WO2015109996A1 - Horizontally polarized omni-directional antenna - Google Patents

Horizontally polarized omni-directional antenna Download PDF

Info

Publication number
WO2015109996A1
WO2015109996A1 PCT/CN2015/071142 CN2015071142W WO2015109996A1 WO 2015109996 A1 WO2015109996 A1 WO 2015109996A1 CN 2015071142 W CN2015071142 W CN 2015071142W WO 2015109996 A1 WO2015109996 A1 WO 2015109996A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
polarized omni
directional
directional antenna
omni
Prior art date
Application number
PCT/CN2015/071142
Other languages
English (en)
French (fr)
Inventor
Yihong Qi
Wei Yu
Original Assignee
Supeq(Nanjing) Communication Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Supeq(Nanjing) Communication Technologies Co., Ltd. filed Critical Supeq(Nanjing) Communication Technologies Co., Ltd.
Publication of WO2015109996A1 publication Critical patent/WO2015109996A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Definitions

  • Embodiments of the present disclosure generally relate to a horizontally polarized omni-directional antenna.
  • a horizontally polarized omni-directional antenna in the related art has disadvantages of poor assembling consistency, instability and lower polarization isolation between the vertically and horizontal polarized omni-directional antennas.
  • Embodiments of the present invention seek to solve at least one of the problems existing in the related art to at least some extent.
  • Embodiments of the present invention provide a horizontally polarized omni-directional antenna includes a dielectric plate; a feed network disposed above the dielectric plate and including a plurality of feeder lines; a ground plate disposed below the dielectric plate; a plurality of printed dipoles disposed below the dielectric plate, each printed dipole being connected with the ground plate and defining a gap therein, wherein the plurality of the feeder lines are coupled in one-to-one correspondence with the plurality of gaps, and the plurality of the feeder lines are short-circuited in one-to-one correspondence with the plurality of the printed dipoles.
  • the polarization isolation between the vertically and horizontally polarized omni-directional antennas can be dramatically improved.
  • the polarization isolation between the vertically and horizontally polarized omni-directional antennas can be increased to 40dB from 25dB.
  • the horizontally polarized omni-directional antenna according to embodiments of the present invention has a better assembling consistency and a high stability.
  • the horizontally polarized omni-directional antenna has a better assembling consistency, a high stability and a high polarization isolation between the vertically and horizontally polarized omni-directional antennas.
  • the feed network further comprises a central connecting element, each feeder line has one end connected with the central connecting element and is extended in a direction away from the central connecting element.
  • each feeder line has one end connected with the central connecting element and is extended in a direction away from the central connecting element.
  • each printed dipole comprises a left arm and a right arm, each of the left and right arms is connected with the ground plate, the gap is formed between the left and right arms, and the feeder line is short-circuited with one of the left and right arms.
  • the printed dipole has a reasonable structure.
  • terminals of the plurality of the feeder lines are short-circuited in one-to-one correspondence with the plurality of the printed dipoles.
  • a short point of the feeder line and the printed dipole is adjacent to the gap.
  • At least three feeder lines are provided, and at least three printed dipoles are provided.
  • the horizontally polarized omni-directional antenna further includes a metal element disposed on a lower surface of the ground plate. With the metal element disposed on the lower surface of the ground plate, the out-of-roundness of the horizontally polarized omni-directional antenna is improved and an effect of the horizontally polarized omni-directional antenna on a standing wave ratio of high frequency band of the vertically polarized omni-directional antenna is reduced.
  • the metal element is configured to have a triangular shape and extended in a vertical direction.
  • the out-of-roundness of the horizontally polarized omni-directional antenna is further improved and an effect of the horizontally polarized omni-directional antenna on a standing wave ratio of high frequency band of the vertically polarized omni-directional antenna is further reduced.
  • the horizontally polarized omni-directional antenna further includes a plurality of coupling branches, each coupling branch has a first end connected with the ground plate and a second end extended in a direction away from the ground plate, each coupling branch is disposed between two adjacent printed dipoles, and each printed dipole is disposed between two adjacent coupling branches.
