WO2015109793A1 - 长发光检测方法及装置 - Google Patents

长发光检测方法及装置 Download PDF

Info

Publication number
WO2015109793A1
WO2015109793A1 PCT/CN2014/082762 CN2014082762W WO2015109793A1 WO 2015109793 A1 WO2015109793 A1 WO 2015109793A1 CN 2014082762 W CN2014082762 W CN 2014082762W WO 2015109793 A1 WO2015109793 A1 WO 2015109793A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
detection
long
olt
optical
Prior art date
Application number
PCT/CN2014/082762
Other languages
English (en)
French (fr)
Inventor
黄健
卢金树
黄文杰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/114,239 priority Critical patent/US9806802B2/en
Priority to EP14880329.9A priority patent/EP3098979B1/en
Publication of WO2015109793A1 publication Critical patent/WO2015109793A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0791Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring

Definitions

  • FIG. 1 is a schematic diagram of a networking structure of a PON system according to the related art), and the system is managed by a network management system.
  • the server EMS
  • OLT Optical Line Terminal
  • ODN Optical Distribution Network
  • ONU Optical Network Unit
  • the ONU's transmission direction is the downstream direction (downstream)
  • the transmission direction from the ONU to the OLT is the upstream direction (upstream), thereby implementing functions such as data service and configuration management.
  • the PON network adopts the broadcast transmission mode (Broadcast) in the downlink direction and the Time Division Multiplexing (TDM) mode in the uplink direction.
  • the ONU must allocate the uplink bandwidth time slot according to the OLT. (Bandwidth Map, abbreviated as Bwmap) to send the uplink burst (BURST) signal, so in the upstream direction, the OLT and the ONU must ensure that no conflicts can occur every moment.
  • the ONU uses the uplink burst signal. Therefore, when the OLT allocates the Bwmap to the ONU, the ONU turns on the optical module. After the transmission is completed, the optical module is turned off.
  • Bwmap Bandwidth Map
  • the ONU optical module when the ONU optical module is aged or the optical module is unstable, or the ONU optical module is not turned off in time, or the ONU continues to send uplink signals outside a given bandwidth time slot, Causes an upstream optical signal collision.
  • the signal that the ONU illuminates the signal after reaching the OLT and the extinction ratio (ER) supported by the OLT optical module may cause the OLT to fail to parse the uplink signal normally, causing other affected ONUs to fail.
  • the upstream signal is sent normally, if the OLT side detects an alarm such as LOSi (Loss of signal for ONUi) / LOFi (Loss of Frame of ONUi), some or all of the ONUs will be disconnected and the service will be interrupted.
  • the above phenomenon is a long illuminating phenomenon occurring in a PON network, and the ONU causing this phenomenon is called a rogue ONU (Rogue ONU).
  • the service interruption caused by the ONU being dropped due to long-lighting is a very serious fault. It is necessary to detect the long-lighting phenomenon in time, and then locate the specific rogue ONU, and perform corresponding illumination shutdown processing as soon as possible. Resume the uplink and downlink business and avoid user complaints.
  • the OLT needs to have long-light detection and processing functions.
  • the ITU-T G987 protocol clearly stipulates that the OLT needs to perform long-light ONUs. Detection and positioning.
  • the common method for performing long-light detection on the OLT side is mainly based on optical power detection, that is, the OLT allocates a transmission container (T-CONT) that does not belong to any current ONU, and triggers the OLT optical module.
  • T-CONT transmission container
  • Pulse TRIGGER the OLT optical module performs optical power measurement based on the above-mentioned assigned T-CONT, and provides optical power value reading through an I2C (Intelligent Interface Controller) bus.
  • I2C Intelligent Interface Controller
  • the OLT will set a threshold Threshould (typically l ⁇ 2uw) according to the specific optical module model.
  • the test results lack reliability.
  • the optical power measurement itself has certain error and volatility, in addition to the optical signal receiver (RECEIVER) measurement accuracy of the 0LT optical module itself, and includes the received signal strength indication (Resived Signal Strength Indication, referred to as RSSI).
  • RSSI Received Signal Strength Indication
  • the setting of timing parameters, even the stability of the clock signal, etc., and the stability of the uplink signal of the 0NU optical module are also important factors, including the optical module turn-on time Ton, which also causes optical power fluctuations.
  • it is judged by the special threshold value whether there is a long illuminating phenomenon. This threshold value is not rigorous as a test result. This will inevitably require a certain number of multiple measurements. This measurement is also an experience. The combination of values and 2 empirical values further reduces the accuracy of the measurement results.
  • the detection process is relatively time consuming. First, it takes time to perform optical power detection through the optical module. After the trigger pulse is given, the optical module needs to perform a certain delay before starting to measure the optical power. Secondly, when the optical power measurement is completed, the optical power value is also read through the I2C. It takes time; finally, considering the lack of reliability of the test results, it takes ten or even dozens of tests to ensure relative accuracy, which is more time consuming.
  • Embodiments of the present invention provide a long illuminating detection method and apparatus to solve at least the above problems.
  • a long illuminating detection method including: for an upstream optical signal of each passive optical network (PON) port, an optical line terminal (OLT) constructs a short time slot through an optical module.
  • the OLT control optical module performs first signal detection (SD) sampling detection on the uplink optical signal according to the short time slot, and obtains a first detection result; the OLT determines whether the uplink optical signal is valid according to the first detection result, and the determination result is yes.
  • the OLT constructs a long time slot to be sent by the optical module, and controls the optical module to perform second SD sampling detection on the uplink optical signal according to the long time slot to obtain a second detection result; the OLT determines the current according to the second detection result.
  • the optical line terminal constructs a short time slot to be sent to the optical module, and the method includes: after the OLT constructs the short time slot, the short time slot is inserted into the downlink bandwidth time slot and sent by the optical module, where, the short The time slot does not belong to any optical network unit ONU and is only sent once during each detection.
  • the OLT constructs a long time slot to be sent by the optical module, and the method includes: After the OLT constructs the long time slot, the OLT is inserted into the downlink bandwidth time slot and sent by the optical module, where the long time slot is The frame is only sent once during each detection.
  • the method further includes: the OLT continues to construct a short time slot to be sent by the optical module, and controls the optical module to perform third SD sampling detection on the uplink optical signal according to the short time slot, to obtain the first Three test results.
  • the OLT determines whether the current PON port has a long illuminating phenomenon according to the second detection result, and the OLT determines whether the uplink optical signal is valid according to the second detection result, and if the determination result is yes, the OLT determines that the current PON port is long.
  • the illuminating phenomenon determines that there is an upstream window drift of the current PON port when the result is negative.
  • the first determination result indicating that the current PON port has a long illuminating phenomenon is reported to the device management system (EMS);
  • the second determination result indicating that the current PON port has an upstream window drift is reported to the device management system EMS.
