WO2010088796A1 - 切换过程中上行数据传输的方法、系统及无线网络节点 - Google Patents

切换过程中上行数据传输的方法、系统及无线网络节点 Download PDF

Info

Publication number
WO2010088796A1
WO2010088796A1 PCT/CN2009/070351 CN2009070351W WO2010088796A1 WO 2010088796 A1 WO2010088796 A1 WO 2010088796A1 CN 2009070351 W CN2009070351 W CN 2009070351W WO 2010088796 A1 WO2010088796 A1 WO 2010088796A1
Authority
WO
WIPO (PCT)
Prior art keywords
network node
wireless network
source
uplink data
target
Prior art date
Application number
PCT/CN2009/070351
Other languages
English (en)
French (fr)
Inventor
陈卓
俸旻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2009/070351 priority Critical patent/WO2010088796A1/zh
Publication of WO2010088796A1 publication Critical patent/WO2010088796A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to a method, system, and wireless network node for uplink data transmission in a handover process.
  • LTE Long Term Evolved
  • SAE System Architecture Evolved
  • the LTE/SAE network is a network that reduces latency, increases user data transfer rates, improves system capacity, and provides low-cost coverage.
  • PS Packet Switching
  • IP Internet Protocol
  • the Mobility Management Entity (MME) in the LTE/SAE network is connected to the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) through the Sl-MME interface, and the Serving Gateway (Serving Gateway)
  • the S-GW is connected to the E-UTRAN through the Sl-U interface.
  • the E-UTRAN is composed of an Evolved Node B (eNodeB), and the eNodeBs can be interconnected through the X2 interface.
  • the control signaling of the X2 interface is sometimes required. And switching of transmission data.
  • the MME does not change, but the S-GW may change, that is, the source S-GW switches to the target S-GW.
  • the switching process based on the X2 interface is divided into three parts: the handover preparation phase, the handover execution phase, and the handover completion phase.
  • the handover preparation phase is mainly to complete the resource reservation process on the target eNodeB; the handover execution phase completes the air interface handover process, including the synchronization of the UE to the target eNodeB control region, the target eNodeB allocates an access channel to the UE, etc.;
  • the handover process of the bearer of the core network is performed, including the establishment of the uplink bearer/downlink bearer on the target eNodeB to the S-GW and the bearer information initiated by the S-GW to the Packet Data Network Gateway (PDN GW). Update process, etc.
  • the X2 interface-based handover preparation phase of the prior art includes: sending, by the source eNodeB, a handover request (HANDOVER REQUEST) message to the target eNodeB, and for the uplink data sent by the received UE, the handover request message carries the source S - bearer list information of routing information of the GW, used by the target eNodeB to learn which S-GW the uplink data is sent to and the data channel address of the bearer, and the target eNodeB reserves the required resource and sends a handover request response (HANDOVER REQUEST ACKNOWLEDGE) message to The source eNodeB; the target eNodeB may also indicate in the handover request response message which bearer uplink data the source eNodeB can forward to the target eNodeB, so that the legacy (or unpackaged) uplink data sent by the UE to the source eNodeB can be forwarded to The target eNodeB is sent by the target eNodeB to
  • the source eNodeB For the downlink data sent to the UE, the source eNodeB indicates, in the handover request message, which bearers need to forward the downlink data, and the target eNodeB node may provide the tunnel endpoint information for receiving the downlink data in the handover request response message, so that the downlink data passes the source.
  • the eNodeB forwards to the target eNodeB.
  • the target eNodeB will reply with a handover preparation failure message to the source eNodeB and indicate the cause of the error. Thereafter, the source eNodeB will do further processing, such as releasing resources ready for handover or attempting to switch to other eNodeBs.
  • the handover completion phase includes: performing downlink data transmission by signaling interaction between the target eNodeB, the MME, the target S-GW, and the PDN GW.
  • the process of switching that is, the downlink data transmission process of the PDN GW ⁇ source S-GW ⁇ source eNodeB ⁇ UE is switched to the downlink data transmission process of the PDN GW ⁇ target S-GW ⁇ target eNodeB ⁇ UE, and the PDN GW may appear during the handover process.
  • the downlink data of the UE may be forwarded to the source eNodeB through the source S-GW through the PDN GW, and then forwarded to the target eNodeB, and finally sent to the UE.
  • the uplink data that the UE caches or leaves on the source eNodeB can be forwarded to the target eNodeB, and the uplink data sent by the UE to the target eNodeB after the UE accesses the target eNodeB needs to be sent to the target eNodeB as soon as possible.
  • Core network
  • the target eNodeB has obtained the routing information of the source S-GW from the handover request message. If the target eNodeB has IP connectivity with the source S-GW, the target eNodeB can directly send the UE to it.
  • the uplink data forwarded by the source eNodeB is sent to the source S-GW, and the source S-GW sends the uplink data to the PDN GW.
  • the target eNodeB finds that the source S-GW is inaccessible, that is, there is no connectivity, the uplink data cannot be transmitted. Therefore, the source eNodeB can only rely on continuous handover attempts to learn about the IP connectivity between the target eNodeB and the different S-GWs at the opposite end of the X2 interface. Or, when the target eNodeB finds that the source S-GW is not timely, the uplink data sent by all the UEs is first buffered to the target eNodeB, and the uplink data is transmitted until the handover of the uplink data transmission process is completed. However, this will cause the processing delay of the uplink data in the network to be lengthened or even the uplink transmission to be interrupted. Summary of the invention
  • An embodiment of the present invention provides a method, a system, and a wireless network node for uplink data transmission in a handover process, so that uplink data sent by a user equipment in a handover process can be normally transmitted.
  • a method for uplink data transmission in a handover process including:
  • the uplink data sent by the received user equipment is sent to the source core network node by the target wireless network node to transmit the uplink data.
  • a method for uplink data transmission in a handover process including:
  • the handover comprising utilizing between the source wireless network node and the target wireless network node a bearer path switch between the wireless network node and the core network node and an air interface switch of the user equipment from the source wireless network node to the target wireless network node;
  • the uplink data sent by the user equipment to the target wireless network node is sent to the source wireless network node by using the reverse tunnel, and then sent to the The source wireless network node has a connected source core network node to transmit the uplink data.
  • a method for uplink data transmission in a handover process including:
  • a handover request message sent by the source wireless network node where the handover includes using the wireless interface between the source wireless network node and the target wireless network node Bearer path switching between the network node and the core network node and the user equipment from the source wireless network node to the target wireless network node Air interface switching;
  • the uplink data of the user equipment is temporarily stored before the uplink data bearer path is completed.
  • the temporarily stored uplink data of the user equipment is sent to the target core network node selected by the mobility management entity.
  • a wireless network node which is a source wireless network node for initiating a handover, and includes:
  • An obtaining module configured to acquire connectivity information between a target wireless network node and a source core network node that are connected to the source wireless network node;
  • a determining module configured to determine, according to the connectivity information acquired by the acquiring module, whether the target wireless network node and the source core network node have connectivity
  • a handover initiation module configured to initiate a handover of the user equipment to the target wireless network node when the determining module determines that the target wireless network node and the source core network node have connectivity, where the handover includes using the Bearer path switching between the wireless network node and the core network node by an interface between a source wireless network node and the target wireless network node, and the user equipment from the source wireless network node to the target Air interface switching of the wireless network node.
  • a wireless network node which is a target wireless network node for accepting handover, and includes:
  • a establishing module configured to establish, in a handover process of the user equipment to the target wireless network node, a reverse tunnel from the target wireless network node to the source wireless network node, where the switching includes using the source wireless network node and the Bearer path switching between the wireless network node and the core network node by an interface between target wireless network nodes and air interface switching of the user equipment from the source wireless network node to the target wireless network node ;
  • a forwarding module configured to: after the air interface switching is completed, before the bearer path switching of the uplink data is completed, after the establishing module establishes the reverse tunnel, send the uplink sent by the user equipment Data is sent to the source wireless network node through the reverse tunnel.
  • a system for uplink data transmission in a handover process comprising: a wireless network node that is a source wireless network node for initiating handover as described above;
  • a target wireless network node configured to send, after the completion of the air interface switching, the uplink data sent by the received user equipment, before the bearer path switching of the uplink data is completed;
  • a source core network node configured to receive uplink data sent by the target wireless network node, and send the data to the packet data network.
  • a system for uplink data transmission during handover comprising: a wireless network node for receiving a target wireless network node for handover as described above; and
  • a source wireless network node configured to separately create a reverse tunnel route identifier for each bearer of the uplink data, and send a handover request message carrying the reverse tunnel route identifier
  • the bearer path switching source core network node of the uplink data is configured to receive uplink data that is sent by the target wireless network node to the source wireless network node by using a reverse tunnel, and sent to the packet data network.
  • the method, system, and wireless network node for uplink data transmission in the handover process enable the source wireless network by sharing connectivity information between the core network node and the wireless network node among the wireless network nodes.
  • the node can decide which type of handover to initiate early, try to avoid the source wireless network node processing the handover request and then process the handover failure information, and then initiate a new handover procedure; in addition, even the target wireless network and the source wireless network
  • the core network nodes connected by the nodes have no IP connectivity, and may also establish a reverse tunnel of the target wireless network node to the source wireless network node, and then use the source wireless network node to connect with the core network node to the packet data network gateway.
  • the old path is used to maintain the real-time transmission of the uplink data.
  • the core network node information connected to the source network node may also be deleted in the handover request message sent by the source wireless network node.
  • Data bearer path cut Before the completion of the conversion, the uplink data is cached in the target wireless network node, and after the uplink data bearer path is completed, the method of resuming the temporarily stored uplink data is processed to reduce the message transmission at the beginning of the handover initiation.
  • FIG. 1 is a schematic diagram of a long-term evolution/system architecture evolution network architecture of the present invention
  • FIG. 2 is a schematic flow chart of a first embodiment of a method for uplink data transmission in a handover process according to the present invention
  • FIG. 3 is a signaling flow diagram of an interface switching preparation phase between wireless network nodes according to an embodiment of the present invention
  • FIG. 4 is a signaling flow diagram of an interface switching completion phase between wireless network nodes according to an embodiment of the present invention
  • 5A is a signaling flow diagram of a second embodiment of a method for uplink data transmission in a handover process according to the present invention.
  • 5B is another signaling flowchart of a second embodiment of a method for uplink data transmission in a handover process according to the present invention.
  • 5C is still another signaling flowchart of the second embodiment of the method for uplink data transmission in the handover process of the present invention.
  • FIG. 6 is a schematic flow chart of a third embodiment of a method for uplink data transmission in a handover process according to the present invention.
  • FIG. 7 is a schematic flow chart of a fourth embodiment of a method for uplink data transmission in a handover process according to the present invention.
  • FIG. 8 is a schematic flow chart of a fifth embodiment of a method for uplink data transmission in a handover process according to the present invention.
  • FIG. 9 is a schematic structural diagram of a first embodiment of a wireless network node according to the present invention.
  • 10 is a schematic structural diagram of a second embodiment of a wireless network node according to the present invention
  • 11 is a schematic structural diagram of a third embodiment of a wireless network node according to the present invention
  • FIG. 12 is a schematic structural diagram of a fourth embodiment of a wireless network node according to the present invention.
  • FIG. 13 is a schematic structural diagram of a first embodiment of a system for uplink data transmission in a handover process according to the present invention.
  • FIG. 14 is a schematic structural diagram of a second embodiment of a system for uplink data transmission in a handover process according to the present invention. detailed description
  • the wireless network node that initiates the interface switching can decide which type of handover to initiate early. For example, the X2 interface switch or the S1 switch, try to avoid the source wireless network node to process the handover failure information after initiating the handover request, and then initiate a new handover process.
  • the wireless network node to be switched to that is, the target wireless network node and the core network node connected to the source wireless network node have no IP connectivity
  • the reverse tunnel of the target wireless network node to the source wireless network node can be established.
  • the core network node information that is connected to the source network node may be deleted, and the uplink data is sent before the bearer path of the uplink data is completed. Cached in the target wireless network node, after the uplink data bearer path is completed, the method of resuming the temporarily stored uplink data is processed to reduce the message transmission at the beginning of the handover.
  • FIG. 1 is a schematic diagram of a long-term evolution/system architecture evolution network architecture of the present invention. Below on this network The functions of each device and the interface relationship between them are briefly described.
  • MME Mobility Management Entity
  • UE User Equipment
  • NAS Non-Access Stratum
  • the System Architecture Evolution Gateway (SAE Gateway) consists of two parts: the Service Gateway (S-GW) and the Packet Data Network Gateway (PDN GW).
  • S-GW Service Gateway
  • PDN GW Packet Data Network Gateway
  • S-GW and PDN GW are two logical entities that can exist on the same or different physical entities.
  • the S-GW saves the user plane context of the UE, such as the IP address and routing information of the UE, and performs lawful interception and packet data routing functions.
  • the interface between the S-GW and the MME is S11, which is responsible for communication between the MME and the S-GW, and performs mobility management information and session control information of the UE.
  • the PDN GW is responsible for the user plane anchor function of the UE accessing the packet data network, communicates with the external packet data network through the SGi reference point, has the function of packet routing and forwarding, and is responsible for the policy charging enhancement function, based on each user. Group filtering function, etc.
  • the PDN GW is connected to the S-GW through the S5 interface, and transmits control information such as bearer establishment/modification/deletion, and packet data routing.