  • each coupling branch has a first end connected with the ground plate and a second end extended in a direction away from the ground plate
  • each coupling branch is disposed between two adjacent printed dipoles
  • each printed dipole is disposed between two adjacent coupling branches.
  • Fig. 1 is a perspective view of a 4G dual polarized omni-directional ceiling antenna according to an embodiment of the present invention
  • Fig. 2 is a perspective view of a 4G dual polarized omni-directional ceiling antenna according to an embodiment of the present invention
  • Fig. 3 is a perspective view of a 4G dual polarized omni-directional ceiling antenna according to an embodiment of the present invention
  • Fig. 4 is a perspective view of a 4G dual polarized omni-directional ceiling antenna according to an embodiment of the present invention
  • Fig. 5 is a perspective view of a vertically polarized omni-directional antenna according to an embodiment of the present invention.
  • Fig. 6 is a perspective view of a horizontally polarized omni-directional antenna according to an embodiment of the present invention.
  • Fig. 7 is a perspective view of a horizontally polarized omni-directional antenna according to an embodiment of the present invention.
  • Fig. 8 is a perspective view of a support of a 4G dual polarized omni-directional ceiling antenna according to an embodiment of the present invention.
  • relative terms such as “central” , “longitudinal” , “lateral” , “front” , “rear” , “right” , “left” , “inner” , “outer” , “lower” , “upper” , “horizontal” , “vertical” , “above” , “below” , “up” , “top” , “bottom” , “inner” , “outer” , “clockwise” , “anticlockwise” as well as derivative thereof (e.g. , “horizontally” , “downwardly” , “upwardly” , etc.
  • the 4G dual polarized omni-directional ceiling antenna 1 includes a vertically polarized omni-directional antenna 10 and a horizontally polarized omni-directional antenna 20.
  • the vertically polarized omni-directional antenna 10 includes a base plate 100, a monopole 200, a first feeder 300, a plurality of connecting elements 400 and a coaxial cable 600.
  • the monopole 200 includes a central portion 210 disposed on the base plate 100 and a plurality of radiating portions 220.
  • Each of the radiating portions 210 has an inner end connected with the central portion 210 and is extended in a direction away from the central portion 210.
  • the plurality of radiating portions 220 are arranged radially with respect to a central axis of the central portion 210.
  • the inner ends of the radiating portions 220 are spaced apart from one another in a circumferential direction, so as to form an accommodation space 230.
  • the first feeder 300 is connected with the base plate 100 and the central portion 210.
  • the plurality of connecting elements 400 are connected in one-to-one correspondence with the plurality of the radiating portions 220, and each connecting element 400 is connected with the base plate 100.
  • a number of the connecting elements 400 is equal to that of the radiating portions 220, and each connecting element 400 is connected with one corresponding radiating portion 220.
  • the coaxial cable 600 has a first section 610 positioned in the accommodation space 230 and a second section.
  • the horizontally polarized omni-directional antenna 20 includes a dielectric plate 710, a feed network 720, a ground plate 730 and a plurality of printed dipoles 740.
  • the feed network 720 is disposed above the dielectric plate 710 and includes a plurality of feeder lines 721.
  • the ground plate 730 is disposed below the dielectric plate 710.
  • the plurality of printed dipoles 740 are disposed below the dielectric plate 710, and each of the printed dipoles 740 is connected with the ground plate 730 and defines a gap 743 therein.
  • the plurality of the feeder lines 721 are coupled in one-to-one correspondence with the plurality of gaps 743, and the plurality of the feeder lines 721 are short-circuited in one-to-one correspondence with the plurality of the printed dipoles 740.
  • numbers of the feeder lines 721, printed dipoles 740 and the gaps 743 are identical, and each of the feeder lines 721 is coupled to one corresponding gap 743 and is short-circuited with one corresponding printed dipole 740.
  • the coaxial cable 600 includes an external conductor connected with the ground plate 730 and an internal conductor disposed within the external conductor and penetrated through the dielectric plate 710 to connect with the feed network 720.
  • a vertically polarized omni-directional antenna in the related art is generally configured as a discone antenna, i.e. an overall shape of the vertically polarized omni-directional antenna is conical.
