WO2015111647A1 - ホスホール化合物及びそれを含有する蛍光色素 - Google Patents

ホスホール化合物及びそれを含有する蛍光色素 Download PDF

Info

Publication number
WO2015111647A1
WO2015111647A1 PCT/JP2015/051636 JP2015051636W WO2015111647A1 WO 2015111647 A1 WO2015111647 A1 WO 2015111647A1 JP 2015051636 W JP2015051636 W JP 2015051636W WO 2015111647 A1 WO2015111647 A1 WO 2015111647A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
aryl group
alkyl group
ring
Prior art date
Application number
PCT/JP2015/051636
Other languages
English (en)
French (fr)
Inventor
山口 茂弘
愛子 深澤
恵理子 山口
晨光 王
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2015559100A priority Critical patent/JP6341617B2/ja
Priority to US15/112,499 priority patent/US9951094B2/en
Priority to EP15741089.5A priority patent/EP3098227B1/en
Publication of WO2015111647A1 publication Critical patent/WO2015111647A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6568Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
    • C07F9/65685Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphine oxide or thioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a phosphole compound and a fluorescent dye containing the same.
  • Fluorescent organic compounds are important as luminescent materials for organic EL devices and fluorescent dyes for biofluorescent imaging, and the examples reported so far have no spare time for both basic research and application.
  • a dye whose fluorescent color changes dramatically depending on the surrounding environment for example, acrylodan
  • acrylodan a dye whose fluorescent color changes dramatically depending on the surrounding environment
  • acrylodan a dye whose fluorescent color changes dramatically depending on the surrounding environment
  • Donor-type electron-donating
  • acceptor-type acceptor-type
  • Non-patent Document 1 reports optical data of 2-alkenylbenzo [b] phosphole oxide and 2-alkynylbenzo [b] phosphole oxide as well as synthesis examples thereof.
  • Non-Patent Document 2 reports these electrochemical characteristics together with synthesis examples of 2-arylbenzo [b] phosphole oxide. Examples of the compounds described in Non-Patent Documents 1 and 2 are shown below.
  • the present invention has been made to solve such problems, and has as its main object to provide a phosphole compound having an optical property that has never existed.
  • the present inventors have synthesized various novel phosphole compounds and investigated their optical properties, and found that certain phosphole compounds have unprecedented optical properties. As a result, the present invention has been completed.
  • the phosphole compound of the present invention is represented by the following formula (1) or the following formula (2).
  • R 1 is an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an alkoxy group, a hydroxy group, an amino group or a substituted amino group
  • R 2 is a hydrogen atom, an alkyl group or a substituted alkyl group.
  • Aryl group, substituted aryl group, carbonyl group, imino group, cyano group or fluorine atom, and R 3 and R 4 may be the same or different, hydrogen atom, alkyl group, substituted alkyl group, aryl Or Ar is a hydrocarbon aromatic ring, a substituted hydrocarbon aromatic ring, a heteroaromatic ring or a substituted heteroaromatic ring, n is 0 or 1, and ⁇ 1 and ⁇ 2 are the same.
  • a ⁇ -conjugated unit which is a divalent alkenyl group, a divalent substituted alkenyl group, a divalent alkynyl group, a divalent substituted alkynyl group, or a divalent hydrocarbon.
  • Aromatic ring a divalent substituted hydrocarbon aromatic ring, a divalent heterocyclic aromatic ring or a divalent substituted heteroaromatic ring, -NR 3 R 4 is capable donate electrons to the phospholes backbone side of the [pi 1 or [pi 2 It is connected to the correct position.
  • R 1 is an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an alkoxy group, a hydroxy group, an amino group or a substituted amino group
  • R 3 and R 4 are the same or different.
  • R 5 and R 6 may be the same or different, and may be a hydrogen atom, an alkyl group, or a substituted alkyl group.
  • An aryl group or a substituted aryl group, Ar is a hydrocarbon aromatic ring, a substituted hydrocarbon aromatic ring, a heteroaromatic ring or a substituted heteroaromatic ring, n is 0 or 1, and ⁇ 1 and ⁇ 2 are the same
  • An aromatic ring, -N 3 R 4 is attached to the donor position capable electrons to phosphole backbone side of the [pi 1 or [pi 2.
  • the phosphole compound of the present invention has the property of maintaining a high fluorescence quantum yield from a low polarity solvent to a high solvent in addition to the property that the fluorescence wavelength shifts to the longer wavelength side as the polarity of the solvent increases. Because of this property, the phosphole compound of the present invention can be used, for example, to quantitatively evaluate the polarity of the surrounding environment from the absorption wavelength and fluorescence wavelength, or to be used as a new type of dye for fluorescent probes. It is expected to be applied to organic electronic devices as an efficient light-emitting material.
  • the phosphole compound of formula (2) is characterized by very high light resistance. The fluorescent probe dye may be observed using a high-resolution laser microscope. Even in this case, the phosphor compound of formula (2) is very light-resistant, and thus it was irradiated with a strong laser beam for a long time. However, the degree of color development can be kept high.
  • 3 is a graph showing the relationship between the orientation polarizability ⁇ f of compounds 1 to 3 and the Stokes shift value. The graph which shows the relationship between irradiation time and relative absorbance.
  • the phosphole compound of the present invention is represented by the above formula (1) or the above formula (2).
  • the phosphole skeleton has a high ability to receive electrons, and the ⁇ -conjugated unit having an amino group has a high ability to donate electrons.
  • R 1 is an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, an alkoxy group, a hydroxy group, an amino group, or a substituted amino group.
  • alkyl group examples include an alkyl group that may have 1 to 20 carbon atoms and a cyclic alkyl group. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-amyl group, isoamyl group, sec-amyl group, Examples thereof include a tert-amyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • Examples of the substituted alkyl group include a halogen atom, a cyano group, a nitro group, an amino group, one or more hydrogen atoms of an alkyl group which may have 1 to 20 carbon atoms and a cyclic alkyl group. Examples thereof include those substituted with a mono- or dialkylamino group, a mono- or diarylamino group, and the like.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, a trimethylphenyl group, a naphthyl group, an anthracenyl group, a thienyl group, a furyl group, and a pyridyl group.
  • Examples of the substituted aryl group include those in which one or more hydrogen atoms of the aryl group are substituted with a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, a carbonyl group, a cyano group, a nitro group, or the like.
  • Examples of the alkyl group are as described above.
  • Examples of the alkenyl group include ethenyl group, propenyl group, butenyl group, isobutenyl group and the like.
  • alkynyl group examples include ethynyl group, propynyl group, butynyl group and the like.
  • An alkoxy group is a group represented by —OR, where R includes not only an alkyl group but also a group in which an alkyl chain is ether-bonded via an oxygen atom.
  • R includes not only an alkyl group but also a group in which an alkyl chain is ether-bonded via an oxygen atom.
  • R includes not only an alkyl group but also a group in which an alkyl chain is ether-bonded via an oxygen atom.
  • Examples of the carbonyl group include a formyl group and an acyl group (such as a methylcarbonyl group and an ethylcarbonyl group).
  • the amino group is —NH 2 .
  • substituted amino group include those in which one or more hydrogen atoms of the amino group are substituted with an alkyl group, a substituted alkyl group, an aryl group, or a substituted aryl group.
  • alkyl group, the substituted alkyl group, the aryl group, and the substituted aryl group are as described above.
  • R 2 is a hydrogen atom, an alkyl group, a substituted alkyl group, an aryl group, a substituted aryl group, a carbonyl group, an imino group, a cyano group or a fluorine atom.
  • alkyl group, the substituted alkyl group, the aryl group, the substituted aryl group, and the carbonyl group are as described above.
  • the imino group include an alkylimino group, a substituted alkylimino group, an arylimino group, a substituted arylimino group, and a sulfonylimino group.
  • the sulfonylimino group is a group in which —SO 2 R is bonded to the nitrogen atom of the imino group, and examples of R include an alkyl group, a substituted alkyl group, an aryl group, and a substituted aryl group.
  • R include an alkyl group, a substituted alkyl group, an aryl group, and a substituted aryl group.
  • alkyl and substituted alkyl in the imino group are the same as the alkyl group and substituted alkyl group already described.
  • R 3 and R 4 may be the same or different and are a hydrogen atom, an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group.
  • Examples of the alkyl group, the substituted alkyl group, the aryl group, and the substituted aryl group are as described above.
  • R 5 and R 6 may be the same or different and are a hydrogen atom, an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group. Examples of the alkyl group, the substituted alkyl group, the aryl group, and the substituted aryl group are as described above.
  • Ar is a hydrocarbon aromatic ring, a substituted hydrocarbon aromatic ring, a heteroaromatic ring or a substituted heteroaromatic ring.
  • hydrocarbon aromatic ring examples include a benzene ring, a naphthalene ring, an anthracene ring, and a phenanthrene ring.
  • substituted hydrocarbon aromatic ring for example, one or more hydrogen atoms of the hydrocarbon aromatic ring are halogen atoms, alkyl groups, perfluoroalkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, carbonyl groups, cyano groups, nitro groups. And the like substituted with.
  • the perfluoroalkyl group include a trifluoromethyl group and a pentafluoroethyl group. Examples of other substituents are as described above.
  • heteroaromatic ring examples include, for example, a thiophene ring, a thiazole ring, a pyrrole ring, an imidazole ring, a furan ring, an oxazole ring, a pyridine ring, a condensed ring of a heteroaromatic ring and a hydrocarbon aromatic ring, and a heteroaromatic ring Examples include condensed rings.
  • one or more hydrogen atoms of the heteroaromatic ring are halogen atoms, alkyl groups, perfluoroalkyl groups, alkenyl groups, alkynyl groups, alkoxy groups, carbonyl groups, cyano groups, nitro groups, etc.
  • the substituted one is mentioned. Examples of these substituents are as described above.
  • ⁇ 1 and ⁇ 2 may be the same or different ⁇ conjugated units, and in the above formula (1), the ⁇ conjugated unit is a divalent alkenyl group, a divalent substituted alkenyl group, 2 A divalent alkynyl group, a divalent substituted alkynyl group, a divalent hydrocarbon aromatic ring, a divalent substituted hydrocarbon aromatic ring, a divalent heteroaromatic ring or a divalent substituted heteroaromatic ring, the above formula (2 ) Is a divalent hydrocarbon aromatic ring, a divalent substituted hydrocarbon aromatic ring, a divalent heteroaromatic ring or a divalent substituted heteroaromatic ring.
  • alkenyl group examples include ethenyl group, propenyl group, butenyl group, isobutenyl group and the like.
  • substituted alkenyl group examples include those in which at least one hydrogen atom of the alkenyl group is substituted with a halogen atom.
  • alkynyl group examples include ethynyl group, propynyl group, and butynyl group.
  • substituted alkynyl group examples include those in which any one or more hydrogen atoms of the alkynyl group are substituted with a halogen atom.
  • hydrocarbon aromatic ring substituted hydrocarbon aromatic ring, heteroaromatic ring and substituted heteroaromatic ring are as described above.
  • —NR 3 R 4 is bonded to a position where ⁇ 1 or ⁇ 2 can donate electrons to the phosphole skeleton side.
  • —NR 3 R 4 is preferably bonded to the para-position of the benzene ring.
  • n is [pi 1 and [pi 2 in 1 benzene ring
  • the benzene ring of the [pi 2 is attached at the para-position of the [pi 1 of the benzene ring
  • -NR 3 R 4 is [pi 2 is benzene ring para It is preferable that it is bonded to the position.
  • R 1 is preferably an aryl group or a substituted aryl group.
  • R 2 is preferably a hydrogen atom, an aryl group or a substituted aryl group.
  • R 3 and R 4 are the same and are preferably an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group.
  • R 5 and R 6 are the same and are preferably an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group.
  • Ar is preferably a benzene ring or a naphthalene ring.
  • n is zero, ⁇ 1 is a benzene ring, and —NR 3 R 4 is preferably bonded to the para position of ⁇ 1 which is a benzene ring.
  • n is zero, ⁇ 1 is a benzene ring, and —NR 3 R 4 is preferably bonded to the 5th or 6th position of the indene ring.
  • R 3 and R 4 are an alkyl group or a substituted alkyl group, and may be bonded to ⁇ 1 that is a benzene ring to form an alkylene chain or a substituted alkylene chain.
  • the phosphole compound of the present invention is preferably represented by the following formula (1 ′) or (2 ′).
  • the phosphole compound of the present invention can be used as a fluorescent dye.
  • a fluorescent dye containing this phosphole compound is added to an environment, and then the Stokes shift value of the environment is measured, the polarity of the environment around the fluorescent dye changes from the Stokes shift value. Can know.
  • a living cell is stained with such a fluorescent dye and then the luminescent color of the stained cell is examined, the polarity of the environment around the cell can be known from the luminescent color, and the intracellular environment can be imaged.
  • it can be applied to an organic electronic device as a highly efficient light-emitting material.
  • LC-918 Japan Analytical Chemical Industry
  • a polystyrene gel column Japan Analytical Chemical Industry, moving bed: chloroform
  • the dehydrating solvent a solvent obtained by purifying a solvent purchased from Kanto Chemical Co., Ltd. using an organic solvent purifier (made by Glass Control) was used.
  • the degassed solvent a solvent in which argon gas was blown into the solvent for 20 minutes or more was used. Reactions were carried out under an argon atmosphere unless otherwise specified.
  • PhP (NEt 2 ) Cl (0.350 mL, 392 mg, 1.75 mmol) was added, and PBr 3 (0.164 mL, 471 mg, 1.74 mmol) was added after 1.5 hours. Thereafter, the reaction solution was warmed to room temperature and stirred for 19 hours. Subsequently, a 30% H 2 O 2 solution (1 mL) was added at 0 ° C., and the mixture was stirred at room temperature for 1 hour. A saturated aqueous Na 2 SO 3 solution was added to the reaction mixture at 0 ° C., and then the solvent was concentrated under reduced pressure and extracted with chloroform. The organic layers were combined and washed with saturated brine, and then dried over anhydrous sodium sulfate.
  • Synthetic intermediate M2 (74.7 mg, 0.181 mmol), diphenylamine (31.5 mg, 0.186 mmol), Pd (dba) 2 (2.3 mg, 0.0040 mmol), Q-Phos (5.0 mg, 0. 0069 mmol), t-BuONa (18.0 mg, 0.187 mmol) was added to dehydrated toluene (1 mL), and the mixture was stirred at 80 ° C. for 24 hours. Subsequently, 1N NH 4 Cl aqueous solution was added and extracted with toluene. The collected organic layer was washed with saturated brine, and then dried over anhydrous sodium sulfate.
  • Synthetic intermediate M4 (0.194 g, 0.509 mmol), dimethylaminophenylboronic acid (0.102 g, 0.619 mmol), Pd 2 (dba) 3 .CHCl 3 (15.6 mg, 0.0151 mmol), S—
  • Phos 12.3 mg, 0.0300 mmol
  • K 3 PO 4 0.159 g, 0.750 mmol
  • degassed toluene 4 mL
  • degassed water (1 mL) were added, Stir for hours. Thereafter, distilled water was added, toluene was removed, and the mixture was extracted with chloroform. The collected organic layer was washed with saturated brine, and then dried over anhydrous sodium sulfate.
  • Acetonitrile (2.5 mL) was added to a mixture of synthetic intermediate M6 (0.116 g, 0.216 mmol) and NBS (40.9 mg, 0.230 mmol), and the mixture was stirred at 80 ° C. for 5 hours. This experiment was conducted in air. A sodium sulfite aqueous solution was added, and the mixture was extracted with ethyl acetate. The collected organic layer was washed with saturated brine, and then dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • Synthetic intermediate M7 (51.0 mg, 93.9 ⁇ mol), dimethylaminophenylboronic acid (27.1 mg, 0.164 mmol), Pd 2 (dba) 3 .CHCl 3 (2.1 mg, 0.0020 mmol), S— To a mixture of Phos (1.8 mg, 0.0044 mmol) and K 3 PO 4 (30.3 mg, 0.143 mmol), degassed toluene (2 mL) and degassed water (0.5 mL) were added, For 2.5 hours. Thereafter, distilled water was added, toluene was removed, and the mixture was extracted with chloroform. The collected organic layer was washed with saturated brine, and then dried over anhydrous sodium sulfate.
  • Synthetic intermediate M8c is 2- (2,3,6,7-tetrahydro-1H, 5H-benzo [ij] quinolizin-9-yl) acetylene instead of 4- (N, N-diphenylamino) phenylacetylene.
  • the compound was synthesized according to the method for synthesizing the synthetic intermediate M8b except that it was used.
  • the synthetic intermediate M9c was synthesized according to the synthesis method of the synthetic intermediate M9b, except that the synthetic intermediate M8c was used instead of the synthetic intermediate M8b.
  • compound 6c was synthesized according to the synthesis method of compound 6b, except that synthetic intermediate M9c was used instead of synthetic intermediate M9b.
  • This compound 6c is an example of a compound in which an alkyl group on N is bonded to the benzene ring of aniline to form an alkylene chain (propylene chain).
  • the spectral data of Compound 6c is as follows.
  • the synthetic intermediate M8d was synthesized according to the synthesis method of the synthetic intermediate M8b, except that 1-bromonaphthalen-2-yl triflate was used instead of 2-bromo-3-iodonaphthalene.
  • the synthetic intermediate M9d was synthesized according to the synthesis method of the synthetic intermediate M9b, except that the synthetic intermediate M8d was used instead of the synthetic intermediate M8b.
  • Compound 6d was synthesized according to the synthesis method of Compound 6b, except that synthetic intermediate M9d was used instead of synthetic intermediate M9b.
  • the spectral data of compound 6d is as follows.
  • Synthetic intermediate M10b is prepared in the same manner as synthetic intermediate M10a using synthetic intermediate 9b (0.500 mmol) and 4,4′-bis (tri (ethylene glycol) monomethyl ether) benzophenone (0.600 mmol) as starting materials. Synthesized. Compound 7b was synthesized in the same manner as Compound 7a, except that synthetic intermediate M10b was used instead of synthetic intermediate M10a. The spectrum data of Compound 7a is as follows.
  • Photophysical properties The photophysical properties of the compounds 1 to 3, 6b to 6d, 7a and 7b were measured.
  • the ultraviolet-visible absorption spectrum was measured using an ultraviolet-visible near-infrared spectrophotometer UV-3150 (Shimadzu Corporation), and the fluorescence spectrum was measured using a spectrofluorophotometer F-4500 (Hitachi).
  • An absolute PL quantum yield measuring device C9920-02 or C11347-01 was used for measuring the absolute fluorescence quantum yield.
  • sample solutions were prepared using a solvent for fluorescence spectrum measurement manufactured by Nacalai Tesque and measured using a 1 cm square quartz cell.
  • the sample concentration was set within the range of about 10 ⁇ 5 M during the absorption spectrum measurement and within the concentration range where no quenching occurred during the fluorescence spectrum measurement.
  • dissolved oxygen was removed by blowing argon for several minutes.
  • Tables 1 to 8. Although not shown in the table, the orientation polarizabilities ⁇ f of hexane, ethyl acetate and methanol were ⁇ 0.000518, 0.201 and 0.309, respectively.
  • Compound 2 has a structure that does not have a phenyl group at the 3-position of benzophosphole of Compound 1, but from Tables 1 and 2, the optical properties of Compounds 1 and 2 were almost the same. It has been found that the substituents of have no significant effect on the optical properties.
  • Compound 3 has a structure in which 4- (N, N-diphenylamino) phenyl group at 2-position of benzophosphole of compound 2 is substituted with 4- (N, N-dimethylamino) phenyl group. , 3, the compound 3 tends to have higher absolute fluorescence quantum yield than the compound 2, but the fluorescence characteristics of the compounds 2, 3 are generally similar. From Tables 4 to 6, compounds 6b to 6d also showed the same fluorescence characteristics as compound 1. From Tables 7 and 8, when the benzene ring and the phosphole ring of aniline are connected by a condensed ring as in compounds 7a and 7b, the fluorescence characteristics were the same as or better than those of compound 1.
  • the relationship between the Stokes shift value and the orientation polarizability ⁇ f can be approximated to a linear relationship (linear function). From this, when the compounds 1 to 3 are used as fluorescent dyes, if the Stokes shift value is obtained by measuring ⁇ max and ⁇ ex, the corresponding orientation polarizability ⁇ f can be uniquely derived. That is, from the Stokes shift value, it is possible to know the polarity of the environment around the fluorescent dye.
  • Cell staining experiment (1) Cell staining experiment using Compound 1 HeLa cells were cultured at 37 ° C. for 24 hours in a 10 mM aqueous solution of Compound 1 containing 0.1% dimethyl sulfoxide, and then the cells were washed with a 3% aqueous sucrose solution. Microscopic observation was performed. For the observation, a confocal microscope system (LSM780) manufactured by ZEISS was used. As a result, staining of the whole cell except the nucleus was observed. As a result of obtaining the fluorescence spectrum for each pixel, it was possible to classify into three types of spectra having emission maxima at 530 nm, 550 nm, and 565 nm.
  • the vicinity of the surface layer of the cell mainly emitted light having a maximum at 530 nm and the cytoplasm portion having a maximum at 565 nm, and the cytoplasm was dotted with portions having a maximum at 550 nm. This is considered to reflect that the luminescent color varies depending on the polar environment of the stained cell tissue, and it was shown that the intracellular environment can be imaged using the same compound 1.
  • this invention is not limited to the Example mentioned above at all, and as long as it belongs to the technical scope of this invention, it cannot be overemphasized that it can implement with a various aspect.
  • the present invention can be used in the chemical industry, and can be used, for example, as a light emitting material for an organic EL element or a fluorescent dye for biological fluorescence imaging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)