  • a long illumination detecting apparatus located at an optical line terminal (OLT), comprising: a configuration module configured to provide an upstream optical signal for each passive optical network (PON) port, configured A short time slot is sent by the optical module; the control module is configured to control the optical module to perform first signal detection (SD) sampling detection on the uplink optical signal according to the short time slot, to obtain a first detection result; and the processing module is set to be based on The first detection result determines whether the uplink optical signal is valid. If the determination result is yes, the OLT constructs a long time slot to be sent by the optical module, and controls the optical module to perform second SD sampling on the uplink optical signal according to the long time slot.
  • SD signal detection
  • the determining module is configured to determine whether the current PON port has a long illuminating phenomenon according to the second detection result.
  • the constructing module comprises: a first constructing unit configured to construct a short time slot; the first sending unit, configured to insert the short time slot into the downlink bandwidth time slot, and send the short time slot, wherein the short time slot is sent It does not belong to any optical network unit ONU, and is only sent once during each detection.
  • the processing module includes: a second construction unit configured to construct a long time slot; a second delivery unit configured to insert the long time slot into the downlink bandwidth time slot and send the message through the optical module, where the long time slot is sent For the entire frame, it is only sent once during each detection.
  • the constructing module is further configured to continue to construct a short time slot to be sent by the optical module if the determination result of the processing module is negative; and the control module is further configured to control the optical module to uplink the light according to the short time slot.
  • the signal is subjected to a third SD sampling test to obtain a third detection result.
  • the determining module includes: a determining unit, configured to determine whether the uplink optical signal is valid according to the second detection result; and determining, configured to determine that the current PON port has a long illuminating phenomenon when the determining result of the determining unit is yes, If the judgment result of the judgment unit is no, it is determined that there is an uplink window drift of the current PON port.
  • the device further includes: a reporting module, configured to report a first determination result indicating that the current PON port has a long illuminating phenomenon to the device management system (EMS), in a case where it is determined that the current PON port has a long illuminating phenomenon,
  • EMS device management system
  • the second determination result indicating that the current PON port has an uplink window drift is reported to the EMS.
  • SD Signal Detect
  • sampling is performed on the uplink optical signal by using the configuration and sending the short time slot bandwidth and the long time slot bandwidth, and then determining whether there is a long illuminating phenomenon according to whether the SD signal is valid or not.
  • the method solves the problem that the long-light detection method based on optical power in the related art has the defects of low reliability, long detection time, and occupation of uplink bandwidth resources, and can eliminate detection instability caused by optical power detection, and further It achieves fast and accurate detection, high reliability, and does not occupy fixed bandwidth, ensuring the maximum utilization of upstream bandwidth.
  • FIG. 1 is a schematic diagram of a networking structure of a PON system according to the related art
  • FIG. 2 is a flowchart of a long luminescence detecting method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a long illuminating detecting apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing the structure of a preferred long illumination detecting apparatus according to an embodiment of the present invention
  • FIG. 5 is a flow chart of a long illumination detecting method according to a preferred embodiment of the present invention.
  • Step S202 for each passive optical network (PON)
  • PON passive optical network
  • OLT optical line terminal
  • step S204 the OLT controls the optical module to perform the first signal detection (SD) sampling detection on the uplink optical signal according to the short time slot.
  • Step S206 the OLT determines whether the uplink optical signal is valid according to the first detection result, and if the determination result is yes, the OLT constructs a long time slot to be sent by the optical module, and controls the optical module according to the long The time slot performs a second SD sampling detection on the uplink optical signal to obtain a second detection result.
  • the optical line terminal (OLT) constructing a short time slot to be sent by the optical module may be implemented by: after the OLT constructs the short time slot, inserting the short time slot into the downlink bandwidth time slot.
  • the short time slot does not belong to any optical network unit ONU, and is only sent once in each detection process.
  • the short time slot may be several tens of bytes.
  • the OLT constructing a long time slot to be sent by the optical module may be implemented in the following manner: After the OLT constructs the long time slot, the long time slot is inserted into the downlink bandwidth time slot and is performed by the optical module. The long time slot is an entire frame, and is sent only once during each detection.
  • the OLT may continue to construct a short time slot to be sent by the optical module, and control the optical module to perform uplink light according to the short time slot.
  • the signal is subjected to a third SD sampling test to obtain a third detection result.
  • step S208 can be implemented in the following manner: The OLT determines whether the uplink optical signal is valid according to the second detection result, and if the determination result is yes, the OLT determines that the current PON port has a long illuminating phenomenon, and the result is determined. In the case of No, it is determined that there is an upstream window drift of the current PON port.
  • the first determination result indicating that the current PON port has a long illuminating phenomenon may be reported to the device management system (EMS);
  • the second determination result indicating that the current PON port has an upstream window drift may be reported to the device management system EMS.
  • the above complete SD signal detection flow can be further employed.
  • the embodiment of the invention provides a long illuminating detecting device, which is located at an optical line terminal (OLT), and is used for implementing the long illuminating detecting method.
  • FIG. 3 is a structural block diagram of a long illumination detecting apparatus according to an embodiment of the present invention.
  • the apparatus mainly includes: a construction module 10, a control module 20, a processing module 30, and a determination module 40.
  • the constructing module 10 is configured to: for each upstream optical signal of the passive optical network (PON) port, construct a short time slot to be sent by the optical module; and the control module 20 is configured to control the optical module according to the short time slot pair.
  • the uplink optical signal performs first signal detection (SD) sampling detection to obtain a first detection result; and the processing module 30 is configured to The first detection result determines whether the uplink optical signal is valid. If the determination result is yes, the OLT constructs a long time slot to be sent by the optical module, and controls the optical module to perform second SD sampling on the uplink optical signal according to the long time slot.
  • SD signal detection
  • the determining module 40 is configured to determine whether the current PON port has a long illuminating phenomenon according to the second detection result.
  • an embodiment of the present invention further provides a preferred long illumination detecting device.
  • 4 is a block diagram showing the structure of a preferred long-light detecting device according to an embodiment of the present invention.