  • the vertically polarized omni-directional antenna in the related art is manufactured by a stamping process for metal stretch forming, which has disadvantages of complex mould and high manufacturing cost.
  • the vertically polarized omni-directional antenna 10 With the radial arrangement of the plurality of radiating portions 220 with respect to the central axis of the central portion 210, the vertically polarized omni-directional antenna 10 according to embodiments of the present invention can form a pattern of omni-directional radiation and it is not necessary for the vertically polarized omni-directional antenna to be processed into the conical shape. Thus, the manufacturing cost and difficulty of the vertically polarized omni-directional antenna 10 can be dramatically reduced.
  • the first section 610 of the coaxial cable 600 can be placed in the accommodation space 230, i.e. the vertically polarized omni-directional antenna 10 may have a symmetrical structure, so that an influence of the electricity of the shielding layer of the coaxial cable 600 on the out-of-roundness and the cross polarization of the vertically polarized omni-directional antenna 10 can be effectively reduced.
  • the out-of-roundness of the vertically polarized omni-directional antenna 10 can be less than 3.5dB, and the cross polarization of the vertically polarized omni-directional antenna 10 can be more than 10dB.
  • the coupling connection between the vertically and horizontally polarized omni-directional antennas 10, 20 can be decreased as well, such that an assembling consistency of the vertically polarized omni-directional antenna 10 is improved.
  • the vertically polarized omni-directional antenna 10 has advantages of a smaller out-of-roundness, a larger cross polarization, an omni-directional radiation, lower manufacturing cost and difficulty and better assembling consistency.
  • the feed network 720, the ground plate 730 and the plurality of printed dipoles 740 may constitute a microstrip power divider.
  • the plurality of the feeder lines 721 coupled in one-to-one correspondence with the plurality of the gaps 743 and short-circuited in one-to-one correspondence with the plurality of the printed dipoles 740, when the coaxial cable 600 is introduced into the horizontally polarized omni-directional antenna 20, an electric current in the external conductor of the coaxial cable 600 is suppressed efficiently, and consequently the polarization isolation between the vertically and horizontally polarized omni-directional antennas 10, 20 can be dramatically improved.
  • the polarization isolation between the vertically and horizontally polarized omni-directional antennas 10, 20 can be increased to 40dB from 25dB.
  • the horizontally polarized omni-directional antenna 20 according to embodiments of the present invention has a better assembling consistency and a high stability.
  • the horizontally polarized omni-directional antenna 20 has a better assembling consistency, a high stability and a high polarization isolation between the vertically and horizontally polarized omni-directional antennas 10, 20.
  • the 4G dual polarized omni-directional ceiling antenna 1 By disposing the vertically and horizontally polarized omni-directional antennas 10, 20, the 4G dual polarized omni-directional ceiling antenna 1 according to embodiments of the present invention has all of advantages of the vertically and horizontally polarized omni-directional antennas 10, 20 described above.
  • the 4G dual polarized omni-directional ceiling antenna 1 may be used widely in a variety of fields, such as an indoor distribution system of 4G mobile communication.
  • a MIMO technique may be selected, such that the vertically and horizontally polarized omni-directional antennas 10, 20 according to embodiments of the present invention may be used as two transmission channels of the MIMO technique respectively.
  • each radiating element 220 and a central axis of the central portion 210 are spaced apart from each other.
  • the vertically polarized omni-directional antenna 10 may have a reasonable structure.
  • each radiating element 220 and the central axis of the central portion 210 are spaced by a predetermined distance in a radial direction of the central portion 210.
  • the inner ends of the plurality of the radiating elements 220 are disposed at the same circumference, and the center of the circumference is located in the central axis of the central portion 210.
  • the vertically polarized omni-directional antenna 10 may have a reasonable structure.
  • each of the radiating portions 220 is configured to have a plate-like shape (i.e. each of the radiating portions 220 is configured as a sheet) and oriented in a vertical direction.
  • the vertically polarized omni-directional antenna 10 may have a reasonable structure, and the manufacturing cost and difficulty of the monopole 200 can be reduced, such that the manufacturing cost and difficulty of vertically polarized omni-directional antenna 10 can be reduced.
