WO2015113288A1 - 切换控制方法、装置及无线通信网络 - Google Patents

切换控制方法、装置及无线通信网络 Download PDF

Info

Publication number
WO2015113288A1
WO2015113288A1 PCT/CN2014/071818 CN2014071818W WO2015113288A1 WO 2015113288 A1 WO2015113288 A1 WO 2015113288A1 CN 2014071818 W CN2014071818 W CN 2014071818W WO 2015113288 A1 WO2015113288 A1 WO 2015113288A1
Authority
WO
WIPO (PCT)
Prior art keywords
path switching
information
destination
path
network element
Prior art date
Application number
PCT/CN2014/071818
Other languages
English (en)
French (fr)
Inventor
谭巍
彭程晖
张伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/071818 priority Critical patent/WO2015113288A1/zh
Priority to CN201480044162.3A priority patent/CN105474692B/zh
Priority to EP14881164.9A priority patent/EP3091783B1/en
Publication of WO2015113288A1 publication Critical patent/WO2015113288A1/zh
Priority to US15/222,257 priority patent/US10412640B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a handover control method, apparatus, and wireless communication network. Background technique
  • MME Mobility Management Entity
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • eNB Evolved Node B
  • Embodiments of the present invention provide a handover control method, apparatus, and wireless communication network, so as to implement decoupling between a control plane function and a user plane function of each device in a wireless communication network, and can freely expand a user plane function when system performance is insufficient.
  • the embodiment of the invention provides a handover control method, including:
  • the path switching request confirmation information is sent to the destination RN.
  • the switching control method, device and wireless communication network of the embodiment of the present invention are adopted in the switching system
  • the functions of each device are decoupled, split into control plane function modules and user plane function modules, and the MME of the existing switching system is merged with the control plane function modules of the SGW and the PGW, and the user plane function modules of the SGW and the PGW are fine-grained.
  • After being split, it is deployed in the form of a function node, and the form control function node that centrally controls the following rules of the network element provides services to the RN and the UE, and realizes the function of the switching system independently.
  • the centralized control unit can flexibly increase or decrease the function node, and solves the problem.
  • the multiple functions of each device are mutually constrained, resulting in the problem that they cannot be freely expanded when the system performance is insufficient.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of a wireless communication network according to the present invention.
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a wireless communication network according to the present invention.
  • Embodiment 3 is a schematic structural diagram of Embodiment 3 of a wireless communication network according to the present invention.
  • Embodiment 4 is a flowchart of Embodiment 1 of a handover control method according to the present invention.
  • FIG. 5 is a flowchart of Embodiment 2 of a handover control method according to the present invention.
  • Embodiment 6 is a flowchart of Embodiment 3 of a handover control method according to the present invention.
  • Embodiment 7 is a flowchart of Embodiment 4 of a handover control method according to the present invention.
  • Embodiment 8 is a flowchart of Embodiment 5 of a handover control method according to the present invention.
  • Embodiment 6 of a handover control method according to the present invention is a flowchart of Embodiment 6 of a handover control method according to the present invention.
  • Embodiment 1 of an SNC according to the present invention is a schematic structural diagram of Embodiment 1 of an SNC according to the present invention.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of an SNC according to the present invention.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of a SNC according to the present invention.
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a wireless communication network according to the present invention. detailed description
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • MME packet core Mobility Management Entity
  • SGW Serving Gateway
  • EPC Packet Data Node Gateway
  • the PGW assumes user signaling control and data path switching during handover.
  • the user equipment User Equipment, hereinafter referred to as the UE
  • the switching anchor point may be an SGW or a PGW.
  • the handover process the user signaling and the data are exchanged between the source base station and the destination base station, and the handover delay is small.
  • the target base station After the UE accesses the target base station, the target base station notifies the MME to perform path switching, and the process MME does not change.
  • the SGW completes the uplink and downlink data tunnel switching and possible indirect data forwarding during the handover process.
  • the difference between the second method and the first method is that the MME does not change the MME after the UE accesses the target base station, but the MME determines that the SGW needs to be reselected, and the network interconnection protocol exists between the destination SGW and the destination base station. (Internet Protocol, hereinafter referred to as IP) connection.
  • IP Internet Protocol
  • the destination SGW initiates a bearer change request to the PGW, and the PGW functions as a handover anchor to complete the user plane route redirection.
  • the original uplink and downlink data paths are all switched, and the signaling overhead is greatly increased during the handover process.
  • the source base station and the destination Both data transmission between base stations and data path reconstruction increase the delay of UE handover.
  • the source base station and the destination base station perform data forwarding through the SGW, and the original MME and the SGW perform MME and SGW reselection, and the destination SGW initiates a bearer change request to the PGW, and the PGW functions as a handover anchor to implement intra-LTE system handover.
  • the uplink and downlink data routing redirection of the user plane is completed, and the original uplink and downlink data paths are all switched.
  • the difference between the third method and the second method is that the method 3 also involves the MME reselection, so the signaling overhead is greater in the handover process.
  • the data transmission between the source base station and the destination base station and the data path reconstruction increase the delay of the UE handover more.
  • the present invention changes the configuration of the handover system including the base station, the MME, the SGW, and the PGW, and performs functional division on each network device to combine the functions of the MME with the control planes of the SGW and the PGW.
  • the user plane function is implemented separately, which changes the architecture of the switching system and also changes the UE switching process.
  • the system in this embodiment includes: a source air interface node (Radio Node, hereinafter referred to as RN) 11 and a destination RN 12, in addition,
  • the method includes: a centralized network element (SNC) for performing a control management function, an ingress network element 14 for performing path switching rule matching, and a function node network for performing user plane functions (Function Nodes) Network, hereinafter referred to as FNN), the FNN includes at least one function node (Function Node, FN for short) 15;
  • the ingress network element 14 is connected to the SNC 13, the FN 15 is connected to the SNC 13, and the ingress network element 14 is connected to the FN 15;
  • the SNC 13 is used for Adding or reducing the ingress network element according to the load condition of the ingress network element, and increasing or decreasing the FN according to the load condition of the FN;
  • the ingress network is used for Adding or reducing the ingress network element according to the load condition of the ingress network element, and increasing
  • the network elements such as the SGW and the PGW in the existing network are decoupled and split into a control plane function module and a user plane function module, and the control plane function modules in the SGW and the PGW are merged with the MME to form the SNC13.
  • the user plane function module can be fine-grained according to the functional granularity, and split into more single functional modules, which are deployed in the FNN, and each functional module is correspondingly implemented by at least one FN15, and the SNC 13 can be based on the load condition of the FN15. Increase or decrease without being limited by other functions.
  • FN15 can not only realize data forwarding of routers or switches, but also data processing.
  • each FN is limited by data processing capabilities, such as computing power, storage space, and bandwidth.
  • FN can be directly connected.
  • the data may be forwarded through an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the data forwarding in the IP network may be in the form of a Software Defined Network (SDN) or a traditional autonomous method. This embodiment does not specifically limit this.
  • the ingress network element 14 performs data forwarding between the SNC 13 and the FN 15 , receives the path switching rule delivered by the SNC 13 , performs rule matching, and distributes the path switching rule to the FN 15 , FN 15 .
  • a connection is established with the destination RN 12 according to the path switching rule to provide the UE with the data path and data processing after the handover.
  • the path switching rule may have the same processing policy or different processing policies.
  • the SNC 13 needs to be pre-configured or delivered one by one.
  • the pre-configuration mode needs to have a processing policy indication in the packet header, if each There are specific parameters in the secondary path switching rules, and the SNC 13 can only be delivered one by one.
  • the FN 15 integrates the user plane functions of the SGW and the PGW in the existing system, and can provide data services for the source RN 11 and the destination RN 12.
  • the SNC 13 determines the FN serving the destination RN 12
  • the handover is avoided as much as possible. If the FN serving the source RN continues to be available, the FN is still determined to be the destination RN service. Therefore, although the UE accesses the destination RN, the data path is still served by the original FN.
  • User context forwarding is required, and a large number of signaling interactions for path switching are not required, which greatly shortens the delay of UE handover and improves handover reliability.
  • the SNC 13 integrates the MME and the SGW, and the control planes in the PGW can centrally implement the control function of the UE handover process, including collecting the status of each FN through the interface with the FN, receiving the request of each FN, and issuing a command to each FN.
  • the interface between the RN and the RN is used to collect the status of each RN, receive the request of each RN, and issue a command to adjust the configuration of each RN; and send the rule through the interface with the ingress network element 14 to receive the ingress network element 14 Feedback.
  • the function of each device in the switching system is decoupled and split into a control plane function module and a user plane function module, and the MME of the existing switching system is merged with the control plane function modules of the SGW and the PGW, and the SGW is merged.
  • the PGW user plane function module is fine-grained and split, and then deployed in the form of function nodes.
  • the centralized control network node sends the service to the RN and the UE in the form of the following rules.
  • the function of the switching system is independent, and the centralized control unit can be flexible.
  • the function node is added or reduced, which solves the problem of mutual restriction between multiple functions of each device, and cannot be freely expanded when the system performance is insufficient.
  • the ingress network element 14 includes at least two ingress network elements, for example,
  • the switching system further includes: a rule distribution network element 21, wherein the rule distribution network element 21 is connected to the SNC 13 and the ingress network element 14a and the ingress network element 14b, and the rule distribution network The element 21 is configured to load balance the at least two ingress network elements 14 and send the path switching rule to the ingress network element 14.
  • the rule distribution network element 21 performs load balancing on the ingress network element 14a and the ingress network element 14b. , and send the path switch rule to the portal Network element 14a or ingress network element 14b.
  • the SNC 13 will issue a large number of path switching rules. Only one ingress network element 14 may handle these rules.
  • the switching system may include two or more.
  • the ingress network element processes the matching and forwarding of the path switching rule.
  • the switching system further includes a rule distribution network element 21, and the rule distribution network element 21 is mainly responsible for load balancing of two or more ingress network elements to avoid occurrence.
  • some ingress NEs need to handle the matching and forwarding of many path switching rules, which are in an overload state, and some ingress NEs have not received the path switching rules delivered by SNC13, and are in idle state. .
  • the path switching rule sent by the SNC 13 is first received by the rule distribution network element 21, and the rule distribution network element 21 forwards the path switching rule to the ingress network element 14a or the ingress network element 14b according to the forwarding rule, and the rule distribution network element
  • the specific forwarding rule may be that the forwarding object is determined by using the priority algorithm, and the forwarding object is determined according to the load information sent by the received ingress network element, which is not specifically limited in this embodiment.
  • the load distribution network element of the switching system implements load balancing in multiple ingress network elements, and solves the problem that the entry network element is prone to failure due to overload work.
  • FIG. 3 is a schematic structural diagram of Embodiment 3 of a wireless communication network according to the present invention.
  • the method further includes: a network address translation network element 31, a network address translation network.
  • the element 31 is connected to the SNC 13, and the network address translation network element 31 is used to provide an interface between different domain networks.
  • connection of multiple different domain networks is implemented by switching network address translation network elements in the system.
  • Embodiment 1 of a handover control method according to the present invention. As shown in FIG. 4, the method in this embodiment may include:
  • Step 101 Receive a path switch request sent by the air interface node RN, and obtain, according to the path switch request, user equipment UE information, an identifier of the source RN, and an identifier of the destination RN.
  • the executor of the embodiment may be an SNC, and the SNC receives the path switching request sent by the air interface node RN, and acquires the user equipment UE information, the identifier of the source RN, and the identifier of the destination RN according to the path switching request.
  • the mobile terminal triggers the handover, and the base station starts the handover procedure after receiving the handover event measurement report information of the UE, and the UE completes the UE attach procedure after accessing the destination RN, but the data path of the UE is still The path associated with the source RN before switching, this It is necessary to switch the data path of the UE.
  • the SNC receives the path switch request sent by the RN, and the path switch request may be sent by the destination RN to the SNC.
  • the path switch request may be sent by the source RN to the SNC.
  • the SNC can learn that the UE has switched to the destination RN according to the path switch request, and the SNC can also obtain the UE information, the identifier of the source RN that the UE previously accesses, and the current access of the UE. The identity of the destination RN.
