage medium 28, and the notification unit 27 was produced.
  • Other configurations are the same as those of the zinc-air battery of Example 3.
  • Discharge was performed with the produced zinc-air battery. And after discharging for 50 hours, the deposit 17 was discharged
  • a zinc meter is provided as the first measurement unit 24, and the display as the notification unit 27 displays that the amount of the electrolyte is decreasing based on the measurement result of the pH meter.
  • An air battery was produced. Further, a 7M KOH aqueous solution in which zinc oxide was not dissolved was used as the electrolytic solution.
  • Other configurations are the same as those of the zinc-air battery of Example 1.
  • the notification unit 27 is provided so that when the pH measured by the pH meter shows a value exceeding 15, the display indicates that the amount of the electrolyte is decreasing. Discharge was performed with the produced zinc-air battery. And whenever the fall of the amount of electrolyte solution was displayed on the notification part 27, water was replenished in the electrolyte tank, and discharge was continued for one month.
  • the difference between the discharge capacity on the first day of discharge and the discharge capacity one month after the start of discharge was less than 5%. Since the notification unit 27 displayed a decrease in the amount of the electrolytic solution, an appropriate amount of water could be supplied into the electrolytic solution tank 2 at an appropriate time.
  • a zinc-air battery that did not include the first measurement unit 24, the arithmetic circuit 26, the storage medium 28, and the notification unit 27 was produced.
  • Other configurations are the same as those of the zinc-air battery of Example 4.
  • the produced zinc-air battery was discharged for 1 month. During the discharge period, water is not replenished in the electrolyte bath.
  • the discharge capacity one month after the start of discharge was reduced by about 10% with respect to the discharge capacity on the first day of discharge. Further, the total amount of the electrolyte decreased by about 5% during the discharge period.
  • the pH of the electrolyte one month after the start of discharge was 15.5, which was higher than usual. The reason why the discharge capacity decreased for one month after the start of discharge is considered to be that the amount of the electrolytic solution decreased and the surface area of the metal electrode 5 in contact with the electrolytic solution decreased.
  • Electrolyte tank 3 Electrolyte 5: Metal electrode 7: Air electrode catalyst layer 8: Gas diffusion layer 9: Air electrode 10: Air electrode terminal 11: Metal electrode terminal 14: Separator 17: Deposit ( Spent active material) 23: Pore 24: First measurement unit 25: Second measurement unit 26: Arithmetic circuit 27: Notification unit 28: Storage medium 30: Metal-air battery 35: Valve 37: Collection unit 41: Mold member 42 : Filter medium 44: Residue 45: Filtrate 46: Electrolyte collection container

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)
  • Secondary Cells (AREA)

Abstract

 This metal air cell is characterized in being provided with: an electrolyte tank accommodating an electrolyte; a metal electrode provided in the electrolyte tank, the metal electrode having an electrode active material and functioning as an anode; an air electrode functioning as a cathode; a first measurement unit for measuring the electrolyte and/or a second measurement unit for measuring the discharge current of the metal air cell; and a communication unit for communicating cell information based on the result of measurement by the first measurement unit and/or the second measurement unit.