  • a primary surface of each radiating portion 220 may be configured as a flat surface or a curved surface.
  • the primary surface of the radiating portion 220 is the surface of the radiating portion 220 with the largest area.
  • Each radiating portion 220 may have a shape of a regular polygon (such as a rectangle) or an irregular polygon.
  • Each radiating portion 220 may be perpendicular to the base plate 100, in other words, the primary surface of each of the radiating portions 220 may be perpendicular to an upper surface of the base plate 100.
  • the shape, structure or dimension of the radiating portions 220 may be different from or identical to one another.
  • included angles formed between adjacent radiating portions 220 may be equal to one another, in other words, the included angle formed between two adjacent radiating portions 220 is a predetermined angle, and the plurality of radiating portions 220 are arranged at equal intervals in the circumferential direction of the central portion 210.
  • the monopole 200 may be a metal element, i.e. the monopole 200 may be made of a metal.
  • the connecting element 400 may be a metal element as well, i.e. the connecting element 400 may be made of a metal.
  • the second portion 620 of the coaxial cable 600 is connected with the base plate 100, one of the plurality of connecting elements 400 and one of the plurality of radiating portions 220, and the coaxial cable 600 may be passed thought the base plate 100.
  • the influence of the electricity of the shielding layer of the coaxial cable 600 on the out-of-roundness and the cross polarization of the vertically polarized omni-directional antenna 10 can be further reduced, i.e. the out-of-roundness of the vertically polarized omni-directional antenna 10 can be further decreased, and the cross polarization ratio of the vertically polarized omni-directional antenna 10 can be further increased.
  • the second portion 620 of the coaxial cable 600 may be adjacent to the first portion 610 of the coaxial cable 600 and may be welded to one of the radiating portions 220, one of the connecting elements 400 (this connecting element 400 is connected to the one radiating portion 200) and the base plate 100 in turn.
  • the first feeder 300 includes an external conductor connected with the base plate 100 and an internal conductor disposed within the external conductor.
  • the internal conductor of the first feeder 300 is penetrated through the base plate 100 to connect with the central portion 210.
  • the internal conductor of the first feeder 300 is penetrated through a central area of the base plate 100, and the coaxial cable 600 is penetrated through the central area of the base plate 100 as well.
  • both of the internal conductor and the coaxial cable 600 are penetrated through the central area of the base plate 100 such that the first feeder 300 and the coaxial cable 600 may be formed as a whole.
  • a portion of the first feeder 300 located below the base plate 100 may be adjacent to a portion of the coaxial cable 600 located below the base plate 100.
  • the influence of the electricity of the shielding layer of the coaxial cable 600 on the out-of-roundness and the cross polarization of the vertically polarized omni-directional antenna 10 can be further reduced, i.e. the out-of-roundness of the vertically polarized omni-directional antenna 10 can be further decreased, and the cross polarization ratio of the vertically polarized omni-directional antenna 10 can be further increased.
  • the connecting element 400 is directly connected with the radiating portion 220 and coupled with the base plate 100.
  • the 4G dual polarized omni-directional ceiling antenna 1 can have a higher electrical performance and a sufficient bandwidth (an operation frequency range of the 4G dual polarized omni-directional ceiling antenna 1 are at least between 806MHz-960MHz and between 1710MHz-2700MHz) , and a passive intermodulation generated by the 4G dual polarized omni-directional ceiling antenna is also reduced.
  • the vertically polarized omni-directional antenna further includes an insulating element (not shown) disposed between the connecting element 400 and the base plate 100.
  • an insulating element With the insulating element, the coupling connection between the connecting element 400 and the base plate 100 is achieved.
  • the 4G dual polarized omni-directional ceiling antenna 1 can have a simple and reasonable structure, and the passive intermodulation generated by the 4G dual polarized omni-directional ceiling antenna 1 is also reduced.
  • a coupling area of the connecting element 400 and the base plate 100 is determined and adjustable depending on a performance requirement of the 4G dual polarized omni-directional ceiling antenna 1, so that the 4G dual polarized omni-directional ceiling antenna 1 can have a sufficient capacitance under a desired frequency.