  • Step 102 Determine, according to the UE information, the identifier of the source RN, and the identifier of the destination RN, a function node FN that provides a service for the destination RN, and generate a path switching rule according to the FN.
  • the SNC may obtain the information of the FN that is served by the source RN according to the information of the UE, the identifier of the source RN, and the identifier of the destination RN, and determine the FN that serves the destination RN by using the FN handover as much as possible. Specifically, the SNC obtains information about the current working status, resource usage, and the like of the FN serving the source RN. If the FN continues to be available, the SNC determines that the FN continues to provide services for the destination RN. If the FN is unavailable, Then, the SNC selects other FNs to provide services for the destination RN. The selection principle may be that the data path composed of the reselected FNs minimizes the probability of subsequent handovers.
  • the SNC After determining the FN that is served by the destination RN, the SNC generates a path switching rule according to the FN, where the path switching rule may include information about the service FN determined by the SNC for the destination RN, and may also include data path information after the UE is switched. This example does not specifically limit this.
  • Step 103 Send the path switching rule to the ingress network element, so that the ingress network element adds the FN to the function node on the data path of the UE according to the path switching rule, and updates the locally saved Path information of data of the UE;
  • the SNC sends the generated path switching rule to the ingress network element, so that the ingress network element adds the FN determined in step 102 to the function node according to the path switching rule, and the path switch generated by the SNC is used.
  • the rule is matched by the ingress network element, and the ingress network element obtains the information of the FN that serves the destination RN from the path switching rule, and adds the FN to the function node in the data path of the UE, that is, the ingress network element according to the path switching rule
  • the FN is configured to notify the FN as a serving service of the destination RN.
  • the SNC updates the locally saved UE data path information while sending the path switching rule to the ingress network element.
  • the previously saved data path information that the UE accesses to the source RN may include the UE information, the identifier of the source RN, and the source RN.
  • Serving the source RN The information of the FN is now updated to the destination RN. If the FN is switched, the information of the FN is further changed. That is, the data path information of the currently updated UE may include the information of the UE, the identifier of the destination RN, and the purpose.
  • the RN provides information about the FN of the service.
  • Step 104 Send path switch request confirmation information to the destination RN.
  • the SNC sends the path switching request acknowledgement information to the destination RN, that is, the SNC sends the path switch request acknowledgement information to the destination RN after determining that the data path handover of the UE is completed, and notifies the destination RN that the handover procedure has been completed, so that the destination RN Perform the next steps.
  • the SNC determines, according to the path switching request sent by the RN, the FN that serves the destination RN according to the principle of not performing the FN handover, and generates the path switching rule according to the FN to implement the data path of the UE.
  • the path switching rule is switched from the source RN to the destination RN. The entire path switching process avoids FN reselection as much as possible, and solves the problem of large signaling overhead and prolonged handover during the existing handover process.
  • step 102 of the foregoing embodiment determining, according to the UE information, the identifier of the source RN, and the identifier of the destination RN, the function node FN that provides the service for the destination RN, and generating a path switching rule according to the FN.
  • the specific implementation method may be: acquiring, according to the information about the UE, the identifier of the source RN, and the identifier of the destination RN, the first FN that provides the service for the source RN; determining the first according to the load status of the first FN.
  • the SNC obtains the FN that provides the service for the source RN according to the information of the UE, the identifier of the source RN, and the identifier of the destination RN, and determines whether the FN can continue to provide services for the destination RN according to the load condition of the FN, FN.
  • the load condition may be that the SNC learns whether the FN is in an overloaded working state according to the running condition of the processor of the FN, and may also learn whether the FN is in an overloaded working state according to the resource usage of the FN. This is not specifically limited. If the FN serving the source RN continues to be available, the SNC determines that the FN continues to provide services for the destination RN, and generates a first path switching rule according to the FN, where the content of the first path switching rule is processed by using the same FN. The data stream of the destination RN.
  • the path switching rule is sent to the ingress network element, so that the ingress network element adds the FN to the data path of the UE according to the path switching rule.
  • a node and updating the path information of the locally saved data of the UE, where the method may be: sending the first path switching rule to the ingress network element, so that the The port network element adds the first FN to the function node on the data path of the UE according to the first path switching rule, and updates path information of the locally saved data of the UE.
  • the SNC sends the first path switching rule to the ingress network element, so that the ingress network element adds the FN serving as the source RN to the function node on the data path of the UE according to the first path switching rule, and the SNC
  • the path information of the data of the locally saved UE is updated, the identifier of the source RN is updated to the identifier of the destination RN, and the information of the FN providing the service is unchanged.
  • step 102 if the first FN is unavailable, acquiring an associated RN adjacent to the target RN, and according to the FN serving the associated RN a load status, selecting a second FN serving the destination RN, and generating a second path switching rule according to the second FN.
  • the SNC determines that the FN can no longer serve the destination RN according to the load condition of the FN that is served by the source RN, and the SNC selects the FN for the destination RN.
  • the selection principle is that the data path composed of the reselected FN is exhausted.
  • the SNC may reduce the probability of subsequent handover.
  • the SNC first obtains the associated RN that is adjacent to the destination RN.
  • the SNC can obtain the RN adjacent to the destination RN according to the topology of the RN, and then obtain the FN and the destination for the associated RN.
  • the RNs that are adjacent to the RN may be multiple. Therefore, the SNC may obtain multiple FNs that provide services for the associated RNs.
  • the SNC selects the FNs that serve the destination RN according to the load status of the FNs.
  • the FN is selected from the FNs, and the current service FN is determined according to the priority algorithm. This embodiment does not specifically limit this.
  • the SNC After determining the FN that serves the destination RN, the SNC generates a second path switching rule according to the FN, where the content of the second path switching rule is that the data flow of the destination RN is processed by using the second FN.
  • the path switching rule is sent to the ingress network element, so that the ingress network element adds the FN to the data path of the UE according to the path switching rule.
  • the specific implementation method may be: sending the second path switching rule to the ingress network element, so that the ingress network element is according to the The second path switching rule adds the second FN to the function node on the data path of the UE, and updates the path information of the locally saved data of the UE.
  • the SNC sends the second path switching rule to the ingress network element, so that the ingress network element adds the reselected FN to the function node on the data path of the UE according to the second path switching rule, and the SNC updates the local
  • the path information of the saved UE data is updated with the identifier of the source RN as the identifier of the destination RN, and the information of the FN providing the service is updated to the information of the reselected FN.
  • the FN that is served by the destination RN is determined by the SNC according to the path switching request sent by the RN, and the FN that provides the service to the destination RN may be the FN that provides the service to the source RN.
  • FIG. 5 is a flowchart of Embodiment 2 of a handover control method according to the present invention.
  • the method of the present embodiment is to re-select the second FN for the destination RN, but the context data of the UE is not saved in the second FN, and the first FN is required to send the context data of the UE to the second FN.
  • Step 103 of the embodiment that is, the sending the second path switching rule to the ingress network element, so that the ingress network element adds the number to the data path of the UE according to the second path switching rule.
  • the SNC initiates the process of sending the context data of the UE to the second FN by the SNC.
  • the method in this embodiment may include:
  • Step 201 Send a context data transmission indication to the first FN, so that the first FN sends the context data of the UE to the second FN.
  • the SNC after the SNC reselects the second FN for the destination RN, and generates the second path switching rule according to the second FN, the SNC initiates the process of sending the context data of the UE by the first FN to the second FN, and the SNC is instructed by the SNC.
  • An FN transmits a context data transmission indication to cause the first FN to transmit context data of the UE to the second FN.
  • Step 202 Receive Context Data Reception Confirmation Information sent by the second FN.
  • the SNC receives the context data reception confirmation information sent by the second FN, where the process occurs when the second FN receives the UE sent by the first FN. After the context data.
  • the first FN sends the context data of the locally saved UE to the second FN according to the context data transmission indication sent by the SNC, where the context data transmission indication may include information of the service FN determined by the SNC for the destination RN, and the second FN receives The SNC is notified after the context data of the UE.
  • Step 203 Send a UE information deletion indication to the first FN, so that the first FN deletes the saved information of the UE according to the UE information deletion indication.
  • the SNC sends a UE information deletion indication to the first F, so that the first F is based on the UE.
  • the information deletion instruction deletes the information of the saved UE.
  • the information of the UE is not saved in the first F, that is, the first F exits the data path of the UE, and the first UE needs to use the first path switch. FN, then need to re-receive the context data of UEs sent by other Fs.
  • the SNC sends the path switching request acknowledgement information to the destination RN
  • the path switching rule configuration completion response sent by the ingress network element is received, and the SNC sends the path switching rule to the ingress network element, and the ingress network element performs the path switching rule.
  • the processing is performed, but the SNC does not know the processing status of the ingress network element. Therefore, after the path switching rule is processed, the ingress network element needs to send a path switching rule configuration completion response to the SNC, and the SNC configures the completion of the response according to the path switching rule. step.
  • the process of the first FN sending the context data of the UE to the second FN may also be initiated by the second FN.
  • the second path switching rule is sent to the ingress network element. After the entry network element adds the second FN to the function node on the data path of the UE according to the second path switching rule, and updates the path information of the locally saved data of the UE, After receiving the second path switching rule sent by the ingress network element, the second FN finds that the context data of the UE is not saved locally, and the second FN sends a context data request message to the SNC.
  • the SNC receives the first a context data request message sent by the second FN; the SNC then sends a context data transmission indication to the first FN according to the context data request message, so that the first FN sends the context data of the UE to the second FN; Steps 202 and 203 are similar, and are not described herein again.
  • the difference between the context data transmission procedure of the UE occurring after the above step 103 and the context data transmission procedure of the UE occurring before step 103 is that the latter is initiated by the SNC, the former being initiated by the second FN.
  • the SNC or the second FN initiates the process of sending the context data of the UE directly to the second FN, and implements the fast transmission of the context data of the UE after the FN is reselected, thereby solving the signaling overhead in the existing handover process. Prolonged problems when switching.
  • FIG. 6 is a flowchart of Embodiment 3 of a handover control method according to the present invention. As shown in FIG. 6, the method in this embodiment may include:
  • the data path does not change, and the FN that previously served the source RN is still used.
  • the specific process is as follows:
  • the UE moves, so that the source RN learns that the UE is about to switch.
  • the location of the UE itself is moved, and the source RN can learn that the UE is about to switch according to the measurement report information of the UE.
  • the source RN initiates a handover procedure, and forwards information of the UE that is buffered at the source RN to the destination RN.
  • the source RN starts the handover procedure of the UE according to the pre-known information, determines the destination RN for the UE, and sends the locally saved information of the UE to the destination RN, where the information of the UE may include the identifier of the UE and the measurement report. Information, context data, etc.
  • the UE accesses the destination RN.
  • the process of the UE accessing the destination RN may be a process similar to the prior art, and may be a newly established process of the switching system according to the present invention, which is not specifically limited herein.
  • the destination RN sends a path switching request to the SNC.
  • the destination RN sends a path switch request to the SNC, and notifies the SNC that the UE has switched to the destination RN, and starts the data path switching process of the UE.
  • the SNC obtains the UE information, the identifier of the source RN, and the identifier of the destination RN.
  • the process in step S505 of the embodiment is similar to the process in step 101 in the first embodiment of the method, and details are not described herein again.
  • the SNC determines that the first FN that provides the service for the source RN continues to provide the service for the destination RB, and generates a first path switching rule according to the first FN.
  • the SNC obtains the information of the first FN that serves the source RN according to the information of the UE, the identifier of the source RN, and the identifier of the destination RN, and determines that the load of the first FN does not exceed the limit according to the load status of the FN. Therefore, the SNC determines that the first FN continues to provide services for the destination RB, and generates a first path switching rule according to the first FN, where the first path switching rule may include the identifier of the destination RN, and the first FN. information.
