WO2015109609A1 - 一种窄带传输的方法、设备、基站及用户设备 - Google Patents

一种窄带传输的方法、设备、基站及用户设备 Download PDF

Info

Publication number
WO2015109609A1
WO2015109609A1 PCT/CN2014/071601 CN2014071601W WO2015109609A1 WO 2015109609 A1 WO2015109609 A1 WO 2015109609A1 CN 2014071601 W CN2014071601 W CN 2014071601W WO 2015109609 A1 WO2015109609 A1 WO 2015109609A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
scrambling
value
tti
data
Prior art date
Application number
PCT/CN2014/071601
Other languages
English (en)
French (fr)
Inventor
栗忠峰
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480035535.0A priority Critical patent/CN105325045A/zh
Priority to PCT/CN2014/071601 priority patent/WO2015109609A1/zh
Publication of WO2015109609A1 publication Critical patent/WO2015109609A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, a device, a base station, and a user equipment for narrowband transmission. Background technique
  • LTE network Low Cost Machine Type Communication
  • LC-MTC Low Cost Machine Type Communication
  • the current LTE network data channel uses broadband transmission.
  • the smallest frequency domain resource is one resource block RB corresponding to 12 subcarriers, and the bandwidth of each subcarrier is 15 kHz, that is, the bandwidth of one RB is 180 kHz.
  • the number of repeated transmissions required is increased.
  • the predetermined signal coverage strength is 10dB, 12dB, 15dB, 17dB, 20dB, respectively
  • the number of repeated transmissions is 12, 24, 60, 100, 340 times, as can be seen, when the required signal coverage strength is reached.
  • the number of repeated transmissions required has not increased linearly with the previous number.
  • the number of repeated transmissions has risen directly from 100 to 340. Far more than the previous increase in the number of transmissions, therefore, the use of repeated transmission can achieve enhanced signal coverage, but in such cases, the use of communication resources has been very inefficient.
  • Embodiments of the present invention provide a method, a device, a base station, and a user equipment for narrowband transmission, which are used to improve signal coverage and coverage strength, and improve usage efficiency of communication resources.
  • a method for narrowband transmission includes: determining a currently used bandwidth value, and according to the bandwidth value Determining configuration information of the resource unit in the time domain and/or the frequency domain, wherein the currently used bandwidth value is a narrowband bandwidth value equal to or smaller than 180KHz;
  • the configuration information of the resource unit in the time domain and/or the frequency domain is sent to the user equipment, so that the user equipment performs uplink and/or downlink data transmission according to the configuration information.
  • the configuration information specifically includes: a parameter that is specifically configured for the determined resource unit, where the parameter is at least an absolute radio channel number ARFCN, an RB location. , one of a narrowband position in the RB, scheduling information, frequency domain information of the number of subcarriers; and/or
  • the time domain information including at least one of a transmission time interval TTI length, a subframe group length, a subframe position, and a frame position is included.
  • the method further includes: performing scrambling processing on the data to be sent according to the configuration information, and sending the scrambled data to the user equipment;
  • the scrambled data is received from the user equipment, and the scrambled data is descrambled according to the configuration information to obtain descrambled data.
  • the configuration information is sent to the user equipment by using a signaling.
  • determining, according to the bandwidth value, configuration information of a resource unit in a time domain includes:
  • the performing the scrambling processing on the data to be sent according to the configuration information includes: determining a bandwidth value that is currently used a corresponding scrambling initialization time parameter of the data to be transmitted in the resource unit; determining identification information of the resource unit; determining, according to the identification information of the resource unit and the scrambling initialization time parameter, the waiting in the resource unit The parameters of the scrambling initialization of the transmitted data.
  • the performing the scrambling processing on the data to be sent according to the configuration information further includes: acquiring a subframe number in LTE Or a time slot number; combining the subframe number or the time slot number to determine a time parameter of the scrambling initialization of the data to be transmitted in the resource unit.
  • determining, according to the bandwidth value, the configuration information of the resource unit in the time domain and the frequency domain including: determining, according to the currently used bandwidth value, the bandwidth value a corresponding number of subcarriers and a number of symbols corresponding to the number of the subcarriers;
  • the method further includes: the currently used bandwidth corresponding to a frequency domain width of one or more subcarriers, and a subcarrier corresponding to a frequency domain width of the subcarrier
  • the carrier spacing is at least one of 15 KHz or 3.75 KHz or 2.5 KHz or 1.25 KHZ.
  • the method further includes: acquiring, according to the TTI length, a subframe group length, a CP corresponding to the subframe structure.
  • the CP includes a normal CP and/or an extended CP, and a number of symbols included in the TTI.
  • the method includes: performing preset multiples on the normal CP according to the number of symbols included in the one TTI Expanding, obtaining an extended second normal CP, and/or performing a predetermined multiple expansion on the extended CP to obtain an extended second extended CP, wherein the preset multiple is a natural number not equal to zero.
  • the performing the scrambling processing on the data to be sent according to the configuration information further includes: Determining the bit value to be scrambled or the encoded bit in the transmitted data and the The values in the scrambling sequence are subjected to corresponding scrambling operations to obtain scrambled data.
  • the method further includes: in the configuration information, the subcarriers in two adjacent time slots are at different frequencies.
  • the method further includes: defining a subframe group and a subframe group frame, where the subframe group frame is composed of a preset number of the subframe group, The subframe group is composed of the predetermined number of subframe times or TTI times, wherein the TTI time is composed of a TTI time corresponding to one of the subcarrier intervals, and the predetermined number is a natural number that is not zero.
  • the sending configuration message is sent by using a signaling, where the signaling is RRC signaling or MAC CE signaling or PDCCH signaling or EPDCCH signaling or a combination of two of them.
  • a second aspect provides a method for narrowband transmission, where the method includes: receiving configuration information of a resource unit sent by a base station in a time domain and/or a frequency domain, and performing uplink and/or on a narrowband resource according to the configuration information. Or transmission of downlink data, where the narrowband is a bandwidth value whose currently used bandwidth value is equal to or smaller than 180KHz.
  • the configuration information specifically includes: a parameter that is specifically configured for the determined resource unit, where the parameter includes at least an ARFCN, an RB location, and a narrowband in the RB. Medium position, scheduling information, number of subcarriers, frequency domain information of one of subcarrier spacings; and/or at least one of transmission time interval TTI length, subframe group length, subframe position, frame position Time domain information.
  • the method further includes: receiving data scrambled according to the configuration information sent by the base station, performing descrambling according to the configuration information, and acquiring descrambling After the data; or the data to be sent is scrambled according to the configuration information, and the scrambled data Sent to the base station.
  • the configuration information is obtained by receiving signaling sent by the base station.
  • the transmitting, by using the configuration information, the uplink and/or downlink data on the narrowband resource includes:
  • Narrowband time domain or frequency domain resource allocation is performed on narrowband resources using independent narrowband resources or using associated carriers based on the configuration information.
  • the performing resource configuration of the narrowband time domain or the frequency domain on the narrowband resource according to the configuration information includes:
  • Uplink and/or downlink data transmission is performed on the narrowband resource according to the predefined content in the configuration information.
  • the performing the uplink and/or downlink data transmission on the narrowband resource according to the configuration information by using the associated carrier includes: according to the received configuration information, Obtaining a time domain resource and/or a frequency domain resource in the configuration information, where the time domain resource includes a frame and a subframe used for transmitting data, where the frequency domain resource includes a subcarrier spacing, a number of subcarriers, and an absolute At least one of a radio frequency channel number ARFCN value, a location of the narrowband resource in the resource block RB, and a location of the RB.
  • the method when the frequency resource includes an ARFCN value, the method includes: acquiring the ARFCN value, where the ARFCN value is used to describe Narrowband frequency information for transmitting data; uplink and/or downlink data transmission on the narrowband according to the narrowband frequency information determined by the ARF CN value.
  • the method further includes: After receiving the scheduling indication information from the base station, performing uplink and/or downlink data transmission on the determined narrowband resource according to the scheduling indication information.
  • the receiving the scheduling indication information further includes: acquiring, or removing the data from the narrowband carrier of the transmitted data Acquired from a narrowband carrier of a narrowband outer carrier, or obtained from a wideband carrier.
  • the method further includes: the uplink data transmission is based on a random access manner, and the downlink data transmission is based on a manner indicated by the scheduling information; or The uplink data transmission is based on the manner indicated by the scheduling information, and the downlink data transmission is based on a random access manner.
  • the method further includes: defining a subframe group and a subframe group, where the subframe group is composed of a preset number of the subframe groups, The subframe group is composed of the predetermined number of subframe times or TTI times, wherein the TTI time is composed of a TTI time corresponding to one of the subcarrier intervals, and the predetermined number is a natural number that is not zero.
  • the method includes: performing, according to the defined subframe group and the subframe group frame, the adding Disturbance initialization.
  • the scrambling initialization includes: if the subframe number or the slot number of the TTI is used, the selection is performed.
  • the subframe number or the slot number is used as the value of Ns or L" s /2", and is substituted into ⁇ 14 ⁇ 1 ⁇ " ⁇ to obtain the number of each subframe or slot number.
  • the performing the scrambling initialization comprises: using a bit value or an encoded bit to be scrambled in the data to be transmitted The bit is scrambled corresponding to the value in the scrambling sequence to obtain scrambled data.
  • the sending configuration message is sent by using a signaling, where the signaling is RRC signaling or MAC CE Signaling or PDCCH signaling or EPDCCH signaling or a combination of two of them.
  • a third aspect provides a device for narrowband transmission, where the device includes: a first determining unit, configured to determine a currently used bandwidth value, and determine, according to the bandwidth value, a resource unit in a time domain and/or a frequency domain.
  • the configuration information where the currently used bandwidth value is a narrowband bandwidth value equal to or less than 180 kHz; the first transmission unit is configured to send configuration information of the resource unit in the time domain and/or the frequency domain to the user equipment. And causing the user equipment to perform uplink and/or downlink data transmission according to the configuration information.
  • the configuration information specifically includes: a parameter that is specifically configured for the determined resource unit, where the parameter includes at least an ARFCN, an RB location, and a narrowband in the RB. Position, scheduling information, frequency domain information of the number of subcarriers; and/or The time domain information including at least one of a transmission time interval TTI length, a subframe group length, a subframe position, and a frame position is included.
  • the device further includes: a first sending unit, configured to perform scrambling processing on the data to be sent according to the configuration information, and the scrambled data Sent to the user device; and/or
  • the first receiving unit is configured to receive the scrambled data from the user equipment, perform descrambling processing on the scrambled data according to the configuration information, and obtain descrambled data.
  • the configuration information is sent to the user equipment by using a signaling.
  • the first determining unit is specifically configured to:
  • the first sending unit is specifically configured to: determine, to be transmitted, in a resource unit corresponding to the currently used bandwidth value a scrambling initialization time parameter of the data; determining identification information of the resource unit;
  • the first sending unit is further configured to: acquire a subframe number or a slot number in LTE; A frame number or a slot number, determining a time parameter of the scrambling initialization of the data to be transmitted in the resource unit.
  • the first determining unit is specific The method includes: determining, according to the currently used bandwidth value, a number of subcarriers corresponding to the bandwidth value, and a number of symbols corresponding to the number of subcarriers; according to the determined number of subcarriers and corresponding to the number of subcarriers Number of symbols, obtaining a CP corresponding to the number of subcarriers, the CP including a normal CP and/or an extended CP.
  • the currently used bandwidth corresponds to a frequency domain width of one or more subcarriers, and a subcarrier corresponding to a frequency domain width of the subcarrier
  • the carrier spacing is at least one of 15 KHz or 3.75 KHz or 2.5 KHz or 1.25 KHZ.
  • the device further includes:
  • a CP extension unit configured to acquire, according to the TTI length and a subframe group length, a CP corresponding to the subframe structure, where the CP includes a normal CP and/or an extended CP, and a symbol included in the TTI number.
  • the CP expansion unit is further configured to use, according to the number of symbols included in the one TTI, Performing a preset multiple of the normal CP to obtain an extended second normal CP, and/or expanding the preset multiple of the extended CP to obtain an extended second extended CP, where the preset The multiple is a natural number that is not equal to zero.
  • only the same value in the second extended CP and the third normal CP as in the LTE protocol is reserved.
  • the first sending unit is further configured to: include to be added in the data to be transmitted The scrambled bit value or the scrambled bit corresponding to the value in the scrambling sequence is used to obtain the scrambled data.
  • in the device in the configuration information, subcarriers in two adjacent time slots are at different frequencies.
  • the first determining unit is further configured to: define a subframe group and a subframe group frame, where the subframe group frame is configured by a preset number of the subframes The group consisting of the predetermined number of subframe times or TTI times, wherein the TTI time is composed of a TTI time corresponding to one of the subcarrier intervals, and the predetermined number is a natural number that is not zero. .
  • the sending configuration message is sent by using a signaling, where the signaling is RRC signaling or MAC CE Signaling or PDCCH signaling or EPDCCH signaling or a combination of two of them.
  • the fourth aspect provides a device for narrowband transmission, where the device includes: a second transmission unit, configured to receive configuration information of a resource unit sent by a base station in a time domain and/or a frequency domain, and according to the The configuration information is used to transmit uplink and/or downlink data on a narrowband resource, where the narrowband is a bandwidth value that is currently used with a bandwidth value equal to or less than 180 kHz.
  • the configuration information specifically includes: a parameter that is specifically configured for the determined resource unit, where the parameter includes at least an ARFCN, an RB location, and a narrowband in the RB. Frequency domain information of one of the location, scheduling information, number of subcarriers, subcarrier spacing; and/or
  • the time domain information including at least one of a transmission time interval TTI length, a subframe group length, a subframe position, and a frame position is included.
  • the device further includes: a second receiving unit, configured to receive, by the base station, data scrambled according to the configuration information, according to the configuration information After the descrambling, the descrambled data is obtained; or the second sending unit is configured to perform scrambling processing on the data to be sent according to the configuration information, and send the scrambled data to the base station.
  • the configuration information is obtained by receiving signaling sent by the base station.
  • the second transmission unit is further configured to:
  • Narrowband time domain or frequency domain resource allocation is performed on narrowband resources according to the configuration information using independent narrowband resources or using associated carriers.
  • the second transmission unit is specifically configured to: according to the predefined content in the configuration information, in a narrowband Uplink and/or downlink data transmission on the resource.
  • the second transmission unit is further configured In:
  • the time domain resource includes a frame and a subframe used for transmitting data
  • the frequency domain resource includes a sub At least one of a carrier interval, a number of subcarriers, an absolute radio frequency channel number ARFCN value, a location of a narrowband resource in a resource block RB, and a location of an RB; in a seventh possible implementation, in combination with the fourth aspect
  • the device is specifically configured to: obtain the ARFCN value, where the ARFCN value is used to describe frequency information of a narrowband used to transmit data; The narrowband frequency information determined by the A RF CN value is used for uplink and/or downlink data transmission on the narrowband.
  • the device is further configured to:
  • the uplink data transmission is based on a random access manner, and the downlink data transmission is based on a manner indicated by the scheduling information; or
  • the uplink data transmission is based on a manner indicated by the scheduling information, and the downlink data transmission is based on a random access manner.
  • the device is further configured to: define a subframe group and a subframe group frame, where the subframe group frame is composed of a preset number of the subframe group groups, The subframe group is composed of the predetermined number of subframe times or TTI time, wherein the TTI The time is composed of a TTI time corresponding to one of the subcarrier intervals, and the predetermined number is a natural number that is not zero.
  • the device is further configured to: perform, according to the defined subframe group and the subframe group frame, The scrambling initialization is described.
  • the device is further configured to: if the subframe number or the slot number of the TTI is used, The subframe number or the slot number is taken as the value of Ns or L" s /2", and is substituted into ⁇ 14 ⁇ ⁇ 1 ⁇ " ⁇ ⁇ to obtain the number or time slot with each of the subframes.
  • the device is further configured to:: encode or encode the bit value to be scrambled in the data to be transmitted The bits are scrambled corresponding to the values in the scrambling sequence to obtain scrambled data.
  • the sending configuration message is sent by using a signaling, where the signaling is RRC signaling or MAC CE Signaling or PDCCH signaling or EPDCCH signaling or a combination of two of them.
  • the base station includes:
  • the configuration information specifically includes: a parameter that is specifically configured for the determined resource unit, where the parameter includes at least an ARFCN, an RB location, and a narrowband in the RB. Position, scheduling information, frequency domain information of the number of subcarriers; and/or
  • the time domain information including at least one of a transmission time interval TTI length, a subframe group length, a subframe position, and a frame position is included.
  • the first transmitter is further configured to perform scrambling processing on the data to be sent according to the configuration information, and perform scrambling The data is sent to the user equipment; and/or the first receiver is configured to receive the scrambled data from the user equipment, and perform descrambling processing on the scrambled data according to the configuration information to obtain a solution. Disturbed data.
  • the configuration information is sent to the user equipment by using a signaling.
  • the first processor is further configured to: determine, according to the currently used bandwidth value, the TTI length or a subframe group length corresponding to the bandwidth value. .
  • the first transmitter is further configured to: determine, to be transmitted in a resource unit, corresponding to the currently used bandwidth value Data addition Determining the identification information of the resource unit; determining, according to the identification information of the resource unit and the scrambling initialization time parameter, a parameter of the scrambling initialization of the data to be transmitted in the resource unit.
  • the first transmitter is further configured to: acquire a subframe number or a slot number in LTE; A frame number or a slot number, determining a time parameter of the scrambling initialization of the data to be transmitted in the resource unit.
  • the first processor is further configured to: determine, according to the currently used bandwidth value, a number of subcarriers corresponding to the bandwidth value, and the subcarrier The number of symbols corresponding to the number of carriers is obtained.
  • a CP corresponding to the number of subcarriers is obtained, and the CP includes a normal CP and/or an extended CP.
  • the currently used bandwidth corresponds to a frequency domain width of one or more subcarriers, and a subcarrier corresponding to a frequency domain width of the subcarrier
  • the carrier spacing is at least one of 15 KHz or 3.75 KHz or 2.5 KHz or 1.25 KHZ.
  • the first processor is further configured to: acquire, according to the TTI length, a subframe group length, the subframe A CP corresponding to the structure, the CP includes a normal CP and/or an extended CP, and a number of symbols included in the TTI.
  • the first processor is further configured to: according to the number of symbols included in the one TTI, to the normal CP Performing an extension of the preset multiple to obtain an extended second normal CP, and/or performing a preset multiple of the extended CP Expanding to obtain an expanded second extension CP, wherein the preset multiple is a natural number not equal to zero.
  • the preset multiple is a natural number not equal to zero.
  • the first transmitter is further configured to: to be scrambled in the data to be transmitted The bit value or the encoded bit is scrambled corresponding to the value in the scrambling sequence to obtain scrambled data.
  • the base station in the configuration information, subcarriers in two adjacent time slots are at different frequencies.
  • the first processor is further configured to: Defining a subframe group and a subframe group, the subframe group consisting of a preset number of the subframe groups, the subframe group being composed of the predetermined number of subframe times or TTI time, wherein the TTI The time is composed of a TTI time corresponding to one of the subcarrier intervals, and the predetermined number is a natural number that is not zero.
  • the sending configuration message is sent by using a signaling, where the signaling is RRC signaling or MAC CE signaling or PDCCH. Signaling or EPDCCH signaling or a combination of two of them.
  • a user equipment configured to receive configuration information of a resource unit sent by a base station in a time domain and/or a frequency domain, and according to the configuration information, in a narrowband The uplink and/or downlink data transmission is performed on the resource, where the narrowband is a bandwidth value whose current used bandwidth value is equal to or less than 180 kHz.
  • the configuration information specifically includes: a parameter that is specifically configured for the determined resource unit, where the parameter is at least an ARFCN, an RB location, and a narrowband in the RB. Medium position, scheduling information, number of subcarriers, frequency domain information of one of subcarrier spacings; and/or at least one of transmission time interval TTI length, subframe group length, subframe position, frame position Time domain information.
  • the user equipment further includes: a second receiver, configured to receive, by the base station, data scrambled according to the configuration information, according to the configuration information After descrambling, obtain the descrambled data; or
  • a second transmitter configured to perform scrambling processing on the data to be sent according to the configuration information, and send the scrambled data to the base station.
  • the configuration information is obtained by receiving signaling sent by the base station.
  • the second processor is further configured to: Narrowband time domain or frequency domain resource allocation is performed on narrowband resources according to the configuration information using independent narrowband resources or using associated carriers.
  • the second processor is specifically configured to:
  • the second processor is further configured to: obtain the time domain resource and/or the frequency domain resource in the configuration information according to the received configuration information.
  • the time domain resource includes a frame used for transmitting data and a subframe
  • the frequency domain resource includes a subcarrier interval, a number of subcarriers, an absolute radio frequency channel number ARFCN value, and a location of the narrowband resource in the resource block RB. And at least one of the locations of the RBs.
  • the user equipment when the frequency resource includes an ARFCN value, is further configured to: obtain the ARFCN value, the ARFCN value Used to describe the frequency information of the narrowband used to transmit data;
  • the user equipment is further configured to: after receiving the scheduling indication information from the base station, according to the scheduling indication information, Uplink and/or downlink data transmission on the determined narrowband resources.
  • the receiving the scheduling indication information further includes:
  • the uplink data transmission is based on a random access mode
  • the downlink data transmission is based on the manner indicated by the scheduling information
  • the uplink data transmission is based on the manner indicated by the scheduling information
  • the downlink data transmission is based on random access. The way.
  • the user equipment is further configured to: define a subframe group and a subframe group frame, where the subframe group frame is composed of a preset number of the subframe group
  • the subframe group is composed of the predetermined number of subframe times or TTI times, wherein the TTI time is composed of a TTI time corresponding to one of the subcarrier intervals, and the predetermined number is a natural number that is not zero.
  • the second processor is further configured to: according to the defined subframe group and the subframe framing, Performing the scrambling initialization.
  • the second processor is further configured to: if the subframe number or the slot number of the TTI is used, The sub-frame number or the slot number is selected as the value of Ns or L" s /2", and is substituted into ⁇ 14 ⁇ 1 ⁇ " ⁇ 11 , and the sub-frame number is obtained.
  • the second processor is further configured to: obtain a scrambling operation by using a scrambling operation corresponding to a value of the bit to be scrambled or the coded bit in the data to be transmitted and a value in the scrambling sequence After the data.
  • the sending configuration message is sent by using a signaling, where the signaling is RRC signaling or MAC CE Signaling or PDCCH signaling or EPDCCH signaling or a combination of two of them.
  • the embodiments of the present invention provide a method, a device, a base station, and a user equipment for narrowband transmission.
  • the base station determines the currently used bandwidth value, and can transmit data by using a bandwidth smaller than the LTE minimum bandwidth of 180 kHz in the prior art.
  • the data transmission uses far less bandwidth than the current communication protocol, so the noise power in the data transmission process can be reduced, and the signal-to-noise ratio is improved, so that the signal coverage can be significantly improved when the data is transmitted using the narrow bandwidth. And coverage strength, thereby transmitting data using a number of repeated transmissions much lower than in the prior art.
  • FIG. 1 is a schematic flowchart of a narrowband transmission method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a single carrier based flow in a narrowband transmission method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a method for transmitting data by using a separate narrowband carrier in a narrowband transmission method according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a narrowband transmission device according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a narrowband transmission device according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present invention.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist separately. B these three situations.
  • the character " /" in this article generally means that the context before and after the associated object is an "or" relationship.
  • the embodiment of the present invention provides a method for narrowband transmission. As shown in FIG. 1, the method includes:
  • the base station determines the currently used bandwidth value, and determines configuration information of the resource unit in the time domain and/or the frequency domain according to the bandwidth value, where the currently used bandwidth value is a narrowband bandwidth value equal to or smaller than 180 kHz. ;
  • the base station sends the configuration information of the resource unit in the time domain and/or the frequency domain to the user equipment, so that the user equipment performs uplink and/or downlink data transmission according to the configuration information.
  • the user equipment receives configuration information of a resource unit sent by the base station in a time domain and/or a frequency domain, and performs uplink and/or downlink data transmission on the narrowband resource according to the configuration information, where the narrowband is current
  • the bandwidth value used is a bandwidth value equal to or smaller than 180 kHz.
  • the configuration information specifically includes: a parameter that is specifically configured for the determined resource unit, where the parameter is at least an Absolute Radio Frequency Channel Number (ARFCN), an RB position, and a narrowband in the RB.
  • ARFCN Absolute Radio Frequency Channel Number
  • the time domain information including at least one of a transmission time interval TTI length, a subframe group length, a subframe position, and a frame position is included.
  • An embodiment of the present invention provides a method for narrowband transmission.
  • the base station determines the currently used bandwidth value, determines configuration information of the resource unit in the time domain and/or the frequency domain, and then sends the determined configuration information to the user equipment, so that the user
  • the device can perform uplink and/or downlink data transmission on the narrowband resource according to the configuration information, thereby reducing the noise power in the data transmission process, thereby improving the signal to noise ratio, so that the signal can be significantly improved when the data is transmitted using the narrow bandwidth.
  • the coverage and coverage strength are used to transmit data using the number of repeated transmissions much lower than in the prior art, thereby improving the efficiency of use of communication resources.
  • the embodiment of the present invention provides a method for narrowband transmission. As shown in FIG. 2, the method includes:
  • the base station determines, according to the current bandwidth value, configuration information of the resource unit in the time domain and/or the frequency domain according to the bandwidth value.
  • the configuration information specifically includes: a parameter that is specifically configured for the determined resource unit, where the parameter is at least an ARFCN, an RB location, a location of a narrowband in an RB, scheduling information, a number of subcarriers, and a subcarrier spacing.
  • Frequency domain information of one type and/or time domain information including at least one of a transmission time interval TTI length, a subframe group length, a subframe position, and a frame position.
  • the length of the transmission time interval TTI corresponding to the current bandwidth value is determined, and according to the length of the TTI, the following two situations are discussed:
  • each resource block RB corresponds to a bandwidth of 15 kHz, and in the time domain, it contains 12*7 OFDM symbols or 6 subframes. Since one TTI includes 2 RBs, one TTI includes corresponding 12*14 OFDM symbols or 12 subframes.
  • the base station After determining the length of the TTI and the corresponding subframe, the base station performs a scrambling initialization process according to the subframe or the slot number corresponding to the TTI. Performing scrambling initialization specifically includes:
  • the time parameter specifically includes a subframe number or a slot number corresponding to the T T I.
  • the subframe corresponding to the TTI is 0, 1, 2 to 9 of the frame n and 0, 1 of the frame n+1; the corresponding slot number is 0 to 19 of the frame n and 0 to 3 of the frame n+1.
  • the value in the scrambling initialization is one of the slots 0, 1 or 2 of the frame n.
  • the 2022 determines the identification information: a user equipment identifier 3 ⁇ 4TI, cell ID value ⁇ 11, the codeword value q and the like.
  • the duration of the existing LTE frame is 10 ms, and the duration of the TTI in Case 2 is also 10 ms.
  • the 10 subframes corresponding to LTE or the normal CP are 10*14 symbols, and the extended CP is 10*12 symbols.
  • Two RBs are included in one TTI, so each RB includes 10*7 symbols for a normal CP or 10*6 symbols for an extended CP.
  • the TTI of the present case facilitates the division of the TTI in units of frames.
  • the scrambling initialization is performed according to the slot number of the subframe corresponding to the subframe or the end time corresponding to the TTI start time. Performing scrambling initialization specifically includes:
  • the subframe corresponding to the TTI is 0, 1, 2 to 9 of the frame n and 0, 1 of the frame n+1; the corresponding slot number is 0 to 19 of the frame n and 0 to 3 of the frame n+1. .
  • the value in the scrambling initialization is one of the slots 0, 1 or 2 of the frame n.
  • the system frame number SFNmodlO can be obtained according to the frame number in LTE in Case2, and the new corresponding to the system frame number is obtained.
  • Number, and take the new number as the value of Ns or k/2", and bring it into ⁇ " ⁇ + ⁇ +k/Sj ⁇ +A to get the scrambling value corresponding to each TTI, and
  • the value is a scrambling sequence that is initialized by the scrambling.
  • the TTI number is SFN (system frame number) modl0êt SFN modlO, and the 10 TTIs can be sequentially divided into 0 9 10 subframes.
  • SFN modlO may be used to replace the existing I or the value corresponding to the 0 19 slots in the 10 subframe groups obtained by SFNmod10.
  • Cinit 2 14 + g ⁇ 2 13 + /2" ⁇ 2 9 + A Get the scrambling value corresponding to each TTI, and this value constitutes the scrambling sequence of the scrambling initialization.
  • the base station performs a scrambling operation on the bit value to be scrambled or the coded bit in the data to be transmitted corresponding to the value in the scrambling sequence to obtain the scrambled data.
  • the sequence generated by the scrambling initialization sequence is an existing LTE method.
  • the basic method is to use the scrambling initialization sequence and another known sequence to perform a mod2 sum after a certain shift. Since specific operational steps are well known, they are not described in detail herein.
  • the user equipment receives the scrambled data sent by the base station, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the user equipment directly receives the data.
  • the base station receives the scrambled data from the user equipment, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the base station directly receives the data.
  • steps 204 and 205 are performed by the base station and the user equipment respectively for transmitting and receiving the scrambled data and correspondingly performing the descrambling operation of the scrambled data according to the difference between the sender and the receiver.
  • Steps 204 and 205 are processes for information exchange between the base station and the user equipment, and there is no previous limitation in time.
  • the TTI based on GMSK modulation can contain 15*10 Symbol, a sub-frame ( lms) now includes 15 symbols.
  • the bandwidth value for 1.25 kHz is similar to the case where the above bandwidth is 15 kHz, as described below:
  • the TTI time is as follows: For normal CP,
  • Table 2 Combines RB parameters corresponding to common CPs As can be seen from the table, easel and 2 multiplex the existing CP length, resulting in the last TTI length containing the fractional ms value, and the case lengths of case3 and case4 are larger than the normal and extended CP lengths of the existing system, respectively. Increase.
  • the TTI length of case4 has an integer multiple of the frame period, which facilitates the synchronization or numbering of the TTI using the frame sync/frame number. Therefore, under the bandwidth value, the extended TTI length corresponding to Case 4 is preferentially used for narrowband data transmission.
  • the slot number or the subframe number of the LTE subframe corresponding to the start or end of the TTI is used, and the subframe number or slot number is selected as Ns or
  • the value of L" s /2" is substituted into ⁇ ⁇ ⁇ ⁇ + ⁇ + ⁇ to obtain a scrambling value corresponding to each TTI, and the scrambled value constitutes a scrambling sequence for scrambling initialization.
  • Performing scrambling initialization specifically includes:
  • the time parameter specifically includes a subframe number or a slot number corresponding to the T T I.
  • the subframe corresponding to the TTI is 0, 1, 2 9 of frame n and 0, 1 of frame n+1; the corresponding slot number is 0 19 of frame n and 0 3 of frame n+1.
  • the value in the scrambling initialization is one of the slots 0, 1 or 2 of the frame n.
  • the base station performs a scrambling operation corresponding to the bit value to be scrambled or the coded bit in the data to be transmitted and the value in the scrambling sequence to obtain scrambled data.
  • the sequence generated by the scrambling initialization sequence is an existing LTE method.
  • the basic method is to use the scrambling initialization sequence and another known sequence to perform a mod2 sum after a certain shift. Since specific operational steps are well known, they are not described in detail herein.
  • the user equipment receives the scrambled data sent by the base station, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the user equipment directly receives the data.
  • the base station receives the scrambled data from the user equipment, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the base station directly receives the data.
  • steps 204 and 205 are performed by the base station and the user equipment respectively for transmitting and receiving the scrambled data and correspondingly performing the descrambling operation of the scrambled data according to the difference between the sender and the receiver.
  • Steps 204 and 205 are processes for information exchange between the base station and the user equipment, and there is no previous limitation in time.
  • the TTI based on GMSK modulation can contain 15*10 symbols, and one subframe (1ms) includes 15 symbols.
  • the bandwidth value for 2.5 kHz is similar to the case of the bandwidth value of 1.25 kHz, as described below:
  • Table 3 compares the RB parameters corresponding to the common CP. The above three cases can be seen.
  • the TTI length is not an integer multiple of the frame length.
  • the CP length of case2 and case3 Both the extended CP length of the existing system and the number of symbols are different, which are multiples of the frame length, which is beneficial for synchronizing or numbering the TTI using the LTE frame synchronization/frame number.
  • the slot number or the subframe number of the LTE subframe corresponding to the start or end of the TTI is used, and the subframe number or slot number is selected as Ns or
  • the scrambling value constitutes a scrambling sequence for scrambling initialization. Performing scrambling initialization specifically includes:
  • the time parameter specifically includes a subframe number or a slot number corresponding to the T T I.
  • the subframe corresponding to the TTI is 0, 1, 2 9 of frame n and 0, 1 of frame n+1; the corresponding slot number is 0 19 of frame n and 0 3 of frame n+1.
  • the value in the scrambling initialization is one of the slots 0, 1 or 2 of the frame n.
  • the base station performs a scrambling operation on the bit value to be scrambled or the coded bit in the data to be transmitted corresponding to the value in the scrambling sequence to obtain the scrambled data.
  • the sequence generated by the scrambling initialization sequence is an existing LTE method.
  • the basic method is to use the scrambling initialization sequence and another known sequence to perform a mod2 sum after a certain shift. Since specific operational steps are well known, they are not described in detail herein.
  • the user equipment receives the scrambled data sent by the base station, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the user equipment directly receives the data.
  • the base station receives the scrambled data from the user equipment, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the base station directly receives the data.
  • the above steps 204 and 205 are performed by the base station and the user equipment respectively for transmitting and receiving the scrambled data and correspondingly performing the descrambling operation of the scrambled data according to the difference between the sender and the receiver.
  • Steps 204 and 205 are processes for information exchange between the base station and the user equipment, and there is no previous limitation in time.
  • the TTI based on GMSK modulation can contain 15*10 symbols, and one subframe (1ms) includes 15 symbols.
  • the bandwidth value for 3.75 kHz is similar to the case where the above bandwidth is 2.5 kHz, as described below:
  • CP3 and CP4 respectively
  • Table 4 The above LTE ordinary CPs and extended CPs are summarized in Table 4 below, where easel considers ordinary CPs:
  • the slot number or the subframe number of the LTE subframe corresponding to the start or end of the TTI is used, and the slot number is selected.
  • the scrambling value corresponding to the TTI the scrambling value constitutes a scrambling sequence of scrambling initialization. Performing scrambling initialization specifically includes:
  • the time parameter specifically includes a subframe number or a slot number of the TTI.
  • the subframe corresponding to the TTI is 0, 1 , 2 to 9 of the frame n and 0, 1 of the frame n+1; the corresponding slot number is 0 to 19 of the frame n and 0 to 3 of the frame n+1.
  • the value in the scrambling initialization is one of the slots 0, 1 or 2 of the frame n.
  • the specific formula Cmit 3 ⁇ 4NTI. 2l4 + 2l3 + L "s / 2 ". 29 + A, is acquired. Substituting the slot number in the determined TTI, the user equipment identifier 3 ⁇ 4TI , the cell ID value ⁇ 11 , the codeword value q, and obtaining the scrambling value corresponding to each TTI, the obtained scrambling value constitutes the scrambling initial: 1 ⁇ 2 4 ⁇ ⁇ 4 4 especially ⁇ l.
  • the base station performs a scrambling operation on the bit value to be scrambled or the coded bit in the data to be transmitted corresponding to the value in the scrambling sequence to obtain the scrambled data.
  • the sequence generated by the scrambling initialization sequence is an existing LTE method.
  • the basic method is to use the scrambling initialization sequence and another known sequence to perform a mod2 sum after a certain shift. Since specific operational steps are well known, they are not described in detail herein.
  • the user equipment receives the scrambled data sent by the base station, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the user equipment directly receives the data.
  • the base station receives the scrambled data from the user equipment, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the base station directly receives the data.
  • the above steps 204 and 205 are performed by the base station and the user equipment respectively for transmitting and receiving the scrambled data and correspondingly performing the descrambling operation of the scrambled data according to the difference between the sender and the receiver.
  • Steps 204 and 205 are a process for information exchange between the base station and the user equipment, at time There are no restrictions on the order.
  • the TTI based on GMSK modulation can contain 15*10 symbols, at which time one subframe (1ms) includes 15 symbols.
  • the four typical bandwidth values are different for the case where the minimum unit is one subframe.
  • the subframe group (subframe group, SFG) and the subframe group (subframe group) can also be defined.
  • the subframe group consists of a preset number of subframe groups, and the subframe group is composed of a predetermined number of subframe times or ⁇ time, wherein the ⁇ time is composed of one time interval corresponding to the subcarrier interval
  • the predetermined number is a natural number that is not zero.
  • the subframe framing is composed of a subframe group, and a is a natural number.
  • the subframe group consists of b subframe times or 1 TTI time, and b is a natural number.
  • the TTI time may be that different subcarrier intervals respectively correspond to respective TTI times or TTI times corresponding to a certain subcarrier interval as the TTI time.
  • the line is incremented by 4, such as the sub-frame number value j is replaced by the sub-frame group number value during scrambling initialization.
  • the subframe group and the subframe group frame can be independently defined, for example, 10 subframe groups constitute one subframe frame group. Then, when each subframe group or TTI is 45.6 ms, the subframe group frame is 456 ms, and the corresponding subframe group number is 0 to 9.
  • the following steps are the same as the foregoing, that is, the scrambling initialization is performed, the scrambling sequence is acquired, and the bit value to be scrambled or the encoded bit in the data to be transmitted is added.
  • the value of the scrambling sequence is subjected to a corresponding scrambling operation to obtain the scrambled data. It is worth noting that, in the above operation, the sub-frames are to be changed into sub-frame groups, and the corresponding data also changes.
  • Embodiments of the present invention provide a method for narrowband transmission, which respectively calculates TTI lengths for four typical narrowband bandwidth values of 15 KHz, 1.25 KHz, 2.5 KHz, and 3.75 KHz in a single carrier, and performs different values for the latter three bandwidth values.
  • the expansion of the multiples, when the extended TTI is an integer multiple of the frame length, is most advantageous for the synchronization or numbering of the TTI; after determining the length of the TTI, the base station and the user equipment each perform the scrambling initialization according to the determined TTI length. Operation, and the resulting scrambling initialization sequence and the data to be transmitted are subjected to a specific operation. Steps acquire the scrambled data, and finally send the scrambled data.
  • the base station and the user equipment When the base station and the user equipment receive the scrambled data, they can also perform descrambling according to the inverse of the scrambling, and finally obtain the descrambling.
  • the latter data can reduce the noise power during data transmission, thereby improving the signal-to-noise ratio, which can significantly improve the coverage and coverage of the signal when transmitting data with narrow bandwidth, so that the use is much lower than the existing one.
  • the number of repeated transmissions in the technology transmits data, improving the efficiency of use of communication resources.
  • the previous embodiment is described in the case of a single carrier.
  • a method for narrowband transmission is provided for multiple carriers. As shown in FIG. 3, the method includes:
  • the base station determines, according to the current bandwidth value, configuration information of the resource unit in the time domain and/or the frequency domain according to the bandwidth value.
  • the configuration information specifically includes: a parameter that is specifically configured for the determined resource unit, where the parameter is at least an ARFCN, an RB location, a location of a narrowband in an RB, scheduling information, a number of subcarriers, and a subcarrier spacing.
  • Frequency domain information of one type and/or time domain information including at least one of a transmission time interval TTI length, a subframe group length, a subframe position, and a frame position.
  • one OFDM symbol in one RB includes 12 subcarriers, and when one OFDM symbol in one RB includes less than 12 subcarriers, it is necessary to increase the number of symbols included in the corresponding one RB, so that Finally, the number of resource elements included in one RB is the same as or close to the number of resource elements included in one RB of the existing system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-spread-OFDM
  • Leaf transform-spread-orthogonal frequency division multiplexing modulation
  • the minimum number of subcarriers is less than 12.
  • the comparison object is one RB
  • the bandwidth corresponding to multiple subcarriers is less than one RB, so the coverage is enhanced compared to one RB.
  • an existing OFDM symbol is taken as an example to define parameters x and y, where X represents the number of subcarriers, and y represents the number of subframes.
  • the matching of X and y can ensure that the number of resource elements in the RB or in the RB pair has the same or the same as the existing system.
  • m or n is a combination ⁇ x, y ⁇ , where x and y are the divisors of each other.
  • the combination of x and y has ⁇ 1, 12 ⁇ ⁇ 2, 6 ⁇ , ⁇ 3, 4 ⁇
  • the following sections describe the different combinations.
  • the number of resource elements included in one TTI is preferentially located in the interval 132RE ⁇ 168RE, because it is advantageous to reuse the LTE scheduling resource granularity, so as to reuse the existing modulation and coding mode of LTE as much as possible.
  • one symbol in one RB includes one subcarrier, which is a single carrier technique
  • Case4 Normal CP ⁇ f 15KHz 4 3*7 3*14
  • Extended CP ⁇ f 15KHz 4 3*6 3*12
  • Table 5 RB and TTI values for different x and y combinations are also available according to Table 3 above.
  • the base station determines, according to the determined configuration information, the number of subcarriers in one RB or the number of subcarriers in one TTI, and obtains a TTI corresponding to the number of different subcarriers, and performs scrambling initialization processing.
  • scrambling initialization specifically includes:
  • the time parameter specifically includes a subframe number or a slot number corresponding to the TTI.
  • the subframe corresponding to the TTI is 0, 1, 2-9 of the frame R and 0, 1 of the frame R+1; the corresponding slot number is 0-19 of the frame R and 0-3 of the frame R+1.
  • the value in the scrambling initialization is frame R One of the time slots 0, 1 or 2.
  • the obtained scrambling value constitutes the scrambling initial: 1 ⁇ 2 4 ⁇ ⁇ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
  • the scrambling initialization process may be performed according to the LTE subframe corresponding to the start of the TTI or the slot number of the first LTE subframe corresponding to the TTI.
  • the advantage of this approach is that there is no need to define new time units, such as multi-carrier or narrow-band, which can be applied to share existing carriers with LTE.
  • the base station performs a scrambling operation on the bit value to be scrambled or the coded bit in the data to be transmitted corresponding to the value in the scrambling sequence to obtain the scrambled data.
  • the sequence generated by the scrambling initialization sequence is an existing LTE method.
  • the basic method is to use the scrambling initialization sequence and another known sequence to perform a mod2 sum after a certain shift. Since specific operational steps are well known, they are not described in detail herein.
  • the user equipment receives the scrambled data sent by the base station, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the user equipment directly receives the data.
  • the base station receives the scrambled data from the user equipment, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the base station directly receives the data.
  • the above steps 304 and 305 are performed by the base station and the user equipment respectively for transmitting and receiving the scrambled data and correspondingly performing the descrambling operation of the scrambled data according to the difference between the sender and the receiver.
  • Steps 304 and 305 are processes for information exchange between the base station and the user equipment, and there is no previous limitation in time.
  • the TTI based on GMSK modulation can contain 15*10 symbols, at which time one subframe (1ms) includes 15 symbols.
  • a subframe group (SFG) and a subframe group frame (SFGF) can be newly defined.
  • the multi-carrier or narrow-band can be shared with the LTE carrier or applied to a carrier on a dedicated carrier such as a system bandwidth of 200 kHz.
  • the subframe frame is composed of n subframe groups, and n is a natural number.
  • the subframe group is composed of X subframe times or 1 TTI time, and X is a natural number.
  • the TTI time may be a TTI time corresponding to different subcarrier intervals or a TTI time corresponding to a certain subcarrier interval as a TTI time.
  • the subframe group and the subframe group frame can be independently defined, for example, 10 subframe groups constitute one subframe frame group.
  • the least common multiple of each case subcarrier is 12, so the time when the multiple is 12 is taken as the time of the subframe framing. That is, for a normal CP, the time of the subframe framing is 12*, and the time corresponding to 12 symbols is 12 ms. For the extended CP, the time of the subframe framing is 12*, and the time corresponding to 12 symbols is 12 ms. Configure the CP length TTI with symbolic subframe group number, and the subframe framing time is 12 ms.
  • Table 6 TTI corresponding to a normal CP or an extended CP After defining a subframe group and a subframe group, the following steps are the same as described above, that is, the scrambling initialization is performed, the scrambling sequence is acquired, and the to-be-transmitted data is to be scrambled. Bit value Or the scrambling operation corresponding to the value of the encoded bit and the scrambling sequence to obtain the scrambled data. It is worth noting that the above operation is performed, wherein the subframe is to be a subframe group, corresponding to The data will also change. It is worth mentioning that, according to the configuration information determined by the base station, the subcarriers in the two adjacent time slots may be at different frequencies.
  • the bandwidth is 1.25 kHz
  • the number of resource elements included in one TTI is preferentially located in the interval 132RE ⁇ 168RE, because it is advantageous to reuse the LTE scheduling resource granularity, so as to reuse the existing modulation and coding mode of LTE as much as possible. Similar to Table 3, for the bandwidth of 1.25KHZ, as shown in Table 7:
  • the TTI value obtained by the normal CP is an infinite fractional ms, and the extended TI obtains a TTI value of a finite fractional ms (millisecond).
  • the TTI value is required to be a multiple of the frame length, one method is to increase the guard time so that the value is a frame period of an integer of ms or an integer multiple. It is more advantageous for TTI timing and counting for integer multiple frame periods.
  • the extended CP is used for 12 symbols, the value is closer to an integer multiple of the frame length. To this end, consider extending the extended CP (CP3) further and obtaining the following calculations:
  • Table 8 Number of Subcarriers and Added Number of Subcarriers at 1.25KHz After determining the TTI of 1.25KHZ bandwidth, perform the following scrambling initialization steps:
  • the base station determines, according to the determined configuration information, the number of subcarriers in one RB or the number of subcarriers in one TTI, and obtains a TTI corresponding to the number of different subcarriers, and performs scrambling initialization processing.
  • scrambling initialization specifically includes:
  • the time parameter specifically includes a subframe number or a slot number of the TTI.
  • the subframe corresponding to the TTI is 0, 1, 2 9 of frame n and 0, 1 of frame n+1; the corresponding slot number is 0 19 of frame n and 0 3 of frame n+1.
  • the value in the scrambling initialization is one of the slots 0, 1 or 2 of the frame n.
  • the obtained scrambling value constitutes the scrambling initial: 1 ⁇ 2
  • the difference between the four ports and the above step 302 is that since the TTI length in this case is the same as the frame length in LTE, the system frame number can also be set according to the frame number in LTE in Case2.
  • the 10 TTIs obtained by numbering the TTIs as SFN (system frame number) modl0?? SFN modlO can be sequentially divided into 0 9 10 subframe group numbers, corresponding to 0 19 RB/time slots ( Two RBs at different times in a TTI correspond to 2 slots.
  • the new slot number is as follows: Frame n->->Subframe Group 0->Slot 0,1; Frame n+l-> Subframe Group 1->slot 2,3; ...frame n+9->subframe group 9->slot 18,19.
  • SFN modi 0 can be used to replace the current Some It should be 0 19 slots in the 10 subframe groups obtained by SFN modlO.
  • the base station performs a scrambling operation on the bit value to be scrambled or the coded bit in the data to be transmitted corresponding to the value in the scrambling sequence to obtain the scrambled data.
  • the sequence generated by the scrambling initialization sequence is an existing LTE method.
  • the basic method is to use the scrambling initialization sequence and another known sequence to perform a mod2 sum after a certain shift. Since specific operational steps are well known, they are not described in detail herein.
  • the user equipment receives the scrambled data sent by the base station, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the user equipment directly receives the data.
  • the base station receives the scrambled data from the user equipment, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the base station directly receives the data.
  • the above step 304 305 is that the base station and the user equipment respectively perform transmission and reception of the scrambled data and the corresponding descrambled operation on the scrambled data according to the difference between the sender and the receiver.
  • Step 304 305 is a process for information exchange between the base station and the user equipment, and there is no previous limitation in time.
  • the TTI based on GMSK modulation can contain 15*10 symbols, at which time one subframe (1ms) includes 15 symbols.
  • a subframe group (SFG) and a subframe group frame (SFGF) may also be newly defined.
  • the multi-carrier or narrow-band may be shared with the LTE carrier or applied to a carrier on a dedicated carrier such as a system bandwidth of 200 kHz.
  • the subframe frame is composed of a subframe group, and a is a natural number.
  • the subframe group is composed of b subframe times or 1 TTI time, and b is a natural number.
  • the TTI time may be a TTI time corresponding to different subcarrier intervals or a TTI time corresponding to a certain subcarrier interval as a TTI time.
  • the newly defined sub-frame group and the sub-frame group are subjected to air line scrambling initialization, such as sub-frame number value replacing the sub-frame number value ⁇ 1 at the time of scrambling initialization.
  • the subframe group and the subframe group can be independently defined, for example, 10 subframe groups constitute one subframe group.
  • the subframe framing of the number of subcarriers (case) can be defined for one subcarrier number (case).
  • one TTI contains 9.8ms, and the TTI value is defined as 1 subframe group. If 1 subframe group contains 10 subframe groups, the subframe framing time is 98ms. The corresponding subframe group number can be 0 ⁇ 9. It is also possible to define a generic subframe framing for all cases. At this time, different cases contain different number of subframe groups.
  • the least common multiple of each case subcarrier is 12, so the time when the multiple is 12 is taken as the time of the subframe framing. That is, for CP2, the time of the subframe framing is 9.8*, and the time corresponding to 12 symbols is 1 17.6 ms. For CP3, the time of the subframe framing is 10*, and the time corresponding to 12 symbols is 120 ms.
  • Table 9 shows the CP length and TTI configuration in the case of defining a subframe group:
  • Table 10 Combining the RB parameters corresponding to the CP Taking the easel of Table 10 as an example, the CP length is selected, and the number of symbols is selected:
  • one method is to extend the length of the normal CP, here called CP length 3, when extending the existing normal CP length by 6 times.
  • the TTI time value when the following 14 symbols are obtained: l/2.5kHz* 14+(160+144*6)*2*6/(15kHz*2048) 6mslick
  • the length of CP corresponding to each symbol is longer than the length of extended CP. Therefore, CP length 2
  • the relationship between the existence of 3 and the relationship is OR.
  • Table 12 Corresponding time of normal CP and extended CP under different expansion multiples, where the multiple has a corresponding relationship with the number of subcarriers, for example, the multiple is 1 corresponding to 12 subcarriers, the multiple is 2 corresponding to 6 subcarriers, and the multiple is 3 corresponding to 4 subcarriers. The multiple is 4 for 3 subcarriers, and the multiple is 6 for 2 subcarriers.
  • the base station determines, according to the determined configuration information, the number of subcarriers in one RB or the number of subcarriers in one TTI, and obtains a TTI corresponding to the number of different subcarriers, and performs scrambling initialization processing.
  • scrambling initialization specifically includes:
  • the time parameter specifically includes a subframe number or a slot number of the TTI.
  • the subframe corresponding to the TTI is 0, 1, 2 to 9 of the frame n and 0, 1 of the frame n+1; the corresponding slot number is 0 to 19 of the frame n and 0 to 3 of the frame n+1.
  • the value in the scrambling initialization is one of the slots 0, 1 or 2 of the frame n.
  • the scrambling initialization process may be performed according to the LTE subframe corresponding to the start of the TTI or the slot number of the first LTE subframe corresponding to the TTI.
  • the advantage of this approach is that there is no need to define new time units, such as multi-carrier or narrow-band, which can be applied to share existing carriers with LTE.
  • the base station performs a scrambling operation on the bit value to be scrambled or the coded bit in the data to be transmitted corresponding to the value in the scrambling sequence to obtain the scrambled data.
  • the sequence generated by the scrambling initialization sequence is an existing LTE method.
  • the basic method is to use the scrambling initialization sequence and another known sequence to perform a mod2 sum after a certain shift. Since specific operational steps are well known, they are not described in detail herein.
  • the user equipment receives the scrambled data sent by the base station, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the user equipment directly receives the data.
  • the base station receives the scrambled data from the user equipment, and proceeds according to the inverse of the scrambling operation. De-scrambling, obtaining descrambled data, or receiving data directly by the base station.
  • the above step 304 305 is that the base station and the user equipment respectively perform transmission and reception of the scrambled data and the corresponding descrambled operation of the scrambled data according to the difference between the sender and the receiver.
  • Step 304 305 is a process for information exchange between the base station and the user equipment, and there is no previous limitation in time. In the case of the bandwidth value, a subframe group (SFG) and a subframe group frame (SFGF) may also be newly defined.
  • FSG subframe group
  • SFGF subframe group frame
  • the multi-carrier or narrow-band may be shared with the LTE carrier or applied to a carrier on a dedicated carrier such as a system bandwidth of 200 kHz.
  • the subframe frame is composed of a subframe group, and a is a natural number.
  • the subframe group is composed of b subframe times or 1 TTI time, and b is a natural number.
  • the TTI time may be a TTI time corresponding to different subcarrier intervals or a TTI time corresponding to a certain subcarrier interval as a TTI time.
  • Subframe group number value replaces subframe number value
  • Subframe group and subframe frame can be defined independently.
  • Subframe groups and subframe framing can be defined for one case.
  • the definition of the subframe group and the subframe group number with a TTI length of 5 ms is as follows:
  • subframe groups 2n-1 and 2n correspond to frame n.
  • the number of the corresponding subframe group is the subframe group modulo 10, that is, the number of the subframe group 2n-l is (2n-l) modl0, the subframe group
  • SFN modlO can be used to replace the existing 1 ⁇ 2 ⁇ or the value corresponds to 0 to 19 RB/slot in 10 TTIs obtained by SFN modlO (2 RBs at different times in one TTI 2 Time slots).
  • the sub-frames are defined in a case, and the sub-groups of each case are numbered under the sub-group. For 1TTI, there are 12 symbols, which can take 60ms as the time of subframe framing.
  • the case group group number is shown in Table 13:
  • 1TTI For the 1TTI, there are 14 symbols, which can take 72ms as the time of subframe framing, and each case subframe group number is shown in Table 14; 1TTI contains 14 symbols of subframe framing for 72ms, submultiplier and corresponding CP (CP long frame group number)
  • the time multiple of degree 3) is 1 ( Casel ) 6ms 0, 1, 2..., 11 is 2 ( Case3 ) 12 ms 0, 1, 2... , 6 is 3 ( Case5 ) 18 ms 0, 1, 2, 3, 4 is 4 ( Case4 ) 24 ms 0, 1, 2 is 6 ( Case2 ) 36 ms 0, 1 Table 14 TTI and corresponding CP length under different expansion factors
  • the following steps are the same as the foregoing, that is, the scrambling initialization is performed, the scrambling sequence is acquired, and the bit value to be scrambled or the encoded bit in the data to be transmitted is added.
  • the value of the scrambling sequence is subjected to a corresponding scrambling operation to obtain the scrambled data. It is worth noting that, in the above operation, the sub-frames are to be changed into sub-frame groups, and the corresponding data also changes.
  • the modulation coding method of LTE is reused as much as possible. Similar to Table 3, for the bandwidth of 3.75KHz, as shown in Table 15:
  • CP length 1 and CP length 2 corresponds to CP length 1 and CP length 2.
  • the length of the TTI after multiplexing the existing CP length is as follows:
  • Table 16 corresponds to CP length 1 and CP length 2, and the TTI length after multiplexing the existing CP length
  • the multiples have a corresponding relationship with the number of subcarriers, for example, the multiple is 1 corresponding to 12 subcarriers, the multiple is 2 corresponding to 6 subcarriers, the multiple is 3 corresponding to 4 subcarriers, the multiple is 4 corresponding to 3 subcarriers, and the multiple is 6 corresponding to 2 subcarriers. Carrier.
  • Table 17 corresponds to the length of the CP 1 and the length of the CP 2, and the length of the TTI after multiplexing the length of the existing CP 302.
  • the base station determines, according to the determined configuration information, the number of subcarriers in one RB or the number of subcarriers in one TTI, and obtains a TTI corresponding to the number of different subcarriers, and performs scrambling initialization processing.
  • Performing scrambling initialization specifically includes:
  • the time parameter specifically includes a subframe number or a slot number of the TTI.
  • the subframe corresponding to the TTI is 0, 1, 2 to 9 of the frame n and 0, 1 of the frame n+1; the corresponding slot number is 0 to 19 of the frame n and 0 to 3 of the frame n+1.
  • the value of 3 ⁇ 4 in the scrambling initialization is one of the slots 0, 1 or 2 of the frame n.
  • the acquisition is performed.
  • the user equipment identifier "the dish i, the cell 10 value ⁇ 11 , the code word value q, and obtaining the scrambling value corresponding to each TTI, the obtained scrambling value constitutes the scrambling initialization. Scrambling sequence.
  • the scrambling initialization process may be performed according to the LTE subframe corresponding to the start of the TTI or the slot number of the first LTE subframe corresponding to the TTI.
  • the advantage of this approach is that there is no need to define new time units, such as multi-carrier or narrow-band, which can be applied to share existing carriers with LTE.
  • the base station acquires the scrambled data by performing a scrambling operation on the bit value to be scrambled or the encoded bit in the data to be transmitted corresponding to the value in the scrambling sequence.
  • the sequence generated by the scrambling initialization sequence is an existing LTE method.
  • the basic method is to use the scrambling initialization sequence and another known sequence to perform a mod2 sum after a certain shift. Since specific operational steps are well known, they are not described in detail herein.
  • the user equipment receives the scrambled data sent by the base station, and performs reverse transmission according to the foregoing scrambling. De-scrambling is performed to obtain descrambled data, or the user equipment directly receives data.
  • the base station receives the scrambled data from the user equipment, and performs descrambling according to the inverse operation of the scrambling to obtain the descrambled data, or the base station directly receives the data.
  • the above step 304 305 is that the base station and the user equipment respectively perform transmission and reception of the scrambled data and the corresponding descrambled operation of the scrambled data according to the difference between the sender and the receiver.
  • Step 304 305 is a process for information exchange between the base station and the user equipment, and there is no previous limitation in time. In the case of the bandwidth value, a subframe group (SFG) and a subframe group frame (SFGF) may also be newly defined.
  • FSG subframe group
  • SFGF subframe group frame
  • the multi-carrier or narrow-band may be shared with the LTE carrier or applied to a carrier on a dedicated carrier such as a system bandwidth of 200 kHz.
  • the subframe frame is composed of a subframe group, and a is a natural number.
  • the subframe group is composed of b subframe times or 1 TTI time, and b is a natural number.
  • the TTI time may be a TTI time corresponding to different subcarrier intervals or a TTI time corresponding to a certain subcarrier interval as a TTI time.
  • the subframe group and the subframe group frame can be independently defined, for example, 10 subframe groups constitute one subframe frame group. Subframe groups and subframe framing are defined in this case when only one case is used.
  • the narrowband subframe group and the subframe group number may be associated with the existing LTE frame number, such as when the subframe group and the subframe group number are defined by the TTI length of 5 ms, and corresponding to the existing
  • the frame number of the system is as follows: For a TTI length of 5 ms, the subframe groups 2n-1 and 2n correspond to the frame n.
  • the number of the corresponding subframe group is the subframe group modulo 10, that is, the number of the subframe group 2n-1 is (2n-1)mo (UP, and the number of the subframe group 2n is (2n) modl 0, then the channel or When the signal is scrambled and initialized, the value of ⁇ corresponds to the value of the subframe group number.
  • c imt - 2 u + q - 2 13 + ⁇ n s / 2” ⁇ 2 9 + fr PDSCH
  • the frame number is n
  • the subframe group number is n mod lO; optional when using multiple cases, define the subframe framing in a case
  • the subframe group of each case is numbered under the subframe group frame.
  • the subframe group frame can have independent numbers.
  • the least common multiple of each case subcarrier is 12, so the time when the multiple is 12 is taken as the time of the subframe framing.
  • Table 18 Value 40.8ms as the time of subframe framing, each case sub-frame group number The least common multiple of each case sub-carrier is 12, so the time when the multiple is 12 is taken as the time of the sub-frame framing.
  • 1TTI contains 14 symbols of subframe framing for 72ms, submultiplier and corresponding CP (CP long frame group number)
  • the time multiple of degree 1) is 1 ( Casel ) 3.8ms 0, 1, 2..., 11 is 2 ( Case3 ) 7.6 ms 0, 1, 2... , 6 is 3 ( Case5 ) 11.4 ms 0 , 1, 2, 3, 4 is 4 ( Case4 ) 15.2 ms 0, 1, 2 is 6 ( Case2 ) 22.8 ms 0, 1
  • Table 19 takes 45.6ms as the time of subframe framing, each case subframe
  • the least common multiple of each case subcarrier of the group number is 12, so the time when the multiple is 12 is taken as the time of the subframe framing.
  • 1TTI contains 14 symbols of subframe framing for 72ms, submultiplier and corresponding CP (CP long frame group number)
  • the time multiplier of degree 3) is 1 ( Casel ) 4ms 0, 1, 2..., 11 is 2 ( Case3 ) 8 ms 0, 1, 2... , 6 is 3 ( Case5 ) 12 ms 0, 1, 2, 3, 4 is 4 ( Case4 ) 16 ms 0, 1, 2 is 6 ( Case2 ) 24ms 0, 1
  • Table 20 takes 48ms as the time of subframe framing, each case sub-frame group number The least common multiple of the case subcarrier is 12, so the time when the multiple is 12 is taken as the time of the subframe framing.
  • the value is 48ms as the time of the subframe framing.
  • the case group group number is shown in Table 21:
  • 1TTI contains 12 symbols of sub-frame framing for 72ms, submultiplier and corresponding CP (CP long frame group number)
  • the time multiple of degree 4) is 1 ( Casel ) 4ms 0, 1, 2..., 11 is 2 ( Case3 ) 8 ms 0, 1, 2... , 6 is 3 ( Case5 ) 12 ms 0, 1, 2, 3, 4 is 4 ( Case4 ) 16 ms 0, 1, 2 is 6 ( Case2 ) 24ms 0, 1
  • Table 21 takes 48ms as the time of subframe framing, each case sub-frame group number pair In the above four cases, the subframe number is replaced with the subframe group number value during the scrambling initialization.
  • the following steps are the same as the foregoing, that is, the scrambling initialization is performed, the scrambling sequence is acquired, and the bit value to be scrambled or the encoded bit in the data to be transmitted is added.
  • the value of the scrambling sequence is subjected to a corresponding scrambling operation to obtain the scrambled data. It is worth noting that, in the above operation, the sub-frames are to be changed into sub-frame groups, and the corresponding data also changes.
  • the embodiment of the invention provides a narrowband transmission method, which performs different numbers of subcarriers and corresponding subframes under four typical narrowband bandwidth values of 15 KHz, 1.25 KHz, 2.5 KHz, and 3.75 KHz in multiple carriers.
  • the base station and the user equipment perform a specific operation according to the scrambling initialization sequence obtained by the different sub-data and the data to be transmitted to further obtain the scrambled data, and finally transmit the scrambled data, when the base station and the user equipment are After receiving the scrambled data, it can also perform descrambling according to the inverse of the scrambling, and finally obtain the descrambling
  • the data can reduce the noise power during data transmission, thereby improving the signal-to-noise ratio, which can significantly improve the coverage and coverage of the signal when transmitting data with narrow bandwidth, so that the use is much lower than the prior art.
  • the number of repeated transmissions transfers data, improving the efficiency of communication resources.
  • the foregoing embodiment performs data scrambling operations for four typical narrowband bandwidth values of 15 KHz, 1.25 KHz, 2.5 KHz, and 3.75 KHz for single carrier and multiple carrier, respectively, and also proposes subframe groups and sub-frames.
  • a new concept of frame framing, and how to use the two, the following describes how to perform uplink and/or downlink data transmission on narrowband resources.
  • An embodiment of the present invention provides a method for narrowband transmission. As shown in FIG. 4, the method includes: a user equipment uses an independent narrowband resource or uses an associated carrier to perform uplink and/or downlink data transmission on a narrowband resource according to configuration information. .
  • the method includes:
  • the user equipment acquires predefined content according to the configuration information.
  • the user equipment performs uplink and downlink synchronization according to the predefined content.
  • the user equipment acquires a system message, and performs uplink and/or downlink data transmission according to the system message.
  • the user equipment acquires the downlink LTE wideband carrier 6RB according to the configuration information, and uses 15KHz subcarrier spacing for uplink and the number of subcarriers can be 1, 2, 3, 4, or 6.
  • the user equipment performs uplink and downlink synchronization according to the previously acquired content.
  • the user equipment acquires the system message, and according to the downlink channel quality, such as the RSRP value, is located in different intervals, and the number of corresponding subcarriers is selected, for example, the coverage needs to be increased by 20 dB. A strong selection of one subcarrier is performed.
  • the user equipment performs uplink random access according to the corresponding random access format, such as the number of symbols included in the random access TTI and the guard time.
  • the method includes:
  • the user equipment acquires time domain resources and/or frequency domain resources in the configuration information according to the received configuration information.
  • the time domain resource includes a frame used for transmitting data and a subframe
  • the frequency domain resource includes at least a subcarrier spacing, a number of subcarriers, an absolute radio frequency channel number ARFCN, a location of the narrowband resource in the resource block RB, and at least a position of the RB.
  • ARFCN absolute radio frequency channel number
  • the user equipment completes network access according to the obtained configuration information.
  • the network access specifically includes network downlink synchronization, system message reading, and uplink synchronization.
  • the user equipment After completing the network access, the user equipment determines the specific location of the narrowband in the system bandwidth and the RB according to the content of the time domain resource or the frequency domain resource in the configuration information, and according to the determined system bandwidth and the specific location in the RB.
  • Data transmission on a narrowband carrier Here is a detailed description of the ARFCN value in the frequency domain resource.
  • the user obtains, by using an associated broadband carrier or a narrowband carrier, an ARFCN value of a narrowband carrier to be used for data transmission, where the ARFCN value is used to describe frequency information of a narrowband used for transmitting data.
  • the user equipment performs uplink and/or downlink data transmission on the narrowband according to the narrowband frequency information determined by the ARFCN value.
  • the user equipment further receives scheduling information from the base station, and performs uplink and/or downlink data transmission on the narrowband according to the scheduling information.
  • the receiving scheduling information may be obtained from a narrowband for transmitting data, or obtained from a narrowband other than the transmitted data, or obtained from a broadband carrier, and the specific manner of obtaining is not limited herein.
  • the foregoing step 504 is to determine, according to the scheduling information, a transmission mode of the uplink and downlink data, where the access mode includes a random access mode and a scheduled access mode, and specifically, the random access mode may be used in the uplink data transmission, corresponding to In the case of downlink data transmission, the method of scheduling access is used; or vice versa, the method of scheduling access is used in uplink data transmission, and the corresponding method of random access is used in downlink data transmission.
  • the data transmission using the associated carrier is described above.
  • the predefined narrowband uses 2.5KHz subcarriers, and the number of subcarriers is 12.
  • the user equipment completes network access under the LTE carrier, specifically including network downlink synchronization, system information reading, and network uplink synchronization.
  • the user equipment obtains the location of the RB in which the narrowband carrier is located in the system bandwidth and the location of the RB where the narrowband is located according to the specific content in the configuration information, and performs data transmission in the determined narrowband.
  • the configuration information indicates that the narrowband carrier is located in the RB with a narrowband with a sequence number of 0, and the data is transmitted using the narrowband carrier with the sequence number 0 in the RB.
  • the user equipment also receives scheduling information from the base station, where the scheduling information can be received in three ways, from a narrowband carrier for transmitting data, a narrowband carrier other than a narrowband carrier for transmitting data, or a wideband carrier. Finally, the user equipment performs uplink and/or downlink data transmission according to the narrowband carrier and scheduling information determined in the configuration information.
  • An embodiment of the present invention provides a method for narrowband transmission. The user equipment selects an independent narrowband resource or an associated carrier configuration to perform narrowband access according to content in the time domain or the frequency domain in the configuration information, and performs the narrowband resource on the determined narrowband resource.
  • An embodiment of the present invention provides a device 1 for narrowband transmission. As shown in FIG. 6, the device 1 includes:
  • the first determining unit 11 is configured to determine a currently used bandwidth value, and determine configuration information of the resource unit in the time domain and/or the frequency domain according to the bandwidth value, where the currently used bandwidth value is equal to or smaller than a narrowband bandwidth value of 180 kHz; the first transmission unit 12 is configured to send configuration information of the resource unit in the time domain and/or the frequency domain to the user equipment, so that the user equipment performs uplink and/or according to the configuration information. Or the transmission of downlink data.
  • the configuration information in the first determining unit 11 specifically includes:
  • the device 1 includes:
  • the first sending unit 13 is configured to perform scrambling processing on the data to be sent according to the configuration information, and send the scrambled data to the user equipment; and/or the first receiving unit 14 is configured to use the user.
  • the device receives the scrambled data, and performs descrambling processing on the scrambled data according to the configuration information to obtain descrambled data.
  • configuration information is sent to the user equipment by signaling.
  • the first determining unit 11 is specifically configured to:
  • the first sending unit 13 is specifically configured to:
  • the first sending unit 13 is further configured to acquire a subframe number or a slot number in the LTE, and determine, according to the subframe number or the slot number, the data to be transmitted in the resource unit. Scramble the time parameters of the initialization.
  • the first determining unit 12 in the device 1 is specifically used for:
  • the currently used bandwidth corresponds to a frequency domain width of one or more subcarriers
  • a subcarrier spacing corresponding to a frequency domain width of the subcarrier is at least 15KHz or 3.75KHz or 2.5KHz or 1.25KHZ. .
  • the device 1 further includes:
  • the CP extension unit 15 is configured to acquire, according to the TTI length and the subframe group length, a CP corresponding to the subframe structure, where the CP includes a normal CP and/or an extended CP, and a symbol included in the TTI. Number.
  • the CP extension unit 15 is further configured to perform a preset multiple expansion on the normal CP according to the number of symbols included in the one TTI, to obtain an extended second normal CP, and/or to the extended CP.
  • An extension of the preset multiple is performed to obtain an expanded second extension CP, wherein the preset multiple is a natural number not equal to zero. Further, only the same value in the second extended CP and the third normal CP as in the LTE protocol is reserved in the CP extension unit 15.
  • the first transmitting unit 13 is further configured to:
  • the subframe number or slot number of the TTI will be selected as the value of NS or L « s /2" and substituted into c init. - 2 9 + , obtaining a scrambling value corresponding to each of the subframe number or slot number, the scrambling value forming a scrambling sequence of the initial 4 ⁇ scrambling; or
  • the system frame number SFNmodlO is obtained, and a new number corresponding to the system frame number is obtained, and the new number is used as the value of Ns or L « s /2".
  • the scrambling value is composed of scrambling initialization
  • the subframe number or slot number will be selected as Ns or L « The value of s /2" is substituted into c init 2 14 + g ⁇ 2 13 + L" s /2" ⁇ 2 9 + A to obtain scrambling corresponding to each of the subframe number or slot number
  • the value, the scrambling value constitutes a scrambling sequence for scrambling initialization.
  • the first sending unit 13 is further configured to: perform a scrambling operation on the bit value to be scrambled or the coded bit in the data to be transmitted corresponding to the value in the scrambling sequence, to obtain an addition Disturbed data.
  • the subcarriers in two adjacent slots are at different frequencies.
  • the first determining unit 11 is further configured to: define a subframe group and a subframe group, where the subframe group is composed of a preset number of the subframe groups, and the subframe group is configured by the predetermined number
  • the subframe time or the TTI time is composed, where the TTI time is composed of a TTI time corresponding to one of the subcarrier intervals, and the predetermined number is a natural number that is not zero.
  • the sending configuration message is sent by signaling, and the signaling is RRC signaling or MAC CE signaling or PDCCH signaling or EPDCCH signaling or a combination of two of them.
  • the subframe group (subframe group, SFG) can also be defined here.
  • a subframe group frame (SFGF)
  • the subframe group frame is composed of a preset number of subframe groups
  • the subframe group group is composed of a predetermined number of subframe times or TTI time, wherein the TTI time is one
  • the TTI time corresponding to the subcarrier spacing is composed, and the predetermined number is a natural number that is not zero.
  • the subframe group is composed of a subframe group, and a is a natural number.
  • the subframe group is composed of b subframe times or 1 TTI time, and b is a natural number.
  • the TTI time may be different subcarrier intervals respectively corresponding to respective TTI times or corresponding to a certain subcarrier.
  • the TTI time corresponding to the interval is taken as the TTI time.
  • Scrambling initialization sub-frame group in the sub-frame framing and newly defined such as using sub-frame group number value when scrambling initialization substitution sub-frame number value d.
  • the subframe group and the subframe group can be independently defined, for example, 10 subframe groups constitute one subframe group. Then, when each subframe group or TTI is 45.6 ms, the subframe group frame is 456 ms, and the corresponding subframe group number is 0 to 9.
  • the following steps are the same as described above, that is, the scrambling initialization is performed, the scrambling sequence is acquired, and the bit value to be scrambled or the encoded bit in the data to be transmitted is added.
  • the step of scrambling the data in the scrambling sequence to obtain the scrambled data it is worth noting that, in the above operation, the sub-frames are to be changed into sub-frame groups, and the corresponding data also changes.
  • the TTI based on GMSK modulation can contain 15*10 symbols, at which time one subframe (1ms) includes 15 symbols.
  • the number of resource elements included in one TTI is preferentially located in the interval 132RE ⁇ 168RE, because it is advantageous to reuse the LTE scheduling resource granularity, so as to reuse the existing modulation and coding mode of LTE as much as possible.
  • An embodiment of the present invention provides a device for narrowband transmission, which determines configuration information of a resource unit in a time domain and/or a frequency domain by determining a currently used bandwidth value, and then sends the determined configuration information to a user equipment, so that the user equipment Uplink and/or downlink data transmission can be performed on the narrowband resource according to the configuration information, thereby reducing the noise power in the data transmission process, thereby improving the signal to noise ratio, so that the signal can be significantly improved when the data is transmitted using the narrow bandwidth.
  • the coverage and coverage strength are used to transmit data using the number of repeated transmissions much lower than in the prior art, thereby improving the efficiency of use of communication resources.
  • the embodiment of the present invention further provides a device 2 for narrowband transmission. As shown in FIG. 7, the device 2 includes:
  • the second transmission unit 21 is configured to receive configuration information of a resource unit sent by the base station in a time domain and/or a frequency domain, and perform uplink and/or downlink data transmission on the narrowband resource according to the configuration information, where
  • the narrowband is a bandwidth value currently used with a bandwidth value equal to or less than 180 kHz.
  • the configuration information in the foregoing second transmission unit 21 includes: a parameter that is specifically configured for the determined resource unit, where the parameter is at least an ARFCN, an RB location, a narrowband position in the RB, scheduling information, and subcarriers. And frequency domain information of one of the subcarrier spacings; and/or time domain information including at least one of a transmission time interval TTI length, a subframe group length, a subframe position, and a frame position.
  • the device 2 further includes: a second receiving unit 22, configured to receive data scrambled according to the configuration information sent by the base station, perform descrambling according to the configuration information, and obtain descrambled data; or send the second
  • the unit 23 is configured to perform scrambling processing on the data to be sent according to the configuration information, and send the scrambled data to the base station.
  • the configuration information is obtained by receiving the signaling sent by the base station.
  • the second transmission unit 21 is further configured to: perform resource configuration of a narrowband time domain or a frequency domain on the narrowband resource according to the configuration information by using the independent narrowband resource or using the associated carrier.
  • the second transmission unit 21 is specifically configured to: perform uplink and/or downlink data transmission on the narrowband resource according to the predefined content in the configuration information. Further, the second transmission unit 21 is further configured to: acquire the time domain resource in the configuration information according to the received configuration information, and/or a frequency domain resource, where the time domain resource includes a frame used for transmitting data and a subframe, and the frequency domain resource includes a subcarrier spacing, a number of subcarriers, an absolute radio frequency channel number ARFCN value, and a narrowband resource in the resource block RB. At least one of a position in the middle and a position of the RB.
  • the device is specifically configured to: acquire the ARFCN value, where the ARFCN value is used to describe frequency information of a narrowband used to transmit data; and determine the location according to the ARF CN value.
  • the narrowband frequency information is described for uplink and/or downlink data transmission on the narrowband.
  • the device 2 is further configured to: after receiving the scheduling indication information from the base station, perform uplink and/or downlink data transmission on the determined narrowband resource according to the scheduling indication information. Obtained from the narrowband carrier of the transmitted data, or obtained from a narrowband carrier of the narrowband outer carrier of the transmitted data, or obtained from a wideband carrier.
  • the uplink data transmission is based on a random access manner
  • the downlink data transmission is based on a manner indicated by the scheduling information
  • the uplink data transmission is based on a manner indicated by the scheduling information
  • the downlink data transmission is based on a random access method.
  • the device 2 is further configured to: define a subframe group and a subframe group, where the subframe group is composed of a preset number of the subframe groups, and the subframe group is configured by the predetermined number of subframes
  • the frame time or the TTI time is composed, where the TTI time is composed of a TTI time corresponding to one subcarrier interval, and the predetermined number is a natural number that is not zero.
  • the scrambling initialization is performed according to the defined subframe group and the subframe group frame.
  • the subframe number or the slot number is selected as the value of Ns or L" s / 2 ", and is substituted into c init + N ⁇ 1 , obtaining a scrambling value corresponding to each of the subframe number or slot number, the scrambling value forming a scrambling sequence for scrambling initialization; or if the frame number in LTE is used
  • the device 2 is further configured to: perform a scrambling operation corresponding to the value of the bit to be scrambled or the coded bit in the data to be transmitted and the value in the scrambling sequence to obtain the scrambled
  • the configuration message is sent in the device 2 by signaling, which is RRC signaling or MAC CE signaling or PDCCH signaling or EPDCCH signaling or a combination of two of them.
  • signaling which is RRC signaling or MAC CE signaling or PDCCH signaling or EPDCCH signaling or a combination of two of them.
  • the subframe group subframe group
  • the subframe group can also be defined here.
  • the subframe group frame is composed of a preset number of subframe groups, and the subframe group is composed of a predetermined number of subframe times or TTI time, wherein the TTI time
  • One of the subcarrier intervals is composed of a corresponding TTI time, and the predetermined number is a natural number that is not zero.
  • the subframe group is composed of a subframe group, and a is a natural number.
  • the subframe group is composed of b subframe times or 1 TTI time, and b is a natural number.
  • the TTI time may be different subcarrier intervals corresponding to respective TTI times or TTI times corresponding to a certain subcarrier interval as the TTI time.
  • the number is 1 ⁇ .
  • the subframe group and the subframe group can be independently defined, for example, 10 subframe groups constitute one subframe group. Then, when each subframe group or TTI is 45.6 ms, the subframe group frame is 456 ms, and the corresponding subframe group number is 0 to 9.
  • the following steps are the same as the foregoing, that is, the scrambling initialization is performed, the scrambling sequence is acquired, and the bit value to be scrambled or the encoded bit in the data to be transmitted is added.
  • the value of the scrambling sequence is subjected to a corresponding scrambling operation to obtain the scrambled data. It is worth noting that, in the above operation, the sub-frames are to be changed into sub-frame groups, and the corresponding data also changes.
  • the TTI based on GMSK modulation can contain 15*10 symbols, and one subframe (1ms) includes 15 symbols.
  • the number of resource elements included in one TTI is preferentially located in the interval 132RE ⁇ 168RE, because it is advantageous to reuse the LTE scheduling resource granularity, so as to reuse the existing modulation and coding mode of LTE as much as possible.
  • An embodiment of the present invention provides a device for narrowband transmission.
  • the base station determines configuration information of a resource unit in a time domain and/or a frequency domain by determining a currently used bandwidth value, and then acquires configuration information to be determined from the base station, and according to the configuration.
  • the information is transmitted on the narrowband resources for uplink and/or downlink data, thereby reducing the noise power in the data transmission process, thereby improving the signal-to-noise ratio, so that the signal coverage can be significantly improved when the data is transmitted using the narrow bandwidth. Covering the strength, thereby transmitting data using the number of repeated transmissions much lower than in the prior art, and improving the use efficiency of communication resources.
  • the embodiment of the present invention provides a base station 3, as shown in FIG. 8, the base station includes a bus 31; and a memory 32, a processor 33, a receiver 34 and a transmitter 35 connected to the bus 31, wherein the memory 32 is used for storing relevant An instruction, the processor 33 is configured to determine a bandwidth value currently used, And determining, according to the bandwidth value, configuration information of the resource unit in the time domain and/or the frequency domain, where the currently used bandwidth value is a narrowband bandwidth value equal to or smaller than 180 kHz; and the transmitter 35 is configured to use the resource.
  • the configuration information of the unit in the time domain and/or the frequency domain is sent to the user equipment, so that the user equipment performs uplink and/or downlink data transmission according to the configuration information.
  • the configuration information specifically includes:
  • the parameter is a frequency domain information including at least an ARFCN, an RB location, a location of the narrowband in the RB, scheduling information, and a number of subcarriers; and/or at least including transmission Time domain information of one of the time interval TTI length, subframe group length, subframe position, and frame position.
  • the transmitter 35 is further configured to perform scrambling processing on the data to be sent according to the configuration information, and send the scrambled data to the user equipment; and/or the receiver 34, configured to receive the scrambling from the user equipment. After the data is scrambled according to the configuration information, the scrambled data is obtained, and the descrambled data is obtained.
  • the configuration information is sent to the user equipment by signaling.
  • the processor 33 is further configured to: determine, according to the currently used bandwidth value, the TTI length or the subframe group length corresponding to the bandwidth value.
  • the transmitter 35 is further configured to: determine a scrambling initialization time parameter of the data to be transmitted in the resource unit corresponding to the currently used bandwidth value; and determine identifier information of the resource unit;
  • the transmitter 35 is further configured to: acquire a subframe number or a slot number in the LTE; Combining the subframe number or the slot number, determining a time parameter of the scrambling initialization of the data to be transmitted in the resource unit.
  • the processor 33 is further configured to: determine, according to the currently used bandwidth value, a number of subcarriers corresponding to the bandwidth value and a number of symbols corresponding to the number of subcarriers; The number of carriers and the number of symbols corresponding to the number of the subcarriers acquires a CP corresponding to the number of the subcarriers, and the CP includes a normal CP and/or an extended CP.
  • the currently used bandwidth corresponds to a frequency domain width of one or more subcarriers, and a subcarrier spacing corresponding to a frequency domain width of the subcarrier is at least 15 kHz or 3.75 kHz or 2.5 kHz or 1.25 kHz.
  • the processor 33 is further configured to: acquire, according to the TTI length, a subframe group length, a CP corresponding to the subframe structure, where the CP includes a normal CP and/or an extended CP, and a symbol included in the TTI Number. Further, the processor 33 is further configured to perform, according to the number of symbols included in the one TTI, a preset multiple of the normal CP, to obtain an extended second normal CP, and/or to the extended CP. The expansion of the preset multiple is performed to obtain the expanded second extended CP, wherein the preset multiple is a natural number not equal to zero. According to the action of the processor 33, only the same value in the second extended CP and the third normal CP as in the LTE protocol is reserved in the base station 2.
  • the first processor 33 is specifically configured to: if the subframe number or the slot number of the TTI is used, the subframe number or the slot number is selected as the NS or L" S / 2 " a value, and substituting into -2 u + q - 2 13 + [n s /2] - 2 9 + N ⁇ 1 , obtaining a scrambling value corresponding to each of the subframe number or slot number,
  • the scrambling value constitutes a scrambling sequence of the initial 4 ⁇ scrambling; or if the frame number in LTE is used, the system frame number SFNmodlO is obtained and described
  • the transmitter 35 is further configured to: obtain a scrambled data by performing a scrambling operation on the bit value to be scrambled or the coded bit in the data to be transmitted corresponding to the value in the scrambling sequence.
  • the base station 3 In the configuration information, subcarriers in two adjacent slots are at different frequencies.
  • the processor 33 is further configured to: define a subframe group and a subframe group frame, where the subframe group frame is composed of a preset number of the subframe group, and the subframe group is configured by the predetermined number of subframe times or TTI Time composition, where the TTI time is composed of a TTI time corresponding to one subcarrier interval, and the predetermined number is a natural number that is not zero.
  • the sending configuration message is sent by signaling, and the signaling is RRC signaling or MAC CE signaling or PDCCH signaling or EPDCCH signaling or a combination of the two.
  • the subframe group (subframe group) can also be defined here.
  • SFG and subframe group frame (SFGF)
  • the subframe group frame is composed of a preset number of subframe groups
  • the subframe group group is composed of a predetermined number of subframe times or TTI time, wherein the TTI time is one.
  • the subcarrier spacing is composed of a corresponding TTI time, and the predetermined number is a natural number that is not zero.
  • the subframe group is composed of a subframe group, and a is a natural number.
  • Subframe group It is composed of b subframe times or 1 TTI time, and b is a natural number.
  • the TTI time may be a different subcarrier interval corresponding to a respective TTI time or a TTI time corresponding to a certain subcarrier interval as a TTI time.
  • Perform scrambling initialization under the newly defined subframe group and subframe group frame such as replacing the subframe number value ⁇ 1 " using the subframe group number value during scrambling initialization.
  • the subframe group and the subframe group frame can be independently defined, For example, 10 subframe groups constitute 1 subframe group.
  • the subframe group frame is 456 ms, and the corresponding subframe group number is 0 to 9.
  • the following steps are the same as before, that is, the scrambling initialization is performed, the scrambling sequence is acquired, and the bit value to be scrambled or the encoded bit in the data to be transmitted is corresponding to the value in the scrambling sequence.
  • the scrambling operation the step of obtaining the scrambled data
  • the sub-frames are to be changed into sub-frame groups, and the corresponding data also changes.
  • TTI based on GMSK modulation can be used. Including 15*10 symbols, one subframe (1ms) includes 15 symbols at this time.
  • the number of resource elements included in one TTI is preferentially located in the interval 132RE ⁇ 168RE, because there is It is advantageous to reuse the LTE scheduling resource granularity, so as to re-use the existing modulation and coding mode of the LTE.
  • the embodiment of the invention provides a base station, which determines the resource unit in the time domain and/or the frequency domain by determining the currently used bandwidth value.
  • the configuration information is sent to the user equipment, so that the user equipment can perform uplink and/or downlink data transmission on the narrowband resource according to the configuration information, thereby reducing noise power during data transmission, thereby improving signal noise.
  • An embodiment of the present invention provides a user equipment 4, which includes a bus 41; and a memory 42, a processor 43, a receiver 44, and a transmitter 45 connected to the bus 41, wherein the memory 42 is configured to store related instructions and process
  • the device 43 is configured to receive configuration information of a resource unit sent by the base station in a time domain and/or a frequency domain, and perform uplink and/or downlink data transmission on the narrowband resource according to the configuration information, where the narrowband is current
  • the bandwidth value used is a bandwidth value equal to or smaller than 180 kHz.
  • the configuration information in the processor 43 specifically includes: a parameter that is specifically configured for the determined resource unit, where the parameter is at least an ARFCN, an RB location, and a narrowband in the RB. Position, scheduling information, number of subcarriers, frequency domain information of one of subcarrier spacings; and/or at least one of a transmission time interval TTI length, a subframe group length, a subframe position, and a frame position Time domain information.
  • the receiver 44 is configured to receive data that is scrambled according to the configuration information sent by the base station, perform descrambling according to the configuration information, and obtain descrambled data; or a transmitter 45, configured to send the to-be-sent The data is scrambled according to the configuration information, and the scrambled data is sent to the base station.
  • the configuration information is obtained by receiving signaling sent by the base station.
  • the processor 43 is further configured to: perform resource configuration in a narrowband time domain or a frequency domain on the narrowband resource according to the configuration information by using the independent narrowband resource or using the associated carrier.
  • the processor 43 is specifically configured to: perform uplink and/or downlink data transmission on the narrowband resource according to the predefined content in the configuration information.
  • the user equipment is further configured to: obtain the ARFCN value, where the ARFCN value is used to describe frequency information of a narrowband used to transmit data; and determine, according to the ARF CN value, when the frequency resource includes an ARFCN value.
  • the narrowband frequency information is subjected to uplink and/or downlink data transmission on the narrowband.
  • the user equipment 4 is further configured to: after receiving the scheduling indication information from the base station, perform uplink and/or downlink data transmission on the determined narrowband resource according to the scheduling indication information.
  • the receiving scheduling indication information further includes: acquiring from the narrowband carrier of the transmitted data, or acquiring from a narrowband carrier of the narrowband outer carrier of the transmitted data, or acquiring from a wideband carrier.
  • the uplink data transmission is based on a random access manner
  • the downlink data transmission is based on the manner indicated by the scheduling information
  • the uplink data transmission is based on the manner indicated by the scheduling information
  • the downlink Data transmission is based on random access.
  • the user equipment 4 is further configured to: define a subframe group and a subframe group frame, where the subframe group frame is composed of a preset number of the subframe group, and the subframe group is configured by the predetermined number of subframes
  • the time or TTI time is composed, where the TTI time is composed of a TTI time corresponding to one subcarrier interval, and the predetermined number is a natural number that is not zero.
  • the processor 43 is further configured to: perform the adding and the specializing according to the defined subframe group and the subframe grouping.
  • the processor 43 is also used to: If the subframe number or slot number of the TTI is used, the subframe number or slot number will be selected as the value of Ns or L" S / 2 " and substituted into ⁇ 2 14 + g ⁇ 2 13 + L" s /2" ⁇ 2 9 + A, obtaining a scrambling value corresponding to each of the subframe number or slot number, the scrambling value forming a scrambling sequence of the initial 4 ⁇ scrambling; or If the frame number in LTE is used, the system frame number SFNmodlO is obtained, and a new number corresponding to the system frame number is obtained, and the new number is used as the value of Ns or L" s / 2 ".
  • c init n mTi - 2 U + q - 2 n +, obtaining a scrambling value corresponding to each of the subframe number or slot number, and composing a scrambling sequence that is scrambled and initialized by the value; or if the TTI is started or ended corresponding to
  • the slot number or the subframe number of the LTE subframe will be selected as the value of Ns or L" s / 2 " and substituted into c init - 2 14 + q - 2 In 13 + [n s /2] - 2 9 + N ⁇ 1 , a scrambling value corresponding to each of the subframe numbers or slot numbers is obtained, and the scrambling value constitutes a scrambling sequence for scrambling initialization.
  • the processor 43 is further configured to: perform scrambling operation on the bit value to be scrambled or the coded bit in the data to be transmitted corresponding to the value in the scrambling sequence to obtain the scrambled The data.
  • the sending configuration message is sent by using a signaling, which is RRC signaling or MAC CE signaling or PDCCH signaling or EPDCCH signaling or a combination of the two.
  • a signaling which is RRC signaling or MAC CE signaling or PDCCH signaling or EPDCCH signaling or a combination of the two.
  • the subframe group frame is composed of a preset number of subframe groups, and the subframe group is composed of a predetermined number of subframe times or TTI time, wherein the TTI time
  • the subframe group is composed of a subframe group, and a is a natural number.
  • the subframe group is composed of b subframe times or 1 TTI time, and b is a natural number TTI time may be
  • the different subcarrier spacings respectively correspond to the respective TTI times or the TTI times corresponding to a certain subcarrier spacing as the TTI time.
  • the scrambling initialization is performed under the newly defined subframe group and the subframe group frame, for example, the subframe number value is replaced with the subframe group number value ⁇ 7 during the scrambling initialization.
  • the subframe group and the subframe group can be independently defined, for example, 10 subframe groups constitute one subframe group.
  • the subframe group frame is 456 ms, and the corresponding subframe group number is 0 to 9.
  • the following steps are the same as the foregoing, that is, the scrambling initialization is performed, the scrambling sequence is acquired, and the bit value to be scrambled or the encoded bit in the data to be transmitted is added.
  • the value of the scrambling sequence is subjected to a corresponding scrambling operation to obtain the scrambled data. It is worth noting that, in the above operation, the sub-frames are to be changed into sub-frame groups, and the corresponding data also changes. It is worth mentioning that when GMSK (Gaussian minimum shift keying) modulation is used, since GMSK modulation introduces interference between adjacent symbols, it is not necessary to set a CP for it. Therefore, the TTI based on GMSK modulation can contain 15*10 symbols, at which time one subframe (1ms) includes 15 symbols.
  • GMSK Gausian minimum shift keying
  • An embodiment of the present invention provides a user equipment, where a base station determines configuration information of a resource unit in a time domain and/or a frequency domain by determining a currently used bandwidth value, and then acquires configuration information to be determined from the base station, and according to the configuration information, Uplink and/or downlink data transmission on narrowband resources, which can reduce the noise power during data transmission, thereby improving the signal-to-noise ratio, which can significantly improve signal coverage and coverage strength when transmitting data with narrow bandwidth.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the descriptions of the various embodiments are different, and the parts that are not detailed in an embodiment can be referred to the related descriptions of other embodiments.
  • a person skilled in the art can understand that all or part of the steps of implementing the above method embodiments may be completed by using hardware related to program instructions, and the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
  • a medium that can store program codes such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明公开了一种窄带传输的方法、设备、基站及用户设备。所述方法具体包括:确定当前使用的带宽值,并根据所述带宽值确定资源单位在时域和/或频域中的配置信息,其中,所述当前使用的带宽值为等于或小于180KHz的窄带带宽值;将所述资源单位在时域和/或频域中的配置信息发送至用户设备,使得所述用户设备根据所述配置信息进行上行和/或下行数据的传输。釆用本发明公开的技术方案,在使用窄带宽传输数据的情况下能够显著提高信号的覆盖范围和覆盖强度,从而使用远低于现有技术中的重复传输次数传输数据。