  • the base plate 100 may be a metal plate, i.e. the base plate 100 may be made of a metal. As shown in Fig. 1 and Fig. 2, the base plate 100 may be configured as a flat plate.
  • the connecting element 400 is coupled to an upper surface of the base plate 100 which may be configured as a flat surface.
  • a shape of the base plate 100 may be configured as a circle, an irregular polygon or a regular polygon.
  • the base plate 100 may be substantially cylindrical and defines an accommodation chamber with an open bottom, so that portions of the first feeder 300 and the coaxial cable 600 may be received within the accommodation chamber.
  • the insulating element may be connected to both of the connecting element 400 and the base plate 100. In other words, the insulating element may be contacted with both of the connecting element 400 and the base plate 100.
  • the 4G dual polarized omni-directional ceiling antenna can have a simple processing and a stable structure.
  • the insulating element may be a non-metallic gasket, and a layer of insulating varnish or a plastic film.
  • the vertically polarized omni-directional antenna 10 further includes a metal ring 500 fitted over the plurality of radiating portions 220 and separated from the plurality of the radiating portions 220, in other words, the plurality of radiating portions 220 are disposed within the metal ring 500 without contacting with the metal ring 500.
  • the metal ring 500 By mounting the metal ring 500, mutual couplings between the vertically and horizontally polarized omni-directional antennas 10, 20 can be reduced, and the metal ring 500 performs a function of frequency selection to further improve the out-of-roundness and the cross polarization of the vertically polarized omni-directional antenna 10 (especially in some frequency points) .
  • the vertically polarized omni-directional antenna 10 has an out-of-roundness less than 2.5dB and a cross polarization more than 15dB.
  • the metal ring 500 is not connected to any components or portions of the vertically polarized omni-directional antenna 10.
  • each of the connecting elements 400 includes an inclined portion 410, a vertical portion 420 and a horizontal portion 430.
  • An upper end of the inclined portion 410 is directly connected to the radiating portion 220, an upper end of the vertical portion 420 is connected to a lower end of the inclined portion 410, and the horizontal portion 430 is connected to a lower end of the vertical portion 420 and coupled to the base plate 100.
  • the vertical portion 420 is oriented or extended in the vertical direction (i.e. an up-down direction A as shown in Fig. 1 to Fig. 5)
  • the horizontal portion 430 is oriented or extended in a horizontal direction.
  • the connecting element 400 has a simple and reasonable structure.
  • Each of the inclined portion 410, the vertical portion 420 and the horizontal portion 430 may have a sheet-like shape.
  • a primary surface of the inclined portion 410 may be a flat surface or a curved surface, and the primary surface of the inclined portion 410 is the surface of the inclined portion 410 with the largest area.
  • a primary surface of the vertical portion 420 may be a flat surface or a curved surface, and the primary surface of the vertical portion 420 is the surface of the vertical portion 420 with the largest area.
  • a primary surface of the horizontal portion 430 may be a flat surface or a curved surface, and the primary surface of the horizontal portion 430 is the surface of the horizontal portion 430 with the largest area.
  • the connecting element 400 may be a metal element, i.e. the connecting element may be made of a metal.
  • the inclined portion 410, the vertical portion 420 and the horizontal portion 430 may be formed integrally.
  • the feed network 720 further includes a central connecting element 722, each feeder line 721 has one end connected with the central connecting element 722 and is extended in a direction away from the central connecting element 722.
  • the feed network 720 has a reasonable structure and a manufacturing difficulty of the feed network 720 is reduced.
  • the central connecting element 722 may have a circular shape, i.e. a projection of the central connecting element 722 on a horizontal plane is a circle.
  • each printed dipole 740 includes a left arm 741 and a right arm 742, each of the left and right arms 741, 742 is connected with the ground plate 730.
  • a gap 743 is formed between the left and right arms 741, 742, and the feeder line 721 is short-circuited with one of the left and right arms 741, 742.
  • the printed dipole 740 has a reasonable structure.
  • terminals of the plurality of the feeder lines 721 are short-circuited in one-to-one correspondence with the plurality of the printed dipoles 740.