Abstract

下記式に、本発明のホスホール化合物の一例を示す。本発明のホスホール化合物は、溶媒の極性が高くなるにつれて蛍光波長が長波長側にシフトする性質に加えて、極性の低い溶媒から高い溶媒まで高い蛍光量子収率を維持するという性質を有する。このような性質を有することから、本発明のホスホール化合物は、例えば、吸収波長及び蛍光波長からその周囲の環境の極性を定量評価したり、新たなタイプの蛍光プローブ用色素として利用したり、高効率発光材料として有機電子デバイスへ応用したりすることが期待される。

Description

ホスホール化合物及びそれを含有する蛍光色素
 本発明は、ホスホール化合物及びそれを含有する蛍光色素に関する。
 蛍光性有機化合物は、有機EL素子の発光材料や生体蛍光イメージングのための蛍光色素として重要であり、これまでに報告された例は、基礎研究や応用の両面で枚挙に暇がない。中でも、周囲の環境によって蛍光色が劇的に変化する色素(例えばアクリロダン)は、蛍光プローブの中でも部位特異的な可視化に実用化されている。このような蛍光特性を実現するためには、電子供与性の高い(ドナー型)π共役ユニットと電子受容性の高い(アクセプター型)π共役ユニットを組み合わせるという分子設計が有効であることが多く示されている。得られる蛍光色素の発光色や発光効率、および溶媒効果の大きさは、ドナーおよびアクセプターにどのようなπ共役ユニットを用いるかに大きく依存する。一方で、近年、新たな電子受容性π共役ユニットとして、ホスホール化合物が注目されつつある。例えば、非特許文献1には、2-アルケニルベンゾ[b]ホスホールオキシドや2-アルキニルベンゾ[b]ホスホールオキシドの合成例と共にそれらの光学データが報告されている。また、非特許文献2には、2-アリールベンゾ[b]ホスホールオキシドの合成例と共にこれらの電気化学特性が報告されている。非特許文献1,2に記載された化合物の一例を以下に示す。
Figure JPOXMLDOC01-appb-C000003
Organic Letters, 2013, vol.15, No.17, p4458-4461 Chem. Asian J., 2009, vol.4, p1729-1740
 溶媒の極性に応じて蛍光色が劇的に変化する従来の化合物は、多くが極性の低い溶媒中では強い蛍光を示すものの、極性の高いアルコールなどのプロトン性溶媒中では蛍光がみられない。このため、今までにない光学的性質を有する環境応答性の蛍光化合物の開発が望まれていた。
 本発明はこのような課題を解決するためになされたものであり、今までにない光学的性質を有するホスホール化合物を提供することを主目的とする。
 上述した課題を解決するために、本発明者らは、種々の新規なホスホール化合物を合成し、その光物性を調べたところ、ある種のホスホール化合物が今までにない光学的性質を有することを見いだし、本発明を完成するに至った。
 即ち、本発明のホスホール化合物は、下記式(1)又は下記式(2)で表されるものである。
Figure JPOXMLDOC01-appb-C000004
 式(1)中、R1はアルキル基、置換アルキル基、アリール基、置換アリール基、アルコキシ基、ヒドロキシ基、アミノ基又は置換アミノ基であり、R2は水素原子、アルキル基、置換アルキル基、アリール基、置換アリール基、カルボニル基、イミノ基、シアノ基又はフッ素原子であり、R3及びR4は同じであっても異なっていてもよく、水素原子、アルキル基、置換アルキル基、アリール基又は置換アリール基であり、Arは炭化水素芳香環、置換炭化水素芳香環、ヘテロ芳香環又は置換ヘテロ芳香環であり、nは0又は1であり、π1、π2は同じであっても異なっていてもよいπ共役ユニットであって、該π共役ユニットは、2価のアルケニル基、2価の置換アルケニル基、2価のアルキニル基、2価の置換アルキニル基、2価の炭化水素芳香環、2価の置換炭化水素芳香環、2価のヘテロ芳香環又は2価の置換ヘテロ芳香環であり、-NR34はπ1又はπ2のうちホスホール骨格側へ電子を供与可能な位置に結合している。
 式(2)中、R1はアルキル基、置換アルキル基、アリール基、置換アリール基、アルコキシ基、ヒドロキシ基、アミノ基又は置換アミノ基であり、R3及びR4は同じであっても異なっていてもよく、水素原子、アルキル基、置換アルキル基、アリール基又は置換アリール基であり、R5及びR6は同じであっても異なっていてもよく、水素原子、アルキル基、置換アルキル基、アリール基又は置換アリール基であり、Arは炭化水素芳香環、置換炭化水素芳香環、ヘテロ芳香環又は置換ヘテロ芳香環であり、nは0又は1であり、π1、π2は同じであっても異なっていてもよいπ共役ユニットであって、該π共役ユニットは、2価の炭化水素芳香環、2価の置換炭化水素芳香環、2価のヘテロ芳香環又は2価の置換ヘテロ芳香環であり、-NR34はπ1又はπ2のうちホスホール骨格側へ電子を供与可能な位置に結合している。
 本発明のホスホール化合物は、溶媒の極性が高くなるにつれて蛍光波長が長波長側にシフトする性質に加えて、極性の低い溶媒から高い溶媒まで高い蛍光量子収率を維持するという性質を有する。このような性質を有することから、本発明のホスホール化合物は、例えば、吸収波長及び蛍光波長からその周囲の環境の極性を定量評価したり、新たなタイプの蛍光プローブ用色素として利用したり、高効率発光材料として有機電子デバイスへ応用したりすることが期待される。特に、式(2)のホスホール化合物は、耐光性が非常に高いという特徴を有する。蛍光プローブ用色素は高解像度のレーザ顕微鏡を用いて観察されることがあるが、その場合でも式(2)のホスホール化合物は耐光性が非常に高いため、強力なレーザ光に長時間照射されたとしても発色の程度を高く維持することができる。
化合物1~3の配向分極率Δfとストークスシフト値との関係を示すグラフ。 照射時間と相対吸光度との関係を示すグラフ。
 本発明のホスホール化合物は、上記式(1)又は上記式(2)で表されるものである。本発明のホスホール化合物では、ホスホール骨格が電子を受け取る能力が高く、アミノ基を有するπ共役系ユニットが電子を供与する能力が高い。
 R1は、アルキル基、置換アルキル基、アリール基、置換アリール基、アルコキシ基、ヒドロキシ基、アミノ基又は置換アミノ基である。
 アルキル基としては、例えば、炭素数1~20の分岐を有していてもよいアルキル基や環状のアルキル基が挙げられる。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-アミル基、イソアミル基、sec-アミル基、tert-アミル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などが挙げられる。置換アルキル基としては、例えば炭素数1~20の分岐を有していてもよいアルキル基や環状のアルキル基のいずれか1つ以上の水素原子がハロゲン原子、シアノ基、ニトロ基、アミノ基、モノ又はジアルキルアミノ基、モノ又はジアリールアミノ基などで置換されたものが挙げられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。
 アリール基としては、例えば、フェニル基、トリル基、キシリル基、トリメチルフェニル基、ナフチル基、アントラセニル基などのほか、チエニル基、フリル基、ピリジル基などが挙げられる。置換アリール基としては、例えば、アリール基の1つ以上の水素原子がハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、シアノ基、ニトロ基などで置換されたものが挙げられる。アルキル基の例示については、既に記載したとおりである。アルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、イソブテニル基などが挙げられる。
 アルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基などが挙げられる。アルコキシ基は、-ORで表される基であり、ここではRはアルキル基のみならずアルキル鎖が酸素原子を介してエーテル結合した基も含むものとする。具体的には、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基などのほか、-O((CH2pO)qCH3 (pは1~3の整数、qは1~10の整数)などが挙げられる。
 カルボニル基は、例えば、フォルミル基やアシル基(メチルカルボニル基やエチルカルボニル基など)などが挙げられる。
 アミノ基は、-NH2である。置換アミノ基としては、アミノ基の1つ以上の水素原子がアルキル基、置換アルキル基、アリール基又は置換アリール基で置換されたものなどが挙げられる。アルキル基、置換アルキル基、アリール基、置換アリール基の例示については、既に記載したとおりである。
 R2は水素原子、アルキル基、置換アルキル基、アリール基、置換アリール基、カルボニル基、イミノ基、シアノ基又はフッ素原子である。アルキル基、置換アルキル基、アリール基、置換アリール基、カルボニル基の例示については、既に記載したとおりである。イミノ基としては、例えば、アルキルイミノ基、置換アルキルイミノ基、アリールイミノ基、置換アリールイミノ基、スルホニルイミノ基などが挙げられる。スルホニルイミノ基は、イミノ基の窒素原子に-SO2Rが結合したものであり、Rとしてはアルキル基、置換アルキル基、アリール基、置換アリール基などが挙げられる。イミノ基中のアルキルや置換アルキル等の例示は、既に記載したアルキル基や置換アルキル基等と同様である。
 R3及びR4は同じであっても異なっていてもよく、水素原子、アルキル基、置換アルキル基、アリール基又は置換アリール基である。アルキル基、置換アルキル基、アリール基、置換アリール基の例示については、既に記載したとおりである。
 R5及びR6は同じであっても異なっていてもよく、水素原子、アルキル基、置換アルキル基、アリール基又は置換アリール基である。アルキル基、置換アルキル基、アリール基、置換アリール基の例示については、既に記載したとおりである。
 Arは炭化水素芳香環、置換炭化水素芳香環、ヘテロ芳香環又は置換ヘテロ芳香環である。
 炭化水素芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環などが挙げられる。置換炭化水素芳香環としては、例えば、炭化水素芳香環の1つ以上の水素原子がハロゲン原子、アルキル基、パーフルオロアルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、シアノ基、ニトロ基などで置換されたものが挙げられる。パーフルオロアルキル基としては、例えばトリフルオロメチル基、ペンタフルオロエチル基などが挙げられる。その他の置換基の例示は既に記載したとおりである。
 ヘテロ芳香環としては、例えば、チオフェン環、チアゾール環、ピロール環、イミダゾール環、フラン環、オキサゾール環、ピリジン環などのほか、ヘテロ芳香環と炭化水素芳香環との縮合環やヘテロ芳香環同士の縮合環などが挙げられる。置換ヘテロ芳香環としては、例えば、ヘテロ芳香環の1つ以上の水素原子がハロゲン原子、アルキル基、パーフルオロアルキル基、アルケニル基、アルキニル基、アルコキシ基、カルボニル基、シアノ基、ニトロ基などで置換されたものが挙げられる。これらの置換基の例示は既に記載したとおりである。
 π1、π2は同じであっても異なっていてもよいπ共役ユニットであって、該π共役ユニットは、上記式(1)では、2価のアルケニル基、2価の置換アルケニル基、2価のアルキニル基、2価の置換アルキニル基、2価の炭化水素芳香環、2価の置換炭化水素芳香環、2価のヘテロ芳香環又は2価の置換ヘテロ芳香環であり、上記式(2)では、2価の炭化水素芳香環、2価の置換炭化水素芳香環、2価のヘテロ芳香環又は2価の置換ヘテロ芳香環である。
 アルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、イソブテニル基などが挙げられる。置換アルケニル基としては、アルケニル基のいずれか1つ以上の水素原子がハロゲン原子で置換されたものなどが挙げられる。
 アルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基などが挙げられる。置換アルキニル基としては、アルキニル基のいずれか1つ以上の水素原子がハロゲン原子で置換されたものなどが挙げられる。
 炭化水素芳香環、置換炭化水素芳香環、ヘテロ芳香環及び置換ヘテロ芳香環の例示については、既に記載したとおりである。
 -NR34はπ1又はπ2のうちホスホール骨格側へ電子を供与可能な位置に結合している。例えば、式(1)では、nがゼロでπ1がベンゼン環の場合、-NR34はベンゼン環のパラ位に結合していることが好ましい。また、nが1でπ1及びπ2がベンゼン環の場合には、π2のベンゼン環はπ1のベンゼン環のパラ位に結合し、-NR34はπ2がベンゼン環のパラ位に結合していることが好ましい。