Description

一种窄带传输的方法、 设备、 基站及用户设备 技术领域 本发明涉及通信领域, 尤其涉及一种窄带传输的方法、 设备、 基站及 用户设备。 背景技术
当前在 LTE 网络中, 低成本机器通信 (Low Cost Machine Type Communication, LC-MTC) 已经成为一种被支持的通信方式, 该技术主要 用于抄表、 地质测量、 环境监测和跟踪等。 由于特殊需要, 会将 LC-MTC 的终端设备安装在地下室等建筑物遮挡和信号穿透损失比较大的地方, 从 而会导致该场景下的信号覆盖强度很低, 在此情况下, 为了保证数据能够 成功收发, 需要通过重复发送信号或信道的方式来提高信号覆盖强度。 当前的 LTE 网络数据信道使用的是宽带传输, 其中最小的频域资源 为一个资源块 RB , 对应 12个子载波, 并且每个子载波的带宽为 15kHz, 也就是说一个 RB的带宽为 180kHz。 在此网络配置下, 当使用重复传输的 方法提高信号覆盖强度时, 随着要达到预定的信号覆盖强度的升高, 需要 的重复传输次数会越来越大。 例如, 预定的信号覆盖强度分别为 10dB、 12dB、 15dB、 17dB、 20dB时, 需要重复传输的次数分别为 12、 24、 60、 100、 340 次, 从中可以看出, 当需要的信号覆盖强度到了后期的 17dB、 20dB时, 所需要的重复传输次数已经不与前面的次数成线性关系上升, 具 体的, 为了使信号强度从 17dB上升到 20dB , 重复传输的次数已然从 100 直接上升到 340 , 远远超过前面的传输次数上升的幅度, 因此, 使用重复 传输固然能够达到增强信号覆盖的强度, 但在这样的情况下, 通信资源的 使用效率已经非常低下。
发明内容 本发明的实施例提供一种窄带传输的方方法、设备、基站及用户设备 , 用以提升信号覆盖范围和覆盖强度, 提高通信资源的使用效率。
为达到上述目的, 本发明的实施例釆用如下技术方案: 第一方面, 提供一种窄带传输的方法, 其特征在于, 所述方法包括: 确定当前使用的带宽值, 并根据所述带宽值确定资源单位在时域和 / 或频域中的配置信息,其中, 所述当前使用的带宽值为等于或小于 180KHz 的窄带带宽值;
将所述资源单位在时域和 /或频域中的配置信息发送至用户设备, 使 得所述用户设备根据所述配置信息进行上行和 /或下行数据的传输。 在第一种可能的实现方式中,结合第一方面,所述配置信息具体包括: 针对所述确定的资源单位进行具体配置的参数,其中所述参数为至少 包括绝对无线频道编号 ARFCN、 RB位置, 窄带在 RB中的位置、 调度信 息、 子载波个数的频域信息中的一种; 和 /或
至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
在第二种可能的实现方式中, 结合第一方面, 所述方法还包括: 将待发送的数据按照所述配置信息进行加扰处理, 并将加扰后的数据 发送至用户设备; 和 /或
从所述用户设备接收加扰后的数据,对所述加扰后的数据根据所述配 置信息进行解扰处理, 获取解扰后的数据。
在第三种可能的实现方式中, 结合第一方面, 所述配置信息是通过信 令发送至所述用户设备。
在第四种可能的实现方式中, 结合第一方面, 所述根据所述带宽值确 定资源单位在时域中的配置信息包括:
根据所述当前使用的带宽值,确定所述带宽值对应的所述 TTI长度或 子帧组长度。 在第五种可能的实现方式中, 结合第一方面的第二种可能的实现方 式, 所述将待发送的数据按照所述配置信息进行加扰处理包括: 确定与所述当前使用的带宽值对应的在资源单位中待传输数据的加 扰初始化时间参数; 确定所述资源单位的标识信息; 根据所述资源单位的标识信息和加扰初始化时间参数,确定在所述资 源单位中所述待传输数据的加扰初始化的参数。 在第六种可能的实现方式中, 结合结合第一方面的第二种可能的实现 方式, 所述将待发送的数据按照所述配置信息进行加扰处理还包括: 获取 LTE中的子帧编号或时隙编号; 结合将所述子帧编号或时隙编号,确定在所述资源单位中所述待传输 数据的加扰初始化的时间参数。 在第七种可能的实现方式中, 结合第一方面, 所述根据带宽值确定资 源单位在时域和频域中的配置信息包括: 根据所述当前使用的带宽值,确定与所述带宽值对应的子载波数目以 及与所述子载波数目对应的符号数;
根据所述确定的子载波数目以及与所述子载波数目对应的符号数, 获 取与所述子载波数目对应的 CP , 所述 CP包括正常 CP和 /或扩展 CP。 在第八种可能的实现方式中, 结合第一方面, 所述方法还包括: 所述当前使用的带宽对应一个或多个子载波的频域宽度, 与所述子载 波的频域宽度对应的子载波间隔至少为 15KHz或 3.75KHz或 2.5KHz或 1.25KHZ中的一种。 在第九种可能的实现方式中, 结合第一方面的第二种可能的实现方 式, 所述方法还包括: 根据所述 TTI长度、 子帧组长度, 获取与所述子帧结构对应的 CP, 所述 CP包括正常 CP和 /或扩展 CP,以及一个所述 TTI内包含的符号个数。 在第十种可能的实现方式中, 结合第一方面的第九种可能的实现方 式, 所述方法包括: 根据所述一个 TTI内包含的符号个数, 对所述正常 CP进行预设倍数 的扩展, 得到扩展后的第二正常 CP, 和 /或对所述扩展 CP进行预设倍数的 扩展,得到扩展后的第二扩展 CP ,其中所述预设倍数为不等于零的自然数。 在第十一种可能的实现方式中, 结合第一方面的第十种可能的实现方 式, 仅保留所述第二扩展 CP与所述第三正常 CP中与 LTE协议中相同的 值。 在第十二种可能的实现方式中, 结合第一方面的第五种或第六种可能 的实现方式, 所述确定在所述资源单位中所述待传输数据的加扰初始化的 时间参数包括: 若釆用的是 TTI的子帧编号或时隙编号,则将选取所述子帧编号或时 隙编号作为 Ns 或 L"s/2」的值, 并代入到 cinit ="RNTI '214 +^213 +L"s/2」.29 +A 中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值 构成加扰初始 4匕的加扰序列; 或 若釆用的是 LTE中的帧号, 则将系统帧号 SFN mod 10, 得到与所述 系统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L"s/2」的值, 并带 入到 cinit = nmTi -2U +q-2n
Figure imgf000005_0001
+ 中, 得到与每个所述子帧编号或时隙 编号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或 若釆用的是所述 TTI开始或结束时对应的所述 LTE子帧的时隙号或 子帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L"S/2」的值, 并代 入到 cinit = nmTi -2U +q- 213 +
Figure imgf000005_0002
/2」 · 29 + 中,得到与每个所述子帧编号或时隙 编号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。 在第十三种可能的实现方式中, 结合第一方面或第一方面的第十二种 可能的实现方式, 所述将待发送的数据按照所述配置信息进行加扰处理还 包括: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述 加扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。
在第十四种可能的实现方式中, 结合第一方面, 所述方法还包括: 在所述配置信息中, 相邻的两个时隙中的子载波处于不同的频率。 在第十五种可能的实现方式中, 结合第一方面, 所述方法还包括: 定义子帧组和子帧组帧, 所述子帧组帧由预设数目的所述子帧组组 成,所述子帧组由所述预定数目的子帧时间或 TTI时间组成,其中所述 TTI 时间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零 的自然数。
在第十六种可能的实现方式中, 结合第一方面至第十五中可能的实现 方式中的任意一项, 所述发送配置消息通过信令发送, 所述信令为 RRC信 令或 MAC CE信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。
第二方面, 提供一种窄带传输的方法, 所述方法包括: 接收基站发送的资源单位在时域和 /或频域中的配置信息, 并根据所 述配置信息在窄带资源上进行上行和 /或下行数据的传输, 其中, 所述窄带 是当前使用的带宽值为等于或小于 180KHz的带宽值。 在第一种可能的实现方式中,结合第二方面,所述配置信息具体包括: 针对所述确定的资源单位进行具体配置的参数,其中所述参数为至少 包括 ARFCN、 RB位置, 窄带在 RB中的位置, 调度信息、 子载波个数, 子载波间隔中的一种的频域信息; 和 /或 至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
在第二种可能的实现方式中, 结合第二方面, 所述方法还包括: 接收所述基站发送的根据所述配置信息加扰的数据,根据所述配置信 息进行解扰后, 获取解扰后的数据; 或 将待发送的数据按照所述配置信息进行加扰处理, 并将加扰后的数据 发送至所述基站。
在第三种可能的实现方式中, 结合第二方面, 所述配置信息是通过接 收所述基站发送的信令获取到的。 在第四种可能的实现方式中, 结合第二方面, 所述根据所述配置信息 在窄带资源上进行上行和 /或下行数据的传输包括:
使用独立的窄带资源或使用关联的载波根据所述配置信息在窄带资 源上进行窄带时域或频域的资源配置。
在第五种可能的实现方式中, 结合第二方面或第二方面的第一种可能 的实现方式, 所述根据所述配置信息在窄带资源上进行窄带时域或频域的 资源配置包括:
根据所述配置信息中预定义的内容, 在窄带资源上进行上行和 /或下 行数据传输。
在第五种可能的实现方式中, 结合第二方面, 所述使用关联的载波进 行根据所述配置信息在窄带资源上进行上行和 /或下行数据传输包括: 根据接收到的所述配置信息, 获取所述配置信息中的时域资源和 /或 频域资源, 其中, 所述时域资源包括传输数据使用的帧以及子帧, 所述频 域资源包括子载波间隔、 子载波个数、 绝对无线频率信道号 ARFCN值、 窄带资源在资源块 RB中的位置以及 RB的位置中的至少一个。 在第七种可能的实现方式中, 结合第二方面的第六种可能的实现方 式, 当所述频率资源包括 ARFCN值时, 该方法包括: 获取所述 ARFCN值, 所述 ARFCN值用于描述用于传输数据的窄带 的频率信息; 根据所述 A RF C N值确定的所述窄带的频率信息, 在所述窄带上进行 上行和 /或下行数据传输。 在第八种可能的实现方式中, 结合第二方面的第六种可能的实现方 式, 所述方法还包括: 从所述基站接收调度指示信息后,根据所述调度指示信息在所述确定 的窄带资源上进行上行和 /或下行数据传输。 在第九种可能的实现方式中, 结合第二方面的第八种可能的实现方 式, 所述接收调度指示信息还包括: 从所述传输数据的窄带载波中获取、或从除所述传输数据的窄带外载 波的窄带载波中获取、 或从宽带载波中获取。 在第十种可能的实现方式中, 结合第二方面, 所述方法还包括: 所述上行数据传输基于随机接入的方式, 所述下行数据传输基于所述 调度信息指示的方式; 或 所述上行数据传输基于所述调度信息指示的方式, 所述下行数据传输 基于随机接入的方式。 在第十一种可能的实现方式中, 结合第二方面, 所述方法还包括: 定义子帧组和子帧组帧, 所述子帧组帧由预设数目的所述子帧组组 成,所述子帧组由所述预定数目的子帧时间或 TTI时间组成,其中所述 TTI 时间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零 的自然数。 在第十二种可能的实现方式中, 结合第二方面的第十一种可能的实现 方式, 所述方法包括: 根据所述定义的子帧组和所述子帧组帧, 进行所述加扰初始化。 在第十三种可能的实现方式中, 结合第二方面的第十一种可能的实现 方式, 所述加扰初始化包括: 若釆用的是 TTI的子帧编号或时隙编号,则将选取所述子帧编号或时 隙编号作为 Ns 或 L"s/2」的值, 并代入到^ ^14 ^ ^1 ^ 」^ ^^ 中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值 构成加扰初始 4匕的加扰序列; 或 若釆用的是 LTE中的帧号, 则将系统帧号 SFN mod 10, 得到与所述 系统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L"s/2」的值, 并带 入到 cinit = nmTi - 214 + - 213 + k /2j - 29 + N^11中, 得到与每个所述子帧编号或时隙 编号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或 若釆用的是所述 TTI开始或结束时对应的所述 LTE子帧的时隙号或 子帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L"S/2」的值, 并代 入到 cinit = nmTi - 2u + q - 213 + n& /2」 · 29 + 中,得到与每个所述子帧编号或时隙 编号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。 在第十四种可能的实现方式中, 结合第二方面的第十一种可能的实现 方式, 所述加扰初始化包括: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述 加扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。 在第十五种可能的实现方式中, 结合第二方面至第二方面的第十四种 可能的实现方式, 所述发送配置消息通过信令发送, 所述信令为 RRC信令 或 MAC CE信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。
第三方面, 提供一种窄带传输的设备, 所述设备包括: 第一确定单元, 用于确定当前使用的带宽值, 并根据所述带宽值确定 资源单位在时域和 /或频域中的配置信息, 其中, 所述当前使用的带宽值为 等于或小于 180KHz的窄带带宽值; 第一传输单元, 用于将所述资源单位在时域和 /或频域中的配置信息 发送至用户设备,使得所述用户设备根据所述配置信息进行上行和 /或下行 数据的传输。 在第一种可能的实现方式中,结合第三方面,所述配置信息具体包括: 针对所述确定的资源单位进行具体配置的参数,其中所述参数为至少 包括 ARFCN、 RB位置, 窄带在 RB中的位置、 调度信息、 子载波个数的 频域信息; 和 /或 至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
在第二种可能的实现方式中, 结合第三方面, 所述设备还包括: 第一发送单元, 用于将待发送的数据按照所述配置信息进行加扰处 理, 并将加扰后的数据发送至用户设备; 和 /或
第一接收单元, 用于从所述用户设备接收加扰后的数据, 对所述加扰 后的数据根据所述配置信息进行解扰处理, 获取解扰后的数据。
在第三种可能的实现方式中, 结合第三方面, 所述配置信息是通过信 令发送至所述用户设备。
在第四种可能的实现方式中, 结合第三方面, 所述第一确定单元具体 用于:
根据所述当前使用的带宽值,确定所述带宽值对应的所述 ΤΤΙ长度或 子帧组长度。
在第五种可能的实现方式中, 结合第三方面的第二种可能的实现方 式, 所述第一发送单元具体用于: 确定与所述当前使用的带宽值对应的在资源单位中待传输数据的加 扰初始化时间参数; 确定所述资源单位的标识信息;
根据所述资源单位的标识信息和加扰初始化时间参数,确定在所述资 源单位中所述待传输数据的加扰初始化的参数。 在第六种可能的实现方式中, 结合第三方面的第二种可能的实现方 式, 所述第一发送单元还用于: 获取 LTE中的子帧编号或时隙编号; 结合将所述子帧编号或时隙编号,确定在所述资源单位中所述待传输 数据的加扰初始化的时间参数。 在第七种可能的实现方式中, 结合第三方面, 所述第一确定单元具体 包括: 根据所述当前使用的带宽值,确定与所述带宽值对应的子载波数目以 及与所述子载波数目对应的符号数; 根据所述确定的子载波数目以及与所述子载波数目对应的符号数, 获 取与所述子载波数目对应的 CP , 所述 CP包括正常 CP和 /或扩展 CP。 在第八种可能的实现方式中, 结合第三方面, 在所述设备中: 所述当前使用的带宽对应一个或多个子载波的频域宽度, 与所述子载 波的频域宽度对应的子载波间隔至少为 15KHz或 3.75KHz或 2.5KHz或 1.25KHZ中的一种。 在第九种可能的实现方式中, 结合第三方面的第二种可能的实现方 式, 所述设备还包括:
CP扩展单元, 用于根据所述 TTI长度、 子帧组长度, 获取与所述子 帧结构对应的 CP , 所述 CP包括正常 CP和 /或扩展 CP , 以及一个所述 TTI 内包含的符号个数。 在第十种可能的实现方式中, 结合第三方面的第九种可能的实现方 式, 在所述设备中: 所述 CP扩展单元, 还用于根据所述一个 TTI内包含的符号个数, 对 所述正常 CP进行预设倍数的扩展, 得到扩展后的第二正常 CP , 和 /或对所 述扩展 CP进行预设倍数的扩展, 得到扩展后的第二扩展 CP, 其中所述预 设倍数为不等于零的自然数。 在第十一种可能的实现方式中, 结合第三方面的第十种可能的实现方 式, 仅保留所述第二扩展 CP与所述第三正常 CP中与 LTE协议中相同的 值。
在第十二种可能的实现方式中, 结合第三方面的第五种可能的实现方 式或第六种可能的实现方式, 所述第一发送单元还用于: 若釆用的是 TTI的子帧编号或时隙编号,则将选取所述子帧编号或时 隙编号作为 Ns 或 L"s/2」的值, 并代入到 cmit ="RNTI .214 + ^ 2134"s/2」.29 + A 中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值 构成加扰初始 4匕的加扰序列; 或 若釆用的是 LTE中的帧号, 则将系统帧号 SFNmodlO, 得到与所述系 统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L"s/2」的值, 并带入 到 cinit = nRmi - 2u + q - 213 + n&
Figure imgf000012_0001
- 29 + Λ^11中, 得到与每个所述子帧编号或时隙编 号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或 若釆用的是所述 ΤΤΙ开始或结束时对应的所述 LTE子帧的时隙号或 子帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L"s/2」的值, 并代 入到 cinit = nmTi - 2U + q - 213 + ns /2」 · 29 + 中,得到与每个所述子帧编号或时隙 编号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。 在第十三种可能的实现方式中, 结合第三方面或第三方面的第十二种 可能的实现方式, 所述第一发送单元还用于包括: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述 加扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。 在第十四种可能的实现方式中, 结合第三方面, 在所述设备中: 在所述配置信息中, 相邻的两个时隙中的子载波处于不同的频率。 在第十五种可能的实现方式中, 结合第三方面, 所述第一确定单元还 用于: 定义子帧组和子帧组帧, 所述子帧组帧由预设数目的所述子帧组组 成,所述子帧组由所述预定数目的子帧时间或 TTI时间组成,其中所述 TTI 时间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零 的自然数。 在第十六种可能的实现方式中, 结合第三方面至第三方面的第十五种 可能的实现方式, 所述发送配置消息通过信令发送, 所述信令为 RRC信令 或 MAC CE信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。 第四方面, 提供一种窄带传输的设备, 其特征在于, 所述设备包括: 第二传输单元, 用于接收基站发送的资源单位在时域和 /或频域中的 配置信息, 并根据所述配置信息在窄带资源上进行上行和 /或下行数据的传 输, 其中, 所述窄带是当前使用的带宽值为等于或小于 180KHz的带宽值。 在第一种可能的实现方式中,结合第四方面,所述配置信息具体包括: 针对所述确定的资源单位进行具体配置的参数,其中所述参数为至少 包括 ARFCN、 RB位置, 窄带在 RB中的位置, 调度信息、 子载波个数, 子载波间隔中的一种的频域信息; 和 /或
至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
在第二种可能的实现方式中, 结合第四方面, 所述设备还包括: 第二接收单元,用于接收所述基站发送的根据所述配置信息加扰的数 据, 根据所述配置信息进行解扰后, 获取解扰后的数据; 或 第二发送单元, 用于将待发送的数据按照所述配置信息进行加扰处 理, 并将加扰后的数据发送至所述基站。
在第三种可能的实现方式中, 结合第四方面, 所述配置信息是通过接 收所述基站发送的信令获取到的。 在第四种可能的实现方式中, 结合第四方面, 所述第二传输单元还用 于:
使用独立的窄带资源或使用关联的载波根据所述配置信息在窄带资 源上进行窄带时域或频域的资源配置。 在第五种可能的实现方式中, 结合第四方面或第四方面的第一种可能 的实现方式, 所述第二传输单元具体用于: 根据所述配置信息中预定义的内容, 在窄带资源上进行上行和 /或下 行数据传输。 在第六种可能的实现方式中, 结合第四方面, 所述第二传输单元还用 于:
根据接收到的所述配置信息, 获取所述配置信息中的时域资源和 /或 频域资源, 其中, 所述时域资源包括传输数据使用的帧以及子帧, 所述频 域资源包括子载波间隔、 子载波个数、 绝对无线频率信道号 ARFCN值、 窄带资源在资源块 RB中的位置以及 RB的位置中的至少一个; 在第七种可能的实现方式中, 结合第四方面的第四种可能的实现方 式, 当所述频率资源包括 ARFCN值时, 所述设备具体用于: 获取所述 ARFCN值, 所述 ARFCN值用于描述用于传输数据的窄带 的频率信息; 根据所述 A RF C N值确定的所述窄带的频率信息, 在所述窄带上进行 上行和 /或下行数据传输。
在第八种可能的实现方式中, 结合第四方面的第七种可能的实现方 式, 从所述基站接收调度指示信息后, 根据所述调度指示信息在所述确定 的窄带资源上进行上行和 /或下行数据传输。
在第九种可能的实现方式中, 结合第四方面的第八种可能的实现方 式, 所述设备还用于:
从所述传输数据的窄带载波中获取、或从除所述传输数据的窄带外载 波的窄带载波中获取、 或从宽带载波中获取。 在第十种可能的实现方式中, 结合第四方面, 在所述设备中: 所述上行数据传输基于随机接入的方式, 所述下行数据传输基于所述 调度信息指示的方式; 或
所述上行数据传输基于所述调度信息指示的方式, 所述下行数据传输 基于随机接入的方式。
在第十一种可能的实现方式中, 结合第四方面, 所述设备还用于: 定义子帧组和子帧组帧, 所述子帧组帧由预设数目的所述子帧组组 成,所述子帧组由所述预定数目的子帧时间或 TTI时间组成,其中所述 TTI 时间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零 的自然数。 在第十二种可能的实现方式中, 结合第四方面的第十一种可能的实现 方式, 所述设备进一步用于: 根据所述定义的子帧组和所述子帧组帧, 进行所述加扰初始化。 在第十三种可能的实现方式中, 结合第四方面的第十一种可能的实现 方式, 所述设备还用于: 若釆用的是 TTI的子帧编号或时隙编号,则将选取所述子帧编号或时 隙编号作为 Ns 或 L"s/2」的值, 并代入到^ ^14 ^ ^1 ^^」^ ^^ 中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值 构成加扰初始 4匕的加扰序列; 或 若釆用的是 LTE中的帧号, 则将系统帧号 SFNmodlO, 得到与所述系 统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L"s/2」的值, 并带入 到 cinit = nRmi - 2u + q - 213 + \ ns /2j - 29 + 中, 得到与每个所述子帧编号或时隙编 号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或 若釆用的是所述 TTI开始或结束时对应的所述 LTE子帧的时隙号或 子帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L"s/2」的值, 并代 入到 cinit = mn - 2u + q - 213 + ns /2」 · 29 + N^1中,得到与每个所述子帧编号或时隙 编号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。 在第十四种可能的实现方式中, 结合第四方面的第十一种可能的实现 方式, 所述设备还用于包括: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述 加扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。 在第十五种可能的实现方式中, 结合第四方面至第四方面的第十四种 可能的实现方式, 所述发送配置消息通过信令发送, 所述信令为 RRC信令 或 MAC CE信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。 第五方面, 提供一种基站, 所述基站包括:
第一处理器, 用于确定当前使用的带宽值, 并根据所述带宽值确定资 源单位在时域和 /或频域中的配置信息, 其中, 所述当前使用的带宽值为等 于或小于 180KHz的窄带带宽值; 第一发射器, 用于将所述资源单位在时域和 /或频域中的配置信息发 送至用户设备,使得所述用户设备根据所述配置信息进行上行和 /或下行数 据的传输。 在第一种可能的实现方式中,结合第五方面,所述配置信息具体包括: 针对所述确定的资源单位进行具体配置的参数,其中所述参数为至少 包括 ARFCN、 RB位置, 窄带在 RB中的位置、 调度信息、 子载波个数的 频域信息; 和 /或
至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
在第二种可能的实现方式中, 结合第五方面, 在所述基站中: 所述第一发射器还用于,将待发送的数据按照所述配置信息进行加扰 处理, 并将加扰后的数据发送至用户设备; 和 /或 第一接收器, 用于从所述用户设备接收加扰后的数据, 对所述加扰后 的数据根据所述配置信息进行解扰处理, 获取解扰后的数据。
在第三种可能的实现方式中, 结合第五方面, 所述配置信息是通过信 令发送至所述用户设备。
在第四种可能的实现方式中,结合第五方面,所述第一处理器还用于: 根据所述当前使用的带宽值,确定所述带宽值对应的所述 TTI长度或 子帧组长度。 在第五种可能的实现方式中, 结合第五方面的第二种可能的实现方 式, 所述第一发射器还用于: 确定与所述当前使用的带宽值对应的在资源单位中待传输数据的加 确定所述资源单位的标识信息; 根据所述资源单位的标识信息和加扰初始化时间参数,确定在所述资 源单位中所述待传输数据的加扰初始化的参数。 在第六种可能的实现方式中, 结合第五方面的第二种可能的实现方 式, 所述第一发射器还用于: 获取 LTE中的子帧编号或时隙编号; 结合将所述子帧编号或时隙编号,确定在所述资源单位中所述待传输 数据的加扰初始化的时间参数。 在第七种可能的实现方式中,结合第五方面,所述第一处理器还用于: 根据所述当前使用的带宽值,确定与所述带宽值对应的子载波数目以 及与所述子载波数目对应的符号数; 根据所述确定的子载波数目以及与所述子载波数目对应的符号数, 获 取与所述子载波数目对应的 CP , 所述 CP包括正常 CP和 /或扩展 CP。 在第八种可能的实现方式中, 结合第五方面, 在所述基站中: 所述当前使用的带宽对应一个或多个子载波的频域宽度, 与所述子载 波的频域宽度对应的子载波间隔至少为 15KHz或 3.75KHz或 2.5KHz或 1.25KHZ中的一种。 在第九种可能的实现方式中, 结合第五方面的第二种可能的实现方 式, 所述第一处理器还用于: 根据所述 TTI长度、 子帧组长度, 获取与所述子帧结构对应的 CP, 所述 CP包括正常 CP和 /或扩展 CP,以及一个所述 TTI内包含的符号个数。 在第十种可能的实现方式中, 结合第五方面的第九种可能的实现方 式, 所述第一处理器还用于: 根据所述一个 TTI内包含的符号个数, 对所述正常 CP进行预设倍数 的扩展, 得到扩展后的第二正常 CP , 和 /或对所述扩展 CP进行预设倍数的 扩展,得到扩展后的第二扩展 CP ,其中所述预设倍数为不等于零的自然数。 在第十一种可能的实现方式中, 结合第五方面的第十种可能的实现方 式, 仅保留所述第二扩展 CP与所述第三正常 CP中与 LTE协议中相同的 值。 在第十二种可能的实现方式中, 结合第五方面的第五种可能的实现方 式或第六种可能的实现方式, 第一处理器具体用于: 若釆用的是 TTI的子帧编号或时隙编号,则将选取所述子帧编号或时 隙编号作为 Ns 或 L"s/2」的值, 并代入到 cmit = "RNTI ' 214 + 213 +L"s /2」. 29 + A 中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值 构成加扰初始 4匕的加扰序列; 或 若釆用的是 LTE中的帧号, 则将系统帧号 SFNmodlO, 得到与所述系 统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L"s/2」的值, 并带入 到 cinit = "RNTI - 214
Figure imgf000018_0001
+ N^1中, 得到与每个所述子帧编号或时隙编 号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或 若釆用的是所述 TTI开始或结束时对应的所述 LTE子帧的时隙号或 子帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L"s/2」的值, 并代 入到 cinit = nmTi - 2u + q - 213 +
Figure imgf000018_0002
/2」 · 29 + 中,得到与每个所述子帧编号或时隙 编号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。 在第十三种可能的实现方式中, 结合第五方面或第五方面的第十二种 可能的实现方式, 所述第一发射器还用于: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述 加扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。 在第十四种可能的实现方式中, 结合第五方面, 在所述基站中: 在所述配置信息中, 相邻的两个时隙中的子载波处于不同的频率。 在第十五种可能的实现方式中, 结合第五方面, 所述第一处理器还用 于: 定义子帧组和子帧组帧, 所述子帧组帧由预设数目的所述子帧组组 成,所述子帧组由所述预定数目的子帧时间或 TTI时间组成,其中所述 TTI 时间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零 的自然数。
在第十六种可能的实现方式中, 结合第五方面至第十五种可能的实现 方式, 所述发送配置消息通过信令发送, 所述信令为 RRC信令或 MAC CE 信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。
第六方面, 提供一种用户设备, 所述用户设备包括: 第二处理器, 用于接收基站发送的资源单位在时域和 /或频域中的配 置信息, 并根据所述配置信息在窄带资源上进行上行和 /或下行数据的传 输, 其中, 所述窄带是当前使用的带宽值为等于或小于 180KHz的带宽值。 在第一种可能的实现方式中,结合第六方面,所述配置信息具体包括: 针对所述确定的资源单位进行具体配置的参数,其中所述参数为至少 包括 ARFCN、 RB位置, 窄带在 RB中的位置, 调度信息、 子载波个数, 子载波间隔中的一种的频域信息; 和 /或 至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
在第二种可能的实现方式中, 结合第六方面, 所述用户设备还包括: 第二接收器, 用于接收所述基站发送的根据所述配置信息加扰的数 据, 根据所述配置信息进行解扰后, 获取解扰后的数据; 或
第二发射器, 用于将待发送的数据按照所述配置信息进行加扰处理, 并将加扰后的数据发送至所述基站。 在第三种可能的实现方式中, 结合第六方面, 所述配置信息是通过接 收所述基站发送的信令获取到的。 在第四种可能的实现方式中,结合第六方面,所述第二处理器还用于: 使用独立的窄带资源或使用关联的载波根据所述配置信息在窄带资 源上进行窄带时域或频域的资源配置。
在第五种可能的实现方式中, 结合第六方面或第六方面的第一种可能 的实现方式, 所述第二处理器具体用于:
根据所述配置信息中预定义的内容, 在窄带资源上进行上行和 /或下 行数据传输。 在第六种可能的实现方式中,结合第六方面,所述第二处理器还用于: 根据接收到的所述配置信息, 获取所述配置信息中的时域资源和 /或 频域资源, 其中, 所述时域资源包括传输数据使用的帧以及子帧, 所述频 域资源包括子载波间隔、 子载波个数、 绝对无线频率信道号 ARFCN值、 窄带资源在资源块 RB中的位置以及 RB的位置中的至少一个。 在第七种可能的实现方式中, 结合第六方面的第四种可能的实现方 式, 当所述频率资源包括 ARFCN值时, 该用户设备还用于: 获取所述 ARFCN值, 所述 ARFCN值用于描述用于传输数据的窄带 的频率信息;
根据所述 A RF C N值确定的所述窄带的频率信息, 在所述窄带上进行 上行和 /或下行数据传输。 在第八种可能的实现方式中, 结合第六方面的第六种可能的实现方 式, 所述用户设备还用于: 从所述基站接收调度指示信息后,根据所述调度指示信息在所述确定 的窄带资源上进行上行和 /或下行数据传输。 在第九种可能的实现方式中, 结合第六方面的第八种可能的实现方 式, 所述接收调度指示信息还包括:
从所述传输数据的窄带载波中获取、或从除所述传输数据的窄带外载 波的窄带载波中获取、 或从宽带载波中获取。 在第十种可能的实现方式中, 结合第六方面, 在所述用户设备中: 所述上行数据传输基于随机接入的方式, 所述下行数据传输基于所述 调度信息指示的方式; 或 所述上行数据传输基于所述调度信息指示的方式, 所述下行数据传输 基于随机接入的方式。 在第十一种可能的实现方式中,结合第六方面,所述用户设备还用于: 定义子帧组和子帧组帧, 所述子帧组帧由预设数目的所述子帧组组 成,所述子帧组由所述预定数目的子帧时间或 TTI时间组成,其中所述 TTI 时间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零 的自然数。 在第十二种可能的实现方式中, 结合第六方面的第一种可能的实现方 式, 所述第二处理器还用于: 根据所述定义的子帧组和所述子帧组帧, 进行所述加扰初始化。 在第十三种可能的实现方式中, 结合第六方面的第一种可能的实现方 式, 所述第二处理器还用于: 若釆用的是 TTI的子帧编号或时隙编号,则将选取所述子帧编号或时 隙编号作为 Ns 或 L"s/2」的值, 并代入到^ ^丽 14 ^ ^1 ^ 」 ^ ^^11 中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值 构成加扰初始 4匕的加扰序列; 或 若釆用的是 LTE中的帧号, 则将系统帧号 SFNmodlO, 得到与所述系 统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L"s/2」的值, 并带入 到 cinit
Figure imgf000021_0001
+ 中, 得到与每个所述子帧编号或时隙编 号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或 若釆用的是所述 TTI开始或结束时对应的所述 LTE子帧的时隙号或 子帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L"s/2」的值, 并代 入到 cinit = nmTi - 2u + q - 213 +
Figure imgf000021_0002
/2」 · 29 + 中,得到与每个所述子帧编号或时隙 编号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。 在第十四种可能的实现方式中, 结合第六方面的第十一种可能的实现 方式, 所述第二处理器还用于: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述 加扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。
在第十五种可能的实现方式中, 结合第六方面至第六方面的第十四种 可能的实现方式, 所述发送配置消息通过信令发送, 所述信令为 RRC信令 或 MAC CE信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。 本发明实施例提供一种窄带传输的方法、 设备、 基站及用户设备, 通 过基站确定当前使用的带宽值, 能够使用比现有技术中 LTE 最小带宽 180KHz 还要小的带宽来传输数据, 由于在数据传输时使用了远远小于当 前通信协议中的带宽, 因此可以降低数据传输过程中的噪声功率, 进而提 高了信噪比, 使得在使用窄带宽传输数据的情况下能够显著提高信号的覆 盖范围和覆盖强度,从而使用远低于现有技术中的重复传输次数传输数据。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将 对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见 地, 下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技 术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他的附图。 图 1为本发明实施例提供的一种窄带传输方法的流程示意图; 图 2为本发明实施例提供的一种窄带传输方法中基于单载波的流程 示意图; 图 3 为本发明实施例提供的一种窄带传输方法中基于多载波的流程 示意图; 图 4为本发明实施例提供的一种窄带传输方法中用户设备使用独立 的窄带载波进行数据传输的方法示意图; 图 5为本发明实施例提供的一种窄带传输方法中用户设备使用关联 载波进行数据传输的方法示意图; 图 6为本发明实施例提供的一种窄带传输的设备的结构示意图; 图 7为本发明实施例提供的一种窄带传输设备的结构示意图; 图 8为本发明实施例提供的一种基站的结构示意图; 图 9为本发明实施例提供的一种用户设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术 人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本 发明保护的范围。
术语 "系统" 和 "网络" 在本文中常被互换使用。 本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三 种关系, 例如, A和 /或 B , 可以表示: 单独存在 A , 同时存在 A和 B , 单独存在 B这三种情况。 另外, 本文中字符 " /" , 一般表示前后 关联对象是一种 "或" 的关系。
在以 LTE为代表的现有技术中, 使用的是以 180KHz为最小带宽的 数据信道进行传输, 但是在该带宽值下为了保证足够的信号覆盖强度, 需要进行重复发送, 当重复发送的次数达到一定程度时, 重复发送的次 数与达到的信号覆盖强度并不成线性变化。 因此, 为了提高通信资源的利用率, 本发明实施例提供一种窄带传 输的方法, 如图 1所示, 所述方法包括:
101、 基站确定当前使用的带宽值, 并根据所述带宽值确定资源单位 在时域和 /或频域中的配置信息, 其中, 所述当前使用的带宽值为等于或 小于 180KHz的窄带带宽值;
102、 基站将所述资源单位在时域和 /或频域中的配置信息发送至用 户设备, 使得所述用户设备根据所述配置信息进行上行和 /或下行数据的 传输。 103、 用户设备接收基站发送的资源单位在时域和 /或频域中的配置 信息 ,并根据所述配置信息在窄带资源上进行上行和 /或下行数据的传输 , 其中, 所述窄带是当前使用的带宽值为等于或小于 180KHz的带宽值。
上述配置信息具体包括: 针对所述确定的资源单位进行具体配置的 参数, 其中所述参数为至少包括绝对无线频道编号 ( Absolute Radio Frequency Channel Number, ARFCN ) 、 RB位置, 窄带在 RB中的位置, 调度信息、 子载波个数, 子载波间隔中的一种的频域信息; 和 /或
至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置 中的一种的时域信息。 本发明实施例提供一种窄带传输的方法, 通过基站确定当前使用的 带宽值, 确定资源单位在时域和 /或频域中的配置信息, 接着将确定的配 置信息发送至用户设备, 使得用户设备可以根据配置信息在窄带资源上 进行上行和 /或下行数据传输,从而可以降低数据传输过程中的噪声功率, 进而提高了信噪比, 使得在使用窄带宽传输数据的情况下能够显著提高 信号的覆盖范围和覆盖强度, 从而使用远低于现有技术中的重复传输次 数传输数据, 提高通信资源的使用效率。
为了使本领域技术人员能够更加清楚的理解上述方法, 下边分别针 从单载波和多载波的角度分别进行描述。
在单载波的情况下, 针对 15KHz的带宽值, 本发明实施例提供一种 窄带传输的方法, 如图 2所示, 该方法包括:
201、 基站根据当前的带宽值, 并根据带宽值确定资源单位在时域和 /或频域中的配置信息;
上述配置信息具体包括: 针对所述确定的资源单位进行具体配置的 参数, 其中所述参数为至少包括 ARFCN、 RB位置, 窄带在 RB 中的位 置, 调度信息、 子载波个数, 子载波间隔中的一种的频域信息; 和 /或 至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置 中的一种的时域信息。 为了提高覆盖, 考虑小于 1RB 的带宽典型值为 15KHz, 当 15KHz 作为单载波的带宽时, 其覆盖相比 1RB 的增益为 101oglO(12)=10.8dB。 当釆用 LTE的调制方式时, 如 QPSK,16QAM, 64QAM等, 釆用与 LTE 相同的 CP长度来抵抗多径干扰。
具体的, 针对 15KHz的带宽值, 确定当前带宽值对应的传输时间间 隔 TTI的长度, 根据 TTI长度的不同, 分下边两种情况讨论:
Case 1、 当一个 TTI中包含 12个子帧, 长度超过现有的一个帧长时: 对应的普通循环前缀 CP , 其 TTI=(l/15kHz)* 14* 12+(160+144*6)*2/(15KHz*2048)* 12=12ms; 对应的扩展循环前缀 CP , 其 TTI=(l/15kHz)* 12* 12+(512*6*2)/(15KHz*2048)* 12=12ms;
在频域中, 每个资源块 RB对应着一个 15KHz的带宽, 而在时域中, 包含的是 12*7个 OFDM符号或 6个子帧, 由于一个 TTI包含 2个 RB , 因此一个 TTI包括对应着 12* 14个 OFDM符号或 12个子帧。
202、基站在确定 TTI的长度以及对应的子帧后, 根据该 TTI对应的 子帧或时隙编号进行加扰初始化处理。 进行加扰初始化具体包括:
2021、 确定与当前带宽对应的加扰初始化时间参数, 其中的时间参 数具体包括 T T I对应的子帧编号或时隙编号。 例如, 该 TTI对应的子帧为帧 n的 0,1,2〜9和帧 n+1的 0,1 ; 相应的 时隙号为帧 n的 0〜19和帧 n+1 的 0〜3。 则加扰初始化中的 取值为帧 n 的时隙 0, 1或 2者中的 1个。
2022、 确定标识信息: 用户设备标识 ¾TI、 小区 ID取值 Λς11 , 码字 取值 q等。
2023、 根据已经确定的标识信息和加扰初始化时间参数, 确定在资 源单位中对待传输数据的加扰初始化的参数。 具体根据公式^ ^^- +^^+^/ ^+^^11, 进行获取。 代入已 经确定的 TTI对应的时隙编号、 用户设备标识《RNTI、 小区 ID取值 Λς11, 码字取值 q, 得到与每个 TTI对应的加扰数值, 得到的加扰数值构成加 扰初始化的加扰序列。
Case 2、 当一个 TTI的长度与现有 LTE中的帧时间长度相同时, 对应的普通循环前缀 CP , 其 TTI=(l/15kHz)*14*10+(160+144*6)*2/(15KHz*2048)*10=10ms; 对应的扩展循环前缀 CP , 其 TTI=(l/15kHz)*12*10+(512*6*2)/(15KHz*2048)*10=10ms;
现有 LTE中帧的持续时间为 10ms, 在 Case 2 中 TTI的持续时间同 样为 10ms, 对应 LTE的 10个子帧或普通 CP为 10*14个符号, 扩展 CP 为 10*12个符号, 同样由于一个 TTI中包括 2个 RB, 所以每个 RB对普 通 CP包括 10*7个符号或对扩展 CP包括 10*6个符号。
在该 Case2中, 由于当前 TTI的长度与现有技术中的 LTE的帧时间 相同, 均包含 10个子帧, 因此本 case的 TTI有利于以帧为单位进行 TTI 的划分。
在确定了 TTI长度后, 同 Case l 中一样, 进行如下步骤:
202、 当 TTI的长度以及对应的子帧确定后, 则根据该 TTI开始时间 对应的子帧或结束时间对应的子帧的时隙号进行加扰初始化。 进行加扰初始化具体包括:
2021、 确定与当前带宽对应的加扰初始化时间参数, 其中的时间参 数具体包括 T T I对应的子帧编号或时隙编号。
例如, 该 TTI对应的子帧为帧 n的 0,1,2〜9和帧 n+1的 0,1; 相应的 时隙号为帧 n的 0〜19和帧 n+1 的 0〜3。 则加扰初始化中的 取值为帧 n 的时隙 0, 1或 2者中的 1个。
2022、 确定用户设备标识 ¾TI、 小区 ID取值 Λ 11, 码字取值 q等。 2023、 根据已经确定的标识信息和加扰初始化时间参数, 确定在资 源单位中对待传输数据的加扰初始化的参数。 具体根据公式 Cmit=¾NTI.2l4 +g.2l3+L"s/2」'29+A , 进行获取。 代入已 经确定的 TTI对应的时隙编号、 用户设备标识《RNTI、 小区 ID取值 Λς11, 码字取值 q, 得到与每个 TTI对应的加扰数值, 得到的加扰数值构成加 扰初始化的加扰序列。 与上述步骤 202不同的是, 由于本情况下的 TTI长度与 LTE中的帧 长度相同, 因此在 Case2 中还可以根据 LTE 中的帧号, 将系统帧号 SFNmodlO, 得到与系统帧号对应的新的编号, 并将新的编号作为 Ns或 k/2」的值, 并带入到^=" ^+^ +k/Sj^+A 中, 得到与每个 TTI对应的加扰数值 , 并由该数值组成加扰初始化的加扰序列; 具体的,将 TTI编号为 SFN(system frame number,系统帧号) modl0„ SFN modlO得到的 10个 TTI中可以按顺序划分得到编号为 0 9 10个子 帧组编号, 对应 0 19 RB/时隙 (一个 TTI中不同时间的 2个 RB对应 2 个时隙) 。 新的时隙编号如下: 帧 n->->子帧组 0->时隙 0,1; 帧 n+l-> 子帧组 1->时隙 2,3; ... 帧 n+9->子帧组 9->时隙 18,19。 在进行信道加扰 的加扰初始化公式中, 可以使用 SFN modlO来替换现有的 I 或 取值对 应的是 SFNmodlO得到的 10个子帧组中的 0 19时隙。 接下来依然是通过公式 Cinit = 214 + g · 213 +
Figure imgf000027_0001
/2」 · 29 + A 得到与每个 TTI对应的加扰数值, 并由该数值组成加扰初始化的加扰序列。
配置 CP长度 l¾ 每 TTI 含符号个数
Casel 正常 CP Δ f=15KHz 1 12*7 12*14 扩展 CP Δ f=15KHz 1 12*6 12*12
Case2 正常 CP Δ f = 15KHz 1 10*7 10*14 扩展 CP Δ f = 15KHz 1 10*6 10*12 表 1 casel和 case2中参数对应的 RB参数
203、 基站将所述待传输数据中的待加扰的比特数值或经过编码的 比特与所述加扰序列中的数值进行对应的加扰运算, 获取加扰后的数 据。
由加扰初始化序列生成的序列为 LTE现有方法, 基本方法是使用这 个加扰初始化序列与另外一个已知序列经过一定移位后进行 mod2和。由 于具体的运算步骤已经公知, 这里就不在进行详述。
204、 用户设备接收基站发送的加扰的数据, 并根据上述加扰的逆运 算进行解扰, 获取解扰后的数据, 或用户设备直接接收数据。
205、 基站从用户设备接收加扰的数据, 并根据上述加扰的逆运算进 行解扰, 获取解扰后的数据, 或基站直接接收数据。
上述步骤 204、 205是基站和用户设备根据发送方和接收方的不同, 分别进行加扰数据的发送和接收、 以及对应的接收后的对加扰数据的解 扰操作。 步骤 204、 205为基站和用户设备进行信息交互的过程, 在时间 上并没有先后的限制。
值得一提的是, 当釆用 GMSK ( Gaussian minimum shift keying, 高 斯最小频移键控)调制时, 由于 GM S K调制后引入了相邻符号间的干扰, 因此不需要再为其设置 CP。因此基于 GMSK调制时的 TTI可以包含 15*10 个符号, 此时一个子帧 ( lms) 包括 15个符号。
在单载波的情况下, 针对 1.25KHZ的带宽值, 与上述带宽为 15KHz 的情况类似, 有如下描述:
当使用 LTE的普通 CP1或扩展 CP2时, TTI时间如下: 普通 CP时,
TTI=(l/1.25kHz)*14*12+(160+144*6)*2/(15KHz*2048)* 12=135.2ms 扩展 CP时,
TTI=(l/1.25kHz)*12*12+(512*6*2)/(15KHz*2048)*12=l 17.6ms 若将 LTE的普通 CP和扩展 CP各扩大一倍 ( CP3和 CP4 )可得到如 下的 TTI时间: 普通 CP3时,
TTI=(1/1.25kHz)* 14*12+(160+144*6)*2*2/(15KHz*2048)*12=136ms 扩展 CP4时,
TTI=(1/1.25kHz)* 12*12+(512*6*2)/(15KHz*2048)*12=120ms 综上, 结合普通 CP, 有下表 2所示:
Figure imgf000029_0001
表 2 结合普通 CP对应的 RB参数 从表中可以看出, easel和 2复用了现有的 CP长度, 导致最后 TTI 长度包含小数的 ms值, case3与 case4的 CP长度分别大于现有系统的普 通和扩展 CP长度, 开销有所增大。 case4的 TTI长度具有整数倍的帧周 期, 有利于使用帧同步 /帧号进行 TTI的同步或编号。 因此, 在该带宽值 下, 优先选用扩展后的的也就是 case 4对应的 TTI长度进行窄带数据传 输。 在确定了 TTI的长度后, 釆用的是所述 TTI开始或结束时对应的所 述 LTE子帧的时隙号或子帧编号,则将选取所述子帧编号或时隙编号作 为 Ns或 L"s/2」的值, 并代入到^ ^^^ ^ ^+^^ + ^中, 得到 与每个 TTI对应的加扰数值 ,所述加扰数值构成加扰初始化的加扰序列。 进行加扰初始化具体包括:
2021、 确定与当前带宽对应的加扰初始化时间参数, 其中的时间参 数具体包括 T T I对应的子帧编号或时隙编号。 例如, 该 TTI对应的子帧为帧 n的 0,1,2 9和帧 n+1的 0,1; 相应的 时隙号为帧 n的 0 19和帧 n+1 的 0 3。 则加扰初始化中的 取值为帧 n 的时隙 0, 1或 2者中的 1个。
2022、 确定标识信息: 用户设备标识 " i、 小区 10取值^^, 码字 数值 q等。
2023、 根据已经确定的标识信息和加扰初始化时间参数, 确定在资 源单位中对待传输数据的加扰初始化的参数。 具体根据公式 Cmit=¾NTI.2l4 + 2l3+L"s/2」.29+A , 进行获取。 代入已 经确定的 TTI 中的时隙编号、 用户设备标识 ¾TI、 小区 ID取值 Λς11, 码 字数值 q, 得到与每个所述 TTI对应的加扰数值, 得到的加扰数值构成 力口 4尤初始 ^匕的力口 4尤 /^歹l
203、 基站将所述待传输数据中的待加扰的比特数值或经过编码的 比特与所述加扰序列中的数值进行对应的加扰运算, 获取加扰后的数 据。 由加扰初始化序列生成的序列为 LTE现有方法, 基本方法是使用这 个加扰初始化序列与另外一个已知序列经过一定移位后进行 mod2和。由 于具体的运算步骤已经公知, 这里就不在进行详述。
204、 用户设备接收基站发送的加扰的数据, 并根据上述加扰的逆运 算进行解扰, 获取解扰后的数据, 或用户设备直接接收数据。
205、 基站从用户设备接收加扰的数据, 并根据上述加扰的逆运算进 行解扰, 获取解扰后的数据, 或基站直接接收数据。
上述步骤 204、 205是基站和用户设备根据发送方和接收方的不同, 分别进行加扰数据的发送和接收、 以及对应的接收后的对加扰数据的解 扰操作。 步骤 204、 205为基站和用户设备进行信息交互的过程, 在时间 上并没有先后的限制。
值得一提的是, 当釆用 GMSK ( Gaussian minimum shift keying, 高 斯最小频移键控)调制时, 由于 GM S K调制后引入了相邻符号间的干扰, 因此不需要再为其设置 CP。因此基于 GMSK调制时的 TTI可以包含 15* 10 个符号, 此时一个子帧 ( 1ms ) 包括 15个符号。
在单载波的情况下, 针对 2.5KHz的带宽值, 与前述 1.25KHZ的带 宽值对应的情况类似, 有如下描述:
Casel : 每个符号持续时间为 l/2.5kHz=0.4ms,
普通 CP时,
TTI=(l/2.5kHz)* 14* 12+(160+144*6)*2/(15KHz*2048)* 12=68ms 扩展 CP时,
TTI=(l/2.5kHz)* 12* 12+(512*6*2)/(15KHz*2048)* 12=60ms
Case2: 每个符 号 为 0.4ms , CP 取扩展 CP 的 长度为 512/(15KHz*2048) , 12* 14个符号时, TTI=(l/2.5kHz)*12*14+(512*6*2)/(15KHz*2048)*14=70ms„ 以上 3种情况归纳为下表 3, 其中 easel考虑的是普通 CP:
Figure imgf000032_0001
表 3 结合普通 CP对应的 RB参数 比较以上 3个 case可以看到, easel 复用了现有的 CP长度, 最后 TTI长度为整数值, TTI长度不为帧长整数倍; case2与 case3的 CP长度 均为现有系统扩展 CP长度, 符号个数上不同, 均为帧长的倍数, 有利于 使用 LTE帧同步 /帧号进行 TTI的同步或编号。 在确定了 TTI的长度后, 釆用的是所述 TTI开始或结束时对应的所 述 LTE子帧的时隙号或子帧编号,则将选取所述子帧编号或时隙编号作 为 Ns或 L"s/2」的值, 并代入到^=" .214+^2134"8/2」'29+^^中, 得到 与每个所述 TTI对应的加扰数值, 所述加扰数值构成加扰初始化的加扰 序列。 进行加扰初始化具体包括:
2021、 确定与当前带宽对应的加扰初始化时间参数, 其中的时间参 数具体包括 T T I对应的子帧编号或时隙编号。 例如, 该 TTI对应的子帧为帧 n的 0,1,2 9和帧 n+1的 0,1; 相应的 时隙号为帧 n的 0 19和帧 n+1 的 0 3。 则加扰初始化中的 取值为帧 n 的时隙 0, 1或 2者中的 1个。
2022、 确定用户设备标识 ¾ 小区 ID取值 Λς11, 码字数值 q等。
2023、 根据已经确定的标识信息和加扰初始化时间参数, 确定在资 源单位中对待传输数据的加扰初始化的参数。 具体根据公式 Cinit = ¾NTI .214 + g .213 +L"s/2」' 29 + A , 进行获取。 代入已 经确定的 TTI 中的时隙编号、 用户设备标识 ¾TI、 小区 ID取值 Λς11 , 码 字数值 q, 得到与每个所述 TTI对应的加扰数值, 得到的加扰数值构成 力口 4尤初始 ^匕的力口 4尤 /^歹l。
203、 基站将所述待传输数据中的待加扰的比特数值或经过编码的 比特与所述加扰序列中的数值进行对应的加扰运算, 获取加扰后的数 据。 由加扰初始化序列生成的序列为 LTE现有方法, 基本方法是使用这 个加扰初始化序列与另外一个已知序列经过一定移位后进行 mod2和。由 于具体的运算步骤已经公知, 这里就不在进行详述。
204、 用户设备接收基站发送的加扰的数据, 并根据上述加扰的逆运 算进行解扰, 获取解扰后的数据, 或用户设备直接接收数据。
205、 基站从用户设备接收加扰的数据, 并根据上述加扰的逆运算进 行解扰, 获取解扰后的数据, 或基站直接接收数据。 上述步骤 204、 205是基站和用户设备根据发送方和接收方的不同, 分别进行加扰数据的发送和接收、 以及对应的接收后的对加扰数据的解 扰操作。 步骤 204、 205为基站和用户设备进行信息交互的过程, 在时间 上并没有先后的限制。 值得一提的是, 当釆用 GMSK ( Gaussian minimum shift keying , 高 斯最小频移键控)调制时, 由于 GM S K调制后引入了相邻符号间的干扰, 因此不需要再为其设置 CP。因此基于 GMSK调制时的 TTI可以包含 15* 10 个符号, 此时一个子帧 ( 1ms ) 包括 15个符号。
在单载波的情况下, 针对 3.75KHZ的带宽值, 与上述带宽为 2.5KHz 的情况类似, 有如下描述:
Casel : 每个符号持续时间为 1/3.75kHz=0.27ms , LTE CP长度如下, Ts=l/(15kHz*2048) 普通 CP时,
TTI=(l/3.75kHz)*14*12+(160+144*6)*2/(15KHz*2048)* 12=45.6ms 扩展 CP时,
TTI=(l/3.75kHz)* 12* 12+(512*6*2)/(15KHz*2048)* 12=40.8ms 可选的将 LTE的普通 CP和扩展 CP分别扩大 4倍 ( CP3和 CP4 ) , 可得到
普通 CP时,
TTI=(l/3.75kHz)*14*12+(160+144*6)*2*4/(15KHz*2048)*12=48ms 扩展 CP时,
TTI=(l/3.75kHz)*12*12+(512*6*2*4)/(15KHz*2048)*12=48ms 可见 CP开销增大了 4倍, TTI依然不是帧数的整数倍。 以上 LTE普通 CP和扩展 CP的情况归纳为下表 4, 其中 easel考虑 的是普通 CP:
Figure imgf000034_0001
表 4 结合现有普通 CP对应的 RB参数 在确定了 TTI的长度后, 釆用的是所述 TTI开始或结束时对应的所 述 LTE子帧的时隙号或子帧编号,则将选取所述子帧编号或时隙编号作 为 Ns或 L"s/2」的值, 并代入到^=" .214 +^2134"8/2」'29+ ^中, 得到 与每个所述 TTI对应的加扰数值, 所述加扰数值构成加扰初始化的加扰 序列。 进行加扰初始化具体包括:
2021、 确定与当前带宽对应的加扰初始化时间参数, 其中的时间参 数具体包括 TTI的子帧编号或时隙编号。 例如, 该 TTI对应的子帧为帧 n的 0, 1 ,2〜9和帧 n+1的 0,1 ; 相应的 时隙号为帧 n的 0〜19和帧 n+1 的 0〜3。 则加扰初始化中的 取值为帧 n 的时隙 0 , 1或 2者中的 1个。
2022、 确定标识信息: 用户设备标识 ¾TI、 小区 ID取值 Λς11 , 码字 数值 q等。
2023、 根据已经确定的标识信息和加扰初始化时间参数, 确定在资 源单位中对待传输数据的加扰初始化的参数。 具体根据公式 Cmit = ¾NTI .2l4 + 2l3 +L"s/2」.29 + A , 进行获取。 代入已 经确定的 TTI 中的时隙编号、 用户设备标识 ¾TI、 小区 ID取值 Λς11 , 码 字数值 q, 得到与每个 TTI对应的加扰数值, 得到的加扰数值构成加扰 初: ½ 4匕的力口 4尤序歹l 。
203、 基站将所述待传输数据中的待加扰的比特数值或经过编码的 比特与所述加扰序列中的数值进行对应的加扰运算, 获取加扰后的数 据。 由加扰初始化序列生成的序列为 LTE现有方法, 基本方法是使用这 个加扰初始化序列与另外一个已知序列经过一定移位后进行 mod2和。由 于具体的运算步骤已经公知, 这里就不在进行详述。
204、 用户设备接收基站发送的加扰的数据, 并根据上述加扰的逆运 算进行解扰, 获取解扰后的数据, 或用户设备直接接收数据。
205、 基站从用户设备接收加扰的数据, 并根据上述加扰的逆运算进 行解扰, 获取解扰后的数据, 或基站直接接收数据。 上述步骤 204、 205是基站和用户设备根据发送方和接收方的不同, 分别进行加扰数据的发送和接收、 以及对应的接收后的对加扰数据的解 扰操作。 步骤 204、 205为基站和用户设备进行信息交互的过程, 在时间 上并没有先后的限制。
值得一提的是, 当釆用 GMSK ( Gaussian minimum shift keying, 高 斯最小频移键控)调制时, 由于 GM S K调制后引入了相邻符号间的干扰, 因此不需要再为其设置 CP。因此基于 GMSK调制时的 TTI可以包含 15* 10 个符号, 此时一个子帧 ( 1ms ) 包括 15个符号。 综上四种典型的带宽值, 上述描述均是针对最小单位为一个子帧的 情况, 与之不同的, 这里还可以定义子帧组(子帧 group , SFG )和子帧 组帧 (子帧 group frame , SFGF ) , 子帧组帧由预设数目的子帧组组成, 子帧组由预定数目的子帧时间或 ΤΤΙ时间组成, 其中所述 ΤΤΙ时间一个 所述子载波间隔对应的 ΤΤΙ时间组成, 所述预定数目为不为零的自然数。 进一步的, 子帧组帧由 a 个子帧组组成, a 为自然数。 子帧组由 b 个子帧时间或 1个 TTI时间组成, b为自然数。 TTI时间可以是不同的子 载波间隔分别对应各自的 TTI 时间或对应某一个子载波间隔对应的 TTI 时间作为 TTI 时间。 在新定义的子帧组和子帧组帧下.进,行加 4尤初始化, 如在加扰初始化时使用子帧组编号值替换子帧编号值 j。 子帧组和子帧 组帧可以独立的定义, 如 10个子帧组组成 1个子帧组帧。 则每个子帧组 或 TTI为 45.6ms时, 子帧组帧为 456ms, 相应的子帧组的编号为 0〜9。 在定义子帧组和子帧组帧后, 接下来的步骤与前述相同, 即同样进 行加扰初始化、 获取加扰序列以及将待传输数据中的待加扰的比特数值 或经过编码的比特与加扰序列中的数值进行对应的加扰运算, 获取加扰 后的数据的步骤, 值得注意的是, 进行上述运算是, 其中的子帧要变成 子帧组, 对应的数据也会发生变化。 本发明实施例提供一种窄带传输的方法,通过针对单载波中 15KHz、 1.25 KHz, 2.5 KHz、 3.75 KHz四种典型的窄带带宽值分别进行 TTI长度 的计算, 并对后三种带宽值进行不同倍数的扩展, 得到扩展后 TTI 为帧 长整数倍的情况下, 最有利于进行 TTI的同步或编号; 在上述确定了 TTI 的长度后, 基站和用户设备各自根据确定的 TTI 长度进行加扰初始化的 运算, 并且将得到的加扰初始化序列与待传输的数据进行特定运算进一 步获取到加扰后的数据, 最终将加扰后的数据进行发送, 当基站和用户 设备在接收到加扰的数据后, 还可以根据加扰的逆运算进行解扰, 最终 获取到解扰后的数据, 从而可以降低数据传输过程中的噪声功率, 进而 提高了信噪比, 使得在使用窄带宽传输数据的情况下能够显著提高信号 的覆盖范围和覆盖强度, 从而使用远低于现有技术中的重复传输次数传 输数据, 提高通信资源的使用效率。
上一实施例是对单载波情况下的描述, 本实施例则针对多载波的情 况下, 提供一种窄带传输的方法, 如图 3所示, 该方法包括:
301、 基站根据当前的带宽值, 并根据带宽值确定资源单位在时域和 /或频域中的配置信息。 上述配置信息具体包括: 针对所述确定的资源单位进行具体配置的 参数, 其中所述参数为至少包括 ARFCN、 RB位置, 窄带在 RB 中的位 置, 调度信息、 子载波个数, 子载波间隔中的一种的频域信息; 和 /或 至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置 中的一种的时域信息。 在现有技术中, 一个 RB内的一个 OFDM符号包括 12个子载波, 当 1个 RB内的 1个 OFDM符号包括小于 12个子载波时, 则需要增加对应 的 1个 RB内包含的符号数, 以便最终令 1个 RB内包含的资源元素个数 与现有系统 1个 RB内包含的资源元素个数相同或接近。 以子载波间隔为△ f= 15kHz为子载波间隔的多个子载波进行 OFDM ( orthogonal frequency division multiplexing , 正交频分复用 ) 或 DFT-S-OFDM ( Discrete Fourier Transform -spread- OFDM, 离散傅里叶 变换-扩展-正交频分复用) 调制, 最小子载波个数小于 12。 当比较对象 为 1个 RB时, 多个子载波对应的带宽小于 1个 RB , 因此覆盖比 1个 RB 有所增强。如 2个子载波对应 15kHz*2=30kHz的带宽。相比较于 1个 RB 的覆盖增强为 101oglO(12/2)=7.7dB。 针对 15KHz 的带宽, 以现有的一个 OFDM符号为例, 定义参数 x 和 y , 其中则 X表示子载波个数, y表示子帧个数。 这样通过 X和 y的匹 配可以保证 RB内或 RB对内与现有系统具有总的相同或相近的资源元素 个数。 其中 m或 n作为组合 {x,y}, 其中 x、 y互为 12的约数, 具体的, x、 y的组合有 { 1,12} {2,6} , {3,4}三种, 下边分别针对不同的组合情况进 行描述。
在针对 1.25KHZ的带宽时,优先考虑一个 TTI内包含的资源元素的 个数位于区间 132RE〜168RE上, 因为这样有利于复用 LTE调度资源粒 度, 从而尽可能重用 LTE已有的调制编码方式。 对于 x=12,y=l对应的 1个 RB内的 1个符号包含 12个子载波,为现 有技术;
对于 x=l,n=12对应的 1个 RB内的 1个符号包含 1个子载波, 为单 载波技术;
对于 x=2,y=6对应的 1个 RB内的 1个符号包含 2个子载波, TTI内 包含的资源元素个数 =2*6* 14, 符号个数 =6* 14=6个子帧; 对于 x=6,y=2对应的 1个 RB内的 1个符号包含 6个子载波, TTI内 包含的资源元素个数 =6*2* 14, 符号个数 =2* 14=2个子帧;
对于 x=3,y=4对应的 1个 RB内的 1个符号包含 3个子载波, TTI内 包含的资源元素个数 =3*4* 14, 符号个数 =4* 14=4个子帧;
对于 x=4 , y=3对应的 1个 RB内的 1个符号包含 4个子载波, TTI 内包含的资源元素个数 =4*3* 14, 符号个数 =3* 14=3个子帧。 综合上述 6种组合, 如下表 5所示: 配置 CP长度 l¾ 每 TTI 含符号个数
Casel 正常 CP Δ f=15KHz 2 6*7 6*14 扩展 CP Δ f=15KHz 2 6*6 6*12
Case2 正常 CP Δ f = 15KHz 6 2*7 2*14 扩展 CP Δ f = 15KHz 6 2*6 2*12
Case3 正常 CP Δ f = 15KHz 3 4*7 4*14 扩展 CP Δ f = 15KHz 3 4*6 4*12
Case4 正常 CP Δ f = 15KHz 4 3*7 3*14 扩展 CP Δ f = 15KHz 4 3*6 3*12 表 5 不同 x、 y组合下的 RB、 TTI的取值表 根据上表 3还可以得到一个 TTI包含的子帧个数, 如 easel 正常 /扩展 CP: 6个子帧; case2 正常 /扩展 CP: 2个子帧; case3 正常 /扩展 CP: 4个子帧; case4 正常 /扩展 CP: 3个子帧。
302、 基站根据确定的配置信息, 确定一个 RB内的子载波个数或一 个 TTI内的子载波个数, 并得到与不同子载波个数对应的 TTI, 进行加扰 初始化处理。 进行加扰初始化具体包括:
3021、 确定与当前带宽对应的加扰初始化时间参数, 其中的时间参 数具体包括 T T I对应的子帧编号或时隙编号。 例如, 该 TTI对应的子帧为帧 R的 0,1,2-9和帧 R+1的 0,1; 相应的 时隙号为帧 R的 0-19和帧 R+1 的 0-3。 则加扰初始化中的 取值为帧 R 的时隙 0, 1或 2者中的 1个。
3022、 确定标识信息: 用户设备标识 ¾TI、 小区 ID取值 Λς11 , 码字 数值 q等。
3023、 根据已经确定的标识信息和加扰初始化时间参数, 确定在资 源单位中对待传输数据的加扰初始化的参数。 具体根据公式 Cmit = NTI .2l4 + 2l3 +L"s/2」.29 + A , 进行获取。 代入已 经确定的 TTI 中的时隙编号、 用户设备标识 ¾TI、 小区 ID取值 Λς11 , 码 字数值 q, 得到与每个 TTI对应的加扰数值, 得到的加扰数值构成加扰 初: ½ 4匕的力口 4尤序歹l。 进行具体的加扰初始化时 , 可以根据 TTI开始时对应的 LTE子帧或 TTI对应的第一个 LTE子帧的时隙号进行加扰初始化处理。 这种方法的 优点是不需要定义新的时间单位, 如多载波或窄带可以应用在与 LTE共 享现有载波。