  • an electric current in the external conductor of the coaxial cable 600 is suppressed efficiently, and consequently the polarization isolation between the vertically and horizontally polarized omni-directional antennas 10, 20 can be further improved.
  • the terminal of one of the feeder lines 721 may be short-circuited with one of the right and left arms 741, 742 of one of the printed dipoles 740.
  • a short point of the feeder line 721 and the printed dipole 740 is adjacent to the gap 743.
  • feeder lines 721 there are at least three feeder lines 721 provided, correspondingly, there are at least three printed dipoles 740 provided.
  • Included angles formed between adjacent feeder lines 721 may be equal to one another, in other words, the included angle formed between two adjacent feeder lines 721 is a predetermined angle, and the plurality of feeder lines 721 are arranged at equal intervals in a circumferential direction of the central connecting element 722.
  • the horizontally polarized omni-directional antenna 20 and the 4G dual polarized omni-directional ceiling antenna 1 in various directions are substantially equal, the radiating out-of-roundness requirement of the horizontally polarized omni-directional antenna 20 and the 4G dual polarized omni-directional ceiling antenna 1 can be further satisfied, and the omni-directional radiation of the horizontally polarized omni-directional antenna 20 and the 4G dual polarized omni-directional ceiling antenna 1 can be improved.
  • Included angles formed between adjacent printed dipoles 740 may be equal to one another, in other words, the included angle formed between two adjacent printed dipoles 740 is a predetermined angle, and the plurality of printed dipoles 740 are arranged at equal intervals in a circumferential direction of the ground plate 730.
  • radiations of the horizontally polarized omni-directional antenna 20 and the 4G dual polarized omni-directional ceiling antenna 1 in various directions are substantially equal, the radiating out-of-roundness requirement of the horizontally polarized omni-directional antenna 20 and the 4G dual polarized omni-directional ceiling antenna 1 can be further satisfied, and the omni-directional radiation of the horizontally polarized omni-directional antenna 20 and the 4G dual polarized omni-directional ceiling antenna 1 can be improved.
  • the feed network 720, the ground plate 730 and the printed dipoles 740 may constitute a microstrip power divider.
  • the included angles formed between the two adjacent feeder lines 721 and between the two adjacent printed dipoles 740 may be 120 degrees.
  • the horizontally polarized omni-directional antenna 20 further includes a metal element 750 disposed on a lower surface of the ground plate 730.
  • the metal element 750 disposed on the lower surface of the ground plate 730, the out-of-roundness of the horizontally polarized omni-directional antenna 20 is improved and an effect of the horizontally polarized omni-directional antenna 20 on a standing wave ratio of high frequency band of the vertically polarized omni-directional antenna 10 is reduced.
  • the metal element 750 may be configured to have a triangular shape and extended in the vertical direction.
  • the projection of the metal element 750 in a vertical plane is triangular.
  • the horizontally polarized omni-directional antenna 20 further includes a plurality of coupling branches 800, each coupling branch 800 has a first end connected with the ground plate 730 and a second end extended in a direction away from the ground plate 730.
  • Each coupling branch 800 is disposed between two adjacent printed dipoles 740, and each printed dipole 740 is disposed between two adjacent coupling branches 800.
  • each coupling branch 800 may be a metal element, i.e. each coupling branch 800 may be made of a metal.
  • Each coupling branch 800 may have a bar shape.
  • the 4G dual polarized omni-directional ceiling antenna 1 further includes a support 900 disposed on the vertically polarized omni-directional antenna 10, and the horizontally polarized omni-directional antenna 20 is supported on the support 900. With the support 900, the 4G dual polarized omni-directional ceiling antenna 1 has a stable structure.
  • the support 900 may be disposed on the plurality of radiating portions 220 and defines a cable hole 910 penetrated through the support 900 in the vertical direction, so as to allow the coaxial cable 600 to pass therethrough via the cable hole 910.
  • the coaxial cable 600 can be mounted more stably, and a travel path of the coaxial cable 600 can be controlled.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
PCT/CN2015/071142 2014-01-21 2015-01-20 Horizontally polarized omni-directional antenna WO2015109996A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410027024.6 2014-01-21
CN201410027024.6A CN103811861B (zh) 2014-01-21 2014-01-21 水平极化全向天线