  • the building block 10 may further include: a first building unit 12, which is configured to be short in construction.
  • the first sending unit 14 is configured to insert the short time slot into the downlink bandwidth time slot and send it through the optical module, where the short time slot does not belong to any optical network unit ONU, in the process of each detection.
  • the processing module 30 may further include: a second constructing unit 32 configured to construct a long time slot; and a second sending unit 34 configured to insert the long time slot into the downlink bandwidth time slot
  • the optical module is delivered, where the long time slot is an entire frame, and is sent only once during each detection.
  • the configuration module 10 may be further configured to continue to construct a short time slot to be sent by the optical module if the determination result of the processing module 30 is negative; the control module 20 may also be configured.
  • the third detection result is obtained by controlling the optical module to perform the third SD sampling detection on the uplink optical signal according to the short time slot.
  • the determining module 40 may further include: a determining unit 42 configured to determine whether the uplink optical signal is valid according to the second detection result; and determining unit 44, configured to be YES in the determining unit Next, it is determined that the current PON port has a long illuminating phenomenon, and if the judgment result of the judging unit is no, it is determined that there is an uplink window drift of the current PON port.
  • the preferred long illuminating detection device may further include: a reporting module 50 configured to report a first determination result indicating that the current PON port has a long illuminating phenomenon to the device, if it is determined that the current PON port has a long illuminating phenomenon
  • the management system (EMS) reports the second determination result indicating that the current PON port has an uplink window drift to the EMS.
  • the long illuminating detection method and device provided by the foregoing embodiments can eliminate detection instability caused by optical power detection, thereby achieving fast and accurate detection, high reliability, and occupying a fixed bandwidth at the same time, thereby ensuring maximum uplink. Bandwidth utilization.
  • the long illumination detection method and apparatus provided by the above embodiments are described and described in more detail below with reference to FIG. 1 and FIG. 5 and a preferred embodiment. It should be noted that the hardware implementation system of the long luminescence detection method provided by the embodiment of the present invention is the same as the prior art. Referring to FIG. 1 and FIG. 5 and a preferred embodiment. It should be noted that the hardware implementation system of the long luminescence detection method provided by the embodiment of the present invention is the same as the prior art. Referring to FIG.
  • the system includes: EMS 100, OLT 200, ODN 300, ONU 400, wherein, EMS 100, The OLT 200 is configured to send a detection bandwidth time slot to the OLT 200, and the OLT 200 is configured to send the detection bandwidth time slot in the long illuminating detection, and simultaneously control the optical module to perform SD real-time sampling on the uplink data, and determine whether there is a long illuminating phenomenon; , set to connect the number of ONU400 under OLT200, as the direct physical connection channel of OLT200 and ONU400; ONU400, set to assume the role of possible rogue ONU.
  • the detection process of the long-light detection method of each PON port is performed based on the long-light detection process that can be started on the OLT side.
  • the implementation process of the long-light detection method provided by the embodiment of the present invention is briefly described as follows: (1) The OLT constructs a short time slot bandwidth to be inserted into the downlink BWMAP and is sent for SD signal detection. The time slot does not belong to any ONU and has a length of several tens of bytes. The time slot is issued only once for each detection. ;
  • the OLT control optical module performs continuous SD sampling on the uplink data based on the short time slot, and the optical module reports the SD sampling result to the OLT, and the OLT determines whether the uplink optical signal (also referred to as an SD signal) is valid, and if valid, continues. Constructing a long time slot bandwidth is inserted into the downlink BWMAP and is used for confirming the short time slot detection result.
  • the time slot can be the entire frame. The detection is only performed once. If invalid, the short time slot is continuously constructed.
  • the optical module reports the result of the SD sampling based on the long time slot to the OLT.
  • FIG. 5 is a flowchart of a long illuminating detection method according to a preferred embodiment of the present invention.
  • Step S501 The network management server EMS controls the OLT to start a long illuminating detection process, and uplinks for each PON port.
  • the optical signal is separately detected.
  • Step S502 The OLT constructs a short time slot bandwidth to be inserted into the downlink BWMAP and is sent for uplink SD signal detection.
  • the time slot does not belong to any ONU, and the length is several tens of bytes. In the secondary SD detection, the time slot is sent only once, and does not occupy the physical bandwidth of the OLT.
  • Step S503 The OLT control optical module performs continuous SD sampling on the uplink data based on the short time slot, and inputs corresponding RSSI timing parameters, including delay DEALY and Sampling width WIDTH;
  • Step S504 The optical module reports the SD sampling result to the OLT, and the OLT determines whether the SD signal is valid. If yes, the process goes to step S505. If the SD signal is invalid, the process goes to step S502.
  • Step S505 The OLT continues to construct a long time slot. The bandwidth is inserted into the downlink BWMAP and is used for confirming the short-slot detection result. The length of the time slot can be the entire frame, and the detection is only performed once.
  • Step S506 The OLT controls the optical module to use the long-slot-to-uplink data. Perform continuous SD sampling, and input corresponding RSSI timing parameters, including delay DEALY and sampling width WIDTH; Step S507: The OLT optical module reports the SD sampling result based on the long time slot to the OLT, and if the OLT determines that the SD signal is valid, enters Step S508; If the OLT determines that the SD signal is invalid, then proceeds to step S510; Step S508: The OLT determines that there is a long illuminating phenomenon under the current OLT PON port according to the SD detection result; Step S509: The OLT reports the long illuminating detection result, and the detection process ends; S510: The current OLT PON port may have an upstream window drift (Drift of Window), and the detection result is reported to the EMS, and further confirmation is performed.
  • Drift of Window upstream window drift
  • each of the above modules can be implemented by hardware.
  • a processor including the above modules, or each of the above modules is located in one processor.
  • software is also provided for performing the technical solutions described in the above embodiments and preferred embodiments.
  • a storage medium is provided, the software being stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the above technical solution provided by the present invention can be applied to a long illuminance detection process, in which SD (Signal Detect) sampling (Sampling) is performed on an uplink optical signal by using a short time slot bandwidth and a long time slot bandwidth. Further, according to whether the SD signal is valid or not, it is determined whether there is a long illuminating phenomenon, and the long light illuminating detection method based on optical power in the related art has the problems of low reliability, long detection time, and occupation of uplink bandwidth resources. The detection instability caused by the optical power detection is eliminated, and the detection is fast and accurate, the reliability is high, and the fixed bandwidth is not occupied, and the utilization of the uplink bandwidth is ensured to the maximum extent.
  • SD Signal Detect