Description

金属空気電池Metal air battery
 本発明は、金属空気電池に関する。 The present invention relates to a metal-air battery.
 金属空気電池は高いエネルギー密度を有するため、次世代の電池として注目されている。金属空気電池は、電極活物質を含み電解液中に配置される金属電極をアノードとし、空気極をカソードとすることにより発電する。
 代表的な金属空気電池として、金属亜鉛を電極活物質とする亜鉛空気電池が挙げられる。亜鉛空気電池では、カソードにおいて以下の化学式1のような電極反応が進行すると考えられる。
(化学式1):O2+2H2O+4e-→4OH-
 また、アノードにおいて以下の化学式2のような電極反応が進行すると考えられる。
(化学式2):Zn+4OH-→Zn(OH)4 2-+2e-
Since metal-air batteries have high energy density, they are attracting attention as next-generation batteries. A metal-air battery generates electricity by using a metal electrode containing an electrode active material and being disposed in an electrolyte as an anode and an air electrode as a cathode.
As a typical metal-air battery, a zinc-air battery using metal zinc as an electrode active material can be mentioned. In a zinc-air battery, it is considered that an electrode reaction of the following chemical formula 1 proceeds at the cathode.
(Chemical formula 1): O 2 + 2H 2 O + 4e → 4OH
Further, it is considered that an electrode reaction as represented by the following chemical formula 2 proceeds at the anode.
(Chemical formula 2): Zn + 4OH → Zn (OH) 4 2− + 2e
 このような電極反応が進行すると金属電極の電極活物質は消費され徐々に減少していく。また、電解液の金属含有イオン(Zn(OH)4 2-)濃度は徐々に高くなっていき、そして、飽和に達すると以下の化学式3又は化学式4のような反応が進行し均一核生成または不均一核生成が生じる。そして、生成した核が結晶成長することにより金属酸化物または金属水酸化物の析出物が析出し使用済み活物質として電解液槽内に蓄積する。
(化学式3):Zn(OH)4 2-→ZnO+2OH-+H2O
(化学式4):Zn(OH)4 2-→Zn(OH)2+2OH-
 この析出物は、微粒子として電解液中に析出する場合と、金属電極の表面上に不動態として析出する場合とがある。
 微粒子状の使用済み活物質が電解液槽内に蓄積すると、アノードとカソードとの間のイオン伝導率が低下し金属空気電池の出力が低下する場合がある。また、使用済み活物質が金属電極の表面に不動態として析出しアノード反応を阻害する場合がある。このため、微粒子状の使用済み活物質を電解液槽内から排出すること及び不動態が付着した金属電極を新たな金属電極に交換することが必要である。
When such an electrode reaction proceeds, the electrode active material of the metal electrode is consumed and gradually decreases. In addition, the concentration of metal-containing ions (Zn (OH) 4 2− ) in the electrolyte solution gradually increases, and when saturation is reached, a reaction such as the following chemical formula 3 or chemical formula 4 proceeds and uniform nucleation or Heterogeneous nucleation occurs. Then, as the produced nucleus grows, a metal oxide or metal hydroxide precipitate is deposited and accumulated in the electrolytic solution tank as a used active material.
(Chemical formula 3): Zn (OH) 4 2− → ZnO + 2OH + H 2 O
(Chemical formula 4): Zn (OH) 4 2− → Zn (OH) 2 + 2OH
This precipitate may be deposited as fine particles in the electrolyte solution or may be deposited as a passive state on the surface of the metal electrode.
When the used active material in the form of fine particles accumulates in the electrolytic solution tank, the ionic conductivity between the anode and the cathode may decrease and the output of the metal-air battery may decrease. In addition, the used active material may be deposited as a passive state on the surface of the metal electrode to inhibit the anode reaction. For this reason, it is necessary to discharge the spent active material in the form of fine particles from the electrolytic solution tank and to replace the metal electrode with the passivated metal with a new metal electrode.
 また、電極反応が進行すると金属電極に含まれる電極活物質の量が減少するため、電極活物質の量が少なくなった使用済みの金属電極を新たな金属電極と交換する必要がある。
 さらに、電解液に含まれる水は、電池反応や空気極における蒸発により失われるため、電解液槽に水又は電解液を補給する必要がある。
 このように金属空気電池では、使用済み活物質の排出、金属電極の交換、水又は電解液の補給などのメンテナンスを適切な時期に行う必要がある。しかし、ユーザーがこの適切な時期を把握することは難しい。
Moreover, since the amount of the electrode active material contained in the metal electrode decreases as the electrode reaction proceeds, it is necessary to replace the used metal electrode with a reduced amount of the electrode active material with a new metal electrode.
Furthermore, since water contained in the electrolytic solution is lost due to battery reaction or evaporation at the air electrode, it is necessary to replenish the electrolytic solution tank with water or electrolytic solution.
As described above, in the metal-air battery, it is necessary to perform maintenance such as discharge of the used active material, replacement of the metal electrode, and replenishment of water or electrolyte at an appropriate time. However, it is difficult for the user to grasp this appropriate time.
 ユーザーにこの適切な時期を知らせる手段を備えた金属空気電池として、電池容量検出回路などにより検知した電池容量に基づき金属電極の交換時期をユーザーに通知する金属空気電池が知られている(たとえば、特許文献1参照)。 As a metal-air battery equipped with means for notifying the user of this appropriate time, a metal-air battery that notifies the user of the replacement time of the metal electrode based on the battery capacity detected by a battery capacity detection circuit or the like is known (for example, Patent Document 1).
特開2004-362869号公報JP 2004-362869 A
 しかし、従来の金属空気電池では、電池容量検出回路などにより検知した電池容量に基づきユーザーに通知するため、使用済み活物質の排出、水又は電解液の補給を行う適切な時期を通知することは難しい。
 また、電極活物質の量の減少により金属電極の交換が必要になる場合と、金属電極の表面に使用済み活物質が不動態として付着したために金属電極の交換が必要になる場合とがあるため、電池容量検出回路などにより検知した電池容量に基づき適切な金属電極の交換の時期を通知することは難しい。
 本発明は、このような事情に鑑みてなされたものであり、金属空気電池のメンテナンスを行う適切な時期をユーザーなどに通知することができる金属空気電池を提供する。
However, in the conventional metal-air battery, in order to notify the user based on the battery capacity detected by the battery capacity detection circuit or the like, it is not possible to notify the appropriate time for discharging the used active material and supplying water or electrolyte. difficult.
In addition, it may be necessary to replace the metal electrode due to a decrease in the amount of the electrode active material, and it may be necessary to replace the metal electrode because the used active material adheres to the surface of the metal electrode as a passive state. It is difficult to notify the appropriate replacement time of the metal electrode based on the battery capacity detected by the battery capacity detection circuit or the like.
This invention is made | formed in view of such a situation, and provides the metal air battery which can notify a user etc. of the suitable time which performs a maintenance of a metal air battery.
 本発明は、電解液を収容する電解液槽と、前記電解液槽中に設けられかつ電極活物質を有しかつアノードとなる金属電極と、カソードとなる空気極と、前記電解液を計測対象とする第1計測部と、第1計測部の計測結果に基づく電池情報を通知する通知部とを備えることを特徴とする金属空気電池を提供する。 The present invention relates to an electrolytic solution tank that contains an electrolytic solution, a metal electrode that is provided in the electrolytic solution tank and has an electrode active material and serves as an anode, an air electrode that serves as a cathode, and the electrolytic solution to be measured A metal-air battery comprising: a first measurement unit that includes: a notification unit that notifies battery information based on a measurement result of the first measurement unit.
 本発明によれば、電解液を収容する電解液槽と、前記電解液槽中に設けられかつ電極活物質を有しかつアノードとなる金属電極と、カソードとなる空気極とを備えるため、金属電極においてアノード反応を進行させることができ、空気極においてカソード反応を進行させることができる。このことにより、金属電極と空気極との間に起電力を生じさせることができる。
 本発明によれば、電解液を計測対象とする第1計測部を備えるため、第1計測部により、電解液のpH値、導電率、粘度又は密度などの物性値を計測することができる。
 本発明によれば、第1計測部の計測結果に基づく電池情報を通知する通知部を備えるため、第1計測部の計測結果から算出した、放電可能時間を表す情報、電解液のイオン濃度を表す情報、電解液槽に電解液または水を補給する時期を表す情報などの電池情報をユーザーなどに通知することができる。また、この電池情報は、電解液を対象とした計測の結果から算出されるため、より正確な情報をユーザーなどに通知することができる。
 このことにより、ユーザーなどは、メンテナンスを行う適切な時期を知ることができ、適切な時期にメンテナンスを行うことができる。
According to the present invention, a metal tank includes an electrolyte tank that contains an electrolyte, a metal electrode that is provided in the electrolyte tank and has an electrode active material and serves as an anode, and an air electrode that serves as a cathode. The anode reaction can proceed at the electrode, and the cathode reaction can proceed at the air electrode. Thereby, an electromotive force can be generated between the metal electrode and the air electrode.
According to this invention, since the 1st measurement part which makes electrolyte solution a measurement object is provided, physical property values, such as pH value, electroconductivity, viscosity, or density of electrolyte solution, can be measured by a 1st measurement part.
According to the present invention, since the notification unit that notifies the battery information based on the measurement result of the first measurement unit is provided, the information indicating the dischargeable time calculated from the measurement result of the first measurement unit, the ion concentration of the electrolytic solution Battery information such as information that represents information and information that represents the time when the electrolytic solution or water is supplied to the electrolytic solution tank can be notified to a user or the like. Moreover, since this battery information is calculated from the measurement result for the electrolytic solution, more accurate information can be notified to the user or the like.
As a result, the user or the like can know an appropriate time for performing maintenance, and can perform maintenance at an appropriate time.
本発明の一実施形態の金属空気電池の概略断面図である。It is a schematic sectional drawing of the metal air battery of one Embodiment of this invention. 放電実験1で測定した放電容量と電解液の導電率との関係を示すグラフである。It is a graph which shows the relationship between the discharge capacity | capacitance measured in the discharge experiment 1, and the electrical conductivity of electrolyte solution. 放電実験1におけるZn(OH)4 2-イオン濃度の変化を示すグラフである。 3 is a graph showing changes in Zn (OH) 4 2- ion concentration in discharge experiment 1. FIG. 放電実験1におけるOH-イオン濃度の変化を示すグラフである。4 is a graph showing changes in OH ion concentration in discharge experiment 1. FIG. 放電実験3で測定したZn(OH)4 2-イオン濃度と電解液の導電率との関係を示すグラフである。6 is a graph showing the relationship between the Zn (OH) 4 2- ion concentration measured in the discharge experiment 3 and the conductivity of the electrolytic solution.
 電解液を収容する電解液槽と、前記電解液槽中に設けられかつ電極活物質を有しかつアノードとなる金属電極と、カソードとなる空気極と、前記電解液を計測対象とする第1計測部及び/又は前記金属空気電池の放電電流を計測対象とする第2計測部と、前記第1計測部及び/又は前記第2計測部の計測結果に基づく電池情報を通知する通知部とを備えることを特徴とする。 An electrolytic solution tank that contains an electrolytic solution, a metal electrode that is provided in the electrolytic solution tank and has an electrode active material and serves as an anode, an air electrode that serves as a cathode, and a first electrode that uses the electrolytic solution as a measurement target A measurement unit and / or a second measurement unit for measuring a discharge current of the metal-air battery; and a notification unit for notifying battery information based on a measurement result of the first measurement unit and / or the second measurement unit. It is characterized by providing.
 本発明の金属空気電池において、第1計測部は、少なくとも前記電解液に関するpH値、導電率、粘度又は密度を計測する計測部であり、前記電池情報は、放電可能時間を表す情報、前記電解液のイオン濃度を表す情報、又は前記電解液槽に電解液または水を補給する時期を表す情報であることが好ましい。
 このような構成によれば、ユーザーなどが放電可能時間、電解液のイオン濃度、又は電解液槽に電解液または水を補給する時期を知ることができ、適切な時期にメンテナンスを行うことができる。
 本発明の金属空気電池において、第1計測部は、前記電解液の導電率を計測する計測部であり、前記電池情報は、放電可能時間を表す情報であることが好ましい。
 このような構成によれば、ユーザーなどが放電可能時間を知ることができ、適切な時期に金属電極を交換することができる。
In the metal-air battery of the present invention, the first measurement unit is a measurement unit that measures at least a pH value, conductivity, viscosity, or density related to the electrolytic solution, and the battery information includes information indicating a dischargeable time, the electrolysis It is preferable that the information represents the ion concentration of the liquid or the information indicating the time when the electrolytic solution or water is supplied to the electrolytic solution tank.
According to such a configuration, the user or the like can know the dischargeable time, the ion concentration of the electrolyte, or the time to replenish the electrolyte or water in the electrolyte bath, and can perform maintenance at an appropriate time. .
In the metal-air battery of the present invention, it is preferable that the first measurement unit is a measurement unit that measures the electrical conductivity of the electrolytic solution, and the battery information is information representing a dischargeable time.
According to such a configuration, the user or the like can know the dischargeable time, and the metal electrode can be replaced at an appropriate time.
 本発明の金属空気電池において、前記通知部は、第1計測部及び/又は第2計測部の計測結果に基づく電池情報を通知する通知部であり、前記電池情報は、前記金属電極に含まれる電極活物質の残量を表す情報、前記電極活物質から生成した析出物の量を表す情報、又は前記析出物の排出時期を表す情報であることが好ましい。
 このような構成によれば、金属電極に含まれる電極活物質の残量、電極活物質から生成した析出物の量、又は析出物の排出時期を知ることができ、適切な時期にメンテナンスを行うことができる。
 本発明の金属空気電池において、前記通知部は、データ通信回線を利用して遠隔地に電池情報を通知する通知部であることが好ましい。
 このような構成によれば、遠隔地のユーザー又は管理者が電池情報を知ることができ、金属空気電池を監視することができる。このことにより、例えば、遠隔地の管理者又は管理会社が金属空気電池の管理及びメンテナンスを行うことが可能になる。また、遠隔地の管理者又は管理会社が複数の金属空気電池を同時に監視することが可能になる。
In the metal-air battery of the present invention, the notification unit is a notification unit that notifies battery information based on a measurement result of the first measurement unit and / or the second measurement unit, and the battery information is included in the metal electrode. Information representing the remaining amount of the electrode active material, information representing the amount of precipitate generated from the electrode active material, or information representing the discharge timing of the deposit is preferable.
According to such a configuration, the remaining amount of the electrode active material contained in the metal electrode, the amount of precipitate generated from the electrode active material, or the discharge timing of the precipitate can be known, and maintenance is performed at an appropriate time. be able to.
In the metal-air battery of the present invention, the notification unit is preferably a notification unit that notifies battery information to a remote place using a data communication line.
According to such a configuration, a remote user or administrator can know the battery information, and can monitor the metal-air battery. This enables, for example, a remote manager or management company to manage and maintain the metal-air battery. In addition, a remote administrator or management company can simultaneously monitor a plurality of metal-air batteries.
 以下、本発明の一実施形態を図面を用いて説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The configurations shown in the drawings and the following description are merely examples, and the scope of the present invention is not limited to those shown in the drawings and the following description.
金属空気電池の構成
 図1は本実施形態の金属空気電池の概略断面図である。
 本実施形態の金属空気電池30は、電解液3を収容する電解液槽2と、電解液槽2中に設けられかつ電極活物質を有しかつアノードとなる金属電極5と、カソードとなる空気極9と、電解液3を計測対象とする第1計測部24と、第1計測部24の計測結果に基づく電池情報を通知する通知部27とを備えることを特徴とする。
 以下、本実施形態の金属空気電池30について説明する。
Configuration of Metal-Air Battery FIG. 1 is a schematic sectional view of a metal-air battery according to this embodiment.
The metal-air battery 30 according to the present embodiment includes an electrolytic solution tank 2 that contains an electrolytic solution 3, a metal electrode 5 that is provided in the electrolytic solution tank 2 and has an electrode active material and serves as an anode, and air that serves as a cathode. It is provided with the pole 9, the 1st measurement part 24 which makes the electrolyte solution 3 measurement object, and the notification part 27 which notifies the battery information based on the measurement result of the 1st measurement part 24, It is characterized by the above-mentioned.
Hereinafter, the metal-air battery 30 of this embodiment will be described.
1.金属空気電池
 本実施形態の金属空気電池30は、電極活物質となる金属を含む金属電極5を負極(アノード)とし、空気極9を正極(カソード)とする電池である。例えば、亜鉛空気電池、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池、マグネシウム空気電池、アルミニウム空気電池、鉄空気電池などである。また、本実施形態の金属空気電池30は、一次電池であってもよい。
 また、金属空気電池30は、電解液槽2、空気極9などからなる金属空気電池本体と、金属空気電池本体に着脱可能な構造を有し、金属電極5、金属極端子11などからなる金属電極ホルダーとから構成されてもよい。
1. Metal-air battery The metal-air battery 30 of the present embodiment is a battery in which the metal electrode 5 containing a metal serving as an electrode active material is a negative electrode (anode) and the air electrode 9 is a positive electrode (cathode). For example, a zinc air battery, a lithium air battery, a sodium air battery, a calcium air battery, a magnesium air battery, an aluminum air battery, and an iron air battery. Further, the metal-air battery 30 of the present embodiment may be a primary battery.
The metal-air battery 30 has a metal-air battery body composed of the electrolytic solution tank 2, the air electrode 9 and the like, and a structure that can be attached to and detached from the metal-air battery body. You may comprise from an electrode holder.
2.セル
 セルは、金属空気電池30の構成単位であり、電解液槽2(電解液室)中に設けられかつアノードとなる金属電極5と、カソードとなる空気極9とからなる電極対を有する。セルは、例えば、1つの空気極9と1つの金属電極5とが電解液3を挟むように設けられた電極対を有してもよく、図1に示した金属空気電池30のように2つの空気極9が1つの金属電極5を挟むように設けられた電極対を有してもよい。
 また、セルは、電解液槽2又は電解液室と、電解液槽2中又は電解液室中に設けられかつアノードとなる金属電極5と、カソードとなる空気極9とを備えてもよい。
2. Cell The cell is a structural unit of the metal-air battery 30, and has an electrode pair that is provided in the electrolytic solution tank 2 (electrolytic solution chamber) and includes a metal electrode 5 serving as an anode and an air electrode 9 serving as a cathode. The cell may have, for example, an electrode pair in which one air electrode 9 and one metal electrode 5 are provided so as to sandwich the electrolytic solution 3, and 2 cells like the metal-air battery 30 shown in FIG. One air electrode 9 may have an electrode pair provided so as to sandwich one metal electrode 5.
The cell may include an electrolytic solution tank 2 or an electrolytic solution chamber, a metal electrode 5 provided in the electrolytic solution tank 2 or the electrolytic solution chamber and serving as an anode, and an air electrode 9 serving as a cathode.
3.セル集合体
 セル集合体は、複数のセルを重ねたスタック構造を有する。セル集合体は、複数のセルが1つの電解液槽2内に設けられてもよく、それぞれのセルが電解液槽2または電解液室を有してもよい。なお、セル集合体を構成するセルの数は特に限定されず、必要となる発電能力に応じてセルの数量を決定すればよい。
 また、セル集合体を構成する複数のセルがそれぞれ電解液槽2を有する場合、各セルが有する電解液槽2は共通の筐体1に設けられてもよく、各セルが筐体1を有し、この筐体1に電解液槽2が設けられてもよい。
 なお、1つの筐体1に2個または3個のセルを設け、このような筐体1を複数組み合わせることによりセル集合体を形成してもよい。
 セル集合体に含まれる複数のセルの電極対は、直列接続してもよく、並列接続してもよい。
3. Cell assembly The cell assembly has a stack structure in which a plurality of cells are stacked. In the cell assembly, a plurality of cells may be provided in one electrolytic solution tank 2, and each cell may have the electrolytic solution tank 2 or the electrolytic solution chamber. The number of cells constituting the cell assembly is not particularly limited, and the number of cells may be determined according to the required power generation capacity.
In addition, when a plurality of cells constituting the cell assembly each have the electrolytic solution tank 2, the electrolytic solution tank 2 included in each cell may be provided in a common housing 1, and each cell has the housing 1. The casing 1 may be provided with an electrolytic solution tank 2.
Note that two or three cells may be provided in one casing 1, and a plurality of such casings 1 may be combined to form a cell aggregate.
The electrode pairs of a plurality of cells included in the cell assembly may be connected in series or in parallel.
4.電解液、電解液槽
 電解液3は、溶媒に電解質が溶解しイオン導電性を有する液体である。電解液3は、電解液槽2内に溜められる、または電解液槽2内を流通する。電解液3の種類は、金属電極5に含まれる電極活物質の種類によって異なるが、水溶媒を用いた電解液(電解質水溶液)であってもよい。
 また、電解液3は、第1計測部24の計測対象となる。
 例えば、亜鉛空気電池、アルミニウム空気電池、鉄空気電池の場合、電解液には、水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ性水溶液を用いることができ、マグネシウム空気電池の場合、電解液には塩化ナトリウム水溶液を用いることができる。
4). Electrolytic Solution, Electrolytic Solution Tank The electrolytic solution 3 is a liquid having an ionic conductivity by dissolving an electrolyte in a solvent. The electrolytic solution 3 is stored in the electrolytic solution tank 2 or circulates in the electrolytic solution tank 2. The type of the electrolytic solution 3 is different depending on the type of the electrode active material contained in the metal electrode 5, but may be an electrolytic solution (aqueous electrolyte solution) using a water solvent.
In addition, the electrolytic solution 3 is a measurement target of the first measurement unit 24.
For example, in the case of a zinc-air battery, an aluminum-air battery, or an iron-air battery, an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution can be used as the electrolytic solution. An aqueous sodium chloride solution can be used.
 電解液槽2は、電解液3を溜める又は流通させる電解槽であり、 電解液に対して耐食性を有する。また、電解液槽2は、電解液室を有することができる。
 電解液槽2または電解液室は、その中に金属電極5を取り出し可能に設置することができる構造を有する。電解液槽2は、金属空気電池本体に設けることができる。また、電解液槽2は、複数の電解液室を有してもよい。
The electrolytic solution tank 2 is an electrolytic cell that stores or distributes the electrolytic solution 3 and has corrosion resistance to the electrolytic solution. Moreover, the electrolytic solution tank 2 can have an electrolytic solution chamber.
The electrolytic solution tank 2 or the electrolytic solution chamber has a structure in which the metal electrode 5 can be installed so that it can be taken out. The electrolyte bath 2 can be provided in the metal-air battery main body. Moreover, the electrolytic solution tank 2 may have a plurality of electrolytic solution chambers.
 金属空気電池30が電解液槽2内の電解液3を流動させる機構を有してもよい。このことにより金属電極5でのアノード反応を促進することができ、金属空気電池30の性能を向上させることができる。電解液を流動させる機構としては、ポンプおよび循環流路を用いて電解液3を循環させ、電解液槽2内の電解液3を流動させてもよい。
 また、金属空気電池30が攪拌機、バイブレーターなどの電解液槽2内の電解液3を物理的に動かすことのできる可動部を備えてもよい。
The metal-air battery 30 may have a mechanism for causing the electrolytic solution 3 in the electrolytic solution tank 2 to flow. As a result, the anode reaction at the metal electrode 5 can be promoted, and the performance of the metal-air battery 30 can be improved. As a mechanism for flowing the electrolytic solution, the electrolytic solution 3 may be circulated using a pump and a circulation flow path, and the electrolytic solution 3 in the electrolytic solution tank 2 may be flowed.
Moreover, the metal air battery 30 may be provided with a movable part that can physically move the electrolyte 3 in the electrolyte bath 2 such as a stirrer and a vibrator.
 電解液槽2を構成する筐体1の材料は、電解液に対して耐食性を有する材料であれば特に限定されず、例えば、ポリ塩化ビニル(PVC)、ポリビニルアルコール(PVA)、ポリ酢酸ビニル、ABS、塩化ビニリデン、ポリアセタール、ポリエチレン、ポリプロピレン、ポリイソブチレン、フッ素樹脂、エポキシ樹脂などである。 The material of the housing 1 constituting the electrolytic solution tank 2 is not particularly limited as long as the material has corrosion resistance to the electrolytic solution. For example, polyvinyl chloride (PVC), polyvinyl alcohol (PVA), polyvinyl acetate, ABS, vinylidene chloride, polyacetal, polyethylene, polypropylene, polyisobutylene, fluororesin, epoxy resin, etc.
5.金属電極
 金属電極5は、アノードとなる電極であり、アノードの電極活物質である金属を含む。また、金属電極5は、電解液槽2中に取り出し可能に設けることができる。
 金属電極5は、例えば、電極活物質である金属を含む金属板であってもよい。また、金属電極5は、例えば、金属電極集電体と金属電極集電体上に設けられた電極活物質層とを有してもよい。
 金属電極5に含まれる電極活物質は、アノード反応により金属電極5中に電荷を発生させ金属含有イオンとして電解液に溶解する金属である。このため、金属電極5に含まれる電極活物質はアノード反応の進行に伴い徐々に消費されていく。金属電極5に含まれる電極活物質が少なくなると、金属電極5に発生する電荷が少なくなり金属電極5は使用済みとなる。この使用済みの金属電極5を電解液槽2中から除去し新たな金属電極5を電解液槽2中に挿入することにより金属空気電池30による発電を続けることができる。
 なお、金属電極5中に発生した電荷は、放電電流として外部出力された後、空気極9におけるカソード反応に利用される。この放電電流は、第2計測部25の計測対象となる。
5. Metal electrode The metal electrode 5 is an electrode that serves as an anode, and includes a metal that is an electrode active material of the anode. Moreover, the metal electrode 5 can be provided in the electrolyte solution tank 2 so that it can be taken out.
The metal electrode 5 may be, for example, a metal plate containing a metal that is an electrode active material. In addition, the metal electrode 5 may include, for example, a metal electrode current collector and an electrode active material layer provided on the metal electrode current collector.
The electrode active material contained in the metal electrode 5 is a metal that generates a charge in the metal electrode 5 by an anodic reaction and dissolves in the electrolyte as metal-containing ions. For this reason, the electrode active material contained in the metal electrode 5 is gradually consumed as the anode reaction proceeds. When the electrode active material contained in the metal electrode 5 decreases, the charge generated in the metal electrode 5 decreases and the metal electrode 5 is used. By removing the used metal electrode 5 from the electrolytic solution tank 2 and inserting a new metal electrode 5 into the electrolytic solution tank 2, power generation by the metal-air battery 30 can be continued.
The charge generated in the metal electrode 5 is output to the outside as a discharge current and then used for the cathode reaction in the air electrode 9. This discharge current is a measurement target of the second measurement unit 25.
 アノード反応により電解液3中に生じた金属含有イオンは、その濃度が飽和濃度を超えると電解液3中に金属酸化物または金属水酸化物の微粒子など(析出物17)として析出する場合がある。また、金属含有イオンの濃度が不動態形成濃度に達すると、金属含有イオンは、金属電極5の表面上に金属酸化物または金属水酸化物の不動態(析出物17)として析出する場合がある。従って、析出物17は、電解液中に浮遊する又は電解液槽の底に沈降する微粒子として析出する場合と、金属電極5の表面上に付着した不動態として析出する場合とがある。 When the concentration of the metal-containing ions generated in the electrolytic solution 3 by the anodic reaction exceeds the saturation concentration, the metal-containing ions may be deposited in the electrolytic solution 3 as fine particles of metal oxide or metal hydroxide (precipitate 17). . Further, when the concentration of the metal-containing ions reaches the passivating concentration, the metal-containing ions may be deposited on the surface of the metal electrode 5 as a metal oxide or metal hydroxide passivated (precipitate 17). . Therefore, the precipitate 17 may be deposited as fine particles floating in the electrolyte solution or settling on the bottom of the electrolyte solution tank, and may be deposited as a passive material adhering to the surface of the metal electrode 5.
 析出物17が微粒子として析出し、この微粒子が電解液3中に過剰に存在すると、多孔性の空気極9の細孔に析出物17の微粒子が付着することで酸素ガスの拡散が妨げられたり、多孔性のセパレータ14の細孔に析出物17の微粒子が付着することで、OH-イオンのイオン伝導パスが妨げられたりする結果、金属空気電池30の出力が低下する。このため、電解液中に析出物17の微粒子が蓄積すると、電解液3中からこの微粒子を除去する必要がある。
 析出物17が不動態として析出し、この不動態が金属電極5の表面の大部分を覆うと、金属電極5の表面におけるアノード反応は阻害され金属空気電池30の出力が低下する。このため、不動態が表面を覆った金属電極5を電解液槽2中から除去し新たな金属電極5を電解液槽2中に挿入することにより金属空気電池30による発電を続けることができる。