303、 基站将所述待传输数据中的待加扰的比特数值或经过编码的 比特与所述加扰序列中的数值进行对应的加扰运算, 获取加扰后的数 据。 由加扰初始化序列生成的序列为 LTE现有方法, 基本方法是使用这 个加扰初始化序列与另外一个已知序列经过一定移位后进行 mod2和。由 于具体的运算步骤已经公知, 这里就不在进行详述。
304、 用户设备接收基站发送的加扰的数据, 并根据上述加扰的逆运 算进行解扰, 获取解扰后的数据, 或用户设备直接接收数据。
305、 基站从用户设备接收加扰的数据, 并根据上述加扰的逆运算进 行解扰, 获取解扰后的数据, 或基站直接接收数据。 上述步骤 304、 305是基站和用户设备根据发送方和接收方的不同, 分别进行加扰数据的发送和接收、 以及对应的接收后的对加扰数据的解 扰操作。 步骤 304、 305为基站和用户设备进行信息交互的过程, 在时间 上并没有先后的限制。 值得一提的是, 当釆用 GMSK ( Gaussian minimum shift keying , 高 斯最小频移键控)调制时, 由于 GM S K调制后引入了相邻符号间的干扰, 因此不需要再为其设置 CP。因此基于 GMSK调制时的 TTI可以包含 15* 10 个符号, 此时一个子帧 ( 1ms ) 包括 15个符号。
在该带宽值的情况下, 可以新定义子帧组( subframe group, SFG )和 子帧组帧 ( subframe group frame,SFGF ) 。 此时多载波或窄带可以与 LTE 共享载波或应用于专门的载波上如 200kHz的系统带宽的载波上。其中子 帧组帧由 n个子帧组组成, n为自然数。 子帧组由 X个子帧时间或 1个 TTI时间组成, X为自然数。 TTI时间可以是不同的子载波间隔对应的 TTI 时间或对应某一个子载波间隔对应的 TTI时间作为 TTI时间。 在新定义 的子帧组和子帧组帧下进行加扰初始化, 如在加扰初始化时使用子帧组 编号值替换子帧编号值 l 。 子帧组和子帧组帧可以独立的定义,如 10个子帧组组成 1个子帧组 帧。 可以针对一种子载波个数 (case ) 定义该子载波个数(case ) 的子帧 组帧。 如子载波个数为 2时, 1个 TTI包含 6个子帧, 即 n=6 , 将该 6个 子帧定义为 1个子帧组。 1个子帧组帧包含 10个子帧组,则该子帧组帧时 间为 60ms。 也可以针对所有的 case定义通用的子帧组帧。 此时, 不同的 case包 含不同的子帧组个数。
对于正常 CP或扩展 CP , 各 case子载波的最小公倍数为 12 , 因此取 倍数为 12时的时间作为子帧组帧的时间。 即对于正常 CP时, 子帧组帧 的时间为 12* 14个符号对应的时间即 12ms , 对于扩展 CP时, 子帧组帧 的时间为 12* 12个符号对应的时间即 12ms。 配置 CP长度 TTI 含符号个 子帧组编号, 子帧组帧时间为 数 12 ms
Casel 6*14 0, 1
N N N N
< < <
6*12 0, 1
Case2 2*14 0, 1, 2, 3, 4, 5
2*12 0, 1, 2, 3, 4, 5
Case3 4*14 0, 1, 2
4*12 0, 1, 2
Case4 3*14 0, 1, 2, 3
3*12 0, 1, 2, 3
表 6 正常 CP或扩展 CP对应的 TTI 在定义子帧组和子帧组帧后, 接下来的步骤与前述相同, 即同样进 行加扰初始化、 获取加扰序列以及将待传输数据中的待加扰的比特数值 或经过编码的比特与加扰序列中的数值进行对应的加扰运算, 获取加扰 后的数据的步骤, 值得注意的是, 进行上述运算是, 其中的子帧要变成 子帧组, 对应的数据也会发生变化。 值得一提的是, 根据基站确定的配置信息, 相邻的两个时隙中的子 载波可以处于不同的频率。 即在正常 CP下, 一个 TTI内的 2个 RB或时隙处在不同的时频中。 如当 1个符号对应 2个子载波, 1个 TTI对应 6个子帧 =2*6* 14=168REs。 1个 TTI中的 2个 RB釆用跳频传输时 , 2个 RB位于不同的时间和频率 位置。
在针对 1.25KHZ的带宽时,优先考虑一个 TTI内包含的资源元素的 个数位于区间 132RE〜168RE上, 因为这样有利于复用 LTE调度资源粒 度, 从而尽可能重用 LTE已有的调制编码方式。 与表 3类似, 针对 1.25KHZ的带宽, 若表 7所示:
配置 CP长度 每 RB TTI 含符号个数
Casel 正常 CP Δ f=l.25KHz 12 7 14 扩展 CP Δ f=l.25KHz 12 6 12
Case2 正常 CP Δ f = l.25KHz 2 6*7 6*14 扩展 CP Δ f = l.25KHz 2 6*6 6*12
Case3 正常 CP Δ f = l.25KHz 6 2*7 2*14 扩展 CP Δ f = l.25KHz 6 2*6 2*12
Case4 正常 CP Δ f = l.25KHz 3 3*7 4*14 扩展 CP Δ f = l.25KHz 3 3*6 4*12
Case5 正常 CP Δ f = l.25KHz 4 3*7 3*14 扩展 CP Δ f = l.25KHz 4 3*6 3*12 表 7 不同 case下 正常 CP和扩展 CP对应的 RB和 TTI 以 Case 1为例,
不含 CP时: 14个符号对应的时间为 14*0.8=11.2ms, 12个符号对 应的时间为 12*0.8=9.6ms。 考虑复用 LTE的 CP时:
正常 CP ( CP1 ):
1个 TTI=11.2+(160+144*6)*2/(15kHz*2048)=ll.267ms
扩展 CP ( CP2 ): 1个 TTI=12*0.8+(512*6*2)/(15KHz*2048)=9.8ms 正常 CP得到的 TTI值为无限小数 ms, 扩展 CP得到的 TTI值为有 限小数 ms (毫秒), 当需要 TTI值为帧长的倍数时, 一种方法是增加保 护时间, 使得其值为整数 ms或整数倍的帧周期。 对为整数倍帧周期更 有利于 TTI定时和计数。 对于 12个符号釆用扩展 CP时, 其值比较接近整数倍帧长。 为此可 以考虑进一步扩展扩展 CP ( CP3 ), 得到如下的计算:
12*0.8+(512*6*2*2)/(15KHz*2048)=10ms 可见经过进一步扩展的 CP长 CP3 , 其值为原扩展 CP的 2倍。 此时 12个 OFDM符号及其对应的 CP长度总和恰好为帧长 10ms。 可见这种 CP长度可以很好的复用现有 LTE的帧 /子帧定时或帧 /子帧编号,对不同 子载波个数使用 CP2或 CP3 , 得到下表 8:
Figure imgf000045_0001
表 8 1.25KHz下 子载波个数以及添加的子载波个数表 在确定了 1.25KHZ带宽的 TTI后, 执行以下加扰初始化步骤:
302、 基站根据确定的配置信息, 确定一个 RB内的子载波个数或一 个 TTI内的子载波个数, 并得到与不同子载波个数对应的 TTI, 进行加扰 初始化处理。 进行加扰初始化具体包括:
3021、 确定与当前带宽对应的加扰初始化时间参数, 其中的时间参 数具体包括 TTI的子帧编号或时隙编号。 例如, 该 TTI对应的子帧为帧 n的 0,1,2 9和帧 n+1的 0,1 ; 相应的 时隙号为帧 n的 0 19和帧 n+1 的 0 3。 则加扰初始化中的 取值为帧 n 的时隙 0, 1或 2者中的 1个。
3022、 确定标识信息: 用户设备标识 ¾TI、 小区 ID取值 Λς11 , 码字 数值 q等。
3023、 根据已经确定的标识信息和加扰初始化时间参数, 确定在资 源单位中对待传输数据的加扰初始化的参数。 具体根据公式 Cmit = ¾NTI .2l4 + 2l3 +L"s/2」.29 + A , 进行获取。 代入已 经确定的 TTI 中的时隙编号、 用户设备标识 ¾TI、 小区 ID取值 Λς11 , 码 字数值 q, 得到与每个 TTI对应的加扰数值, 得到的加扰数值构成加扰 初: ½ 4匕的力口 4尤序歹l 与上述步骤 302不同的是, 由于本情况下的 TTI长度与 LTE中的帧 长度相同, 因此在 Case2 中还可以根据 LTE 中的帧号, 将系统帧号 SFNmodlO, 得到与系统帧号对应的新的编号, 并将新的编号作为 Ns或 k /2」的值, 并带入到 cinit = 214 + g · 2134"s /2」 · 29 + A 中, 得到与每个子 帧编号或时隙编号对应的加 4尤数值, 并由该数值组成加扰初始化的加 4尤 序列;
具体的,将 TTI编号为 SFN(system frame number,系统帧号) modl0„ SFN modlO得到的 10个 TTI中可以按顺序划分得到编号为 0 9 10个子 帧组编号, 对应 0 19 RB/时隙 (一个 TTI中不同时间的 2个 RB对应 2 个时隙) 。 新的时隙编号如下: 帧 n->->子帧组 0->时隙 0,1 ; 帧 n+l-> 子帧组 1->时隙 2,3 ; ... 帧 n+9->子帧组 9->时隙 18,19。 在进行信道加扰 的加扰初始化公式中, 可以使用 SFN modi 0来替换现有的 应的是 SFN modlO得到的 10个子帧组中的 0 19时隙。 接下来依然是通过公式 Cinit = 214 + g · 213 + \ ns /2」 · 29 + A 得到与每个 TTI对应的加扰数值 , 并由该数值组成加扰初始化的加扰序列。
303、 基站将所述待传输数据中的待加扰的比特数值或经过编码的 比特与所述加扰序列中的数值进行对应的加扰运算, 获取加扰后的数 据。
由加扰初始化序列生成的序列为 LTE现有方法, 基本方法是使用这 个加扰初始化序列与另外一个已知序列经过一定移位后进行 mod2和。由 于具体的运算步骤已经公知, 这里就不在进行详述。
304、 用户设备接收基站发送的加扰的数据, 并根据上述加扰的逆运 算进行解扰, 获取解扰后的数据, 或用户设备直接接收数据。
305、 基站从用户设备接收加扰的数据, 并根据上述加扰的逆运算进 行解扰, 获取解扰后的数据, 或基站直接接收数据。 上述步骤 304 305是基站和用户设备根据发送方和接收方的不同, 分别进行加扰数据的发送和接收、 以及对应的接收后的对加扰数据的解 扰操作。 步骤 304 305为基站和用户设备进行信息交互的过程, 在时间 上并没有先后的限制。
值得一提的是, 当釆用 GMSK ( Gaussian minimum shift keying, 高 斯最小频移键控)调制时, 由于 GM S K调制后引入了相邻符号间的干扰, 因此不需要再为其设置 CP。因此基于 GMSK调制时的 TTI可以包含 15* 10 个符号, 此时一个子帧 ( 1ms ) 包括 15个符号。 在该带宽值的情况下, 也可以新定义子帧组 ( subframe group, SFG ) 和子帧组帧 ( subframe group frame,SFGF ) 。 此时多载波或窄带可以与 LTE共享载波或应用于专门的载波上如 200kHz的系统带宽的载波上。其 中子帧组帧由 a个子帧组组成, a为自然数。 子帧组由 b个子帧时间或 1 个 TTI时间组成, b为自然数 TTI时间可以是不同的子载波间隔分别对应 的 TTI时间或对应某一个子载波间隔对应的 TTI时间作为 TTI时间。 在 新定义的子帧组和子帧组帧下氣行加扰初始化, 如在加扰初始化时使用 子帧组编号值替换子帧编号值 ^1
子帧组和子帧组帧可以独立的定义,如 10个子帧组组成 1个子帧组 帧。 可以针对一种子载波个数 (case ) 定义该子载波个数(case ) 的子帧 组帧。
如子载波个数为 12时, 1个 TTI包含 9.8ms, 将该 TTI值定义为 1 个子帧组。 1 个子帧组帧包含 10个子帧组,则该子帧组帧时间为 98ms。 相应的子帧组编号可以为 0〜9。 也可以针对所有的 case定义通用的子帧组帧。 此时, 不同的 case包 含不同的子帧组个数。
对于正常 CP或扩展 CP , 各 case子载波的最小公倍数为 12 , 因此取 倍数为 12时的时间作为子帧组帧的时间。 即对于 CP2时, 子帧组帧的时 间为 9.8* 12个符号对应的时间即 1 17.6ms , 对于 CP3时, 子帧组帧的时 间为 10* 12个符号对应的时间即 120ms。 表 9为定义子帧组的情况下, CP长度和 TTI配置:
配置 CP CU II CU II CU II CU II CU II CU II CU II CU II CU II CU II长度 2或 CP长 TTI 含符号 子帧组编号, 子帧组帧时间为 136.8ms (CP2) 度 3 个数 或 120ms ( CP3 )
Casel 12 ο,ι, -,ιι
< < <
12 ο,ι, -,ιι
Case2 6*12 0, 1
6*12 0, 1
Case3 2*12 0, 1, ..·, 5
2*12 0, 1, ..·, 5
Case4 4*12 0, 1, 2
4*12 0, 1, 2
Case5 3*12 0, 1, 2, 3
3*12 0, 1, 2, 3 表 9 定义子帧组的情况下, CP长度和 TTI配置 在定义子帧组和子帧组帧后, 接下来的步骤与前述相同, 即同样进 行加扰初始化、 获取加扰序列以及将待传输数据中的待加扰的比特数值 或经过编码的比特与加扰序列中的数值进行对应的加扰运算, 获取加扰 后的数据的步骤, 值得注意的是, 进行上述运算是, 其中的子帧要变成 子帧组, 对应的数据也会发生变化。 在针对 2.5KHz的带宽时, 同样优先考虑一个 TTI 内包含的资源元 素的个数位于区间 132RE〜168RE上, 因为这样有利于复用 LTE调度资 源粒度, 从而尽可能重用 LTE已有的调制编码方式。 与表 3类似, 针对 1.25KHZ的带宽, 如表 10所示:
Figure imgf000050_0001
表 10 结合 CP对应的 RB参数 以表 10的 easel为例, 进行 CP长度选取, 符号个数选取:
14 个符号对应的时间为 0.4* 14=5.6ms , 12 个符号对应的时间为 0.4* 12=4.8ms; 考虑复用 LTE的 CP时:
正常 CP:
14个符号对应的 CP时间 = (160+144*6)*2/(15kHz*2048)=0.0667ms 扩展 CP:
12个符号对应的 CP时间 =(512*6*2)/(15KHz*2048)=0.2ms 根据表 1 1 中的内容, 进行预设倍数的扩展后, 对应正常 CP和扩展
CP的值为:
Figure imgf000051_0001
表 1 1 不同扩展倍数下正常 CP、 扩展 CP的对应时间
对于正常 CP (这里也称为 CP长度 1 ) , TTI的时间并不为整数 ms 值, 如 5.6+0.0667=5.6667ms。对于扩展 CP , 这里称为 CP长度 2, TTI 的 时间为整数 ms值, 如 4.8+0.2=5ms。
为了使得 14个符号时 TTI的时间类似扩展 CP时 TTI的时间为整数 ms值, 一种方法是扩展正常 CP的长度这里称为 CP长度 3 , 当扩展现有 的正常 CP 长度的 6 倍时可得到如下的 14 个符号时的 TTI 时间值: l/2.5kHz* 14+(160+144*6)*2*6/(15kHz*2048)=6ms„ 此时每个符号对应的 CP长度 3的时间大于扩展 CP的时间长度。因此 CP长度 2和 3的存在关 系为或的关系。
相应于 CP长度 2和 CP长度 3 , 具有整数 ms的 TTI长度如表 12
Figure imgf000052_0001
表 12 不同扩展倍数下正常 CP、 扩展 CP的对应时间 其中倍数与子载波个数有着对应关系,如倍数为 1对应 12个子载波, 倍数为 2对应 6个子载波, 倍数为 3对应 4个子载波, 倍数为 4对应 3 个子载波, 倍数为 6对应 2个子载波。
302、 基站根据确定的配置信息, 确定一个 RB内的子载波个数或一 个 TTI内的子载波个数, 并得到与不同子载波个数对应的 TTI, 进行加扰 初始化处理。 进行加扰初始化具体包括:
3021、 确定与当前带宽对应的加扰初始化时间参数, 其中的时间参 数具体包括 TTI的子帧编号或时隙编号。 例如, 该 TTI对应的子帧为帧 n的 0,1,2〜9和帧 n+1的 0,1 ; 相应的 时隙号为帧 n的 0〜19和帧 n+1 的 0〜3。 则加扰初始化中的 取值为帧 n 的时隙 0, 1或 2者中的 1个。
3022、 确定标识信息: 用户设备标识 ¾TI、 小区 ID取值 Λς11 , 码字 数值 q等。
3023、 根据已经确定的标识信息和加扰初始化时间参数, 确定在资 源单位中对待传输数据的加扰初始化的参数。 具体根据公式 Cmit = ¾NTI .2l4 + 2l3 +L"s/2」.29 + A , 进行获取。 代入已 经确定的 TTI 中的时隙编号、 用户设备标识 ¾TI、 小区 ID取值 Λς11 , 码 字数值 q, 得到与每个 TTI对应的加扰数值, 得到的加扰数值构成加扰 初: ½ 4匕的力口 4尤序歹l 。 进行具体的加扰初始化时 , 可以根据 TTI开始时对应的 LTE子帧或 TTI对应的第一个 LTE子帧的时隙号进行加扰初始化处理。 这种方法的 优点是不需要定义新的时间单位, 如多载波或窄带可以应用在与 LTE共 享现有载波。
303、 基站将所述待传输数据中的待加扰的比特数值或经过编码的 比特与所述加扰序列中的数值进行对应的加扰运算, 获取加扰后的数 据。 由加扰初始化序列生成的序列为 LTE现有方法, 基本方法是使用这 个加扰初始化序列与另外一个已知序列经过一定移位后进行 mod2和。由 于具体的运算步骤已经公知, 这里就不在进行详述。
304、 用户设备接收基站发送的加扰的数据, 并根据上述加扰的逆运 算进行解扰, 获取解扰后的数据, 或用户设备直接接收数据。
305、 基站从用户设备接收加扰的数据, 并根据上述加扰的逆运算进 行解扰, 获取解扰后的数据, 或基站直接接收数据。 上述步骤 304 305是基站和用户设备根据发送方和接收方的不同, 分别进行加扰数据的发送和接收、 以及对应的接收后的对加扰数据的解 扰操作。 步骤 304 305为基站和用户设备进行信息交互的过程, 在时间 上并没有先后的限制。 在该带宽值的情况下, 也可以新定义子帧组 ( subframe group, SFG ) 和子帧组帧 ( subframe group frame,SFGF ) 。 此时多载波或窄带可以与 LTE共享载波或应用于专门的载波上如 200kHz的系统带宽的载波上。其 中子帧组帧由 a个子帧组组成, a为自然数。 子帧组由 b个子帧时间或 1 个 TTI时间组成, b为自然数 TTI时间可以是不同的子载波间隔分别对应 的 TTI时间或对应某一个子载波间隔对应的 TTI时间作为 TTI时间。 在 新定义的子帧组和子帧组帧下进行加扰初始化, 如在加扰初始化时使用
: 謹
子帧组编号值替换子帧编号值 子帧组和子帧组帧可以独立的定义。 可以针对一种 case定义子帧组 和子帧组帧。 如以 5ms的 TTI长度进行子帧组和子帧组编号的定义时如 下:
对于 5ms的 TTI长度时, 子帧组 2n-l和 2n对应着帧 n。 相应的子 帧组的编号为子帧组模 10 , 即子帧组 2n-l的编号为(2n-l)modl0 , 子帧组
2n 的编号为(2n)modl 0 , 则对信道或信号进行加扰初始化时 ;i2 的取值对 应着子帧组编号的值。 如应用于如下对 PDSCH的加 4尤初始化的公式中: cimt = - 2u + q - 213 + \ ns /2」 · 29 + f r PDSCH 类似的当 TTI为 10ms时, 帧号为 n, 子帧组编号为 n mod lO; 由于 TTI为帧长的整数倍, 其加扰初始化中的时隙编号可以根据帧 号来选取, 如 TTI编号为 SFN modl0。 在进行信道加扰的加扰初始化公 式中, 可以使用 SFN modlO 来替换现有的1 ·2』或 取值对应的是 SFN modlO得到的 10个 TTI中的 0〜19 RB/时隙 (一个 TTI中不同时间的 2 个 RB对应 2个时隙) 。 可选的当釆用多种 case时, 以一种 case定义子 帧组帧, 各个 case的子†贞组均在该子†贞组†贞下进行编号定义。 对 1TTI 包含 12个符号, 可以取值 60ms作为子帧组帧的时间, 各 case子帧组编号如表 13 :
Figure imgf000055_0001
表 13 不同扩展倍数下 TTI及对应的 CP长度
对 1TTI 包含 14个符号, 可以取值 72ms作为子帧组帧的时间, 各 case子帧组编号如表 14; 1TTI包含 14个符号的 子帧组帧为 72ms, 子 倍数和对应 CP ( CP长 帧组编号
度 3 ) 的时间 倍数为 1 ( Casel ) 6ms 0, 1, 2..., 11 倍数为 2 ( Case3 ) 12 ms 0, 1, 2... , 6 倍数为 3 ( Case5 ) 18 ms 0, 1, 2, 3, 4 倍数为 4 ( Case4 ) 24 ms 0, 1, 2 倍数为 6 ( Case2 ) 36 ms 0, 1 表 14 不同扩展倍数下 TTI及对应的 CP长度
对上述 2种情况, 在加扰初始化时使用子帧组编号值替换子帧编号
Figure imgf000056_0001
在定义子帧组和子帧组帧后, 接下来的步骤与前述相同, 即同样进 行加扰初始化、 获取加扰序列以及将待传输数据中的待加扰的比特数值 或经过编码的比特与加扰序列中的数值进行对应的加扰运算, 获取加扰 后的数据的步骤, 值得注意的是, 进行上述运算是, 其中的子帧要变成 子帧组, 对应的数据也会发生变化。
在针对 3.75KHZ的带宽时,优先考虑一个 TTI内包含的资源元素的 个数位于区间 132RE〜168RE上,因为这样有利于复用 LTE的资源粒度, 从而尽可能重用 LTE的调制编码方式。 与表 3类似, 针对 3.75KHz的带宽, 若表 15所示:
Figure imgf000057_0001
不同 case下对应的 RB及 TTI 以表 15的 easel为例, 进行 CP长度选取, 符号个数选取:
14个符号对应的时间为(1/3.75kHz)* 14=3.7333ms, 12个符号对应的 时间为(1/3.75kHz) * 12=3.2ms; 考虑复用 LTE的 CP时: 正常 CP:
14个符号对应的 CP时间为 (160+144*6)*2/(15kHz*2048)=0.0667ms 扩展 CP:
12个符号对应的 CP时间为 (512*6*2)/(15KHz*2048)=0.2ms 因此对于正常 CP (这里也称为 CP 长度 1 ) , TTI 的时间为 (l/3.75kHz)* 14+(160+144*6)*2/(15kHz*2048)=3.8ms„ 对于扩展 CP , 这里 称为 CP长度 2, TTI 的时间为 3.2+0.2=3.4ms。 相应于 CP长度 1和 CP长度 2, 复用现有 CP长度后的 TTI长度如 下表 16:
Figure imgf000058_0001
表 16 相应于 CP长度 1和 CP长度 2 , 复用现有 CP长度后的 TTI 长度
其中倍数与子载波个数有着对应关系,如倍数为 1对应 12个子载波, 倍数为 2对应 6个子载波, 倍数为 3对应 4个子载波, 倍数为 4对应 3 个子载波, 倍数为 6对应 2个子载波。
也可以考虑另外一种 CP长度, 即 CP长度 3 , 使得 TTI长度为整数 ms值。 考虑具有 14个符号的最接近的整数 ms值为 4ms, 对应的 CP3时 间为 0.019ms,而 0.019ms不能整除 l/(15kHz*2048)。 为此考虑 CP长度为 现有正常 CP即 CP1长度的倍数, 如下:
(1/3.75kHz)* 14+(160*4+144*6*4)*2/(15kHz*2048)=4ms„从该式中可 见, CP3为现有正常 CP长度的 4倍, 可以得到 14个符号的整数 ms的 TTI值。 可以看到 CP3的长度大于 CP2的长度, 因此 CP3与 CP2的存在 关系为或的关系。
类似的可以得到 CP长度 4为 CP2的 4倍后的 12个符号对应 TTI值 如下:
( l/3.75kHz)* 12+512*4* 12/(15kHz*2048)=4ms„ 相应于 CP长度 1和 CP长度 2, 复用现有 CP长度后的 TTI长度如 下表 17:
Figure imgf000059_0001
表 17 相应于 CP长度 1和 CP长度 2 , 复用现有 CP长度后的 TTI 长度 302、 基站根据确定的配置信息, 确定一个 RB内的子载波个数或一 个 TTI内的子载波个数, 并得到与不同子载波个数对应的 TTI, 进行加扰 初始化处理。 进行加扰初始化具体包括:
3021、 确定与当前带宽对应的加扰初始化时间参数, 其中的时间参 数具体包括 TTI的子帧编号或时隙编号。 例如, 该 TTI对应的子帧为帧 n的 0,1,2〜9和帧 n+1的 0,1 ; 相应的 时隙号为帧 n的 0〜19和帧 n+1 的 0〜3。 则加扰初始化中的¾取值为帧 n 的时隙 0, 1或 2者中的 1个。
3022、 确定标识信息: 用户设备标识 "皿 i、 小区 10取值 ^ , 码字 数值 q等。
3023、 根据已经确定的标识信息和加扰初始化时间参数, 确定在资 源单位中对待传输数据的加扰初始化的参数。
具体根据公式 cmit = "RNTI ' 214 + g ' 2134"s/2」.29 + A , 进行获取。 代入已 经确定的 ττι 中的时隙编号、 用户设备标识 "皿 i、 小区 10取值 ^11, 码 字数值 q, 得到与每个 TTI对应的加扰数值, 得到的加扰数值构成加扰初 始化的加扰序列。
进行具体的加扰初始化时 , 可以根据 TTI开始时对应的 LTE子帧或 TTI对应的第一个 LTE子帧的时隙号进行加扰初始化处理。 这种方法的 优点是不需要定义新的时间单位, 如多载波或窄带可以应用在与 LTE共 享现有载波。
303、基站将所述待传输数据中的待加扰的比特数值或经过编码的比 特与所述加扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。
由加扰初始化序列生成的序列为 LTE现有方法, 基本方法是使用这 个加扰初始化序列与另外一个已知序列经过一定移位后进行 mod2和。由 于具体的运算步骤已经公知, 这里就不在进行详述。
304、 用户设备接收基站发送的加扰的数据, 并根据上述加扰的逆运 算进行解扰, 获取解扰后的数据, 或用户设备直接接收数据。
305、 基站从用户设备接收加扰的数据, 并根据上述加扰的逆运算进 行解扰, 获取解扰后的数据, 或基站直接接收数据。 上述步骤 304 305是基站和用户设备根据发送方和接收方的不同, 分别进行加扰数据的发送和接收、 以及对应的接收后的对加扰数据的解 扰操作。 步骤 304 305为基站和用户设备进行信息交互的过程, 在时间 上并没有先后的限制。 在该带宽值的情况下, 也可以新定义子帧组 ( subframe group, SFG ) 和子帧组帧 ( subframe group frame,SFGF ) 。 此时多载波或窄带可以与 LTE共享载波或应用于专门的载波上如 200kHz的系统带宽的载波上。其 中子帧组帧由 a个子帧组组成, a为自然数。 子帧组由 b个子帧时间或 1 个 TTI时间组成, b为自然数 TTI时间可以是不同的子载波间隔分别对应 的 TTI时间或对应某一个子载波间隔对应的 TTI时间作为 TTI时间。 子帧组和子帧组帧可以独立的定义,如 10个子帧组组成 1个子帧组 帧。 当只釆用一种 case时 以该 case定义子帧组和子帧组帧。 当窄带嵌入到 LTE系统载波时, 窄带的子帧组和子帧组编号可以与 LTE现有帧号建立关系如以 5ms的 TTI长度进行子帧组和子帧组编号的 定义时, 并对应着现有系统的帧号时如下: 对于 5ms的 TTI长度时, 子帧组 2n-l和 2n对应着帧 n。 相应的子 帧组的编号为子帧组模 10 , 即子帧组 2n-l的编号为(2n-l)mo(UP , 子帧组 2n 的编号为(2n)modl 0 , 则对信道或信号进行加扰初始化时 ^的取值对 应着子帧组编号的值。 如应用于如下对 PDSCH的加 4尤初始化的公式中: cimt = - 2u + q - 213 + \ ns /2」 · 29 + f r PDSCH 类似的当 TTI为 10ms时, 帧号为 n, 子帧组编号为 n mod lO; 可选的当釆用多种 case 时, 以一种 case定义子帧组帧, 各个 case 的子帧组均在该子帧组帧下进行编号定义。 该子帧组帧可以具有独立的 编号。 各 case子载波的最小公倍数为 12 , 因此取倍数为 12时的时间作为 子帧组帧的时间。 对于
1 TTI包含 12个符号, 则取值 40.8ms作为子帧组帧的时间, 各 case 子帧组编号如表 18:
Figure imgf000062_0001
表 18 取值 40.8ms作为子帧组帧的时间, 各 case子帧组编号 各 case子载波的最小公倍数为 12 , 因此取倍数为 12时的时间作为 子帧组帧的时间。 对于
1 TTI包含 14个符号 , 则取值 45.6ms作为子帧组帧的时间 , 各 case 子帧组编号如下表 19:
1TTI包含 14个符号的 子帧组帧为 72ms, 子 倍数和对应 CP ( CP长 帧组编号
度 1 ) 的时间 倍数为 1 ( Casel ) 3.8ms 0, 1, 2..., 11 倍数为 2 ( Case3 ) 7.6 ms 0, 1, 2... , 6 倍数为 3 ( Case5 ) 11.4 ms 0, 1, 2, 3, 4 倍数为 4 ( Case4 ) 15.2 ms 0, 1, 2 倍数为 6 ( Case2 ) 22.8 ms 0, 1 表 19 取值 45.6ms作为子帧组帧的时间, 各 case子帧组编号 各 case子载波的最小公倍数为 12, 因此取倍数为 12时的时间作为 子帧组帧的时间。 对于
1TTI 包含 14个符号, 则取值 48ms作为子帧组帧的时间, 各 case 子帧组编号如表 20:
1TTI包含 14个符号的 子帧组帧为 72ms, 子 倍数和对应 CP ( CP长 帧组编号
度 3 ) 的时间 倍数为 1 ( Casel ) 4ms 0, 1, 2..., 11 倍数为 2 ( Case3 ) 8 ms 0, 1, 2... , 6 倍数为 3 ( Case5 ) 12 ms 0, 1, 2, 3, 4 倍数为 4 ( Case4 ) 16 ms 0, 1, 2 倍数为 6 ( Case2 ) 24ms 0, 1 表 20 取值 48ms作为子帧组帧的时间, 各 case子帧组编号 各 case子载波的最小公倍数为 12, 因此取倍数为 12时的时间作为 子帧组帧的时间。 对于
1TTI 包含 12个符号, 则取值 48ms作为子帧组帧的时间, 各 case 子帧组编号如表 21:
1TTI包含 12个符号的 子帧组帧为 72ms, 子 倍数和对应 CP ( CP长 帧组编号
度 4 ) 的时间 倍数为 1 ( Casel ) 4ms 0, 1, 2..., 11 倍数为 2 ( Case3 ) 8 ms 0, 1, 2... , 6 倍数为 3 ( Case5 ) 12 ms 0, 1, 2, 3, 4 倍数为 4 ( Case4 ) 16 ms 0, 1, 2 倍数为 6 ( Case2 ) 24ms 0, 1 表 21 取值 48ms作为子帧组帧的时间, 各 case子帧组编号 对上述 4种情况, 在加扰初始化时使用子帧组编号值替换子帧编号
在定义子帧组和子帧组帧后, 接下来的步骤与前述相同, 即同样进 行加扰初始化、 获取加扰序列以及将待传输数据中的待加扰的比特数值 或经过编码的比特与加扰序列中的数值进行对应的加扰运算, 获取加扰 后的数据的步骤, 值得注意的是, 进行上述运算是, 其中的子帧要变成 子帧组, 对应的数据也会发生变化。 本发明实施例提供一种窄带传输的方法,通过针对多载波中 15KHz、 1.25 KHz, 2.5 KHz, 3.75 KHz四种典型的窄带带宽值下, 对不同数目的 子载波及对应的子帧个数进行计算, 进而基站和用户设备根据不同的子 得到的加扰初始化序列与待传输的数据进行特定运算进一步获取到加扰 后的数据, 最终将加扰后的数据进行发送, 当基站和用户设备在接收到 加扰的数据后, 还可以根据加扰的逆运算进行解扰, 最终获取到解扰后 的数据, 从而可以降低数据传输过程中的噪声功率, 进而提高了信噪比, 使得在使用窄带宽传输数据的情况下能够显著提高信号的覆盖范围和覆 盖强度, 从而使用远低于现有技术中的重复传输次数传输数据, 提高通 信资源的使用效率。
前面的实施例是分别对单载波和多载波的情况下,针对 15KHz、 1.25 KHz, 2.5 KHz, 3.75 KHz四种典型的窄带带宽值进行数据加扰的操作, 并且其中还提出了子帧组和子帧组帧的新概念, 以及对二者的使用方法, 下边则从具体的如何在窄带资源上进行上行和 /或下行数据传输进行说 明。
本发明实施例提供一种窄带传输的方法, 如图 4所示, 该方法包括: 用户设备使用独立的窄带资源或使用关联的载波根据配置信息在窄 带资源上进行上行和 /或下行数据的传输。
当用户设备使用独立的窄带资源进行上行和 /或下行数据的传输时, 如图 4所示, 该方法包括:
401、 用户设备根据配置信息获取预定义的内容。
402、 用户设备根据预定义的内容, 进行上、 下行同步。
403、 用户设备获取系统消息, 并根据系统消息进行上行和 /或下行 数据传输。
示例性的, 针对使用独立的窄带资源, 有如下描述:
首先, 用户设备根据配置信息, 获取下行使用 LTE宽带载波 6RB , 上行使用 15KHz的子载波间隔、 子载波个数可以为 1、 2、 3、 4、 6个的 内容。
其次, 用户设备根据之前获取到的内容, 进行上下行同步。 再次, 用户设备获取系统消息, 根据下行的信道质量如 RSRP值位 于不同的区间, 进行相应子载波个数的选择, 如覆盖需要达 20dB 的增 强选择 1个子载波, 最终, 用户设备根据对应的随机接入格式如随机接入 TTI包含的符 号数和保护时间进行上行的随机接入。 当用户设备使用关联的载波进行上行和 /或下行数据的传输时,如图
5所示, 该方法包括:
501、 用户设备根据接收到的配置信息, 获取配置信息中的时域资源 和 /或频域资源。 其中时域资源包括传输数据使用的帧以及子帧, 频域资源包括子载 波间隔、 子载波个数、 绝对无线频率信道号 ARFCN、 窄带资源在资源 块 RB中的位置以及 RB的位置中的至少一个。
502、 用户设备根据获取到的配置信息, 完成网络接入。 其中, 网络接入具体包括网络下行同步、 系统消息读取、 上行同步。
503、 用户设备在完成网络接入后, 根据配置信息中的时域资源或 频域资源的内容, 确定窄带在系统带宽和 RB内的具体位置, 并根据确 定的系统带宽和 RB内的具体位置的窄带载波上进行数据传输。 这里以频域资源中的 ARFCN值为例进行详细说明 ,
5031、 用户通过相关联的宽带载波或窄带载波, 获取到待进行数据 传输的窄带载波的 ARFCN值, 该 ARFCN值用于描述用于传输数据的 窄带的频率信息;
5032、 用户设备根据 ARFCN值确定的窄带的频率信息, 在窄带上进 行上行和 /或下行数据传输。