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

一种长发光检测方法及装置。其中,该方法包括:对于每个无源光网络(PON)口的上行光信号,光线路终端(OLT)构造一个短时隙通过光模块进行下发;OLT控制光模块根据短时隙对上行光信号进行第一信号检测(SD)采样检测,得到第一检测结果;OLT根据第一检测结果判断上行光信号是否有效,在判断结果为是的情况下,OLT构造一个长时隙通过光模块进行下发,并控制光模块根据长时隙对上行光信号进行第二SD采样检测,得到第二检测结果;OLT根据第二检测结果确定当前PON口是否存在长发光现象。通过本发明,达到了检测快速准确,不会占用固定带宽,最大限度保证了上行带宽的利用率的效果。

Description

长发光检测方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种长发光检测方法及装置。 背景技术 在无源光网络 (Passive Optical Network, 简称为 PON) 运行网络中, 常见组网系 统如图 1所示 (图 1是根据相关技术的 PON系统的组网结构示意图), 该系统由网管 服务器(EMS)、光线路终端(Optical Line Terminal,简称为 OLT)、光分配网络(Optical Distribution Network, 简称为 ODN) 和若干个光网络单元 (Optical Network Unit, 简 称为 ONU)组成, 从 OLT到 ONU的传输方向为下行方向 (downstream), 从 ONU到 OLT的传输方向为上行方向 (upstream), 从而实现数据业务和配置管理等功能。
PON网络作为"点对多点"的拓扑结构, 下行方向采用广播发送方式 (Broadcast), 上行方向采用时分复用 (Time Division Multiplexing, 简称为 TDM) 方式, ONU必须 根据 OLT分配的上行带宽时隙 (Bandwidth Map, 简称为 Bwmap) 来发送上行突发 (BURST)信号,因此在上行方向 OLT和 ONU都要确保每时每刻不能出现冲突。 ONU 由于采用上行突发信号, 因此每当 OLT分配 Bwmap给 ONU后, ONU打开光模块, 发送完成后会关闭光模块。 在 PON工程应用中, 当 ONU光模块出现老化或者光模块供电不稳定, 或者其他 原因导致 ONU光模块打开后没有及时关闭,或者是 ONU在给定的带宽时隙外继续发 送上行信号时,会造成上行光信号冲突。该冲突 ONU发光的信号达到 OLT后的强弱, 以及 OLT光模块支持的消光比 (Extinction Ratio, 简称为 ER) 等因素, 可能会造成 OLT无法正常解析出上行信号, 导致其它受影响的 ONU无法正常发送上行信号, 此 时 OLT侧若检测到 LOSi (Loss of signal for ONUi) /LOFi (Loss of Frame of ONUi)等 告警, 会造成部分或者全部 ONU掉线, 同时业务发生中断。 上述现象即为 PON网络中出现的长发光现象,造成该现象的 ONU称为流氓 ONU (Rogue ONU)。 在 PON现网应用中,由于长发光导致 ONU掉线造成业务中断是非常严重的故障, 需要及时检测出长发光现象, 然后去定位具体的流氓 ONU, 对其进行相应的发光关断 处理, 尽快恢复上下行业务, 避免用户投诉。 在吉比特无源光纤接入网络 (Gigabit Passive Optical Network, 简称为 GPON) 系 统中, OLT需要具备长发光的检测和处理功能, ITU-T G987协议更是明确规定了 OLT 需要对长发光 ONU进行检测和定位。 目前, 在 OLT侧进行长发光检测的常用方式主要是基于光功率进行检测, 即 OLT 分配一个不属于当前任何 ONU的传输容器(Transmission Container,简称为 T-CONT), 通过给 OLT光模块一个触发脉冲 TRIGGER, OLT光模块基于上述分配的 T-CONT进 行光功率测量后, 通过 I2C (Intelligent Interface Controller, 智能界面控制器) 总线提 供光功率值读取。 在没有长发光的场景下, 在上述带宽中不会有上行信号发送, 因此 测量的光功率值一般等于或者接近于 0值。 OLT会根据具体的光模块型号设定一个门 限值 Threshould (—般为 l~2uw), 当连续多次测量出的光功率值超出该门限时, 则判 定为有长发光产生, 需要进一步定位具体的长发光 0NU。 上述长发光检测方式虽然具有易实现,操作方便等特点,但是依然存在如下问题, 需要解决:
( 1 )检测结果缺乏可靠性。 首先, 光功率测量本身具有一定的误差和波动性, 除 了和 0LT光模块本身的光信号接收机 (RECEIVER)测量精度有关, 还包括其接收的 信号强度指示 (Received Signal Strength Indication, 简称为 RSSI) 时序参数的设置, 甚至是时钟信号的稳定性等, 同时 0NU光模块上行信号的稳定性也是很重要的因素, 包括其光模块开启时间 Ton也会导致光功率波动。 其次, 通过专门的门限值判断是否 存在长发光现象, 这个门限值作为一个经过测试得出的经验值并不严谨, 这样必然需 要进行一定次数的多次测量, 这个测量次数同样是一个经验值, 2 个经验值的结合进 一步了降低了测量结果的准确性。
(2)检测过程相对耗时。 首先, 通过光模块进行光功率检测需要时间, 包括触发 脉冲给出后, 光模块需要进行一定延时后才开始测量光功率; 其次, 当光功率测量完 成后, 通过 I2C读取光功率值也需要时间; 最后, 考虑检测结果的缺乏可靠性, 需要 进行十几次甚至几十次的测试来保证相对的精确性, 这个更加耗费时间。
( 3 )占用上行带宽资源。在进行光功率测量时,需要额外固定配置一个 T-C0NT, 其大小一般是 10M左右, 这样就会占用上行带宽, 对于下挂用户数量造成影响, 降低 运营商的 ARPU值。 综上所述,在现有 P0N组网场景下, 以上长发光检测方式在实现时具有检测结果 可靠性低、检测时间长以及占用上行带宽资源等无法避免的缺陷和局限性, 亟需改进。 针对相关技术中基于光功率的长发光检测方式具有检测结果可靠性低、 检测时间 长以及占用上行带宽资源等缺陷的问题, 目前尚未提出有效的解决方案。 发明内容 本发明实施例提供了一种长发光检测方法及装置, 以至少解决上述问题。 根据本发明的一个实施例, 提供了一种长发光检测方法, 包括: 对于每个无源光 网络 (PON) 口的上行光信号, 光线路终端 (OLT) 构造一个短时隙通过光模块进行 下发; OLT控制光模块根据短时隙对上行光信号进行第一信号检测 (SD) 采样检测, 得到第一检测结果; OLT根据第一检测结果判断上行光信号是否有效, 在判断结果为 是的情况下, OLT构造一个长时隙通过光模块进行下发, 并控制光模块根据长时隙对 上行光信号进行第二 SD采样检测, 得到第二检测结果; OLT根据第二检测结果确定 当前 PON口是否存在长发光现象。 优选地, 光线路终端 (OLT) 构造一个短时隙下发给光模块, 包括: OLT构造短 时隙后, 将短时隙插入到下行带宽时隙中通过光模块进行下发, 其中, 短时隙不属于 任何光网络单元 ONU, 在每次检测的过程中只被下发一次。 优选地, OLT构造一个长时隙通过光模块进行下发, 包括: OLT构造长时隙后, 将长时隙插入到下行带宽时隙中通过光模块进行下发, 其中, 长时隙为整帧, 在每次 检测的过程中只被下发一次。 优选地, 在判断结果为否的情况下, 还包括: OLT继续构造一个短时隙通过光模 块进行下发, 并控制光模块根据短时隙对上行光信号进行第三 SD采样检测, 得到第 三检测结果。 