  • the SNC sends the first path switching rule to the ingress network element, and updates the locally saved Path information of the data of the UE;
  • step S507 in this embodiment is similar to the process of step 103 in the first embodiment of the method, and details are not described herein again.
  • the ingress network element adds a first FN to the data path of the UE.
  • step S508 in this embodiment is similar to the process of step 302 in the third embodiment of the foregoing method, and details are not described herein again.
  • the ingress network element forwards the first path switching rule to the first FN.
  • the ingress network element reply path switching rule configuration completion response is sent to the SNC.
  • the ingress network element after processing the path switching rule sent by the SNC, the ingress network element returns a path switching rule configuration completion response to the SNC, so that the SNC performs the subsequent steps.
  • the SNC sends a path switch request acknowledgement information to the destination RN.
  • step S511 in this embodiment is similar to the process of step 104 in the first embodiment of the method, and details are not described herein again.
  • the destination RN notifies the source RN to release the resources occupied by the UE.
  • the destination RN after completing the path switching of the UE, notifies the source RN to release the resources of the UE, and the source RN exits the data path of the UE, and does not process the data and signaling of the UE.
  • FIG. 7 is a flowchart of Embodiment 4 of a handover control method according to the present invention. As shown in FIG. 7, the method in this embodiment may include:
  • the data path is changed, the FN that previously served the source RN is unavailable, the FN is reselected, and the context information transmission of the UE is triggered by the SNC.
  • the specific process is as follows:
  • the UE moves, so that the source RN learns that the UE is about to switch.
  • the source RN initiates a handover process, and forwards information of the UE buffered to the source RN to the destination.
  • the UE accesses the destination RN.
  • the destination RN sends a path switching request to the SNC.
  • the SNC obtains the UE information, the identifier of the source RN, and the identifier of the destination RN.
  • the SNC learns that the first FN that provides the service for the source RN is not available for use, and the second FN is re-selected to provide the service for the destination RB, and the second path switching rule is generated according to the second FN.
  • the SNC is configured according to the UE information. , the identity of the source RN, and the identity of the destination RN, Obtaining information of the first FN that provides the service for the source RN, and determining that the first FN is in an overload working state according to the load status of the FN, and thus reselecting other FNs to provide services for the destination RN, and the selection principle may be reselection.
  • the data path formed by the FN reduces the probability of subsequent handovers as much as possible.
  • the specific implementation method may be to obtain all FNs that provide services for the associated RNs adjacent to the destination RN, and select one of the FNs according to the load status of the FNs.
  • the destination RN provides the second FN of the service, and generates a second path switching rule according to the second FN.
  • the second path switching rule may include the identifier of the destination RN and the information of the second FN.
  • the SNC sends a context data transmission indication to the first FN.
  • the SNC triggers the context information transmission of the UE, and the SNC sends a context data transmission indication to the first FN, so that the first FN sends the context data of the UE to the second FN, and initiates the context data transmission procedure of the UE.
  • the first FN sends the context data of the UE to the second FN.
  • the second FN After receiving the context data of the UE sent by the first FN, the second FN sends the context data receiving confirmation information to the SNC.
  • the SNC sends a UE information deletion indication to the first FN.
  • the first FN deletes information of the locally saved UE.
  • the SNC sends the second path switching rule to the ingress network element, and updates the path information of the locally saved UE data.
  • the ingress network element adds a second FN to the data path of the UE.
  • the ingress network element forwards the second path switching rule to the second FN.
  • the ingress network element reply path switching rule configuration completion response is sent to the SNC.
  • the SNC sends a path switch request acknowledgement information to the destination RN.
  • the destination RN notifies the source RN to release the resources occupied by the UE.
  • FIG. 8 is a flowchart of Embodiment 5 of a handover control method according to the present invention. As shown in FIG. 8, the method in this embodiment may include:
  • the data path is changed, the FN that previously served the source RN is unavailable, the FN is reselected, and the context information transmission of the UE is triggered by the target function node.
  • S701 The UE moves, so that the source RN learns that the UE is about to switch;
  • the source RN initiates a handover process, and forwards information of the UE buffered to the source RN to the destination. RN;
  • the UE accesses the destination RN.
  • the destination RN sends a path switching request to the SNC.
  • the SNC acquires the UE information, the identifier of the source RN, and the identifier of the destination RN.
  • the SNC learns that the first FN that provides the service for the source RN cannot continue to use, reselects the second FN to provide a service for the destination RB, and generates a second path switching rule according to the second FN.
  • the SNC sends the second path switching rule to the ingress network element, and updates the path information of the data of the locally saved UE.
  • the second path switching rule is sent to the ingress network element. This step is different from the process of the fifth method in the foregoing method.
  • the path switching rule is started, the context information transmission process of the UE is started, and then the second path switching rule is sent to the ingress network element.
  • the ingress network element adds a second FN to the data path of the UE.
  • the ingress network element forwards the second path switching rule to the second FN.
  • the second FN learns that the context data of the UE is not saved locally, and sends a context data request message to the SNC.
  • the second FN triggers the context information transmission of the UE, and the second FN sends a context data request message to the SNC to start the process.
  • This step is different from the process of the fifth method in the foregoing method.
  • the context information transmission of the UE is triggered by the SNC.
  • the SNC sends a context data transmission indication to the first FN.
  • the first FN sends the context data of the UE to the second FN.
  • the second FN After receiving the context data of the UE sent by the first FN, the second FN sends the context data receiving confirmation information to the SNC.
  • the SNC sends a UE information deletion indication to the first FN.
  • the first FN deletes the information of the locally saved UE.
  • the SNC sends a path switch request acknowledgement information to the destination RN.
  • the destination RN notifies the source RN to release the resources occupied by the UE.
  • FIG. 9 is a flowchart of Embodiment 6 of the handover control method of the present invention. As shown in FIG. 9, the method in this embodiment may include:
  • the fast switching algorithm is adopted, and the data path does not change after the UE switches.
  • the FN that previously served the source RN is still used.
  • the specific process is as follows:
  • the UE moves, so that the source RN learns that the UE is about to switch.
  • the source RN sends a second path switching request to the SNC.
  • the fast switching algorithm is adopted, and the SNC monitors the load information of each F in real time, and when the UE is about to switch, the service FN can be determined for the destination RN immediately, and the data transmission between the source RN and the destination RN is shortened. Delay. Specifically, when the source RN learns that the UE is about to switch, the second path switching request is directly sent to the SNC, and the SNC can determine the service FN for the destination RN in advance, which is different from the foregoing method embodiment 4, method embodiment 5, and method embodiment 6. In the above embodiment, the path switching procedure is initiated after the UE has accessed the target RN.
  • the source RN sends the second path switching request to the SNC as soon as the source RN learns that the UE is about to switch, shortening the UE connection.
  • the source RN forwards the information of the UE that is buffered at the source RN to the destination RN.
  • the SNC acquires the UE information, the identifier of the source RN, and the identifier of the destination RN.
  • the SNC determines that the first FN that provides the service for the source RN continues to provide the service for the destination RB, and generates a first path switching rule according to the first FN.
  • the fast handover algorithm is in the foregoing method embodiment. The same applies to the fifth and the sixth embodiment of the method, and is not specifically limited herein.
  • the SNC sends the first path switching rule to the ingress network element, and updates path information of the locally saved UE data.
  • the ingress network element adds a first FN to the data path of the UE.
  • the ingress network element forwards the first path switching rule to the first FN.
  • the ingress network element reply path switching rule configuration completion response is sent to the SNC.
  • the RN After receiving the information of the UE sent by the source RN, the RN sends a first path switch request to the SNC.
  • the destination RN confirms that the UE has accessed the destination RN, and then sends a first path switch request to the SNC, informing the SNC that the UE has switched to the destination RN.
  • the SNC sends a path switch request acknowledgement information to the destination RN.
  • the destination RN notifies the source RN to release the resources occupied by the UE.
  • FIG. 10 is a schematic structural diagram of Embodiment 1 of an SNC according to the present invention.
  • the embodiment is The device may include: a receiving module 11, a rule generating module 12, an updating module 13, and a sending module 14, wherein the receiving module 11 is configured to receive a path switching request sent by the air interface node RN, and acquire the user equipment UE according to the path switching request.
  • the FN is a function node, and updates the path information of the locally saved data of the UE.
  • the sending module 14 is configured to send the path switch request acknowledgement information to the destination RN.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 4, and the principle and the technical effect are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of the SNC of the present invention.
  • the apparatus of this embodiment is based on the apparatus structure shown in FIG. 10.
  • the rule generation module 12 may include: an obtaining unit 121, determining The unit 122 and the first rule generating unit 123, where the acquiring unit 121 is configured to acquire, according to the UE information, the identifier of the source RN, and the identifier of the destination RN, a first FN that provides a service for the source RN; And determining, according to the load status of the first FN, whether the first FN continues to be available.
  • the first rule generating unit 123 is configured to determine, if the determining unit determines that the first FN continues to be available.
  • An FN is a function node that provides a service for the destination RN, and generates a first path switching rule according to the first FN.
  • the updating module 13 is configured to send the first path switching rule to the ingress network element, so that the ingress network element adds the first FN to the data path of the UE according to the first path switching rule. It is a function node, and updates the path information of the locally saved data of the UE.
  • the rule generation module 12 may further include: a second rule generation unit 124, configured to acquire, when the determining unit determines that the first FN is unavailable, And the second RN that serves the destination RN, and generates a second path switching rule according to the second FN, according to the load state of the FN that is served by the RN.
  • the updating module 13 is configured to send the second path switching rule to the ingress network element, so that the ingress network element adds the second FN to the data path of the UE according to the second path switching rule. It is a function node, and updates the path information of the locally saved data of the UE.
  • the device in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 4, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of Embodiment 3 of the SNC according to the present invention.
  • the apparatus of this embodiment is based on the apparatus structure shown in FIG. 11, and further includes: a context processing module 21, the context processing The module 21 is configured to send a context data transmission indication to the first FN, so that the first FN sends the context data of the UE to the second FN, and receive the context data received by the second FN.
  • Acknowledgement information sending a UE information deletion indication to the first FN, so that the first FN deletes the information of the UE that has been saved according to the UE information deletion indication.
  • the context processing module 21 is further configured to receive a context data request message sent by the second FN, and send a context data transmission indication to the first FN according to the context data request message, so that the first FN Sending the context data of the UE to the second FN; receiving the context data receiving acknowledgement information sent by the second FN; sending a UE information deletion indication to the first FN, so that the first FN is according to the The UE information deletion instruction deletes the information of the UE that has been saved.
  • the device in this embodiment can be used to implement the technical solution of the method embodiment shown in FIG. 5.
  • the principle and the technical effect are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of Embodiment 2 of a wireless communication network according to the present invention.
  • the system in this embodiment includes: a source air interface node RN11 and a destination air interface node RN12, and further includes: SNC13, at least one The access network element 14 and the at least one FN15, wherein the ingress network element 14 is connected to the SNC 13, the FN 15 is connected to the SNC 13, and the ingress network element 14 is connected to the FN 15.
  • the SNC 13 can adopt the structure of any of the device embodiments of FIG. 10 to FIG.
  • the technical solution of any of the method embodiments in FIG. 4 to FIG. 5 is implemented, and the implementation principle and the technical effect are similar, and details are not described herein.
  • the ingress network element 14 can adopt any device embodiment of FIG. 16 to FIG.
  • the technical solution of the method embodiment in FIG. 6 can be performed, and the implementation principle and the technical effect are similar, and details are not described herein
  • FN15 can adopt the structure of any device embodiment of FIG. 18 to FIG. 20, corresponding to
  • the technical solution of the method embodiment in FIG. 7 can be performed, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be ignored. Or not.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the method of various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种切换控制方法、装置及无线通信网络。本发明切换控制方法,包括:接收空口节点RN发送的路径切换请求,并根据所述路径切换请求获取用户设备UE信息、源RN的标识以及目的RN的标识;根据所述UE信息、源RN的标识以及目的RN的标识,确定为所述目的RN提供服务的功能节点FN,并根据所述FN生成路径切换规则;将所述路径切换规则发送给入口网元,以使所述入口网元根据所述路径切换规则在所述UE的数据路径上增加所述FN为功能节点,并更新本地已保存的所述UE的数据的路径信息;向目的RN发送路径切换请求确认信息。本发明实施例解决了多个功能之间相互制约,导致当系统性能不足时无法自由扩展的问题。