Publications (1)

Publication Number Publication Date
WO2015109996A1 true WO2015109996A1 (en) 2015-07-30

Family

ID=50708288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071142 WO2015109996A1 (en) 2014-01-21 2015-01-20 Horizontally polarized omni-directional antenna

Country Status (2)

Country Link
CN (1) CN103811861B (pt-PT)
WO (1) WO2015109996A1 (pt-PT)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018184355A1 (zh) * 2017-04-07 2018-10-11 深圳市景程信息科技有限公司 可重构的高隔离度双极化宽频天线
CN115117631A (zh) * 2022-06-15 2022-09-27 西安电子科技大学 一种水平极化宽带滤波全向环形天线
CN118572380A (zh) * 2024-07-09 2024-08-30 广东工业大学 一种超薄型宽带双极化全向天线

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811861B (zh) * 2014-01-21 2016-06-08 盛宇百祺(南京)通信技术有限公司 水平极化全向天线
CN104103900B (zh) * 2014-07-10 2016-08-17 电子科技大学 一种低剖面宽带双极化全向天线
CN104300208B (zh) * 2014-09-05 2017-09-29 江苏省东方世纪网络信息有限公司 垂直极化全向天线
CN106450797A (zh) * 2015-08-06 2017-02-22 启碁科技股份有限公司 天线系统
CN105186110B (zh) * 2015-09-29 2018-09-21 辽宁普天数码股份有限公司 一种羊角结构的数字电视发射天线
CN105449353B (zh) * 2015-12-16 2019-06-14 江苏省东方世纪网络信息有限公司 全向吸顶天线
CN106025527A (zh) * 2016-05-14 2016-10-12 上海大学 一种带耦合线的宽带水平极化全向天线
CN106716710B (zh) * 2016-11-23 2018-11-13 深圳市大疆创新科技有限公司 无人飞行器的机架、无人飞行器及天线切换方法
CN109411903A (zh) * 2017-08-18 2019-03-01 中国移动通信集团设计院有限公司 室内mimo通信系统的高性能宽带双极化全向天线
CN107732437A (zh) * 2017-09-01 2018-02-23 哈尔滨工业大学 宽带低剖面水平极化全向天线
WO2019104565A1 (zh) * 2017-11-29 2019-06-06 华为技术有限公司 一种双极化天线及通信设备
CN108075217B (zh) * 2018-01-19 2024-04-09 武汉波诺电子科技有限公司 一种新型全向天线
CN108832270A (zh) * 2018-05-08 2018-11-16 深圳市通用测试系统有限公司 双频双极化全向天线
NL2022790B1 (en) 2019-03-22 2020-09-28 The Antenna Company International N V Antenna for IEEE 802.11 applications, wireless device, and wireless communication system
CN112086738A (zh) * 2019-06-14 2020-12-15 中国移动通信集团设计院有限公司 一种全向室分mimo天线
US10892562B1 (en) 2019-07-12 2021-01-12 King Fahd University Of Petroleum And Minerals Multi-beam Yagi-based MIMO antenna system
CN114267944B (zh) * 2020-09-16 2025-01-24 中兴通讯股份有限公司 天线结构、波束切换的方法及网络设备
CN112768885B (zh) * 2020-12-17 2023-10-03 深圳市南斗星科技有限公司 室内分布天线
CN112821055B (zh) * 2021-01-05 2022-07-15 上海安费诺永亿通讯电子有限公司 一种应用于wifi的单端口双频双极化全向天线
CN115882219A (zh) * 2021-09-29 2023-03-31 华为技术有限公司 天线系统和电子设备
CN117832844A (zh) * 2022-09-27 2024-04-05 华为终端有限公司 天线组件和通信设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2171257A (en) * 1984-12-20 1986-08-20 Marconi Co Ltd A dipole array
US4814777A (en) * 1987-07-31 1989-03-21 Raytheon Company Dual-polarization, omni-directional antenna system
CN2836260Y (zh) * 2005-08-05 2006-11-08 西安海天天线科技股份有限公司 高增益水平极化全向阵列天线
WO2008020658A1 (en) * 2006-08-16 2008-02-21 Hutech21. Co., Ltd. A printed dipole antenna for rfid tag and the design method therefor
CN102110910A (zh) * 2011-01-27 2011-06-29 广东通宇通讯股份有限公司 室内双极化全向天线
CN103811861A (zh) * 2014-01-21 2014-05-21 盛宇百祺(南京)通信技术有限公司 水平极化全向天线
CN103811857A (zh) * 2014-01-21 2014-05-21 盛宇百祺(南京)通信技术有限公司 垂直极化全向天线和具有其的4g双极化全向吸顶天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348228A (en) * 1965-08-02 1967-10-17 Raytheon Co Circular dipole antenna array
CN2901604Y (zh) * 2006-04-19 2007-05-16 北京首信天翔技术有限公司 移动通信基站天线的空气耦合型振子
TWI309899B (en) * 2006-09-01 2009-05-11 Wieson Technologies Co Ltd Dipolar antenna set