优选地, OLT根据第二检测结果确定当前 PON 口是否存在长发光现象, 包括: OLT根据第二检测结果判断上行光信号是否有效, 在判断结果为是的情况下, OLT确 定当前 PON口存在长发光现象, 在判结果为否的情况下, 确定当前 PON口存在上行 窗口漂移。 优选地, 在确定当前 PON口存在长发光现象的情况下, 将指示当前 PON口存在 长发光现象的第一确定结果上报给设备管理系统 (EMS); 在确定当前 PON口存在上 行窗口漂移的情况下,将指示当前 PON口存在上行窗口漂移的第二确定结果上报给设 备管理系统 EMS。 根据本发明的另一实施例,提供了一种长发光检测装置,位于光线路终端(0LT), 包括: 构造模块, 设置为对于每个无源光网络 (PON) 口的上行光信号, 构造一个短 时隙通过光模块进行下发; 控制模块, 设置为控制光模块根据短时隙对上行光信号进 行第一信号检测 (SD)采样检测, 得到第一检测结果; 处理模块, 设置为根据第一检 测结果判断上行光信号是否有效, 在判断结果为是的情况下, OLT构造一个长时隙通 过光模块进行下发, 并控制光模块根据长时隙对上行光信号进行第二 SD采样检测, 得到第二检测结果; 确定模块,设置为根据第二检测结果确定当前 PON口是否存在长 发光现象。 优选地, 构造模块包括: 第一构造单元, 设置为构造短时隙; 第一下发单元, 设 置为将短时隙插入到下行带宽时隙中通过光模块进行下发, 其中, 短时隙不属于任何 光网络单元 ONU, 在每次检测的过程中只被下发一次。 优选地, 处理模块包括: 第二构造单元, 设置为构造长时隙; 第二下发单元, 设 置为将长时隙插入到下行带宽时隙中通过光模块进行下发, 其中, 长时隙为整帧, 在 每次检测的过程中只被下发一次。 优选地, 构造模块, 还设置为在处理模块的判断结果为否的情况下, 继续构造一 个短时隙通过光模块进行下发; 控制模块, 还设置为控制光模块根据短时隙对上行光 信号进行第三 SD采样检测, 得到第三检测结果。 优选地, 确定模块包括: 判断单元, 设置为根据第二检测结果判断上行光信号是 否有效; 确定单元, 设置为在判断单元的判断结果为是的情况下, 确定当前 PON口存 在长发光现象,在判断单元的判断结果为否的情况下,确定当前 PON口存在上行窗口 漂移。 优选地, 该装置还包括: 上报模块, 设置为在确定当前 PON口存在长发光现象的 情况下, 将指示当前 PON 口存在长发光现象的第一确定结果上报给设备管理系统 (EMS),在确定当前 PON口存在上行窗口漂移的情况下,将指示当前 PON口存在上 行窗口漂移的第二确定结果上报给 EMS。 通过本发明实施例, 采用配置并下发短时隙带宽和长时隙带宽结合对上行光信号 进行 SD ( Signal Detect) 采样 (Sampling), 再根据 SD信号是否有效来判定是否存在 长发光现象的方式, 解决了相关技术中基于光功率的长发光检测方式具有检测结果可 靠性低、 检测时间长以及占用上行带宽资源等缺陷的问题, 可以消除基于光功率检测 所造成的检测不稳定性, 进而达到了检测快速准确, 可靠性高, 同时不会占用固定带 宽, 最大限度保证了上行带宽的利用率的效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的 PON系统的组网结构示意图; 图 2是根据本发明实施例的长发光检测方法流程图; 图 3是根据本发明实施例的长发光检测装置的结构框图; 图 4是根据本发明实施例的优选长发光检测装置的结构框图; 以及 图 5是根据本发明优选实施例的长发光检测方法流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 为了解决上述技术问题, 本发明主要提供了一种涉及无源光网络尤其是涉及千兆 无源光网络设备和光网络单元中实现长发光检测的方法。 本发明实施例提供了一种长发光检测方法。 图 2是根据本发明实施例的长发光检 测方法流程图, 如图 2所示, 该方法主要包括以下歩骤 (步骤 S202-步骤 S208): 步骤 S202, 对于每个无源光网络 (PON) 口的上行光信号, 光线路终端 (OLT) 构造一个短时隙通过光模块进行下发; 步骤 S204, OLT控制光模块根据短时隙对上行光信号进行第一信号检测 (SD) 采样检测, 得到第一检测结果; 步骤 S206, OLT根据第一检测结果判断上行光信号是否有效, 在判断结果为是的 情况下, OLT构造一个长时隙通过光模块进行下发, 并控制光模块根据长时隙对上行 光信号进行第二 SD采样检测, 得到第二检测结果; 步骤 S208, OLT根据第二检测结果确定当前 PON口是否存在长发光现象。 通过上述各个步骤, 通过配置并下发短时隙带宽和长时隙带宽结合对上行光信号 进行 SD ( Signal Detect) 采样 (Sampling), 再根据 SD信号是否有效来判定是否存在 长发光现象, 可以消除基于光功率检测所造成的检测不稳定性, 具有检测快速准确、 可靠性高的优点。 在本实施例的步骤 S202中, 光线路终端(OLT)构造一个短时隙通过光模块进行 下发可以通过以下方式来实现: OLT构造短时隙后, 将短时隙插入到下行带宽时隙中 通过光模块进行下发, 其中, 短时隙不属于任何光网络单元 ONU, 在每次检测的过程 中只被下发一次, 在实际应用中, 短时隙可以是几十个字节。 在本实施例的步骤 S206中, OLT构造一个长时隙通过光模块进行下发可以通过 以下方式来实现: OLT构造长时隙后, 将长时隙插入到下行带宽时隙中通过光模块进 行下发, 其中, 长时隙为整帧, 在每次检测的过程中只被下发一次。 在本实施例中, 在 OLT根据第一检测结果判断上行光信号为无效的情况下, OLT 还可以继续构造一个短时隙通过光模块进行下发, 并控制光模块根据短时隙对上行光 信号进行第三 SD采样检测, 得到第三检测结果。 通过这样的方式, 可以对第一检测 结果进行确认。 在本实施例中, 步骤 S208可以通过这样的方式实现: OLT根据第二检测结果判 断上行光信号是否有效, 在判断结果为是的情况下, OLT确定当前 PON 口存在长发 光现象, 在判结果为否的情况下, 确定当前 PON口存在上行窗口漂移。 在本实施例中, 在确定当前 PON 口存在长发光现象的情况下, 可以将指示当前 PON口存在长发光现象的第一确定结果上报给设备管理系统 (EMS);在确定当前 PON 口存在上行窗口漂移的情况下,可以将指示当前 PON口存在上行窗口漂移的第二确定 结果上报给设备管理系统 EMS。 在实际应用中, 为了更加准确地确认上述检测结果, 还可以进一步地采用上述完 整的 SD信号检测流程。 本发明实施例提供了一种长发光检测装置, 位于光线路终端(OLT), 用于实现上 述长发光检测方法。 图 3是根据本发明实施例的长发光检测装置的结构框图, 如图 3 所示, 该装置主要包括: 构造模块 10、 控制模块 20、 处理模块 30以及确定模块 40。 其中, 构造模块 10, 设置为对于每个无源光网络 (PON) 口的上行光信号, 构造一个 短时隙通过光模块进行下发; 控制模块 20, 设置为控制光模块根据短时隙对上行光信 号进行第一信号检测(SD)采样检测, 得到第一检测结果; 处理模块 30, 设置为根据 第一检测结果判断上行光信号是否有效, 在判断结果为是的情况下, OLT构造一个长 时隙通过光模块进行下发, 并控制光模块根据长时隙对上行光信号进行第二 SD采样 检测, 得到第二检测结果; 确定模块 40, 设置为根据第二检测结果确定当前 PON口 是否存在长发光现象。 在图 3所示的长发光检测装置的基础上, 本发明实施例还提供了一种优选长发光 检测装置。 图 4是根据本发明实施例的优选长发光检测装置的结构框图,如图 4所示, 在该优选长发光检测装置中, 构造模块 10可以进一步包括: 第一构造单元 12, 设置 为构造短时隙; 第一下发单元 14, 设置为将短时隙插入到下行带宽时隙中通过光模块 进行下发, 其中, 短时隙不属于任何光网络单元 ONU, 在每次检测的过程中只被下发 一次。 在该优选长发光检测装置中, 处理模块 30可以进一步包括: 第二构造单元 32, 设置为构造长时隙; 第二下发单元 34, 设置为将长时隙插入到下行带宽时隙中通过光 模块进行下发, 其中, 长时隙为整帧, 在每次检测的过程中只被下发一次。 在该优选长发光检测装置中, 构造模块 10, 还可以设置为在处理模块 30的判断 结果为否的情况下, 继续构造一个短时隙通过光模块进行下发; 控制模块 20, 还可以 设置为控制光模块根据短时隙对上行光信号进行第三 SD采样检测, 得到第三检测结 果。 在该优选长发光检测装置中, 确定模块 40可以进一步包括: 判断单元 42, 设置 为根据第二检测结果判断上行光信号是否有效; 确定单元 44, 设置为在判断单元的判 断结果为是的情况下,确定当前 PON口存在长发光现象,在判断单元的判断结果为否 的情况下, 确定当前 PON口存在上行窗口漂移。 优选地, 该优选长发光检测装置还可以进一步包括: 上报模块 50, 设置为在确定 当前 PON口存在长发光现象的情况下, 将指示当前 PON口存在长发光现象的第一确 定结果上报给设备管理系统(EMS),在确定当前 PON口存在上行窗口漂移的情况下, 将指示当前 PON口存在上行窗口漂移的第二确定结果上报给 EMS。 采用上述实施例提供的长发光检测方法及装置, 可以消除基于光功率检测所造成 的检测不稳定性, 进而达到了检测快速准确, 可靠性高, 同时不会占用固定带宽, 最 大限度保证了上行带宽的利用率。 为了更好的地理解上述实施例的实施过程, 以下结合图 1和图 5以及优选实施例 对上述实施例提供的长发光检测方法及装置进行更加详细的说明和描述。 首先需要说明的是, 本发明实施例提供的长发光检测方法的硬件实现系统与现有 技术是相同的,这里请参考图 1,该系统包括: EMS100、 OLT200、 ODN300, ONU400, 其中, EMS100, 设置为向 OLT200下发启动长发光检测流程; OLT200, 设置为在长 发光检测中下发检测用带宽时隙, 同时控制光模块对上行数据进行 SD实时采样, 并 判定是否存在长发光现象; ODN300, 设置为在 OLT200下连接数量不等的 ONU400, 作为 OLT200 和 ONU400 直接的物理连接通道; ONU400, 设置为承担可能的流氓 (rogue)ONU的角色。 在此硬件基础上, 基于可以启动 OLT侧的长发光检测流程, 针对每个 PON口的 上行光信号分别进行检测处理, 本发明实施例提供的长发光检测方法的实现过程简要 介绍如下: (1 ) OLT构造一个短时隙带宽插入到下行 BWMAP中并下发, 用于 SD信 号检测,该时隙不属于任何 ONU,长度为几十个字节,每次检测时该时隙仅下发一次;
(2) OLT控制光模块基于短时隙对上行数据进行连续 SD采样, 光模块将 SD采样结 果上报给 OLT, OLT判断上行光信号 (也可以称为 SD信号) 是否有效, 如果有效, 则继续构造一个长时隙带宽插入到下行 BWMAP中下发,用于对短时隙检测结果进行 确认, 该时隙长度可以为整帧, 检测时只下发一次, 如果无效, 继续构造短时隙进行 再次检测; (3 ) 光模块将基于长时隙的 SD采样结果上报给 OLT, 如果 OLT判断 SD 信号有效,则判定当前 OLT PON口下存在长发光现象,将结果上报给 EMS;如果 OLT 判断 SD信号无效, 说明当前 OLT PON口下存在上行窗口漂移(Drift of Window), 将 检测结果上报, 同时为进一步确认结果, 需要再次进行完整 SD信号检测流程; (4) 长发光检测流程结束后, 进一步定位具体的流氓 ONU。 下面结合图 5对本优选实施例提供的长发光检测方法进行更进一步的说明。 图 5 是根据本发明优选实施例的长发光检测方法流程图, 如图 5所示, 该流程包括以下步 骤: 步骤 S501 : 网管服务器 EMS控制 OLT启动长发光检测流程, 针对每个 PON口 的上行光信号分别进行检测处理; 步骤 S502: OLT构造一个短时隙带宽插入到下行 BWMAP中并下发, 用于上行 SD信号检测, 该时隙不属于任何 ONU, 长度为几十个字节, 每次 SD检测时该时隙 仅下发一次, 不占用 OLT物理带宽; 步骤 S503 : OLT控制光模块基于短时隙对上行数据进行连续 SD采样, 并输入相 应的 RSSI时序参数, 包括时延 DEALY和采样宽度 WIDTH; 步骤 S504: 光模块将 SD采样结果上报给 OLT, OLT对 SD信号是否有效进行判 定, 如有效, 则进入步骤 S505; 如 SD信号无效, 则进入步骤 S502; 步骤 S505: OLT继续构造一个长时隙带宽插入到下行 BWMAP中下发, 用于对 短时隙检测结果进行确认, 该时隙长度可以为整帧, 检测时只下发一次; 步骤 S506: OLT控制光模块基于长时隙对上行数据进行连续 SD采样, 并输入相 应的 RSSI时序参数, 包括时延 DEALY和采样宽度 WIDTH; 步骤 S507: OLT光模块将基于长时隙的 SD采样结果上报给 OLT, 如果 OLT判 断 SD信号有效, 则进入步骤 S508; 如果 OLT判断 SD信号无效, 则进入步骤 S510; 步骤 S508: OLT根据 SD检测结果判定当前 OLT PON口下存在长发光现象; 步骤 S509: OLT将长发光检测结果上报, 检测流程结束; 步骤 S510: 当前 OLT PON口下可能存在上行窗口漂移 (Drift of Window), 将检 测结果上报给 EMS, 同时为进一步确认结果, 需要再次进行完整 SD信号检测流程, 回到步骤 S502。 通过本优选实施例的实施, 可以快速且准确判定是否由于长发光引起的故障, 在 SD信号判定有效的前提下, 可以直接判定长发光结果, 不需要进行多次重复检测, 同 时不会占用固定带宽, 最大限度提高了上行带宽利用率, 符合用户的利益需求。 需要说明的是, 上述各个模块是可以通过硬件来实现的。 例如: 一种处理器, 包 括上述各个模块, 或者, 上述各个模块分别位于一个处理器中。 在另外一个实施例中, 还提供了一种软件, 该软件用于执行上述实施例及优选实 施方式中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 通过 SD信号采样方 式对上行长发光现象进行实时检测判定, 不依赖于常用的光功率检测的方式, 因此具 有更高的可靠性和准确性; 当现网应用中出现整个 PON口下出现部分或者全部 ONU 掉线和宽带业务中断时, 可以快速且准确判定是否由于长发光引起的故障, 在 SD信 号判定有效的前提下, 可以直接判定长发光结果, 不需要进行多次重复检测, 检测效 率和时间大大优于光功率检测的方式; 同时在该检测机制开启的情况下, 由于不会占 用固定带宽, 最大限度提高了上行带宽利用率, 符合用户的利益需求。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 工业实用性 本发明提供的上述技术方案, 可以应用于长发光检测过程中, 采用配置并下发短 时隙带宽和长时隙带宽结合对上行光信号进行 SD ( Signal Detect) 采样 (Sampling), 再根据 SD信号是否有效来判定是否存在长发光现象的方式, 解决了相关技术中基于 光功率的长发光检测方式具有检测结果可靠性低、 检测时间长以及占用上行带宽资源 等缺陷的问题, 可以消除基于光功率检测所造成的检测不稳定性, 进而达到了检测快 速准确, 可靠性高, 同时不会占用固定带宽, 最大限度保证了上行带宽的利用率的效 果。

Claims

权 利 要 求 书
1. 一种长发光检测方法, 包括:
对于每个无源光网络 PON口的上行光信号, 光线路终端 OLT构造一个短 时隙通过光模块进行下发;
所述 OLT 控制所述光模块根据所述短时隙对所述上行光信号进行第一信 号检测 SD采样检测, 得到第一检测结果; 所述 OLT根据所述第一检测结果判断所述上行光信号是否有效,在判断结 果为是的情况下, 所述 OLT构造一个长时隙通过所述光模块进行下发, 并控制 所述光模块根据所述长时隙对所述上行光信号进行第二 SD采样检测, 得到第 二检测结果;
所述 OLT根据所述第二检测结果确定当前 PON口是否存在长发光现象。
2. 根据权利要求 1所述的方法, 其中, 光线路终端 OLT构造一个短时隙通过光模 块进行下发, 包括:
所述 OLT构造所述短时隙后,将所述短时隙插入到下行带宽时隙中通过所 述光模块进行下发, 其中, 所述短时隙不属于任何光网络单元 ONU, 在每次检 测的过程中只被下发一次。
3. 根据权利要求 1所述的方法, 其中, 所述 OLT构造一个长时隙通过所述光模块 进行下发, 包括:
所述 OLT构造所述长时隙后,将所述长时隙插入到下行带宽时隙中通过所 述光模块进行下发, 其中, 所述长时隙为整帧, 在每次检测的过程中只被下发 一次。
4. 根据权利要求 1所述的方法, 其中, 在所述判断结果为否的情况下, 还包括: 所述 OLT继续构造一个所述短时隙通过所述光模块进行下发,并控制所述 光模块根据所述短时隙对所述上行光信号进行第三 SD采样检测, 得到第三检 测结果。
5. 根据权利要求 1所述的方法, 其中, 所述 OLT根据所述第二检测结果确定当前 PON口是否存在长发光现象, 包括: 所述 OLT根据所述第二检测结果判断所述上行光信号是否有效,在判断结 果为是的情况下, 所述 OLT确定所述当前 PON口存在长发光现象, 在判结果 为否的情况下, 确定所述当前 PON口存在上行窗口漂移。
6. 根据权利要求 5所述的方法, 其中, 还包括: 在确定所述当前 PON口存在长发光现象的情况下, 将指示所述当前 PON 口存在长发光现象的第一确定结果上报给设备管理系统 EMS;
在确定所述当前 PON口存在上行窗口漂移的情况下,将指示所述当前 PON 口存在上行窗口漂移的第二确定结果上报给设备管理系统 EMS。
7. 一种长发光检测装置, 位于光线路终端 OLT, 包括: 构造模块,设置为对于每个无源光网络 PON口的上行光信号,构造一个短 时隙通过光模块进行下发;
控制模块, 设置为控制所述光模块根据所述短时隙对所述上行光信号进行 第一信号检测 SD采样检测, 得到第一检测结果; 处理模块, 设置为根据所述第一检测结果判断所述上行光信号是否有效, 在判断结果为是的情况下, 所述 OLT 构造一个长时隙通过所述光模块进行下 发, 并控制所述光模块根据所述长时隙对所述上行光信号进行第二 SD采样检 测, 得到第二检测结果;
确定模块,设置为根据所述第二检测结果确定当前 PON口是否存在长发光 现象。
8. 根据权利要求 7所述的装置, 其中, 所述构造模块包括: 第一构造单元, 设置为构造所述短时隙; 第一下发单元, 设置为将所述短时隙插入到下行带宽时隙中通过所述光模 块进行下发, 其中, 所述短时隙不属于任何光网络单元 ONU, 在每次检测的过 程中只被下发一次。
9. 根据权利要求 7所述的装置, 其中, 所述处理模块包括: 第二构造单元, 设置为构造所述长时隙; 第二下发单元, 设置为将所述长时隙插入到下行带宽时隙中通过所述光模 块进行下发, 其中, 所述长时隙为整帧, 在每次检测的过程中只被下发一次。
10. 根据权利要求 7所述的装置, 其中, 所述构造模块, 还设置为在所述处理模块的判断结果为否的情况下, 继续 构造一个所述短时隙通过所述光模块进行下发;
所述控制模块, 还设置为控制所述光模块根据所述短时隙对所述上行光信 号进行第三 SD采样检测, 得到第三检测结果。
11. 根据权利要求 7所述的装置, 其中, 所述确定模块包括: 判断单元, 设置为根据所述第二检测结果判断所述上行光信号是否有效; 确定单元, 设置为在所述判断单元的判断结果为是的情况下, 确定所述当 前 PON口存在长发光现象,在所述判断单元的判断结果为否的情况下,确定所 述当前 PON口存在上行窗口漂移。
12. 根据权利要求 11所述的装置, 其中, 所述装置还包括:
上报模块,设置为在确定所述当前 PON口存在长发光现象的情况下,将指 示所述当前 PON口存在长发光现象的第一确定结果上报给设备管理系统 EMS, 在确定所述当前 PON口存在上行窗口漂移的情况下, 将指示所述当前 PON口 存在上行窗口漂移的第二确定结果上报给所述 EMS。
PCT/CN2014/082762 2014-01-26 2014-07-22 长发光检测方法及装置 WO2015109793A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/114,239 US9806802B2 (en) 2014-01-26 2014-07-22 Method and device for detecting rogue behavior
EP14880329.9A EP3098979B1 (en) 2014-01-26 2014-07-22 Long luminance detection method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410037688.0A CN104811243B (zh) 2014-01-26 2014-01-26 长发光检测方法及装置
CN201410037688.0 2014-01-26

Publications (1)

Publication Number Publication Date
WO2015109793A1 true WO2015109793A1 (zh) 2015-07-30

Family

ID=53680753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082762 WO2015109793A1 (zh) 2014-01-26 2014-07-22 长发光检测方法及装置

Country Status (4)

Country Link
US (1) US9806802B2 (zh)
EP (1) EP3098979B1 (zh)
CN (1) CN104811243B (zh)
WO (1) WO2015109793A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104811243B (zh) * 2014-01-26 2018-05-04 中兴通讯股份有限公司 长发光检测方法及装置
JP7337627B2 (ja) * 2019-09-24 2023-09-04 株式会社日立製作所 通信制御装置およびシステム
CN113141547B (zh) * 2020-01-20 2023-08-01 上海诺基亚贝尔股份有限公司 干扰设备的实时检测
CN112073843A (zh) * 2020-08-17 2020-12-11 深圳市普威技术有限公司 一种onu发光异常检测方法、装置、存储介质及onu
CN115529514A (zh) * 2021-06-24 2022-12-27 中兴通讯股份有限公司 窗口漂移处理方法及光线路终端、光网络单元、存储介质
CN115633275B (zh) * 2022-11-16 2023-12-01 厦门优迅高速芯片有限公司 一种onu突发发光检测数据处理方法及相关设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005317A (zh) * 2006-01-16 2007-07-25 华为技术有限公司 检测上行发送错误和保护无源光网络终端的方法和装置
US20070274719A1 (en) * 2006-05-26 2007-11-29 Alcatel Lucent Passive optical network rogue optical network unit diagnostics
CN101127566A (zh) * 2006-08-16 2008-02-20 华为技术有限公司 无源光网络中的上行时隙冲突检测方法及光线路终端
US20090123154A1 (en) * 2007-11-14 2009-05-14 Alcatel Lucent Detecting presence of rogue onu
CN102075244A (zh) * 2010-12-30 2011-05-25 北京格林伟迪科技有限公司 一种诊断以太无源光网络中长发光光网络单元的方法
US20120163808A1 (en) * 2010-12-23 2012-06-28 Electronics And Telecommunications Research Institute Detecting rogue onu, olt and pon system
WO2013140454A1 (ja) * 2012-03-22 2013-09-26 三菱電機株式会社 Ponシステム、oltおよびonu

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060093356A1 (en) * 2004-10-28 2006-05-04 Vereen Jerry D Optical network that detects and removes Rogue ONTS
CN1881970B (zh) * 2005-06-13 2011-01-12 北京中电华大电子设计有限责任公司 Ofdm系统中补偿采样频偏与载波频偏的方法和装置
CN100417090C (zh) * 2005-10-19 2008-09-03 华为技术有限公司 一种定位拒绝服务攻击源的方法及系统
CN100536381C (zh) * 2005-12-23 2009-09-02 华为技术有限公司 一种无源光网络维护方法和光线路终端
US7881607B2 (en) * 2006-04-05 2011-02-01 Tellabs Petaluma, Inc. Methods and apparatus for identifying a passive optical network failure
US20070264016A1 (en) * 2006-04-21 2007-11-15 Tellabs Petaluma, Inc. Method and apparatus for rogue tolerant ranging and detection
CN101110648B (zh) * 2006-07-18 2010-11-24 华为技术有限公司 检测pon中故障onu的方法
CN101132234A (zh) * 2006-08-24 2008-02-27 上海贝尔阿尔卡特股份有限公司 光网络中检测光网络单元间时隙冲突的装置及方法
CN101262282B (zh) * 2007-03-06 2012-06-06 中兴通讯股份有限公司 一种提高无源光网络可靠性的方法和装置
US8249446B2 (en) * 2009-08-07 2012-08-21 Alcatel Lucent Method and apparatus for regulating rogue behavior in optical network transmission devices
CN101710847A (zh) * 2009-12-09 2010-05-19 中兴通讯股份有限公司 光网络单元的故障检测、控制方法和光网络单元
US8842990B2 (en) * 2010-08-13 2014-09-23 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for detecting rogue optical network unit in passive optical network
CN102142897B (zh) * 2011-03-29 2014-08-20 华为技术有限公司 一种光网络单元的检测方法、装置和无源光网络系统
US9025949B2 (en) * 2011-12-09 2015-05-05 Zte Corporation Equalization delay agnostic protection switching in protected passive optical networks
US8705608B2 (en) * 2012-04-23 2014-04-22 Micrel, Inc. Noise discriminator for enhanced noise detection in a passive optical network burst mode receiver
CN102752041B (zh) * 2012-06-06 2015-04-08 烽火通信科技股份有限公司 Gpon系统中检测长发光onu的方法
CN102970074B (zh) * 2012-10-29 2015-05-13 烽火通信科技股份有限公司 Epon系统中olt侧的异常发光onu硬件检测装置
CN103384165B (zh) * 2012-11-15 2016-06-01 上海斐讯数据通信技术有限公司 长发光检测电路
TWI487304B (zh) * 2012-12-07 2015-06-01 Ind Tech Res Inst 光纖網路故障復原方法
KR102105186B1 (ko) * 2013-03-18 2020-04-28 한국전자통신연구원 수동형 광 가입자 망의 광 선로 종단 장치 및 이를 이용한 상향 대역 제어 방법
KR20140127167A (ko) * 2013-04-24 2014-11-03 한국전자통신연구원 하이브리드 pon 시스템에서의 오동작 onu 방지를 위한 제어 방법
CN103384353B (zh) * 2013-05-30 2016-03-02 上海斐讯数据通信技术有限公司 无源光网络系统及其的用户端设备的检测方法
US9680568B2 (en) * 2013-06-13 2017-06-13 Alcatel Lucent Method and apparatus for alien device identification in passive optical networks
WO2015085468A1 (zh) * 2013-12-09 2015-06-18 华为技术有限公司 光网络上行信号的检测装置及方法
CN104811243B (zh) * 2014-01-26 2018-05-04 中兴通讯股份有限公司 长发光检测方法及装置
US9591386B2 (en) * 2014-08-27 2017-03-07 Calix, Inc. Optical network device with integrated port mirroring

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005317A (zh) * 2006-01-16 2007-07-25 华为技术有限公司 检测上行发送错误和保护无源光网络终端的方法和装置
US20070274719A1 (en) * 2006-05-26 2007-11-29 Alcatel Lucent Passive optical network rogue optical network unit diagnostics
CN101127566A (zh) * 2006-08-16 2008-02-20 华为技术有限公司 无源光网络中的上行时隙冲突检测方法及光线路终端
US20090123154A1 (en) * 2007-11-14 2009-05-14 Alcatel Lucent Detecting presence of rogue onu
US20120163808A1 (en) * 2010-12-23 2012-06-28 Electronics And Telecommunications Research Institute Detecting rogue onu, olt and pon system
CN102075244A (zh) * 2010-12-30 2011-05-25 北京格林伟迪科技有限公司 一种诊断以太无源光网络中长发光光网络单元的方法
WO2013140454A1 (ja) * 2012-03-22 2013-09-26 三菱電機株式会社 Ponシステム、oltおよびonu

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3098979A4 *

Also Published As

Publication number Publication date
EP3098979B1 (en) 2018-02-28
CN104811243A (zh) 2015-07-29
EP3098979A4 (en) 2017-02-01
CN104811243B (zh) 2018-05-04
US20170005722A1 (en) 2017-01-05
US9806802B2 (en) 2017-10-31
EP3098979A1 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
US8670663B2 (en) Methods, systems, and computer-readable media for providing notification of a power failure
WO2015109793A1 (zh) 长发光检测方法及装置
US7809262B2 (en) Methods, systems, and computer-readable media for determining physical layer failures
TWI507669B (zh) 用於光纖設備的光線路終端
KR102617260B1 (ko) Olt, onu, pon 시스템, 및 pon 시스템에서의 정보 전송 방법
US9432120B2 (en) Probabilistic bandwidth control in a passive optical network (PON)
KR102433853B1 (ko) 수동형 광 네트워크 시스템에서의 콰이어트 윈도우 설정 방법 및 그 장치
US10110301B2 (en) Method, apparatus, and system for detecting rogue optical network unit
WO2010111954A1 (zh) 一种光功率测量的方法、光线路终端和光网络单元
US20220312089A1 (en) Data Processing Method and Apparatus for Passive Optical Network System, and Passive Optical Network System
KR20150042630A (ko) 슬립모드 onu 제어 기법
CA2985162A1 (en) Optical line terminal and failed terminal identification method for pon communication system
CN108370271A (zh) 光网络单元的检测方法、装置和无源光网络系统
US8886041B2 (en) Optical line terminal, bandwidth control method and optical network system
JP2014232952A (ja) 通信制御装置及びプログラム
WO2011157167A2 (zh) 一种无源光网络的数据发送方法及设备
JP2013258559A (ja) 光通信システム及び新規接続端末検出方法
JP6134247B2 (ja) 光通信システム、信号送信制御方法及び局側光回線終端装置
JP2017225018A (ja) 加入者側装置、局側装置、光通信システム、光通信方法、及びプログラム
JP2011035738A (ja) 障害onu特定方法及び装置
WO2015077943A1 (zh) 无源光网络上行带宽分配的方法、装置及系统
CN117353873B (zh) 上行帧的校验方法、装置、电子设备及存储介质
US11736840B2 (en) Systems and methods of open contention-based grant allocations
US20230025050A1 (en) Upbandwidth allocation device and uplink bandwidth allocation method
US20150326346A1 (en) System and method for setting downstream forward error correction code in time division multiplexing passive optical network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15114239

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014880329

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014880329

Country of ref document: EP