 R1はアリール基又は置換アリール基であることが好ましい。R2は水素原子、アリール基又は置換アリール基であることが好ましい。R3及びR4は同じものであって、アルキル基、置換アルキル基、アリール基又は置換アリール基であることが好ましい。R5及びR6は同じものであって、アルキル基、置換アルキル基、アリール基又は置換アリール基であることが好ましい。Arはベンゼン環又はナフタレン環であることが好ましい。式(1)では、nはゼロであり、π1はベンゼン環であり、-NR34はベンゼン環であるπ1のパラ位に結合していることが好ましい。式(2)では、nはゼロであり、π1はベンゼン環であり、-NR34はインデン環の5位又は6位に結合していることが好ましい。これらの場合、R3及びR4は、アルキル基又は置換アルキル基であり、ベンゼン環であるπ1に結合してアルキレン鎖又は置換アルキレン鎖を形成していてもよい。特に、本発明のホスホール化合物は、下記式(1’)又は(2’)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000005
 本発明のホスホール化合物は、蛍光色素に利用可能である。例えば、このホスホール化合物を含有する蛍光色素をある環境に添加し、その後、その環境のストークスシフト値を測定すれば、ストークスシフト値からその蛍光色素の周囲の環境がどのような極性に変化したかを知ることができる。また、こうした蛍光色素で生細胞を染色した後、染色した細胞の発光色を調べれば、その発光色から細胞の周囲の環境の極性を知ることができ、細胞内環境のイメージングが可能になる。その他に、高効率発光材料として有機電子デバイスへ応用したりすることも可能である。
1.一般操作
 1H,13Cおよび31P NMRスペクトルは、核磁気共鳴装置A-400 spectrometer(JEOL)を用いて測定した(共鳴周波数1H:400MHz,13C:100MHz,31P:162MHz)。1H NMRのケミカルシフト値は、重クロロホルムあるいは重ジクロロメタンの残留プロトンのシグナル(δ7.26ppm,δ5.30ppm)を内部標準として決定した。また、13C NMRのケミカルシフト値は重クロロホルムあるいは重ジクロロメタンのシグナル(δ77.16ppm,δ53.8ppm)を内部標準として用いた。31P NMRのケミカルシフト値は、H3PO4のシグナル(δ0.0ppm)を外部標準として用いた。薄層クロマトグラフィー(TLC)はシリカゲル60F254(Merck)を塗布したガラス板を用いて行った。カラムクロマトグラフィーは、PSQ 100B(富士シリシア)を用いて行った。分取リサイクルHPLCには、シリカゲルカラム(和光純薬、Wakosil-II 5-Prep)を備えたLC-918(日本分析工業)を用いた。分取リサイクル型ゲル浸透クロマトグラフィー(GPC)は、ポリスチレンゲルカラム(JAIGEL 1H,日本分析化学工業,移動層:クロロホルム)を備えたLC-918(日本分析化学工業)を使用した。脱水溶媒は、関東化学から購入した溶媒を、有機溶媒精製装置(Glass Contour社製)を用いて精製したものを用いた。脱気した溶媒として、溶媒にアルゴンガスを20分以上吹き込んだものを使用した。反応は特に記述のない限り、アルゴン雰囲気下で行った。
2.合成
(1)2-[4-(N,N-ジフェニルアミノ)フェニル]-1,3-ジフェニルベンゾ[b]ホスホール-P-オキシド(化合物1)の合成
 以下のスキームに従って、化合物1を合成した。
Figure JPOXMLDOC01-appb-C000006
 文献記載の公知化合物である1-ブロモ-2-[(4-クロロフェニル)エチニル]ベンゼン(Org. Lett. 2012, vol.14, No.23, p6032-6035)(0.508g,1.74mmol)を脱水THF(3mL)に溶解させた。-78℃にてt-BuLiのペンタン溶液(1.65M,2.10mL,3.48mmol)を3分間かけて滴下し、そのまま45分間撹拌した。PhP(NEt2)Cl(0.350mL,392mg,1.75mmol)を加え、1.5時間後にPBr3(0.164mL,471mg,1.74mmol)を加えた。その後、反応溶液を室温まで昇温し、19時間撹拌した。続いて、0℃で30%H22溶液(1mL)を加え、室温で1時間撹拌した。反応混合物に0℃で飽和Na2SO3水溶液を加えた後、減圧下で溶媒を濃縮し、クロロホルムで抽出した。有機層をあわせて飽和食塩水で洗浄した後、無水硫酸ナトリウム乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CHCl3/AcOEt 20:1,Rf=0.28)で精製することにより、3-ブロモ-2-(4-クロロフェニル)-1-フェニルベンゾ[b]ホスホール-P-オキシド(合成中間体M1)を無色固体として358mg(0.861mmol,収率49%)得た。合成中間体M1のスペクトルデータは以下のとおり。
1H NMR (400MHz, CDCl3):δ 7.74(dd, JCP = 8.0 Hz, 3.2 Hz, 1H), 7.68-7.60 (m, 6H), 7.52-7.45 (m, 2H), 7.39 (dt, JCP = 7.6 Hz, 3.2 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H). 13C[1H] NMR (100MHz, CD2Cl2): δ 141.91 (d, JCP = 22.2 Hz, C), 136.16 (d, JCP = 87.3 Hz, C), 135.31 (C), 133.94 (d, JCP = 1.6 Hz, CH), 133.28 (d, JCP = 36.2Hz, C), 133.08 (d, JCP = 2.4 Hz, CH), 131.61 (d, JCP = 105.4 Hz, C), 131.29 (d,JCP = 10.7 Hz, CH), 131.23 (d, JCP = 8.3 Hz, C), 130.83 (d, JCP = 11.5 Hz, CH),130.32 (d, JCP = 5.0 Hz, CH), 129.42 (d, JCP = 20.6 Hz, CH), 129.24 (s, CH), 129.18 (d, JCP = 103.2 Hz, C), 128.82 (d, JCP = 9.1 Hz, CH), 125.41 (d, JCP = 9.9 Hz, CH). 31P[1H] NMR (161.70MHz, CD2Cl2): δ 34.20. HRMS (APCI): m/z calcd. for C20H14 79BrClOP: 414.9654 ([M+H]+); found. 414.9670.
 合成中間体M1(358mg,0.861mmol)とフェニルボロン酸(115mg,0.947mmol),Pd2(dba)3・CHCl3(22mg,0.022mmol),S-Phos(18mg,0.043mmol),K3PO4(270mg,1.27mmol)の混合物に脱気したトルエン(8.5mL)と脱気した水(1.7mL)を加え、12時間、80℃で加熱した。クロロホルムを用いて抽出した後、集めた有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。これをシリカゲルカラムクロマトグラフィー(CHCl3/AcOEt 10:1,Rf=0.40)で精製することにより無色固体として合成中間体M2を338mg(0.819mmol,収率95%)得た。合成中間体M2のスペクトルデータは以下のとおり。
 1H NMR (400MHz, CD2Cl2): δ 7.73-7.63 (m, 6H), 7.51-7.37 (m, 8H), 7.33-7.31 (m, 2H), 7.22 (dd, J = 8.0, 3.2 Hz, 1H), 7.17 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H). 13C[1H] NMR (100 MHz, CD2Cl2): δ 150.94 (d, Jcp = 20.6 Hz, C), 143.89 (d, Jcp = 26.4 Hz, C), 134.33 (d, Jcp = 14.0 Hz, C), 134.07 (s, C), 133.59 (d,Jcp = 94.7 Hz, C), 133.40 (d, Jcp = 1.6 Hz, CH), 132.66 (d, Jcp = 2.4 Hz, CH), 132.60 (d, Jcp = 103.7 Hz, C), 132.03 (d, Jcp = 9.9 Hz, C), 131.27 (d, Jcp = 10.7 Hz, CH), 130.71 (d, Jcp = 5.8 Hz, CH), 130.40 (d, Jcp = 98.8 Hz, C), 129.74 (d, Jcp = 10.7 Hz, CH), 129.48 (s, CH), 129.39 (s, CH), 129.33 (d, Jcp = 13.2 Hz, CH), 129.28 (s, CH), 129.18 (d, Jcp = 9.1 Hz, CH), 128.87 (s, CH), 124.66 (d, Jcp = 10.7 Hz, CH). 31P[1H] NMR (38.16 MHz, CD2Cl2): δ 38.16. HRMS (APCI): m/z calcd. for C26H19ClOP: 413.0857 ([M+H]+); found. 413.0854.
 合成中間体M2(74.7mg,0.181mmol)とジフェニルアミン(31.5mg,0.186mmol),Pd(dba)2(2.3mg,0.0040mmol),Q-Phos(5.0mg,0.0069mmol),t-BuONa(18.0mg,0.187mmol)の混合物に脱水トルエン(1mL)を加え、80℃で24時間撹拌した。続いて、1N NH4Cl水溶液を加え、トルエンで抽出した。集めた有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CHCl3/AcOEt 20:1,Rf=0.35)にて分離した後、HPLCで精製することにより、43.4mg(0.0795mmol,収率44%)の化合物1を黄色固体として得た。化合物1のスペクトルデータは以下のとおり。
1H NMR (400MHz, CD2Cl2): δ 7.76 (ddd, J = 12.0, 7.8, 1.2 Hz, 2H), 7.59 (t, J = 8.8 Hz, 1H), 7.51-7.30 (m, 10H), 7.21-7.17 (m, 4H), 7.10 (dd, J = 7.6, 2.8 Hz, 1H), 7.05-6.96 (m, 8H), 6.67 (d, J = 8.8 Hz, 2H). 13C[1H] NMR (100MHz, CD2Cl2): δ 148.38 (d, JCP = 21.4 Hz, C), 147.27 (s, C), 147.48 (s, C), 144.61 (d, JCP = 27.2 Hz, C), 135.43 (d, JCP = 14.8 Hz, C), 134.05 (d, JCP = 94.6 Hz, C), 133.29 (s, CH), 132.59 (d, JCP = 104.6 Hz, C), 132.47 (d, JCP = 2.5 Hz, CH), 131.50 (d,JCP = 98.0 Hz, C), 131.29 (d, JCP = 10.7 Hz, CH), 130.24 (d, JCP = 5.7 Hz, CH),129.71 (s, CH), 129.52 (s, CH), 129.42 (s, CH), 129.31 (d, JCP = 12.3 Hz, CH), 129.14 (d, JCP = 10.7 Hz, CH), 128.98 (s, CH), 128.88 (d, JCP = 9.8 Hz, CH), 126.31 (d, JCP = 10.7 Hz, C),125.57 (s, CH), 124.13 (d, JCP = 10.7 Hz, CH), 124.02(s, CH), 121.71 (s, CH). 31P[1H] NMR (161.70MHz, CD2Cl2): δ 38.29. HRMS (APCI): m/z calcd. for C38H29NOP: 546.1981 ([M+H]+); found. 546.1990.
(2)2-[4-(N,N-ジフェニルアミノ)フェニル]-1-フェニルベンゾ[b]ホスホール-P-オキシド(化合物2)の合成
 以下のスキームに従って、化合物2を合成した。
Figure JPOXMLDOC01-appb-C000007