Description

切换控制方法、 装置及无线通信网络
技术领域
本发明实施例涉及通信技术, 尤其涉及一种切换控制方法、 装置及无线 通信网络。 背景技术
目前, 随着通信技术的发展, 现有的无线通信网络中各个网络设备, 例 如移动管理实体(Mobility Management Entity, 以下简称 MME) 、 服务网关 ( Serving GateWay, 以下简称 SGW )、 公共数据网网关( Public Data Network GateWay, 以下简称 PGW) 、 演进型移动基站 (Evolved Node B, 以下简称 eNB ) 等, 为了适应通信标准的进步, 设备本身集成的功能越来越多。
但是, 各设备的多个功能紧耦合于一体, 相互制约, 当系统性能不足时 无法自由扩展。 发明内容
本发明实施例提供一种切换控制方法、 装置及无线通信网络, 以实现无 线通信网络中各设备的控制面功能和用户面功能解耦合, 当系统性能不足时 可以对用户面功能自由扩展。
本发明实施例提供一种切换控制方法, 包括:
接收空口节点 RN发送的路径切换请求, 并根据所述路径切换请求获取 用户设备 UE信息、 源 RN的标识以及目的 RN的标识;
根据所述 UE信息、 源 RN的标识以及目的 RN的标识, 确定为所述目的 RN提供服务的功能节点 FN, 并根据所述 FN生成路径切换规则;
将所述路径切换规则发送给入口网元, 以使所述入口网元根据所述路径 切换规则在所述 UE的数据路径上增加所述 FN为功能节点, 并更新本地已保 存的所述 UE的数据的路径信息;
向目的 RN发送路径切换请求确认信息。
本发明实施例切换控制方法、 装置及无线通信网络, 通过将切换系统中 的各设备的功能解耦合, 拆分成控制面功能模块和用户面功能模块, 将现有 切换系统的 MME与 SGW、 PGW的控制面功能模块合并, 将 SGW、 PGW的 用户面功能模块细粒度拆分后以功能节点的形式部署, 集中控制网元以下发 规则的形式控制功能节点向 RN及 UE 提供服务, 实现切换系统的功能独 立, 集中控制单元可以灵活地增加或减少功能节点, 解决了各设备的多个功 能之间相互制约, 导致当系统性能不足时无法自由扩展的问题。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明无线通信网络实施例一的结构示意图;
图 2为本发明无线通信网络实施例二的结构示意图;
图 3为本发明无线通信网络实施例三的结构示意图;
图 4为本发明切换控制方法实施例一的流程图;
图 5为本发明切换控制方法实施例二的流程图;
图 6为本发明切换控制方法实施例三的流程图;
图 7为本发明切换控制方法实施例四的流程图;
图 8为本发明切换控制方法实施例五的流程图;
图 9为本发明切换控制方法实施例六的流程图;
图 10为本发明 SNC实施例一的结构示意图;
图 11为本发明 SNC实施例二的结构示意图;
图 12为本发明 SNC实施例三的结构示意图;
图 13为本发明无线通信网络实施例二的结构示意图。 具体实施方式
第三代合作伙伴计划 (The 3rd Generation Partnership Project, 以下简称 3GPP) 长期演进 (Long Term Evolution, 以下简称 LTE) 的协议中, 用户设 备在两个基站之间的切换涉及到网络中的多个网元设备, 尤其是分组核心演 进 (Evolved Packet Core , 以下简称 EPC ) 中的移动管理实体 (Mobility Management Entity, 以下简称 MME)、 服务网关(Serving Gateway, 以下简 称 SGW) 以及分组数据节点网关 (Packet Data Node Gateway, 以下简称
PGW) , 承担了切换过程中的用户信令控制和数据路径切换。 用户设备(User Equipment, 以下简称 UE) 从源基站切换到目的基站, 包括基于 X2口和 S1 口的两种切换方式, 涉及到的切换锚点可以是 SGW, 也可以是 PGW, 下面 举例说明现有的切换实现方式。
方法一: 基于 X2口, SGW不变
切换过程中, 用户信令和数据是在源基站和目的基站之间进行交互的, 切换时延较小, 当 UE接入目的基站之后由目的基站通知 MME进行路径切 换, 该过程 MME不变, SGW作为切换锚点, 完成上下行数据隧道切换以及 切换过程中可能的间接数据转发。
方法二: 基于 X2口, SGW重选
方法二与方法一的区别在于, 当 UE接入目的基站之后由目的基站通知 MME进行路径切换, MME不变, 但是 MME判定认为需要重选 SGW, 目的 SGW和目的基站之间存在网络互连协议(Internet Protocol, 以下简称 IP)连 接。 当切换发生时, 目的 SGW向 PGW发起承载更改请求, PGW作为切换 锚点, 完成用户面路由重定向, 原来的上下行数据路径全部切换, 在切换过 程中信令开销大大增加, 源基站和目的基站之间数据传输以及数据路径重新 构建都增加了 UE切换的时延。
方法三: 基于 S1口
切换过程中, 源基站和目的基站之间通过 SGW进行数据转发, 使用原 有 MME、 SGW进行 MME、 SGW重选, 目的 SGW向 PGW发起承载更改请 求, PGW作为切换锚点, 实现 LTE系统内切换, 完成用户面的上下行数据 路由重定向, 原来的上下行数据路径全部切换, 方法三和方法二的区别在 于, 方法三还涉及到了 MME的重选, 因此在切换过程中信令开销更大, 源 基站和目的基站之间的数据传输以及数据路径重新构建增加的 UE切换的时 延更多。
本发明改变了切换系统包括基站、 MME、 SGW以及 PGW的这种格局, 对各个网络设备进行功能划分, 将 MME 与 SGW、 PGW 的控制面功能合 并, 用户面功能单独实现, 改变了切换系统的架构, 也改变了 UE 切换流 程。
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明无线通信网络实施例一的结构示意图, 如图 1所示, 本实 施例的系统包括: 源空口节点(Radio Node, 以下简称 RN)11和目的 RN12, 除此之外, 还包括: 用于执行控制管理功能的集中控制网元(Single Network Controller, 以下简称 SNC) 13、 用于进行路径切换规则匹配的入口网元 14 以及用于执行用户面功能的功能节点网络 (Function Nodes Network, 以下简 称 FNN), FNN包括至少一个功能节点(Function Node, 以下简称 FN) 15; 入口网元 14与 SNC13连接, FN15与 SNC13连接, 入口网元 14与 FN15连 接; 其中, SNC13 , 用于根据入口网元的负载情况增加或减少入口网元, 根 据 FN的负载情况增加或减少 FN; 入口网元 14, 用于将路径切换规则发送给 对应的 FN, 以使对应的 FN根据路径切换规则向目的 RN提供服务。
本实施例中, 将现有网络中的 SGW、 PGW等网元解耦, 拆分成控制面 功能模块和用户面功能模块, 将 SGW、 PGW 中的控制面功能模块与 MME 合并, 形成 SNC13 , 进一步可以把用户面功能模块按照功能粒度进行细粒度 划分, 拆分成更单一的功能模块, 部署在 FNN 中, 每一个功能模块对应由 至少一个 FN15实现, SNC13可以根据 FN15的负载情况, 对其进行增加或 者减少, 而不必受到其它功能的限制。 FN15 不仅可以实现路由器或交换机 的数据转发, 还可以进行数据处理, 每个 FN 的性能都受到数据处理能力, 例如计算能力、 存储空间, 以及带宽等的限制, FN 之间可以是直接连接, 也可以是经过一个网络互连协议(Internet Protocol, 以下简称 IP)网络连接, IP网络内部的数据转发可以使用软件定义网络 (Software Defined Network, 以下简称 SDN) 的方式, 也可以使用传统的自治方式, 本实施例对此不作具 体限定。 入口网元 14在 SNC13和 FN15之间进行数据转发, 接收 SNC13下 发的路径切换规则, 进行规则匹配, 再将路径切换规则分发给 FN15, FN15 根据该路径切换规则与目的 RN12建立连接, 为 UE提供切换后的数据路径 及数据处理。 该路径切换规则可以有相同的处理策略, 也可以有不同的处理 策略, 针对不同的处理策略, 需要 SNC13预先配置或者逐条下发, 其中预先 配置方式需要在数据包头带有处理策略指示, 如果每次路径切换规则中都有 特定参数, 则 SNC13只能够逐条下发。
本实施例中, FN15集成了现有系统中的 SGW、 PGW的用户面功能, 可 以为源 RN11以及目的 RN12提供数据服务, SNC13在确定为目的 RN12提 供服务的 FN时, 尽可能避免切换, 例如可以是如果为源 RN提供服务的 FN 继续可用, 则仍然确定该 FN为目的 RN服务, 这样一来 UE虽然发生了切换 接入目的 RN, 但是其数据路径仍然是由原来的 FN提供服务, 不需要用户上 下文的转发, 也不需要大量用于路径切换的信令交互, 大大缩短 UE切换的 时延, 提高切换可靠性。 SNC13集成了 MME和 SGW、 PGW中的控制面功 會^ 可以集中实现 UE切换过程的控制功能, 其中包括通过与 FN的接口收集 各个 FN的状态、 接收各个 FN的请求、 下发命令至各个 FN; 通过与 RN之 间的接口, 收集各 RN的状态、 接收各 RN的请求、 下发调整各 RN配置的命 令; 通过与入口网元 14之间的接口下发规则, 接收入口网元 14的反馈。
本实施例, 通过将切换系统中的各设备的功能解耦合, 拆分成控制面功 能模块和用户面功能模块, 将现有切换系统的 MME与 SGW、 PGW的控制 面功能模块合并, 将 SGW、 PGW的用户面功能模块细粒度拆分后以功能节 点的形式部署, 集中控制网元以下发规则的形式控制功能节点向 RN及 UE 提供服务, 实现切换系统的功能独立, 集中控制单元可以灵活地增加或减少 功能节点, 解决了各设备的多个功能之间的相互制约, 当系统性能不足时无 法自由扩展的问题。
图 2为本发明无线通信网络实施例二的结构示意图, 如图 2所示, 在图 1所示的切换系统结构基础上, 进一步的, 入口网元 14包括至少两个入口网 元, 例如可以是两个, 入口网元 14a和入口网元 14b, 则切换系统还包括: 规则分发网元 21, 其中, 规则分发网元 21与 SNC13以及入口网元 14a、 入 口网元 14b连接, 规则分发网元 21用于对至少两个入口网元 14进行负载均 衡, 并将路径切换规则发送给入口网元 14, 本实施例中规则分发网元 21对 入口网元 14a、 入口网元 14b进行负载均衡, 并将路径切换规则发送给入口 网元 14a或入口网元 14b。
如果切换系统需要处理的大量的 UE切换业务, SNC13会下发大量的路 径切换规则, 这时只有一个入口网元 14 可能对这些规则处理不过来, 切换 系统中可以包括两个或两个以上的入口网元处理路径切换规则的匹配和转 发, 这种情况下, 切换系统还包括规则分发网元 21, 规则分发网元 21主要 负责两个或两个以上的入口网元的负载均衡, 避免出现有多个入口网元时, 有的入口网元需要处理很多路径切换规则的匹配和转发, 处于超负荷状态, 而有的入口网元一直没有收到 SNC13下发的路径切换规则, 处于空闲状态。 本实施例中, SNC13下发的路径切换规则先由规则分发网元 21接收, 规则 分发网元 21根据转发规则将该路径切换规则转发给入口网元 14a或入口网元 14b, 规则分发网元 21 具体的转发规则可以是采用优先级算法确定转发对 象, 还可以是根据接收的入口网元发送的负载信息确定转发对象, 本实施例 对此不作具体限定。
本实施例, 通过切换系统的规则分发网元在多个入口网元中实现负载均 衡, 解决入口网元由于超负荷工作容易出现故障的问题。
图 3为本发明无线通信网络实施例三的结构示意图, 如图 3所示, 在图 1所示的切换系统结构基础上, 进一步的, 还包括: 网络地址转换网元 31, 网络地址转换网元 31与 SNC13连接, 该网络地址转换网元 31用于提供不同 域网络之间的接口。
本实施例, 通过切换系统中的网络地址转换网元实现多个不同域网络的 连接。
图 4为本发明切换控制方法实施例一的流程图, 如图 4所示, 本实施例 的方法可以包括:
步骤 101、 接收空口节点 RN发送的路径切换请求, 并根据所述路径切 换请求获取用户设备 UE信息、 源 RN的标识以及目的 RN的标识;
本实施例的执行主体可以是 SNC, SNC接收空口节点 RN发送的路径切 换请求, 并根据所述路径切换请求获取用户设备 UE信息、 源 RN的标识以 及目的 RN的标识。 和现有技术相同, UE的移动触发切换, 基站收到 UE的 切换事件测量上报信息后即启动切换流程, UE在接入目的 RN之后完成 UE 的附着流程, 但此时 UE的数据路径仍然是切换前与源 RN相关的路径, 此 时需要对 UE的数据路径进行切换。