504、 用户设备还从基站接收调度信息, 并根据调度信息在窄带上进 行上行和 /或下行数据传输。 具体的, 接收调度信息可以从用于传输数据的窄带中获取、 或从除 传输数据之外的窄带中获取、 或从宽带载波中获取, 具体获取的方式在 这里并不限定。 上述步骤 504是根据调度信息, 来确定上、 下行数据的传输方式, 其中包括随机接入与调度接入两种接入方式, 具体的可以在上行数据传 输时釆用随机接入的方式, 对应的在下行数据传输时釆用调度接入的方 式; 也可以相反的, 在上行数据传输时釆用调度接入的方式, 对应的在 下行数据传输时釆用随机接入的方式。 示例性的, 针对上述使用关联载波进行数据传输, 进行说明。 预定义窄带使用 2.5KHz的子载波, 子载波个数为 12个, 则整体的 窄带带宽为 2.5KHz* 12=30KHz, 则一个 RB中包含 6个窄带载波。 首先, 用户设备在 LTE载波下完成网络接入, 具体的包括网络下行 同步、 系统信息读取、 网络上行同步。 其次, 用户设备根据配置信息中的具体内容, 获取窄带载波位于系 统带宽中的 RB的位置和窄带位于的 RB的位置, 并在确定的窄带中进 行数据传输。 例如配置信息中指出窄带载波位于 RB中的序号为 0的窄带, 就使 用 RB中序号为 0的窄带载波传输数据。 再次, 用户设备还会接收来自基站的调度信息, 这里的接收调度信 息可以有三种方式, 分别是从用于传输数据的窄带载波、 除传输数据的 窄带载波外的窄带载波、 或宽带载波。 最终, 用户设备根据配置信息中确定的窄带载波和调度信息, 进行 上行和 /或下行数据的传输。 本发明实施例提供一种窄带传输的方法,用户设备根据配置信息中时 域或频域中的内容, 选择独立的窄带资源或关联的载波配置进行窄带的接 入, 并在确定的窄带资源上进行上行和 /或下行的数据传输, 从而可以降低 数据传输过程中的噪声功率, 进而提高了信噪比, 使得在使用窄带宽传输 数据的情况下能够显著提高信号的覆盖范围和覆盖强度, 从而使用远低于 现有技术中的重复传输次数传输数据, 提高通信资源的使用效率 本发明实施例提供一种窄带传输的设备 1 , 如图 6 所示, 该设 备 1 包括:
第一确定单元 11 , 用于确定当前使用的带宽值, 并根据所述带宽值 确定资源单位在时域和 /或频域中的配置信息, 其中, 所述当前使用的带 宽值为等于或小于 180KHz的窄带带宽值; 第一传输单元 12 , 用于将所述资源单位在时域和 /或频域中的配置信 息发送至用户设备, 使得所述用户设备根据所述配置信息进行上行和 /或 下行数据的传输。
其中第一确定单元 11 中的配置信息具体包括:
针对所述确定的资源单位进行具体配置的参数, 其中所述参数为至 少包括 ARFCN、 RB位置, 窄带在 RB中的位置、 调度信息、 子载波个数 的频域信息; 和 /或 至少包括传输时间间隔 TTI 长度、 子帧组长度、 子帧位置、 帧位置 中的一种的时域信息。 该设备 1 除包括上述单元外, 还包括:
第一发送单元 13 , 用于将待发送的数据按照所述配置信息进行加扰 处理, 并将加扰后的数据发送至用户设备; 和 /或 第一接收单元 14 , 用于从所述用户设备接收加扰后的数据, 对所述 加扰后的数据根据所述配置信息进行解扰处理, 获取解扰后的数据。 在设备 1 中, 配置信息是通过信令发送至所述用户设备。
上述第一确定单元 11具体用于:
根据所述当前使用的带宽值, 确定所述带宽值对应的所述 TTI 长度 或子帧组长度。
第一发送单元 13具体用于:
确定与所述当前使用的带宽值对应的在资源单位中待传输数据的加 扰初始化时间参数;
确定所述资源单位的标识信息; 根据所述资源单位的标识信息和加扰初始化时间参数, 确定在所述 资源单位中所述待传输数据的加扰初始化的参数。 除上述步骤外, 第一发送单元 13还用于获取 LTE中的子帧编号或 时隙编号; 结合将所述子帧编号或时隙编号, 确定在所述资源单位中所述待传 输数据的加扰初始化的时间参数。
设备 1 中的第一确定单元 12具体用于:
根据所述当前使用的带宽值, 确定与所述带宽值对应的子载波数目 以及与所述子载波数目对应的符号数; 根据所述确定的子载波数目 以及与所述子载波数目对应的符号数, 获取与所述子载波数目对应的 CP , 所述 CP包括正常 CP和 /或扩展 CP。
在设备 1 中, 当前使用的带宽对应一个或多个子载波的频域宽度, 与所述子载波的频域宽度对应的子载波间隔至少为 15KHz或 3.75KHz或 2.5KHz或 1.25KHZ中的一种。
除上述单元外, 该设备 1还包括:
CP扩展单元 15 , 用于根据所述 TTI长度、 子帧组长度, 获取与所述 子帧结构对应的 CP , 所述 CP包括正常 CP和 /或扩展 CP , 以及一个所述 TTI内包含的符号个数。 该 CP扩展单元 15 , 还用于根据所述一个 TTI 内包含的符号个数, 对所述正常 CP进行预设倍数的扩展, 得到扩展后的第二正常 CP , 和 /或 对所述扩展 CP进行预设倍数的扩展, 得到扩展后的第二扩展 CP , 其中 所述预设倍数为不等于零的自然数。 进一步的, 在 CP扩展单元 15 中仅保留所述第二扩展 CP与所述第 三正常 CP中与 LTE协议中相同的值。
在该设备中, 第一发送单元 13还用于:
若釆用的是 TTI 的子帧编号或时隙编号, 则将选取所述子帧编号或 时隙编号作为 NS或 L«s/2」的值,并代入到 cinit
Figure imgf000070_0001
- 29 + 中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值 构成加扰初始 4匕的加扰序列; 或
若釆用的是 LTE 中的帧号, 则将系统帧号 SFNmodlO , 得到与所述 系统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L«s/2」的值, 并带 入到 cinit = · 214 + g · 213 + k /2」 · 29 + A 中, 得到与每个所述子帧编号或时隙 编号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或 若釆用的是所述 TTI开始或结束时对应的所述 LTE子帧的时隙号或 子帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L«s/2」的值, 并代 入到 cinit 214 + g · 213 + L"s /2」 · 29 + A 中, 得到与每个所述子帧编号或时 隙编号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。
进一步的, 第一发送单元 13还用于包括: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述 加扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。
在设备 1 中的配置信息中, 相邻的两个时隙中的子载波处于不同的 频率。
进一步的, 第一确定单元 11还用于: 定义子帧组和子帧组帧, 所述子帧组帧由预设数目的所述子帧组组 成, 所述子帧组由所述预定数目的子帧时间或 TTI 时间组成, 其中所述 TTI时间为一个所述子载波间隔对应的 TTI时间组成,所述预定数目为不 为零的自然数。 综上所述, 在设备 1 中, 发送配置消息通过信令发送, 所述信令 为 RRC信令或 MAC CE信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。 在本设备 1 中,针对常用的 15KHz 1.25KHz 2.5KHz 3.75KHz, 上述描述均是针对最小单位为一个子帧的情况, 与之不同的, 这里 还可以定义子帧组 (子帧 group , SFG ) 和子帧组帧 (子帧 group frame , SFGF ) , 子帧组帧由预设数目 的子帧组组成, 子帧组由预 定数目的子帧时间或 TTI时间组成,其中所述 TTI时间一个所述子 载波间隔对应的 TTI时间组成, 所述预定数目为不为零的自然数。 进一步的, 子帧组帧由 a个子帧组组成, a为 自然数。 子帧组 由 b个子帧时间或 1个 TTI时间组成, b为 自然数 TTI时间可以是 不同的子载波间隔分别对应各自的 TTI 时间或对应某一个子载波 间隔对应的 TTI时间作为 TTI时间。在新定义的子帧组和子帧组帧 下进行加扰初始化,如在加扰初始化时使用子帧组编号值替换子帧 编号值 d。 子帧组和子帧组帧可以独立的定义, 如 10个子帧组组 成 1 个子帧组帧。 则每个子帧组或 TTI为 45.6ms时, 子帧组帧为 456ms , 相应的子帧组的编号为 0〜9。 在定义子帧组和子帧组帧后, 接下来的步骤与前述相同, 即同 样进行加扰初始化、获取加扰序列以及将待传输数据中的待加扰的 比特数值或经过编码的比特与加扰序列中的数值进行对应的加扰 运算, 获取加扰后的数据的步骤,值得注意的是, 进行上述运算是, 其中的子帧要变成子帧组, 对应的数据也会发生变化。
值得一提的是, 当釆用 GMSK ( Gaussian minimum shift keying, 高斯 最小频移键控)调制时, 由于 GMSK调制后引入了相邻符号间的干扰, 因 此不需要再为其设置 CP。 因此基于 GMSK调制时的 TTI可以包含 15* 10 个符号, 此时一个子帧 ( 1ms ) 包括 15个符号。 在针对不同的带宽时, 优先考虑一个 TTI 内包含的资源元素的个数 位于区间 132RE〜168RE上, 因为这样有利于复用 LTE调度资源粒度, 从 而尽可能重用 LTE已有的调制编码方式。 本发明实施例提供一种窄带传输的设备, 通过确定当前使用的带宽 值, 确定资源单位在时域和 /或频域中的配置信息, 接着将确定的配置信 息发送至用户设备,使得用户设备可以根据配置信息在窄带资源上进行上 行和 /或下行数据传输, 从而可以降低数据传输过程中的噪声功率, 进而提 高了信噪比, 使得在使用窄带宽传输数据的情况下能够显著提高信号的覆 盖范围和覆盖强度,从而使用远低于现有技术中的重复传输次数传输数据, 提高通信资源的使用效率。 本发明实施例还提供一种窄带传输的设备 2 , 如图 7所示, 该设备 2 包括:
第二传输单元 21 , 用于接收基站发送的资源单位在时域和 /或频域中 的配置信息, 并根据所述配置信息在窄带资源上进行上行和 /或下行数据 的传输, 其中, 所述窄带是当前使用的带宽值为等于或小于 180KHz的带 宽值。
上述第二传输单元 21 中的配置信息包括: 针对所述确定的资源单位进行具体配置的参数, 其中所述参数为至 少包括 ARFCN、 RB位置, 窄带在 RB中的位置, 调度信息、 子载波个数, 子载波间隔中的一种的频域信息; 和 /或 至少包括传输时间间隔 TTI 长度、 子帧组长度、 子帧位置、 帧位置 中的一种的时域信息。 设备 2还包括: 第二接收单元 22 , 用于接收所述基站发送的根据所述配置信息加扰 的数据, 根据所述配置信息进行解扰后, 获取解扰后的数据; 或 第二发送单元 23 , 用于将待发送的数据按照所述配置信息进行加扰 处理, 并将加扰后的数据发送至所述基站。 在上述单元中, 配置信息是通过接收所述基站发送的信令获取到的。 第二传输单元 21还用于: 使用独立的窄带资源或使用关联的载波根据所述配置信息在窄带资 源上进行窄带时域或频域的资源配置。 在上述基础上, 第二传输单元 21具体用于: 根据所述配置信息中预定义的内容, 在窄带资源上进行上行和 /或下 行数据传输。 进一步的, 第二传输单元 21还用于: 根据接收到的所述配置信息, 获取所述配置信息中的时域资源和 /或 频域资源, 其中, 所述时域资源包括传输数据使用的帧以及子帧, 所述频 域资源包括子载波间隔、 子载波个数、 绝对无线频率信道号 ARFCN值、 窄带资源在资源块 RB中的位置以及 RB的位置中的至少一个。 当所述频率资源包括 ARFCN值时, 所述设备具体用于: 获取所述 ARFCN值, 所述 ARFCN值用于描述用于传输数据的窄带 的频率信息; 根据所述 A RF C N值确定的所述窄带的频率信息,在所述窄带上进行 上行和 /或下行数据传输。 除上述步骤外, 设备 2还用于: 从所述基站接收调度指示信息后, 根据所述调度指示信息在所述确 定的窄带资源上进行上行和 /或下行数据传输。 从所述传输数据的窄带载波中获取、 或从除所述传输数据的窄带外 载波的窄带载波中获取、 或从宽带载波中获取。 进一步的, 在设备 2 中, 所述上行数据传输基于随机接入的方式, 所述下行数据传输基于所述调度信息指示的方式; 或 所述上行数据传输基于所述调度信息指示的方式, 所述下行数据传 输基于随机接入的方式。 除上述步骤外, 设备 2还用于: 定义子帧组和子帧组帧, 所述子帧组帧由预设数目的所述子帧组组 成, 所述子帧组由所述预定数目的子帧时间或 TTI 时间组成, 其中所述 TTI时间为一个所述子载波间隔对应的 TTI时间组成,所述预定数目为不 为零的自然数。 进一步的, 根据所述定义的子帧组和所述子帧组帧, 进行所述加扰 初始化。 在上述基础上, 该设备 2若釆用的是 TTI的子帧编号或时隙编号, 则将选取所述子帧编号或时隙编号作为 Ns 或 L"s/2」的值, 并代入到 cinit
Figure imgf000075_0001
+ N^1中, 得到与每个所述子帧编号或时隙编 号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列; 或 若釆用的是 LTE 中的帧号, 则将系统帧号 SFNmodlO , 得到与所述 系统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L"s /2」的值, 并带 入到 cinit = nmTi - 2U + q - 2n
Figure imgf000075_0002
+ 中,得到与每个所述子帧编号或时隙 编号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或 若釆用的是所述 TTI开始或结束时对应的所述 LTE子帧的时隙号或 子帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L"s /2」的值, 并代 入到 cinit = · 214 + g · 213 + L"s /2」 · 29 + A 中, 得到与每个所述子帧编号或时 隙编号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。 除上述步骤外, 设备 2还用于: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述 加扰序列中的数值进行对应的加扰运算, 获取加扰后的数据 综上所示,在设备 2中发送配置消息通过信令发送,所述信令为 RRC 信令或 MAC CE信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组 合。 在本设备 2中,针对常用的 15KHz、 1.25KHz、 2.5KHz、 3.75KHz, 上述描述均是针对最小单位为一个子帧的情况, 与之不同的, 这里 还可以定义子帧组 (子帧 group , SFG ) 和子帧组帧 (子帧 group frame , SFGF ) , 子帧组帧由预设数目 的子帧组组成, 子帧组由预 定数目 的子帧时间或 TTI时间组成,其中所述 TTI时间一个所述子 载波间隔对应的 TTI时间组成, 所述预定数目为不为零的自然数。 进一步的, 子帧组帧由 a个子帧组组成, a为 自然数。 子帧组 由 b个子帧时间或 1个 TTI时间组成, b为 自然数 TTI时间可以是 不同的子载波间隔分别对应各自的 TTI 时间或对应某一个子载波 间隔对应的 TTI时间作为 TTI时间。在新定义的子帧组和子帧组帧 下进行加扰初始化,如在加扰初始化时使用子帧组编号值替换子帧 编号值 1^。 子帧组和子帧组帧可以独立的定义, 如 10个子帧组组 成 1 个子帧组帧。 则每个子帧组或 TTI为 45.6ms时, 子帧组帧为 456ms , 相应的子帧组的编号为 0〜9。 在定义子帧组和子帧组帧后, 接下来的步骤与前述相同, 即同 样进行加扰初始化、 获取加扰序列以及将待传输数据中的待加扰的 比特数值或经过编码的比特与加扰序列中的数值进行对应的加扰运 算, 获取加扰后的数据的步骤, 值得注意的是, 进行上述运算是, 其中的子帧要变成子帧组, 对应的数据也会发生变化。
值得一提的是, 当釆用 GMSK ( Gaussian minimum shift keying, 高斯 最小频移键控)调制时, 由于 GMSK调制后引入了相邻符号间的干扰, 因 此不需要再为其设置 CP。 因此基于 GMSK调制时的 TTI可以包含 15* 10 个符号, 此时一个子帧 ( 1ms ) 包括 15个符号。 在针对不同的带宽时, 优先考虑一个 TTI 内包含的资源元素的个数 位于区间 132RE〜168RE上, 因为这样有利于复用 LTE调度资源粒度, 从 而尽可能重用 LTE已有的调制编码方式。 本发明实施例提供一种窄带传输的设备, 基站通过确定当前使用的 带宽值, 确定资源单位在时域和 /或频域中的配置信息, 接着从基站获取 将确定的配置信息, 并根据配置信息在窄带资源上进行上行和 /或下行数 据传输, 从而可以降低数据传输过程中的噪声功率, 进而提高了信噪比, 使得在使用窄带宽传输数据的情况下能够显著提高信号的覆盖范围和覆 盖强度, 从而使用远低于现有技术中的重复传输次数传输数据, 提高通信 资源的使用效率。
本发明实施例提供一种基站 3 , 如图 8所示, 该基站包括总线 31 ; 以及连接到总线 31的存储器 32、 处理器 33、 接收器 34和发射器 35 , 其 中存储器 32用于存储相关指令, 处理器 33用于确定当前使用的带宽值, 并根据所述带宽值确定资源单位在时域和 /或频域中的配置信息, 其中, 所述当前使用的带宽值为等于或小于 180KHz 的窄带带宽值; 发射器 35 用于将所述资源单位在时域和 /或频域中的配置信息发送至用户设备, 使 得所述用户设备根据所述配置信息进行上行和 /或下行数据的传输。 在本发明实施例中, 可选的, 其中的配置信息具体包括:
针对所述确定的资源单位进行具体配置的参数, 其中所述参数为至 少包括 ARFCN、 RB位置, 窄带在 RB中的位置、 调度信息、 子载波个数 的频域信息; 和 /或 至少包括传输时间间隔 TTI 长度、 子帧组长度、 子帧位置、 帧位置 中的一种的时域信息。 发射器 35还用于将待发送的数据按照所述配置信息进行加扰处理, 并将加扰后的数据发送至用户设备; 和 /或 接收器 34 , 用于从所述用户设备接收加扰后的数据, 对所述加扰后 的数据根据所述配置信息进行解扰处理, 获取解扰后的数据。 其中的配置信息是通过信令发送至所述用户设备。 进一步的, 处理器 33还用于: 根据所述当前使用的带宽值, 确定所述带宽值对应的所述 TTI 长度 或子帧组长度。 发射器 35还用于: 确定与所述当前使用的带宽值对应的在资源单位中待传输数据的加 扰初始化时间参数; 确定所述资源单位的标识信息;
根据所述资源单位的标识信息和加扰初始化时间参数, 确定在所述 资源单位中所述待传输数据的加扰初始化的参数。 发射器 35还用于: 获取 LTE中的子帧编号或时隙编号; 结合将所述子帧编号或时隙编号, 确定在所述资源单位中所述待传 输数据的加扰初始化的时间参数。 在基站 2中, 处理器 33还用于: 根据所述当前使用的带宽值, 确定与所述带宽值对应的子载波数目 以及与所述子载波数目对应的符号数; 根据所述确定的子载波数目 以及与所述子载波数目对应的符号数, 获取与所述子载波数目对应的 CP, 所述 CP包括正常 CP和 /或扩展 CP。 在基站 3 中, 所述当前使用的带宽对应一个或多个子载波的频域宽 度,与所述子载波的频域宽度对应的子载波间隔至少为 15KHz或 3.75KHz 或 2.5KHz或 1.25KHZ中的一种。 处理器 33还用于: 根据所述 TTI长度、 子帧组长度, 获取与所述子帧结构对应的 CP, 所述 CP包括正常 CP和 /或扩展 CP, 以及一个所述 TTI内包含的符号个 数。 进一步的, 处理器 33还用于根据所述一个 TTI内包含的符号个数, 对所述正常 CP进行预设倍数的扩展, 得到扩展后的第二正常 CP, 和 /或 对所述扩展 CP进行预设倍数的扩展, 得到扩展后的第二扩展 CP, 其中 所述预设倍数为不等于零的自然数。 根据处理器 33的动作, 在基站 2中仅保留所述第二扩展 CP与所述 第三正常 CP中与 LTE协议中相同的值。 更进一步的, 第一处理器 33具体用于: 若釆用的是 TTI 的子帧编号或时隙编号, 则将选取所述子帧编号或 时隙编号作为 NS或 L"S /2」的值,并代入到 -2u +q-213 +[ns/2]-29 + N^1 中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值 构成加扰初始 4匕的加扰序列; 或 若釆用的是 LTE 中的帧号, 则将系统帧号 SFNmodlO, 得到与所述 系统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L"s/2」的值, 并带 入到 cinit = nmTi -214+ -213 +k/2j-29 + N^11中,得到与每个所述子帧编号或时隙 编号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或 若釆用的是所述 TTI开始或结束时对应的所述 LTE子帧的时隙号或 子帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L"s/2」的值, 并代 入到 cinit -2u +q-213 +[ns/2]-29 + N^1中, 得到与每个所述子帧编号或时 隙编号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。 发射器 35还用于: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述 加扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。 在基站 3 中: 在所述配置信息中, 相邻的两个时隙中的子载波处于 不同的频率。 处理器 33还用于: 定义子帧组和子帧组帧, 所述子帧组帧由预设数目的所述子帧组组 成, 所述子帧组由所述预定数目的子帧时间或 TTI 时间组成, 其中所述 TTI时间为一个所述子载波间隔对应的 TTI时间组成,所述预定数目为不 为零的自然数。 综上所述, 在基站 3 中, 发送配置消息通过信令发送, 所述信令为 RRC信令或 MAC CE信令或 PDCCH信令或 EPDCCH信令或它们中的 2 者组合。 在基站 3 中, 针对常用的 15KHz、 1.25KHz、 2.5KHz、 3.75KHz, 上述描述均是针对最小单位为一个子帧的情况, 与之不同的, 这里 还可以定义子帧组 (子帧 group , SFG ) 和子帧组帧 (子帧 group frame , SFGF ), 子帧组帧由预设数目 的子帧组组成, 子帧组由预 定数目 的子帧时间或 TTI时间组成,其中所述 TTI时间一个所述子 载波间隔对应的 TTI时间组成, 所述预定数目为不为零的自然数。 进一步的, 子帧组帧由 a个子帧组组成, a为 自然数。 子帧组 由 b个子帧时间或 1个 TTI时间组成, b为 自然数 TTI时间可以是 不同的子载波间隔分别对应各自的 TTI 时间或对应某一个子载波 间隔对应的 TTI时间作为 TTI时间。在新定义的子帧组和子帧组帧 下进行加扰初始化,如在加扰初始化时使用子帧组编号值替换子帧 编号值 ^1 "。 子帧组和子帧组帧可以独立的定义, 如 10个子帧组组 成 1 个子帧组帧。 则每个子帧组或 ΤΤΙ为 45.6ms时, 子帧组帧为 456ms , 相应的子帧组的编号为 0〜9。 在定义子帧组和子帧组帧后, 接下来的步骤与前述相同, 即同 样进行加扰初始化、 获取加扰序列以及将待传输数据中的待加扰的 比特数值或经过编码的比特与加扰序列中的数值进行对应的加扰运 算, 获取加扰后的数据的步骤, 值得注意的是, 进行上述运算是, 其中的子帧要变成子帧组, 对应的数据也会发生变化。 值得一提的是, 当釆用 GMSK ( Gaussian minimum shift keying, 高斯 最小频移键控)调制时, 由于 GMSK调制后引入了相邻符号间的干扰, 因 此不需要再为其设置 CP。 因此基于 GMSK调制时的 TTI可以包含 15* 10 个符号, 此时一个子帧 ( 1ms ) 包括 15个符号。 在针对不同的带宽时, 优先考虑一个 TTI 内包含的资源元素的个数 位于区间 132RE〜168RE上, 因为这样有利于复用 LTE调度资源粒度, 从 而尽可能重用 LTE已有的调制编码方式。 本发明实施例提供一种基站, 通过确定当前使用的带宽值, 确定资 源单位在时域和 /或频域中的配置信息, 接着将确定的配置信息发送至用 户设备, 使得用户设备可以根据配置信息在窄带资源上进行上行和 /或下 行数据传输,从而可以降低数据传输过程中的噪声功率, 进而提高了信噪 比,使得在使用窄带宽传输数据的情况下能够显著提高信号的覆盖范围和 覆盖强度,从而使用远低于现有技术中的重复传输次数传输数据,提高通 信资源的使用效率。 本发明实施例提供一种用户设备 4 , 该用户设备 4 包括总线 41 ; 以 及连接到总线 41的存储器 42、 处理器 43、 接收器 44和发射器 45 , 其中 存储器 42用于存储相关指令,处理器 43用于接收基站发送的资源单位在 时域和 /或频域中的配置信息, 并根据所述配置信息在窄带资源上进行上 行和 /或下行数据的传输, 其中, 所述窄带是当前使用的带宽值为等于或 小于 180KHz的带宽值。 在本发明实施例中, 可选的, 处理器 43中的配置信息具体包括: 针对所述确定的资源单位进行具体配置的参数, 其中所述参数为至 少包括 ARFCN、 RB位置, 窄带在 RB中的位置, 调度信息、 子载波个数, 子载波间隔中的一种的频域信息; 和 /或 至少包括传输时间间隔 TTI 长度、 子帧组长度、 子帧位置、 帧位置 中的一种的时域信息。 接收器 44 ,用于接收所述基站发送的根据所述配置信息加扰的数据, 根据所述配置信息进行解扰后, 获取解扰后的数据; 或 发射器 45 , 用于将待发送的数据按照所述配置信息进行加扰处理, 并将加扰后的数据发送至所述基站。 其中的配置信息是通过接收所述基站发送的信令获取到的。 处理器 43还用于: 使用独立的窄带资源或使用关联的载波根据所述配置信息在窄带资 源上进行窄带时域或频域的资源配置。 处理器 43具体用于: 根据所述配置信息中预定义的内容, 在窄带资源上进行上行和 /或下 行数据传输。 根据接收到的所述配置信息, 获取所述配置信息中的时域资源和 /或 频域资源, 其中, 所述时域资源包括传输数据使用的帧以及子帧, 所述频 域资源包括子载波间隔、 子载波个数、 绝对无线频率信道号 ARFCN值、 窄带资源在资源块 RB中的位置以及 RB的位置中的至少一个。 其中, 当所述频率资源包括 ARFCN值时, 该用户设备还用于: 获取所述 ARFCN值, 所述 ARFCN值用于描述用于传输数据的窄带 的频率信息; 根据所述 A RF C N值确定的所述窄带的频率信息,在所述窄带上进行 上行和 /或下行数据传输。 结合上述步骤, 用户设备 4还用于: 从所述基站接收调度指示信息后, 根据所述调度指示信息在所述确 定的窄带资源上进行上行和 /或下行数据传输。 其中的接收调度指示信息还包括: 从所述传输数据的窄带载波中获取、 或从除所述传输数据的窄带外 载波的窄带载波中获取、 或从宽带载波中获取。 在用户设备 4中: 所述上行数据传输基于随机接入的方式, 所述下行数据传输基于所 述调度信息指示的方式; 或 所述上行数据传输基于所述调度信息指示的方式, 所述下行数据传 输基于随机接入的方式。 进一步的, 用户设备 4还用于: 定义子帧组和子帧组帧, 所述子帧组帧由预设数目的所述子帧组组 成, 所述子帧组由所述预定数目的子帧时间或 TTI 时间组成, 其中所述 TTI时间为一个所述子载波间隔对应的 TTI时间组成,所述预定数目为不 为零的自然数。 处理器 43还用于: 根据所述定义的子帧组和所述子帧组帧, 进行所 述加 4尤初始化。 除上述步骤外, 处理器 43还用于: 若釆用的是 TTI 的子帧编号或时隙编号, 则将选取所述子帧编号或 时隙编号作为 Ns或 L"S /2」的值,并代入到 · 214 + g · 213 + L"s /2」 · 29 + A 中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值 构成加扰初始 4匕的加扰序列; 或 若釆用的是 LTE 中的帧号, 则将系统帧号 SFNmodlO , 得到与所述 系统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L"s/2」的值, 并带 入到 cinit = nmTi - 2U + q - 2n
Figure imgf000083_0001
+ 中,得到与每个所述子帧编号或时隙 编号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或 若釆用的是所述 TTI开始或结束时对应的所述 LTE子帧的时隙号或 子帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L"s/2」的值, 并代 入到 cinit - 214 + q - 213 + [ns /2] - 29 + N^1中, 得到与每个所述子帧编号或时 隙编号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。 更进一步的, 处理器 43还用于: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述 加扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。 综上, 在用户设备 4 中, 发送配置消息通过信令发送, 所述信令为 RRC信令或 MAC CE信令或 PDCCH信令或 EPDCCH信令或它们中的 2 者组合。 在用户设备 4 中, 针对常用的 15KHz、 1.25KHz、 2.5KHz、 3.75KHz, 上述描述均是针对最小单位为一个子帧的情况, 与之不 同的, 这里还可以定义子帧组(子帧 group , SFG )和子帧组帧(子 帧 group frame , SFGF ) , 子帧组帧由预设数目 的子帧组组成, 子 帧组由预定数目 的子帧时间或 TTI时间组成,其中所述 TTI时间一 个所述子载波间隔对应的 TTI时间组成,所述预定数目为不为零的 自然数。 进一步的, 子帧组帧由 a个子帧组组成, a为 自然数。 子帧组 由 b个子帧时间或 1个 TTI时间组成, b为 自然数 TTI时间可以是 不同的子载波间隔分别对应各自的 TTI 时间或对应某一个子载波 间隔对应的 TTI时间作为 TTI时间。在新定义的子帧组和子帧组帧 下进行加扰初始化,如在加扰初始化时使用子帧组编号值替换子帧 编号值 ^7。 子帧组和子帧组帧可以独立的定义, 如 10个子帧组组 成 1 个子帧组帧。 则每个子帧组或 TTI为 45.6ms时, 子帧组帧为 456ms , 相应的子帧组的编号为 0〜9。 在定义子帧组和子帧组帧后, 接下来的步骤与前述相同, 即同 样进行加扰初始化、 获取加扰序列以及将待传输数据中的待加扰的 比特数值或经过编码的比特与加扰序列中的数值进行对应的加扰运 算, 获取加扰后的数据的步骤, 值得注意的是, 进行上述运算是, 其中的子帧要变成子帧组, 对应的数据也会发生变化。 值得一提的是, 当釆用 GMSK ( Gaussian minimum shift keying, 高斯 最小频移键控)调制时, 由于 GMSK调制后引入了相邻符号间的干扰, 因 此不需要再为其设置 CP。 因此基于 GMSK调制时的 TTI可以包含 15* 10 个符号, 此时一个子帧 ( 1ms ) 包括 15个符号。 在针对不同的带宽时, 优先考虑一个 TTI 内包含的资源元素的个数 位于区间 132RE〜168RE上, 因为这样有利于复用 LTE调度资源粒度, 从 而尽可能重用 LTE已有的调制编码方式。 本发明实施例提供一种用户设备, 基站通过确定当前使用的带宽值, 确定资源单位在时域和 /或频域中的配置信息, 接着从基站获取将确定的 配置信息, 并根据配置信息在窄带资源上进行上行和 /或下行数据传输, 从而可以降低数据传输过程中的噪声功率, 进而提高了信噪比, 使得在使 用窄带宽传输数据的情况下能够显著提高信号的覆盖范围和覆盖强度,从 而使用远低于现有技术中的重复传输次数传输数据,提高通信资源的使用 效率。 所属领域的技术人员可以清楚地了解到,为描述的方便和简洁, 上述描述的系统, 装置和单元的具体工作过程, 可以参考前述方法 实施例中的对应过程, 在此不再赘述。 在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置 实施例仅仅是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑 功能划分, 实际实现时可以有另外的划分方式, 例如多个单元或组 件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或 不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合或通 信连接可以是通过一些接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。 所述作为分离部件说明的单元可以是或者也可以不是物理上分 开的, 作为单元显示的部件可以是或者也可以不是物理单元, 即可 以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实 际的需要选择其中的部分或者全部单元来实现本实施例方案的 目 的。 另外, 在本发明各个实施例中的各功能单元可以集成在一个处 理单元中, 也可以是各个单元单独物理包括, 也可以两个或两个以 上单元集成在一个单元中。 上述集成的单元既可以釆用硬件的形式 实现, 也可以釆用硬件加软件功能单元的形式实现。 在上述实施例 中, 对各个实施例的描述都各有侧重, 某个实施例中没有详述的部 分, 可以参见其他实施例的相关描述。 本领域普通技术人员可以理解: 实现上述方法实施例的全部或 部分步骤可以通过程序指令相关的硬件来完成, 前述的程序可以存 储于一计算机可读取存储介质中, 该程序在执行时, 执行包括上述 方法实施例的步骤; 而前述的存储介质包括: ROM、 RAM , 磁碟或 者光盘等各种可以存储程序代码的介质。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以所述权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种窄带传输的方法, 其特征在于, 所述方法包括:
确定当前使用的带宽值, 并根据所述带宽值确定资源单位在时域和 / 或频域中的配置信息, 其中, 所述当前使用的带宽值为等于或小于 180KHz 的窄带带宽值;
将所述资源单位在时域和 /或频域中的配置信息发送至用户设备,使得 所述用户设备根据所述配置信息进行上行和 /或下行数据的传输。
2、根据权利要求 1所述的方法,其特征在于,所述配置信息具体包括: 针对所述确定的资源单位进行配置的参数, 其中所述参数为至少包括
ARFCN、 RB位置, 窄带在 RB中的位置、 调度信息、 子载波个数的频域信 息中的一种; 和 /或
至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
3、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 将待发送的数据按照所述配置信息进行加扰处理, 并将加扰后的数据 发送至用户设备; 和 /或
从所述用户设备接收加扰后的数据, 对所述加扰后的数据根据所述配 置信息进行解扰处理, 获取解扰后的数据。