 文献記載の公知化合物である2-ブロモ-1-フェニルベンゾ[b]ホスホール-P-オキシド(Chem. Eur. 2012, vol.18, p15972-15983)(60.3mg,0.198mmol)とジフェニルアミノフェニルボロン酸(88.6mg,0.306mmol),Pd2(dba)3・CHCl3(5.4mg,0.0052mmol),S-Phos(4.3mg,0.011mmol),K3PO4(62.9mg,0.296mmol)の混合物に、脱気したトルエン(4mL)と脱気した水(1mL)を加え、80℃で1.5時間撹拌した。その後、1N NH4Cl水溶液を加え、トルエンで抽出した。集めた有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを瀘別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CHCl3/Et3N 20:1,Rf=0.45)にて分離した後、HPLCおよびGPCを用いて精製することにより53.3mg(114mmol,収率58%)の化合物2を黄色固体として得た。化合物2のスペクトルデータは以下の通り。
1H NMR (400MHz, CD2Cl2): δ 7.71 (ddd, J = 12.4, 7.2, 1.2 Hz, 2H), 7.53-7.44 (m,6H), 7.42-7.37 (m, 3H), 7.31-7.22 (m, 5H), 7.06-7.02 (m, 6H), 6.93 (d, J = 8.4 Hz, 2H). 13C[1H] NMR (100MHz, CD2Cl2): δ 148.92 (s, C), 147.49 (s, C), 142.57 (d, JCP = 28.0 Hz, C), 138.62 (d, JCP = 93.0 Hz, C), 134.36 (d, JCP = 19.8 Hz, CH), 133.57 (d, JCP = 1.7 Hz, CH), 133.15 (d, JCP = 107.8 Hz, C), 132.52 (d, JCP =2.4 Hz, CH), 131.14 (d, JCP = 96.4 Hz, C), 131.09 (d, JCP = 10.7 Hz, CH), 129.77 (s, CH), 129.29 (d, JCP = 11.5 Hz, CH), 128.96 (d, JCP = 9.9 Hz, CH), 127.79 (d, JCP = 6.6 Hz, CH), 126.20 (d, JCP = 10.7 Hz, C), 125.53 (s, CH), 124.76 (d, JCP = 9.1 Hz, CH), 124.09 (s, CH), 122.62 (s, CH). 31P[1H] NMR (161.70MHz, CD2Cl2): δ 38.44. HRMS (APCI): m/z calcd. for C32H25NOP: 470.1674 ([M+H]+); found. 470.1681.
(3)2-[4-(N,N-ジメチルアミノ)フェニル]-1-フェニルベンゾ[b]ホスホール-P-オキシド(化合物3)の合成
 以下のスキームに従って、化合物3を合成した。
Figure JPOXMLDOC01-appb-C000008
 文献記載の公知化合物である2-ブロモ-1-フェニルベンゾ[b]ホスホール-P-オキシド(Chem. Eur. J. 2012, vol.18, p15972.)(61.5mg,0.202mmol)とジメチルアミノフェニルボロン酸(51.6mg,0.313mmol),Pd2(dba)3・CHCl3 (6.1mg,0.0059mmol),S-Phos(4.7mg,0.011mmol),K3PO4(63.7mg,0.300mmol)の混合物に、脱気したトルエン(4mL)と脱気した水(1mL)を加え、80℃で1時間撹拌した。その後、蒸留水を加え、トルエンで抽出した。集めた有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを瀘別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CHCl3/Et3N 20:1,Rf=0.50)にて分離した後、HPLCを用いて精製し、クロロホルムとヘキサンから二回再結晶することにより6.6mg(0.0191mmol,収率9.5%)で化合物3を黄色固体として得た。化合物3のスペクトルデータは以下の通り。
1H NMR (400MHz, CD2Cl2): δ 7.71 (dd, J = 12.4, 7.2 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.53-7.45 (m, 4H), 7.40-7.35 (m, 3H), 7.26 (td, J = 7.2, 4.0 Hz, 1H), 6.77 (s, br, 2H), 2.95 (s, 6H). 31P[1H] NMR (161.70MHz, CD2Cl2): δ 38.84. HRMS (APCI): m/z calcd. for C22H21NOP: 346.1361 ([M+H]+); found. 346.1371.
(4)2-[4-(N,N-ジメチルアミノ)フェニル]-1,3-ジフェニルベンゾ[b]ホスホール-P-オキシド(化合物4)の合成
 以下のスキームに従って、化合物4を合成した。
Figure JPOXMLDOC01-appb-C000009
 文献記載の公知化合物である3-ブロモ-1-フェニル-2-トリメチルシリルベンゾ[b]ホスホール-P-オキシド (Chem. Asian J. 2009, vol.4, p1729.) (0.490g,1.30mmol)とフェニルボロン酸(0.174g,1.43mmol),Pd(PPh34(0.149g,0.129mmol),K3PO4(0.408g,1.92mmol)の混合物に脱気したトルエン(10mL)と脱気した水(2.5mL)を加え、80℃で25時間加熱した。その後、蒸留水を加え、トルエンで抽出した。集めた有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CHCl3/AcOEt 10:1,Rf=0.30)にて精製し、0.413g(1.10mmol,収率85%)の1,3-ジフェニル-2-トリメチルシリルベンゾ[b]ホスホール[P]オキシド(合成中間体M3)を白色固体として得た。
 続いて空気中で、合成中間体M3(0.413g,1.10mmol)とNBS(0.217g,1.22mmol)の混合物にアセトニトリル(10mL)を加えた。加熱還流を8時間行った後、蒸留水を加え、クロロホルムで抽出した。集めた有機層を飽和食塩水で洗浄したのち、無水硫酸ナトリウムで乾燥させた。硫酸ナトリウムと濾別し、減圧下で濃縮することで粗生成物を得た。粗成生物をシリカゲルカラムクロマトグラフィー(CHCl3/AcOEt 10:1,Rf=0.40)にて精製し、0.393g(1.03mmol,収率94%)の2-ブロモ-1,3-ジフェニルベンゾ[b]ホスホール-P-オキシド(合成中間体M4)を白色固体として得た。
 合成中間体M4(0.194g,0.509mmol)とジメチルアミノフェニルボロン酸(0.102g,0.619mmol),Pd2(dba)3・CHCl3(15.6mg,0.0151mmol),S-Phos(12.3mg,0.0300mmol),K3PO4(0.159g,0.750mmol)の混合物に、脱気したトルエン(4mL)と脱気した水(1mL)を加え、80℃で12時間撹拌した。その後、蒸留水を加え、トルエンを取り除き、クロロホルムで抽出した。集めた有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで、化合物4を含む粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CHCl3/AcOEt 10:1,Rf=0.25)にて分離した後、HPLCおよびGPCを用いて精製することにより、化合物4を黄色固体として得た。
1H NMR (400MHz, CD2Cl2): δ 7.75 (ddd, J = 12.4, 7.6, 1.2 Hz, 2H), 7.58 (t, J = 8.8 Hz, 1H), 7.49-7.35 (m, 9H), 7.28 (td, J = 7.2, 4 Hz, 1H), 7.14 (d, J = 8.4 Hz, 2H), 7.07 (dd, J = 7.6, 2.8 Hz, 1H), 6.41 (s, br, 2H), 2.83 (s, 6H). 31P[1H] NMR (161.70MHz, CD2Cl2): δ 38.67. HRMS (APCI): m/z calcd. for C28H25NOP: 422.1674 ([M+H]+); found. 422.1691.
(5)2-[(4-(N,N-ジメチルアミノ)フェニル)-3-[4-(メチルトリエチレングリコキシ)フェニル]-1-フェニルベンゾ[b]ホスホール-P-オキシド(化合物5)の合成
 以下のスキームに従って、化合物5を合成した。
Figure JPOXMLDOC01-appb-C000010
 (4-ヒドロキシフェニル)ボロン酸ピナコールエステル(Sigam-Aldrich社製,1.68g,7.61mmol)とトリエチレングリコールメチルエーテルトシラート(2.42g,7.61mmol),K2CO3(1.05g,7.61mmol)の混合物に脱水DMF(11mL)を加え、80℃で16時間撹拌した。その後、クロロホルムを加えて濾過し、濾液を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥させ、硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/AcOEt 1:1,Rf=0.35)にて精製することで、2.49g(7.12mmol,収率94%)の4-(メチルトリエチレングリコキシ)フェニルボロン酸ピナコールエステル(合成中間体M5)を薄黄色液体として得た。
 文献記載の公知化合物である3-ブロモ-1-フェニル-2-トリメチルシリルベンゾ[b]ホスホール-P-オキシド(Chem. Asian J. 2009, vol.4, p1729)(1.11g,3.00mmol)と合成中間体M5(1.32g,3.60mmol),Pd2(dba)3・CHCl3(103.5mg, 0.100mmol),S-Phos(49.9mg,0.122mmol),K3PO4(1.91g,9.00mmol)の混合物に脱気したトルエン(24mL)と脱気した水(6mL)を加え、80℃で12.5時間撹拌した。塩化アンモニウム水溶液を加え、クロロホルムで抽出した。集めた有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(CHCl3/AcOEt 5:1 +0.5%Et3N,Rf=0.25)にて分離した後、GPCおよびHPLCを用いて精製することにより、3-[4-(メチルトリエチレングリコキシ)フェニル]-1-フェニル-2-トリメチルシリルベンゾ[b]ホスホール-P-オキシド(合成中間体M6)を無色液体として得た。
 合成中間体M6(0.116g,0.216mmol)とNBS(40.9mg,0.230mmol)の混合物にアセトニトリル(2.5mL)を加え、80℃で5時間撹拌した。この実験は空気中で行った。亜硫酸ナトリウム水溶液を加え、酢酸エチルで抽出した。集めた有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを濾別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(AcOEt,Rf=0.30)で精製し、97.3mg(0.179mmol,収率83%)の2-ブロモ-3-[4-(メチルトリエチルグリコキシ)フェニル]-1-フェニルベンゾ[b]ホスホール-P-オキシド(合成中間体M7)を無色液体として得た。
 合成中間体M7(51.0mg,93.9μmol)とジメチルアミノフェニルボロン酸(27.1mg,0.164mmol),Pd2(dba)3・CHCl3(2.1mg,0.0020mmol),S-Phos(1.8mg,0.0044mmol),K3PO4(30.3mg,0.143mmol)の混合物に、脱気したトルエン(2mL)と脱気した水(0.5mL)を加え、80℃で2.5時間撹拌した。その後、蒸留水を加え、トルエンを取り除き、クロロホルムで抽出した。集めた有機層を飽和食塩水で洗浄した後、無水硫酸ナトリウムで乾燥させた。硫酸ナトリウムを瀘別し、濾液を減圧下で濃縮することで粗生成物を得た。粗生成物をシリカゲルカラムクロマトグラフィー(hexane/AcOEt 1:10 +1%Et3N,Rf=0.30)にて精製することにより、化合物5を黄色固体として得た。化合物5のスペクトルデータは以下の通り。
1H NMR (400MHz, CD2Cl2): δ 7.74 (dd, J = 12.0, 7.6 Hz, 2H), 7.58 (t, J = 8.6 Hz, 1H), 7.49-7.36 (m, 4H), 7.32-7.27 (m, 3H), 7.17-7.15 (m, 3H), 7.01 (d, J = 8.4Hz, 2H), 6.49 (s, br, 2H), 4.16 (t, J = 4.4 Hz, 2H), 3.84 (t, J = 4.4 Hz, 2H), 3.70-3.67 (m, 2H), 3.63-3.58 (m, 4H), 3.51-3.48 (m, 2H), 3.32 (s, 3H), 2.86 (s, 6H). 31P[1H] NMR (161.70MHz, CD2Cl2): δ 38.28. HRMS (APCI): m/z calcd. for C35H39NO5P: 584.2566 ([M+H]+); found. 584.2570.