本实施例中, SNC接收 RN发送的路径切换请求, 该路径切换请求可以 是目的 RN发送给 SNC的, 当切换过程为快速切换时, 该路径切换请求可以 是源 RN向 SNC发送的。 SNC收到 RN发送的路径切换请求后, 根据该路径 切换请求可以获知 UE已经切换到目的 RN, 同时 SNC还可以获取到 UE信 息, UE先前接入的源 RN的标识, 以及 UE当前接入的目的 RN的标识。
步骤 102、 根据所述 UE信息、 源 RN的标识以及目的 RN的标识, 确定 为所述目的 RN提供服务的功能节点 FN, 并根据所述 FN生成路径切换规 则;
本实施例中, SNC根据 UE信息、 源 RN的标识以及目的 RN的标识, 可以获取到为源 RN服务的 FN的信息, 以尽可能不做 FN切换为原则确定为 目的 RN提供服务的 FN, 具体的做法可以是, SNC获取为源 RN提供服务的 FN的当前工作状态、 资源使用情况等信息, 如果该 FN继续可用, 则 SNC 确定该 FN继续为目的 RN提供服务, 如果该 FN不可用, 则 SNC选择其他 FN为目的 RN提供服务, 选择原则可以是重选的 FN组成的数据路径尽可能 降低后续发生切换的概率。 SNC确定为目的 RN提供服务的 FN后, 根据该 FN生成路径切换规则, 该路径切换规则中可以包括 SNC为目的 RN确定的 服务 FN的信息, 还可以包括 UE切换后的数据路径信息, 本实施例对此不做 具体限定。
步骤 103、 将所述路径切换规则发送给入口网元, 以使所述入口网元根 据所述路径切换规则在所述 UE的数据路径上增加所述 FN为功能节点, 并更 新本地已保存的所述 UE的数据的路径信息;
本实施例中, SNC将生成的路径切换规则发送给入口网元, 以使入口网 元根据该路径切换规则在 UE的数据路径上增加步骤 102中确定的 FN为功能 节点, SNC生成的路径切换规则由入口网元进行匹配处理, 入口网元从该路 径切换规则中获取为目的 RN提供服务的 FN的信息, 在 UE的数据路径上增 加该 FN为功能节点, 即入口网元根据路径切换规则配置该 FN, 通知该 FN 作为目的 RN的提供服务。 SNC在向入口网元发送路径切换规则的同时, 更 新本地已经保存的 UE数据路径信息, 先前已经保存的是 UE接入到源 RN中 的数据路径信息, 可以包括 UE信息、 源 RN的标识以及为源 RN提供服务的 FN的信息, 现在是将源 RN更新为目的 RN, 如果 FN发生了切换, 还要更 行 FN的信息, 即当前更新的 UE的数据路径信息中可以包括 UE信息、 目的 RN的标识以及为目的 RN提供服务的 FN的信息。
步骤 104、 向目的 RN发送路径切换请求确认信息。
本实施例中, SNC向目的 RN发送路径切换请求确认信息, 即 SNC在确 定 UE的数据路径切换完成后向目的 RN发送路径切换请求确认信息, 通知 目的 RN该切换过程已经完成, 以使目的 RN执行后续的步骤。
本实施例, 通过 SNC根据 RN发送的路径切换请求, 以尽可能不做 FN 切换为原则确定为目的 RN提供服务的 FN, 并根据该 FN生成路径切换规 贝 I」, 实现 UE的数据路径根据该路径切换规则发生从源 RN向目的 RN的切 换, 整个路径切换过程尽量避免 FN 重选, 解决现有切换过程中信令开销 大, 切换时延长的问题。
进一步的, 在上述实施例的步骤 102中, 根据所述 UE信息、 源 RN的 标识以及目的 RN的标识, 确定为所述目的 RN提供服务的功能节点 FN, 并 根据所述 FN生成路径切换规则, 具体的实施方法可以是: 根据所述 UE信 息、 源 RN的标识以及目的 RN的标识, 获取为所述源 RN提供服务的第一 FN; 根据所述第一 FN的负载状态确定所述第一 FN是否继续可用; 若是, 则确定所述第一 FN是为所述目的 RN提供服务的功能节点, 并根据所述第一 FN生成第一路径切换规则。 本实施例中, SNC根据 UE信息、 源 RN的标识 以及目的 RN的标识, 获取为源 RN提供服务的 FN, 再根据该 FN的负载情 况确定该 FN是否还可以继续为目的 RN提供服务, FN 的负载情况可以是 SNC根据该 FN的处理器运行情况获知该 FN是否处于超负荷的工作状态, 还可以是根据该 FN的资源使用情况获知该 FN是否处于超负荷的工作状态, 本实施例对此不做具体限定。 如果为源 RN 提供服务的 FN 继续可用, 则 SNC确定该 FN继续为目的 RN提供服务, 并根据该 FN生成第一路径切换规 贝 IJ , 该第一路径切换规则的内容为使用相同的 FN处理目的 RN的数据流。
相应的, 上述实施例的步骤 103中, 将所述路径切换规则发送给入口网 元, 以使所述入口网元根据所述路径切换规则在所述 UE的数据路径上增加 所述 FN为功能节点, 并更新本地已保存的所述 UE的数据的路径信息, 具体 的实施方法可以是: 将所述第一路径切换规则发送给入口网元, 以使所述入 口网元根据所述第一路径切换规则在所述 UE的数据路径上增加所述第一 FN 为功能节点, 并更新本地已保存的所述 UE 的数据的路径信息。 本实施例 中, SNC将第一路径切换规则发送给入口网元, 以使入口网元根据该第一路 径切换规则在 UE的数据路径上增加为源 RN提供服务的 FN为功能节点, 同 时 SNC更新本地已保存的 UE的数据的路径信息, 将源 RN的标识更新为目 的 RN的标识, 提供服务的 FN的信息不变。
进一步的, 在上述实施例的步骤 102的具体实施方法中, 若所述第一 FN 不可用, 则获取与所述目的 RN相邻的关联 RN, 并根据为所述关联 RN提供 服务的 FN的负载状态, 选择为所述目的 RN提供服务的第二 FN, 并根据所 述第二 FN生成第二路径切换规则。 本实施例中, SNC根据为源 RN提供服 务的 FN的负载情况确定该 FN不能再为目的 RN提供服务, 则 SNC为目的 RN重选 FN, 选择的原则是重选的 FN组成的数据路径尽可能降低后续发生 切换的概率, SNC先获取与目的 RN相邻的关联 RN, 根据 RN的拓扑结构 SNC 即可获取到与目的 RN相邻的 RN, 然后获取为关联 RN 提供服务的 FN, 与目的 RN相邻的关联 RN可以是多个, 因此 SNC获取的为关联 RN提 供服务的 FN也可以是多个, SNC根据这些 FN的负载状态, 选择为目的 RN 提供服务的 FN, SNC选择的过程可以是从这些 FN中选择负载最小的 FN, 还可以是根据优先级算法确定当前的服务 FN, 本实施例对此不做具体限 定。 SNC确定出为目的 RN提供服务的 FN后, 根据该 FN生成第二路径切换 规则, 该第二路径切换规则的内容为使用第二 FN处理目的 RN的数据流。
相应的, 上述实施例的步骤 103中, 所述将所述路径切换规则发送给入 口网元, 以使所述入口网元根据所述路径切换规则在所述 UE的数据路径上 增加所述 FN为功能节点, 并更新本地已保存的所述 UE的数据的路径信息, 具体的实施方法可以是: 将所述第二路径切换规则发送给入口网元, 以使所 述入口网元根据所述第二路径切换规则在所述 UE的数据路径上增加所述第 二 FN为功能节点, 并更新本地已保存的所述 UE的数据的路径信息。 本实施 例中, SNC将第二路径切换规则发送给入口网元, 以使入口网元根据该第二 路径切换规则在 UE的数据路径上增加重选的 FN为功能节点, 同时 SNC更 新本地已保存的 UE的数据的路径信息, 将源 RN的标识更新为目的 RN的标 识, 将提供服务的 FN的信息更新为重选的 FN的信息。 本实施例, 通过 SNC根据 RN发送的路径切换请求, 以尽可能不做 FN 切换为原则确定为目的 RN提供服务的 FN, 该为目的 RN提供服务的 FN如 果可以是为源 RN提供服务的 FN, 则尽量不要发生重选, 如果必须要重选 FN, 则考虑重选的 FN组成的数据路径尽可能降低后续发生切换的概率, 确 定 FN 的过程以少发生切换为目的, 解决现有切换过程中信令开销大, 切换 时延长的问题。
图 5为本发明切换控制方法实施例二的流程图, 如图 5所示, 在图 4所 示的方法实施例的基础上, 当步骤 102中 SNC确定为源 RN提供服务的第一 FN不可用, 贝 ij SNC要为目的 RN重选第二 FN, 但是第二 FN中没有保存 UE 的上下文数据, 需要第一 FN将 UE的上下文数据发送给第二 FN, 本实施例 的方法为在上述实施例的步骤 103, 即所述将所述第二路径切换规则发送给 入口网元, 以使所述入口网元根据所述第二路径切换规则在所述 UE的数据 路径上增加所述第二 FN为功能节点, 并更新本地已保存的所述 UE的数据的 路径信息之前, 由 SNC发起第一 FN向第二 FN发送 UE的上下文数据过程, 本实施例的方法可以包括:
步骤 201、 向所述第一 FN发送上下文数据传送指示, 以使所述第一 FN 将所述 UE的上下文数据发送给所述第二 FN;
本实施例中, SNC在为目的 RN重选第二 FN, 并根据该第二 FN生成第 二路径切换规则之后, SNC发起第一 FN向第二 FN发送 UE的上下文数据过 程, 由 SNC向第一 FN发送上下文数据传送指示, 以使第一 FN将 UE的上 下文数据发送给所述第二 FN。
步骤 202、 接收所述第二 FN发送的上下文数据接收确认信息; 本实施例中, SNC接收第二 FN发送的上下文数据接收确认信息, 这个 过程发生在第二 FN接收到第一 FN发送的 UE的上下文数据之后。 第一 FN 根据 SNC发送的上下文数据传送指示后, 将本地保存的 UE的上下文数据发 送给第二 FN, 该上下文数据传送指示中可以包括 SNC为目的 RN确定的服 务 FN的信息, 第二 FN接收到 UE的上下文数据后通知 SNC。
步骤 203、 向所述第一 FN发送 UE信息删除指示, 以使所述第一 FN根 据所述 UE信息删除指示删除已经保存的所述 UE的信息。
本实施例中, SNC向第一 F 发送 UE信息删除指示, 以使第一 F 根据 UE 信息删除指示删除已经保存的 UE的信息, 截止到这个步骤, 第一 F 中不再保 存 UE的信息, 即第一 F 退出 UE的数据路径, 如果后续 UE的路径切换还要 用到该第一 FN, 则需要重新接收其它 F 发送的 UE的上下文数据。
进一步的, SNC向目的 RN发送路径切换请求确认信息之前, 接收所述 入口网元发送的路径切换规则配置完成响应, 由于 SNC将路径切换规则发送 给入口网元, 入口网元对该路径切换规则进行处理, 但是 SNC是不知道入口 网元的处理情况的, 因此需要入口网元在处理完路径切换规则后, 向 SNC发 送路径切换规则配置完成响应, SNC根据该路径切换规则配置完成响应执行 后续步骤。
进一步的, 第一 FN向第二 FN发送 UE的上下文数据过程还可以是由第 二 FN发起的, 在上述实施例的步骤 103, 即所述将所述第二路径切换规则发 送给入口网元, 以使所述入口网元根据所述第二路径切换规则在所述 UE 的 数据路径上增加所述第二 FN为功能节点, 并更新本地已保存的所述 UE的数 据的路径信息之后, 第二 FN接收到入口网元发送的第二路径切换规则后, 发现本地没有保存 UE的上下文数据, 则第二 FN向 SNC发送上下文数据请 求消息, 此时, 在上述步骤 201之前, SNC接收第二 FN发送的上下文数据 请求消息; 然后 SNC根据该上下文数据请求消息向第一 FN发送上下文数据 传送指示, 以使第一 FN将 UE的上下文数据发送给所述第二 FN; 后面的步 骤和上述步骤 202、 203类似, 此处不再赘述。 发生在上述步骤 103之后的 UE的上下文数据传送过程和上发生在步骤 103之前的 UE的上下文数据传送 过程的区别在于, 后者是由 SNC发起的, 前者是由第二 FN发起的。
本实施例, 通过 SNC或第二 FN发起第一 FN直接向第二 FN发送 UE的 上下文数据过程, 实现重选 FN后 UE的上下文数据的快速传送, 解决现有切 换过程中信令开销大, 切换时延长的问题。
进一步的, UE 的路径切换过程通常情况下, SNC收到的路径切换请求 来自目的 RN, 但是在快速切换流程中, SNC 收到的路径切换请求来自源 RN, 在这种情况下, SNC在路径切换初始时接收源 RN发送的第二路径切换 请求, 并根据第二路径切换请求获取用户设备 UE信息、 源 RN的标识以及 目的 RN的标识, 根据上述信息执行后续步骤, 在 SNC向目的 RN发送路径 切换请求确认信息之前, 还要接收目的 RN发送的第一路径切换请求。 下面采用几个具体的实施例, 对上述方法实施例的技术方案进行详细说明。 图 6为本发明切换控制方法实施例三的流程图, 如图 6所示, 本实施例 的方法可以包括:
本实施例中, UE发生切换后数据路径没有改变, 仍然使用之前为源 RN 提供服务的 FN。 具体流程如下:
5501、 UE移动, 使得源 RN获知 UE即将发生切换;
本实施例中, UE自身的位置移动, 源 RN根据 UE的测量上报信息可以 获知该 UE即将发生切换。
5502、 源 RN启动切换流程, 将缓存在源 RN的该 UE的信息转发给目的 RN;
本实施例中, 源 RN根据预知的信息启动该 UE的切换流程, 为 UE确定 目的 RN, 并将本地保存的该 UE的信息发送给目的 RN, 其中 UE的信息可 以包括 UE的标识、 测量上报信息、 上下文数据等。
5503、 UE接入目的 RN;
本实施例中, UE接入目的 RN的过程可以是和现有技术类似的流程, 还 可以是其它根据本发明的切换系统新建立的流程, 此处不做具体限定。