If the precipitate 17 is deposited as fine particles and the fine particles are excessively present in the electrolyte solution 3, the fine particles of the precipitate 17 adhere to the pores of the porous air electrode 9, thereby preventing oxygen gas diffusion. As a result of the fine particles of the precipitate 17 adhering to the pores of the porous separator 14, the ion conduction path of OH ions is hindered. As a result, the output of the metal-air battery 30 decreases. For this reason, when the fine particles of the precipitate 17 accumulate in the electrolytic solution, it is necessary to remove the fine particles from the electrolytic solution 3.
When the deposit 17 is deposited as a passive state and this passive state covers most of the surface of the metal electrode 5, the anode reaction on the surface of the metal electrode 5 is inhibited, and the output of the metal-air battery 30 is reduced. For this reason, it is possible to continue the power generation by the metal-air battery 30 by removing the metal electrode 5 whose passivation has covered the surface from the electrolytic solution tank 2 and inserting a new metal electrode 5 into the electrolytic solution tank 2.
 例えば、亜鉛空気電池の場合、電極活物質は金属亜鉛であり、電解液中には水酸化亜鉛または酸化亜鉛が析出する。アルミニウム空気電池の場合、電極活物質は金属アルミニウムであり、電解液中には水酸化アルミニウムが析出する。鉄空気電池の場合、電極活物質は金属鉄であり、電解液中には酸化水酸化鉄または酸化鉄が析出する。マグネシウム空気電池の場合、電極活物質は金属マグネシウムであり、電解液中には水酸化マグネシウムが析出する。
 また、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池の場合、電極活物質はそれぞれ、金属リチウム、金属ナトリウム、金属カルシウムであり、電解液中にはこれらの金属の酸化物、水酸化物などが析出する。なお、リチウム空気電池、ナトリウム空気電池、カルシウム空気電池の場合、金属電極5と電解液との間に固体電解質膜を有してもよい。このことにより、電極活物質が電解液により腐食されることを抑制することができる。また、この場合、電極活物質は固体電解質膜をイオン伝導した後電解液に溶解する。
 なお、電極活物質は、これらの例には限定されず、金属空気電池となるものであればよい。また、金属電極5に含まれる電極活物質は、上記の例では一種の金属元素からなる金属を挙げたが、金属電極5に含まれる電極活物質は合金であってもよい。
For example, in the case of a zinc-air battery, the electrode active material is metallic zinc, and zinc hydroxide or zinc oxide is deposited in the electrolytic solution. In the case of an aluminum air battery, the electrode active material is metallic aluminum, and aluminum hydroxide is deposited in the electrolytic solution. In the case of an iron-air battery, the electrode active material is metallic iron, and iron oxide hydroxide or iron oxide is deposited in the electrolytic solution. In the case of a magnesium air battery, the electrode active material is metallic magnesium, and magnesium hydroxide is deposited in the electrolyte.
In the case of lithium-air batteries, sodium-air batteries, and calcium-air batteries, the electrode active materials are metallic lithium, metallic sodium, and metallic calcium, respectively, and oxides and hydroxides of these metals are contained in the electrolyte. Precipitate. In the case of a lithium air battery, a sodium air battery, or a calcium air battery, a solid electrolyte membrane may be provided between the metal electrode 5 and the electrolytic solution. Thereby, it can suppress that an electrode active material is corroded by electrolyte solution. In this case, the electrode active material is dissolved in the electrolytic solution after ion conduction through the solid electrolyte membrane.
In addition, an electrode active material is not limited to these examples, What is necessary is just a metal air battery. Moreover, although the electrode active material contained in the metal electrode 5 mentioned the metal which consists of a kind of metal element in said example, the electrode active material contained in the metal electrode 5 may be an alloy.
 金属電極集電体は、導電性を有する。また、金属電極集電体の形状は板状、または板の厚み方向に貫通した孔が設けられた形状、またはエキスパンドメタルやメッシュが好ましい。また、この金属電極集電体は、例えば、電解液に対して耐食性を有する金属により形成することができる。金属電極集電体の材料は、例えば、ニッケル、金、銀、銅、ステンレスなどである。また、金属電極集電体は、ニッケルめっき処理、金めっき処理、銀めっき処理、銅めっき処理された導電性基材などであってもよい。この導電性基材には、鉄、ニッケル、ステンレスなどを用いることができる。
 このことにより、アノード反応により金属電極5に生じた電荷を金属電極集電体により集電することができ、発生させた電荷を外部回路に出力することができる。金属電極集電体の主要面上への電極活物質層の固定は、例えば、電極活物質である金属の粒子や塊を金属電極集電体の表面に押し付けて固定してもよく、金属電極集電体上にめっき法などにより金属を析出させてもよい。なお、金属電極集電体の形状に関して、めっき法で電極活物質を析出させる場合には導電性の観点で板形状が好ましく、金属の粒子や塊を固定させる場合には、粒子や塊の脱落を防止する観点で板に貫通孔が設けられたもの、またはエキスパンドメタルやメッシュが好ましい。
The metal electrode current collector has conductivity. Further, the shape of the metal electrode current collector is preferably a plate shape, a shape provided with a hole penetrating in the thickness direction of the plate, an expanded metal or a mesh. In addition, the metal electrode current collector can be formed of, for example, a metal having corrosion resistance against the electrolytic solution. The material of the metal electrode current collector is, for example, nickel, gold, silver, copper, stainless steel or the like. The metal electrode current collector may be a nickel-plated, gold-plated, silver-plated, or copper-plated conductive substrate. For this conductive substrate, iron, nickel, stainless steel, or the like can be used.
As a result, the charge generated in the metal electrode 5 by the anode reaction can be collected by the metal electrode current collector, and the generated charge can be output to an external circuit. The electrode active material layer may be fixed on the main surface of the metal electrode current collector, for example, by pressing metal particles or lumps that are electrode active materials against the surface of the metal electrode current collector. A metal may be deposited on the current collector by plating or the like. Regarding the shape of the metal electrode current collector, the plate shape is preferable from the viewpoint of conductivity when the electrode active material is deposited by plating, and when the metal particles or lump is fixed, the particles or lump is dropped. From the viewpoint of preventing this, a plate provided with a through hole, or an expanded metal or mesh is preferable.
 金属電極5は、金属電極支持体と共に金属電極ホルダーを構成することができる。金属電極ホルダーは、金属電極5を電解液槽2内に挿入することができ、使用済みの金属電極5を電解液槽2内から抜き出せるように設けられる。このことにより、金属空気電池30に電極活物質を供給することができる。
 金属電極支持体は、金属空気電池本体に設けられた電極挿入口の蓋となるように設けることができる。このことにより、電解液槽2に金属電極5を挿入すると共に電極挿入口に蓋をすることができ、大気中の成分と電解液3とが反応することを抑制することができる。
The metal electrode 5 can constitute a metal electrode holder together with the metal electrode support. The metal electrode holder is provided so that the metal electrode 5 can be inserted into the electrolytic solution tank 2 and the used metal electrode 5 can be extracted from the electrolytic solution tank 2. As a result, the electrode active material can be supplied to the metal-air battery 30.
A metal electrode support body can be provided so that it may become a lid | cover of the electrode insertion port provided in the metal air battery main body. Thus, the metal electrode 5 can be inserted into the electrolytic solution tank 2 and the electrode insertion port can be covered, and the reaction between the components in the atmosphere and the electrolytic solution 3 can be suppressed.
6.空気極
 空気極9は、空気極触媒を有しかつカソードとなる電極である。また、空気極9は、多孔性のガス拡散層8と、ガス拡散層8上に設けられた多孔性の空気極触媒層7とを有してもよい。空気極9では、空気極触媒上において電解液3などから供給される水と大気から供給される酸素ガスと電子とが反応し水酸化物イオン(OH-)を生成する(カソード反応)。つまり、空気極9の三相界面においてカソード反応が進行する。
 また、空気極9は、空気極9に大気に含まれる酸素ガスが拡散できるように設けられる。例えば、空気極9は、少なくとも空気極9の表面の一部が大気に曝されるように設けることができる。図1に示した金属空気電池30では、筐体1に複数の空孔23を設けており、空孔23を介して大気に含まれる酸素ガスが空気極9中に拡散できる。また、例えば、空気が流れる空気流路を形成し空気極9に酸素ガスを供給してもよい。なお、この空気流路を介して空気極9に水を供給してもよい。
6). Air electrode The air electrode 9 is an electrode having an air electrode catalyst and serving as a cathode. Further, the air electrode 9 may include a porous gas diffusion layer 8 and a porous air electrode catalyst layer 7 provided on the gas diffusion layer 8. In the air electrode 9, water supplied from the electrolytic solution 3 and the like, oxygen gas supplied from the atmosphere, and electrons react on the air electrode catalyst to generate hydroxide ions (OH ) (cathode reaction). That is, the cathode reaction proceeds at the three-phase interface of the air electrode 9.
The air electrode 9 is provided so that oxygen gas contained in the atmosphere can diffuse into the air electrode 9. For example, the air electrode 9 can be provided so that at least a part of the surface of the air electrode 9 is exposed to the atmosphere. In the metal-air battery 30 shown in FIG. 1, a plurality of holes 23 are provided in the housing 1, and oxygen gas contained in the atmosphere can diffuse into the air electrode 9 through the holes 23. Further, for example, an air flow path through which air flows may be formed and oxygen gas may be supplied to the air electrode 9. Note that water may be supplied to the air electrode 9 through this air flow path.
 空気極触媒層7は、例えば、導電性の多孔性担体と多孔性担体に担持された空気極触媒とを含んでもよい。このことにより、空気極触媒上において、酸素ガスと水と電子を共存する三相界面を形成することが可能になり、カソード反応を進行させることが可能になる。また、空気極触媒層7は、バインダーを含んでもよい。
 また、空気極触媒層7とガス拡散層8とから構成される空気極9は、空気極触媒を担持した多孔性担体を導電性多孔性基材(ガス拡散層8)に塗布することにより作製されてもよい。例えば、空気極9は、空気極触媒を担持したカーボンをカーボンペーパーやカーボンフェルトに塗布することにより作製することができる。このガス拡散層8は、空気極集電体として機能してもよい。
 空気極9の厚さは、例えば、300μm以上3mm以下とすることができる。
 また、空気極9は、空気極端子10と電気的に接続することができる。このことにより、空気極触媒層7で生じた電荷を外部回路へと取り出すことができる。
The air electrode catalyst layer 7 may include, for example, a conductive porous carrier and an air electrode catalyst supported on the porous carrier. This makes it possible to form a three-phase interface in which oxygen gas, water, and electrons coexist on the air electrode catalyst, thereby allowing the cathode reaction to proceed. The air electrode catalyst layer 7 may contain a binder.
The air electrode 9 composed of the air electrode catalyst layer 7 and the gas diffusion layer 8 is produced by applying a porous carrier carrying the air electrode catalyst to the conductive porous substrate (gas diffusion layer 8). May be. For example, the air electrode 9 can be produced by applying carbon carrying an air electrode catalyst to carbon paper or carbon felt. The gas diffusion layer 8 may function as an air electrode current collector.
The thickness of the air electrode 9 can be, for example, not less than 300 μm and not more than 3 mm.
The air electrode 9 can be electrically connected to the air electrode terminal 10. Thereby, the electric charge generated in the air electrode catalyst layer 7 can be taken out to the external circuit.
 金属空気電池30は、空気極触媒層7に生じた電荷を集電する空気極集電体を備えてもよい。このことにより、空気極触媒層7で生じた電荷を効率よく外部回路へと取り出すことができる。空気極集電体の材料としては、電解液3に対して耐食性を有すれば特に限定されないが、例えば、ニッケル、金、銀、銅、ステンレスなどである。また、空気極集電体は、ニッケルめっき処理、金めっき処理、銀めっき処理、銅めっき処理された導電性基材などであってもよい。この導電性基材には、鉄、ニッケル、ステンレスなどを用いることができる。
 また、空気極集電体の形状は、例えば、板状、メッシュ状、パンチングメタルなどとすることができる。
 また、空気極集電体と、多孔性担体又は導電性多孔性基材(ガス拡散層8)とを接合する方法としては、フレームを介してネジ止めにより圧着する方法や、導電性接着剤を用いて結合させる方法などが挙げられる。
The metal-air battery 30 may include an air electrode current collector that collects charges generated in the air electrode catalyst layer 7. As a result, charges generated in the air electrode catalyst layer 7 can be efficiently taken out to the external circuit. The material of the air electrode current collector is not particularly limited as long as it has corrosion resistance with respect to the electrolytic solution 3, and examples thereof include nickel, gold, silver, copper, and stainless steel. The air electrode current collector may be a nickel-plated, gold-plated, silver-plated, or copper-plated conductive substrate. For this conductive substrate, iron, nickel, stainless steel, or the like can be used.
The shape of the air electrode current collector can be, for example, a plate shape, a mesh shape, a punching metal, or the like.
In addition, as a method of joining the air electrode current collector and the porous carrier or the conductive porous substrate (gas diffusion layer 8), a method of pressure bonding by screwing through a frame, or a conductive adhesive can be used. The method of using and combining is mentioned.
 1つのセルに含まれる空気極9は、金属電極5の一方側にのみ設けられてもよく、図1のように金属電極5の両側にそれぞれ設けられてもよい。
 空気極触媒層7に含まれる多孔性担体には、例えば、アセチレンブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等のカーボンブラック、黒鉛、活性炭等の導電性カーボン粒子が挙げられる。また、気相法炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノワイヤー等の炭素繊維を用いることもできる。
 空気極触媒には、たとえば、白金、鉄、コバルト、ニッケル、パラジウム、銀、ルテニウム、イリジウム、モリブデン、マンガン、ランタン、これらの金属化合物、およびこれらの金属の2種以上を含む合金からなる微粒子が挙げられる。この合金は、白金、鉄、コバルト、ニッケルのうち少なくとも2種以上を含有する合金が好ましく、たとえば、白金-鉄合金、白金-コバルト合金、鉄-コバルト合金、コバルト-ニッケル合金、鉄-ニッケル合金等、鉄-コバルト-ニッケル合金が挙げられる。
 また、空気極触媒層7に含まれるバインダーは、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などである。
 また、空気極触媒層7に含まれる多孔性担体は、その表面に陽イオン基が固定イオンとして存在するように表面処理がなされていてもよい。このことにより、多孔性担体の表面を水酸化物イオンが伝導できるため、空気極触媒上で生成した水酸化物イオンが移動しやすくなる。
 また、空気極触媒層7は、多孔性担体に担持されたアニオン交換樹脂を有してもよい。このことにより、アニオン交換樹脂を水酸化物イオンが伝導できるため、空気極触媒上で生成した水酸化物イオンが移動しやすくなる。
The air electrode 9 included in one cell may be provided only on one side of the metal electrode 5, or may be provided on both sides of the metal electrode 5 as shown in FIG.
Examples of the porous carrier contained in the air electrode catalyst layer 7 include carbon black such as acetylene black, furnace black, channel black and ketjen black, and conductive carbon particles such as graphite and activated carbon. In addition, carbon fibers such as vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanowire, and the like can be used.
Examples of the air electrode catalyst include fine particles made of platinum, iron, cobalt, nickel, palladium, silver, ruthenium, iridium, molybdenum, manganese, lanthanum, these metal compounds, and alloys containing two or more of these metals. Can be mentioned. This alloy is preferably an alloy containing at least two of platinum, iron, cobalt, and nickel. For example, platinum-iron alloy, platinum-cobalt alloy, iron-cobalt alloy, cobalt-nickel alloy, iron-nickel alloy And iron-cobalt-nickel alloy.
The binder contained in the air electrode catalyst layer 7 is, for example, polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVDF).
Further, the porous carrier contained in the air electrode catalyst layer 7 may be subjected to a surface treatment so that a cationic group exists as a fixed ion on the surface thereof. As a result, hydroxide ions can be conducted on the surface of the porous carrier, so that the hydroxide ions generated on the air electrode catalyst can easily move.
The air electrode catalyst layer 7 may have an anion exchange resin supported on a porous carrier. Thereby, since hydroxide ions can be conducted through the anion exchange resin, the hydroxide ions generated on the air electrode catalyst are easily moved.
 空気極触媒層7は電解液槽2内の電解液3に接触するように設けてもよい。このことにより、空気極触媒層7で生成した水酸化物イオンが容易に電解液3へ移動することができる。また、空気極触媒層7における電極反応に必要な水が電解液3から空気極触媒層7に供給されやすくなる。 The air electrode catalyst layer 7 may be provided so as to be in contact with the electrolytic solution 3 in the electrolytic solution tank 2. Thus, hydroxide ions generated in the air electrode catalyst layer 7 can easily move to the electrolyte solution 3. Further, water necessary for the electrode reaction in the air electrode catalyst layer 7 is easily supplied from the electrolytic solution 3 to the air electrode catalyst layer 7.
 また、空気極触媒層7は、電解液槽2に収容する電解液3と接触するセパレータ14と接触するように設けてもよい。セパレータ14は、多孔性樹脂膜、イオン交換膜または樹脂繊維の不織布とすることができる。セパレータ14は、電解液槽2内の電解液3と空気極触媒層7とを仕切るように設けることができる。セパレータ14を設けることにより、電解液3が空気極9の細孔を介して金属空気電池30の外部へ漏洩することを抑制することができ、金属空気電池30の安全性を向上させることができる。また、電解液3に含まれる水は、セパレータ14を通過した後空気極9に浸透するため、空気極9に過剰な水が供給されることを抑制することができる。また、セパレータ14を設けることにより、電解液3に含まれる電極活物質や析出物17の極微細な粒子が空気極触媒層7に付着することを抑制できる。 Further, the air electrode catalyst layer 7 may be provided so as to be in contact with the separator 14 that is in contact with the electrolytic solution 3 accommodated in the electrolytic solution tank 2. The separator 14 can be a porous resin membrane, an ion exchange membrane or a nonwoven fabric of resin fibers. The separator 14 can be provided so as to partition the electrolytic solution 3 in the electrolytic solution tank 2 and the air electrode catalyst layer 7. By providing the separator 14, the electrolyte 3 can be prevented from leaking outside the metal-air battery 30 through the pores of the air electrode 9, and the safety of the metal-air battery 30 can be improved. . Moreover, since the water contained in the electrolytic solution 3 penetrates into the air electrode 9 after passing through the separator 14, it is possible to suppress excess water from being supplied to the air electrode 9. In addition, by providing the separator 14, it is possible to prevent the electrode active material contained in the electrolytic solution 3 and the extremely fine particles of the precipitate 17 from adhering to the air electrode catalyst layer 7.
 また、セパレータ14をイオン交換膜とすることにより、空気極触媒層7と電解液3との間を移動するイオン種を限定することができる。セパレータ14は、アニオン交換膜であってもよい。このことにより、空気極触媒層7で発生した水酸化物イオンがアニオン交換膜を伝導し、電解液へ移動することができる。アニオン交換膜は、固定イオンである陽イオン基を有するため、電解液3中の陽イオンは空気極触媒層7に伝導することはできない。これに対し、空気極触媒層7で生成した水酸化物イオンは陰イオンであるため、電解液3へと伝導することができる。このことにより、金属空気電池30の電池反応が進行させることができ、かつ、電解質水溶液3中の陽イオンが空気極触媒層7に移動するのを防止することができる。このことにより、空気極触媒層7における金属や炭酸化合物の析出を抑制することができる。 Further, by using the separator 14 as an ion exchange membrane, the ion species moving between the air electrode catalyst layer 7 and the electrolytic solution 3 can be limited. The separator 14 may be an anion exchange membrane. As a result, hydroxide ions generated in the air electrode catalyst layer 7 can conduct through the anion exchange membrane and move to the electrolytic solution. Since the anion exchange membrane has a cation group which is a fixed ion, the cation in the electrolytic solution 3 cannot be conducted to the air electrode catalyst layer 7. On the other hand, since the hydroxide ions generated in the air electrode catalyst layer 7 are anions, they can be conducted to the electrolytic solution 3. As a result, the battery reaction of the metal-air battery 30 can proceed, and the cations in the electrolyte aqueous solution 3 can be prevented from moving to the air electrode catalyst layer 7. Thereby, precipitation of the metal and carbonate compound in the air electrode catalyst layer 7 can be suppressed.
 セパレータ14に用いられる多孔性樹脂膜または樹脂繊維の不織布の材料としては、耐アルカリ性樹脂とすることができ、たとえば、ポリエチレン、ポリプロピレン、ナイロン6、ナイロン66、ポリオレフィン、ポリ酢酸ビニル、ポリビニルアルコール系材料、ポリテトラフルオロエチレン(PTFE)が挙げられる。また、セパレータ14の細孔の孔径は特に限定されないが、30μm以下であることが好ましい。電解液の流通が良くなるようにセパレータ14は親水化処理されていることが好ましい。
 セパレータ14に用いられるイオン交換膜としては、たとえば、パーフルオロスルホン酸系、パーフルオロカルボン酸系、スチレンビニルベンゼン系、第4級アンモニウム系の固体高分子電解質膜(アニオン交換膜)が挙げられる。
The material of the porous resin film or the nonwoven fabric of resin fibers used for the separator 14 can be an alkali-resistant resin, for example, polyethylene, polypropylene, nylon 6, nylon 66, polyolefin, polyvinyl acetate, polyvinyl alcohol-based material. And polytetrafluoroethylene (PTFE). The pore diameter of the pores of the separator 14 is not particularly limited, but is preferably 30 μm or less. The separator 14 is preferably subjected to a hydrophilic treatment so as to improve the flow of the electrolytic solution.
Examples of the ion exchange membrane used in the separator 14 include perfluorosulfonic acid, perfluorocarboxylic acid, styrene vinylbenzene, and quaternary ammonium solid polymer electrolyte membranes (anion exchange membranes).
7.第1計測部、第2計測部、通知部
 第1計測部24は、電解液3を計測対象として物性値などを計測できるように設けられる。第1計測部24は、図1に示した金属空気電池30のように電解液槽2内において電解液3の物性値などを計測できるように設けられてもよく、電解液槽2内の電解液3をサンプリングして電解液3の物性値などを計測できるように設けられてもよい。また、循環流路およびポンプにより電解液槽2内の電解液3を循環させる場合、第1計測部24は、循環流路において電解液3の物性値などを計測できるように設けられてもよく、循環流路内の電解液3をサンプリングして電解液3の物性値などを計測できるように設けられてもよい。
 第1計測部24は、電解液3のみを計測対象としてもよく、電解液3と析出物17の微粒子との混合物を計測対象としてもよい。
 第1計測部24は、例えば、電解液3を計測対象として、pH値、ORP、導電率、粘度、密度などの物性値を計測することができる。また、第1計測部24は、電解液中のOH-イオン濃度または金属含有イオン濃度と関連性を有する他の物性値を計測するように設けられてもよい。
 また、第1計測部24は、2種類以上の物性値を計測できるように設けられてもよい。第1計測部24は、例えば、pH計、ORP計、導電率計、粘度計、密度計などである。
7). 1st measurement part, 2nd measurement part, notification part The 1st measurement part 24 is provided so that the physical property value etc. can be measured by making the electrolyte solution 3 into a measuring object. The first measuring unit 24 may be provided so as to measure the physical property value of the electrolytic solution 3 in the electrolytic solution tank 2 like the metal-air battery 30 shown in FIG. The liquid 3 may be sampled so that the physical property value of the electrolytic solution 3 can be measured. Further, when the electrolytic solution 3 in the electrolytic solution tank 2 is circulated by the circulation flow path and the pump, the first measurement unit 24 may be provided so that the physical property value of the electrolytic solution 3 can be measured in the circulation flow path. Alternatively, the electrolytic solution 3 in the circulation channel may be sampled so that the physical property value of the electrolytic solution 3 can be measured.
The 1st measurement part 24 is good also considering only the electrolyte solution 3 as a measuring object, and is good also considering the mixture of the electrolyte solution 3 and the microparticles | fine-particles of the precipitate 17 as a measuring object.
For example, the first measurement unit 24 can measure physical property values such as pH value, ORP, conductivity, viscosity, density, etc., with the electrolytic solution 3 as a measurement target. The first measurement unit 24 may be provided to measure other physical property values that are related to the OH ion concentration or the metal-containing ion concentration in the electrolytic solution.
Moreover, the 1st measurement part 24 may be provided so that two or more types of physical property values can be measured. The first measurement unit 24 is, for example, a pH meter, an ORP meter, a conductivity meter, a viscometer, a density meter, or the like.
 第2計測部25は、金属空気電池30の放電電流を計測対象として、電流値、電圧値、放電容量、積算放電容量などを測定できるように設けられる。第2計測部25は、例えば、金属電極5と空気極9との間の起電力を出力する回路に設けることができる。第2計測部25は、例えば、電流計である。 The second measuring unit 25 is provided so that the current value, voltage value, discharge capacity, integrated discharge capacity, and the like can be measured using the discharge current of the metal-air battery 30 as a measurement target. The 2nd measurement part 25 can be provided in the circuit which outputs the electromotive force between the metal electrode 5 and the air electrode 9, for example. The second measuring unit 25 is an ammeter, for example.
 金属空気電池30は、第1計測部24の計測結果又は第2計測部25の計測結果から電池情報を算出する演算回路26を備えてもよい。また、演算回路26は、第1計測部24の計測結果と第2計測部25の計測結果の両方から電池情報を算出するように設けられてもよい。
 また、金属空気電池30は、演算回路26がデータを読み出すことができる記憶媒体28を備えてもよい。記憶媒体28には、第1計測部24の計測結果、第2計測部25の計測結果、これらの計測結果から算出された電池情報、又は演算回路26による算出に必要な検量線のデータなどを記録しておくことができる。
 電池情報は、例えば、金属電極5に含まれる電極活物質の残量を表す情報、放電可能時間を表す情報、電解液3のイオン濃度を表す情報、電極活物質から生成した析出物17の量を表す情報、析出物17の排出時期を表す情報、電解液槽2に電解液または水を補給する時期を表す情報、電解液槽2に補給する電解液または水の量を表す情報などである。
 演算回路26又は記憶媒体28は、第1計測部24又は第2計測部25に含まれてもよく、通知部27に含まれてもよい。
 また、演算回路26は、算出した電池情報を通知部27に出力するように設けられてもよい。
The metal-air battery 30 may include an arithmetic circuit 26 that calculates battery information from the measurement result of the first measurement unit 24 or the measurement result of the second measurement unit 25. The arithmetic circuit 26 may be provided so as to calculate battery information from both the measurement result of the first measurement unit 24 and the measurement result of the second measurement unit 25.
Further, the metal-air battery 30 may include a storage medium 28 from which the arithmetic circuit 26 can read data. In the storage medium 28, the measurement result of the first measurement unit 24, the measurement result of the second measurement unit 25, the battery information calculated from these measurement results, the data of the calibration curve necessary for calculation by the arithmetic circuit 26, etc. Can be recorded.
The battery information includes, for example, information indicating the remaining amount of the electrode active material contained in the metal electrode 5, information indicating the dischargeable time, information indicating the ion concentration of the electrolytic solution 3, and the amount of the precipitate 17 generated from the electrode active material. Information indicating the discharge timing of the precipitate 17, information indicating the timing of supplying the electrolytic solution or water to the electrolytic solution tank 2, information indicating the amount of the electrolytic solution or water supplied to the electrolytic solution tank 2, and the like. .
The arithmetic circuit 26 or the storage medium 28 may be included in the first measurement unit 24 or the second measurement unit 25 or may be included in the notification unit 27.
The arithmetic circuit 26 may be provided so as to output the calculated battery information to the notification unit 27.
 通知部27は、第1計測部24の計測結果に基づく電池情報をユーザーなどに通知するように設けられる。また、通知部27は、第2計測部25の計測結果に基づく電池情報をユーザーなどに通知するように設けられてもよい。また、通知部27は、第1計測部24の計測結果と第2計測部25の計測結果の両方に基づく電池情報をユーザーなどに通知するように設けられてもよい。また、通知部27は、演算回路26により算出された電池情報を通知するように設けられてもよい。
 通知部27は、ユーザーなどに電池情報を通知するための表示部を備えてもよい。この表示部に電池情報を表示することにより、ユーザーなどに電池情報を通知することができる。表示部は、ディスプレイであってもよく、ランプであってもよい。
 また、通知部27は、ユーザーなどに電池情報を通知するための音声出力部を備えてもよい。この音声出力部から電池情報を音声として出力することにより、ユーザーなどに電池情報を通知することができる。
The notification unit 27 is provided to notify a user or the like of battery information based on the measurement result of the first measurement unit 24. Further, the notification unit 27 may be provided so as to notify the user or the like of battery information based on the measurement result of the second measurement unit 25. Further, the notification unit 27 may be provided so as to notify a user or the like of battery information based on both the measurement result of the first measurement unit 24 and the measurement result of the second measurement unit 25. The notification unit 27 may be provided to notify the battery information calculated by the arithmetic circuit 26.