(6)化合物6a-6dの合成
 以下のスキームに従って、化合物6a-6dを合成した。但し、化合物6aは、合成方法は異なるものの化合物2と同じであるため、以下には代表例として化合物6bの合成方法を詳しく説明する。
Figure JPOXMLDOC01-appb-C000011
・化合物6b
 2-ブロモ-3-ヨードナフタレン(5mmol), 4-(N,N-ジフェニルアミノ)フェニルアセチレン(5.25mmol),Pd(PPh34(0.10mmol),CuI(0.10mmol),トルエン(10mL)及びi-Pr2NH(5mL)の懸濁液を室温で20時間攪拌した。その後、濾過により無機塩を除去し、すべての揮発性物質を減圧下で蒸発させた。シリカゲルクロマトグラフィ(溶出液はヘキサン/CH2Cl2=4/1)により分離したあと、 得られた粗生成物をMeOHから再結晶することにより精製し、白色粉末である合成中間体M8bを収率96%で得た。
 合成中間体M8b(2.4mmol)を無水THF(30mL)に溶かした溶液へ、t-BuLi(4.92mmol)のn-ペンタン溶液を-78℃で滴下して加えた。その後、混合液を-40℃まで4時間かけてゆっくり温めた。その混合液を-78℃に冷やした後、PhP(NEt2)Cl(2.40mmol)を加え、その混合液を2時間かけて室温までゆっくり温めた。その混合液を再び-78℃に冷やした後、PBr3(2.40mmol)を加え、得られた混合液を室温まで温めた。室温で36時間攪拌した後、反応混合液をH22水溶液(2mL,30%)を用いて0℃で1時間攪拌して酸化させた。Na2SO3水溶液(50mL,10%)を用いて0℃で反応をクエンチした後、 混合液をEtOAc(100mL)で2回抽出した。合わせた有機層をH2O(50mL), ブライン(50mL)で洗浄し、その後、無水Na2SO4で乾燥し、濾過した。濾液を減圧下で濃縮後、得られた固体をシリカゲルカラムクロマトグラフィ(溶出液はCH2Cl2 からCH2Cl2/EtOAc=10/1へ切り替えた)で精製し、MeOHから再結晶し、黄色の粉末である合成中間体M9bを収率47%で得た。
 合成中間体M9b(0.418mmol)を無水トルエン(3mL)に懸濁させた懸濁液へ、HSiCl3(2.1mmol)を室温で一度に加えた。1時間攪拌後、揮発性物質を減圧下で除去した。その後、トルエン(2mL)を加え、得られた懸濁液をアルゴン雰囲気下、セライトプラグを通して濾過し、トルエン(4mL)でリンスした。濾液を濃縮後、生じた固体を無水THF(15mL)に溶かした。この溶液へt-BuLiのペンタン溶液(1.77M,0.70mL,1.24mmol)を-78℃で加え、1時間攪拌した。NH4Clの飽和水溶液(1mL)で反応をクエンチし、室温になるまで放置した。その後、混合液を0℃でH22水溶液(1mL,30%)を用いて酸化し、1時間攪拌した。0℃でNa2SO3水溶液(20mL,10%)を用いて反応をクエンチした後、混合液をEtOAc(50mL)で2回抽出した。合わせた有機層をH2O(20mL),ブライン(20mL)で洗浄し、その後無水Na2SO4で乾燥し、濾過した。濾液を減圧下で濃縮後、得られた固体をシリカゲルカラムクロマトグラフィ(溶出液はCH2Cl2 からCH2Cl2/EtOAc=5/1へ切り替えた)で精製し、MeOH(10mL)から再結晶し、黄色の粉末である化合物6bを収率84%で得た。化合物6bのスペクトルデータは以下の通り。
 Rf = 0.30 (CH2Cl2/EtOAc = 20/1); 1H NMR (400 MHz, CDCl3): δ = 8.06 (d, J = 7.2 Hz, 1H), 7.84・7.73 (m, 5H), 7.65 (d, J = 35.6 Hz, 1H), 7.57・7.38 (m, 7H), 7.27・7.23 (t, J = 7.6 Hz, 4H), 7.09・7.03 (m, 6H), 6.97 (d, J = 7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ = 148.18 (s, C), 146.77 (s, C), 138.66 (d, J = 93.9 Hz, C), 137.88 (d, J = 28.0 Hz, C), 135.56 (d, J = 1.6 Hz, C), 134.86 (d, J = 19.0 Hz, CH), 132.75 (d, J = 11.5 Hz, C), 131.91 (d, J = 2.5 Hz, CH), 130.84 (d, J = 98.8 Hz, C), 130.72 (d, J = 109.5 Hz, C), 130.65 (d, J = 10.7 Hz, CH), 130.51 (d, J = 9.9 Hz, CH), 129.16 (s, CH), 128.94 (s, CH), 128.66 (d, J = 12.3 Hz, CH), 128.26 (s, CH), 127.46 (d, J = 7.4 Hz, CH), 126.67 (s, CH), 125.78 (d, J = 10.7 Hz, C), 124.79 (s, CH), 123.41 (s, CH), 123.00 (d, J = 9.1 Hz, CH), 122.23 (s, CH),CH炭素に対応する一重線のうち1つが他のシグナルと重なっており、特定できない;31P NMR (162 MHz, CDCl3): δ = 38.24; HRMS (APCI): m/z calcd. for C36H27NOP: 520.1825 ([M+H]+); found. 520.1831.
・化合物6c
 合成中間体M8cは、4-(N,N-ジフェニルアミノ)フェニルアセチレンの代わりに2-(2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)アセチレンを用いた以外は、合成中間体M8bの合成方法に準じて合成した。また、合成中間体M9cは、合成中間体M8bの代わりに合成中間体M8cを用いた以外は、合成中間体M9bの合成方法に準じて合成した。更に、化合物6cは、合成中間体M9bの代わりに合成中間体M9cを用いた以外は、化合物6bの合成方法に準じて合成した。この化合物6cは、N上のアルキル基がアニリンのベンゼン環に結合してアルキレン鎖(プロピレン鎖)を形成した化合物の一例といえる。化合物6cのスペクトルデータは以下の通り。
 Rf = 0.21 (CH2Cl2/EtOAc = 20/1); 1H NMR (400 MHz, CDCl3): δ = 8.07 (d, J = 11.2 Hz, 1H), 7.89・7.78 (m, 4H), 7.66 (d, J = 3.2 Hz, 1H), 7.57・7.32 (m, 8H), 3.20 (t, J = 5.6 Hz, 4H), 2.82・2.67 (m, 4H), 1.98・1.93 (m, 4H); 13C NMR (100 MHz, CDCl3): δ = 143.70 (s, C), 139.76 (d, J = 93.9 Hz, C), 138.90 (d, J = 28.8 Hz, C), 136.11 (s, C), 132.84 (d, J = 11.5 Hz, C), 131.90 (d, J = 2.5 Hz, CH), 131.81 (d, J = 98.8 Hz, C), 131.56 (d, J = 18.9 Hz, CH), 131.41 (d, J = 108.7 Hz, C), 131.01 (d, J = 10.7 Hz, CH), 130.62 (d, J = 9.8 Hz, CH), 129.31 (s, CH), 128.80 (d, J = 11.5 Hz, CH), 128.33 (s, CH), 128.29 (s, CH), 126.42 (s, CH), 125.75 (d, J = 7.5 Hz, CH), 121.82 (d, J = 9.1 Hz, CH), 121.31 (s, C), 119.73 (d, J = 10.7 Hz, C), 49.98 (s, CH), 27.80 (s, CH), 21.82 (s, CH); 31P NMR (162 MHz, CDCl3): δ = 38.51; HRMS (APCI): m/z calcd. for C30H27NOP: 448.1825 ([M+H]+); found. 448.1831.
・化合物6d
 合成中間体M8dは、2-ブロモ-3-ヨードナフタレンの代わりに1-ブロモナフタレン-2-イルトリフレートを用いた以外は、合成中間体M8bの合成方法に準じて合成した。また、合成中間体M9dは、合成中間体M8bの代わりに合成中間体M8dを用いた以外は、合成中間体M9bの合成方法に準じて合成した。更に、化合物6dは、合成中間体M9bの代わりに合成中間体M9dを用いた以外は、化合物6bの合成方法に準じて合成した。化合物6dのスペクトルデータは以下の通り。
Rf = 0.44 (CH2Cl2/EtOAc = 20/1); 1H NMR (400 MHz, CD2Cl2): δ = 8.04 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 7.2 Hz, 1H), 7.86・7.81 (m, 3H), 7.65・7.56 (m, 4H), 7.50・7.37 (m, 5H), 7.30・7.26 (m, 4H), 7.10・7.06 (m, 6H), 6.98 (d, J = 8.8 Hz, 2H); 13C NMR (100 MHz, CDCl3): δ = 148.57 (s, C), 147.20 (s, C), 141.74 (d, J = 27.1 Hz, C), 139.42 (d, J = 93.9 Hz, C), 134.20 (d, J = 1.6 Hz, CH), 133.57 (d, J = 8.3 Hz, C), 133.36 (d, J = 21.4 Hz, CH), 132.21 (d, J = 2.4 Hz, CH), 132.01 (d, J = 9.1 Hz, C), 130.80 (d, J = 10.7 Hz, CH), 130.65 (d, J = 95.5 Hz, C), 129.48 (s, CH), 129.15 (d, J = 12.3 Hz, CH), 128.90 (s, CH), 128.50 (s, CH), 127.63 (d, J = 6.5 Hz, CH), 127.54 (d, J = 106.2 Hz, C), 126.47 (s, CH), 125.95 (d, J = 11.6 Hz, C), 125.32 (d, J = 4.1 Hz, CH), 125.22 (s, CH), 123.73 (s, CH), 122.58 (s, CH), 122.28 (d, J = 10.7 Hz, CH); 31P NMR (162 MHz, CDCl3): δ = 40.52; HRMS (APCI): m/z calcd. for C36H27NOP: 520.1825 ([M+H]+); found. 520.1822.
(7)化合物7a,7bの合成
 以下のスキームに従って、化合物7a,7bを合成した。
Figure JPOXMLDOC01-appb-C000012
・化合物7a
 合成中間体M9a(1.24mmol)を無水トルエン(5mL)に懸濁させた懸濁液へ、HSiCl3(6.24mmol)を室温で一度に加えた。1時間攪拌後、すべての揮発性物質を減圧下で除去した。その後、トルエン(5mL)を加え、得られた懸濁液をアルゴン雰囲気下、セライトプラグを通して濾過し、トルエン(5mL)でリンスした。濾液を濃縮後、得られた固体を無水THF(15mL)に溶かした。この溶液へt-BuLiのペンタン溶液(1.77M,1.47mL,2.60mmol)を-78℃で10分かけて添加した。1時間攪拌後、ベンゾフェノン(2.74mmol)を一度に加え、得られた混合液を室温まで6時間かけてゆっくり温めた。その後、NH4Clの飽和水溶液(2mL)を用いて0℃で反応をクエンチし、続いてH22水溶液(1mL,30%)で酸化し、室温で1時間攪拌した。Na2SO3水溶液(20mL,10%)で反応をクエンチした後、混合液をEtOAc(50mL)で2回抽出した。合わせた有機層をH2O(20mL),ブライン(20mL)で洗浄し、その後無水Na2SO4で乾燥し、濾過した。濾液を減圧下で濃縮後、得られた固体をシリカゲルクロマトグラフィ(溶出液はCH2Cl2 からCH2Cl2/EtOAc=2/1へ切り替えた)及びGPC(CHCl3)で精製し、薄黄色の固体である合成中間体M10aを収率51%で得た。