5504、 目的 RN发送路径切换请求给 SNC;
本实施例中, 目的 RN通过发送路径切换请求给 SNC, 通知 SNC该 UE 已经切换到该目的 RN, 启动 UE的数据路径切换过程。
S505、 SNC获取 UE信息、 源 RN的标识以及目的 RN的标识; 本实施例步骤 S505的过程和上述方法实施例一的步骤 101的过程类似, 此处不再赘述。
S506、 SNC确定为源 RN提供服务的第一 FN继续为目的 RB提供服务, 并根据该第一 FN生成第一路径切换规则;
本实施例中, SNC根据 UE信息、 源 RN的标识以及目的 RN的标识, 获取为源 RN提供服务的第一 FN的信息, 并根据该 FN的负载状态确定该第 一 FN的负载没有超出限额, 因此继续可用, 则 SNC确定该第一 FN继续为 目的 RB提供服务, 并根据该第一 FN生成第一路径切换规则, 该第一路径切 换规则中可以包括目的 RN的标识、 第一 FN的信息。
S507、 SNC将第一路径切换规则发送给入口网元, 并更新本地已保存的 UE的数据的路径信息;
本实施例步骤 S507的过程和上述方法实施例一的步骤 103的过程类似, 此处不再赘述。
5508、 入口网元在 UE的数据路径上增加第一 FN;
本实施例步骤 S508的过程和上述方法实施例三的步骤 302的过程类似, 此处不再赘述。
5509、 入口网元向第一 FN转发第一路径切换规则;
5510、 入口网元回复路径切换规则配置完成响应给 SNC;
本实施例中, 入口网元在处理完 SNC下发的路径切换规则后, 向 SNC 回复路径切换规则配置完成响应, 以使 SNC执行后续步骤。
5511、 SNC向目的 RN发送路径切换请求确认信息;
本实施例步骤 S511的过程和上述方法实施例一的步骤 104的过程类似, 此处不再赘述。
5512、 目的 RN通知源 RN释放该 UE所占用的资源。
本实施例中, 目的 RN在完成 UE的路径切换后, 通知源 RN释放该 UE 的资源, 至此源 RN退出该 UE的数据路径, 不再处理该 UE的数据和信令。
图 7为本发明切换控制方法实施例四的流程图, 如图 7所示, 本实施例 的方法可以包括:
本实施例中, UE发生切换后数据路径发生改变, 之前为源 RN提供服务 的 FN不可用, 重选 FN, 并且由 SNC触发 UE的上下文信息传送。 具体流程 如下:
5601、 UE移动, 使得源 RN获知 UE即将发生切换;
5602、 源 RN启动切换流程, 将缓存在源 RN的该 UE的信息转发给目的
RN;
S603、 UE接入目的 RN;
5604、 目的 RN发送路径切换请求给 SNC;
5605、 SNC获取 UE信息、 源 RN的标识以及目的 RN的标识;
5606、 SNC获知为源 RN提供服务的第一 FN不可继续使用, 重新选择 第二 FN为目的 RB提供服务, 并根据该第二 FN生成第二路径切换规则; 本实施例中, SNC根据 UE信息、 源 RN的标识以及目的 RN的标识, 获取为源 RN提供服务的第一 FN的信息, 并根据该 FN的负载状态确定该第 一 FN处于超负荷工作状态, 因此重新选择其他的 FN为目的 RN提供服务, 选择原则可以是重选的 FN 组成的数据路径尽可能降低后续发生切换的概 率, 具体的实施方法可以是获取所有为与目的 RN相邻的关联 RN提供服务 的 FN, 根据这些 FN的负载状态, 选择其中的一个 FN作为为目的 RN提供 服务的第二 FN, 并根据该第二 FN生成第二路径切换规则, 该第二路径切换 规则中可以包括目的 RN的标识、 第二 FN的信息。
5607、 SNC向第一 FN发送上下文数据传送指示;
本实施例中, 由 SNC触发 UE的上下文信息传送, SNC向第一 FN发送 上下文数据传送指示, 以使第一 FN将 UE的上下文数据发送给第二 FN, 启 动 UE的上下文数据传送流程。
5608、 第一 FN向第二 FN发送 UE的上下文数据;
5609、 第二 FN接收完第一 FN发送的 UE的上下文数据后, 向 SNC发 送上下文数据接收确认信息;
S610、 SNC向第一 FN发送 UE信息删除指示;
5611、 第一 FN删除本地保存的 UE的信息;
5612、 SNC将第二路径切换规则发送给入口网元, 并更新本地已保存的 UE的数据的路径信息;
5613、 入口网元在 UE的数据路径上增加第二 FN;
S614、 入口网元向第二 FN转发第二路径切换规则;
5615、 入口网元回复路径切换规则配置完成响应给 SNC;
5616、 SNC向目的 RN发送路径切换请求确认信息;
5617、 目的 RN通知源 RN释放该 UE所占用的资源。
图 8为本发明切换控制方法实施例五的流程图, 如图 8所示, 本实施例 的方法可以包括:
本实施例中, UE发生切换后数据路径发生改变, 之前为源 RN提供服务 的 FN不可用, 重选 FN, 并且由目标功能节点触发 UE的上下文信息传送。 具体流程如下:
S701、 UE移动, 使得源 RN获知 UE即将发生切换;
S702、 源 RN启动切换流程, 将缓存在源 RN的该 UE的信息转发给目的 RN;
5703、 UE接入目的 RN;
5704、 目的 RN发送路径切换请求给 SNC;
5705、 SNC获取 UE信息、 源 RN的标识以及目的 RN的标识;
S706、 SNC获知为源 RN提供服务的第一 FN不可继续使用, 重新选择 第二 FN为目的 RB提供服务, 并根据该第二 FN生成第二路径切换规则;
5707、 SNC将第二路径切换规则发送给入口网元, 并更新本地已保存的 UE的数据的路径信息;
本实施例中, SNC生成第二路径切换规则后就将该第二路径切换规则发 送给入口网元, 这一步骤与上述方法实施例五的流程有区别, 方法实施例五 中 SNC生成第二路径切换规则后先启动 UE的上下文信息传送流程, 然后才 将该第二路径切换规则发送给入口网元。
5708、 入口网元在 UE的数据路径上增加第二 FN;
5709、 入口网元向第二 FN转发第二路径切换规则;
S710、 第二 FN获知本地没有保存该 UE的上下文数据, 向 SNC发送上 下文数据请求消息;
本实施例中, 由第二 FN触发 UE的上下文信息传送, 第二 FN向 SNC 发送上下文数据请求消息启动该流程, 这一步骤与上述方法实施例五的流程 有区别, 方法实施例五中是由 SNC触发 UE的上下文信息传送。
S711、 SNC向第一 FN发送上下文数据传送指示;
5712、 第一 FN向第二 FN发送 UE的上下文数据;
5713、 第二 FN接收完第一 FN发送的 UE的上下文数据后, 向 SNC发 送上下文数据接收确认信息;
5714、 SNC向第一 FN发送 UE信息删除指示;
S715、 第一 FN删除本地保存的 UE的信息;
5716、 SNC向目的 RN发送路径切换请求确认信息;
5717、 目的 RN通知源 RN释放该 UE所占用的资源。
图 9为本发明切换控制方法实施例六的流程图, 如图 9所示, 本实施例 的方法可以包括:
本实施例中, 采用快速切换算法, UE 发生切换后数据路径没有改变, 仍然使用之前为源 RN提供服务的 FN。 具体流程如下:
5801、 UE移动, 使得源 RN获知 UE即将发生切换;
5802、 源 RN发送第二路径切换请求给 SNC;
本实施例中, 采用快速切换算法, SNC通过实时监测每个 F 的负载信息, 在 UE即将发生切换时, 即可立刻为目的 RN确定服务 FN, 缩短等待源 RN和 目的 RN之间数据传输的时延。 具体地, 当源 RN获知 UE即将发生切换则直接 发送第二路径切换请求给 SNC, SNC可以提前为目的 RN确定服务 FN, 与上述 方法实施例四、 方法实施例五以及方法实施例六的区别在于, 上述实施例都是 在 UE 已经接入到目的 RN之后才发起路径切换流程, 而本实施例中, 只要源 RN获知 UE即将发生切换就向 SNC发送第二路径切换请求, 缩短了 UE接入目 的 RN的时延和等待源 RN和目的 RN之间数据传输的时延。
5803、 源 RN将缓存在源 RN的该 UE的信息转发给目的 RN;
5804、 SNC获取 UE信息、 源 RN的标识以及目的 RN的标识;
5805、 SNC确定为源 RN提供服务的第一 FN继续为目的 RB提供服务, 并根据该第一 FN生成第一路径切换规则;
本实施例中, 为源 RN提供服务的第一 FN继续可用, 因此 SNC为目的 RN 确定的服务 F 仍然是第一 FN, 需要说明的是, 快速切换算法在上述方法实施 例四、 方法实施例五以及方法实施例六中同样适用, 此处不做具体限定。
5806、 SNC将第一路径切换规则发送给入口网元, 并更新本地已保存的 UE的数据的路径信息;
5807、 入口网元在 UE的数据路径上增加第一 FN;
5808、 入口网元向第一 FN转发第一路径切换规则;
5809、 入口网元回复路径切换规则配置完成响应给 SNC;
5810、 目的 RN接收到源 RN发送的 UE的信息后, 向 SNC发送第一路 径切换请求;
本实施例中, 目的 RN确认 UE已经接入该目的 RN后向 SNC发送第一 路径切换请求, 通知 SNC该 UE已经切换到该目的 RN。
5811、 SNC向目的 RN发送路径切换请求确认信息;
5812、 目的 RN通知源 RN释放该 UE所占用的资源。
图 10为本发明 SNC实施例一的结构示意图, 如图 10所示, 本实施例的 装置可以包括: 接收模块 11、 规则生成模块 12、 更新模块 13以及发送模块 14, 其中, 接收模块 11, 用于接收空口节点 RN发送的路径切换请求, 并根 据所述路径切换请求获取用户设备 UE信息、 源 RN的标识以及目的 RN的标 识; 规则生成模块 12, 用于根据所述 UE信息、 源 RN的标识以及目的 RN 的标识, 确定为所述目的 RN提供服务的功能节点 FN, 并根据所述 FN生成 路径切换规则; 更新模块 13, 用于将所述路径切换规则发送给入口网元, 以 使所述入口网元根据所述路径切换规则在所述 UE的数据路径上增加所述 FN 为功能节点, 并更新本地已保存的所述 UE 的数据的路径信息; 发送模块 14, 用于向目的 RN发送路径切换请求确认信息。
本实施例的装置, 可以用于执行图 4所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 11为本发明 SNC实施例二的结构示意图, 如图 11所示, 本实施例的 装置在图 10 所示装置结构的基础上, 进一步地, 规则生成模块 12 可以包 括: 获取单元 121、 确定单元 122以及第一规则生成单元 123, 其中, 获取单 元 121, 用于根据所述 UE信息、 源 RN的标识以及目的 RN的标识, 获取为 所述源 RN提供服务的第一 FN; 确定单元 122, 用于根据所述第一 FN的负 载状态确定所述第一 FN是否继续可用; 第一规则生成单元 123, 用于若所述 确定单元确定所述第一 FN继续可用, 则确定所述第一 FN是为所述目的 RN 提供服务的功能节点, 并根据所述第一 FN生成第一路径切换规则。 更新模 块 13, 具体用于将所述第一路径切换规则发送给入口网元, 以使所述入口网 元根据所述第一路径切换规则在所述 UE的数据路径上增加所述第一 FN为功 能节点, 并更新本地已保存的所述 UE的数据的路径信息。
如图 11所示, 规则生成模块 12还可以包括: 第二规则生成单元 124, 该第二规则生成单元 124, 用于若所述确定单元确定所述第一 FN不可用时, 则获取与所述目的 RN相邻的关联 RN, 并根据为所述关联 RN提供服务的 FN的负载状态, 选择为所述目的 RN提供服务的第二 FN, 并根据所述第二 FN生成第二路径切换规则。 更新模块 13, 具体用于将所述第二路径切换规 则发送给入口网元, 以使所述入口网元根据所述第二路径切换规则在所述 UE 的数据路径上增加所述第二 FN 为功能节点, 并更新本地已保存的所述 UE的数据的路径信息。 本实施例的装置, 可以用于执行图 4所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 12为本发明 SNC实施例三的结构示意图, 如图 12所示, 本实施例的 装置在图 11 所示装置结构的基础上, 进一步地, 还可以包括: 上下文处理 模块 21, 该上下文处理模块 21, 用于向所述第一 FN发送上下文数据传送指 示, 以使所述第一 FN将所述 UE的上下文数据发送给所述第二 FN; 接收所 述第二 FN发送的上下文数据接收确认信息; 向所述第一 FN发送 UE信息删 除指示, 以使所述第一 FN根据所述 UE信息删除指示删除已经保存的所述 UE的信息。
该上下文处理模块 21, 还用于接收所述第二 FN发送的上下文数据请求 消息; 根据所述上下文数据请求消息, 向所述第一 FN发送上下文数据传送 指示, 以使所述第一 FN将所述 UE的上下文数据发送给所述第二 FN; 接收 所述第二 FN发送的上下文数据接收确认信息; 向所述第一 FN发送 UE信息 删除指示, 以使所述第一 FN根据所述 UE信息删除指示删除已经保存的所述 UE的信息。