4、 根据权利要求 1所述的方法, 其特征在于, 所述配置信息是通过信 令发送至所述用户设备。
5、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述带宽值确 定资源单位在时域中的配置信息包括:
根据所述当前使用的带宽值, 确定所述带宽值对应的所述 TTI长度或 子帧组长度。
6、 根据权利要求 3所述的方法, 其特征在于, 所述将待发送的数据按 照所述配置信息进行加扰处理包括:
确定与所述当前使用的带宽值对应的在资源单位中待传输数据的加扰 初始化时间参数;
确定所述资源单位的标识信息;
根据所述资源单位的标识信息和加扰初始化时间参数, 确定在所述资 源单位中所述待传输数据的加扰初始化的参数。
7、 根据权利要求 3所述的方法, 其特征在于, 所述将待发送的数据按 照所述配置信息进行加扰处理还包括:
获取 LTE中的子帧编号或时隙编号;
结合将所述子帧编号或时隙编号, 确定在所述资源单位中所述待传输 数据的加扰初始化的时间参数。
8、 根据权利要求 1所述的方法, 其特征在于, 所述根据带宽值确定资 源单位在时域和频域中的配置信息包括:
根据所述当前使用的带宽值, 确定与所述带宽值对应的子载波数目以 及与所述子载波数目对应的符号数;
根据所述确定的子载波数目以及与所述子载波数目对应的符号数, 获 取与所述子载波数目对应的 CP, 所述 CP包括正常 CP和 /或扩展 CP
9、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 所述当前使用的带宽对应一个或多个子载波的频域宽度, 与所述子载 波的频域宽度对应的子载波间隔至少为 15KHz或 3.75KHz或 2.5KHz或 1.25KHZ中的一种。
10、 根据权利要求 3所述的方法, 其特征在于, 所述方法还包括: 根据所述 TTI长度、 子帧组长度, 获取与所述子帧结构对应的 CP , 所 述 CP包括正常 CP和 /或扩展 CP, 以及一个所述 TTI内包含的符号个数。
11、 根据权利要求 10所述的方法, 其特征在于, 所述方法包括: 根据所述一个 TTI内包含的符号个数, 对所述正常 CP进行预设倍数 的扩展, 得到扩展后的第二正常 CP, 和 /或对所述扩展 CP进行预设倍数的 扩展,得到扩展后的第二扩展 CP ,其中所述预设倍数为不等于零的自然数。
12、 根据权利要求 11所述的方法, 其特征在于, 仅保留所述第二扩展 CP与所述第三正常 CP中与 LTE协议中相同的值。
13、 根据权利要求 6或 7所述的方法, 其特征在于, 所述确定在所述 资源单位中所述待传输数据的加扰初始化的时间参数包括:
若釆用的是 TTI的子帧编号或时隙编号, 则将选取所述子帧编号或时 隙编号作为 NS或 L"s/2」的值,并代入到 cimt
Figure imgf000088_0001
/2」 · 29 + Λ^11中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值构成 力口 4尤 刀始 ^匕的力口 H歹l; 或
若釆用的是 LTE中的帧号, 则将系统帧号 SFNmodlO, 得到与所述系 统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L«s /2」的值, 并带入 到 cinit = 214 + g · 213 + L"s /2」 · 29 + A 中, 得到与每个所述子帧编号或时隙编 号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或 若釆用的是所述 T T I开始或结束时对应的所述 LT E子帧的时隙号或子 帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L«s/2」的值, 并代入 到 cinit = "丽 · 214 + g · 213 + k /2」 · 29 + A 中,得到与每个所述子帧编号或时隙编 号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。
14、 根据权利要求 1或 13所述的方法, 其特征在于, 所述将待发送的 数据按照所述配置信息进行加扰处理还包括:
将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述加 扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。
15、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 在所述配置信息中, 相邻的两个时隙中的子载波处于不同的频率。
16、 根据权利要求 1所述的方法, 其特征在于, 所述方法还包括: 定义子帧组和子帧组帧,所述子帧组帧由预设数目的所述子帧组组成, 所述子帧组由所述预定数目的子帧时间或 TTI时间组成, 其中所述 TTI时 间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零的 自然数。
17、 根据权利要求 1至 16任意一项所述的方法, 其特征在于, 所述发 送配置消息通过信令发送,所述信令为 RRC信令或 MAC CE信令或 PDCCH 信令或 EPDCCH信令或它们中的 2者组合。
18、 一种窄带传输的方法, 其特征在于, 所述方法包括:
接收基站发送的资源单位在时域和 /或频域中的配置信息, 并根据所述 配置信息在窄带资源上进行上行和 /或下行数据的传输, 其中, 所述窄带是 当前使用的带宽值为等于或小于 180KHz的带宽值。
19、 根据权利要求 18所述的方法, 其特征在于, 所述配置信息具体包 括:
针对所述确定的资源单位进行具体配置的参数, 其中所述参数为至少 包括 ARFCN、 RB位置, 窄带在 RB 中的位置, 调度信息、 子载波个数, 子载波间隔中的一种的频域信息; 和 /或
至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
20、 根据权利要求 18所述的方法, 其特征在于, 所述方法还包括: 接收所述基站发送的根据所述配置信息加扰的数据, 根据所述配置信 息进行解扰后, 获取解扰后的数据; 或
将待发送的数据按照所述配置信息进行加扰处理, 并将加扰后的数据 发送至所述基站。
21、 根据权利要求 18的方法, 其特征在于, 所述配置信息是通过接收 所述基站发送的信令获取到的。
22、 根据权利要求 18所述的方法, 其特征在于, 所述根据所述配置信 息在窄带资源上进行上行和 /或下行数据的传输包括:
使用独立的窄带资源或使用关联的载波根据所述配置信息在窄带资源 上进行窄带时域或频域的资源配置。
23、 根据权利要求 18或 19所述的方法, 其特征在于, 所述根据所述 配置信息在窄带资源上进行窄带时域或频域的资源配置包括:
根据所述配置信息中预定义的内容,在窄带资源上进行上行和 /或下行 数据传输。
24、 根据权利要求 18所述的方法, 其特征在于, 所述使用关联的载波 进行根据所述配置信息在窄带资源上进行上行和 /或下行数据传输包括: 根据接收到的所述配置信息, 获取所述配置信息中的时域资源和 /或频 域资源, 其中, 所述时域资源包括传输数据使用的帧以及子帧, 所述频域 资源包括子载波间隔、 子载波个数、 绝对无线频率信道号 ARFCN值、 窄 带资源在资源块 RB中的位置以及 RB的位置中的至少一个。
25、 根据权利 24 所述的方法, 其特征在于, 当所述频率资源包括 ARFCN值时, 该方法包括:
获取所述 ARFCN值, 所述 ARFCN值用于描述用于传输数据的窄带 的频率信息;
根据所述 ARFCN值确定的所述窄带的频率信息, 在所述窄带上进行 上行和 /或下行数据传输。
26、 根据权利要求 24所述的方法, 其特征在于, 所述方法还包括: 从所述基站接收调度指示信息后, 根据所述调度指示信息在所述确定 的窄带资源上进行上行和 /或下行数据传输。
27、 根据权利要求 26所述的方法, 其特征在于, 所述接收调度指示信 息还包括:
从所述传输数据的窄带载波中获取、 或从除所述传输数据的窄带外载 波的窄带载波中获取、 或从宽带载波中获取。
28、 根据权利要求 18所述的方法, 其特征在于, 所述方法还包括: 所述上行数据传输基于随机接入的方式, 所述下行数据传输基于所述 调度信息指示的方式; 或
所述上行数据传输基于所述调度信息指示的方式, 所述下行数据传输 基于随机接入的方式。
29、 根据权利要求 18所述的方法, 其特征在于, 所述方法还包括: 定义子帧组和子帧组帧,所述子帧组帧由预设数目的所述子帧组组成, 所述子帧组由所述预定数目的子帧时间或 TTI时间组成, 其中所述 TTI时 间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零的 自然数。
30、 根据权利要求 29所述的方法, 其特征在于, 所述方法包括: 根据所述定义的子帧组和所述子帧组帧, 进行所述加扰初始化。
31、根据权利要求 29所述的方法,其特征在于,所述加扰初始化包括: 若釆用的是 TTI的子帧编号或时隙编号, 则将选取所述子帧编号或时 隙编号作为 NS或 L«s/2」的值,并代入到 cmit = nmTl - 2U + q - 2u + ln 2] - 29 + N^1中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值构成 力口 4尤 刀始 ^匕的力口 H歹l; 或
若釆用的是 LTE中的帧号, 则将系统帧号 SFNmodlO, 得到与所述系 统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L«s/2」的值, 并带入 到 cinit = 214 + g · 213 + ns /2」 · 29 + 中, 得到与每个所述子帧编号或时隙编 号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或
若釆用的是所述 T T I开始或结束时对应的所述 LT E子帧的时隙号或子 帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L«s/2」的值, 并代入 到 cinit = 214 + g · 213 + L"s /2」 · 29 + A 中,得到与每个所述子帧编号或时隙编 号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。
32、根据权利要求 29所述的方法,其特征在于,所述加扰初始化包括: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述加 扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。
33、 根据权利要求 18至 32任意一项所述的方法, 其特征在于, 所述 发送配置消息通过信令发送, 所述信令为 RRC 信令或 MAC CE 信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。
34、 一种窄带传输的设备, 其特征在于, 所述设备包括: 第一确定单元, 用于确定当前使用的带宽值, 并根据所述带宽值确定 资源单位在时域和 /或频域中的配置信息, 其中, 所述当前使用的带宽值为 等于或小于 180KHz的窄带带宽值;
第一传输单元, 用于将所述资源单位在时域和 /或频域中的配置信息发 送至用户设备, 使得所述用户设备根据所述配置信息进行上行和 /或下行数 据的传输。
35、 根据权利要求 34所述的设备, 其特征在于, 所述配置信息具体包 括:
针对所述确定的资源单位进行具体配置的参数, 其中所述参数为至少 包括 ARFCN、 RB位置, 窄带在 RB 中的位置、 调度信息、 子载波个数的 频域信息; 和 /或
至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
36、 根据权利要求 34所述的设备, 其特征在于, 所述设备还包括: 第一发送单元,用于将待发送的数据按照所述配置信息进行加扰处理, 并将加扰后的数据发送至用户设备; 和 /或
第一接收单元, 用于从所述用户设备接收加扰后的数据, 对所述加扰 后的数据根据所述配置信息进行解扰处理, 获取解扰后的数据。
37、 根据权利要求 34所述的设备, 其特征在于, 所述配置信息是通过 信令发送至所述用户设备。
38、 根据权利要求 34所述的设备, 其特征在于, 所述第一确定单元具 体用于:
根据所述当前使用的带宽值, 确定所述带宽值对应的所述 TTI长度或 子帧组长度。
39、 根据权利要求 36所述的设备, 其特征在于, 所述第一发送单元具 体用于:
确定与所述当前使用的带宽值对应的在资源单位中待传输数据的加扰 初始化时间参数;
确定所述资源单位的标识信息;
根据所述资源单位的标识信息和加扰初始化时间参数, 确定在所述资 源单位中所述待传输数据的加扰初始化的参数。
40、 根据权利要求 36所述的设备, 其特征在于, 所述第一发送单元还 用于:
获取 LTE中的子帧编号或时隙编号;
结合将所述子帧编号或时隙编号, 确定在所述资源单位中所述待传输 数据的加扰初始化的时间参数。
41、 根据权利要求 34所述的设备, 其特征在于, 所述第一确定单元具 体用于:
根据所述当前使用的带宽值, 确定与所述带宽值对应的子载波数目以 及与所述子载波数目对应的符号数;
根据所述确定的子载波数目以及与所述子载波数目对应的符号数, 获 取与所述子载波数目对应的 CP , 所述 CP包括正常 CP和 /或扩展 CP。
42、 根据权利要求 34所述的设备, 其特征在于, 在所述设备中: 所述当前使用的带宽对应一个或多个子载波的频域宽度, 与所述子载 波的频域宽度对应的子载波间隔至少为 15KHz或 3.75KHz或 2.5KHz或 1.25KHZ中的一种。
43、 根据权利要求 36所述的设备, 其特征在于, 所述设备还包括: CP扩展单元, 用于根据所述 TTI长度、 子帧组长度, 获取与所述子帧 结构对应的 CP , 所述 CP 包括正常 CP和 /或扩展 CP , 以及一个所述 TTI 内包含的符号个数。
44、 根据权利要求 43所述的设备, 其特征在于, 在所述设备中: 所述 CP扩展单元, 还用于根据所述一个 TTI 内包含的符号个数, 对 所述正常 CP进行预设倍数的扩展, 得到扩展后的第二正常 CP , 和 /或对所 述扩展 CP进行预设倍数的扩展, 得到扩展后的第二扩展 CP , 其中所述预 设倍数为不等于零的自然数。
45、 根据权利要求 44所述的设备, 其特征在于, 仅保留所述第二扩展 CP与所述第三正常 CP中与 LTE协议中相同的值。
46、 根据权利要求 39或 40所述的设备, 其特征在于, 所述第一发送 单元还用于:
若釆用的是 TTI的子帧编号或时隙编号, 则将选取所述子帧编号或时 隙编号作为 NS或 L«s/2」的值,并代入到 cmit = nmTi · 214 + g · 213 + k /2」 · 29 + Λ^11中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值构成 力口扰初始 ^匕的力口 H歹l;
若釆用的是 LTE中的帧号, 则将系统帧号 SFNmodlO, 得到与所述系 统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L«s/2」的值, 并带入 到 cinit = 214 + g · 213 + L"s /2」 · 29 + A 中, 得到与每个所述子帧编号或时隙编 号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或
若釆用的是所述 T T I开始或结束时对应的所述 LT E子帧的时隙号或子 帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L«s/2」的值, 并代入 到 cinit = 214 + g · 213 + L"s /2」 · 29 + A 中,得到与每个所述子帧编号或时隙编 号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。
47、 根据权利要求 34或 46所述的设备, 其特征在于, 所述第一发送 单元还用于包括:
将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述加 扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。
48、 根据权利要求 34所述的设备, 其特征在于, 在所述设备中: 在所述配置信息中, 相邻的两个时隙中的子载波处于不同的频率。
49、 根据权利要求 34所述的设备, 其特征在于, 所述第一确定单元还 用于:
定义子帧组和子帧组帧,所述子帧组帧由预设数目的所述子帧组组成, 所述子帧组由所述预定数目的子帧时间或 TTI时间组成, 其中所述 TTI时 间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零的 自然数。
50、 根据权利要求 34至 49任意一项所述的设备, 其特征在于, 所述 发送配置消息通过信令发送, 所述信令为 RRC 信令或 MAC CE 信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。
51 种窄带传输的设备, 其特征在于, 所述设备包括:
第二传输单元, 用于接收基站发送的资源单位在时域和 /或频域中的配 置信息, 并根据所述配置信息在窄带资源上进行上行和 /或下行数据的传 输, 其中, 所述窄带是当前使用的带宽值为等于或小于 180KHz的带宽值。
52、 根据权利要求 51所述的设备, 其特征在于, 所述配置信息具体包 括:
针对所述确定的资源单位进行具体配置的参数, 其中所述参数为至少 包括 ARFCN、 RB位置, 窄带在 RB 中的位置, 调度信息、 子载波个数, 子载波间隔中的一种的频域信息; 和 /或
至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
53、 根据权利要求 51所述的设备, 其特征在于, 所述设备还包括: 第二接收单元, 用于接收所述基站发送的根据所述配置信息加扰的数 据, 根据所述配置信息进行解扰后, 获取解扰后的数据; 或
第二发送单元,用于将待发送的数据按照所述配置信息进行加扰处理, 并将加扰后的数据发送至所述基站。
54、 根据权利要求 51的设备, 其特征在于, 所述配置信息是通过接收 所述基站发送的信令获取到的。
55、 根据权利要求 51所述的设备, 其特征在于, 所述第二传输单元还 用于:
使用独立的窄带资源或使用关联的载波根据所述配置信息在窄带资源 上进行窄带时域或频域的资源配置。
56、 根据权利要求 51或 52所述的设备, 其特征在于, 所述第二传输 单元具体用于:
根据所述配置信息中预定义的内容,在窄带资源上进行上行和 /或下行 数据传输。
57、 根据权利要求 51所述的设备, 其特征在于, 所述第二传输单元还 用于:
根据接收到的所述配置信息, 获取所述配置信息中的时域资源和 /或频 域资源, 其中, 所述时域资源包括传输数据使用的帧以及子帧, 所述频域 资源包括子载波间隔、 子载波个数、 绝对无线频率信道号 ARFCN值、 窄 带资源在资源块 RB中的位置以及 RB的位置中的至少一个。
58、 根据权利 55 所述的设备, 其特征在于, 当所述频率资源包括 ARFCN值时, 所述设备具体用于:
获取所述 ARFCN值, 所述 ARFCN值用于描述用于传输数据的窄带 的频率信息;
根据所述 ARFCN值确定的所述窄带的频率信息, 在所述窄带上进行 上行和 /或下行数据传输。
59、 根据权利要求 57所述的设备, 其特征在于, 所述设备还用于: 从所述基站接收调度指示信息后, 根据所述调度指示信息在所述确定 的窄带资源上进行上行和 /或下行数据传输。
60、 根据权利要求 59所述的设备, 其特征在于, 所述设备还用于: 从所述传输数据的窄带载波中获取、 或从除所述传输数据的窄带外载 波的窄带载波中获取、 或从宽带载波中获取。
61、 根据权利要求 51所述的设备, 其特征在于, 在所述设备中: 所述上行数据传输基于随机接入的方式, 所述下行数据传输基于所述 调度信息指示的方式; 或
所述上行数据传输基于所述调度信息指示的方式, 所述下行数据传输 基于随机接入的方式。
62、 根据权利要求 51所述的设备, 其特征在于, 所述设备还用于: 定义子帧组和子帧组帧,所述子帧组帧由预设数目的所述子帧组组成, 所述子帧组由所述预定数目的子帧时间或 TTI时间组成, 其中所述 TTI时 间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零的 自然数。
63、根据权利要求 62所述的设备,其特征在于,所述设备进一步用于: 根据所述定义的子帧组和所述子帧组帧, 进行所述加扰初始化。
64、 根据权利要求 62所述的设备, 其特征在于, 所述设备还用于: 若釆用的是 TTI的子帧编号或时隙编号, 则将选取所述子帧编号或时 隙编号作为 NS或 L«s/2」的值,并代入到 cmit = nmTl - 2U + q - 2u + ln 2] - 29 + N^1中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值构成 力口 4尤 刀始 ^匕的力口 H歹l; 或
若釆用的是 LTE中的帧号, 则将系统帧号 SFNmodlO, 得到与所述系 统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L«s/2」的值, 并带入 到 cinit = 214 + g · 213 + L"s /2」 · 29 + A 中, 得到与每个所述子帧编号或时隙编 号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或
若釆用的是所述 T T I开始或结束时对应的所述 LT E子帧的时隙号或子 帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L«s/2」的值, 并代入 到 cinit = 214 + g · 213 + L"s /2」 · 29 + A 中,得到与每个所述子帧编号或时隙编 号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。
65、 根据权利要求 62所述的设备, 其特征在于, 所述设备还用于: 将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述加 扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。
66、 根据权利要求 51至 65任意一项所述的设备, 其特征在于, 所述 发送配置消息通过信令发送, 所述信令为 RRC 信令或 MAC CE 信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。
67、 一种基站, 其特征在于, 所述基站包括:
第一处理器, 用于确定当前使用的带宽值, 并根据所述带宽值确定资 源单位在时域和 /或频域中的配置信息, 其中, 所述当前使用的带宽值为等 于或小于 180KHz的窄带带宽值;
第一发射器,用于将所述资源单位在时域和 /或频域中的配置信息发送 至用户设备, 使得所述用户设备根据所述配置信息进行上行和 /或下行数据 的传输。
68、 根据权利要求 67所述的基站, 其特征在于, 所述配置信息具体包 括:
针对所述确定的资源单位进行具体配置的参数, 其中所述参数为至少 包括 ARFCN、 RB位置, 窄带在 RB 中的位置、 调度信息、 子载波个数的 频域信息; 和 /或
至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
69、 根据权利要求 67所述的基站, 其特征在于, 在所述基站中: 所述第一发射器还用于, 将待发送的数据按照所述配置信息进行加扰 处理, 并将加扰后的数据发送至用户设备; 和 /或
第一接收器, 用于从所述用户设备接收加扰后的数据, 对所述加扰后 的数据根据所述配置信息进行解扰处理, 获取解扰后的数据。
70、 根据权利要求 67所述的基站, 其特征在于, 所述配置信息是通过 信令发送至所述用户设备。
71、 根据权利要求 67所述的基站, 其特征在于, 所述第一处理器还用 于:
根据所述当前使用的带宽值, 确定所述带宽值对应的所述 TTI长度或 子帧组长度。
72、 根据权利要求 69所述的基站, 其特征在于, 所述第一发射器还用 于: 确定与所述当前使用的带宽值对应的在资源单位中待传输数据的加扰 初始化时间参数;
确定所述资源单位的标识信息;
根据所述资源单位的标识信息和加扰初始化时间参数, 确定在所述资 源单位中所述待传输数据的加扰初始化的参数。
73、 根据权利要求 69所述的基站, 其特征在于, 所述第一发射器还用 于:
获取 LTE中的子帧编号或时隙编号;
结合将所述子帧编号或时隙编号, 确定在所述资源单位中所述待传输 数据的加扰初始化的时间参数。
74、 根据权利要求 67所述的基站, 其特征在于, 所述第一处理器还用 于:
根据所述当前使用的带宽值, 确定与所述带宽值对应的子载波数目以 及与所述子载波数目对应的符号数;
根据所述确定的子载波数目以及与所述子载波数目对应的符号数, 获 取与所述子载波数目对应的 CP, 所述 CP包括正常 CP和 /或扩展 CP。
75、 根据权利要求 67所述的基站, 其特征在于, 在所述基站中: 所述当前使用的带宽对应一个或多个子载波的频域宽度, 与所述子载 波的频域宽度对应的子载波间隔至少为 15KHz或 3.75KHz或 2.5KHz或 1.25KHZ中的一种。
76、 根据权利要求 69所述的基站, 其特征在于, 所述第一处理器还用 于:
根据所述 TTI长度、 子帧组长度, 获取与所述子帧结构对应的 CP , 所 述 CP包括正常 CP和 /或扩展 CP, 以及一个所述 TTI内包含的符号个数。
77、 根据权利要求 76所述的基站, 其特征在于, 所述第一处理器还用 于:
根据所述一个 TTI内包含的符号个数, 对所述正常 CP进行预设倍数 的扩展, 得到扩展后的第二正常 CP, 和 /或对所述扩展 CP进行预设倍数的 扩展,得到扩展后的第二扩展 CP,其中所述预设倍数为不等于零的自然数。
78、 根据权利要求 77所述的基站, 其特征在于, 仅保留所述第二扩展 CP与所述第三正常 CP中与 LTE协议中相同的值。
79、 根据权利要求 72或 73所述的基站, 其特征在于, 第一处理器具 体用于:
若釆用的是 TTI的子帧编号或时隙编号, 则将选取所述子帧编号或时 隙编号作为 NS或 L"s/2」的值,并代入到 cimt = η^τ1 - 2u + q - 213 + \ ns /2」 · 29 + Λ^11中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值构成 力口 4尤 刀始 ^匕的力口 H歹l; 或
若釆用的是 LTE中的帧号, 则将系统帧号 SFNmodlO, 得到与所述系 统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L«s /2」的值, 并带入 到 cinit = 214 + g · 213 + L"s /2」 · 29 + A 中, 得到与每个所述子帧编号或时隙编 号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或
若釆用的是所述 T T I开始或结束时对应的所述 LT E子帧的时隙号或子 帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L«s /2」的值, 并代入 到 cinit = 214 + g · 213 + L"s /2」 · 29 + 中,得到与每个所述子帧编号或时隙编 号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。
80、 根据权利要求 67或 79所述的基站, 其特征在于, 所述第一发射 器还用于:
将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述加 扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。
81、 根据权利要求 67所述的基站, 其特征在于, 在所述基站中: 在所述配置信息中, 相邻的两个时隙中的子载波处于不同的频率。
82、 根据权利要求 67所述的基站, 其特征在于, 所述第一处理器还用 于:
定义子帧组和子帧组帧,所述子帧组帧由预设数目的所述子帧组组成, 所述子帧组由所述预定数目的子帧时间或 TTI时间组成, 其中所述 TTI时 间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零的 自然数。
83、 根据权利要求 67至 82任意一项所述的基站, 其特征在于, 所述 发送配置消息通过信令发送, 所述信令为 RRC 信令或 MAC CE 信令或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。
84 种用户设备, 其特征在于, 所述用户设备包括:
第二处理器,用于接收基站发送的资源单位在时域和 /或频域中的配置 信息, 并根据所述配置信息在窄带资源上进行上行和 /或下行数据的传输, 其中, 所述窄带是当前使用的带宽值为等于或小于 180KHz的带宽值。
85、 根据权利要求 84所述的用户设备, 其特征在于, 所述配置信息具 体包括:
针对所述确定的资源单位进行具体配置的参数, 其中所述参数为至少 包括 ARFCN、 RB位置, 窄带在 RB 中的位置, 调度信息、 子载波个数, 子载波间隔中的一种的频域信息; 和 /或
至少包括传输时间间隔 TTI长度、 子帧组长度、 子帧位置、 帧位置中 的一种的时域信息。
86、 根据权利要求 84所述的用户设备, 其特征在于, 所述用户设备还 包括:
第二接收器,用于接收所述基站发送的根据所述配置信息加扰的数据, 根据所述配置信息进行解扰后, 获取解扰后的数据; 或
第二发射器, 用于将待发送的数据按照所述配置信息进行加扰处理, 并将加扰后的数据发送至所述基站。
87、 根据权利要求 84的用户设备, 其特征在于, 所述配置信息是通过 接收所述基站发送的信令获取到的。
88、 根据权利要求 84所述的用户设备, 其特征在于, 所述第二处理器 还用于:
使用独立的窄带资源或使用关联的载波根据所述配置信息在窄带资源 上进行窄带时域或频域的资源配置。
89、 根据权利要求 84或 85所述的用户设备, 其特征在于, 所述第二 处理器具体用于:
根据所述配置信息中预定义的内容,在窄带资源上进行上行和 /或下行 数据传输。
90、 根据权利要求 84所述的用户设备, 其特征在于, 所述第二处理器 还用于:
根据接收到的所述配置信息, 获取所述配置信息中的时域资源和 /或频 域资源, 其中, 所述时域资源包括传输数据使用的帧以及子帧, 所述频域 资源包括子载波间隔、 子载波个数、 绝对无线频率信道号 ARFCN值、 窄 带资源在资源块 RB中的位置以及 RB的位置中的至少一个。
91、 根据权利 88所述的用户设备, 其特征在于, 当所述频率资源包括 ARFCN值时, 该用户设备还用于: 获取所述 ARFCN值, 所述 ARFCN值用于描述用于传输数据的窄带 的频率信息;
根据所述 ARFCN值确定的所述窄带的频率信息, 在所述窄带上进行 上行和 /或下行数据传输。
92、 根据权利要求 90所述的用户设备, 其特征在于, 所述用户设备还 用于:
从所述基站接收调度指示信息后, 根据所述调度指示信息在所述确定 的窄带资源上进行上行和 /或下行数据传输。
93、 根据权利要求 92所述的用户设备, 其特征在于, 所述接收调度指 示信息还包括:
从所述传输数据的窄带载波中获取、 或从除所述传输数据的窄带外载 波的窄带载波中获取、 或从宽带载波中获取。
94、 根据权利要求 84所述的用户设备, 其特征在于, 在所述用户设备 中:
所述上行数据传输基于随机接入的方式, 所述下行数据传输基于所述 调度信息指示的方式; 或
所述上行数据传输基于所述调度信息指示的方式, 所述下行数据传输 基于随机接入的方式。
95、 根据权利要求 84所述的用户设备, 其特征在于, 所述用户设备还 用于:
定义子帧组和子帧组帧,所述子帧组帧由预设数目的所述子帧组组成, 所述子帧组由所述预定数目的子帧时间或 TTI时间组成, 其中所述 TTI时 间为一个所述子载波间隔对应的 TTI时间组成, 所述预定数目为不为零的 自然数。
96、 根据权利要求 85所述的用户设备, 其特征在于, 所述第二处理器 还用于:
根据所述定义的子帧组和所述子帧组帧, 进行所述加扰初始化。
97、 根据权利要求 85所述的用户设备, 其特征在于, 所述第二处理器 还用于:
若釆用的是 TTI的子帧编号或时隙编号, 则将选取所述子帧编号或时 隙编号作为 NS或 L«s/2」的值,并代入到 cmit = nmTi · 214 + g · 213 + k /2」 · 29 + Λ^11中, 得到与每个所述子帧编号或时隙编号对应的加扰数值, 所述加扰数值构成 力口扰初始 ^匕的力口 H歹l;
若釆用的是 LTE中的帧号, 则将系统帧号 SFNmodlO, 得到与所述系 统帧号对应的新的编号, 并将所述新的编号作为 Ns或 L«s/2」的值, 并带入 到 cinit = 214 + g · 213 + L"s /2」 · 29 + A 中, 得到与每个所述子帧编号或时隙编 号对应的加扰数值, 并由该数值组成加扰初始化的加扰序列; 或
若釆用的是所述 T T I开始或结束时对应的所述 LT E子帧的时隙号或子 帧编号, 则将选取所述子帧编号或时隙编号作为 Ns或 L«s/2」的值, 并代入 到 cinit = 214 + g · 213 + L"s /2」 · 29 + A 中,得到与每个所述子帧编号或时隙编 号对应的加扰数值, 所述加扰数值构成加扰初始化的加扰序列。
98、 根据权利要求 95所述的用户设备, 其特征在于, 所述第二处理器 还用于:
将所述待传输数据中的待加扰的比特数值或经过编码的比特与所述加 扰序列中的数值进行对应的加扰运算, 获取加扰后的数据。
99、 根据权利要求 84至 98任意一项所述的用户设备, 其特征在于, 所述发送配置消息通过信令发送, 所述信令为 RRC信令或 MAC CE信令 或 PDCCH信令或 EPDCCH信令或它们中的 2者组合。
PCT/CN2014/071601 2014-01-27 2014-01-27 一种窄带传输的方法、设备、基站及用户设备 WO2015109609A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480035535.0A CN105325045A (zh) 2014-01-27 2014-01-27 一种窄带传输的方法、设备、基站及用户设备
PCT/CN2014/071601 WO2015109609A1 (zh) 2014-01-27 2014-01-27 一种窄带传输的方法、设备、基站及用户设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071601 WO2015109609A1 (zh) 2014-01-27 2014-01-27 一种窄带传输的方法、设备、基站及用户设备