 次に、合成中間体M10a(0.422mmol)の無水CH2Cl2(15mL)の溶液へBF3・OEt2(0.844mmol)を室温で添加した。1時間攪拌後、EtOH(1mL)とH2O(30mL)で反応をクエンチし、混合液をCH2Cl2(50mL)で2回抽出した。合わせた有機層をH2O(20mL)で洗浄し、その後無水Na2SO4で乾燥し、濾過した。濾液を減圧下で濃縮後、得られた固体をシリカゲルクロマトグラフィ(溶出液はCH2Cl2 からCH2Cl2/EtOAc=5/1へ切り替えた)及びMeOH(20mL)からの再結晶で精製し、黄色の粉末である化合物7aを収率65%で得た。化合物7aのスペクトルデータは以下の通り。
Rf = 0.23 (CH2Cl2/EtOAc = 20/1); 1H NMR (400 MHz, CD2Cl2): δ = 7.78・7.73 (m, 2H), 7.62・7.54 (m, 2H), 7.45 (td, J = 7.2 Hz, J = 2.0 Hz, 2H), 7.30・7.17 (m, 18H), 7.12 (dd, J = 7.6 Hz, J = 2.4 Hz, 1H), 7.02・6.98 (m, 6H), 6.87 (dd, J = 8.4 Hz, J = 1.6 Hz, 1H); 13C NMR (100 MHz, CDCl3): δ = 165.75 (d, J = 20.6 Hz, C), 158.35 (d, J = 9.9 Hz, C), 147.43 (s, C), 147.26 (s, C), 141.14 (s, C), 140.59 (s, C), 138.75 (d, J = 103.7 Hz, C), 138.51 (d, J = 19.8 Hz, C), 137.09 (d, J = 108.6 Hz, C), 132.41 ( br m, CH), 131.18 (d, J = 11.6 Hz, C), 130.81 (d, J = 10.7 Hz, CH), 130.04 (d, J = 102.9 Hz, C), 129.49 (d, J = 9.9 Hz, CH), 129.19 (s, CH), 128.98 (d, J = 12.3 Hz, CH) 128.67 (s, CH), 128.57 (s, CH), 128.51 (s, CH), 128.24 (d, J = 11.6 Hz, CH), 127.41 (s, CH), 124.46 (s, CH), 123.19 (s, CH), 122.45 (s, CH), 122.28 (s, CH), 120.05 (s, CH), 66.31 (d, J = 11.9 Hz, C),CH炭素の二重線のうち123.07ppmのシグナルと対をなす1つと、CH炭素の1つの二重線及び2つの一重線が他のシグナルと重なっており、特定できない;31P NMR (162 MHz, CD2Cl2): δ = 24.81; HRMS (APCI): m/z calcd. for C45H33NOP: 634.2294 ([M+H]+); found. 634.2302.
・化合物7b
 合成中間体M10bは、合成中間体9b(0.500mmol)と4,4’-ビス(トリ(エチレングリコール)モノメチルエーテル)ベンゾフェノン(0.600mmol)を出発原料として、合成中間体M10aと同様にして合成した。また、化合物7bは、合成中間体M10aの代わりに合成中間体M10bを用いた以外は、化合物7aと同様にして合成した。化合物7aのスペクトルデータは以下の通り。
Rf = 0.38 (EtOAc); 1H NMR (600 MHz, CDCl3): δ = 8.07 (d, J = 12.1 Hz, 1H), 7.84・7.80 (m, 2H), 7.73 (d, J = 7.9 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.52 (t, J = 7.3 Hz, 1H), 7.46・7.39 (m, 5H), 7.30・7.26 (m, 3H), 7.21・7.18 (m, 7H), 7.02・6.98 (m, 6H), 6.85・6.80 (m, 5H), 4.11・4.08 (m, 4H), 3.85・3.83 (m, 4H), 3.74・3.71 (m, 4H), 3.68・3.62 (m, 8H), 3.54・3.51 (m, 4H), 3.36 (s, 3H), 3.35 (s, 3H); 13C NMR (150 MHz, CDCl3): δ = 166.78 (d, J = 18.5 Hz, C), 159.12 (d, J = 9.9 Hz, C), 158.10 (s, C), 158.07 (s, C), 147.55 (s, C), 147.37 (s, C), 139.55 (d, J = 103.6 Hz, C), 135.22 (s, C), 134.25 (d, J = 21.0 Hz, C), 133.61 (s, C), 133.07 (s, C), 132.64 (d, J = 12.3 Hz, C), 132.37 (d, J = 2.5 Hz, CH), 131.06 (d, J = 9.9 Hz, CH), 131.04 (d, J = 11.1 Hz, C), 129.91 (s, CH), 129.75 (s, CH), 129.26 (s, CH), 129.08 (s, CH), 129.01 (d, J = 12.5 Hz, CH), 128.92 (s, CH), 128.34 (s, CH), 127.04 (s, CH), 124.58 (s, CH), 123.24 (s, CH), 122.60 (s, CH), 122.23 (d, J = 8.6 Hz, CH), 122.17 (s, CH), 119.85 (s, CH), 114.61 (s, CH), 114.54 (s, CH), 71.97 (s, CH), 70.86 (s, CH), 70.85 (s, CH), 70.71 (s, CH), 70.62 (s, CH), 69.73 (s, CH), 69.71 (s, CH), 67.43 (s, CH), 65.11 (d, J = 9.9 Hz, C), 59.07 (s, CH),4級炭素に対応する二重線のうち135.94ppmのシグナルと対をなす1つのシグナルと、130.35ppmのシグナルと対をなす1つと、芳香族CH炭素に対応する二重線のうち131.18ppmのシグナルと対をなす1つと、脂肪族CH炭素に対応する5つの一重線が他のシグナルと重なっており、特定できない; 31P NMR (162 MHz, CDCl3): δ = 24.83; HRMS (APCI): m/z calcd. for C63H63NO9P: 1008.4235 ([M+H]+); found. 1008.4217.
3.光物性
 化合物1~3,6b~6d,7a及び7bにつき、光物性を測定した。紫外可視吸収スペクトルは紫外可視近赤外分光光度計UV-3150(島津製作所)を、蛍光スペクトルは分光蛍光光度計F-4500(日立)を用いて測定した。絶対蛍光量子収率の測定には、絶対PL量子収率測定装置C9920-02あるいはC11347-01(浜松ホトニクス)を用いた。全ての試料は,ナカライテスク製の蛍光スペクトル測定用溶媒を用いて試料溶液を調製し、1cm角の石英セルを用いて測定した。試料濃度は、吸収スペクトル測定時は約10-5M、蛍光スペクトル測定時は消光が生じないことを確認した濃度の範囲内に設定した。絶対蛍光量子収率を測定する際には、アルゴンを数分間吹き込むことで溶存酸素を除いた。その結果を表1~表8に示す。なお、表には示さなかったが、ヘキサン、酢酸エチル及びメタノールの配向分極率△fは、それぞれ-0.000518、0.201及び0.309であった。
 表1より、化合物1は、溶媒の極性が増大すると、絶対蛍光量子収率を高い値に維持したまま蛍光波長が長波長シフトした。また、エタノール中でも高い絶対蛍光量子収率が得られた。このことは、従来のホスホール化合物の光物性と大きく異なる。すなわち、従来のホスホール化合物は、極性の低い溶媒中では強い蛍光を示すものの、極性の高いエタノールなどのプロトン性溶媒中では蛍光がみられなかった。これに対して、化合物1は、極性の低い溶媒から高い溶媒まで強い蛍光を示した。化合物2は、化合物1のベンゾホスホールの3位にフェニル基を有さない構造であるが、表1,2より化合物1,2の光物性はほぼ同等の結果であったことから、3位の置換基は光物性に大きな影響を与えないことがわかった。化合物3は、化合物2のベンゾホスホールの2位の4-(N,N-ジフェニルアミノ)フェニル基を、4-(N,N-ジメチルアミノ)フェニル基に置換した構造であるが、表2,3より化合物2に比べて化合物3の方が絶対蛍光量子収率が高い傾向にあるものの、全体的に化合物2,3の蛍光特性は類似していた。また、表4~6より化合物6b~6dも化合物1と同様の蛍光特性を示した。表7,8より化合物7a,7bのようにアニリンのベンゼン環とホスホール環とが縮合環で連結されている場合には化合物1と同様あるいはそれを凌ぐ蛍光特性を示した。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
4.光物性における溶媒効果
 化合物1~3につき、表1~3の結果を用いて、溶媒の配向分極率Δfとストークスシフト値との関係を求めた。その結果を図1に示す。配向分極率Δfは、溶媒の誘電率εと屈折率nを用いて図1に示した式にしたがって算出した。ストークスシフト値は、吸収極大波長λmaxを単位cm-1となるように換算した値から、発光極大波長λexを単位cm-1となるように換算した値を引いた値とした。図1から明らかなように、化合物1~3は、いずれもストークスシフト値と配向分極率Δfとの関係は直線関係(1次関数)に近似できた。このことから、化合物1~3を蛍光色素として利用した場合、λmaxとλexを測定してストークスシフト値を求めれば、それに対応した配向分極率Δfを一義的に導くことができる。つまり、ストークスシフト値から、その蛍光色素の周囲の環境がどのような極性であるかを知ることができる。
5.細胞染色実験
(1)化合物1を用いた細胞染色実験
 ジメチルスルホキシドを0.1%含む化合物1の10mM水溶液中でHeLa細胞を37℃で24時間培養したのち、3%スクロース水溶液で細胞を洗浄し、顕微鏡観察を行った。観察には、ZEISS社の共焦点顕微鏡システム(LSM780)を用いた。その結果、核を除く細胞全体の染色が認められた。ピクセル毎の蛍光スペクトルを取得した結果、530nm、550nm、および565nmに発光極大をもつ3種類のスペクトルに分類できた。細胞の表層付近は主に530nm、細胞質の部分は565nmに極大をもつ発光を示し、細胞質中には550nmに発光極大をもつ箇所が点在していることが認められた。染色された細胞組織の極性環境に依存して発光色が異なることを反映しているものと考えられ、同一の化合物1を用いて細胞内環境のイメージングが可能であることが示された。
(2)化合物3を用いた細胞染色実験
 ジメチルスルホキシドを0.001%含む化合物3の100nM水溶液中で、HeLa細胞を37℃で1時間培養したのち、3%スクロース水溶液で細胞を洗浄し、顕微鏡観察を行った。観察には、ZEISS社の共焦点顕微鏡システム(LSM780)を用いた。その結果,核を除く細胞全体の染色が認められた。ピクセル毎の蛍光スペクトルを取得した結果、520nmおよび570nmに発光極大波長をもつ2種類のスペクトル分類された。この結果より、染色されている部位に応じて発光波長が異なることが分かった。
6.耐光性
 化合物1,2(6a),6b,7a,7b及び公知の蛍光色素Alexa-430の各々につき、吸光度が同程度(0.39~0.44)になるようにアセトニトリル溶液を調製した。溶液中の化合物の濃度は、化合物1:2.35×10-5M,化合物2(6a):2.17×10-5M,化合物6b:1.25×10-5M,化合物7a:3.30×10-5M,化合物7b:2.04×10-5Mであった。Alexa-430は耐光性の高い蛍光色素として知られている。各アセトニトリル溶液につき、溶液調製直後にモル吸光係数を測定した。その後、各アセトニトリル溶液に403nmのレーザ光を20分、60分、120分照射した後のモル吸光係数を測定し、レーザ光照射前(溶液調製直後)のモル吸光係数に対する相対吸光度を求めた。その結果を図2に示す。図2から明らかなように、化合物1,2(6a),6b及び蛍光色素Alexa-430と比べて、化合物7a,6bはレーザ光を120分照射した後も相対吸光度はほぼ1のままであり、非常に高い耐光性を示した。
 なお、本発明は上述した実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 本出願は、2014年1月24日に出願された日本国特許出願第2014-11473号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、化学産業に利用可能であり、例えば、有機EL素子の発光材料や生体蛍光イメージングのための蛍光色素などに利用可能である。