  • the Evolved Universal Terrestrial Radio Access Network is a radio access network of an evolved network, and is composed of an evolved base station (eNodeB).
  • the eNodeBs can be interconnected through an X2 interface.
  • the MME is responsible for the connection of the control plane through the S1-MME and the E-UTRAN
  • the S-GW is responsible for the connection of the user plane through the S1-U and the E-UTRAN.
  • the network further includes: a serving GPRS support node (SGSN) as a basic component network element, and a policy charging rule function for transmitting information such as quality of service and charging policy control to the PDN GW through the S7 interface (Policy and Charging Rules Function, PCRF ).
  • SGSN serving GPRS support node
  • PCRF Policy and Charging Rules Function
  • the control signaling of the X2 interface and the switching of the transmission data are sometimes required.
  • switching based on the X2 interface is not possible
  • switching based on the SI interface can also be used.
  • the handover process based on the S1 interface may be located to the new MME, and may also be located to the new MME and the S-GW.
  • the initiation of the handover based on the S1 interface is different from the handover based on the X2 interface, and the source eNodeB will directly initiate the handover request to the source MME instead of the target eNodeB in the handover based on the X2 interface.
  • the specific procedure of the SI handover can be referred to the 3GPP TS 23.401 protocol, which will not be described in detail herein.
  • FIG. 2 is a schematic flow chart of a first embodiment of a method for uplink data transmission in a handover process according to the present invention.
  • the connectivity information between the wireless network node and the core network node is shared between the wireless network nodes that establish the air interface connection relationship, so that when the source wireless network node initiates the interface switching, it can decide what type of handover is initiated. .
  • the following steps are included:
  • Step 201 Acquire connectivity information between a target wireless network node and a source core network node that are connected to the source wireless network node;
  • Step 202 Determine connectivity between the target wireless network node and the source core network node, and initiate handover of the user equipment to the target wireless network node, where the handover mainly includes using the interface between the source wireless network node and the target wireless network node. Bearer path switching between the network node and the core network node and air interface switching of the user equipment from the source wireless network node to the target wireless network node;
  • Step 203 After the air interface switching is completed, before the bearer path switching of the uplink data is completed, the uplink data sent by the user equipment is sent to the source core network node by the target wireless network node to transmit the uplink data.
  • the interface switching between two eNodeBs in the LTE/SAE network architecture shown in FIG. 1 is taken as an example, but is not limited to the handover, where the wireless network node is an eNodeB, and the core network node is an S-GW. .
  • the handover of the bearer path between the eNodeB and the PDN GW of the X2 interface between the source eNodeB and the target eNodeB is performed, and the handover preparation phase and handover execution are generally performed. Phase and handover completion phase.
  • the UE still needs to perform uplink data transmission and downlink data reception.
  • the connectivity information of the target eNodeB and the source S-GW is obtained by the source eNodeB. Then, if the source eNodeB determines that the target eNodeB and the source S-GW have IP connectivity, the source eNodeB initiates the UE from the source eNodeB to the target.
  • the handover of the eNodeB includes the switching of the air interface and the handover of the bearer path between the eNodeB and the PDN GW. At this time, after the handover of the air interface is completed (the handover preparation phase and the handover execution phase are completed), the bearer path of the uplink data is switched. Before the completion of the handover completion phase, step 203 may be performed, that is, the uplink data sent by the UE may be sent to the source S-GW through the target eNodeB to normally transmit the uplink data.
  • the method for uplink data transmission in the handover process can obtain the connectivity between the target wireless network node and the source core network node before the source wireless network node initiates the handover request, thereby eliminating the need to initiate a handover request multiple times. Try to switch, reducing the switching delay.
  • FIG. 3 is a signaling flow diagram of an interface switching preparation phase between wireless network nodes according to an embodiment of the present invention.
  • the source eNodeB determines that the X2 interface-based handover can be initiated, as shown in FIG. 3, the following steps are included:
  • Step 301 The source eNodeB sends a handover request (HANDOVER REQUEST) message to the target eNodeB;
  • the handover request message carries a radio bearer (E-RAB) list that needs to be transferred to the target eNodeB, and each E-RAB entry in the list has routing information of the source S-GW, including the S connected to the source eNodeB.
  • E-RAB radio bearer
  • the IP address of the GW and the Tunnel Endpoint ID (TEID) are used to inform the target eNodeB which S-GW and the channel through which the uplink data can be sent.
  • Step 302 If one or more radio bearers are accepted by the target eNodeB, the target eNodeB reserves the required resources thereon, and sends a handover request response (HANDOVER REQUEST ACKNOWLEDGE) message to the source eNodeB;
  • HANDOVER REQUEST ACKNOWLEDGE handover request response
  • the handover request response message carries a list of accepted radio bearers, and no unaccepted Line bearer list and its causes, such as large load, insufficient bandwidth, etc.
  • the source eNodeB may also indicate in the handover request message which radio bearers need to perform downlink data forwarding, and the target eNodeB may provide the downlink data GPRS tunneling protocol in the handover request response message (GPRS Tunneling Protocol). , GTP ) Tunnel Endpoint Identifier (DL GTP TEID ), so that the source eNodeB can perform downlink data forwarding through the downlink data forwarding channel.
  • GPRS Tunneling Protocol GPRS Tunneling Protocol
  • GTP GTP Tunnel Endpoint Identifier
  • the target eNodeB may further provide an uplink data GTP tunnel endpoint identifier (UL GTP TEID) in the handover request response message, and indicate which radio bearer uplink data can be forwarded to the target eNodeB through the uplink data forwarding channel.
  • UL GTP TEID uplink data GTP tunnel endpoint identifier
  • the resource reservation process on the target eNodeB is mainly completed, and the handover of the UE from the source eNodeB to the air interface of the target eNodeB is completed in the handover execution phase.
  • the uplink data sent by the UE will be directly sent to the target eNodeB.
  • the uplink data sent by the user equipment can be transmitted from the target eNodeB to the source S-GW to the PDN GW before being transmitted to the PDN GW. In a packet data network.
  • FIG. 4 is a signaling flow diagram of an interface switching completion phase between wireless network nodes according to an embodiment of the present invention. As shown in Figure 4, the following steps are included:
  • Step 401 The target eNodeB sends a path switch request message to the MME, and informs the MME that the UE has changed the cell, and carries the radio bearer list that the target eNodeB does not accept in the path switch request message, and then the MME initiates deletion of the radio bearers in the core network.
  • the process of resources The process of resources.
  • Step 402 The MME selects a function according to the S-GW, and considers the load, the connectivity of the target eNodeB and the S-GW, and the like, and reselects the S-GW served by the UE, that is, the target S-GW.
  • Step 403 After receiving the path switch request, the MME initiates a bearer setup request to the target S-GW.
  • a bearer setup request can only establish a bearer to the core network separately. If the radio bearer is not accepted, the MME does not go to the target S- The GW initiates a bearer setup request.
  • the bearer setup request includes user plane routing information of the target eNodeB, including a TEID, for transmitting downlink data after the handover completion phase is completed.
  • Step 404 After receiving the bearer setup request, the target S-GW allocates an uplink for the bearer.
  • the link resource of data transmission that is, a TEID is assigned to the link of the uplink data transmission.
  • Step 405 The target S-GW sends an update bearer request to the PDN GW, and informs the PDN GW of the TEID of the downlink data transmission allocated by the PDN GW.
  • Step 406 The PDN GW updates the address information of the S-GW, and sends an update bearer response message to the S-GW.
  • the PDN GW can send the downlink data to the target eNodeB through the target S-GW, and the downlink data switching process is completed.
  • the update bearer response message also carries the PDN GW
  • the target S-GW also knows which tunnel the uplink data it carries is sent to the PDN.
  • Step 407 The target S-GW sends a bearer setup response message to the MME, where the target S-GW carries the TEID allocated for uplink data transmission.
  • Step 408 After receiving the bearer setup response message, the MME starts a timer.
  • Step 409 The MME returns a path switch response message to the target eNodeB, where the target S-GW carries the TEID allocated for the uplink data transmission of the target eNodeB.
  • Step 410 After receiving the path switch response message, the target eNodeB notifies the source eNodeB to release the radio resource.
  • the target eNodeB can send the uplink data to the PDN GW through the target S-GW, and the bearer path of the uplink data is switched.
  • Step 411 After the timer started in step 408 times out, the MME initiates resource release to the source S-GW.
  • Step 412 The source S-GW returns a resource release result response to the source MME.
  • FIG. 5A is a signaling flowchart of a second embodiment of a method for uplink data transmission in a handover process according to the present invention.
  • the connection information between the target wireless network node and the source core network node that is connected to the source wireless network node is obtained in step 201.
  • the sharing list includes connectivity information of each wireless network node and a core network node to which it is connected or a core network node pool to which it belongs.
  • Step 501a the eNodeBj sends an X2 interface setup request message to the eNodeB 2 , where the X2 interface setup request carries the S-GW list or the S-GW pool list of the eNodeBi connection;
  • Step 502a the eNodeB 2 records the connectivity information of the S-GW or the S-GW pool connected to the eNodeB, or records only the connectivity information of the S-GW or the S-GW pool shared with the eNodeBi;
  • Step 503a eNodeB 2 Sending an X2 interface setup response message to the eNodeB, where the X2 interface setup response message carries an S-GW list or an S-GW pool list that is connected by the eNodeB 2 ;
  • Step 504a the communication information recording eNodeB S 2 is connected to the eNodeB S-GW or S-GW pool, or to record only the connectivity information is shared with the eNodeB 2 S-GW or S-GW pool.
  • FIG. 5B is another signaling flowchart of a second embodiment of a method for uplink data transmission in a handover process according to the present invention.
  • the connection information between the target wireless network node and the source core network node that is connected to the source wireless network node is obtained in step 201.
  • the source wireless network node sends a change notification message to the target wireless interface with the source wireless network node.
  • each of the wireless network nodes is configured to update the application layer data between them by using a configuration update process to prepare for their interoperation, wherein the configured update message includes updated cell information and MME list information;
  • the embodiment mainly describes the update connectivity information between two eNodeBs, and includes the following steps:
  • Step 501b eNodeB! Configuration update, including an S-GW list updated by the eNodeB or an updated list of S-GW pools;
  • Step 502b The eNodeB sends a change notification message to the eNodeB 2 , where the change notification message carries an update message configured by the eNodeB.
  • Step 503b the eNodeB 2 updates the connectivity information of the stored eNodeB ⁇ S-GW list or the S-GW pool list, or updates the connectivity information of the S-GW list or the S-GW pool list shared with the eNodeB;
  • Step 504b The eNodeB 2 carries the connectivity change information on the eNodeB 2 caused by the connectivity of the S-GW list or the S-GW pool list updated by the eNodeB in the return to eNodeB change notification response message;
  • Step 505b eNodeB!
  • the connectivity information of the S-GW or S-GW pool shared with the eNodeB 2 needs to be updated.
  • the change notification response message returned by the eNodeB 2 may not carry the connectivity change information, because the eNodeB itself can determine the sum S - A change in the shared connection brought about by the change in connectivity of the GW or S-GW pool.
  • FIG. 5C is still another signaling flowchart of the second embodiment of the method for uplink data transmission in the handover process of the present invention.
  • the target wireless network node may still be unreachable source core network node due to some reasons such as the target wireless network node temporarily unreaching the source core network node or not updating the connectivity information in time.
  • the method further includes: if the target wireless network node determines that it is not connected to the source core network node, the target wireless network node returns an information unreachable message to the source wireless network node; the source wireless network node records the target wireless network node and the source core network node. Not connected.
  • the eNodeB that initiates the handover request is the source eNodeB
  • the eNodeB to be switched to is the target eNodeB.
  • the handover preparation phase may further include the following steps:
  • Step 501c When the source eNodeB sends a handover request message to the target eNodeB, carrying the routing information of the MME and the source S-GW;
  • Step 502c The target eNodeB determines whether the source S-GW is reachable, and if not, returns the source.
  • the S-GW fails to reach the error message to the source eNodeB.
  • Step 503c After receiving the error information, the source eNodeB records that the target eNodeB and the source S-GW are not connected, so as to make a decision to initiate other handovers as soon as possible when the similar handover needs to be performed next time.
  • 5A to 5C describe in detail the manner in which the connectivity of the target wireless network node and the source core network node is obtained, so that the target wireless network node and the source core network node can be known before the source wireless network node initiates the handover request.
  • Inter-connectivity no need to initiate a switch multiple times Request to try to switch, reducing the switching delay.
  • FIG. 6 is a schematic flow chart of a third embodiment of a method for uplink data transmission in a handover process according to the present invention.
  • the real-time transmission of uplink data is maintained by establishing a reverse tunnel of the target wireless network node to the source wireless network node, and then using the source wireless network node to the core network node connected thereto to finally reach the old path of the packet data network gateway.
  • the following steps are included:
  • Step 601 Establish a reverse tunnel from the target wireless network node to the source wireless network node during the handover of the user equipment to the target wireless network node, where the handover comprises using an interface between the source wireless network node and the target wireless network node. Bearer path switching between the wireless network node and the core network node and air interface switching of the user equipment from the source wireless network node to the target wireless network node;
  • Step 602 After the air interface switching is completed, before the bearer path switching of the uplink data is completed, the uplink data sent by the user equipment to the target wireless network node is sent to the source wireless network node through the reverse tunnel, and then sent to the source wireless network node.
  • the source core network node of connectivity to transmit upstream data is
  • the uplink data sent by the user equipment to the target wireless network node is sent to the source wireless network node through the reverse tunnel before the bearer path switching of the uplink data is completed in the handover completion phase of FIG. 4 . And then sent to the source core network node with connectivity to the source wireless network node to transmit uplink data.