The notification unit 27 may include a display unit for notifying the user of battery information. By displaying the battery information on the display unit, the battery information can be notified to the user or the like. The display unit may be a display or a lamp.
In addition, the notification unit 27 may include an audio output unit for notifying a user or the like of battery information. The battery information can be notified to the user or the like by outputting the battery information from the voice output unit as voice.
 また、通知部27は、データ通信回線を利用して遠隔地のユーザー又は管理者に電池情報を通知するように設けられてもよい。このことにより、遠隔地のユーザー又は管理者が電池情報を知ることができ、金属空気電池30を監視することができる。このことにより、例えば、遠隔地の管理者又は管理会社が金属空気電池30の管理及びメンテナンスを行うことが可能になる。また、遠隔地の管理者又は管理会社が複数の金属空気電池30を同時に監視することが可能になる。
 この場合、通知部27は、LANポート又は無線通信ポートなどの通信ポートを備えることができる。この通信ポートから遠隔地に設置されたサーバーなどに電池情報を通信すすることができ、サーバーにより電池情報を表示出力または音声出力させることができる。
In addition, the notification unit 27 may be provided so as to notify battery information to a remote user or administrator using a data communication line. Thus, a remote user or administrator can know the battery information and can monitor the metal-air battery 30. Accordingly, for example, a remote administrator or management company can manage and maintain the metal-air battery 30. In addition, a remote manager or management company can simultaneously monitor the plurality of metal air batteries 30.
In this case, the notification unit 27 can include a communication port such as a LAN port or a wireless communication port. The battery information can be communicated from the communication port to a server or the like installed at a remote place, and the battery information can be displayed or output by the server.
 第1計測部24は、例えば、電解液3のpH値を計測できるように設けることができる。また、第1計測部24は、電解液3のORPを計測できるように設けられてもよい。この場合、第1計測部24は、pH計又はORP計である。また、第1計測部24は、ガラス電極を有するpH計であってもよく、イオン応答電界効果トランジスタを有するpH計であってもよい。また、第1計測部24は、電解液3のpH値を連続的に計測することができる。 The 1st measurement part 24 can be provided so that the pH value of the electrolyte solution 3 can be measured, for example. Further, the first measuring unit 24 may be provided so as to measure the ORP of the electrolytic solution 3. In this case, the first measurement unit 24 is a pH meter or an ORP meter. Further, the first measurement unit 24 may be a pH meter having a glass electrode or a pH meter having an ion response field effect transistor. Further, the first measuring unit 24 can continuously measure the pH value of the electrolytic solution 3.
 電解液3のpH値は、電解液3のOH-イオン濃度を反映する値である。このため、電解液3のpH値とOH-イオン濃度との間には相関関係がある。
 従って、電解液槽2に収容する電解液3のOH-イオン濃度と電解液3のpH値との関係を予め測定し検量線を作成しておくと、第1計測部24の測定結果である電解液3のpH値から電解液3のOH-イオン濃度を算出することができる。OH-イオン濃度は、演算回路26により算出することができる。また、算出されたOH-イオン濃度は、通知部27によりユーザーなどに通知することができる。また、電解液3のpH値を連続的に計測することにより、OH-イオン濃度の変動をユーザーに通知することができる。
 また、電解液のOH-イオン濃度と金属含有イオン濃度とは相関関係にあるため、電解液3のpH値と金属含有イオン濃度との間にも相関関係がある。このため、電解液3のpH値と金属含有イオン濃度との関係を予め測定し検量線を作成しておくと、電解液3のpH値から金属含有イオン濃度を算出することができる。通知部27によりユーザーなどにこの金属含有イオン濃度を通知してもよい。
 なお、検量線のデータなどは、記憶媒体28に保存しておくことができる。
The pH value of the electrolytic solution 3 is a value reflecting the OH ion concentration of the electrolytic solution 3. For this reason, there is a correlation between the pH value of the electrolytic solution 3 and the OH ion concentration.
Therefore, when the relationship between the OH ion concentration of the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the pH value of the electrolytic solution 3 is measured in advance and a calibration curve is prepared, the measurement result of the first measuring unit 24 is obtained. The OH ion concentration of the electrolytic solution 3 can be calculated from the pH value of the electrolytic solution 3. The OH ion concentration can be calculated by the arithmetic circuit 26. The calculated OH ion concentration can be notified to the user or the like by the notification unit 27. Further, by continuously measuring the pH value of the electrolytic solution 3, it is possible to notify the user of the fluctuation of the OH ion concentration.
In addition, since there is a correlation between the OH ion concentration and the metal-containing ion concentration of the electrolytic solution, there is also a correlation between the pH value of the electrolytic solution 3 and the metal-containing ion concentration. For this reason, when the relationship between the pH value of the electrolytic solution 3 and the metal-containing ion concentration is measured in advance and a calibration curve is prepared, the metal-containing ion concentration can be calculated from the pH value of the electrolytic solution 3. The notification unit 27 may notify the user or the like of this metal-containing ion concentration.
Note that calibration curve data and the like can be stored in the storage medium 28.
 第1計測部24は、例えば、電解液3の導電率を計測できるように設けることができる。また、この場合、第1計測部24は、析出物17の微粒子を含む電解液3の導電率を計測してもよい。また、第1計測部24は、例えば、交流二電極法により導電率を計測するように設けられてもよく、電磁誘導法により導電率を計測するように設けてもよい。 The 1st measurement part 24 can be provided so that the electrical conductivity of the electrolyte solution 3 can be measured, for example. In this case, the first measuring unit 24 may measure the conductivity of the electrolytic solution 3 including the fine particles of the precipitate 17. Moreover, the 1st measurement part 24 may be provided so that electrical conductivity may be measured by the alternating current 2 electrode method, and may be provided so that electrical conductivity may be measured by an electromagnetic induction method.
 電解液3の導電率は、電解液中で最も輸率の高いイオンの濃度を反映する。例えば、電解液3が水酸化カリウム水溶液、水酸化ナトリウム水溶液などのアルカリ性水溶液である場合、電解液3の導電率は、OH-イオン濃度を反映する。このため、電解液3の導電率とOH-イオン濃度との間には相関関係がある。
 従って、電解液槽2に収容する電解液3のOH-イオン濃度と電解液3の導電率との関係を予め測定し検量線を作成しておくと、第1計測部24の測定結果である電解液3の導電率から電解液3のOH-イオン濃度を算出することができる。OH-イオン濃度は、演算回路26により算出することができる。また、算出されたOH-イオン濃度は、通知部27によりユーザーなどにイオン濃度を表す情報として通知することができる。また、電解液3の導電率を連続的に計測することにより、OH-イオン濃度の変動をユーザーに通知することができる。
 また、電解液のOH-イオン濃度と金属含有イオン濃度とは相関関係にあるため、電解液3の導電率と金属含有イオン濃度との間にも相関関係がある。このため、電解液3の導電率と金属含有イオン濃度との関係を予め測定し検量線を作成しておくと、電解液2の導電率から金属含有イオン濃度を算出することができる。通知部27によりユーザーなどにこの金属含有イオン濃度を通知してもよい。
The conductivity of the electrolytic solution 3 reflects the concentration of ions having the highest transport number in the electrolytic solution. For example, when the electrolytic solution 3 is an alkaline aqueous solution such as an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution, the conductivity of the electrolytic solution 3 reflects the OH ion concentration. For this reason, there is a correlation between the conductivity of the electrolytic solution 3 and the OH ion concentration.
Therefore, when the relationship between the OH ion concentration of the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the conductivity of the electrolytic solution 3 is measured in advance and a calibration curve is prepared, the measurement result of the first measuring unit 24 is obtained. The OH ion concentration of the electrolytic solution 3 can be calculated from the conductivity of the electrolytic solution 3. The OH ion concentration can be calculated by the arithmetic circuit 26. Further, the calculated OH ion concentration can be notified to the user or the like by the notification unit 27 as information indicating the ion concentration. In addition, by continuously measuring the conductivity of the electrolytic solution 3, it is possible to notify the user of fluctuations in the OH ion concentration.
In addition, since there is a correlation between the OH ion concentration and the metal-containing ion concentration of the electrolytic solution, there is also a correlation between the conductivity of the electrolytic solution 3 and the metal-containing ion concentration. For this reason, if the relationship between the electrical conductivity of the electrolytic solution 3 and the metal-containing ion concentration is measured in advance and a calibration curve is prepared, the metal-containing ion concentration can be calculated from the electrical conductivity of the electrolytic solution 2. The notification unit 27 may notify the user or the like of this metal-containing ion concentration.
 第1計測部24は、例えば、電解液3の粘度を計測するように設けることができる。また、この場合、第1計測部24は、析出物17の微粒子を含む電解液3の粘度を計測してもよい。また、第1計測部24は、例えば、音叉振動式粘度計である。 The 1st measurement part 24 can be provided so that the viscosity of the electrolyte solution 3 may be measured, for example. In this case, the first measurement unit 24 may measure the viscosity of the electrolytic solution 3 including the fine particles of the precipitate 17. The first measuring unit 24 is, for example, a tuning fork vibration type viscometer.
 電解液3の粘度は、電解液中で最も重い金属含有イオンの量を反映する値である。亜鉛空気電池の場合、電解液3の粘度は、Zn(OH)4 2-イオン濃度の量を反映する値となる。このため、電解液3の粘度と金属含有イオン濃度との間には相関関係がある。
 従って、電解液槽2に収容する電解液3の金属含有イオン濃度と電解液3の粘度との関係を予め測定し検量線を作成しておくと、第1計測部24の測定結果である電解液3の粘度から電解液3の金属含有イオン濃度を算出することができる。金属含有イオン濃度は、演算回路26により算出することができる。また、算出された金属含有イオン濃度は、通知部27によりイオン濃度を表す情報としてユーザーなどに通知することができる。また、電解液3の粘度を連続的に計測することにより、金属含有イオン濃度の変動をユーザーに通知することができる。
 また、電解液のOH-イオン濃度と金属含有イオン濃度とは相関関係にあるため、電解液3の粘度とOH-イオン濃度との間にも相関関係がある。このため、電解液3の粘度とOH-イオン濃度との関係を予め測定し検量線を作成しておくと、電解液2の粘度からOH-イオン濃度を算出することができる。通知部27によりユーザーなどにこのOH-イオン濃度を通知してもよい。
The viscosity of the electrolytic solution 3 is a value that reflects the amount of the heaviest metal-containing ions in the electrolytic solution. In the case of a zinc-air battery, the viscosity of the electrolytic solution 3 is a value that reflects the amount of Zn (OH) 4 2- ion concentration. For this reason, there is a correlation between the viscosity of the electrolytic solution 3 and the metal-containing ion concentration.
Therefore, when the relationship between the metal-containing ion concentration of the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the viscosity of the electrolytic solution 3 is measured in advance and a calibration curve is prepared, the electrolysis that is the measurement result of the first measuring unit 24 is obtained. The metal-containing ion concentration of the electrolytic solution 3 can be calculated from the viscosity of the liquid 3. The metal-containing ion concentration can be calculated by the arithmetic circuit 26. In addition, the calculated metal-containing ion concentration can be notified to the user or the like by the notification unit 27 as information representing the ion concentration. Further, by continuously measuring the viscosity of the electrolytic solution 3, it is possible to notify the user of fluctuations in the metal-containing ion concentration.
Further, since the OH ion concentration and the metal-containing ion concentration of the electrolytic solution are correlated, there is also a correlation between the viscosity of the electrolytic solution 3 and the OH ion concentration. For this reason, when the relationship between the viscosity of the electrolytic solution 3 and the OH ion concentration is measured in advance and a calibration curve is prepared, the OH ion concentration can be calculated from the viscosity of the electrolytic solution 2. The notification unit 27 may notify the user or the like of the OH ion concentration.
 第1計測部24は、例えば、電解液3の密度を計測するように設けることができる。また、この場合、第1計測部24は、析出物17の微粒子を含む電解液3の密度を計測してもよい。また、第1計測部24は、例えば、振動式密度計である。 The 1st measurement part 24 can be provided so that the density of the electrolyte solution 3 may be measured, for example. In this case, the first measuring unit 24 may measure the density of the electrolytic solution 3 including the fine particles of the precipitate 17. The first measurement unit 24 is, for example, a vibration type density meter.
 電解液3の密度は、電解液中で最も重い金属含有イオンの量を反映する値である。亜鉛空気電池の場合、電解液3の密度は、Zn(OH)4 2-イオン濃度の量を反映する値となる。このため、電解液3の密度と金属含有イオン濃度との間には相関関係がある。
 従って、電解液槽2に収容する電解液3の金属含有イオン濃度と電解液3の密度との関係を予め測定し検量線を作成しておくと、第1計測部24の測定結果である電解液3の密度から電解液3の金属含有イオン濃度を算出することができる。金属含有イオン濃度は、演算回路26により算出することができる。また、算出された金属含有イオン濃度は、通知部27によりイオン濃度を表す情報としてユーザーなどに通知することができる。また、電解液3の密度を連続的に計測することにより、金属含有イオン濃度の変動をユーザーに通知することができる。
 また、電解液のOH-イオン濃度と金属含有イオン濃度とは相関関係にあるため、電解液3の密度とOH-イオン濃度との間にも相関関係がある。このため、電解液3の密度とOH-イオン濃度との関係を予め測定し検量線を作成しておくと、電解液2の密度からOH-イオン濃度を算出することができる。通知部27によりユーザーなどにこのOH-イオン濃度を通知してもよい。
The density of the electrolytic solution 3 is a value that reflects the amount of the heaviest metal-containing ions in the electrolytic solution. In the case of a zinc-air battery, the density of the electrolytic solution 3 is a value that reflects the amount of Zn (OH) 4 2- ion concentration. For this reason, there is a correlation between the density of the electrolytic solution 3 and the metal-containing ion concentration.
Therefore, when the relationship between the metal-containing ion concentration of the electrolytic solution 3 accommodated in the electrolytic solution tank 2 and the density of the electrolytic solution 3 is measured in advance and a calibration curve is created, the electrolysis that is the measurement result of the first measuring unit 24 is obtained. The metal-containing ion concentration of the electrolytic solution 3 can be calculated from the density of the liquid 3. The metal-containing ion concentration can be calculated by the arithmetic circuit 26. In addition, the calculated metal-containing ion concentration can be notified to the user or the like by the notification unit 27 as information representing the ion concentration. Further, by continuously measuring the density of the electrolytic solution 3, it is possible to notify the user of fluctuations in the metal-containing ion concentration.
Further, since the OH ion concentration and the metal-containing ion concentration of the electrolytic solution are correlated, there is also a correlation between the density of the electrolytic solution 3 and the OH ion concentration. For this reason, if the relationship between the density of the electrolytic solution 3 and the OH ion concentration is measured in advance and a calibration curve is prepared, the OH ion concentration can be calculated from the density of the electrolytic solution 2. The notification unit 27 may notify the user or the like of the OH ion concentration.
 第1計測部24が2種類以上の物性値を計測できるように設けられている場合、演算回路26は、2種類以上の物性値からOH-イオン濃度又は金属含有イオン濃度を算出するように設けられてもよい。このことにより、より正確なOH-イオン濃度又は金属含有イオン濃度を算出することができる。 When the first measurement unit 24 is provided so as to measure two or more physical property values, the arithmetic circuit 26 is provided to calculate the OH ion concentration or the metal-containing ion concentration from two or more physical property values. May be. As a result, a more accurate OH - ion concentration or metal-containing ion concentration can be calculated.
 第2計測部25は、例えば、金属空気電池30の積算放電容量を計測できるように設けることができる。アノード反応では、上記の化学式2のように、電極活物質とOH-イオンが反応し電荷を金属電極5に生じさせる。この電荷は外部回路に放電されるため、積算放電容量と電極活物質の消費量との間には相関関係がある。このため、第2計測部25により計測された積算放電容量から電極活物質の消費量を算出することができる。また、放電前の金属電極5に含まれる電極活物質の量と電極活物質の消費量から、金属電極5に含まれる電極活物質の残量を算出することができる。
 例えば、放電前の金属電極5に含まれる電極活物質の量をM1とし、第2計測部25により計測される積算放電容量から算出される電極活物質の消費量をM2としたとき、電極活物質の残量は、次式のように表すことができる。
 残量(%)=(M1-M2)÷M2×100
 これらの算出は、演算回路26により行うことができる。この算出された電極活物質の残量は、電極活物質の残量を表す情報として通知部27によりユーザーなどに通知することができる。
 なお、電極活物質の残量は、単位をAhとして算出・通知してもよい。
The 2nd measurement part 25 can be provided so that the integrated discharge capacity of the metal air battery 30 can be measured, for example. In the anodic reaction, as shown in Chemical Formula 2 above, the electrode active material and OH ions react to generate a charge on the metal electrode 5. Since this electric charge is discharged to an external circuit, there is a correlation between the integrated discharge capacity and the consumption of the electrode active material. For this reason, the consumption amount of the electrode active material can be calculated from the accumulated discharge capacity measured by the second measuring unit 25. Further, the remaining amount of the electrode active material contained in the metal electrode 5 can be calculated from the amount of the electrode active material contained in the metal electrode 5 before discharge and the consumption of the electrode active material.
For example, when the amount of the electrode active material contained in the metal electrode 5 before discharge is M1, and the consumption of the electrode active material calculated from the accumulated discharge capacity measured by the second measuring unit 25 is M2, the electrode active material The remaining amount of the substance can be expressed as:
Remaining amount (%) = (M1-M2) ÷ M2 × 100
These calculations can be performed by the arithmetic circuit 26. The calculated remaining amount of the electrode active material can be notified to the user or the like by the notification unit 27 as information indicating the remaining amount of the electrode active material.
Note that the remaining amount of the electrode active material may be calculated / notified with the unit of Ah.
 ユーザーへ残量を通知する通知部27は、ディスプレイやランプ、音声出力部である。通知する情報は、上記残量に関する定量的な数値情報であったり、上記残量がゼロが近づいたか否か、あるいは、上記残量がゼロに到達したか否かを示す該非判定情報であっても良い。
 定量的な数値情報の通知は、数値そのもの、あるいは、数値情報を長さや角度に換算した図をディスプレイに表示する方法、もしくは、複数セグメントからなるランプの点灯により表示する、などの方法がある。残量の該非判定の結果、該当した場合の情報の通知には、残量が該非判定条件を満たしたことを示す文章を、ディスプレイに表示する、もしくは、音声で通知する、残量の該非判定と一対一対応となっているアイコンをディスプレイに表示する、残量の該非判定と一対一対応となっているランプを点灯する、残量の該非判定と一対一対応となっている音パターンを発生させる、などの方法がある。
 また、残量がゼロに近づく、あるいは、ゼロに到達した場合、上記通知とともに、制御部により、金属空気電池からの電力出力を停止してもよい。電力出力を停止することで、金属電極5の過放電を抑制することができ、金属電極5の劣化を抑制することができる。
The notification unit 27 that notifies the user of the remaining amount is a display, a lamp, and an audio output unit. The information to be notified is quantitative numerical information regarding the remaining amount, the non-determining information indicating whether the remaining amount has approached zero, or whether the remaining amount has reached zero. Also good.
Notification of quantitative numerical information includes a method of displaying the numerical value itself or a figure obtained by converting the numerical information into a length and an angle on a display, or displaying by lighting a lamp composed of a plurality of segments. As a result of the non-judgment of the remaining amount, in the notification of information when applicable, the sentence indicating that the remaining amount satisfies the non-judgment condition is displayed on the display or notified by voice. An icon that has a one-to-one correspondence is displayed on the display, a lamp that has a one-to-one correspondence with the non-determination of the remaining amount is lit, and a sound pattern that has a one-to-one correspondence with the non-determination of the remaining amount is generated. There are methods such as
When the remaining amount approaches zero or reaches zero, the control unit may stop the power output from the metal-air battery together with the notification. By stopping the power output, overdischarge of the metal electrode 5 can be suppressed, and deterioration of the metal electrode 5 can be suppressed.
 通知部27は、第1計測部24又は第2計測部25の計測結果に基づき、放電可能時間を表す情報をユーザーなどに通知するように設けられてもよい。放電可能時間を表す情報は、例えば、放電可能な残り時間であってもよく、放電可能時間を表す数値であってもよい。
 放電可能時間は、金属空気電池30により放電可能な残り時間である。金属空気電池30は、金属電極5に含まれる電極活物質の残量が少なくなることにより放電ができなくなる場合と、析出反応により析出物17が不動態として金属電極5の表面上に析出しアノード反応が阻害されることにより放電ができなくなる場合とがある。
 電極活物質の残量が少なくなり放電が停止する場合、放電可能時間と電極活物質の残量との間には比例関係があるため、放電可能時間は、第2計測部25の計測結果に基づき算出することができる。従って、通知部27は、第2計測部25の計測結果に基づいて、放電可能時間を表す情報を通知することができる。このことにより、ユーザーなどは、適切な時期に金属電極5を交換することができる。
 なお、第2計測部25の計測結果に基づき算出された放電可能時間が、後述する第1計測部24の計測結果に基づき算出される放電可能時間よりも短い場合に、通知部27により、第2計測部25の計測結果に基づき算出された放電可能時間を通知する。また、第1計測部24の計測結果に基づき算出される放電可能時間が短い場合には、通知部27はこの放電可能時間を通知する。この放電可能時間の選択は、OR制御することができる。
The notification unit 27 may be provided so as to notify a user or the like of information indicating the dischargeable time based on the measurement result of the first measurement unit 24 or the second measurement unit 25. The information indicating the dischargeable time may be, for example, the remaining dischargeable time or a numerical value indicating the dischargeable time.
The dischargeable time is the remaining time that can be discharged by the metal-air battery 30. In the metal-air battery 30, when the remaining amount of the electrode active material contained in the metal electrode 5 becomes small, it becomes impossible to discharge, and the precipitate 17 is deposited on the surface of the metal electrode 5 as a passive state by the precipitation reaction. There are cases where discharge cannot be performed due to inhibition of the reaction.
When the remaining amount of the electrode active material is reduced and the discharge is stopped, the dischargeable time and the remaining amount of the electrode active material are proportional to each other. Can be calculated. Therefore, the notification unit 27 can notify information indicating the dischargeable time based on the measurement result of the second measurement unit 25. Thus, the user or the like can replace the metal electrode 5 at an appropriate time.
When the dischargeable time calculated based on the measurement result of the second measurement unit 25 is shorter than the dischargeable time calculated based on the measurement result of the first measurement unit 24 described later, the notification unit 27 2 Notifies the dischargeable time calculated based on the measurement result of the measurement unit 25. When the dischargeable time calculated based on the measurement result of the first measurement unit 24 is short, the notification unit 27 notifies the dischargeable time. The selection of the dischargeable time can be OR controlled.
 ユーザーへ放電可能時間、を表す情報を通知する通知部27は、ディスプレイやランプ、音声出力部である。通知する情報は、上記放電可能時間に関する定量的な数値情報であったり、上記放電可能時間がゼロが近づいたか否か、あるいは、上記放電可能時間に到達したか否かを示す該非判定情報であっても良い。
 定量的な数値情報の通知は、数値そのもの、あるいは、数値情報を長さや角度に換算した図をディスプレイに表示する方法、もしくは、複数セグメントからなるランプの点灯により表示する、などの方法がある。放電可能時間の該非判定の結果、該当した場合の情報の通知には、放電可能時間が該非判定条件を満たしたことを示す文章を、ディスプレイに表示する、もしくは、音声で通知する、放電可能時間の該非判定と一対一対応となっているアイコンをディスプレイに表示する、放電可能時間の該非判定と一対一対応となっているランプを点灯する、放電可能時間の該非判定と一対一対応となっている音パターンを発生させる、などの方法がある。
 また、放電可能時間がゼロに近づく、あるいは、ゼロに到達した場合、上記通知とともに、制御部により、金属空気電池からの電力出力を停止してもよい。電力出力を停止することで、金属電極5の表面が不動態により覆われることを抑制することができ、金属電極5に含まれる電極活物質の利用率を上げることができる。
The notification unit 27 that notifies the user of information indicating the dischargeable time is a display, a lamp, or an audio output unit. The information to be notified is quantitative numerical information related to the dischargeable time, non-determination information indicating whether the dischargeable time has approached zero, or whether the dischargeable time has been reached. May be.
Notification of quantitative numerical information includes a method of displaying the numerical value itself or a figure obtained by converting the numerical information into a length and an angle on a display, or displaying by lighting a lamp composed of a plurality of segments. As a result of the non-determination of the dischargeable time, in the case of corresponding information, a message indicating that the dischargeable time satisfies the non-judgment condition is displayed on the display or notified by voice. An icon corresponding to the non-determination of the non-determination of the display is displayed on the display, a lamp corresponding to the non-determination of the dischargeable time is turned on, and the non-determination of the dischargeable time is corresponding to the non-determination. There is a method of generating a sound pattern.
Moreover, when the dischargeable time approaches zero or reaches zero, the control unit may stop the power output from the metal-air battery together with the notification. By stopping the power output, it is possible to suppress the surface of the metal electrode 5 from being covered with the passive state, and the utilization factor of the electrode active material contained in the metal electrode 5 can be increased.
 析出物17の不動態によりアノード反応が阻害されることにより放電が停止する場合、放電可能時間は、金属電極5の表面が析出物17の不動態により覆われるまでの残り時間である。
 上記の化学式2のような化学反応が進行し金属含有イオン濃度が飽和濃度を超えたとき、上記の化学式3、化学式4に示したような析出反応が進行する。しかし、電解液中に微粒子状の析出物17が析出する析出反応の反応速度は非常に遅いと考えられ、金属含有イオン濃度が飽和濃度を超えても、金属含有イオン濃度は上昇し、電解液は過飽和状態となる。そして、金属含有イオン濃度が不動態が形成される閾値に達した場合に、析出物17が不動態として金属電極5の表面上に析出し、アノード反応が阻害されると考えられる。また、OH-イオン濃度が閾値を下回った場合に、アノード反応に必要なOH-イオンの供給が不足するため、析出物17が不動態として金属電極5の表面上に析出し、アノード反応が阻害されると考えられる。
 なお、金属含有イオン濃度又はOH-イオン濃度の不動態が形成される閾値は、温度依存性があると考えられる。
When the discharge is stopped due to inhibition of the anode reaction due to the passivation of the precipitate 17, the dischargeable time is the remaining time until the surface of the metal electrode 5 is covered with the passivation of the precipitate 17.
When the chemical reaction as in Chemical Formula 2 proceeds and the metal-containing ion concentration exceeds the saturation concentration, the precipitation reaction as shown in Chemical Formula 3 and Chemical Formula 4 proceeds. However, it is considered that the reaction rate of the precipitation reaction in which the fine particle precipitates 17 are deposited in the electrolytic solution is very slow. Even if the concentration of the metal-containing ion exceeds the saturation concentration, the concentration of the metal-containing ion increases. Becomes oversaturated. Then, when the metal-containing ion concentration reaches a threshold value at which a passive state is formed, the precipitate 17 is deposited on the surface of the metal electrode 5 as a passive state, and the anode reaction is considered to be inhibited. In addition, when the OH ion concentration falls below the threshold value, the supply of OH ions necessary for the anode reaction is insufficient, so that the precipitate 17 is deposited on the surface of the metal electrode 5 as a passive state, thereby inhibiting the anode reaction. It is thought that it is done.