Publications (1)

Publication Number Publication Date
WO2015109609A1 true WO2015109609A1 (zh) 2015-07-30

Family

ID=53680708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071601 WO2015109609A1 (zh) 2014-01-27 2014-01-27 一种窄带传输的方法、设备、基站及用户设备

Country Status (2)

Country Link
CN (1) CN105325045A (zh)
WO (1) WO2015109609A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106961408A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种上行信号发送方法和装置
EP3554155A4 (en) * 2017-01-06 2019-12-25 Huawei Technologies Co., Ltd. RESOURCE DISPLAY METHOD, USER DEVICE AND NETWORK DEVICE
US20210153196A1 (en) * 2015-06-16 2021-05-20 Qualcomm Incorporated Long-term evolution compatible very narrow band design
US11503441B2 (en) 2016-02-03 2022-11-15 Zte Corporation System information transmission method and device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020031254A (ja) * 2016-12-27 2020-02-27 シャープ株式会社 端末装置、基地局装置、通信方法、および、集積回路
CN114422307B (zh) * 2022-01-26 2023-03-10 上海星思半导体有限责任公司 信号处理方法、装置、电子设备、存储介质及程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808406A (zh) * 2010-01-15 2010-08-18 北京创毅视讯科技有限公司 改进频域资源分配实现lte在物联网的应用的方法及系统
CN101841866A (zh) * 2010-02-05 2010-09-22 北京创毅视讯科技有限公司 一种改进带宽配置实现lte在物联网应用的方法及系统
CN102958133A (zh) * 2011-08-25 2013-03-06 华为技术有限公司 接入通信系统的方法、下行信息发送方法、终端及基站
CN103313419A (zh) * 2012-03-09 2013-09-18 上海贝尔股份有限公司 一种随机接入方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102724766B (zh) * 2006-01-17 2016-03-16 上海原动力通信科技有限公司 宽带时分双工移动通信系统的物理层随机接入方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101808406A (zh) * 2010-01-15 2010-08-18 北京创毅视讯科技有限公司 改进频域资源分配实现lte在物联网的应用的方法及系统
CN101841866A (zh) * 2010-02-05 2010-09-22 北京创毅视讯科技有限公司 一种改进带宽配置实现lte在物联网应用的方法及系统
CN102958133A (zh) * 2011-08-25 2013-03-06 华为技术有限公司 接入通信系统的方法、下行信息发送方法、终端及基站
CN103313419A (zh) * 2012-03-09 2013-09-18 上海贝尔股份有限公司 一种随机接入方法及装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210153196A1 (en) * 2015-06-16 2021-05-20 Qualcomm Incorporated Long-term evolution compatible very narrow band design
CN106961408A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 一种上行信号发送方法和装置
CN106961408B (zh) * 2016-01-11 2020-04-24 中兴通讯股份有限公司 一种上行信号发送方法和装置
US11503441B2 (en) 2016-02-03 2022-11-15 Zte Corporation System information transmission method and device
US11671800B2 (en) 2016-02-03 2023-06-06 Zte Corporation System information transmission method and device
EP3554155A4 (en) * 2017-01-06 2019-12-25 Huawei Technologies Co., Ltd. RESOURCE DISPLAY METHOD, USER DEVICE AND NETWORK DEVICE
US10979194B2 (en) 2017-01-06 2021-04-13 Huawei Technologies Co., Ltd. Resource indication method, user equipment, and network device

Also Published As

Publication number Publication date
CN105325045A (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
CN107306177B (zh) 传输数据的方法、用户设备和网络侧设备
EP2919538B1 (en) User equipment, base station device, communication methods and integrated circuits
CN107040338B (zh) 用于配置用于NB-IoT UE发送上行信号的资源单元的方法和设备
JP6037459B2 (ja) 資源割り当てのための方法およびシステム
KR102184771B1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 위한 장치
CA2828150C (en) Control channel transmission method and apparatus for transmitting dedicated reference signal in wireless communication system
CN111052661B (zh) 在无线通信系统中发送和接收无线信号的方法和设备
WO2016180097A1 (zh) 一种下行数据重复传输方法及设备
JP6640980B2 (ja) 通信ネットワークにおける参照信号
EP3297204B1 (en) Method and device for transmitting and receiving discovery signal of device-to-device communication terminal in wireless communication system
EP2919401A1 (en) Terminal device, integrated circuit, radio communication method, and base station device
WO2015109609A1 (zh) 一种窄带传输的方法、设备、基站及用户设备
WO2017155275A1 (ko) 협대역 iot를 지원하는 무선 통신 시스템에서 복조 참조 신호를 전송하기 위한 방법 및 이를 위한 장치
JP2003249908A (ja) 無線通信方法、無線通信システム、無線基地局、無線通信端末、プログラム及び媒体
WO2008115020A1 (en) Method for mapping physical downlink control channel to resources and apparatus for transmitting/receiving the mapped physical downlink control channel in a wireless communication system
EP3429149B1 (en) Terminal device, base station device, communication method, and integrated circuit
US11018923B2 (en) Interleaving aspects in signal space diversity overlapped with non-orthogonal colliding transmissions
JP2020501397A (ja) Tdd狭帯域を支援する無線通信システムにおけるシステム情報を送受信するための方法及びこのための装置
WO2017152407A1 (zh) 一种参考信号产生方法及装置
WO2013073855A1 (ko) 무선 통신 시스템에서 제어정보 전송방법 및 장치
KR20140027983A (ko) 복수의 안테나 포트를 이용하여 신호를 전송하는 방법 및 이를 위한 송신단 장치
WO2014005282A1 (zh) 传输信息的方法、用户设备和网络设备
WO2011000114A1 (en) Apparatus and method for signalling active assignments to a group of wireless stations
KR101513512B1 (ko) 직교 주파수 분할 다중 접속 시스템에서의 이종 서브프레임간 송수신 방법 및 장치
Rezaei A comprehensive analysis of LTE physical layer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480035535.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879739

Country of ref document: EP

Kind code of ref document: A1