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2171257A (en) * 1984-12-20 1986-08-20 Marconi Co Ltd A dipole array
US4814777A (en) * 1987-07-31 1989-03-21 Raytheon Company Dual-polarization, omni-directional antenna system
CN2836260Y (zh) * 2005-08-05 2006-11-08 西安海天天线科技股份有限公司 高增益水平极化全向阵列天线
WO2008020658A1 (en) * 2006-08-16 2008-02-21 Hutech21. Co., Ltd. A printed dipole antenna for rfid tag and the design method therefor
CN102110910A (zh) * 2011-01-27 2011-06-29 广东通宇通讯股份有限公司 室内双极化全向天线
CN103811861A (zh) * 2014-01-21 2014-05-21 盛宇百祺(南京)通信技术有限公司 水平极化全向天线
CN103811857A (zh) * 2014-01-21 2014-05-21 盛宇百祺(南京)通信技术有限公司 垂直极化全向天线和具有其的4g双极化全向吸顶天线

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018184355A1 (zh) * 2017-04-07 2018-10-11 深圳市景程信息科技有限公司 可重构的高隔离度双极化宽频天线
CN115117631A (zh) * 2022-06-15 2022-09-27 西安电子科技大学 一种水平极化宽带滤波全向环形天线
CN115117631B (zh) * 2022-06-15 2023-07-14 西安电子科技大学 一种水平极化宽带滤波全向环形天线
CN118572380A (zh) * 2024-07-09 2024-08-30 广东工业大学 一种超薄型宽带双极化全向天线

Also Published As

Publication number Publication date
CN103811861B (zh) 2016-06-08
CN103811861A (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2015109996A1 (en) Horizontally polarized omni-directional antenna
WO2015109995A1 (en) Vertically polarized omni-directional antenna and 4g dual polarized omni-directional ceiling antenna having the same
CN104300209B (zh) 垂直极化吸顶全向天线
KR101194370B1 (ko) 전방향성 코니컬 빔 패턴을 갖는 듀얼편파 안테나
CN105720361B (zh) 一种基于人工磁导体结构的宽带低剖面双极化全向天线
CN204216207U (zh) 天线
EP3739687B1 (en) Antenna radiation element and antenna
KR20200096324A (ko) 마이크로스트립 안테나, 안테나 어레이, 및 마이크로스트립 안테나의 제조 방법
WO2020134362A1 (zh) 一种天线、天线阵列和基站
CN102723577A (zh) 宽频带环状双极化辐射单元及阵列天线
CN102971910B (zh) 天线单元和天线
CN102157783A (zh) 双极化宽频辐射单元及阵列天线
CN209045768U (zh) 一种电调基站天线
CN105206946A (zh) 室内双极化全向吸顶天线
US9673536B2 (en) Omnidirectional antennas, antenna systems and methods of making omnidirectional antennas
TW201630253A (zh) 具有近接耦合式環狀矩形貼片的天線系統
CN104505578A (zh) 一种全向双圆极化天线
WO2016127893A1 (zh) 辐射单元及双极化天线
TW201543750A (zh) 多頻天線
CN113851826A (zh) 一种单极化低不圆度的室内分布天线
CN203644954U (zh) 双极化吸顶天线
CN107611587B (zh) 一种低剖面超宽带高增益定向天线及其制备方法
US10749253B2 (en) Omnidirectional ceiling antenna
US9293830B2 (en) Antenna element with high gain toward the horizon
CN201887149U (zh) 一种宽频宽波束双极化天线单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740219

Country of ref document: EP

Kind code of ref document: A1