The metal-containing ion concentration or OH - threshold passivation is formed of the ion concentration is thought to depend on the temperature.
 電解液3のpH値、導電率は、電解液3のOH-イオン濃度を反映する値であり、電解液3の粘度、密度は、電解液の金属含有イオン濃度を反映する値であるため、電解液3のpH値、導電率、粘度又は密度がある閾値に達した場合又は下回った場合に不動態が形成される。従って、不動態が形成されるpH値、導電率、粘度又は密度の閾値を予め測定し、記憶媒体28に保存しておくことができる。このことにより、第1計測部24の計測結果および記憶媒体28に記録したデータなどに基づき、pH値、導電率、粘度又は密度が不動態が形成される閾値に達するまでの時間(放電可能時間)を演算回路26により算出することができる。従って、第1計測部24の計測結果に基づき、通知部27が放電可能時間を表す情報をユーザーなどに通知することが可能になる。このことにより、ユーザーなどは、放電停止時期を事前に知ることができる。
 また、金属電極5の表面が不動態により覆われる前に放電を停止することが可能になり、金属電極5の表面が不動態により覆われることを防止することができる。
 また、金属電極5の表面が不動態により覆われる前に放電を停止させた後、放電停止期間を設けることができる。この放電停止期間において、電解液中に微粒子状の析出物17が析出する析出反応が進行すると考えられるため、金属含有イオン濃度は低下し、OH-イオン濃度は上昇する。このため、放電停止期間後に再放電を行うことが可能になり、金属電極5に含まれる電極活物質の利用効率を上げることができる。
 また、放電停止期間の金属含有イオン濃度又はOH-イオン濃度は、第1計測部24により計測することができるため、再放電が可能な時期を表す情報を通知部27によりユーザーなどに通知してもよい。
The pH value and conductivity of the electrolytic solution 3 are values that reflect the OH ion concentration of the electrolytic solution 3, and the viscosity and density of the electrolytic solution 3 are values that reflect the metal-containing ion concentration of the electrolytic solution. Passivity is formed when the pH value, conductivity, viscosity or density of the electrolyte 3 reaches or falls below a certain threshold. Accordingly, the pH value, conductivity, viscosity, or density threshold at which passivity is formed can be measured in advance and stored in the storage medium 28. Thus, based on the measurement result of the first measurement unit 24 and the data recorded in the storage medium 28, the time until the pH value, conductivity, viscosity, or density reaches the threshold value at which passivity is formed (dischargeable time) ) Can be calculated by the arithmetic circuit 26. Therefore, based on the measurement result of the first measurement unit 24, the notification unit 27 can notify the user or the like of information indicating the dischargeable time. Thus, the user or the like can know the discharge stop time in advance.
In addition, it becomes possible to stop the discharge before the surface of the metal electrode 5 is covered with the passive state, and it is possible to prevent the surface of the metal electrode 5 from being covered with the passive state.
In addition, after the discharge is stopped before the surface of the metal electrode 5 is covered with the passive state, a discharge stop period can be provided. In this discharge stop period, it is considered that the precipitation reaction in which the fine particles 17 precipitate in the electrolytic solution proceeds, so that the metal-containing ion concentration decreases and the OH ion concentration increases. For this reason, it becomes possible to perform re-discharge after a discharge stop period, and the utilization efficiency of the electrode active material contained in the metal electrode 5 can be raised.
In addition, since the metal-containing ion concentration or the OH ion concentration during the discharge stop period can be measured by the first measurement unit 24, the notification unit 27 notifies the user or the like with information indicating the time when re-discharge is possible. Also good.
 ユーザーへの放電停止時期、あるいは、再放電が可能な時期、を表す情報を通知する通知部27は、ディスプレイやランプ、音声出力部である。通知する情報は、上記時期に関する定量的な数値情報であったり、上記時期が近づいたか否か、あるいは、上記時期に到達したか否かを示す該非判定情報であっても良い。
 定量的な数値情報の通知は、数値そのもの、あるいは、数値情報を長さや角度に換算した図をディスプレイに表示する方法、もしくは、複数セグメントからなるランプの点灯により表示する、などの方法がある。放電停止時期、あるいは、再放電が可能な時間の該非判定の結果、該当した場合の情報の通知には、放電停止時期、あるいは、再放電が可能な時間が該非判定条件を満たしたことを示す文章を、ディスプレイに表示する、もしくは、音声で通知する、放電停止時期、あるいは、再放電が可能な時間の該非判定と一対一対応となっているアイコンをディスプレイに表示する、放電停止時期、あるいは、再放電が可能な時間の該非判定と一対一対応となっているランプを点灯する、放電停止時期、あるいは、再放電が可能な時間の該非判定と一対一対応となっている音パターンを発生させる、などの方法がある。
 また、放電停止時期に近づく、あるいは、到達した場合、上記通知とともに、制御部により、金属空気電池からの電力出力を停止してもよい。電力出力を停止することで、金属電極5の表面が不動態により覆われることを抑制することができ、金属電極5に含まれる電極活物質の利用率を上げることができる。
 更に、再放電が可能な時期に到達した場合、上記通知とともに、制御部により、金属空気電池からの電力出力を再開してもよい。電力出力を再開することで、金属空気電池からの電力供給の機会を最大化できるため、ユーザーの利便性が高まる。
The notification unit 27 that notifies the user of information indicating when discharge is stopped or when re-discharge is possible is a display, a lamp, or a sound output unit. The information to be notified may be quantitative numerical information related to the time, the non-determining information indicating whether the time has approached, or whether the time has been reached.
Notification of quantitative numerical information includes a method of displaying the numerical value itself or a figure obtained by converting the numerical information into a length and an angle on a display, or displaying by lighting a lamp composed of a plurality of segments. As a result of the non-determination of the discharge stop timing or the time during which re-discharge can be performed, the notification of information in the case of being applicable indicates that the discharge stop timing or the time during which re-discharge can be performed satisfies the non-determination condition. A sentence is displayed on the display, or is notified by voice, a discharge stop time, or an icon that has a one-to-one correspondence with the non-determination of re-dischargeable time, a discharge stop time, or Lamps that have a one-to-one correspondence with the non-determination of re-discharging time are generated, and a sound pattern that has a one-to-one correspondence with the non-determination of the discharge stop timing or re-dischargeable time is generated There are methods such as
Moreover, when the discharge stop time approaches or arrives, the control unit may stop the power output from the metal-air battery together with the notification. By stopping the power output, it is possible to suppress the surface of the metal electrode 5 from being covered with the passive state, and the utilization factor of the electrode active material contained in the metal electrode 5 can be increased.
Furthermore, when the time when re-discharge is possible is reached, the power output from the metal-air battery may be resumed by the control unit together with the notification. By restarting the power output, the opportunity for power supply from the metal-air battery can be maximized, which increases the convenience for the user.
 なお、電解液のpH、導電率、粘度又は密度と、放電可能時間との関係は、予め測定しておき、測定結果に基づく検量線などを記憶媒体28に記録しておくことができる。
 また、第1計測部24は、電解液3の温度を測定する温度計を備えてもよい。このことにより、不動態が形成される閾値を正確に予測することができる。
The relationship between the pH, conductivity, viscosity or density of the electrolyte and the dischargeable time can be measured in advance, and a calibration curve or the like based on the measurement result can be recorded in the storage medium 28.
The first measuring unit 24 may include a thermometer that measures the temperature of the electrolytic solution 3. This makes it possible to accurately predict the threshold value at which passivity is formed.
 また、通知部27は、放電可能時間を表す情報を放電可能量(%)としてユーザーなどに通知するように設けられてもよい。例えば、金属含有イオン濃度が飽和濃度となったときの電解液のpHから算出されるOHイオン濃度、導電率、粘度又は密度をxとし、金属含有イオン濃度が不動態が形成される閾値に達したときの電解液のpHから算出されるOHイオン濃度、導電率、粘度又は密度をyとし、第1計測部24により測定されるpHから算出されるOHイオン濃度、導電率、粘度又は密度をzとしたとき、放電可能量(%)は次式のように表すことができる。
 放電可能量(%)=(|y-z|÷|y-x|)×100
 例えば、電解液の物性値として、導電率を計測する場合、不動態が形成される閾値yは、金属空気電池が亜鉛空気電池であって、電解液として5~10Mの水酸化カリウム水溶液を使用する場合、0.25S/cm以上、0.35S/cm以下が望ましく、より好ましくは、0.3S/cm以上、0.33S/cm以下が望ましい。
Further, the notification unit 27 may be provided so as to notify the user or the like of information indicating the dischargeable time as a dischargeable amount (%). For example, if the OH ion concentration, conductivity, viscosity, or density calculated from the pH of the electrolyte when the metal-containing ion concentration reaches the saturation concentration is x, the metal-containing ion concentration reaches the threshold value at which passivity is formed. The OH ion concentration, conductivity, viscosity or density calculated from the pH of the electrolyte solution is y, and the OH ion concentration, conductivity, viscosity or density calculated from the pH measured by the first measurement unit 24 is When z is assumed, the dischargeable amount (%) can be expressed as follows.
Dischargeable amount (%) = (| yz | ÷ | yx |) × 100
For example, when measuring the electrical conductivity as the physical property value of the electrolytic solution, the threshold value y at which the passivation is formed is that the metal-air battery is a zinc-air battery, and a 5 to 10M potassium hydroxide aqueous solution is used as the electrolytic solution. In this case, 0.25 S / cm or more and 0.35 S / cm or less is desirable, and more preferably 0.3 S / cm or more and 0.33 S / cm or less.
 通知部27は、第1計測部24の計測結果および第2計測部25の計測結果に基づき、電解液槽2中の析出物17の量を表す情報をユーザーなどに通知するように設けられてもよい。
 金属電極5に含まれる電極活物質は、電池反応により電解液中の金属含有イオン又は電解液槽2中の析出物17に変化するため、電解液槽2中の析出物17の量は、次式により求めることができる。
 析出物の量=(電極活物質の消費量)―(電解液中の金属含有イオンの量)
 電極活物質の消費量は、上述のように、第2計測部25により計測された積算放電容量から算出することができる。
 また、電解液中の金属含有イオンの量は、電解液の金属含有イオン濃度に電解液槽2中の電解液3の量を掛けることにより算出することができる。
 また、金属含有イオン濃度は、上述のように、電解液のpH値、導電率、粘度または密度と相関関係にある。従って、電解液のpH値、導電率、粘度または密度と金属含有イオン濃度との関係を予め測定し検量線を作成することより、第1計測部24の計測結果から金属含有イオン濃度を算出することができる。
 従って、記憶媒体28に検量線、電解液の量などのデータを記録しておくと、第1計測部24の計測結果および第2計測部25の計測結果に基づき演算回路26により析出物17の量を算出することができる。この算出結果に基づき、通知部27により、電解液槽2中の析出物17の量を表す情報をユーザーなどに通知することができる。このことにより、ユーザーなどは、適切な時期に電解液槽2中の析出物17を除去するメンテナンスを行うことができる。
 また、析出物17の量を表す情報は、析出物17の蓄積率(%)であってもよい。析出物17の蓄積率は、電解液槽2内からの析出物17の排出を行う蓄積量Qを予め決めておき、この蓄積量Qと析出物17の量Pから算出することができる。例えば、次式により算出することができる。なお、蓄積量Qは、電解液槽2内の微粒子状の析出物17を支障なく回収できる量に設定することができる。
 析出物17の蓄積率(%)=|P-Q|÷Q×100
The notification unit 27 is provided so as to notify a user or the like of information indicating the amount of the precipitate 17 in the electrolytic solution tank 2 based on the measurement result of the first measurement unit 24 and the measurement result of the second measurement unit 25. Also good.
Since the electrode active material contained in the metal electrode 5 is changed into a metal-containing ion in the electrolytic solution or a precipitate 17 in the electrolytic solution tank 2 by a battery reaction, the amount of the precipitate 17 in the electrolytic solution tank 2 is as follows. It can be obtained by an expression.
Amount of precipitate = (consumption of electrode active material)-(amount of metal-containing ions in electrolyte)
The consumption amount of the electrode active material can be calculated from the accumulated discharge capacity measured by the second measuring unit 25 as described above.
The amount of metal-containing ions in the electrolytic solution can be calculated by multiplying the concentration of metal-containing ions in the electrolytic solution by the amount of electrolytic solution 3 in the electrolytic solution tank 2.
In addition, the metal-containing ion concentration is correlated with the pH value, conductivity, viscosity, or density of the electrolytic solution as described above. Accordingly, the metal-containing ion concentration is calculated from the measurement result of the first measurement unit 24 by measuring the relationship between the pH value, conductivity, viscosity or density of the electrolytic solution and the metal-containing ion concentration in advance and creating a calibration curve. be able to.
Therefore, when data such as a calibration curve and the amount of the electrolytic solution are recorded in the storage medium 28, the calculation circuit 26 determines the precipitate 17 based on the measurement result of the first measurement unit 24 and the measurement result of the second measurement unit 25. The amount can be calculated. Based on the calculation result, the notification unit 27 can notify a user or the like of information indicating the amount of the precipitate 17 in the electrolytic solution tank 2. Thereby, the user etc. can perform the maintenance which removes the deposit 17 in the electrolyte tank 2 at an appropriate time.
Further, the information indicating the amount of the precipitate 17 may be an accumulation rate (%) of the precipitate 17. The accumulation rate of the precipitate 17 can be calculated from the accumulation amount Q and the amount P of the precipitate 17 by previously determining the accumulation amount Q for discharging the precipitate 17 from the electrolytic solution tank 2. For example, it can be calculated by the following equation. In addition, the accumulation amount Q can be set to an amount that can recover the particulate precipitate 17 in the electrolytic solution tank 2 without any trouble.
Accumulation rate of precipitate 17 (%) = | PQ | ÷ Q × 100
 また、通知部27は、第1計測部24の計測結果および第2計測部25の計測結果に基づき、電解液槽2中の析出物17の排出時期を表す情報をユーザーなどに通知するように設けられてもよい。
 この場合、析出物17の蓄積率(%)が100%に達したとき、ディスプレイやランプ、音声出力部に排出時期であることを表示するように通知部27を設けることができる。このことにより、ユーザーなどは析出物17を排出する時期がきたことを知ることができ、適切な時期に電解液槽2から析出物17を排出することができる。通知する情報は、上記析出物17の蓄積率(%)に関する定量的な数値情報であったり、上記析出部17の蓄積率(%)が100%に近づいたか否か、あるいは100%に到達したか否かを示す該非判定情報であっても良い。
 定量的な数値情報の通知は、数値そのもの、あるいは、数値情報を長さや角度に換算した図をディスプレイに表示する方法、もしくは、複数セグメントからなるランプの点灯により表示する、などの方法がある。析出物17の蓄積率(%)の該非判定の結果、該当した場合の情報の通知には、析出物17の蓄積率(%)が該非判定条件を満たしたことを示す文章を、ディスプレイに表示する、もしくは、音声で通知する、析出物17の蓄積率(%)の該非判定と一対一対応となっているアイコンをディスプレイに表示する、析出物17の蓄積率(%)の該非判定と一対一対応となっているランプを点灯する、析出物17の蓄積率(%)の該非判定と一対一対応となっている音パターンを発生させる、などの方法がある。
 また、析出物17の蓄積率(%)が100%に近づく、あるいは、到達した場合、上記通知とともに、制御部により、金属空気電池からの電力出力を停止してもよい。電力出力を停止することで、金属空気電池からの放電に伴う金属含有イオンの溶解が停止するため、析出物17の過剰生成を防止することが可能となる。
In addition, the notification unit 27 notifies the user or the like of information indicating the discharge timing of the precipitate 17 in the electrolytic solution tank 2 based on the measurement result of the first measurement unit 24 and the measurement result of the second measurement unit 25. It may be provided.
In this case, when the accumulation rate (%) of the precipitates 17 reaches 100%, the notification unit 27 can be provided so as to display the discharge time on the display, the lamp, and the audio output unit. Thus, the user or the like can know that the time for discharging the precipitate 17 has come, and can discharge the precipitate 17 from the electrolytic solution tank 2 at an appropriate time. The information to be notified is quantitative numerical information regarding the accumulation rate (%) of the precipitates 17, whether or not the accumulation rate (%) of the precipitation portion 17 has approached 100%, or has reached 100%. It may be the non-determination information indicating whether or not.
Notification of quantitative numerical information includes a method of displaying the numerical value itself or a figure obtained by converting the numerical information into a length and an angle on a display, or displaying by lighting a lamp composed of a plurality of segments. As a result of the non-determination of the accumulation rate (%) of the precipitates 17, a sentence indicating that the accumulation rate (%) of the precipitates 17 satisfies the non-determination condition is displayed on the display for information notification. Or an icon that has a one-to-one correspondence with the non-determination of the accumulation rate (%) of the precipitate 17 that is notified by voice, and a pair with the non-determination of the accumulation rate (%) of the precipitate 17. There are methods such as lighting a lamp that corresponds to one, and generating a sound pattern that corresponds one-to-one with the non-determination of the accumulation rate (%) of the precipitate 17.
When the accumulation rate (%) of the precipitates 17 approaches or reaches 100%, the control unit may stop the power output from the metal-air battery together with the notification. By stopping the power output, the dissolution of the metal-containing ions accompanying the discharge from the metal-air battery is stopped, so that it is possible to prevent excessive formation of the precipitate 17.
 通知部27は、第1計測部24の計測結果、及び、第2計測部25の計測結果に基づき、電解液槽2に電解液又は水を補給する時期を表す情報をユーザーなどに通知するように設けられてもよい。電解液又は水を補給する時期を表す情報は、例えば、補給時期がきたことを示す表示であってもよく、補給時期までの時間を示す表示であってもよい。
 金属空気電池30により長時間放電を行うと、電解液槽2内の電解液に含まれる水分が徐々に失われ、電解液の量は徐々に減少する。
 例えば、電解液に含まれる水分は、電池反応により消費される場合がある。金属空気電池30の電池反応が上述の化学式1、2、4のように進行すると、化学式1においてH2Oが消費されるが、反応生成物としてH2Oが生じない。このため、電池反応の進行に伴い電解液に含まれる水分が徐々に失われると考えられる。
 また、例えば、空気極9などにおける蒸発により電解液に含まれる水分が失われる場合がある。上述の化学式1により消費されるO2は、大気中から供給されるため、空気極9は大気に開放されている。また、化学式1の反応熱により空気極9の温度は上昇するため、空気極9において蒸発した水分が大気中に発散すると考えられる。このため、電池反応の進行に伴い電解液に含まれる水分が徐々に失われると考えられる。
Based on the measurement result of the first measurement unit 24 and the measurement result of the second measurement unit 25, the notification unit 27 notifies the user or the like of information indicating the time when the electrolyte solution 2 is replenished with the electrolyte or water. May be provided. The information indicating the time when the electrolytic solution or water is supplied may be, for example, a display indicating that the supply time has come, or a display indicating the time until the supply time.
When the metal-air battery 30 is discharged for a long time, water contained in the electrolytic solution in the electrolytic solution tank 2 is gradually lost, and the amount of the electrolytic solution is gradually reduced.
For example, the moisture contained in the electrolytic solution may be consumed by a battery reaction. When the battery reaction of the metal-air battery 30 proceeds as in the above chemical formulas 1, 2, and 4, H 2 O is consumed in the chemical formula 1, but no H 2 O is generated as a reaction product. For this reason, it is thought that the water | moisture content contained in electrolyte solution is lost gradually with progress of a battery reaction.
Further, for example, moisture contained in the electrolytic solution may be lost due to evaporation at the air electrode 9 or the like. Since O 2 consumed by the above chemical formula 1 is supplied from the atmosphere, the air electrode 9 is open to the atmosphere. In addition, since the temperature of the air electrode 9 rises due to the reaction heat of Chemical Formula 1, it is considered that the water evaporated in the air electrode 9 diverges into the atmosphere. For this reason, it is thought that the water | moisture content contained in electrolyte solution is lost gradually with progress of a battery reaction.
 電解液に含まれる水分が徐々に失われると、相対的に電解液のOH-イオン濃度および金属含有イオン濃度は徐々に上昇する。OH-イオン濃度または金属含有イオン濃度は、上述のように、電解液のpH値、導電率、粘度または密度と相関関係にある。従って、電解液のpH値、導電率、粘度または密度と電解液の水位との関係を予め測定し検量線を作成することより、第1計測部24、および、第2計測部25の計測結果から電解液の水位を算出することができる。この算出結果に基づき、通知部27により、電解液槽2に電解液または水を補給する時期に表す情報をユーザーなどに通知することができる。
 また、予め電解液槽2に電解液または水を補給する値を決めておき、電解液のpH値、導電率、粘度または密度がこの値に達したときに通知部27が電解液槽2に電解液または水を補給する時期を表す情報をユーザーなどに通知するように設けてもよい。
 このことにより、ユーザーなどは適切な時期に電解液槽2に電解液または水を補給することができる。また、電解液3の水位の低下により電解液3に接触する金属電極5の面積が減少することを抑制することができ、金属空気電池30の出力が低下することを抑制することができる。
When water contained in the electrolytic solution is gradually lost, the OH ion concentration and the metal-containing ion concentration of the electrolytic solution gradually increase. As described above, the OH - ion concentration or the metal-containing ion concentration correlates with the pH value, conductivity, viscosity, or density of the electrolytic solution. Therefore, the measurement results of the first measurement unit 24 and the second measurement unit 25 are obtained by measuring the relationship between the pH value, conductivity, viscosity or density of the electrolytic solution and the water level of the electrolytic solution in advance and creating a calibration curve. From the above, the water level of the electrolyte can be calculated. Based on the calculation result, the notification unit 27 can notify the user or the like of information that represents the time when the electrolytic solution tank 2 is replenished with the electrolytic solution or water.
In addition, a value for replenishing the electrolytic solution or water to the electrolytic solution tank 2 is determined in advance, and when the pH value, conductivity, viscosity, or density of the electrolytic solution reaches this value, the notification unit 27 enters the electrolytic solution tank 2. You may provide so that a user etc. may be notified of the information showing the time which replenishes electrolyte solution or water.
Accordingly, the user or the like can replenish the electrolytic solution tank 2 with the electrolytic solution or water at an appropriate time. Moreover, it can suppress that the area of the metal electrode 5 which contacts the electrolyte solution 3 by the fall of the water level of the electrolyte solution 3 can be suppressed, and it can suppress that the output of the metal air battery 30 falls.
 第1計測部24、および、第2計測部25の計測結果から電解液の水位を算出する場合、第1計測部24は、pH計であることが好ましい。pH計は、OH-イオン濃度が高い領域において、OH-イオン濃度の変化に対して線形に応答する。このため、pH計の計測結果から電解液の水位を正確に算出することができる。
 例えば、7Mの水酸化カリウム水溶液を電解質として用いる亜鉛空気電池の場合であって、第1計測部24としてpH計を使用する場合、pH計測により算出されるOH-イオン濃度、及び、第2計測部25により求めた積算放電容量に基づき、次式により、水位を計測することができる
 水位(%)=[{7(mol/L)―0.7(mol/L)×2}×電解液槽に当初存在していた電解液の容積(L)- 積算放電容量(Ah)×3600÷96500×2]÷pH計測により算出されるOH- イオン濃度(mol/L)÷電解液槽に当初存在していた電解液の容積(L)
 すなわち、酸化亜鉛の析出までは、当初の電解液に存在していたOH-イオンの量から、亜鉛含有イオンの飽和により消費されるOH-イオンの量、及び、化学式1、および、化学式2からなる放電反応により消費されるOH-イオンの量、を引くことで、電解液に含まれるOH-イオンの量を特定することができる。これとpH計測により算出されるOH-イオン濃度を比較することで、水位(%)を決定することができる。
When calculating the water level of the electrolytic solution from the measurement results of the first measurement unit 24 and the second measurement unit 25, the first measurement unit 24 is preferably a pH meter. The pH meter responds linearly to changes in the OH ion concentration in the region where the OH ion concentration is high. For this reason, it is possible to accurately calculate the water level of the electrolytic solution from the measurement result of the pH meter.
For example, in the case of a zinc-air battery using a 7M potassium hydroxide aqueous solution as an electrolyte, and using a pH meter as the first measuring unit 24, the OH ion concentration calculated by pH measurement and the second measurement The water level can be measured by the following formula based on the accumulated discharge capacity obtained by the unit 25: Water level (%) = [{7 (mol / L) −0.7 (mol / L) × 2} × electrolytic solution Electrolyte volume initially present in the tank (L)-Accumulated discharge capacity (Ah) x 3600 ÷ 96500 x 2] ÷ OH - ion concentration calculated by pH measurement (mol / L) ÷ Existing electrolyte volume (L)
That is, until the precipitation of zinc oxide, OH were present in the initial electrolyte solution - from the amount of ions, OH is consumed by the saturation of the zinc-containing ions - the amount of ions, and the chemical formula 1, and, from the formula 2 OH is consumed by discharge reaction comprising - an amount of ions by catching, OH contained in the electrolytic solution - it can identify the amount of ions. The water level (%) can be determined by comparing this with the OH ion concentration calculated by pH measurement.
 なお上式において、0.7(mol/L)は、7Mの水酸化カリウム水溶液を使用した場合の亜鉛含有イオンの飽和濃度であり、2は、亜鉛1モルの溶解に伴い、電解液から消費されるOH-イオンのモル数である。
 この場合、水位(%)が閾値に達したとき、ディスプレイやランプ、音声出力部に補液時期であることを表示するように通知部27を設けることができる。このことにより、ユーザーなどは補液する時期がきたことを知ることができ、適切な時期に電解液槽2に電解液を補液することができる。通知する情報は、上記水位(%)に関する定量的な数値情報であったり、上記水位(%)が閾値に近づいたか否か、あるいは閾値に到達したか否かを示す該非判定情報であっても良い。
 定量的な数値情報の通知は、数値そのもの、あるいは、数値情報を長さや角度に換算した図をディスプレイに表示する方法、もしくは、複数セグメントからなるランプの点灯により表示する、などの方法がある。水位(%)の該非判定の結果、該当した場合の情報の通知には、水位(%)が該非判定条件を満たしたことを示す文章を、ディスプレイに表示する、もしくは、音声で通知する、水位(%)の該非判定と一対一対応となっているアイコンをディスプレイに表示する、水位(%)の該非判定と一対一対応となっているランプを点灯する、水位(%)の該非判定と一対一対応となっている音パターンを発生させる、などの方法がある。
 また、水位(%)が閾値に近づく、あるいは、到達した場合、上記通知とともに、制御部により、金属空気電池からの電力出力を停止してもよい。電力出力を停止することで、水位が下がり、放電反応一部に集中した状態で放電を継続することが無くなるため、金属電極5に含まれる電極活物質の利用率を上げることができる。
 なお、水位(%)の閾値としては、70~95%が好ましく、より好ましくは80~90%が好ましい。
 なお、電解液の水位の計測には、水位計を利用する方法もあるが、水平が維持されていない場所に電池が設置されると、液面が傾き、正確な水位を示さない可能性がある。これに対し、第1計測部24の計測結果に基づき水位を算出する方法では、電池の設置場所に寄らず、正確に水分の減少量を定量することができる。
In the above formula, 0.7 (mol / L) is the saturation concentration of zinc-containing ions when a 7M potassium hydroxide aqueous solution is used, and 2 is consumed from the electrolyte as 1 mol of zinc is dissolved. Is the number of moles of OH ions to be produced.
In this case, when the water level (%) reaches the threshold value, the notification unit 27 can be provided so as to display the replacement time on the display, the lamp, and the sound output unit. Thus, the user or the like can know that it is time to replenish, and can replenish the electrolyte in the electrolyte tank 2 at an appropriate time. The information to be notified may be quantitative numerical information related to the water level (%), or the non-determining information indicating whether the water level (%) has approached the threshold value or has reached the threshold value. good.
Notification of quantitative numerical information includes a method of displaying the numerical value itself or a figure obtained by converting the numerical information into a length and an angle on a display, or displaying by lighting a lamp composed of a plurality of segments. As a result of the non-judgment of the water level (%), the notification of information when the water level (%) is applicable, the sentence indicating that the water level (%) satisfies the non-judgment condition is displayed on the display or notified by voice. An icon corresponding to the non-determination of (%) is displayed on the display, a lamp corresponding to the non-determination of the water level (%) is turned on, and a pair of non-determination of the water level (%) is turned on. There is a method such as generating a sound pattern corresponding to one.
When the water level (%) approaches or reaches the threshold value, the control unit may stop the power output from the metal-air battery together with the notification. By stopping the power output, the water level is lowered and the discharge does not continue in a state where it concentrates on a part of the discharge reaction, so that the utilization factor of the electrode active material contained in the metal electrode 5 can be increased.
The water level (%) threshold is preferably 70 to 95%, more preferably 80 to 90%.
In addition, there is a method using a water level meter to measure the water level of the electrolyte, but if the battery is installed in a place where the level is not maintained, the liquid level may be tilted and the accurate water level may not be shown. is there. On the other hand, in the method of calculating the water level based on the measurement result of the first measurement unit 24, the amount of water decrease can be accurately quantified regardless of the battery installation location.
放電実験1
 図1に示したような亜鉛空気電池を作製し、亜鉛空気電池の放電に伴う電解液の導電率の変化を測定した。なお、作製した亜鉛空気電池には、演算回路26、記憶媒体28、通知部27などは設けていない。
 金属電極5には10mmの厚さの亜鉛板を用いた。また、金属電極5の電解液に浸る部分の大きさは50mm×50mmとした。
 空気極9には、空気極触媒層7とガス拡散層8が積層されたものを用いた。空気極9は、厚さ約300μm、大きさ50mm×50mmとした。
 ガス拡散層8には、SGLカーボン製35BCを用いた。35BCはカーボン繊維とマイクロポーラスレイヤーからなっており、マイクロポーラスレイヤーはカーボンブラックと撥水樹脂(PTFE)からなる層である。
 空気極触媒層7には、Pt担持カーボン、撥水樹脂(PTFE)を含有するものを用いた。反応表面積をふやすため、Ptは表面積の大きいカーボン上に微粒子として担持されている。
 電解液には、酸化亜鉛の飽和溶解度である0.7mol/Lまで酸化亜鉛を溶かした7MのKOH水溶液を用いた。
 また、第1計測部24として、センサ部が電解液槽2中の電解液3に浸漬するように導電率計を設けた。
 また、第2計測部25として電流計を設けた。
Discharge experiment 1
A zinc-air battery as shown in FIG. 1 was prepared, and the change in the conductivity of the electrolytic solution accompanying the discharge of the zinc-air battery was measured. Note that the manufactured zinc-air battery is not provided with the arithmetic circuit 26, the storage medium 28, the notification unit 27, and the like.
As the metal electrode 5, a zinc plate having a thickness of 10 mm was used. Further, the size of the portion of the metal electrode 5 immersed in the electrolytic solution was 50 mm × 50 mm.
As the air electrode 9, an air electrode catalyst layer 7 and a gas diffusion layer 8 laminated are used. The air electrode 9 had a thickness of about 300 μm and a size of 50 mm × 50 mm.
As the gas diffusion layer 8, 35BC made of SGL carbon was used. 35BC consists of a carbon fiber and a microporous layer, and the microporous layer is a layer made of carbon black and a water repellent resin (PTFE).
As the air electrode catalyst layer 7, a material containing Pt-supported carbon and water-repellent resin (PTFE) was used. In order to increase the reaction surface area, Pt is supported as fine particles on carbon having a large surface area.
As the electrolytic solution, a 7M KOH aqueous solution in which zinc oxide was dissolved to 0.7 mol / L, which is the saturation solubility of zinc oxide, was used.
In addition, a conductivity meter was provided as the first measuring unit 24 so that the sensor unit was immersed in the electrolytic solution 3 in the electrolytic solution tank 2.
An ammeter is provided as the second measuring unit 25.
 作製した金属空気電池により放電し、放電容量と電解液の導電率とを測定した。この結果を図2に示す。金属空気電池の放電容量が増加していくと、電解液の導電率は徐々に低下していき、電解液の導電率が0.3~0.33S/cmに達した段階で金属空気電池の放電出力がゼロとなり放電が停止した。このとき、金属電極5の表面が析出物17の不動態膜で覆われていることが確認された。電解液の導電率が0.3~0.33S/cmに達した段階で電解液のZn(OH)4 2-イオン濃度が不動態が析出する閾値に達し、不動態がアノード反応を阻害し金属空気電池の放電が停止したと考えられる。
 このことから、電解液の導電率と、Zn(OH)4 2-イオン濃度との間に相関関係があることが確認された。
It discharged with the produced metal air battery, and measured the discharge capacity and the electrical conductivity of electrolyte solution. The result is shown in FIG. As the discharge capacity of the metal-air battery increases, the conductivity of the electrolyte gradually decreases, and when the conductivity of the electrolyte reaches 0.3 to 0.33 S / cm, Discharge stopped and discharge stopped. At this time, it was confirmed that the surface of the metal electrode 5 was covered with the passive film of the precipitate 17. When the conductivity of the electrolyte reaches 0.3 to 0.33 S / cm, the Zn (OH) 4 2- ion concentration of the electrolyte reaches the threshold value for depositing the passive state, and the passive state inhibits the anode reaction. It is thought that the discharge of the metal-air battery has stopped.
From this, it was confirmed that there was a correlation between the conductivity of the electrolytic solution and the Zn (OH) 4 2- ion concentration.
 次に、実施例1として、導電率計の計測結果に基づき通知部27であるディスプレイに放電可能量が表示されるようにした亜鉛空気電池を作製した。他の構成は、上述の亜鉛空気電池と同様である。放電可能量は、0.5S/cm(7MのKOH水溶液における酸化亜鉛の飽和溶解度である0.7mol/Lまで酸化亜鉛を溶かした電解液の導電率)をX1とし、0.3S/cm(金属電極の表面に不動態膜形成が起こる導電率)をX2とし、導電率計が計測する導電率をX3として、次の式により算出してディスプレイに表示させた。
 放電可能量=(X3-X2)÷(X1-X2)×100
 なお、放電可能量とは、金属電極5に電極活物質が残っている状態であっても、金属電極表面上の不動態膜の形成に伴いそれ以上放電ができない状態に達するまでの時間を知るために利用される値である。
 作製した亜鉛空気電池により放電を行った。また、放電は、通知部27であるディスプレイに表示される放電可能量がゼロになる前に中止した。このことにより、Zn(OH)4 2-イオン濃度が不動態が析出する閾値に達する前に、放電を中止することができ、金属電極5が不動態膜により覆われることを防止することができた。
Next, as Example 1, a zinc-air battery was prepared in which the dischargeable amount was displayed on the display as the notification unit 27 based on the measurement result of the conductivity meter. Other configurations are the same as those of the above-described zinc-air battery. The dischargeable amount is 0.5 S / cm (conductivity of the electrolytic solution in which zinc oxide is dissolved up to 0.7 mol / L, which is the saturation solubility of zinc oxide in a 7 M KOH aqueous solution), and is 0.3 S / cm ( The conductivity of the surface of the metal electrode on which the passive film is formed is X2, and the conductivity measured by the conductivity meter is X3, which is calculated by the following formula and displayed on the display.
Dischargeable amount = (X3−X2) ÷ (X1−X2) × 100
Note that the dischargeable amount refers to the time required to reach a state where no further discharge is possible with the formation of the passive film on the surface of the metal electrode even when the electrode active material remains on the metal electrode 5. It is a value used for
Discharge was performed with the produced zinc-air battery. The discharge was stopped before the dischargeable amount displayed on the display as the notification unit 27 became zero. As a result, the discharge can be stopped before the Zn (OH) 4 2− ion concentration reaches the threshold value for depositing the passivation, and the metal electrode 5 can be prevented from being covered with the passivation film. It was.
 また、放電を中止した亜鉛空気電池を数時間放置すると、ディスプレイに表示される放電可能量が回復していたため、再放電を試みた。再放電では、回復した放電可能量に応じた放電容量の再放電を行うことができた。
 これは、放電を中止した亜鉛空気電池を放置すると、電解液3中において、上記化学式3、4の析出反応が進行するため、電解液中のOH-イオン濃度が上昇しZn(OH)4 2-イオン濃度が低下したためと考えられる。従って、電解液中のZn(OH)4 2-イオン濃度は、図3に示したように変化すると考えられる。つまり、放電中におけるZn(OH)4 2-イオン濃度は徐々に上昇する。そして、放電を中止すると、Zn(OH)4 2-イオン濃度は徐々に低下するため、十分な放電間隔を設けると再び放電することができると考えられる。また、電解液中のOH-イオン濃度は、図4に示したように変化すると考えられる。つまり、放電中におけるOH-イオン濃度は徐々に低下する。そして、放電を中止すると、OH-イオン濃度は徐々に上昇するため、十分な放電間隔を設けると再び放電することができると考えられる。
 このように、放電可能量が少なくなった場合でも放電間隔をおいて放電を繰り返すことにより、金属電極5に含まれる電極活物質を効率的に電池反応に利用することができる。
 なお、通知部27であるディスプレイに表示される放電可能量によりユーザーなどが適切な放電間隔を知ることができる。
In addition, when the zinc-air battery whose discharge was stopped was left for several hours, the dischargeable amount displayed on the display was recovered, so re-discharge was attempted. In the re-discharge, it was possible to re-discharge the discharge capacity according to the recovered dischargeable amount.
This is because if the zinc-air battery whose discharge is stopped is left unattended, the precipitation reaction of the above chemical formulas 3 and 4 proceeds in the electrolytic solution 3, so that the OH ion concentration in the electrolytic solution increases and Zn (OH) 4 2 - presumably because ion concentration is lowered. Therefore, it is considered that the Zn (OH) 4 2- ion concentration in the electrolytic solution changes as shown in FIG. That is, the Zn (OH) 4 2- ion concentration gradually increases during discharge. When the discharge is stopped, the Zn (OH) 4 2− ion concentration gradually decreases. Therefore, it is considered that the discharge can be performed again if a sufficient discharge interval is provided. Further, the OH ion concentration in the electrolytic solution is considered to change as shown in FIG. That is, the OH ion concentration during discharge gradually decreases. When the discharge is stopped, the OH ion concentration gradually increases, and it is considered that the discharge can be performed again if a sufficient discharge interval is provided.
Thus, even when the dischargeable amount is reduced, the electrode active material contained in the metal electrode 5 can be efficiently used for the battery reaction by repeating the discharge at intervals of the discharge.
The user can know an appropriate discharge interval from the dischargeable amount displayed on the display as the notification unit 27.
 次に、比較例1として、第1計測部24、演算回路26、記憶媒体28および通知部27を備えていない亜鉛空気電池を作製した。他の構成は、実施例1の亜鉛空気電池と同様である。
 作製した亜鉛空気電池により放電を行った。数時間後、金属空気電池の放電出力がゼロとなり放電が停止した。このとき、金属電極5の表面が析出物17の不動態膜で覆われていることが確認された。また、この亜鉛空気電池では、通知部27を設けていないために、ユーザーは、放電可能量を知ることができず、金属電極5が不動態膜で覆われる前に放電を中止することができなかった。
 また、放電が停止した亜鉛空気電池を数時間放置した後、再放電を試みたが、再放電することはできなかった。これは金属電極5の表面が不動態膜で覆われているためと考えられる。従って、金属電極5の表面が一度不動態膜により覆われると、亜鉛空気電池を放置しても放電可能量を回復することはできないことがわかった。このような場合、金属電極5を新たな金属電極5と交換すること又は、金属電極5を亜鉛空気電池から取り外し、不動態膜を物理的に除去することが必要である。
Next, as Comparative Example 1, a zinc-air battery that did not include the first measurement unit 24, the arithmetic circuit 26, the storage medium 28, and the notification unit 27 was produced. Other configurations are the same as those of the zinc-air battery of Example 1.
Discharge was performed with the produced zinc-air battery. After several hours, the discharge output of the metal-air battery became zero and the discharge stopped. At this time, it was confirmed that the surface of the metal electrode 5 was covered with the passive film of the precipitate 17. Further, in this zinc-air battery, since the notification unit 27 is not provided, the user cannot know the dischargeable amount and can stop the discharge before the metal electrode 5 is covered with the passive film. There wasn't.
Moreover, after leaving the zinc-air battery whose discharge stopped for several hours, an attempt was made to re-discharge, but it was not possible to re-discharge. This is presumably because the surface of the metal electrode 5 is covered with a passive film. Therefore, it was found that once the surface of the metal electrode 5 was covered with the passive film, the dischargeable amount could not be recovered even if the zinc-air battery was left standing. In such a case, it is necessary to replace the metal electrode 5 with a new metal electrode 5 or to remove the metal electrode 5 from the zinc-air battery and physically remove the passive film.
放電実験2
 実施例2として、放電電流を計測対象とする第2計測部25である電流計を設け、電流計の計測結果に基づき通知部27であるディスプレイに電極活物質の残量が表示されるようにした亜鉛空気電池を作製した。また、金属電極5は、電極活物質である金属亜鉛を10g含むものを用いた。また、電解液には、酸化亜鉛を溶かしていない7MのKOH水溶液を用いた。他の構成は、実施例1の亜鉛空気電池と同様である。
 金属電極5に含まれる電極活物質の残量は、第2計測部25により計測される積算放電容量Y(Ah)、金属電極5に含まれる金属亜鉛の質量(10g)、ファラデー定数(96500)、電荷の数(2)、亜鉛の原子量(65.4)などから算出することができる。具体的には、次式により算出した。
電極活物質の残量(%)=(10-Y×3600÷96500÷2×65.4)×100
 作製した亜鉛空気電池により放電を行った。また、放電中、通知部であるディスプレイに放電可能量および電極活物質の残量を表示させた。
 また、ディスプレイに表示される電極活物質の残量が少なくなった時点で金属電極5を新たな金属電極5に交換した。
 従って、この亜鉛空気電池では、電極活物質の残量を知ることができたため、金属空気電池の放電出力が低下する前に金属電極5を交換することができ、金属電極5の交換に伴う放電停止期間を短くすることができた。
 なお、金属電極5を交換すると、電極活物質の残量は初期値にリセットした。
Discharge experiment 2
As Example 2, an ammeter that is the second measurement unit 25 that measures the discharge current is provided, and the remaining amount of the electrode active material is displayed on the display that is the notification unit 27 based on the measurement result of the ammeter. A zinc-air battery was prepared. Moreover, the metal electrode 5 used what contained 10g of metal zinc which is an electrode active material. Further, a 7M KOH aqueous solution in which zinc oxide was not dissolved was used as the electrolytic solution. Other configurations are the same as those of the zinc-air battery of Example 1.
The remaining amount of the electrode active material contained in the metal electrode 5 is the cumulative discharge capacity Y (Ah) measured by the second measuring unit 25, the mass of metal zinc contained in the metal electrode 5 (10 g), and the Faraday constant (96500). , The number of charges (2), the atomic weight of zinc (65.4), and the like. Specifically, it was calculated by the following formula.
Remaining amount of electrode active material (%) = (10−Y × 3600 ÷ 96500 ÷ 2 × 65.4) × 100
Discharge was performed with the produced zinc-air battery. Moreover, during discharge, the dischargeable amount and the remaining amount of the electrode active material were displayed on the display serving as the notification unit.
Further, the metal electrode 5 was replaced with a new metal electrode 5 when the remaining amount of the electrode active material displayed on the display decreased.
Therefore, in this zinc-air battery, since the remaining amount of the electrode active material can be known, the metal electrode 5 can be replaced before the discharge output of the metal-air battery decreases, and the discharge accompanying the replacement of the metal electrode 5 The outage period could be shortened.
When the metal electrode 5 was replaced, the remaining amount of the electrode active material was reset to the initial value.
 次に、比較例2として、第1計測部24、演算回路26、記憶媒体28および通知部27を備えていない亜鉛空気電池を作製した。他の構成は、実施例2の亜鉛空気電池と同様である。
 作製した亜鉛空気電池により放電を行った。数時間後、金属空気電池の放電出力がゼロとなり放電が停止した。その後、電極活物質が消費されつくした金属電極5を新たな金属電極5に交換した。この金属空気電池では、通知部27を設けていないために、電極活物質の残量を知ることができず、金属電極5の交換に伴う放電停止期間が長くなった。
Next, as Comparative Example 2, a zinc-air battery that did not include the first measurement unit 24, the arithmetic circuit 26, the storage medium 28, and the notification unit 27 was produced. Other configurations are the same as those of the zinc-air battery of Example 2.
Discharge was performed with the produced zinc-air battery. After several hours, the discharge output of the metal-air battery became zero and the discharge stopped. After that, the metal electrode 5 that has consumed the electrode active material was replaced with a new metal electrode 5. In this metal-air battery, since the notification unit 27 is not provided, the remaining amount of the electrode active material cannot be known, and the discharge stop period associated with the replacement of the metal electrode 5 becomes long.
放電実験3
 放電実験1と同様の亜鉛空気電池を作製し、放電に伴う電解液のZn(OH)4 2-イオン濃度の変化と、電解液の導電率の変化とを測定し、検量線を作成した。作製した検量線を図5に示す。Zn(OH)4 2-イオン濃度が上昇すると、電解液の導電率は徐々に低下することがわかった。これは、電池反応の進行に伴いZn(OH)4 2-イオン濃度が上昇するとOH-イオン濃度が低下するためと考えられる。
Discharge experiment 3
A zinc-air battery similar to that in discharge experiment 1 was prepared, and the calibration curve was prepared by measuring the change in the Zn (OH) 4 2- ion concentration of the electrolyte and the change in the conductivity of the electrolyte due to the discharge. The prepared calibration curve is shown in FIG. It was found that the conductivity of the electrolyte gradually decreased as the Zn (OH) 4 2- ion concentration increased. This is presumably because the OH ion concentration decreases as the Zn (OH) 4 2− ion concentration increases with the progress of the battery reaction.
 次に、実施例3として、電解液を計測対象とする導電率計と放電電流を計測対象とする電流計とを設け、導電率計の計測結果と電流計の計測結果の両方に基づき通知部27であるディスプレイに析出物17の排出時期を通知するようにした亜鉛空気電池を作製した。他の構成は、実施例1の亜鉛空気電池と同様である。 Next, as Example 3, a conductivity meter for measuring the electrolyte and an ammeter for measuring the discharge current are provided, and a notification unit based on both the measurement result of the conductivity meter and the measurement result of the ammeter A zinc-air battery was prepared in which the display 27 was notified of the discharge timing of the precipitate 17. Other configurations are the same as those of the zinc-air battery of Example 1.
 析出物17の析出量P(mol)は、電流計から計測される積算放電容量Z(Ah)、ファラデー定数(96500)などから算出される電極活物質の消費量(mol)から電解液中のZn(OH)4 2-イオンの量(mol)を引くことにより求めることができる。電解液中のZn(OH)4 2-イオンの量(mol)は、図5に示した検量線に基づき、導電率計から計測される導電率からZn(OH)4 2-イオンの濃度C1(mol/L)を算出し、この濃度に電解液総量V1(L)を掛けることにより算出することができる。具体的には、析出量Pは次式から算出した。
 析出量P(mol)=Z×3600÷96500÷2-C1×V1
 また、析出物17の蓄積率(%)は、電解液槽2内からの析出物17の排出を行う蓄積量Q(mol)を予め決めておき、この蓄積量Qと析出量Pから算出することができる。具体的には次式から算出した。
 析出物17の蓄積率(%)=|P-Q|÷Q×100
 なお、蓄積量Qは、電解液槽2内の微粒子状の析出物17を支障なく回収できる量に設定した。
 そして、この蓄積率が100%に達したとき、ディスプレイに排出時期であることを表示するように通知部27を設けた。
The precipitation amount P (mol) of the precipitate 17 is determined from the consumption (mol) of the electrode active material calculated from the integrated discharge capacity Z (Ah) measured by an ammeter, the Faraday constant (96500), etc. It can be determined by subtracting the amount (mol) of Zn (OH) 4 2- ion. The amount (mol) of Zn (OH) 4 2- ion in the electrolyte is based on the calibration curve shown in FIG. 5, and the concentration C1 of Zn (OH) 4 2- ion is determined from the conductivity measured by the conductivity meter. (Mol / L) can be calculated, and this concentration can be calculated by multiplying the total amount of electrolyte V1 (L). Specifically, the precipitation amount P was calculated from the following equation.
Precipitation amount P (mol) = Z × 3600 ÷ 96500 ÷ 2-C1 × V1
Further, the accumulation rate (%) of the precipitate 17 is calculated from the accumulation amount Q and the precipitation amount P by previously determining an accumulation amount Q (mol) for discharging the precipitate 17 from the electrolytic solution tank 2. be able to. Specifically, it was calculated from the following formula.
Accumulation rate of precipitate 17 (%) = | PQ | ÷ Q × 100
In addition, the accumulation amount Q was set to an amount capable of recovering the fine particulate precipitate 17 in the electrolytic solution tank 2 without hindrance.
When the accumulation rate reaches 100%, the notification unit 27 is provided so that the display indicates that it is the discharge time.
 作製した亜鉛空気電池により放電を行った。そして、蓄積率が100%に達すると、表示部27であるディスプレイに排出時期であることが表示された。排出時期であることがディスプレイに表示された後、電解液槽2内から析出物17を電解液3と共に回収部37へ排出した。そして、回収部37において電解液をろ過し、残渣44とろ液(電解液3)を得た。そして、ろ液45として回収した電解液3を電解液槽2に戻し、金属空気電池による放電を再開した。
 従って、この金属空気電池では、析出物17の排出時期を知ることができたため、適切な時期に電解液槽2内から微粒子状の析出物17を排出することができた。
 なお、析出物17の蓄積量は、電解液槽2内から析出物17を排出した後、ゼロにリセットした。
Discharge was performed with the produced zinc-air battery. When the accumulation rate reaches 100%, it is displayed on the display as the display unit 27 that it is the discharge time. After the discharge time was displayed on the display, the precipitate 17 was discharged together with the electrolytic solution 3 from the electrolytic solution tank 2 to the collecting unit 37. And the electrolyte solution was filtered in the collection | recovery part 37, and the residue 44 and the filtrate (electrolyte solution 3) were obtained. And the electrolyte solution 3 collect | recovered as the filtrate 45 was returned to the electrolyte solution tank 2, and the discharge by a metal air battery was restarted.
Therefore, in this metal-air battery, since the discharge time of the precipitate 17 could be known, the fine particle precipitate 17 could be discharged from the electrolyte bath 2 at an appropriate time.
The accumulated amount of the precipitate 17 was reset to zero after the precipitate 17 was discharged from the electrolytic solution tank 2.
 次に、比較例3として、第1計測部24、演算回路26、記憶媒体28および通知部27を備えていない亜鉛空気電池を作製した。他の構成は、実施例3の亜鉛空気電池と同様である。
 作製した亜鉛空気電池により放電を行った。そして、放電を50時間行った後、電解液槽2内から析出物17を電解液3と共に回収部37へ排出し、析出物17と電解液3の分離を行った。すると、回収部37から析出物17があふれ出し、亜鉛空気電池による放電を再開するまでに時間を要した。
 比較例3の亜鉛空気電池では、析出物17の排出時期を知ることができず、析出物17が回収可能量を超えて析出したと考えられる。
Next, as Comparative Example 3, a zinc-air battery that did not include the first measurement unit 24, the arithmetic circuit 26, the storage medium 28, and the notification unit 27 was produced. Other configurations are the same as those of the zinc-air battery of Example 3.
Discharge was performed with the produced zinc-air battery. And after discharging for 50 hours, the deposit 17 was discharged | emitted from the inside of the electrolyte tank 2 to the collection | recovery part 37 with the electrolyte solution 3, and the deposit 17 and the electrolyte solution 3 were isolate | separated. Then, the deposit 17 overflowed from the recovery part 37, and it took time until the discharge by the zinc-air battery was resumed.
In the zinc-air battery of Comparative Example 3, it is considered that the discharge timing of the precipitate 17 could not be known, and the precipitate 17 was deposited beyond the recoverable amount.
放電実験4
 実施例4として、第1計測部24であるpH計を設け、pH計の計測結果に基づき通知部27であるディスプレイに電解液の液量が低下していることが表示されるようにした亜鉛空気電池を作製した。また、電解液には、酸化亜鉛を溶かしていない7MのKOH水溶液を用いた。他の構成は、実施例1の亜鉛空気電池と同様である。
 亜鉛空気電池により長時間放電を行うと、電解液槽2内の電解液に含まれる水分が徐々に失われ、電解液の量は徐々に減少する。電解液に含まれる水分が徐々に失われると、相対的に電解液のイオン濃度は上昇するため、電解液中のOH-イオン濃度も徐々に上昇する。従って、このOH-イオン濃度を反映するpHを連続的に計測することにより、電解液槽2内の電解液量の減少を検知することができる。
 本実験では、pH計により測定されるpHが15を超える値を示した場合にディスプレイに電解液の液量が低下していることが表示されるように通知部27を設けた。
 作製した亜鉛空気電池により放電を行った。そして、通知部27に電解液の液量の低下が表示されるたびに、電解液槽中に水を補給し、1ヶ月間放電を続けた。
 この亜鉛空気電池では、放電初日の放電容量と、放電開始後1ヶ月の放電容量との差は、5%未満であった。
 通知部27に電解液の液量の低下が表示されたため、適切な時期に適切な量の水を電解液槽2中に補給することができた。
Discharge experiment 4
As a fourth embodiment, a zinc meter is provided as the first measurement unit 24, and the display as the notification unit 27 displays that the amount of the electrolyte is decreasing based on the measurement result of the pH meter. An air battery was produced. Further, a 7M KOH aqueous solution in which zinc oxide was not dissolved was used as the electrolytic solution. Other configurations are the same as those of the zinc-air battery of Example 1.
When the zinc-air battery discharges for a long time, moisture contained in the electrolyte solution in the electrolyte solution tank 2 is gradually lost, and the amount of the electrolyte solution gradually decreases. When water contained in the electrolytic solution is gradually lost, the ion concentration of the electrolytic solution is relatively increased, so that the OH ion concentration in the electrolytic solution is also gradually increased. Accordingly, by continuously measuring the pH reflecting this OH ion concentration, it is possible to detect a decrease in the amount of the electrolytic solution in the electrolytic solution tank 2.
In this experiment, the notification unit 27 is provided so that when the pH measured by the pH meter shows a value exceeding 15, the display indicates that the amount of the electrolyte is decreasing.
Discharge was performed with the produced zinc-air battery. And whenever the fall of the amount of electrolyte solution was displayed on the notification part 27, water was replenished in the electrolyte tank, and discharge was continued for one month.
In this zinc-air battery, the difference between the discharge capacity on the first day of discharge and the discharge capacity one month after the start of discharge was less than 5%.
Since the notification unit 27 displayed a decrease in the amount of the electrolytic solution, an appropriate amount of water could be supplied into the electrolytic solution tank 2 at an appropriate time.
 次に、比較例4として、第1計測部24、演算回路26、記憶媒体28および通知部27を備えていない亜鉛空気電池を作製した。他の構成は、実施例4の亜鉛空気電池と同様である。
 作製した亜鉛空気電池により1ヶ月間放電を行った。なお、この放電期間中、電解液槽中に水は補給していない。
 この亜鉛空気電池では、放電初日の放電容量に対して、放電開始後1ヶ月の放電容量は、約10%減少していた。また、放電期間中に電解液の総量が約5%減少していた。また、放電開始後1ヶ月の電解液のpHは15.5と通常よりも高かった。
 放電開始後1ヶ月の放電容量が減少していた理由としては、電解液量が減少し、電解液と触れる金属電極5の表面積が減少していたためと考察される。
Next, as Comparative Example 4, a zinc-air battery that did not include the first measurement unit 24, the arithmetic circuit 26, the storage medium 28, and the notification unit 27 was produced. Other configurations are the same as those of the zinc-air battery of Example 4.
The produced zinc-air battery was discharged for 1 month. During the discharge period, water is not replenished in the electrolyte bath.
In this zinc-air battery, the discharge capacity one month after the start of discharge was reduced by about 10% with respect to the discharge capacity on the first day of discharge. Further, the total amount of the electrolyte decreased by about 5% during the discharge period. In addition, the pH of the electrolyte one month after the start of discharge was 15.5, which was higher than usual.
The reason why the discharge capacity decreased for one month after the start of discharge is considered to be that the amount of the electrolytic solution decreased and the surface area of the metal electrode 5 in contact with the electrolytic solution decreased.
 1:筐体  2:電解液槽  3:電解液  5:金属電極  7:空気極触媒層  8:ガス拡散層  9:空気極  10:空気極端子  11:金属極端子  14:セパレータ  17:析出物(使用済み活物質)  23:空孔  24:第1計測部  25:第2計測部  26:演算回路  27:通知部  28:記憶媒体  30:金属空気電池  35:バルブ  37:回収部  41:型部材  42:ろ材  44:残渣  45:ろ液  46:電解液回収容器 1: Housing 2: Electrolyte tank 3: Electrolyte 5: Metal electrode 7: Air electrode catalyst layer 8: Gas diffusion layer 9: Air electrode 10: Air electrode terminal 11: Metal electrode terminal 14: Separator 17: Deposit ( Spent active material) 23: Pore 24: First measurement unit 25: Second measurement unit 26: Arithmetic circuit 27: Notification unit 28: Storage medium 30: Metal-air battery 35: Valve 37: Collection unit 41: Mold member 42 : Filter medium 44: Residue 45: Filtrate 46: Electrolyte collection container

Claims (15)

  1.  電解液を収容する電解液槽と、前記電解液槽中に設けられかつ電極活物質を有しかつアノードとなる金属電極と、カソードとなる空気極と、前記電解液を計測対象とする第1計測部及び/又は前記金属空気電池の放電電流を計測対象とする第2計測部と、前記第1計測部及び/又は前記第2計測部の計測結果に基づく電池情報を通知する通知部とを備えることを特徴とする金属空気電池。 An electrolytic solution tank that contains an electrolytic solution, a metal electrode that is provided in the electrolytic solution tank and has an electrode active material and serves as an anode, an air electrode that serves as a cathode, and a first electrode that uses the electrolytic solution as a measurement target A measurement unit and / or a second measurement unit for measuring a discharge current of the metal-air battery; and a notification unit for notifying battery information based on a measurement result of the first measurement unit and / or the second measurement unit. A metal-air battery comprising:
  2.  前記第1計測部は、少なくとも前記電解液に関するpH値、導電率、粘度又は密度のうちいずれかを計測する計測部であり、
    前記電池情報は、放電可能時間を表す情報、前記電解液のイオン濃度を表す情報、又は前記電解液槽に電解液または水を補給する時期を表す情報である請求項1に記載の金属空気電池。
    The first measurement unit is a measurement unit that measures at least one of a pH value, conductivity, viscosity, and density related to the electrolytic solution,
    2. The metal-air battery according to claim 1, wherein the battery information is information representing a dischargeable time, information representing an ion concentration of the electrolytic solution, or information representing a time when an electrolytic solution or water is supplied to the electrolytic solution tank. .
  3. 前記第1計測部は、少なくとも前記電解液に関するOH-イオン濃度または、金属含有イオン濃度を計測する計測部であり、
    前記電池情報は、放電可能時間を表す情報、前記電解液のイオン濃度を表す情報、又は前記電解液槽に電解液または水を補給する時期を表す情報である請求項1に記載の金属空気電池。
    The first measurement unit is a measurement unit that measures at least an OH ion concentration or a metal-containing ion concentration related to the electrolytic solution,
    2. The metal-air battery according to claim 1, wherein the battery information is information representing a dischargeable time, information representing an ion concentration of the electrolytic solution, or information representing a time when an electrolytic solution or water is supplied to the electrolytic solution tank. .
  4.  前記第1計測部は、pH計、ORP計または導電率計であり、
     前記pH計、前記ORP計、または前記導電率計の計測結果に基づき、前記電解液中に含まれるOH-イオン濃度を算出する演算回路をさらに備えることを特徴とする請求項1または請求項2に記載の金属空気電池。
    The first measurement unit is a pH meter, an ORP meter, or a conductivity meter,
    The arithmetic circuit which calculates the OH- ion concentration contained in the electrolyte based on the measurement result of the pH meter, the ORP meter, or the conductivity meter is further provided. Metal-air battery as described in 2.
  5.  前記第1計測部は、粘度計または密度計であって、
     前記粘度計または密度計の計測結果に基づき、前記電解液中に含まれる金属含有イオン濃度を算出する演算回路とをさらに備えることを特徴とする請求項1または請求項2に記載の金属空気電池。
    The first measuring unit is a viscometer or a density meter,
    3. The metal-air battery according to claim 1, further comprising an arithmetic circuit that calculates a metal-containing ion concentration contained in the electrolytic solution based on a measurement result of the viscometer or a density meter. .
  6.  前記金属電極は、少なくとも金属亜鉛を含み、
     前記金属含有イオンはZn(OH)4 2-であることを特徴とする請求項5に記載の金属空気電池。
    The metal electrode includes at least metal zinc,
    The metal-air battery according to claim 5, wherein the metal-containing ions are Zn (OH) 4 2- .
  7.  前記演算回路は、前記電解液中の前記金属含有イオン濃度から前記電解液中のOH-イオン濃度を算出することを特徴とする請求項5に記載の金属空気電池。 6. The metal-air battery according to claim 5, wherein the arithmetic circuit calculates an OH ion concentration in the electrolytic solution from the metal-containing ion concentration in the electrolytic solution.
  8. 前記電解液のpH値と前記電解液中の金属含有イオン濃度との相関関係を示す第1の検量線、前記電解液の導電率と前記電解液中の金属含有イオン濃度との相関関係を示す第2の検量線、前記電解液の粘度と前記電解液中のOH-イオン濃度との相関関係を示す第3の検量線、前記電解液の密度と前記電解液中のOH-イオン濃度との相関関係を示す第4の検量線、および電解液のpH、導電率、粘度または密度と、放電可能時間との相関関係を示す第5の検量線のうちの少なくとも一つを記憶した記憶媒体と、
    前記第1計測部の計測結果と、前記第1の検量線、前記第2の検量線、第3の検量線、前記第4の検量線または前記第5の検量線とを比較して、前記電池情報を算出する演算回路とをさらに備えることを特徴とする請求項1または請求項2に記載の金属空気電池。
    A first calibration curve showing the correlation between the pH value of the electrolytic solution and the metal-containing ion concentration in the electrolytic solution, and showing the correlation between the conductivity of the electrolytic solution and the metal-containing ion concentration in the electrolytic solution. A second calibration curve, a third calibration curve showing the correlation between the viscosity of the electrolyte and the OH ion concentration in the electrolyte, the density of the electrolyte and the OH ion concentration in the electrolyte A storage medium storing at least one of a fourth calibration curve indicating a correlation and a fifth calibration curve indicating a correlation between the pH, conductivity, viscosity or density of the electrolytic solution and the dischargeable time; ,
    The measurement result of the first measurement unit is compared with the first calibration curve, the second calibration curve, the third calibration curve, the fourth calibration curve or the fifth calibration curve, The metal-air battery according to claim 1, further comprising an arithmetic circuit that calculates battery information.
  9. 前記電池情報は、前記放電可能時間を表す情報、前記金属電極に含まれる電極活物質の残量を表す情報、前記電極活物質から生成した析出物の量を表す情報、又は前記析出物の排出時期を表す情報である請求項1または請求項2に記載の金属空気電池。 The battery information includes information indicating the dischargeable time, information indicating the remaining amount of the electrode active material included in the metal electrode, information indicating the amount of precipitate generated from the electrode active material, or discharge of the precipitate. The metal-air battery according to claim 1, wherein the metal-air battery is information representing time.
  10.  前記演算回路は、少なくとも前記第1計測部の計測結果に基づき算出した前記電解液中のOH-イオン濃度と、
     前記第2計測部の計測結果に基づき算出した積算放電容量より、
     前記電解液槽に収容される前記電解液の水位を算出する請求項4または請求項7に記載の金属空気電池。
    The arithmetic circuit includes at least an OH ion concentration in the electrolyte calculated based on a measurement result of the first measurement unit,
    From the accumulated discharge capacity calculated based on the measurement result of the second measurement unit,
    The metal-air battery according to claim 4 or 7, wherein a water level of the electrolytic solution stored in the electrolytic solution tank is calculated.
  11. 放電前の前記金属電極に含まれる前記電極活物質量M1を記憶した記憶部をさらに備え、
    前記演算回路は、
    少ないとも放電前の前記金属電極に含まれる前記電極活物質量M1と、
    前記第2計測部の計測結果に基づき算出した前記電極活物質の消費量M2とから、前記金属電極に含まれる前記電極活物質の残量を算出することを特徴とする請求項1または請求項2に記載の金属空気電池。
    A storage unit that stores the amount of electrode active material M1 contained in the metal electrode before discharge;
    The arithmetic circuit is:
    At least the electrode active material amount M1 contained in the metal electrode before discharge,
    The remaining amount of the electrode active material contained in the metal electrode is calculated from the consumption M2 of the electrode active material calculated based on the measurement result of the second measurement unit. 2. The metal-air battery according to 2.
  12. 前記演算部は、少なくとも前記金属電極に含まれる前記電極活物質の残量から放電可能時間を算出することを特徴とする請求項11に記載の金属空気電池。 The metal-air battery according to claim 11, wherein the calculation unit calculates a dischargeable time from at least a remaining amount of the electrode active material included in the metal electrode.
  13.  前記電解液の前記金属含有イオン濃度が飽和濃度になるときの前記電解液のOH-イオン濃度xと、
     及び前記電解液の前記金属含有イオン濃度が不動態を形成するときの前記電解液のOH-イオン濃度yと、を少なくとも記憶した記憶部をさらに備え、
     前記放電可能時間を表す情報は、放電可能量として、前記演算回路により、前記記憶部が記憶した前記OH-イオン濃度x、前記OH-イオン濃度y、及び前記第1計測部から算出した前記電解液のOH-イオン濃度zから下記の式(1)から放電可能量を算出する演算部とを備えた請求項4または請求項7に記載の金属空気電池。
      放電可能量(%)=(|y-z|÷|y-x|)×100  (1)
    OH ion concentration x of the electrolytic solution when the metal-containing ion concentration of the electrolytic solution becomes a saturated concentration,
    And an OH ion concentration y of the electrolytic solution when the metal-containing ion concentration of the electrolytic solution forms a passive state, further comprising a storage unit that stores at least
    The information indicating the dischargeable time is calculated as the dischargeable amount by the arithmetic circuit from the OH ion concentration x, the OH ion concentration y stored in the storage unit, and the electrolysis calculated from the first measurement unit. The metal-air battery according to claim 4 or 7, further comprising a calculation unit that calculates a dischargeable amount from the following formula (1) from the OH - ion concentration z of the liquid.
    Dischargeable amount (%) = (| y−z | ÷ | y−x |) × 100 (1)
  14.  前記電解液の前記金属含有イオン濃度が飽和濃度になるときの前記電解液の導電率xと、 及び前記電解液の前記金属含有イオン濃度が不動態を形成するときの前記電解液の導電率yと、を少なくとも記憶した記憶部をさらに備え、
     前記放電可能時間を表す情報は、放電可能量として、前記演算回路により、前記記憶部が記憶した前記導電率x、前記導電率y、及び前記第1計測部で計測した前記電解液の導電率zから下記の式(1)から放電可能量を算出する演算部とを備えた請求項2に記載の金属空気電池。
      放電可能量(%)=(|y-z|÷|y-x|)×100  (1)
    The conductivity x of the electrolyte solution when the metal-containing ion concentration of the electrolyte solution becomes a saturated concentration, and the conductivity y of the electrolyte solution when the metal-containing ion concentration of the electrolyte solution forms a passive state And a storage unit storing at least
    The information indicating the dischargeable time includes, as the dischargeable amount, the conductivity x stored in the storage unit, the conductivity y, and the conductivity of the electrolyte measured by the first measurement unit by the arithmetic circuit. The metal-air battery according to claim 2, further comprising: an arithmetic unit that calculates a dischargeable amount from the following formula (1) from z.
    Dischargeable amount (%) = (| y−z | ÷ | y−x |) × 100 (1)
  15.  前記通知部は、データ通信回線を利用して遠隔地に電池情報を通知する通知部である請求項1~14のいずれか1つに記載の金属空気電池。 15. The metal-air battery according to claim 1, wherein the notification unit is a notification unit that notifies battery information to a remote place using a data communication line.
PCT/JP2015/052355 2014-01-29 2015-01-28 Metal air cell WO2015115479A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559977A JP6333863B2 (en) 2014-01-29 2015-01-28 Metal air battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-014503 2014-01-29
JP2014014503 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015115479A1 true WO2015115479A1 (en) 2015-08-06

Family

ID=53757052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052355 WO2015115479A1 (en) 2014-01-29 2015-01-28 Metal air cell

Country Status (2)

Country Link
JP (1) JP6333863B2 (en)
WO (1) WO2015115479A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505730A (en) * 1992-10-02 1996-06-18 ボルテック・インコーポレイテッド Electrochemical power generator
JP2003036892A (en) * 2001-07-23 2003-02-07 Japan Storage Battery Co Ltd Battery control unit and battery
US20030190500A1 (en) * 2002-04-04 2003-10-09 Smedley Stuart I. Method of and system for determining the remaining energy in a metal fuel cell
WO2013058035A1 (en) * 2011-10-21 2013-04-25 日産自動車株式会社 Fluid injection-type air battery
JP2013179051A (en) * 2011-08-22 2013-09-09 Nec Corp Secondary battery state notification system, secondary battery state notification method, and secondary battery state notification program
WO2013145903A1 (en) * 2012-03-26 2013-10-03 住友重機械工業株式会社 Forklift
JP2013243108A (en) * 2012-04-23 2013-12-05 Sharp Corp Metal air battery and energy system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505730A (en) * 1992-10-02 1996-06-18 ボルテック・インコーポレイテッド Electrochemical power generator
JP2003036892A (en) * 2001-07-23 2003-02-07 Japan Storage Battery Co Ltd Battery control unit and battery
US20030190500A1 (en) * 2002-04-04 2003-10-09 Smedley Stuart I. Method of and system for determining the remaining energy in a metal fuel cell
JP2013179051A (en) * 2011-08-22 2013-09-09 Nec Corp Secondary battery state notification system, secondary battery state notification method, and secondary battery state notification program
WO2013058035A1 (en) * 2011-10-21 2013-04-25 日産自動車株式会社 Fluid injection-type air battery
WO2013145903A1 (en) * 2012-03-26 2013-10-03 住友重機械工業株式会社 Forklift
JP2013243108A (en) * 2012-04-23 2013-12-05 Sharp Corp Metal air battery and energy system

Also Published As

Publication number Publication date
JPWO2015115479A1 (en) 2017-03-23
JP6333863B2 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
US20230231213A1 (en) Long life sealed alkaline secondary batteries
US9742048B2 (en) Metal-air battery
JP6255423B2 (en) Metal air battery
JP5751589B2 (en) An open-type lithium-air battery using a metal mesh, a metal film, or a sintered body of a metal powder and a solid electrolyte as an air electrode
JP6134108B2 (en) Metal air battery
JP5446392B2 (en) Air battery
US20100196768A1 (en) Electrolyte management in zinc/air systems
JP2013225444A (en) Metal-air battery and energy system
WO2015119041A1 (en) Air electrode and metal air battery
WO2015016101A1 (en) Metal-air battery, metal-electrode recycling method, and electrode manufacturing method
JP5740357B2 (en) Large capacity storage device
JP2013243108A (en) Metal air battery and energy system
JP2015099740A (en) Metal-air cell
AU2014334662C1 (en) Method of operating and conditioning electrochemical cells comprising electrodeposited fuel
JP6263371B2 (en) Metal air battery
EP2001072A2 (en) Powdered Fuel Cell
JP6333863B2 (en) Metal air battery
WO2015019845A1 (en) Metal electrode and metal-air battery
JP2017147068A (en) Chemical cell, active material used in chemical cell, active material generation device, and active material generation method
WO2014175117A1 (en) Metal-air battery
EP3089244A1 (en) Aluminium-manganese oxide electrochemical cell
JP6474725B2 (en) Metal electrode cartridge and metal air battery
JP6259310B2 (en) Zinc electrode, zinc-air battery, and electrodeposition method
WO2014073410A1 (en) Metal-air cell
US20140322564A1 (en) Battery with inert electrodes and method for generating electrical power using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15744010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15744010

Country of ref document: EP

Kind code of ref document: A1