Claims (7)

  1.  下記式(1)で表されるホスホール化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R1はアルキル基、置換アルキル基、アリール基、置換アリール基、アルコキシ基、ヒドロキシ基、アミノ基又は置換アミノ基であり、R2は水素原子、アルキル基、置換アルキル基、アリール基、置換アリール基、カルボニル基、イミノ基、シアノ基又はフッ素原子であり、R3及びR4は同じであっても異なっていてもよく、水素原子、アルキル基、置換アルキル基、アリール基又は置換アリール基であり、Arは炭化水素芳香環、置換炭化水素芳香環、ヘテロ芳香環又は置換ヘテロ芳香環であり、nは0又は1であり、π1、π2は同じであっても異なっていてもよいπ共役ユニットであって、該π共役ユニットは、2価のアルケニル基、2価の置換アルケニル基、2価のアルキニル基、2価の置換アルキニル基、2価の炭化水素芳香環、2価の置換炭化水素芳香環、2価のヘテロ芳香環又は2価の置換ヘテロ芳香環であり、-NR34はπ1又はπ2のうちホスホール骨格側へ電子を供与可能な位置に結合している)
  2.  R1はアリール基又は置換アリール基であり、R2は水素原子、アリール基又は置換アリール基であり、R3及びR4は同じものであって、アルキル基、置換アルキル基、アリール基又は置換アリール基であり、Arはベンゼン環又はナフタレン環であり、nはゼロであり、π1はベンゼン環であり、-NR34はベンゼン環であるπ1のパラ位に結合している、
     請求項1に記載のホスホール化合物。
  3.  R3及びR4は、アルキル基又は置換アルキル基であり、ベンゼン環であるπ1に結合してアルキレン鎖又は置換アルキレン鎖を形成している、
     請求項2に記載のホスホール化合物。
  4.  下記式(2)で表されるホスホール化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R1はアルキル基、置換アルキル基、アリール基、置換アリール基、アルコキシ基、ヒドロキシ基、アミノ基又は置換アミノ基であり、R3及びR4は同じであっても異なっていてもよく、水素原子、アルキル基、置換アルキル基、アリール基又は置換アリール基であり、R5及びR6は同じであっても異なっていてもよく、水素原子、アルキル基、置換アルキル基、アリール基又は置換アリール基であり、Arは炭化水素芳香環、置換炭化水素芳香環、ヘテロ芳香環又は置換ヘテロ芳香環であり、nは0又は1であり、π1、π2は同じであっても異なっていてもよいπ共役ユニットであって、該π共役ユニットは、2価の炭化水素芳香環、2価の置換炭化水素芳香環、2価のヘテロ芳香環又は2価の置換ヘテロ芳香環であり、-NR34はπ1又はπ2のうちホスホール骨格側へ電子を供与可能な位置に結合している)
  5.  R1はアリール基又は置換アリール基であり、R3及びR4は同じものであって、アルキル基、置換アルキル基、アリール基又は置換アリール基であり、R5及びR6は同じものであって、アルキル基、置換アルキル基、アリール基又は置換アリール基であり、Arはベンゼン環又はナフタレン環であり、nはゼロであり、π1はベンゼン環である、
     請求項4に記載のホスホール化合物。
  6.  R3及びR4は、アルキル基又は置換アルキル基であり、ベンゼン環であるπ1に結合してアルキレン鎖又は置換アルキレン鎖を形成している、
     請求項5に記載のホスホール化合物。
  7.  請求項1~6のいずれか1項に記載のホスホール化合物を含有する蛍光色素。
PCT/JP2015/051636 2014-01-24 2015-01-22 ホスホール化合物及びそれを含有する蛍光色素 WO2015111647A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015559100A JP6341617B2 (ja) 2014-01-24 2015-01-22 ホスホール化合物及びそれを含有する蛍光色素
US15/112,499 US9951094B2 (en) 2014-01-24 2015-01-22 Phosphole compound and fluorescent dye containing the same
EP15741089.5A EP3098227B1 (en) 2014-01-24 2015-01-22 Phosphole compound and fluorescent dye containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014011473 2014-01-24
JP2014-011473 2014-01-24