本实施例的装置, 可以用于执行图 5所示方法实施例的技术方案, 其实 现原理和技术效果类似, 此处不再赘述。
图 13为本发明无线通信网络实施例二的结构示意图, 如图 13所示, 本 实施例的系统包括: 源空口节点 RN11、 目的空口节点 RN12, 除此之外, 还 包括: SNC13、 至少一个入口网元 14以及至少一个 FN15 , 其中, 入口网元 14与 SNC13连接, FN15与 SNC13连接, 入口网元 14与 FN15连接, SNC13 可以采用图 10~图 12任一装置实施例的结构, 其对应地, 可以执行图 4~图5 中任一方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘 述; 入口网元 14可以采用图 16~图 17任一装置实施例的结构, 其对应地, 可以执行图 6中方法实施例的技术方案, 其实现原理和技术效果类似, 此处 不再赘述; FN15可以采用图 18~图 20任一装置实施例的结构, 其对应地, 可以执行图 7中方法实施例的技术方案, 其实现原理和技术效果类似, 此处 不再赘述。
在本发明所提供的几个实施例中, 应该理解到, 所揭露的装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性 的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有 另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系 统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合或 通信连接, 可以是电性, 机械或其它的形式。
所述该作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部 分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用硬件加 软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算机 可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 或处理器 (processor) 执行本发明各个实施例所述方法的部分步骤。 而前述 的存储介质包括: U 盘、 移动硬盘、 只读存储器 (Read-Only Memory , ROM) 、 随机存取存储器 (Random Access Memory, RAM) 、 磁碟或者光 盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上述各 功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功能分 配由不同的功能模块完成, 即将装置的内部结构划分成不同的功能模块, 以 完成以上描述的全部或者部分功能。 上述描述的装置的具体工作过程, 可以 参考前述方法实施例中的对应过程, 在此不再赘述。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替 换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种切换控制方法, 包括:
接收空口节点 RN发送的路径切换请求, 并根据所述路径切换请求获取 用户设备 UE信息、 源 RN的标识以及目的 RN的标识;
根据所述 UE信息、 源 RN的标识以及目的 RN的标识, 确定为所述目的
RN提供服务的功能节点 FN, 并根据所述 FN生成路径切换规则;
将所述路径切换规则发送给入口网元, 以使所述入口网元根据所述路径 切换规则在所述 UE的数据路径上增加所述 FN为功能节点, 并更新本地已保 存的所述 UE的数据的路径信息;
向目的 RN发送路径切换请求确认信息。
2、 根据权利要求 1所述的方法, 所述根据所述 UE信息、 源 RN的标识 以及目的 RN的标识, 确定为所述目的 RN提供服务的功能节点 FN, 并根据 所述 FN生成路径切换规则, 包括:
根据所述 UE信息、 源 RN的标识以及目的 RN的标识, 获取为所述源 RN提供服务的第一 FN;
根据所述第一 FN的负载状态确定所述第一 FN是否继续可用; 若是, 则确定所述第一 FN是为所述目的 RN提供服务的功能节点, 并根 据所述第一 FN生成第一路径切换规则。
3、 根据权利要求 2 所述的方法, 所述将所述路径切换规则发送给入口 网元, 以使所述入口网元根据所述路径切换规则在所述 UE的数据路径上增 加所述 FN为功能节点, 并更新本地已保存的所述 UE的数据的路径信息, 包 括:
将所述第一路径切换规则发送给入口网元, 以使所述入口网元根据所述 第一路径切换规则在所述 UE的数据路径上增加所述第一 FN为功能节点, 并 更新本地已保存的所述 UE的数据的路径信息。
4、 根据权利要求 2所述的方法, 所述根据所述第一 FN的负载状态确定 所述第一 FN是否继续可用之后, 还包括:
若所述第一 FN不可用, 则获取与所述目的 RN相邻的关联 RN, 并根据 为所述关联 RN提供服务的 FN的负载状态, 选择为所述目的 RN提供服务的 第二 FN, 并根据所述第二 FN生成第二路径切换规则。
5、 根据权利要求 4所述的方法, 所述将所述路径切换规则发送给入口网 元, 以使所述入口网元根据所述路径切换规则在所述 UE的数据路径上增加所述 F 为功能节点, 并更新本地已保存的所述 UE的数据的路径信息, 包括:
将所述第二路径切换规则发送给入口网元, 以使所述入口网元根据所述 第二路径切换规则在所述 UE的数据路径上增加所述第二 FN为功能节点, 并 更新本地已保存的所述 UE的数据的路径信息。
6、 根据权利要求 5 所述的方法, 所述将所述第二路径切换规则发送给 入口网元, 以使所述入口网元根据所述第二路径切换规则在所述 UE的数据 路径上增加所述第二 FN为功能节点, 并更新本地已保存的所述 UE的数据的 路径信息之前, 还包括:
向所述第一 FN发送上下文数据传送指示, 以使所述第一 FN将所述 UE 的上下文数据发送给所述第二 FN;
接收所述第二 FN发送的上下文数据接收确认信息;
向所述第一 FN发送 UE信息删除指示, 以使所述第一 FN根据所述 UE 信息删除指示删除已经保存的所述 UE的信息。
7、 根据权利要求 5 所述的方法, 所述将所述第二路径切换规则发送给 入口网元, 以使所述入口网元根据所述第二路径切换规则在所述 UE的数据 路径上增加所述第二 FN为功能节点, 并更新本地已保存的所述 UE的数据的 路径信息之后, 还包括:
接收所述第二 FN发送的上下文数据请求消息;
根据所述上下文数据请求消息, 向所述第一 FN发送上下文数据传送指 示, 以使所述第一 FN将所述 UE的上下文数据发送给所述第二 FN;
接收所述第二 FN发送的上下文数据接收确认信息;
向所述第一 FN发送 UE信息删除指示, 以使所述第一 FN根据所述 UE 信息删除指示删除已经保存的所述 UE的信息。
8、 根据权利要求 2~6中任一项所述的方法, 所述向目的 RN发送路径切 换请求确认信息之前, 还包括:
接收所述入口网元发送的路径切换规则配置完成响应。
9、 根据权利要求 1~8中任一项所述的方法, 所述接收空口节点 RN发送 的路径切换请求, 并根据所述路径切换请求获取用户设备 UE信息、 源 RN 的标识以及目的 RN的标识, 包括:
接收所述目的 RN发送的第一路径切换请求, 并根据所述第一路径切换 请求获取用户设备 UE信息、 源 RN的标识以及目的 RN的标识。
10、 根据权利要求 1~8中任一项所述的方法, 所述接收空口节点 RN发 送的路径切换请求, 并根据所述路径切换请求获取用户设备 UE信息、 源 RN 的标识以及目的 RN的标识, 包括:
接收所述源 RN发送的第二路径切换请求, 并根据所述第二路径切换请 求获取用户设备 UE信息、 源 RN的标识以及目的 RN的标识。
11、 根据权利要求 10所述的方法, 所述向目的 RN发送路径切换请求确 认信息之前, 还包括:
接收所述目的 RN发送的第一路径切换请求。
12、 一种集中控制网元 SNC, 包括:
接收模块, 用于接收空口节点 RN发送的路径切换请求, 并根据所述路 径切换请求获取用户设备 UE信息、 源 RN的标识以及目的 RN的标识; 规则生成模块, 用于根据所述 UE信息、 源 RN的标识以及目的 RN的标 识, 确定为所述目的 RN提供服务的功能节点 FN, 并根据所述 FN生成路径 切换规则;
更新模块, 用于将所述路径切换规则发送给入口网元, 以使所述入口网 元根据所述路径切换规则在所述 UE的数据路径上增加所述 FN为功能节点, 并更新本地已保存的所述 UE的数据的路径信息;
发送模块, 用于向目的 RN发送路径切换请求确认信息。
13、 根据权利要求 12所述的 SNC, 所述规则生成模块, 包括: 获取单元, 用于根据所述 UE信息、 源 RN的标识以及目的 RN的标识, 获取为所述源 RN提供服务的第一 FN;
确定单元, 用于根据所述第一 FN的负载状态确定所述第一 FN是否继续 可用;
第一规则生成单元, 用于若所述确定单元确定所述第一 FN继续可用, 则确定所述第一 FN是为所述目的 RN提供服务的功能节点, 并根据所述第一 FN生成第一路径切换规则。
14、 根据权利要求 13所述的 SNC, 所述更新模块, 具体用于将所述第 一路径切换规则发送给入口网元, 以使所述入口网元根据所述第一路径切换 规则在所述 UE的数据路径上增加所述第一 FN为功能节点, 并更新本地已保 存的所述 UE的数据的路径信息。
15、 根据权利要求 13所述的 SNC, 所述规则生成模块, 还包括: 第二规则生成单元, 用于若所述确定单元确定所述第一 FN不可用时, 则获取与所述目的 RN相邻的关联 RN, 并根据为所述关联 RN提供服务的 FN的负载状态, 选择为所述目的 RN提供服务的第二 FN, 并根据所述第二 FN生成第二路径切换规则。
16、 根据权利要求 15所述的 SNC, 所述更新模块, 具体用于将所述第 二路径切换规则发送给入口网元, 以使所述入口网元根据所述第二路径切换 规则在所述 UE的数据路径上增加所述第二 FN为功能节点, 并更新本地已保 存的所述 UE的数据的路径信息。
17、 根据权利要求 16所述的 SNC, 还包括:
上下文处理模块, 用于向所述第一 FN发送上下文数据传送指示, 以使 所述第一 FN将所述 UE的上下文数据发送给所述第二 FN; 接收所述第二 FN 发送的上下文数据接收确认信息; 向所述第一 FN发送 UE信息删除指示, 以 使所述第一 FN根据所述 UE信息删除指示删除已经保存的所述 UE的信息。
18、 根据权利要求 16所述的 SNC, 所述上下文处理模块, 还用于接收 所述第二 FN发送的上下文数据请求消息; 根据所述上下文数据请求消息, 向所述第一 FN发送上下文数据传送指示, 以使所述第一 FN将所述 UE的上 下文数据发送给所述第二 FN; 接收所述第二 FN发送的上下文数据接收确认 信息; 向所述第一 FN发送 UE信息删除指示, 以使所述第一 FN根据所述 UE信息删除指示删除已经保存的所述 UE的信息。
19、 一种无线通信网络, 包括源空口节点 RN、 目的空口节点 RN, 还包括: 如权利要求 12~18中任一项所述的集中控制网元 SNC、 至少一个入口网 元以及至少一个功能节点 FN;
其中, 所述入口网元与所述 SNC通信连接, 所述 FN与所述 SNC通信连 接, 所述入口网元与所述 FN通信连接, 所述入口网元用于接收所述路径切 换规则, 根据所述路径切换规则在所述 UE的数据路径上增加所述 FN为功能 节点, 并更新本地已保存的所述 UE的数据的路径信息。
PCT/CN2014/071818 2014-01-29 2014-01-29 切换控制方法、装置及无线通信网络 WO2015113288A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/071818 WO2015113288A1 (zh) 2014-01-29 2014-01-29 切换控制方法、装置及无线通信网络
CN201480044162.3A CN105474692B (zh) 2014-01-29 2014-01-29 切换控制方法、装置及无线通信网络
EP14881164.9A EP3091783B1 (en) 2014-01-29 2014-01-29 Handover control method, device, and wireless communications network
US15/222,257 US10412640B2 (en) 2014-01-29 2016-07-28 Switching control method, apparatus, and wireless communications network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071818 WO2015113288A1 (zh) 2014-01-29 2014-01-29 切换控制方法、装置及无线通信网络

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/222,257 Continuation US10412640B2 (en) 2014-01-29 2016-07-28 Switching control method, apparatus, and wireless communications network

Publications (1)

Publication Number Publication Date
WO2015113288A1 true WO2015113288A1 (zh) 2015-08-06

Family

ID=53756179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071818 WO2015113288A1 (zh) 2014-01-29 2014-01-29 切换控制方法、装置及无线通信网络

Country Status (4)

Country Link
US (1) US10412640B2 (zh)
EP (1) EP3091783B1 (zh)
CN (1) CN105474692B (zh)
WO (1) WO2015113288A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018000457A1 (zh) * 2016-07-01 2018-01-04 华为技术有限公司 一种切换方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10142427B2 (en) * 2016-03-31 2018-11-27 Huawei Technologies Co., Ltd. Systems and methods for service and session continuity in software defined topology management
US10972552B2 (en) * 2016-09-30 2021-04-06 Huawei Technologies Co., Ltd. Method and system for user plane path selection
US10979948B2 (en) * 2016-11-10 2021-04-13 Parallel Wireless, Inc. Hand-in with topology hiding
CN109561476B (zh) * 2017-09-27 2021-03-30 中国电信股份有限公司 通信方法、通信系统以及用户面功能模块
CN108199970B (zh) * 2017-12-15 2020-08-04 浙江大学 一种软件定义网络中数据包路径重构方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296404A (zh) * 2007-04-28 2008-10-29 中兴通讯股份有限公司 在下一代移动通信网络架构下接入组播业务的系统和方法
EP2469927A1 (en) * 2009-08-18 2012-06-27 NTT DOCOMO, Inc. Mobile communication method and radio base station
CN102761919A (zh) * 2011-04-29 2012-10-31 中兴通讯股份有限公司 一种网关的选择方法及系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7983716B2 (en) * 2003-09-30 2011-07-19 Interdigital Technology Corporation Centralized radio network controller
JP2009296077A (ja) * 2008-06-03 2009-12-17 Nec Corp 移動体通信システム、ノード装置および網間移行制御方法
EP2303206A1 (en) * 2008-06-26 2011-04-06 Personics Holdings INC. Occlusion effect mitigation and sound isolation device for orifice inserted systems
US8520630B2 (en) * 2008-11-17 2013-08-27 Wichorus, Inc. Method and apparatus for predicting handover in wireless communication network
CN101562568B (zh) * 2009-05-26 2011-05-11 中国科学院计算技术研究所 覆盖网备用路径生成方法和装置
CN101562569B (zh) * 2009-05-26 2012-04-18 中国科学院计算技术研究所 转发节点选取方法和装置
US8553972B2 (en) * 2009-07-06 2013-10-08 Samsung Electronics Co., Ltd. Apparatus, method and computer-readable medium generating depth map
CN102238658A (zh) * 2010-04-30 2011-11-09 北京三星通信技术研究有限公司 一种支持网关节点重选的方法
CN102244908B (zh) * 2010-05-10 2015-10-21 北京三星通信技术研究有限公司 支持终端移动性的切换方法
CN103636257B (zh) * 2011-07-01 2018-07-31 交互数字专利控股公司 用于支持本地ip接入lipa移动性的方法和装置
US8443640B2 (en) * 2011-07-01 2013-05-21 Gregory Scott David Deadbolt locking device
KR101840699B1 (ko) * 2011-12-15 2018-03-23 한국전자통신연구원 조정 다중 점 통신을 이용한 이동성 관리 방법
WO2013097900A1 (en) * 2011-12-29 2013-07-04 Nokia Siemens Networks Oy Conveying traffic in a communications network system
JP5738786B2 (ja) * 2012-02-22 2015-06-24 株式会社東芝 半導体装置および半導体装置の製造方法
WO2013127429A1 (en) * 2012-02-28 2013-09-06 Nokia Siemens Networks Oy Data forwarding in a mobile communications network system with centralized gateway apparatus controlling distributed gateway elements
US20140029395A1 (en) * 2012-07-27 2014-01-30 Michael Nicholas Bolas Method and System for Recording Audio
EP3220685B1 (en) * 2012-08-02 2020-05-27 Telefonaktiebolaget LM Ericsson (publ) Base stations and methods for handling over a sub-set of bearers to enable multiple connectivity of a terminal towards several base stations
CN103249066B (zh) * 2013-04-18 2015-09-02 上海桑锐电子科技有限公司 一种无线网络路径切换方法
US9226333B2 (en) * 2013-06-07 2015-12-29 Alcatel Lucent Virtualization of control plane functions of a wireless core packet network
US9510376B2 (en) * 2013-09-25 2016-11-29 At&T Intellectual Property I, L.P. Tunneling packet exchange in long term evolution protocol based networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296404A (zh) * 2007-04-28 2008-10-29 中兴通讯股份有限公司 在下一代移动通信网络架构下接入组播业务的系统和方法
EP2469927A1 (en) * 2009-08-18 2012-06-27 NTT DOCOMO, Inc. Mobile communication method and radio base station
CN102761919A (zh) * 2011-04-29 2012-10-31 中兴通讯股份有限公司 一种网关的选择方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3091783A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018000457A1 (zh) * 2016-07-01 2018-01-04 华为技术有限公司 一种切换方法及装置
RU2706707C1 (ru) * 2016-07-01 2019-11-20 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство передачи обслуживания
US10959132B2 (en) 2016-07-01 2021-03-23 Huawei Technologies Co., Ltd. Handover method and apparatus

Also Published As

Publication number Publication date
EP3091783A4 (en) 2017-01-11
EP3091783A1 (en) 2016-11-09
CN105474692B (zh) 2019-04-05
US10412640B2 (en) 2019-09-10
US20160337915A1 (en) 2016-11-17
CN105474692A (zh) 2016-04-06
EP3091783B1 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
EP3562182B1 (en) Communication path switching method
EP3461071B1 (en) Communication control method, and related network element
RU2496262C2 (ru) Способ, устройство и система хэндовера
JP5910840B2 (ja) ユーザ機器のコンテキストに関連するリソースを解放するための方法およびデバイス
WO2015113288A1 (zh) 切换控制方法、装置及无线通信网络
US10945180B2 (en) Mobility management method, apparatus, and system
WO2019185062A1 (zh) 一种通信方法及装置
RU2667150C2 (ru) Устройство управления и способ управления передачей обслуживания по однонаправленному каналу
CN113709909B (zh) 多连接通信方法和设备
US20210120620A1 (en) Communication Method and Apparatus
WO2013107385A1 (zh) 用户上下文释放方法、基站以及家庭基站网关
US9668176B2 (en) Method for selecting shunt gateway and controller
WO2012149797A1 (zh) 一种获取无线局域网络信息的方法及装置
EP3528517B1 (en) Data packet processing method, control plane network element and user plane network element
WO2013053133A1 (zh) 业务数据传输处理方法、设备以及通信系统
JP6128116B2 (ja) 通信端末、通信方法、通信システムおよびプログラム
WO2015113290A1 (zh) 下行数据处理方法及装置、系统
CN114467286B (zh) 注册和配置用于选择性路由上行链路数据业务的网络功能
CN111226460B (zh) 小区切换方法及装置
WO2018003480A1 (ja) 通信制御装置、ユーザ装置及び通信制御方法
WO2013107260A1 (zh) 中继节点移动过程中路由标识的处理方法、装置及系统
JP6645677B2 (ja) リンク確立方法およびデバイス
JP2023136619A (ja) 複数のベアラを使用してデータを送受信するネットワーク装置、ユーザ端末、通信制御方法、及びプログラム
WO2010088796A1 (zh) 切换过程中上行数据传输的方法、系统及无线网络节点
CN118140587A (zh) 无线路由方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480044162.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014881164

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014881164

Country of ref document: EP