  • the uplink data transmission method in the handover process provided by this embodiment may use the old path to transmit uplink through the reverse tunnel when there is no connectivity between the target wireless network node and the source core network node before the bearer path switching of the uplink data is completed.
  • the data can maintain the real-time transmission of uplink data and reduce the delay, so that the user can get a better switching experience.
  • FIG. 7 is a schematic flow chart of a fourth embodiment of a method for uplink data transmission in a handover process according to the present invention. As shown in Figure 7, the following steps are included:
  • Step 701 During a handover process of the user equipment from the source wireless network node to the target wireless network node, the source wireless network node separately creates a reverse tunnel routing identifier for each bearer of the uplink data.
  • the handover includes a bearer path switch between the wireless network node and the core network node by using an interface between the source wireless network node and the target wireless network node, and an air interface switch of the user equipment from the source wireless network node to the target wireless network node.
  • Step 702 The source wireless network node sends a handover request message carrying a reverse tunnel route identifier.
  • Step 704 After receiving the handover request response message, the source radio network node deletes the reverse tunneling information of the unaccepted bearer to complete the establishment of the reverse tunnel between the target radio network node and the source radio network node.
  • Step 705 After the air interface switching is completed, before the bearer path switching of the uplink data is completed, the uplink data sent by the user equipment to the target wireless network node is sent to the source wireless network node through the reverse tunnel;
  • the method includes: the source radio network node forwards the legacy uplink data remaining on the source radio network node to the target radio network node when the handover execution phase is completed, and the target radio network node receives the packet.
  • the uplink data sent by the user equipment and the legacy uplink data are grouped, and the uplink data after the group packet is sent to the source wireless network node through the reverse tunnel.
  • the uplink data remaining on the source wireless network node is discarded, and the user equipment re-sends to the target wireless network node for packetization. .
  • Step 706 Send the re-assembled uplink data sent to the source wireless network node to the source core network node that has connectivity with the source wireless network node to transmit uplink data.
  • the packet reassembly of the uplink data may also be performed at the source radio network node.
  • the target wireless network node sends the received uplink data sent by the user equipment to the reverse tunnel through the reverse tunnel.
  • the source wireless network node the source wireless network node groups the legacy uplink data and the received uplink data.
  • step 410 when the source radio network node receives the resource release request sent by the target network node, the uplink data that is still not packetized is passed.
  • the uplink data forwarding channel is forwarded to the target network node; if the uplink data forwarding channel does not exist, the uplink data that is not yet packetized on the source wireless network node is discarded.
  • the source eNodeB sends a handover request message to the target eNodeB, which has a list of radio bearers that need to be handed over, including all radio bearers that need to be handed over.
  • the source eNodeB adds a reverse tunnel endpoint identifier that is created by itself to the bearer that needs the reverse tunnel, that is, the bearer from the target eNodeB to the source eNodeB, for example, the bearer of the service with higher real-time performance ( Reverse Tunnel Endpoint ID ).
  • Reverse Tunnel Endpoint ID the bearer of the service with higher real-time performance
  • the target eNodeB can buffer the uplink data and wait for the bearer path switching of the uplink data to complete.
  • the target eNodeB is not connected to the source S-GW, and a reverse tunnel has been established in the handover request message.
  • the target eNodeB also determines whether to support forwarding of the downlink data of the UE from the source eNodeB through the downlink data forwarding channel, whether to support forwarding of the uplink data of the UE from the source eNodeB through the uplink data forwarding channel, and assigning the tunnel endpoint identifier to the supported forwarding channel.
  • the target eNobeB feeds back to the source eNodeB, in addition to the accepted handover bearer list and the unaccepted handover bearer list, and whether the uplink/downlink forwarding and forwarding tunnel endpoint identifiers are supported in the accepted handover bearer
  • the accepted switch bearer list it can also indicate which bearers are ready to use the reverse tunnel.
  • the source eNodeB may delete the unused reverse tunnels according to the reverse tunnel usage of the target eNodeB feedback, and of course The deletion process of the unsupported switch bearer.
  • the downlink data of the UE can be delivered to the user along the conventional scheme of switching with the X2 interface.
  • the uplink data of the UE is in the new uplink path, and the target eNodeB needs to reach the source eNodeB through the reverse tunnel through the target eNodeB before the path from the target S-GW to the PDN GW is not completely clear, and then the old data uplink path through the source side. , that is, the source eNodeB to the source Serving Gateway arrives at the PDN GW and the packet data network.
  • the data packet sent from the UE to the eNodeB is a PDCP data packet, and the data packet of the eNodeB to the core network node belongs to the GTP data packet, it is necessary to consider the reassembly of the data packet.
  • the PDCP packet is a packet with sequence number.
  • the eNodeB starts with a low-order PDCP packet and combines several consecutive PDCP packets to form a GTP packet and send it to the S-GW. Two packet schemes are provided here for uplink data transmission through a reverse tunnel.
  • the source eNodeB may send the unpacked PDCP data packet to the target eNodeB via the uplink data forwarding channel, and then the target eNodeB reassembles the PDCP data packet received from the source eNodeB and the newly transmitted PDCP data packet received from the UE into a GTP data packet. Then, the reverse tunnel and the old uplink path on the source side, or the new uplink path are sent to the PDN GW and the packet data network.
  • the advantage of this scheme is that it is relatively simple to implement.
  • the target eNodeB does not perform packet processing, but directly sends the received PDCP data packet to the source eNodeB through the reverse tunnel.
  • the source eNodeB does not need to forward the uplink data to the target eNodeB at first. Instead, it only needs to reassemble the PDCP data packet received from the target eNodeB and the buffered unpacket data into a GTP data packet and send it to the source S-GW, and finally reach the PDN. GW and packet data networks.
  • FIG. 8 is a schematic flow chart of a fifth embodiment of a method for uplink data transmission in a handover process according to the present invention. As shown in Figure 8, the following steps are included:
  • Step 801 Receive, in a handover process of the user equipment to the target wireless network node, a handover request message sent by the source wireless network node, where the handover includes using a wireless network node and a core network by using an interface between the source wireless network node and the target wireless network node. Bearer path switching between nodes and air interface switching of the user equipment from the source wireless network node to the target wireless network node;
  • Step 802 If the handover request message does not carry the routing information of the source core network node, temporarily store the uplink data of the user equipment before the uplink data bearer path is completed.
  • Step 803 After the uplink data bearer path is completed, send the uplink data of the temporarily stored user equipment to the target core network node selected by the mobility management entity to transmit the uplink data.
  • the uplink data transmission method in the handover process provided by the embodiment may delete the core network node information connected to the source wireless network node by using the handover request message sent by the source wireless network node without considering the delay of the uplink data sent by the user equipment.
  • the uplink data is buffered in the target wireless network node, and after the uplink data bearer path is completed, the method for resuming the temporarily stored uplink data is processed to reduce the initial message of the handover initiation. transfer.
  • FIG. 9 is a schematic structural diagram of a first embodiment of a wireless network node according to the present invention.
  • the wireless network node is a source wireless network node for initiating interface switching, and includes: an obtaining module 11, a determining module 12, and a switching initiating module 13.
  • the obtaining module 11 is configured to acquire connectivity information between a target wireless network node and a source core network node that are connected to the source wireless network node, where the target network node connects the source wireless network node, the source wireless network node, and the source by defining the interface.
  • the core network nodes are connected to each other; the determining module 12 is configured to determine, according to the connectivity information acquired by the obtaining module 11, whether the target wireless network node and the source core network node have connectivity; the handover initiating module 13 is configured to determine in the determining module 12 When there is connectivity between the target wireless network node and the source core network node, the handover of the user equipment to the target wireless network node is initiated, and the handover includes the wireless network node and the core network node using the interface between the source wireless network node and the target wireless network node. Between The bearer path switch and the air interface switch of the user equipment from the source wireless network node to the target wireless network node.
  • the wireless network node provided in this embodiment can learn the connectivity between the target wireless network node and the source core network node before the source wireless network node initiates the handover request, so that it is not necessary to initiate a handover request to try to switch. Reduced switching delays.
  • FIG. 10 is a schematic structural diagram of a second embodiment of a wireless network node according to the present invention.
  • the wireless network node includes the obtaining module 11, the determining module 12, and the switching initiating module 13 in the foregoing embodiment, and further includes: a configuration module 14 configured to configure a sharing list, where the sharing list includes each wireless The connectivity information of the network node and the core network node to which it is connected or the core network node pool to which it belongs, wherein the wireless network node includes a source wireless network node and a target wireless network node; and an update module 15 is configured to update each wireless in the shared list The connectivity information of the network node and the core network node to which it is connected or the core network node pool to which it belongs; the recording module 16 is configured to record the target wireless network node when the target wireless network node determines that it is not connected to the source core network node The returned information that is not connected to the source core network node.
  • the wireless network node provided in this embodiment can learn the connectivity between the target wireless network node and the source core network node before the source wireless network node initiates the handover request, so that it is not necessary to initiate a handover request to try to switch. Reduced switching delays.
  • FIG. 11 is a schematic structural diagram of a third embodiment of a wireless network node according to the present invention.
  • the wireless network node is a target wireless network node for accepting handover, and includes: an establishing module 21 and a forwarding module 22.
  • the establishing module 21 is configured to establish a reverse tunnel from the target wireless network node to the source wireless network node during the handover of the user equipment to the target wireless network node, where the handover includes using the source wireless network node and the target wireless network node Wireless network node And the bearer path switching between the core network node and the air interface of the user equipment from the source wireless network node to the target wireless network node; the forwarding module 22 is configured to: after the air interface switching is completed, before the bearer path switching of the uplink data is completed, After the establishing module 21 establishes the reverse tunnel, the uplink data sent by the user equipment is sent to the source wireless network node through a reverse tunnel.
  • the wireless network node provided in this embodiment can maintain the uplink by using the old path to transmit uplink data when the target wireless network node and the source core network node have no connectivity before the bearer path switching of the uplink data is completed. Real-time data transmission, reducing latency, enabling users to get a better switching experience.
  • FIG. 12 is a schematic structural diagram of a fourth embodiment of a wireless network node according to the present invention.
  • the wireless network node includes the establishing module 21 and the forwarding module 22 in the foregoing embodiment, where the establishing module 21 includes: the receiving module 211 is configured to receive each bearer carried by the source wireless network node and carrying the uplink data. a handover request message of the reverse tunnel route identifier that is separately created; the sending module 212 is configured to send a handover request response message, where the handover request response message indicates the bearer received by the target network node and the unaccepted bearer, to complete the target wireless network node to Establishment of a reverse tunnel between source wireless network nodes.
  • the wireless network node provided in this embodiment can maintain the uplink by using the old path to transmit uplink data when the target wireless network node and the source core network node have no connectivity before the bearer path switching of the uplink data is completed. Real-time data transmission, reducing latency, enabling users to get a better switching experience.
  • FIG. 13 is a schematic structural diagram of a first embodiment of a system for uplink data transmission in a handover process according to the present invention.
  • the system includes: a wireless network node that is a source wireless network node 31 for initiating handover, as described in FIG. 9 or FIG. 10 above; and a target wireless network node 32, for After the air interface switching is completed, before the bearer path switching of the uplink data is completed, the uplink data sent by the received user equipment is sent; the source core network node 33 is configured to receive the uplink data sent by the target wireless network node, and send the data to the packet data. In the network to transmit uplink data.
  • the system for uplink data transmission in the handover process provided by this embodiment can obtain the connectivity between the target wireless network node and the source core network node before the source wireless network node initiates the handover request, thereby eliminating the need to initiate a handover request multiple times. Try to switch, reducing the switching delay.
  • FIG. 14 is a schematic structural diagram of a second embodiment of a system for uplink data transmission in a handover process according to the present invention.
  • the system includes: a wireless network node that is a target wireless network node 41 for accepting handover as described above with reference to FIG. 11 or FIG. 12; and a source wireless network node 42 for each of uplink data.
  • the bearer respectively creates a reverse tunnel route identifier, and sends a bearer path switch of the uplink request data of the handover request message carrying the reverse tunnel route identifier;
  • the source core network node 43 is configured to receive the target wireless network node and send the data to the source wireless network through the reverse tunnel.
  • the uplink data of the node is sent to the packet data network to transmit the uplink data.
  • the system for uplink data transmission in the handover process provided in this embodiment may use the old path to transmit uplink through the reverse tunnel when there is no connectivity between the target wireless network node and the source core network node before the bearer path switching of the uplink data is completed.
  • the data can maintain the real-time transmission of uplink data and reduce the delay, so that the user can get a better switching experience.
  • the storage medium may be a magnetic disk, an optical disk, or a read-only storage memory (Read-Only) Memory, ROM) or random access "" Random Access Memory (RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

切换过程中上行数据传输的方法、 系统及无线网络节点 技术领域
本发明涉及移动通信技术领域, 特别涉及一种切换过程中上行数据传输 的方法、 系统及无线网络节点。 背景技术 中, 各厂商都在积极研究长期演进(Long Term Evolved, LTE ) /系统架构演 进( System Architecture Evolved, SAE ) 网络。 LTE/SAE网络是一种能够降 低时延、 提高用户数据传输速率、 改进系统容量和低成本覆盖的网络。 LTE/SAE网络使用分组交换(Packet Switching, PS )域业务, 承载都为因特 网协议(Internet Protocol, IP )承载。 该 LTE/SAE网络中的移动性管理实体 ( Mobility Management Entity, MME )通过 Sl-MME接口与演进全球陆地无 线接入网 ( Evolved Universal Terrestrial Radio Access Network, E-UTRAN ) 连接, 服务网关( Serving Gateway, S-GW )通过 Sl-U接口与 E-UTRAN连 接; 其中 E-UTRAN由演进基站(Evolved Node B, eNodeB )组成, eNodeB 之间可以通过 X2接口互联。
在 LTE/SAE网络中, 处于连接状态的用户设备( User Equipment , UE ) 从一个 eNodeB 即源 eNodeB 的控制区域进入到另外一个 eNodeB 即目标 eNodeB的控制区域时,有时需要进行 X2接口的控制信令和传输数据的切换。 在进行基于 X2接口的切换时, MME不会改变, 但 S-GW可能会改变, 即由 源 S-GW切换到目标 S-GW。基于 X2接口的切换过程分为切换准备阶段、切 换执行阶段和切换完成阶段三部分。切换准备阶段主要是完成在目标 eNodeB 上的资源预留过程;切换执行阶段完成空口切换过程,包括 UE到目标 eNodeB 的控制区域的同步、 目标 eNodeB为 UE分配接入信道等; 切换完成阶段主要 执行的是核心网的承载的切换过程, 包括目标 eNodeB到 S-GW上的上行承 载 /下行承载的建立以及 S-GW 向分组数据网络网关 (Packet Data Network Gateway , PDN GW )发起的承载信息的更新过程等。
现有技术的基于 X2接口的切换准备阶段包括: 由源 eNodeB发送切换请 求(HANDOVER REQUEST ) 消息给目标 eNodeB, 对于接收到的 UE发送 的上行数据来说, 该切换请求消息中要携带包括源 S-GW的路由信息的承载 列表信息, 用于目标 eNodeB获知上行数据发往哪个 S-GW及其承载的数据 通道地址, 目标 eNodeB预留所需资源并发送切换请求响应 (HANDOVER REQUEST ACKNOWLEDGE ) 消息至源 eNodeB; 目标 eNodeB还可以在切 换请求响应消息中指示源 eNodeB 可将哪些承载的上行数据转发到目标 eNodeB, 以使 UE发送到源 eNodeB上的遗留 (或未组包的 )上行数据可以 转发到目标 eNodeB, 并由目标 eNodeB发往 S-GW。 对于发往 UE的下行数 据, 源 eNodeB会在切换请求消息中指示哪些承载需要进行下行数据的转发, 目标 eNodeB 节点可以在切换请求响应消息中提供接收下行数据的隧道端点 信息, 使得下行数据通过源 eNodeB 转发至目标 eNodeB。 当然如果目标 eNodeB 不准备接受任何一条承载或者在该切换准备阶段出现错误, 则目标 eNodeB会回复一条切换准备失败消息给源 eNodeB, 并标明错误原因。 此后, 源 eNodeB会做进一步的处理, 例如释放为切换准备分配的资源或者尝试切 换到其它 eNodeB。
现有技术在发生基于 X2接口的切换时, 如果改变了 S-GW, 则切换完成 阶段包括: 通过目标 eNodeB、 MME、 目标 S-GW和 PDN GW之间的信令交 互,首先完成下行数据发送过程的切换,即将 PDN GW→源 S-GW→源 eNodeB →UE的下行数据发送过程切换成 PDN GW→目标 S-GW→目标 eNodeB→UE 的下行数据发送过程, 在切换过程中可能出现 PDN GW 源 S-GW 源 eNodeB→目标 eNodeB→ UE的下行数据发送过程; 然后完成上行数据发送过 程的切换, 即 UE→源 eNodeB→源 S-GW→PDN GW的上行数据发送过程切 换成 UE→目标 eNodeB→目标 S-GW→PDN GW的上行数据发送过程, 在切 换过程中若目标 eNodeB与源 S-GW连通则可能出现 UE→目标 eNodeB→源 S-GW→PDN GW的上行数据发送过程。最后释放源 eNodeB和源 S-GW上的 资源。
从上述描述可知,在下行数据发送过程的切换完成之前, UE的下行数据 可能通过 PDN GW经源 S-GW到源 eNodeB, 然后被转发到目标 eNodeB, 最 终下发到 UE。 在上行数据发送过程的切换完成之前, UE緩存或遗留在源 eNodeB上的上行数据可被转发到目标 eNodeB, UE接入到目标 eNodeB后新 发的上行数据到目标 eNodeB, 也需要尽快上发到核心网络。 如前描述的切换 准备阶段, 目标 eNodeB已经从切换请求消息中获得了源 S-GW的路由信息, 若目标 eNodeB与源 S-GW具有 IP连通性, 则目标 eNodeB可直接将 UE发 给它的或经过源 eNodeB转发的上行数据发往源 S-GW,源 S-GW再将这些上 行数据发往 PDN GW。
但是, 现有技术中, 如果目标 eNodeB发现源 S-GW不可及即无连通性, 则不能进行上行数据的传输。 因此, 源 eNodeB 只能依赖不断的切换尝试来 获知 X2接口对端的目标 eNodeB具备的与不同 S-GW之间的 IP连通性情况。 或者, 当目标 eNodeB发现源 S-GW不可及时,将所有 UE发送的上行数据先 緩存到目标 eNodeB中, 直到上行数据发送过程的切换完成再传输上行数据。 但是, 这样会导致上行数据在网络中的处理时延加长甚至上行传输中断。 发明内容
本发明实施例目的在于提供一种切换过程中上行数据传输的方法、 系统 及无线网络节点,以使切换过程中用户设备发送的上行数据可以正常的发送。
根据本发明实施例的一方面, 提供了一种切换过程中上行数据传输的方 法, 包括:
获取与源无线网络节点有接口连接的目标无线网络节点和源核心网络节 点间的连通性信息;
确定所述目标无线网络节点和所述源核心网络节点间具有连通性, 并发 起用户设备到所述目标无线网络节点的切换, 所述切换包括利用所述源无线 网络节点和所述目标无线网络节点间的接口进行的所述无线网络节点和所述 核心网络节点之间的承载路径切换以及所述用户设备从所述源无线网络节点 到所述目标无线网络节点的空中接口切换;
在所述空中接口切换完成后、 上行数据的承载路径切换完成之前, 将接 收到的用户设备发送的上行数据通过所述目标无线网络节点发送到所述源核 心网络节点以传输所述上行数据。
根据本发明实施例的另一方面, 提供了一种切换过程中上行数据传输的 方法, 包括:
在用户设备到目标无线网络节点的切换过程中, 建立从目标无线网络节 点到源无线网络节点间的反向隧道, 所述切换包括利用所述源无线网络节点 和所述目标无线网络节点间的接口进行的所述无线网络节点和所述核心网络 节点之间的承载路径切换以及所述用户设备从所述源无线网络节点到所述目 标无线网络节点的空中接口切换;
在所述空中接口切换完成后、 上行数据的承载路径切换完成之前, 用户 设备发送到所述目标无线网络节点的上行数据通过所述反向隧道发送到所述 源无线网络节点, 再发送到与所述源无线网络节点具有连通性的源核心网络 节点以传输所述上行数据。
根据本发明实施例的另一方面, 提供了一种切换过程中上行数据传输的 方法, 包括:
在用户设备到目标无线网络节点的切换过程中, 接收源无线网络节点发 送的切换请求消息, 所述切换包括利用所述源无线网络节点和所述目标无线 网络节点间的接口进行的所述无线网络节点和所述核心网络节点之间的承载 路径切换以及所述用户设备从所述源无线网络节点到所述目标无线网络节点 的空中接口切换;
若所述切换请求消息中未携带源核心网络节点的路由信息 , 则在上行数 据承载路径切换完成之前, 暂存用户设备的上行数据;
在上行数据承载路径切换完成之后, 将暂存的所述用户设备的上行数据 发送至移动性管理实体选择的目标核心网络节点。
根据本发明实施例的另一方面, 提供了一种无线网络节点, 为用于发起 切换的源无线网络节点, 包括:
获取模块, 用于获取与所述源无线网络节点有接口连接的目标无线网络 节点和源核心网络节点间的连通性信息;
判断模块, 用于根据所述获取模块获取的所述连通性信息, 判断所述目 标无线网络节点和所述源核心网络节点间是否具有连通性;
切换发起模块, 用于在所述判断模块确定所述目标无线网络节点和所述 源核心网络节点间具有连通性时, 发起用户设备到所述目标无线网络节点的 切换, 所述切换包括利用所述源无线网络节点和所述目标无线网络节点间的 接口进行的所述无线网络节点和所述核心网络节点之间的承载路径切换以及 所述用户设备从所述源无线网络节点到所述目标无线网络节点的空中接口切 换。
根据本发明实施例的另一方面, 提供了一种无线网络节点, 为用于接受 切换的目标无线网络节点, 包括:
建立模块, 用于在用户设备到目标无线网络节点的切换过程中, 建立从 所述目标无线网络节点到源无线网络节点间的反向隧道, 所述切换包括利用 所述源无线网络节点和所述目标无线网络节点间的接口进行的所述无线网络 节点和所述核心网络节点之间的承载路径切换以及所述用户设备从所述源无 线网络节点到所述目标无线网络节点的空中接口切换;
转发模块, 用于在所述空中接口切换完成后、 上行数据的承载路径切换 完成之前, 在所述建立模块建立了所述反向隧道后, 将用户设备发送的上行 数据通过所述反向隧道发送到所述源无线网络节点。
根据本发明实施例的另一方面, 提供了一种切换过程中上行数据传输的 系统, 包括: 如上所述的为用于发起切换的源无线网络节点的无线网络节点; 以及
目标无线网络节点, 用于在所述空中接口切换完成后、 上行数据的承载 路径切换完成之前, 发送接收到的用户设备发送的上行数据;
源核心网络节点, 用于接收所述目标无线网络节点发送的上行数据, 并 发送到分组数据网络中。
根据本发明的另一方面, 提供了一种切换过程中上行数据传输的系统, 包括: 如上所述的为用于接受切换的目标无线网络节点的无线网络节点; 以 及
源无线网络节点, 用于为上行数据的各个承载分别创建反向隧道路由标 识, 并发送携带所述反向隧道路由标识的切换请求消息;
上行数据的承载路径切换源核心网络节点, 用于接收所述目标无线网络 节点通过反向隧道发送至所述源无线网络节点的上行数据, 并发送到分组数 据网络中。
由以上技术方案可知,本发明实施例的切换过程中上行数据传输的方法、 系统及无线网络节点, 通过在无线网络节点之间共享核心网络节点与无线网 络节点的连通性信息, 使源无线网络节点可以及早的判决要发起何种类型的 切换, 尽量避免源无线网络节点发起切换请求后还要处理切换失败的信息, 继而发起新的切换的过程; 另外, 即使目标无线网络与和源无线网络节点连 通的核心网络节点间无 IP连通性, 也可以通过建立目标无线网络节点到源无 线网络节点的反向隧道, 再利用源无线网络节点到与其连通的核心网络节点 最终到分组数据网络网关的旧通路, 来维持上行数据的实时传递; 当然若不 考虑用户设备发送的上行数据的时延, 也可以在源无线网络节点发送的切换 请求消息中删除与其连通的核心网络节点信息, 而在上行数据的承载路径切 换完成之前, 将上行数据緩存在目标无线网络节点中, 等到上行数据承载路 径建成后, 再续发暂存的上行数据的方法来处理, 减少切换发起之初的消息 传递。 附图说明
图 1为本发明长期演进 /系统架构演进网络架构示意图;
图 2 为本发明切换过程中上行数据传输的方法第一实施例的流程示意 图;
图 3为本发明实施例的无线网络节点间的接口切换准备阶段的信令流程 图;
图 4为本发明实施例的无线网络节点间的接口切换完成阶段的信令流程 图;
图 5A 为本发明切换过程中上行数据传输的方法第二实施例的信令流程 图;
图 5B 为本发明切换过程中上行数据传输的方法第二实施例的另一信令 流程图;
图 5C 为本发明切换过程中上行数据传输的方法第二实施例的又一信令 流程图;
图 6 为本发明切换过程中上行数据传输的方法第三实施例的流程示意 图;
图 7 为本发明切换过程中上行数据传输的方法第四实施例的流程示意 图;
图 8 为本发明切换过程中上行数据传输的方法第五实施例的流程示意 图;
图 9为本发明无线网络节点第一实施例的结构示意图;
图 10为本发明无线网络节点第二实施例的结构示意图; 图 11为本发明无线网络节点第三实施例的结构示意图;
图 12为本发明无线网络节点第四实施例的结构示意图;
图 13 为本发明切换过程中上行数据传输的系统第一实施例的结构示意 图;
图 14 为本发明切换过程中上行数据传输的系统第二实施例的结构示意 图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例通过在无线网络节点之间共享核心网络节点与无线网络节 点的连通性信息, 使发起接口切换的无线网络节点, 即源无线网络节点可以 及早的判决要发起何种类型的切换, 例如 X2接口切换或者 S1切换, 尽量避 免源无线网络节点发起切换请求后还要处理切换失败的信息, 继而发起新的 切换的过程。 另外, 即使要切换到的无线网络节点, 即目标无线网络节点与 和源无线网络节点连通的核心网络节点间无 IP连通性, 也可以通过建立目标 无线网络节点到源无线网络节点的反向隧道, 再利用源无线网络节点到与其 连通的核心网络节点最终到分组数据网络网关的旧通路, 来维持上行数据的 实时传递。 当然若不考虑用户设备发送的上行数据的时延, 也可以在源无线 网络节点发送的切换请求消息中删除与其连通的核心网络节点信息, 而在上 行数据的承载路径切换完成之前, 将上行数据緩存在目标无线网络节点中, 等到上行数据承载路径建成后, 再续发暂存的上行数据的方法来处理, 减少 切换发起之初的消息传递。
图 1为本发明长期演进 /系统架构演进网络架构示意图。 下面对本网络中 的各个设备的功能及其之间的接口关系进行简单说明。
移动性管理实体(MME ) 的功能是保存用户设备(UE ) 的移动性管理 上下文, 如用户的标识, 移动性管理状态、 位置信息等, 并对非接入层(Non Access Stratum, NAS )信令进行处理, 负责 NAS信令的安全等。
系统架构演进网关( SAE Gateway ) 包括两部分: 服务网关 ( S-GW )和 分组数据网络网关( PDN GW ) 。 S-GW与 PDN GW是两个逻辑实体, 可以 存在于同一个或不同的物理实体上。
S-GW上保存 UE的用户面上下文, 如 UE的 IP地址和路由信息, 执行 合法监听、 分组数据路由功能等。 S-GW与 MME之间的接口是 S11 , 负责 MME和 S-GW之间的通信,进行 UE的移动性管理信息与会话控制信息等交 互。
PDN GW负责 UE接入到分组数据网的用户面锚点功能, 通过 SGi参考 点与外部分组数据网进行通信, 具有分组路由和转发的功能, 并负责策略计 费增强功能、基于每个用户的分组过滤功能等。 PDN GW通过 S5接口与 S-GW 相连, 传递承载建立 /修改 /删除等控制信息, 以及分组数据路由等。
演进全球陆地无线接入网 ( Evolved Universal Terrestrial Radio Access Network, E-UTRAN )是演进网络的无线接入网, 由演进基站 ( eNodeB )组 成 , eNodeB之间可以通过 X2接口互联。
MME通过 S1-MME与 E-UTRAN负责控制面的连接, S-GW通过 S1-U 与 E-UTRAN负责用户面的连接。
另外, 该网络中还包括: 作为一个基本的组成网元的服务 GPRS支持节 点 ( SGSN ) , 以及通过 S7接口向 PDN GW传递服务质量和计费策略控制等 信息的策略计费规则功能( Policy and Charging Rules Function, PCRF ) 。
在 LTE/SAE网络中, 处于连接状态的 UE从一个 eNodeB, 即源 eNodeB 的控制区域进入到另外一个 eNodeB, 即目标 eNodeB的控制区域时, 有时需 要进行 X2接口的控制信令和传输数据的切换。 当基于 X2接口的切换不可使 用时, 也可使用基于 SI接口的切换。 其中基于 S1接口的切换过程可能定位 到新的 MME, 也可能定位到新的 MME和 S-GW。 基于 S1接口的切换的发 起不同于基于 X2接口的切换, 源 eNodeB将直接发起切换请求到源 MME, 而非基于 X2接口的切换中的目标 eNodeB。 SI切换的具体流程可参考 3GPP TS 23.401协议, 在此不加以详述。
图 2 为本发明切换过程中上行数据传输的方法第一实施例的流程示意 图。 本实施例通过在建立空中接口连接关系的无线网络节点之间共享无线网 络节点和核心网络节点间的连通性信息, 从而在源无线网络节点要发起接口 切换时就能决定发起何种类型的切换。 如图 2所示, 包括如下步骤:
步骤 201、 获取与源无线网络节点有接口连接的目标无线网络节点和源 核心网络节点间的连通性信息;
步骤 202、 确定目标无线网络节点和源核心网络节点间具有连通性, 并 发起用户设备到目标无线网络节点的切换, 该切换主要包括利用源无线网络 节点和目标无线网络节点间的接口进行的无线网络节点和核心网络节点之间 的承载路径切换以及用户设备从源无线网络节点到目标无线网络节点的空中 接口切换;
步骤 203、 在空中接口切换完成后、 上行数据的承载路径切换完成之前, 用户设备发送的上行数据将通过目标无线网络节点发送到源核心网络节点以 传输上行数据。
具体地 , 以图 1所示的 LTE/SAE网络架构下的 UE在两个 eNodeB间的 接口切换为例, 但并不限于此切换, 此处无线网络节点即 eNodeB, 核心网络 节点即 S-GW。 首先要完成 UE从源 eNodeB到目标 eNodeB的空中接口的切 换,且还要进行基于源 eNodeB和目标 eNodeB之间 X2接口的 eNodeB和 PDN GW之间承载路径的切换, 一般包括切换准备阶段、 切换执行阶段和切换完 成阶段。 在进行 X2接口的切换过程中, UE仍然要进行上行数据的传输和下 行数据的接收。如果发起了 X2接口的切换,但是目标 eNodeB和源 S-GW之 间不具有 IP连通性的话,在切换完成阶段完成上行数据的承载路径切换之前, 就无法进行上行数据的传输, 可能就会导致本次切换失败。 本实施例中步骤
201先由源 eNodeB获取目标 eNodeB与源 S-GW的连通性信息;然后步骤 202 中若源 eNodeB确定了目标 eNodeB与源 S-GW具有 IP连通性,就由源 eNodeB 发起 UE从源 eNodeB到目标 eNodeB的切换, 其中包括空中接口的切换和 eNodeB和 PDN GW之间承载路径的切换,此时,在空中接口的切换完成(切 换准备阶段和切换执行阶段完成)后、 上行数据的承载路径切换完成(切换 完成阶段完成)之前, 可以执行步骤 203 , 即 UE发送的上行数据可以通过目 标 eNodeB发送到源 S-GW以正常传输上行数据。
本实施例提供的切换过程中上行数据传输的方法, 可以在源无线网络节 点发起切换请求之前就获知目标无线网络节点与源核心网络节点之间的连通 性, 从而无需通过多次发起切换请求来尝试是否可以切换, 减少了切换延时。
图 3为本发明实施例的无线网络节点间的接口切换准备阶段的信令流程 图。 在上述实施例中, 当源 eNodeB判断可以发起基于 X2接口的切换时, 如 图 3所示, 包括如下步骤:
步骤 301、 源 eNodeB发送切换请求(HANDOVER REQUEST ) 消息至 目标 eNodeB;
该切换请求消息中带有需要转移到目标 eNodeB 的无线承载( E-RAB ) 列表, 该列表中的每个 E-RAB 项带有源 S-GW 的路由信息, 其中包括源 eNodeB所连接的 S-GW的 IP地址和隧道端点标识(Tunnel Endpoint ID, TEID ) , 用于告知目标 eNodeB其接收到的上行数据可以发往哪个 S-GW及 其传输数据的通道。
步骤 302、 若有一条或者多条无线承载可被目标 eNodeB接受, 则目标 eNodeB 将在其上预留出所需的资源, 并发送切换请求响应 (HANDOVER REQUEST ACKNOWLEDGE ) 消息至源 eNodeB;
该切换请求响应消息中带有其接受的无线承载列表, 以及没有接受的无 线承载列表及其原因, 如负载大、 带宽不够等原因。
在切换准备阶段的资源预留过程中, 源 eNodeB还可以在切换请求消息 中指示哪些无线承载需要进行下行数据转发, 且目标 eNodeB可以在切换请 求响应消息中提供下行数据 GPRS隧道协议( GPRS Tunneling Protocol, GTP ) 隧道端点标识(DL GTP TEID ) , 使得源 eNodeB可以通过下行数据转发通 道执行下行数据的转发。 对应地, 目标 eNodeB 还可以在切换请求响应消息 中提供上行数据 GTP隧道端点标识( UL GTP TEID ) , 指示源 eNodeB可将 哪些无线承载的上行数据通过此上行数据转发通道转发到目标 eNodeB。
在切换准备阶段主要完成目标 eNodeB上的资源预留过程, 在切换执行 阶段完成 UE从源 eNodeB到目标 eNodeB的空中接口的切换。 至此 UE发送 的上行数据将直接发送至目标 eNodeB,那么在切换完成阶段完成上行数据的 承载路径切换之前, 用户设备发送的上行数据可以通过目标 eNodeB 到源 S-GW再到 PDN GW, 从而传输至分组数据网络中。
图 4为本发明实施例的无线网络节点间的接口切换完成阶段的信令流程 图。 如图 4所示, 包括如下步骤:
步骤 401、 目标 eNodeB发送路径切换请求消息至 MME, 告知 MME— UE已经更改了小区, 并且在该路径切换请求消息中携带目标 eNodeB未接受 的无线承载列表, 然后 MME发起删除这些无线承载在核心网的资源的过程。
步骤 402、 MME根据 S-GW选择功能,如考虑负载、目标 eNodeB与 S-GW 的连通性等因素, 为 UE重新选择为其服务的 S-GW, 即目标 S-GW。
步骤 403、 MME接收到路径切换请求后, 向目标 S-GW发起承载建立请 求, 一条承载建立请求只能单独建立一条到核心网的承载, 无线承载没有被 接受的, MME不再向目标 S-GW发起承载建立请求;该承载建立请求中包含 目标 eNodeB的用户面路由信息, 其中包括 TEID, 用于该切换完成阶段完成 后下行数据的传输。
步骤 404、 目标 S-GW在接收到承载建立请求以后, 为该承载分配上行 数据传输的链路资源, 即为上行数据传输的链路分配一个 TEID。
步骤 405、 目标 S-GW发送更新承载请求至 PDN GW, 告知该 PDN GW 为其分配的下行数据传输的 TEID。
步骤 406、 PDN GW更新 S-GW的地址信息, 并向 S-GW发送更新承载 响应消息, 此时, PDN GW就可以通过目标 S-GW到目标 eNodeB发送下行 数据, 下行数据切换过程完成。 该更新承载响应消息还携带 PDN GW 的
TEID, 以使目标 S-GW也知道将其承载的上行数据通过哪个隧道发到 PDN
GW。
步骤 407、 目标 S-GW向 MME发送承载建立响应消息, 其中携带目标 S-GW为上行数据传输分配的 TEID。
步骤 408、 MME收到该承载建立响应消息以后, 启动一个记时器。
步骤 409、 MME向目标 eNodeB返回路径切换响应消息, 其中携带目标 S-GW为目标 eNodeB的上行数据传输分配的 TEID。
步骤 410、 目标 eNodeB在收到路径切换响应消息以后, 通知源 eNodeB 释放无线资源, 至此, 目标 eNodeB可以通过目标 S-GW向 PDN GW发送上 行数据, 上行数据的承载路径切换完成。
步骤 411、 当步骤 408启动的记时器超时以后, MME发起到源 S-GW的 资源释放。
步骤 412、 源 S-GW返回资源释放结果响应到源 MME。
另外, 在必要时, UE还可以执行其位置更新的流程, 在此不再详述。 图 5A 为本发明切换过程中上行数据传输的方法第二实施例的信令流程 图。 本实施例仅对步骤 201获取与源无线网络节点有接口连接的目标无线网 络节点和源核心网络节点间的连通性信息进行具体描述。 具体为: 获取多个 无线网络节点间配置的共享列表中的连通性信息, 共享列表中包括各个无线 网络节点和其连接的核心网络节点或其所属的核心网络节点池的连通性信 息。如图 5 A所示,以两个 eNodeB之间共享连通性信息为例, 包括如下步骤: 步骤 501a、 eNodeBj向 eNodeB2发送 X2接口建立请求消息 , 该 X2接口 建立请求中携带 eNodeBi连接的 S-GW列表或 S-GW池列表;
步骤 502a、 eNodeB2记录下与 eNodeB连接的 S-GW或 S-GW池的连通 性信息, 或者只记录下与 eNodeBi共享的 S-GW或 S-GW池的连通性信息; 步骤 503a、 eNodeB2向 eNodeB发送 X2接口建立响应消息, 该 X2接口 建立响应消息中携带 eNodeB2连接的 S-GW列表或 S-GW池列表;
步骤 504a、 eNodeB S录下与 eNodeB2连接的 S-GW或 S-GW池的连通 性信息, 或者只记录下与 eNodeB2共享的 S-GW或 S-GW池的连通性信息。
其中, eNodeB 可以表示源 eNodeB , eNodeB2可以表示目标 eNodeB。 图 5B为本发明切换过程中上行数据传输的方法第二实施例的另一信令流 程图。本实施例仅对步骤 201获取与源无线网络节点有接口连接的目标无线网 络节点和源核心网络节点间的连通性信息进行具体描述。 具体为: 当源无线网 络节点所连接的核心网络节点或该源无线网络节点所属的核心网络节点池变 更时,源无线网络节点发送变更通知消息至与该源无线网络节点有接口连接的 目标无线网络节点;目标无线网络节点接收到变更通知消息后,更新共享列表; 返回变更通知响应消息至源无线网络节点。 如图 5B所示, 各个无线网络节点 间通过配置更新过程用来更新它们之间的应用层数据, 为它们的互操作做准 备, 其中配置的更新消息包括更新的小区信息和 MME列表信息; 本实施例主 要以描述两个 eNodeB之间更新连通性信息为例, 包括如下步骤:
步骤 501b、 eNodeB!配置更新, 其中包括 eNodeB 更新的 S-GW列表或 者更新的 S-GW池列表;
步骤 502b、 eNodeB 发送变更通知消息至 eNodeB2, 该变更通知消息中 携带 eNodeB 配置的更新消息;
步骤 503b、 eNodeB2更新其存储的 eNodeB^ S-GW列表或 S-GW池列 表的连通性信息, 或者更新与 eNodeB共享的 S-GW列表或 S-GW池列表的 连通性信息; 步骤 504b、 eNodeB2在返回至 eNodeB 变更通知响应消息中携带由于 eNodeB 更新的 S-GW列表或 S-GW池列表的连通性带来的 eNodeB2上的连 通性改变信息;
步骤 505b、 eNodeB!需要更新与 eNodeB2共享的 S-GW或 S-GW池的连 通性信息。
若 eNodeB存储的为相邻 eNodeB的所有 S-GW或 S-GW池的连通性信 息, 则在 eNodeB2返回的变更通知响应消息中可以不携带连通性改变信息, 因为 eNodeB 自身可以判断其和 S-GW或 S-GW池的连通性改变所带来的共 享连接的改变。
图 5C 为本发明切换过程中上行数据传输的方法第二实施例的又一信令 流程图。 在执行上述步骤 202后, 由于目标无线网络节点临时不可达源核心 网络节点或是没有及时更新连通性信息等一些原因, 目标无线网络节点可能 还是不可达源核心网络节点。 则还包括: 若目标无线网络节点判断其和源核 心网络节点间不连通, 则目标无线网络节点返回信息不可达消息至源无线网 络节点; 源无线网络节点记录目标无线网络节点与源核心网络节点不连通。 如图 5C所示, 以发起切换请求的 eNodeB为源 eNodeB, 要切换到的 eNodeB 为目标 eNodeB为例, 切换准备阶段还可以具体包括如下步骤:
步骤 501c、源 eNodeB发送切换请求消息至目标 eNodeB时,携带有 MME 和源 S-GW的路由信息;
步骤 502c、 目标 eNodeB判断源 S-GW是否可达, 若不可达, 则返回源
S-GW不可达错误信息至源 eNodeB;
步骤 503c、源 eNodeB接收到该错误信息后,记录目标 eNodeB和源 S-GW 无连接, 以在下次需要进行类似切换时, 尽早做出发起其他切换的判断。
上述图 5A〜图 5C具体描述了几种获取目标无线网络节点和源核心网络 节点的连通性的方式, 从而可以在源无线网络节点发起切换请求之前就获知 目标无线网络节点与源核心网络节点之间的连通性, 无需通过多次发起切换 请求来尝试是否可以切换, 减少了切换延时。
图 6 为本发明切换过程中上行数据传输的方法第三实施例的流程示意 图。 本实施例通过建立目标无线网络节点到源无线网络节点的反向隧道, 再 利用源无线网络节点到与其连通的核心网络节点最终到分组数据网络网关的 旧通路, 来维持上行数据的实时传递。 如图 6所示, 包括如下步骤:
步骤 601、 在用户设备到目标无线网络节点的切换过程中, 建立从目标 无线网络节点到源无线网络节点间的反向隧道, 切换包括利用源无线网络节 点和目标无线网络节点间的接口进行的无线网络节点和核心网络节点之间的 承载路径切换以及用户设备从源无线网络节点到目标无线网络节点的空中接 口切换;
步骤 602、 在空中接口切换完成后、 上行数据的承载路径切换完成之前, 用户设备发送到目标无线网络节点的上行数据通过反向隧道发送到源无线网 络节点, 再发送到与源无线网络节点具有连通性的源核心网络节点以传输上 行数据。
在切换准备阶段建立反向隧道后, 可以保证在图 4的切换完成阶段完成 上行数据的承载路径切换之前, 将用户设备发送到目标无线网络节点的上行 数据通过反向隧道发送到源无线网络节点, 再发送到与源无线网络节点具有 连通性的源核心网络节点以传输上行数据。
本实施例提供的切换过程中上行数据传输的方法可以在上行数据的承载 路径切换完成之前,在目标无线网络节点与源核心网络节点间没有连通性时, 通过反向隧道利用旧的通路传输上行数据, 可以维持上行数据的实时发送, 减少时延, 使用户得到更好的切换体验。
图 7 为本发明切换过程中上行数据传输的方法第四实施例的流程示意 图。 如图 7所示, 包括如下步骤:
步骤 701、 在用户设备从源无线网络节点到目标无线网络节点的切换过 程中, 源无线网络节点为上行数据的各个承载分别创建反向隧道路由标识, 其中切换包括利用源无线网络节点和目标无线网络节点间的接口进行的无线 网络节点和核心网络节点之间的承载路径切换以及用户设备从源无线网络节 点到目标的无线网络节点的空中接口切换。
步骤 702、 源无线网络节点发送携带反向隧道路由标识的切换请求消息。 步骤 703、 目标无线网络节点接收到切换请求消息后, 返回切换请求响 应消息, 切换请求响应消息中指示目标无线网络节点接受的承载和未接受的 承载。
步骤 704、 源无线网络节点接收到切换请求响应消息后, 删除未接受的 承载的反向隧道路由信息, 以完成目标无线网络节点到源无线网络节点间的 反向隧道的建立。
步骤 705、 在空中接口切换完成后、 上行数据的承载路径切换完成之前, 用户设备发送到目标无线网络节点的上行数据通过反向隧道发送到源无线网 络节点;
由于用户设备发送到无线网络节点封装的数据包格式和无线网络节点发 送到核心网络节点封装的数据包格式不同, 因此在将上行数据发往源核心网 络前要进行包重组。 如果在目标无线网络节点上进行包重组, 具体包括: 源 无线网络节点将完成切换执行阶段时遗留在源无线网络节点上的遗留上行数 据转发到目标无线网络节点, 由目标无线网络节点对其接收的用户设备发送 的上行数据和遗留上行数据进行组包, 将组包后的上行数据通过反向隧道发 送到源无线网络节点。 若源无线网络节点和目标无线网络节点间不存在上行 数据转发通道, 此时遗留在源无线网络节点上的上行数据就要被丟弃, 由用 户设备重新发送至目标无线网络节点以进行组包。
步骤 706、 将发送到源无线网络节点的重新组包后的上行数据发送到与 源无线网络节点具有连通性的源核心网络节点以传输上行数据。
在上述步骤 705中, 也可以在源无线网络节点进行上行数据的包重组。 目标无线网络节点将接收到的用户设备发送的上行数据通过反向隧道发送到 源无线网络节点, 由源无线网络节点将其上的遗留上行数据和接收到的上行 数据进行组包。 那么在图 4所示的切换完成阶段的上行数据的承载路径切换 完成之后, 步骤 410在源无线网络节点接收到目标网络节点发送的资源释放 请求时, 将其上仍未组包的上行数据通过上行数据转发通道转发到目标网络 节点; 若该上行数据转发通道不存在, 则将源无线网络节点上仍未组包的上 行数据丟弃。
具体地, 以 LTE/SAE网络架构下的接口切换为例, 上述步骤具体描述如 下:
在切换准备阶段, 源 eNodeB发送切换请求消息到目标 eNodeB, 其中带 有需要切换的无线承载列表, 其中包含所有需要切换的无线承载。 而在需要 切换的无线承载中, 源 eNodeB为那些需要反向隧道, 即从目标 eNodeB到源 eNodeB的隧道的承载,例如实时性比较高的业务的承载附加上自己创建的反 向隧道端点标识( Reverse Tunnel Endpoint ID ) 。 这样目标 eNodeB在收到切 换请求消息后, 即可判断自己是否与源 S-GW连通, 若连通则进行正常的基 于 X2接口的切换操作; 若不连通且有反向隧道, 则进行带反向通道的基于 X2接口的切换; 若不连通且没有反向隧道, 可进行目标 eNodeB緩存上行数 据等待上行数据的承载路径切换完成的方案。
此处 4叚设目标 eNodeB与源 S-GW不连通, 并在切换请求消息中已建立 了反向隧道。 此时目标 eNodeB还会确定是否支持通过下行数据转发通道从 源 eNodeB转发 UE的下行数据,是否支持通过上行数据转发通道从源 eNodeB 转发 UE 的上行数据, 并且为支持的转发通道分配隧道端点标识。 在目标 eNobeB回馈给源 eNodeB的切换请求响应消息中, 除了带有接受的切换承载 列表和没有接受的切换承载列表, 以及在接受的切换承载中表明是否支持上 / 下行转发和转发隧道端点标识外, 在接受的切换承载列表中还可标明哪些承 载准备釆用反向隧道。 在源 eNodeB 收到切换请求响应消息后, 可根据目标 eNodeB回馈的反向隧道使用情况, 删除那些未使用的反向隧道, 当然还会发 起未接受的切换承载的删除过程。
UE的下行数据可以沿用 X2接口切换的传统方案传递到用户。 而 UE的 上行数据在新的上行通路, 目标 eNodeB到目标 S-GW到 PDN GW的通路没 有完全通畅之前, 需要经目标 eNodeB, 通过反向隧道达到源 eNodeB, 然后 经源侧旧的数据上行通路, 即源 eNodeB到源 Serving Gateway到达 PDN GW 和分组数据网络。
因为从 UE发往 eNodeB的数据包是 PDCP的数据包, 而 eNodeB到核心 网络节点的数据包则属于 GTP的数据包,所以需要考虑数据包的重组。 PDCP 数据包是一种带序号的数据包, eNodeB会从低序号的 PDCP数据包开始, 将 几个连续的 PDCP数据包联合起来, 重组成一个 GTP数据包再发往 S-GW。 在这里提供了两种组包方案为通过反向隧道进行上行数据发送所用。
源 eNodeB 可将未组包的 PDCP 数据包经上行数据转发通道发往目标 eNodeB,然后目标 eNodeB将从源 eNodeB收到的 PDCP数据包和从 UE收到 的新发 PDCP数据包重组成为 GTP数据包, 然后经反向隧道和源侧旧的上行 通路, 或者新的上行通路发往 PDN GW和分组数据网络。 此种方案的优点是 实现比较简单。
或者也可以在上行数据的承载路径切换完成之前, 目标 eNodeB 不做组 包处理, 而是直接将收到的 PDCP 数据包经反向隧道发往源 eNodeB。 源 eNodeB最初也不用转发上行数据到目标 eNodeB,而它只需将从目标 eNodeB 收到的 PDCP数据包和緩存的未组包的数据一起重组成 GTP数据包发往源 S-GW, 最终达到 PDN GW和分组数据网络。 源 eNodeB在收到目标 eNodeB 的释放无线资源的消息后, 即目标 eNodeB 的通知新上行通道已建成, 可以 删除旧资源, 再将当时未组包的 PDCP 数据包经上行转发通道转发到目标 eNodeB 0 此种方案优点是在反向隧道维持上行数据传输的时候减少了数据传 输。
若目标 eNodeB决定不支持源 eNodeB进行的上行数据转发,则直接由目 标 eNodeB重组是比较简单直接的方案。
图 8 为本发明切换过程中上行数据传输的方法第五实施例的流程示意 图。 如图 8所示, 包括如下步骤:
步骤 801、 在用户设备到目标无线网络节点的切换过程中, 接收源无线 网络节点发送的切换请求消息, 切换包括利用源无线网络节点和目标无线网 络节点间的接口进行的无线网络节点和核心网络节点之间的承载路径切换以 及用户设备从源无线网络节点到目标无线网络节点的空中接口切换;
步骤 802、 若切换请求消息中未携带源核心网络节点的路由信息, 则在 上行数据承载路径切换完成之前, 暂存用户设备的上行数据;
步骤 803、 在上行数据承载路径切换完成之后, 将暂存的用户设备的上 行数据发送至移动性管理实体选择的目标核心网络节点以传输上行数据。
本实施例提供的切换过程中上行数据传输的方法, 若不考虑用户设备发 送的上行数据的时延, 也可以在源无线网络节点发送的切换请求消息中删除 与其连通的核心网络节点信息, 而在上行数据的承载路径切换完成之前, 将 上行数据緩存在目标无线网络节点中, 等到上行数据承载路径建成后, 再续 发暂存的上行数据的方法来处理, 来减少切换发起之初的消息传递。
图 9为本发明无线网络节点第一实施例的结构示意图。 如图 9所示, 该 无线网络节点为用于发起接口切换的源无线网络节点, 包括: 获取模块 11、 判断模块 12和切换发起模块 13。 其中获取模块 11用于获取与源无线网络节 点有接口连接的目标无线网络节点和源核心网络节点间的连通性信息, 其中 目标网络节点通过定义接口连接源无线网络节点, 源无线网络节点和源核心 网络节点间是连通的;判断模块 12用于根据获取模块 11获取的连通性信息, 判断目标无线网络节点和源核心网络节点间是否具有连通性; 切换发起模块 13用于在判断模块 12确定目标无线网络节点和源核心网络节点间具有连通 性时, 发起用户设备到目标无线网络节点的切换, 切换包括利用源无线网络 节点和目标无线网络节点间的接口进行的无线网络节点和核心网络节点之间 的承载路径切换以及用户设备从源无线网络节点到目标无线网络节点的空中 接口切换。
本实施例提供的无线网络节点完成切换过程中上行数据传输的方法参见 上述切换过程中上行数据传输的方法实施例的具体描述, 在此不再赘述。 本 实施例提供的无线网络节点, 可以在源无线网络节点发起切换请求之前就获 知目标无线网络节点与源核心网络节点之间的连通性, 从而无需通过多次发 起切换请求来尝试是否可以切换, 减少了切换延时。
图 10为本发明无线网络节点第二实施例的结构示意图。 如图 10所示, 该无线网络节点除了包括上述实施例中的获取模块 11、 判断模块 12和切换 发起模块 13 , 还包括: 配置模块 14, 用于配置共享列表, 该共享列表中包括 各个无线网络节点和其连接的核心网络节点或其所属的核心网络节点池的连 通性信息, 其中无线网络节点包括源无线网络节点和目标无线网络节点; 更 新模块 15 , 用于更新共享列表中的各个无线网络节点和其连接的核心网络节 点或其所属的核心网络节点池的连通性信息; 记录模块 16, 用于在目标无线 网络节点判断其和源核心网络节点间不连通时, 记录目标无线网络节点返回 的其与源核心网络节点不连通的信息。
本实施例提供的无线网络节点完成切换过程中上行数据传输的方法参见 上述切换过程中上行数据传输的方法实施例的具体描述, 在此不再赘述。 本 实施例提供的无线网络节点, 可以在源无线网络节点发起切换请求之前就获 知目标无线网络节点与源核心网络节点之间的连通性, 从而无需通过多次发 起切换请求来尝试是否可以切换, 减少了切换延时。
图 11为本发明无线网络节点第三实施例的结构示意图。 如图 11所示, 该无线网络节点为用于接受切换的目标无线网络节点, 包括: 建立模块 21和 转发模块 22。 其中建立模块 21用于在用户设备到目标无线网络节点的切换 过程中, 建立从目标无线网络节点到源无线网络节点间的反向隧道, 该切换 包括利用源无线网络节点和目标无线网络节点间的接口进行的无线网络节点 和核心网络节点之间的承载路径切换以及用户设备从源无线网络节点到目标 无线网络节点的空中接口切换; 转发模块 22用于在空中接口切换完成后、 上 行数据的承载路径切换完成之前, 在建立模块 21建立了所述反向隧道后, 将 用户设备发送的上行数据通过反向隧道发送到源无线网络节点。
本实施例提供的无线网络节点完成切换过程中上行数据传输的方法参见 上述切换过程中上行数据传输的方法实施例的具体描述, 在此不再赘述。 本 实施例提供的无线网络节点可以在上行数据的承载路径切换完成之前, 在目 标无线网络节点与源核心网络节点间没有连通性时, 通过反向隧道利用旧的 通路传输上行数据, 可以维持上行数据的实时发送, 减少时延, 使用户得到 更好的切换体验。
图 12为本发明无线网络节点第四实施例的结构示意图。 如图 12所示, 该无线网络节点包括上述实施例中的建立模块 21和转发模块 22, 其中建立 模块 21包括:接收模块 211用于接收源无线网络节点发送的携带有为上行数 据的各个承载分别创建的反向隧道路由标识的切换请求消息; 发送模块 212 用于发送切换请求响应消息, 该切换请求响应消息中指示目标网络节点接受 的承载和未接受的承载, 以完成目标无线网络节点到源无线网络节点间的反 向隧道的建立。
本实施例提供的无线网络节点完成切换过程中上行数据传输的方法参见 上述切换过程中上行数据传输的方法实施例的具体描述, 在此不再赘述。 本 实施例提供的无线网络节点可以在上行数据的承载路径切换完成之前, 在目 标无线网络节点与源核心网络节点间没有连通性时, 通过反向隧道利用旧的 通路传输上行数据, 可以维持上行数据的实时发送, 减少时延, 使用户得到 更好的切换体验。
图 13 为本发明切换过程中上行数据传输的系统第一实施例的结构示意 图。 如图 13所示, 该系统包括: 如上述图 9或图 10所描述的为用于发起切 换的源无线网络节点 31 的无线网络节点; 以及目标无线网络节点 32, 用于 在空中接口切换完成后、 上行数据的承载路径切换完成之前, 发送接收到的 用户设备发送的上行数据; 源核心网络节点 33 , 用于接收目标无线网络节点 发送的上行数据, 并发送到分组数据网络中以传输上行数据。
本实施例提供的切换过程中上行数据传输的系统完成切换过程中上行数 据传输的方法参见上述切换过程中上行数据传输的方法实施例的具体描述, 在此不再赘述。 本实施例提供的切换过程中上行数据传输的系统, 可以在源 无线网络节点发起切换请求之前就获知目标无线网络节点与源核心网络节点 之间的连通性, 从而无需通过多次发起切换请求来尝试是否可以切换, 减少 了切换延时。
图 14 为本发明切换过程中上行数据传输的系统第二实施例的结构示意 图。 如图 14所示, 该系统包括: 如上述图 11或图 12所描述的为用于接受切 换的目标无线网络节点 41 的无线网络节点; 以及源无线网络节点 42, 用于 为上行数据的各个承载分别创建反向隧道路由标识, 并发送携带反向隧道路 由标识的切换请求消息上行数据的承载路径切换; 源核心网络节点 43 , 用于 接收目标无线网络节点通过反向隧道发送至源无线网络节点的上行数据, 并 发送到分组数据网络中以传输上行数据。
本实施例提供的切换过程中上行数据传输的系统完成切换过程中上行数 据传输的方法参见上述切换过程中上行数据传输的方法实施例的具体描述, 在此不再赘述。 本实施例提供的切换过程中上行数据传输的系统可以在上行 数据的承载路径切换完成之前, 在目标无线网络节点与源核心网络节点间没 有连通性时, 通过反向隧道利用旧的通路传输上行数据, 可以维持上行数据 的实时发送, 减少时延, 使用户得到更好的切换体验。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流 程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于 一计算机可获取存储介质中, 该程序在执行时, 可包括如上述各方法的实施 例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存^ "i己忆体 ( Random Access Memory, RAM )等。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种切换过程中上行数据传输的方法, 其特征在于, 包括: 获取与源无线网络节点有接口连接的目标无线网络节点和源核心网络节 点间的连通性信息;
确定所述目标无线网络节点和所述源核心网络节点间具有连通性, 并发 起用户设备到所述目标无线网络节点的切换, 所述切换包括利用所述源无线 网络节点和所述目标无线网络节点间的接口进行的所述无线网络节点和所述 核心网络节点之间的承载路径切换以及所述用户设备从所述源无线网络节点 到所述目标无线网络节点的空中接口切换;
在所述空中接口切换完成后、 上行数据的承载路径切换完成之前, 将接 收到的用户设备发送的上行数据通过所述目标无线网络节点发送到所述源核 心网络节点以传输所述上行数据。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述获取与源无线网络 节点有接口连接的目标无线网络节点和源核心网络节点间的连通性信息具体 包括:
获取共享列表中的连通性信息, 所述共享列表中包括各个无线网络节点 和其连接的核心网络节点或其所属的核心网络节点池的连通性信息, 其中所 述无线网络节点包括所述源无线网络节点和目标无线网络节点。
3、 根据权利要求 2所述的方法, 其特征在于, 还包括:
当所述源无线网络节点所连接的核心网络节点或所述源无线网络节点所 属的核心网络节点池变更时, 所述源无线网络节点发送变更通知消息至与其 有接口连接的所述目标无线网络节点;
所述目标无线网络节点接收所述变更通知消息, 更新所述共享列表; 返回变更通知响应消息至所述源无线网络节点。
4、 根据权利要求 1 所述的方法, 其特征在于, 在所述发起用户设备到 所述目标无线网络节点的切换之后还包括: 若所述目标无线网络节点判断其和所述源核心网络节点间不连通, 则所 述目标无线网络节点返回信息不可达消息至所述源无线网络节点;
所述源无线网络节点记录所述目标无线网络节点与所述源核心网络节点 不连通。
5、 一种切换过程中上行数据传输的方法, 其特征在于, 包括: 在用户设备到目标无线网络节点的切换过程中, 建立从目标无线网络节 点到源无线网络节点间的反向隧道, 所述切换包括利用所述源无线网络节点 和所述目标无线网络节点间的接口进行的所述无线网络节点和所述核心网络 节点之间的承载路径切换以及所述用户设备从所述源无线网络节点到所述目 标无线网络节点的空中接口切换;
在所述空中接口切换完成后、 上行数据的承载路径切换完成之前, 用户 设备发送到所述目标无线网络节点的上行数据通过所述反向隧道发送到所述 源无线网络节点, 再发送到与所述源无线网络节点具有连通性的源核心网络 节点以传输所述上行数据。
6、 根据权利要求 5所述的方法, 其特征在于, 所述建立从目标无线网 络节点到源无线网络节点间的反向隧道包括:
所述源无线网络节点为上行数据的各个承载分别创建反向隧道路由标 识;
所述源无线网络节点发送携带所述反向隧道路由标识的切换请求消息; 所述目标无线网络节点接收所述切换请求消息,返回切换请求响应消息, 所述切换请求响应消息中指示所述目标无线网络节点接受的承载和未接受的 承载;
所述源无线网络节点接收到所述切换请求响应消息后, 删除未接受的承 载的反向隧道路由信息。
7、 根据权利要求 5所述的方法, 其特征在于, 所述用户设备发送到所 述目标无线网络节点的上行数据通过所述反向隧道发送到所述源无线网络节 点包括:
所述源无线网络节点将遗留上行数据转发到所述目标无线网络节点, 由 所述目标无线网络节点对其接收的用户设备发送的上行数据和遗留上行数据 进行组包, 将组包后的上行数据通过所述反向隧道发送到所述源无线网络节 点。
8、 根据权利要求 5所述的方法, 其特征在于, 所述用户设备发送到所 述目标无线网络节点的上行数据通过所述反向隧道发送到所述源无线网络节 点包括:
所述目标无线网络节点将接收到的用户设备发送的上行数据通过所述反 向隧道发送到所述源无线网络节点, 由所述源无线网络节点将其上的遗留上 行数据和接收到的上行数据进行组包。
9、 根据权利要求 8所述的方法, 其特征在于, 在上行数据的承载路径 切换完成之后, 在所述源无线网络节点接收到所述目标网络节点发送的资源 释放请求时, 将其上仍未组包的上行数据丟弃或转发到所述目标网络节点。
10、 一种切换过程中上行数据传输的方法, 其特征在于, 包括: 在用户设备到目标无线网络节点的切换过程中, 接收源无线网络节点发 送的切换请求消息, 所述切换包括利用所述源无线网络节点和所述目标无线 网络节点间的接口进行的所述无线网络节点和所述核心网络节点之间的承载 路径切换以及所述用户设备从所述源无线网络节点到所述目标无线网络节点 的空中接口切换;
若所述切换请求消息中未携带源核心网络节点的路由信息 , 则在上行数 据承载路径切换完成之前, 暂存用户设备的上行数据;
在上行数据承载路径切换完成之后, 将暂存的所述用户设备的上行数据 发送至移动性管理实体选择的目标核心网络节点。
1 1、 一种无线网络节点, 为用于发起切换的源无线网络节点, 其特征在 于, 包括: 获取模块, 用于获取与所述源无线网络节点有接口连接的目标无线网络 节点和源核心网络节点间的连通性信息;
判断模块, 用于根据所述获取模块获取的所述连通性信息, 判断所述目 标无线网络节点和所述源核心网络节点间是否具有连通性;
切换发起模块, 用于在所述判断模块确定所述目标无线网络节点和所述 源核心网络节点间具有连通性时, 发起用户设备到所述目标无线网络节点的 切换, 所述切换包括利用所述源无线网络节点和所述目标无线网络节点间的 接口进行的所述无线网络节点和所述核心网络节点之间的承载路径切换以及 所述用户设备从所述源无线网络节点到所述目标无线网络节点的空中接口切 换。
12、 根据权利要求 11所述的无线网络节点, 其特征在于, 还包括: 配置模块, 用于配置共享列表, 所述共享列表中包括各个无线网络节点 和其连接的核心网络节点或其所属的核心网络节点池的连通性信息, 其中所 述无线网络节点包括所述源无线网络节点和目标无线网络节点;
更新模块, 用于更新所述共享列表中的各个所述无线网络节点和其连接 的核心网络节点或其所属的核心网络节点池的连通性信息。
13、 根据权利要求 11或 12所述的无线网络节点,其特征在于,还包括: 记录模块, 用于在所述目标无线网络节点判断其和所述源核心网络节点 连通的信息。
14、 一种无线网络节点, 为用于接受切换的目标无线网络节点, 其特征 在于, 包括:
建立模块, 用于在用户设备到目标无线网络节点的切换过程中, 建立从 所述目标无线网络节点到源无线网络节点间的反向隧道, 所述切换包括利用 所述源无线网络节点和所述目标无线网络节点间的接口进行的所述无线网络 节点和所述核心网络节点之间的承载路径切换以及所述用户设备从所述源无 线网络节点到所述目标无线网络节点的空中接口切换;
转发模块, 用于在所述空中接口切换完成后、 上行数据的承载路径切换 完成之前, 在所述建立模块建立了所述反向隧道后, 将用户设备发送的上行 数据通过所述反向隧道发送到所述源无线网络节点。
15、 根据权利要求 14所述的无线网络节点, 其特征在于, 所述建立模 块包括:
接收模块, 用于接收所述源无线网络节点发送的携带有为上行数据的各 个承载分别创建的反向隧道路由标识的切换请求消息;
发送模块, 用于发送切换请求响应消息, 所述切换请求响应消息中指示 所述目标网络节点接受的承载和未接受的承载。
16、 一种切换过程中上行数据传输的系统, 其特征在于, 包括: 如权利 要求 11至 13任一项所述的为用于发起切换的源无线网络节点的无线网络节 点; 以及
目标无线网络节点, 用于在所述空中接口切换完成后、 上行数据的承载 路径切换完成之前, 发送接收到的用户设备发送的上行数据;
源核心网络节点, 用于接收所述目标无线网络节点发送的上行数据, 并 发送到分组数据网络中。
17、 一种切换过程中上行数据传输的系统, 其特征在于, 包括: 如权利 要求 14至 15任一项所述的为用于接受切换的目标无线网络节点的无线网络 节点; 以及
源无线网络节点, 用于为上行数据的各个承载分别创建反向隧道路由标 识, 并发送携带所述反向隧道路由标识的切换请求消息;
上行数据的承载路径切换源核心网络节点, 用于接收所述目标无线网络 节点通过反向隧道发送至所述源无线网络节点的上行数据, 并发送到分组数 据网络中。
PCT/CN2009/070351 2009-02-03 2009-02-03 切换过程中上行数据传输的方法、系统及无线网络节点 WO2010088796A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/070351 WO2010088796A1 (zh) 2009-02-03 2009-02-03 切换过程中上行数据传输的方法、系统及无线网络节点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/070351 WO2010088796A1 (zh) 2009-02-03 2009-02-03 切换过程中上行数据传输的方法、系统及无线网络节点

Publications (1)

Publication Number Publication Date
WO2010088796A1 true WO2010088796A1 (zh) 2010-08-12

Family

ID=42541643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/070351 WO2010088796A1 (zh) 2009-02-03 2009-02-03 切换过程中上行数据传输的方法、系统及无线网络节点

Country Status (1)

Country Link
WO (1) WO2010088796A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023108519A1 (en) * 2021-12-16 2023-06-22 Qualcomm Incorporated Rrc segmentation handling during handover

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094446A (zh) * 2006-06-14 2007-12-26 日本电气株式会社 移动通信系统和在发生切换时发送数据的方法
CN101188861A (zh) * 2007-07-06 2008-05-28 中兴通讯股份有限公司 系统内切换方法
CN101212790A (zh) * 2006-12-25 2008-07-02 中兴通讯股份有限公司 一种移动通信系统切换时数据包路径转换方法
CN101299876A (zh) * 2007-04-30 2008-11-05 华为技术有限公司 同步方法、通信切换方法、无线网络以及节点

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101094446A (zh) * 2006-06-14 2007-12-26 日本电气株式会社 移动通信系统和在发生切换时发送数据的方法
CN101212790A (zh) * 2006-12-25 2008-07-02 中兴通讯股份有限公司 一种移动通信系统切换时数据包路径转换方法
CN101299876A (zh) * 2007-04-30 2008-11-05 华为技术有限公司 同步方法、通信切换方法、无线网络以及节点
CN101188861A (zh) * 2007-07-06 2008-05-28 中兴通讯股份有限公司 系统内切换方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023108519A1 (en) * 2021-12-16 2023-06-22 Qualcomm Incorporated Rrc segmentation handling during handover

Similar Documents

Publication Publication Date Title
US9913174B2 (en) Method, device and system for implementing optimized inter-rat handover
US9967781B2 (en) Apparatus and method for supporting handover
KR100960115B1 (ko) 이동통신 시스템 및 그 터널관리방법
US10660006B2 (en) Bearer handover control device and control method
EP3461071B1 (en) Communication control method, and related network element
US20160374095A1 (en) Sdn-based lte network structure and operation scheme
WO2011020386A1 (zh) 承载类型的指示方法、系统及传输分流网元
WO2014169748A1 (zh) 一种双连接的实现方法及基站
WO2011000318A1 (zh) 切换控制的方法和设备
WO2008092408A1 (en) Method, device and system for establishing s1 signaling connection in evolved network
JP2015053706A (ja) 通信システムと通信制御方法
WO2011015147A1 (zh) 数据传输方法、装置和通信系统
WO2014079141A1 (zh) 一种网关重定位的方法、移动管理实体及宿主基站
WO2018165982A1 (zh) 一种发送结束标记的方法
WO2011026392A1 (zh) 一种路由策略的获取方法及系统
WO2018023544A1 (zh) 通信方法、用户设备、基站、控制面网元和通信系统
WO2013170673A1 (zh) 一种接入方法、基站、接入点和用户设备
WO2015120685A1 (zh) 一种选择分流网关的方法和控制器
WO2009062392A1 (fr) Procédé de transfert de système, système de communication et entité pcrf
WO2011143997A1 (zh) 一种实现路由选择的方法和装置
WO2015180141A1 (zh) 一种业务路径变更方法及装置
CN107148061B (zh) 一种基于sdn的lte与wlan异构网络切换系统及方法
WO2009132582A1 (zh) 一种删除承载的方法与装置
WO2011023125A1 (zh) 释放连接的方法、装置及系统
WO2012167648A1 (zh) 一种进行lipa承载接入控制的方法、系统和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839513

Country of ref document: EP

Kind code of ref document: A1