Publications (1)

Publication Number Publication Date
WO2015111647A1 true WO2015111647A1 (ja) 2015-07-30

Family

ID=53681448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051636 WO2015111647A1 (ja) 2014-01-24 2015-01-22 ホスホール化合物及びそれを含有する蛍光色素

Country Status (4)

Country Link
US (1) US9951094B2 (ja)
EP (1) EP3098227B1 (ja)
JP (1) JP6341617B2 (ja)
WO (1) WO2015111647A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042947A1 (ja) * 2016-08-31 2018-03-08 国立大学法人名古屋大学 ホスホール化合物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951270B2 (en) * 2014-10-30 2018-04-24 Lg Chem, Ltd. Multicyclic compound and organic electronic device using the same
CN106831876B (zh) * 2017-02-28 2018-11-02 郑州大学 一种苯并磷杂环戊二烯的合成方法
CN109836460A (zh) * 2019-04-08 2019-06-04 西安交通大学 基于刚性氧膦基团的蓝光-绿光热延迟荧光材料
CN111518136B (zh) * 2019-12-13 2021-09-21 华南理工大学 一种氧化磷哚衍生物及其制备方法与化学生物学应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100253212A1 (en) * 2009-04-01 2010-10-07 Chien-Hong Cheng Light-emission material and organic light-emitting diode including the same
JP2012191031A (ja) * 2011-03-11 2012-10-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100253212A1 (en) * 2009-04-01 2010-10-07 Chien-Hong Cheng Light-emission material and organic light-emitting diode including the same
JP2012191031A (ja) * 2011-03-11 2012-10-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
AIKO FUKAZAWA ET AL.: "Benzo[b]phosphole- Containing n-Electron Systems: Synthesis Based on an Intramolecular trans-Halophosphanylation and Some Insights into Their Properties", CHEMISTRY - AN ASIAN JOURNAL, vol. 4, no. 11, 2009, pages 1729 - 1740, XP055214675 *
CHEM. ASIAN J., vol. 4, 2009, pages 1729
CHEM. ASIAN J., vol. 4, 2009, pages 1729 - 1740
CHEM. EUR. J., vol. 18, 2012, pages 15972
CHEM. EUR., vol. 18, 2012, pages 15972 - 15983
KATSUAKI BABA ET AL.: "Palladium-Catalyzed Direct Synthesis of Phosphole Derivatives from Triarylphosphines through Cleavage of Carbon- Hydrogen and Carbon-Phosphorus Bonds", ANGEWANDTE CHEMIE , INTERNATIONAL EDITION, vol. 52, no. 45, 23 September 2013 (2013-09-23), pages 11892 - 11895, XP055357395 *
LEON D. FREEDMAN ET AL.: "Preparation and Ultraviolet Absorption Spectra of Some Derivatives of Phosphafluorinic Acid", JOURNAL OF ORGANIC CHEMISTRY, vol. 24, 1959, pages 638 - 41, XP055214674 *
ORG. LETT., vol. 14, no. 23, 2012, pages 6032 - 6035
ORGANIC LETTERS, vol. 15, no. 17, 2013, pages 4458 - 4461
See also references of EP3098227A4
YOSHIHIRO MATANO ET AL.: "Synthesis of 2- Alkenyl- and 2-Alkynyl-benzo[b]phospholes by Using Palladium-Catalyzed Cross-Coupling Reactions", ORGANIC LETTERS, vol. 15, no. 17, 2013, pages 4458 - 4461, XP055214676 *
YUTO UNOH ET AL.: "An Approach to Benzophosphole Oxides through Silver- or Manganese-Mediated Dehydrogenative Annulation Involving C-C and C-P Bond Formation", ANGEWANDTE CHEMIE , INTERNATIONAL EDITION, vol. 52, no. 49, 2013, pages 12975 - 12979, XP055214669 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018042947A1 (ja) * 2016-08-31 2018-03-08 国立大学法人名古屋大学 ホスホール化合物
US11174389B2 (en) 2016-08-31 2021-11-16 National University Corporation Nagoya University Phosphole compound

Also Published As

Publication number Publication date
EP3098227B1 (en) 2018-10-24
EP3098227A1 (en) 2016-11-30
US9951094B2 (en) 2018-04-24
US20160333037A1 (en) 2016-11-17
JP6341617B2 (ja) 2018-06-13
JPWO2015111647A1 (ja) 2017-03-23
EP3098227A4 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
JP6341617B2 (ja) ホスホール化合物及びそれを含有する蛍光色素
Sørensen et al. Synthesis and optical properties of trioxatriangulenium dyes with one and two peripheral amino substituents
Patil et al. ESIPT-inspired benzothiazole fluorescein: Photophysics of microenvironment pH and viscosity
Yang et al. Design and synthesis of triphenylamine-malonitrile derivatives as solvatochromic fluorescent dyes
Slodek et al. Phenothiazine derivatives-synthesis, characterization, and theoretical studies with an emphasis on the solvatochromic properties
Jadhav et al. Red emitting triphenylamine based rhodamine analogous with enhanced Stokes shift and viscosity sensitive emission
EP3172203B1 (en) Molecules presenting dual emission properties
Denneval et al. Prediction of photophysical properties of pyrimidine chromophores using Taguchi method
Chemate et al. Novel iminocoumarin derivatives: synthesis, spectroscopic and computational studies
Sun et al. The synthesis, characterization and properties of coumarin-based chromophores containing a chalcone moiety
Tang et al. Rational design of a visible-light photochromic diarylethene: a simple strategy by extending conjugation with electron donating groups
de Azevedo et al. Synthesis and photochromism of novel pyridyl-substituted naphthopyrans
Jia et al. Mechanofluorochromic properties of tert-butylcarbazole-based AIE-active D-π-A fluorescent dye
Habenicht et al. Highly fluorescent single crystals of a 4-ethoxy-1, 3-thiazole
Kielesiński et al. Polarized, V-shaped, and conjoined biscoumarins: from lack of dipole moment alignment to high brightness
Chen et al. New rofecoxib-based mechanochromic luminescent materials and investigations on their aggregation-induced emission, acidochromism, and LD-specific bioimaging
Moorthy et al. Photochromism of novel chromenes constrained to be part of [2.2] paracyclophane: remarkable ‘phane’effects on the colored o-quinonoid intermediates
Li et al. Dialkoxybenzo [j] fluoranthenes: synthesis, structures, photophysical properties, and optical waveguide application
Li Aggregation induced emission and mechanofluorochromism of tetraphenylethene fused thiazolo [5, 4‑d] thiazole derivatives
JP2014047139A (ja) ナフトビスチアジアゾール誘導体およびその製造方法
KR20170095916A (ko) 유기 화합물 및 이 유기 화합물을 포함하는 유기 층을 포함하는 전자 디바이스
Umeno et al. π‐Extended Push‐Pull‐Type Bicyclic Fluorophores Based on Quinoline and Naphthyridine Frameworks with an Iminophosphorane Fragment
Liu et al. TPA-active D–π–D fluorophores with rigid, planar cores from phenylene to indenofluorene and indolocarbazole
Soni et al. Metal free synthesis of Coumarin containing hetero [n] helicene like molecules with TICT and AIE properties
Dobre et al. A Synthetic Approach for Oxadiazole‐Decorated Azobenzene Photoswitches

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15741089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559100

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15112499

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015741089

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015741089

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE