WO2015108148A1 - Method for removing low molecular weight components - Google Patents

Method for removing low molecular weight components Download PDF

Info

Publication number
WO2015108148A1
WO2015108148A1 PCT/JP2015/051086 JP2015051086W WO2015108148A1 WO 2015108148 A1 WO2015108148 A1 WO 2015108148A1 JP 2015051086 W JP2015051086 W JP 2015051086W WO 2015108148 A1 WO2015108148 A1 WO 2015108148A1
Authority
WO
WIPO (PCT)
Prior art keywords
dialysis
dialysate
flow rate
sample solution
membrane
Prior art date
Application number
PCT/JP2015/051086
Other languages
French (fr)
Japanese (ja)
Inventor
満哉 下田
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2015557889A priority Critical patent/JP6146831B2/en
Publication of WO2015108148A1 publication Critical patent/WO2015108148A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/50Soya sauce
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/243Dialysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/243Dialysis
    • B01D61/244Dialysis comprising multiple dialysis steps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12HPASTEURISATION, STERILISATION, PRESERVATION, PURIFICATION, CLARIFICATION OR AGEING OF ALCOHOLIC BEVERAGES; METHODS FOR ALTERING THE ALCOHOL CONTENT OF FERMENTED SOLUTIONS OR ALCOHOLIC BEVERAGES
    • C12H3/00Methods for reducing the alcohol content of fermented solutions or alcoholic beverage to obtain low alcohol or non-alcoholic beverages
    • C12H3/04Methods for reducing the alcohol content of fermented solutions or alcoholic beverage to obtain low alcohol or non-alcoholic beverages using semi-permeable membranes

Definitions

  • the present invention relates to a method for dialysis removal of low molecular weight components contained in a sample solution.
  • Examples of methods for desalting soy sauce using an electrodialyzer include “a method for producing unsalted soy sauce” (Patent Document 1) and “a method for producing reduced salt soy sauce” (Patent Document 2).
  • a cation exchange membrane and an anion exchange membrane are disposed between a cation electrode and an anion electrode, and soy sauce is supplied to the space between the both ion exchange membranes, An appropriate concentration of saline solution is supplied to the space between the electrodes, and the sodium ions in the soy sauce are diffused to the cathode side through the cation exchange membrane by the action of a direct current between the electrodes, and the chloride ions are anionized.
  • the soy sauce is desalted by diffusing to the anode side through an ion exchange membrane.
  • a low-salt soy sauce production apparatus characterized by having an electrodialysis apparatus composed of at least a pair of repeating units, and using this, the soy sauce is fed to the desalting chamber, and the salt content in the soy sauce is A method for producing reduced-salt soy sauce, characterized in that it is reduced.
  • Non-patent Documents 1 and 2 As a technique that replaces the electrodialysis desalting method, a method using a nanofiltration membrane has been studied (Non-patent Documents 1 and 2). That is, soy sauce was desalted by using a diafiltration module equipped with a membrane that allowed sodium ions and chloride ions to permeate freely while having a 59.47% blocking rate for amino nitrogen compounds. Continuously supply soy sauce diluted twice, with transmembrane pressure (treatment pressure) constant at 24 bar, and cross-flow filtration until the volume of soy sauce supplied is 1 ⁇ 2, that is, the original concentration Went. The salt removal rate of this method was 51%, and the amino nitrogen compound removal rate (loss rate) was 25.27%.
  • Desalting using nanofiltration membranes is used in many fields, such as desalting from dyes. That is, since the dye molecule and the molecule to be removed (ion) size are significantly different, the salt content can be selectively diafiltered, but in soy sauce desalting, the molecular size of sodium ion and amino acid is not so different. It is considered that a loss of 25% of amino acids occurred for a desalting rate of 51%. Furthermore, membrane fouling becomes a problem when a concentrated solution having a complicated composition such as soy sauce is filtered by a nanofiltration method.
  • An object of the present invention is to provide a method for selectively dialysis-removing a low molecular weight component in a sample solution by controlling the movement flow rate or movement speed of a solvent in the pores of a dialysis membrane.
  • the present inventor found that the movement direction of the dialysate in the dialysis membrane was opposite to the movement direction of the solute in the sample solution in the dialysis membrane, and It has been found that the above problem can be solved by making the advection speed of the dialysate smaller than the movement speed of the low molecular weight component, and the present invention has been completed. That is, the present invention is as follows. (1) A method for removing low molecular weight components contained in a sample solution by dialysis, wherein the moving direction of the dialysate in the dialysis membrane is opposite to the moving direction of the solute in the sample solution in the dialysis membrane.
  • the method according to (1) comprising at least one step selected from the group consisting of the following (a) to (c): (A) The step of independently controlling the supply flow rate and the discharge flow rate of the sample solution (b) The step of independently controlling the supply flow rate and the discharge flow rate of the dialysate (c) The pressure that applies the pressure applied to the sample solution to the dialysate (3)
  • the ratio (A / B) of the supply flow rate (A) and the discharge flow rate (B) of the sample solution is in the range of 0.7 or more and less than 1.0, (1) or ( The method according to 2).
  • a dialysis apparatus provided with at least one flow rate control mechanism selected from a dialysate flow rate control mechanism that independently controls a supply flow rate and a discharge flow rate of a dialysate.
  • the flow rate control mechanism independently controls the supply flow rate and the discharge flow rate of the sample solution so that the ratio of the supply flow rate and the discharge flow rate of the sample solution is in the range of 0.7 to less than 1.0. Or the apparatus according to (7), wherein the supply flow rate and the discharge flow rate of the dialysate are controlled independently.
  • the pressure control mechanism controls the pressure so that the ratio (A / B) of the supply flow rate (A) to the discharge flow rate (B) of the sample solution is in a range of 0.7 or more and less than 1.0.
  • the apparatus according to (8).
  • the method for producing a low molecular weight component removing solution is characterized in that the low molecular weight component contained in is dialyzed and the sample solution after dialysis treatment is collected. (12) The method according to (11), wherein the sample solution is a seasoning or an alcoholic beverage. (13) The method according to (12), wherein the seasoning is soy sauce.
  • FIG. 3 is a diagram showing the results of desalting treatment of soy sauce (Examples 2-1 to 2-3, Comparative Example 2).
  • FIG. 3 is a diagram showing the results of desalting treatment of soy sauce (Examples 3-1 to 3-3, Comparative Example 3). It is a figure which shows the influence of the membrane permeation
  • the present invention relates to a method for selectively dialysis removing low molecular weight components in a sample solution using a dialysis membrane in order to dialyze off low molecular weight components contained in the sample solution.
  • the present invention relates to a method for dialysis removal of low molecular weight components contained in a sample solution, the dialysis fluid moving speed and direction in the pores of the dialysis membrane, and the low molecular weight components in the sample.
  • a method characterized by adjusting the moving speed and the direction thereof (hereinafter referred to as “dialysis method of the present invention”) is provided.
  • the direction of movement of the dialysate in the dialysis membrane is opposite to the direction of movement of the solute in the sample solution in the dialysis membrane, and The moving speed is made smaller than the moving speed of the low molecular weight component.
  • the dialysis method of the present invention includes (1) independently controlling the supply flow rate and the discharge flow rate of the sample solution, and (2) independently controlling the supply flow rate and the discharge flow rate of the dialysate. Or (3) The pressure applied to the sample solution is higher than the pressure applied to the dialysate.
  • the dialysis method includes a diffusion dialysis method using a nonionic semipermeable membrane, and an electrodialysis method or an electrodialysis method using an ion exchange membrane or a charged membrane.
  • dialysis means a method using a non-ionic membrane. Dialysis is classified into the following modes according to the flow state of the solution in the pores of the nonionic dialysis membrane. (a) The solvent does not substantially move (convect) in the pores of the dialysis membrane. In this case, the solute molecules move from the high concentration side to the low concentration side only by diffusion.
  • filtration dialysis While filtering a part of the sample solution to the dialysate side, low molecular weight components are discharged to the dialysate side by molecular diffusion. This is called filtration dialysis.
  • the filtration dialysis method is characterized in that not only diffusion but also relatively large molecules (ions) having a low diffusion rate can be discharged to the dialysis side by solution movement accompanying filtration.
  • the dialysis methods (a) and (b) are known.
  • the size of the molecule to be dialyzed depends on the molecular weight cut off of the dialysis membrane.
  • the method of the present invention dialyzes only the low molecular weight component while allowing the dialysate to permeate through the dialysis membrane to the sample solution side at a controlled flow rate.
  • the excluded molecule size does not depend on the molecular weight cut off of the dialysis membrane, but the ratio between the rate of movement of the dialysate toward the sample solution (permeation rate) and the rate of movement of the solute component (diffusion rate). Control by (Peclet number).
  • the method of the present invention performs dialysis while independently controlling the supply flow rate and the discharge flow rate of the sample solution.
  • the movement of the dialysate toward the sample solution is referred to as “permeation” or “advection”, and the movement speed is also referred to as “permeation speed” or “advection speed”.
  • the movement of the solute component in the sample solution is called “diffusion”, and the moving speed is also called “diffusion speed”.
  • the movement of a substance or solution is expressed by the term “movement”.
  • “movement” of dialysate means “permeation” or “advection”, and a solute in a sample solution.
  • the movement of components means “diffusion”.
  • FIG. 1 is a schematic diagram showing movement of a solvent and a solute (advection and diffusion, respectively) in the dialysis membrane pores.
  • a dialysis membrane exists between the sample and the dialysate, and has A component ( ⁇ ) and B component ( ⁇ ) in the sample, and pores through which the dialysate moves. The components and dialysate in the sample move through the pores.
  • FIG. 1 shows an embodiment in which the A component, the B component, and the dialysate are present in the pores of the dialysis membrane.
  • the direction and length of the arrow indicate the moving direction and moving speed of the A component and the B component, and the moving direction and moving speed of the dialysate (solvent).
  • FIG. 1 is a schematic diagram showing movement of a solvent and a solute (advection and diffusion, respectively) in the dialysis membrane pores.
  • a dialysis membrane exists between the sample and the dialysate, and has A component ( ⁇ ) and B component ( ⁇ ) in the sample, and pores through
  • the moving direction is considered as a vector in the left-right direction (x-axis direction in the three-dimensional right-handed system coordinate), and the vertical direction (y-axis direction in the three-dimensional right-handed system coordinate) and the front-back direction (three-dimensional right-handed system).
  • the presence of a vector in the z-axis direction in the coordinates can be ignored.
  • FIG. 1a shows a state in which the ratio between the supply flow rate and the discharge flow rate of the sample solution (supply flow rate / discharge flow rate) is within a predetermined value range.
  • the “predetermined value” is a value in which the moving speed of the dialysate (membrane permeation speed) is smaller than the moving speed (diffusion speed) of the A component and is larger than the moving speed (diffusion speed) of the B component Value.
  • the membrane permeation direction of the dialysate is opposite to the A component and the B component, but the membrane permeation rate of the dialysate (the length of the arrow) is smaller than the A component and larger than the B component. .
  • the diffusion rate of the A component is higher than the advection rate of the dialysate, the A component moves to the dialysate side.
  • FIG. 1c shows a state in which the ratio of the supply flow rate and the discharge flow rate of the sample solution (supply flow rate / discharge flow rate) is larger than 1.
  • the direction of advection of the dialysate (solvent) in the pores is the same as the diffusion direction of both components A and B, both components A and B are discharged to the dialysate side (filtering). Dialysis).
  • the embodiment shown in FIG. 1b is used. If the A component is sodium ions or ethanol molecules, and the B component is an amino acid or aroma component, the ratio of the sample solution supply flow rate to the discharge flow rate in FIG. 1b is set to a predetermined value, or a predetermined pressure is applied. Thus, the A component (Na ions, ethanol molecules, etc.) can be removed from the sample, while the B component (amino acid, aroma component, etc.) can remain in the sample.
  • the method of the present invention is a method that utilizes the fact that the flow direction of the liquid that permeates through the dialysis membrane is the opposite of conventional filtration dialysis.
  • the present invention makes it possible to selectively dialyze low molecular weight components by controlling the flow rate (osmosis) of the dialysate generated by osmotic pressure into the sample solution. Thereby, only low molecular weight substances can be removed by dialysis from high osmotic pressure samples such as soy sauce and wine.
  • the present invention adjusts the ratio of the supply flow rate and the discharge flow rate of the sample solution (supply flow rate / discharge flow rate) within a range of 0.7 or more and less than 1.0 (that is, not including 1.0). While holding, desalting or ethanol removal is performed. In this method, since a nonionic semipermeable membrane is used, not only an ionic substance but also a nonionic substance can be removed.
  • the moving speed of the solution in the pores of the dialysis membrane is controlled by (1) controlling the supply flow rate and discharge flow rate of the sample solution, and (2) controlling the supply flow rate and discharge flow rate of the dialysate.
  • the desired value can be set by the difference in pressure applied to the sample solution and the dialysate, or by appropriately combining the above (1) to (3).
  • the present inventors have been able to permeate the membrane against the movement of the solvent while the component having a high diffusion rate (low molecular weight component), but to prevent the component having a low diffusion rate from permeating the membrane.
  • By controlling the speed of movement of the solvent in the pores of the membrane it was found that only low molecular weight components can be selectively dialyzed, and the present invention has been completed.
  • the low molecular weight component has a molecular weight of 20 to 150, preferably 20 to 100, more preferably 20 to 80, still more preferably 20 to 70, and still more preferably 20 to 60.
  • the low molecular weight solute is at least one molecule or ion selected from the group consisting of alkali metals, alkaline earth metals, alcohols, carboxylic acids, and inorganic acids / bases.
  • alkali metal molecule examples include lithium, sodium, potassium, rubidium, cesium, and francium, preferably lithium, sodium, and potassium.
  • alkaline earth metal molecules examples include beryllium, magnesium, calcium, strontium and barium, preferably beryllium, magnesium and calcium.
  • Examples of alcohol molecules include lower alcohols, and more specifically, methanol, ethanol, propyl alcohol, butyl alcohol, ethylene glycol, glycerin, and the like, preferably methanol, ethanol, and propyl alcohol.
  • Examples of carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, lactic acid, and the like, preferably acetic acid and lactic acid.
  • Examples of the inorganic acid include hydrochloric acid, nitric acid, phosphoric acid, and sulfuric acid, and examples of the inorganic base include sodium hydroxide and ammonia.
  • the dialysis method of the present invention can be performed using the dialysis membrane module shown in FIGS.
  • advection diffusion dialysis can be performed.
  • Examples of such devices include a sample solution flow path (referred to as flow path 1), a dialysate flow path (referred to as flow path 2), and Examples thereof include a dialysis apparatus having a dialysis membrane that separates the sample solution flow path (flow path 1) and the dialysate flow path (flow path 2).
  • the sample solution and the dialysate may be supplied to the respective flow paths 1 and 2 at the same flow rate, or may be supplied at different flow rates.
  • the flow rates of the sample solution and the dialysate are set in consideration of the removal rate of components to be removed and the residual rate of components that should not be removed.
  • pressure loss occurs due to the flow of the sample solution and dialysate in the membrane module, it is preferable to reduce these pressure losses in the dialysis method of the present invention. That is, it is necessary to control the flow rates of the sample solution and the dialysate so that the pressure loss is 1.0 times or less, preferably 0.5 times or less, more preferably 0.1 times or less of the transmembrane pressure difference.
  • the generated pressure loss also depends on the inner diameter of the hollow fiber membrane
  • a hollow fiber membrane having a large inner diameter is preferable in order to reduce the pressure loss.
  • the mass transfer in the direction perpendicular to the flow of the sample solution in the hollow fiber membrane should not have an excessively large inner diameter so as not to be rate limiting in the dialysis of the present invention.
  • the hollow fiber membrane has an inner diameter of 0.1 mm or more and 2.0 mm or less, preferably 0.2 mm or more and 1.0 mm or less, more preferably 0.3 mm or more and 0.6 mm or less.
  • the sample solution is not particularly limited as long as it contains a low molecular weight component, but is preferably a seasoning or an alcoholic beverage.
  • seasonings include soup stock, soy sauce, fish sauce, amino acid mixture, mirin, bouillon, fruit vinegar, and brewed vinegar.
  • alcoholic beverages include distilled liquors such as whiskey, brandy, liqueur, tequila, vodka, and rum in addition to brewed liquors such as beer, wine, and sake.
  • sodium ions and potassium ions in the whey can be selectively reduced. It is also effective for dialysis of hydrogen ions and chloride ions from hydrochloric acid hydrolyzate of protein or dialysis of sodium ions and chloride ions after neutralization.
  • chloropropanols produced during the decomposition of hydrochloric acid are substances that are carcinogenic, they can be reduced by the dialysis method of the present invention.
  • the present invention is also applicable to ethanol fermentation liquid, ethanol from acetone-butanol fermentation liquid, and recovery of acetone and butanol.
  • the dialysate used in the present invention is not particularly limited, and water can be preferably used.
  • Aqueous solution water substantially free of the components in question
  • examples of such water include water commercially available as drinking water, tap water, deionized water, precision filtered water, and distilled water.
  • degassed water can be used as the dialysate.
  • the present invention provides, as another aspect, a method for producing a solution in which the concentration of the low molecular weight component is reduced by carrying out the dialysis method of the present invention, and the concentration of the low molecular weight component produced by the production method is reduced. Provide the prepared solution.
  • a low molecular weight component taken into the dialysate can be newly used effectively.
  • a dialysate containing ethanol can be used as a material for a new low alcohol beverage.
  • sample solution after the dialysis treatment examples include desalted seasonings and low-concentration alcoholic beverages.
  • soy sauce or alcoholic beverage is used as the sample solution, desalted soy sauce and low-concentration alcoholic beverage are produced by the method of the present invention.
  • the application of the present invention is not limited to the desalination of soy sauce and the preparation of a low alcohol beverage, the present invention will be described with respect to the desalting of soy sauce as one of application examples.
  • a high-concentration sample solution and dialysate (water) are present across the dialysis membrane, water molecules flow from the dialysis side to the sample side through the membrane pores. This is called osmotic flow.
  • low molecular weight solute molecules (ions) in the sample diffuse and move from the sample solution side to the dialysate side.
  • the flow rate of the dialysate into the sample depends on the pressure difference (osmotic pressure) between the sample solution and the dialysate unless the characteristics of the dialysis membrane (for example, pore diameter and film thickness) are considered.
  • the osmotic pressure in the present invention is not a little different from that generally known, and will be described below. That is, the osmotic pressure is considered to be a transmembrane pressure difference generated depending on the concentration difference of all solutes when two solutions contact each other through a semipermeable membrane. It is known that the osmotic pressure of soy sauce exceeds 10 MPa.
  • the transmembrane pressure difference generated in a dialysis membrane having a molecular weight cut-off of 10 kD is approximately 18.5 kPa (Example 1, subtracting 1.5 kPa of pressure loss from the additional pressure of 20 kPa at which the solvent moving speed is zero) in the method of the present invention. ) was found to be extremely low. This osmotic pressure is considered to decrease as the pore size (fractional molecular weight) of the membrane increases.
  • the fractional molecular weight of the dialysis membrane used in the dialysis of the present invention does not mean a molecular weight that can be dialyzed. It is sufficient if the osmotic pressure generated by this membrane can be easily controlled by the pressure applied from the outside. Or what is necessary is just to be able to control the supply amount and discharge
  • Flow rate control The movement speed of the solvent in the pores of the dialysis membrane can be controlled by individually controlling the flow rate of the sample solution flowing into the membrane module and the flow rate of discharge from the membrane module. -The moving speed of the solvent in the pores of the dialysis membrane can be controlled by individually controlling the flow rate of the dialysate into the membrane module and the discharge flow rate from the membrane module. The above controls can be used alone or in combination as appropriate.
  • a differential pressure valve is installed at the membrane module outlet of the sample solution.
  • a differential pressure valve is installed at the inlet where the dialysate flows into the membrane module, a pump is installed at the outlet of the membrane module, and the dialysate is sucked and discharged by the pump.
  • a differential pressure can be applied between the sample solution and the dialysate by the head pressure difference between the position where the sample solution discharge port communicates with the atmosphere and the position where the dialysate outlet communicates with the atmosphere.
  • the pressure loss generated when the sample solution or dialysate flows through the membrane module is 1.0 times or less of the osmotic pressure generated in the system, preferably 0.5 times or less of the osmotic pressure, and more preferably The osmotic pressure is 0.1 times or less.
  • the dialysis membrane used in the present invention may be either a homogeneous membrane or a heterogeneous membrane, and is preferably a heterogeneous membrane having a dense thin layer on the inner surface of the hollow fiber.
  • the polysulfone membrane (Spectrum Laboratories) used in the examples is a heterogeneous membrane having a dense layer on the inner surface.
  • the movement of the low molecular weight component dissolved in the sample in the pores of the dialysis membrane is caused not only by the diffusion of the target molecules and ions but also by the movement of the solution. That is, the movement of the low molecular weight component must be considered as the sum of movement due to diffusion and movement due to the advection of the solution. This phenomenon is called advection diffusion.
  • the movement speed of the solvent in the pores of the dialysis membrane is precisely related to the movement speed of the low molecular weight components. It is important to control.
  • u is the flow rate of water
  • L is the pore length (film thickness)
  • d is the diffusion coefficient of the solute.
  • the movement of the solute indicates that the solvent flow contributes more than the diffusion, and conversely when the Peclet number is less than 1, the diffusion contributes more than the solution flow.
  • Film thickness is an important parameter directly related to the Peclet number. In order to reduce the distribution of the Peclet number determined for each pore of the membrane, the pore diameter variation and the thickness variation due to the site of the hollow fiber membrane should be minimized. When the film thickness is thin, it is necessary to increase the moving speed of the solvent. This increases the dilution of the sample solution with dialysate, so an excessively thin membrane is not suitable for use. However, when the film thickness is large, the mass transfer speed through the film is greatly reduced, which is also not preferable.
  • the preferred film thickness is 20 ⁇ m or more and 80 ⁇ m or less, more preferably 30 ⁇ m or more and 60 ⁇ m or less.
  • the Peclet number is preferably 0 or more and 1.0 or less, more preferably 0.1 or more and 0.6 or less.
  • the Peclet number is preferably 0.6 or more and 2.0 or less, more preferably 0.8 or more and 1.5 or less.
  • the present invention is characterized in that a dialysis membrane is used to move a solution through a very short flow path by a plug flow method.
  • Solvent movement and solute molecule movement are performed when the solvent movement direction in the pores and the solute molecule (ion) diffusion direction are opposite (that is, when dialysate flows in), and the solvent movement.
  • the direction of the solute and the direction of movement of the solute are the same (that is, a portion of the soy sauce is extruded through the pores).
  • the solvent moving direction and the solute moving direction are opposite and the solvent moving speed is larger than the diffusion speed of the component, the component is not discharged to the dialysate side.
  • the low molecular weight component is selectively selected. Dialysis can be performed.
  • the solute movement is the sum of the solvent movement and the solute diffusion contribution. Since the molecular weight of the dialysis membrane is from several kD to several tens of kD, when the solvent movement direction and the solute diffusion direction are the same, not only low molecular weight components but also relatively large molecules (ions) below the molecular weight cut-off As a result, the selectivity of dialysis of low molecular weight components decreases.
  • the selectivity (selectivity coefficient) for allowing the target molecule to remain in the sample while dialyzing the low molecule is represented by, for example, the Na + ion removal rate / amino nitrogen reduction rate. If this value is 10 or more, it is judged that selectivity is good and low molecules can be efficiently removed.
  • the removal efficiency of the low molecular weight component when the selection coefficient is 4 to 20 is 90% to 30%. That is, 90% to 30% of the entire low molecular weight substance contained before dialysis is removed.
  • the dialysis of the present invention that is, the advection diffusion dialysis method has been devised.
  • the loss of the solute (amino nitrogen such as amino acid) to be retained in the sample can be suppressed to 25% or less, preferably 15% or less, more preferably 10% or less.
  • soy sauce was desalted. That is, the movement of sodium ions, potassium ions and chloride ions toward the dialysate side is governed by diffusion, while the movement of amino nitrogen compounds (amino acids) and aroma components is governed by the movement of the solvent. By controlling the moving speed of the solvent in the pores, low-salt soy sauce was produced without any deterioration in flavor. Furthermore, according to this method, since the soy sauce does not permeate the membrane and only the dialysate (water) permeates the membrane, it is also a feature of this method that the membrane is hardly soiled.
  • the apparatus of the present invention independently controls the sample solution flow path 1, the dialysate flow path 2, the dialysis membrane separating the flow path 1 and the flow path 2, and the supply flow rate and the discharge flow rate of the dialysate. It is a dialysis apparatus provided with a flow rate control mechanism that permeates through a dialysis membrane.
  • FIG. 4 is an example of the advection diffusion dialysis apparatus 40 including the flow path 1, the flow path 2, the dialysis membrane, and a flow rate control mechanism for the solution that permeates the dialysis membrane.
  • the sample solution storage tank 401, the treatment solution storage tank 402, A dialysate storage tank 403, a discharge dialysate storage tank 404, a sample supply pump 405, a sample treatment liquid discharge pump 406, a dialysate supply pump 407, a pressure gauge 408, a dialysis module 409, and the like are provided.
  • the dialysis module 409 includes a sample solution channel, a dialysate channel, and a dialysis membrane that separates the sample solution channel and the dialysate channel.
  • the flow rate control mechanism includes a sample supply pump 405 and a sample processing liquid discharge pump 406.
  • the same reference numerals indicate the same elements in the apparatus of the present invention.
  • the dialysis module 409 can be configured as shown in FIG. 2. Approximately 5,000 membranes can be stored in a polypropyne cylindrical container (diameter 33 mm, length 250 mm). In this case, the surface area of the dialysis membrane accommodated in the dialysis module 409 is about 6500 cm 2 .
  • An upper surface and a lower surface of the dialysis module 409 have an inlet 201 and an outlet 202 for sample solution such as soy sauce, respectively, and are provided with a sample solution flow path 1 and a dialysate flow path 2 (not shown).
  • a cylindrical side surface (for example, made of polypropylene) of the dialysis module 409 is provided with an introduction port 203 for supplying dialysate (for example, water) and a discharge port 204 for discharging.
  • the sample solution in the sample solution storage tank 401 is sucked by the sample supply pump 405 having a variable flow rate and supplied to the dialysis module 409.
  • the sample supply pressure at this time is measured by a pressure gauge 408.
  • the tube 210 (FIG. 2) of the dialysis module 409 is connected to the top of the dialysis module 409, and the sample solution is supplied from the sample supply port 201 to the top of the dialysis module 409 through the tube 210.
  • the sample solution supplied to the top of the dialysis module 409 descends in the sample solution flow path in the dialysis module 409, that is, in the hollow fiber membrane, and passes through the sample discharge port 202 at the bottom through the sample discharge pump 406 whose flow rate is variable, and the treatment solution It reaches the storage tank 402.
  • the dialysate (for example, water) in the dialysate storage tank 403 is introduced from the introduction port 203 on the cylindrical side near the bottom of the dialysis module 409 by a dialysate feed pump 407 having a variable flow rate. It rises through the gap, is discharged from the discharge port 204 on the cylindrical side near the top of the dialysis module 409, and reaches the discharged dialysate storage tank 404. Since the sample solution flow path 1 and the dialysate flow path 2 communicate with each other through the pores of the dialysis membrane, the sample solution supply amount and discharge amount are set, and the dialysate supply amount is set. The amount of dialysate discharged is automatically determined.
  • a dialysate feed pump 407 having a variable flow rate. It rises through the gap, is discharged from the discharge port 204 on the cylindrical side near the top of the dialysis module 409, and reaches the discharged dialysate storage tank 404. Since the sample solution flow path 1 and the dialysate flow
  • FIG. 5 is an example of the advection diffusion dialysis apparatus 50 including the flow path 1, the flow path 2, the dialysis membrane and the flow rate control mechanism that permeates the dialysis membrane, and includes a sample solution storage tank 401, a treatment solution storage tank 402, and a dialysate A storage tank 403, a discharged dialysate storage tank 404, a sample supply pump 405, a dialysate supply pump 407, a dialysate discharge pump 507, a pressure gauge 408, a dialysis module 409, and the like are provided.
  • the dialysis module 409 includes a sample solution channel 1, a dialysate channel 2, and a dialysis membrane that separates the channel 1 and the channel 2.
  • the flow control mechanism of the dialysate that permeates through the dialysis membrane includes a dialysate supply pump 407 and a dialysate discharge pump 507.
  • the configuration example of the dialysis module 409, the flow of the sample solution and the dialysate, and the like can be based on the description of the advection diffusion dialysis apparatus 40 shown in FIG.
  • the dialysis apparatus of the present invention is applied to the sample solution flow path 1, the dialysate flow path 2, the dialysis membrane separating the flow path 1 and the flow path 2, and the pressure applied to the sample solution and the dialysate.
  • a dialysis apparatus including a pressure control mechanism for controlling pressure, and includes a differential pressure control mechanism between a sample solution and a dialysis solution.
  • FIG. 6 is an example of a dialysis apparatus 60 provided with a sample solution flow path 1, a dialysate flow path 2, a dialysis membrane separating the flow path 1 and the flow path 2, and a transmembrane differential pressure control mechanism.
  • Sample solution reservoir 401 Sample solution reservoir 401, treatment solution reservoir 402, dialysate reservoir 403, discharge dialysate reservoir 404, sample supply pump 405, back pressure adjustment valve 606, dialysate feed pump 407, pressure gauge 408, and dialysis A module 409 and the like are provided.
  • the dialysis module 409 can be configured as shown in FIG. 2, for example, a polysulfone hollow fiber having an outer diameter of 280 ⁇ m, an inner diameter of 200 ⁇ m, a length of 208 mm, and a molecular weight cut off of 10,000 Da. Approximately 5,000 membranes can be stored in a polypropyne cylindrical container (diameter 33 mm, length 250 mm). The surface area of the dialysis membrane accommodated in the dialysis module 409 at this time is about 6500 cm 2 . On the upper and lower surfaces of the dialysis module 409 are a sample solution inlet 201 and an outlet 202, respectively.
  • a cylindrical side surface made of polypropylene is provided with an inlet 203 for supplying dialysate and an outlet 204 for discharging.
  • the sample solution in the sample solution storage tank 401 is sucked by the sample supply pump 405 having a variable flow rate and supplied to the dialysis module 409.
  • the sample supply pressure at this time is measured by a pressure gauge 408.
  • the sample solution supplied to the top of the dialysis module 409 descends through the hollow fiber membrane in the dialysis module 409, is discharged from the sample outlet at the bottom, and reaches the treatment solution storage tank 402.
  • the back pressure regulating valve 606 is provided on the sample solution outlet side of the dialysis module 409, and suppresses the inflow of the dialysate into the sample solution by applying a predetermined pressure to the sample solution.
  • the dialysate (for example, water) in the dialysate storage tank 403 is introduced from the introduction port 203 on the cylindrical side near the bottom of the dialysis module 409 by a dialysate supply pump 407 having a variable flow rate, and passes through the gaps of a number of hollow fiber membranes. Ascended and discharged from the outlet 204 on the side of the cylinder near the top of the dialysis module 409.
  • the membrane permeation rate of the dialysate is determined by individually setting the flow rates of the sample supply pump 405 and the treatment liquid discharge pump 406.
  • the flow rate of the sample supply pump 405 is V5 [ml / min]
  • the flow rate of the sample treatment liquid discharge pump 406 is V6 [ml / min]
  • the total surface area of the dialysis membrane is S [cm 2 ]
  • Membrane permeation rate (V6 ⁇ V5) / S [cm / min].
  • a gear pump, a mono pump, or the like is preferably used, but a cheving pump can also be used.
  • the sample solution supplied from the sample solution storage tank 401 to the top of the dialysis module 409 descends through the hollow fiber membrane in the dialysis module 409 by the sample supply pump 405 having a variable flow rate, and the sample outlet at the bottom. It is discharged from 202 and reaches the processing solution storage tank 402.
  • the membrane permeation rate of the dialysate can be controlled by independently controlling the flow rates of the dialysate supply pump 407 and the dialysate discharge pump 507.
  • the apparatus of the present invention includes a plurality of dialysis modules as shown in FIG. 2 in parallel with respect to the flow of the sample solution and the dialysate (2 to several hundreds). Can be arranged.
  • FIG. 3 is an example of an embodiment of a multiple dialysis module system 30 in which ten dialysis modules 409 are arranged.
  • the multiple dialysis module system 30 includes a dialysis module 409, a sample solution supply pipe 301, a sample processing liquid discharge pipe 302, a dialysate supply pipe 303, a dialysate discharge pipe 304, a first flow variable pump 305, and a second flow variable pump. 306, a third variable flow rate pump 307 is provided.
  • the first flow rate variable pump 305, the second flow rate variable pump 306, and the third flow rate variable pump 307 are respectively a sample supply pump 405, a sample processing liquid discharge pump 406, and a dialysate supply pump 407 (FIGS. 4 to 6).
  • the top of the dialysis module 409 is connected to the sample solution supply pipe 301 via the tube 311 and connected to the dialysate discharge pipe 304 via the tube 312.
  • the bottom of the dialysis module 409 is connected to the dialysate supply pipe 303 via the tube 313 and is connected to the sample processing liquid discharger 302 via the tube 314.
  • the membrane of the dialysis module 409 for carrying out the present invention can be any of a hollow fiber membrane, a spiral membrane, or a flat membrane, but in order to increase the membrane area per volume of the dialysis module 409, the hollow fiber membrane is used. preferable.
  • the osmotic pressure is at most about 20 kPa. Therefore, in order to reduce the fluctuation due to the site of the solvent moving speed within the pore diameter in the entire area of the hollow fiber membrane, the sample solution and the dialysis solution are used for the membrane module. The smaller the pressure loss when circulating, the better.
  • the pressure loss is 1.0 times or less, preferably 0.5 times or less, more preferably 0.1 times or less of the osmotic pressure.
  • the generated pressure loss depends not only on the flow rate of the sample solution but also on the inner diameter of the hollow fiber membrane. Therefore, in order to maintain a high processing speed and reduce the pressure loss, A large hollow fiber membrane is preferred.
  • the inner diameter should not be excessively large so that mass transfer in the direction perpendicular to the flow of the sample solution in the hollow fiber membrane is not rate-limiting in the dialysis of the present invention.
  • the inner diameter of the hollow fiber membrane in the dialysis method of the present invention is 0.1 mm or more and 2.0 mm or less, preferably 0.2 mm or more and 1.0 mm or less, more preferably 0.3 mm or more and 0.6 mm or less.
  • the transmembrane pressure difference (osmotic pressure of the present invention) generated in this Example using a dialysis membrane having a molecular weight cut off of 10 kD was as low as about 18 kPa. This osmotic pressure is considered to decrease as the membrane pore diameter increases.
  • the molecular weight cutoff of the osmotic membrane used in the dialysis of the present invention does not mean a molecular weight that can be dialyzed. It is sufficient that the generated osmotic pressure is easily controlled by operating parameters (pressure and flow rate) applied from the outside. However, since it is important that there is no fluctuation in the moving speed of the solvent flowing in each pore of the dialysis membrane, the pore size distribution should be as small as possible.
  • the film thickness is an important parameter related to the moving speed of the solvent in the dialysis of the present invention. From the results of the examples, the preferred film thickness is 20 ⁇ m or more and 80 ⁇ m or less, more preferably 30 ⁇ m or more and 60 ⁇ m or less.
  • soy sauce was dialyzed using a polysulfone hollow fiber membrane having an inner diameter of 0.2 mm, a length of 208 mm, a film thickness of 40 ⁇ m, and a molecular weight cut off of 10000 Da
  • the osmotic pressure was 18 kPa.
  • the pressure loss was 1.5 kg, 2.5 kPa at 10 mm / s, and 7.7 kPa at 17 mm / s.
  • the transmembrane pressure difference is small in the downstream portion of the hollow fiber membrane, and the dialysate flows into the soy sauce side. Since such a phenomenon occurs, selective dialysis removal of low molecular weight components becomes difficult when the pressure loss of the sample solution is large.
  • the transmembrane pressure can be controlled by installing a differential pressure valve at the sample solution outlet.
  • the differential pressure can be generated by controlling the head pressure difference between the storage tank that temporarily stores the processing liquid discharged from the sample solution discharge port and the opening of the dialysate to be discharged. That is, the transmembrane pressure can be adjusted by the difference between the installation position of the treated sample storage tank and the opening position of the dialysate discharge port.
  • the movement speed of the solvent in the pores can also be adjusted by controlling the inlet flow rate and outlet flow rate of the sample solution, or controlling the inlet flow rate and outlet flow rate of the dialysate.
  • a pump that can control the flow rate highly and does not generate a pulsating flow, such as a mono pump, in the sample solution supply part and the sample solution discharge part, respectively, and operate the pumps with slightly different flow rates. Can be achieved. Alternatively, the object can be achieved by applying the same control to the dialysate.
  • the polymer material of the dialysis membrane In designing the dialysis machine, the polymer material of the dialysis membrane, the molecular weight cut off, the film thickness, the aperture ratio (void ratio) of the dialysis membrane, the inner diameter and length of the hollow fiber membrane, the method of controlling the membrane permeation rate (convection rate), It is necessary to fully consider the flow rate and flow direction of the sample solution and the flow rate and flow direction of the dialysate.
  • Example 1 Using a dialysis module equipped with SP polysulfone hollow fiber membrane manufactured by Spectrum Laboratories (fractionated molecular weight 10kD, inner diameter 200 ⁇ m ⁇ outer diameter 280 ⁇ m, number of hollow fiber membranes 5750, membrane surface area 6500cm2 (inner surface), 9100cm2 (outer surface)) Then, desalting of commercially available concentrated soy sauce was performed. That is, dialysis was performed by flowing soy sauce inside the hollow fiber membrane and flowing the dialysate outside in a countercurrent manner. A roller pump RP-2100 manufactured by Tokyo Rika Kikai Co., Ltd. was used for feeding soy sauce and dialysate. As shown in FIG.
  • a differential pressure was generated between the soy sauce and the dialysate by attaching a pressure adjusting valve to the soy sauce outlet.
  • a pressure sensor was attached to the soy sauce inlet side to monitor the soy sauce supply pressure. The following experiment was conducted at a soy sauce flow rate of 60 ml / min and a dialysate flow rate of 60 ml / min.
  • Example 1-1) Dialysis was performed by adjusting the supply pressure of soy sauce to 9.0 kPa with a pressure adjusting valve.
  • Example 1-2) Dialysis was performed by adjusting the supply pressure of soy sauce to 20 kPa using a pressure adjusting valve.
  • Example 1-3) Dialysis was performed by adjusting the supply pressure of soy sauce to 32 kPa using a pressure control valve. Comparative Example 1) Since normal dialysis does not assume transmembrane pressure and solvent permeation, dialysis was performed with the pressure adjustment valve at the soy sauce outlet fully opened, and a comparative experiment was conducted. At this time, the soy sauce supply pressure was 1.5 kPa.
  • Table 1 shows the inlet flow rate and outlet flow rate of soy sauce and the inlet flow rate and outlet flow rate of dialysate in Examples 1-1 to 1-3 and Comparative Example 1.
  • the membrane permeation rate was calculated by dividing the difference between the soy sauce inlet flow rate and the outlet flow rate by the dialysis membrane area. Further, Table 1 shows the reduction rate of Na + ions and K + ions and the reduction rate of amino nitrogen in Examples 1-1 to 1-3 and Comparative Example 1.
  • Example 1-1 Dialysis was performed by setting the pressure of a soy sauce inlet to 9.0 kPa using a pressure adjusting valve attached to the soy sauce outlet, and the soy sauce outlet flow rate was 72 ml / min with respect to the soy sauce inlet flow rate of 60 ml / min. It was min. As a result, while the soy sauce passed through the hollow fiber membrane, the dialysate permeated 12 ml per minute into the soy sauce. The membrane permeation rate at this time was 0.0018 cm / min.
  • Example 1-2 At the soy sauce inlet pressure of 20 kPa, the soy sauce inlet flow rate and outlet flow rate were equal, and the dialysate flow stopped (the membrane permeation rate was zero).
  • the osmotic pressure under this condition is 20 kPa.
  • Example 1-3 At a soy sauce inlet pressure of 32 kPa, the outlet flow rate was 43 ml / min with respect to the soy sauce inlet flow rate of 60 ml / min, and a portion of soy sauce was discharged to the 17 ml dialysate side per minute.
  • the membrane permeation rate at this time was -0.0026 cm / min.
  • the decrease rate of Na + ions increased to 1.4, 20.9, 39.3, and 54.7% as the membrane permeation rate of the dialysate flowing into the soy sauce side decreased to 0.0065, 0.0018, 0.000, and -0.0026 cm / min.
  • the reduction rate of amino nitrogen under the same conditions was ⁇ 0.1, 0.8, 7.3, 23.2%.
  • FIG. 7 shows the results of Table 1 (Comparative Example 1, Examples 1-1 to 1-3).
  • Table 1 Comparative Example 1, Examples 1-1 to 1-3.
  • FIG. 7 shows the influence of the dialysate permeation flow rate (membrane permeation rate) on the decrease rate of Na + ions and the decrease rate of amino nitrogen.
  • a positive value is a direction in which the dialysate permeates and flows into the soy sauce side, and a negative value indicates a membrane permeation rate when a part of the soy sauce flows out to the dialysate side.
  • Comparative Example 1 The membrane permeation rate of the dialysate when no pressure was applied to the soy sauce was 0.0065 cm / min, and both Na + ions and amino nitrogen components (amino acids) were substantially diffusely transferred to the dialysate side according to the concentration gradient. Can not do it. That is, dialysis is impossible.
  • Example 1-1 Dialysis was performed at a membrane permeation rate of 0.0018 cm / min by applying a pressure of 9.0 kPa to soy sauce. At this time, the decrease rate of Na + ions was 20.9%, but almost no decrease in amino nitrogen component was observed.
  • Example 1-2 Dialysis was performed in a state where the pressure of 20 kPa was applied to soy sauce and the dialysate was stationary in the membrane. At this time, the decrease rate of Na + ions was 39.3%, and the decrease rate of amino nitrogen component was 7.3%.
  • Example 1-3 Under a situation where the pressure applied to soy sauce is increased to 32 kPa to reverse the direction of the membrane permeate flow (-0.0026 cm / min), and a portion of the soy sauce is discharged (filtered) to the dialysate side Dialysis was performed. At this time, the decrease rate of Na + ions was 54.7%, and the decrease rate of amino nitrogen component was 23.2%.
  • Dialysis similar to Example 1 and Comparative Example 1 was performed with the soy sauce inlet flow rate of 120 ml / min and the dialysate inlet flow rate of 120 ml / min.
  • Example 2-1 Dialysis was performed by adjusting the supply pressure of soy sauce to 15 kPa using a pressure adjusting valve.
  • Example 2-2 Dialysis was performed by adjusting the supply pressure of soy sauce to 25 kPa using a pressure adjusting valve.
  • Comparative Example 2 Since normal dialysis does not assume transmembrane pressure and solvent permeation, dialysis was performed with the pressure adjustment valve at the soy sauce outlet fully opened, and a comparative experiment was conducted. At this time, the supply pressure of soy sauce was 2.5 kPa. The results of Examples 2-1 to 2-3 and Comparative Example 2 are shown in Table 2.
  • Comparative Example 2 The pressure at the soy sauce inlet when the pressure control valve attached to the soy sauce outlet was fully opened was 2.5 kPa. At this time, the outlet flow rate was 150 ml / min with respect to the soy sauce inlet flow rate of 120 ml / min, the dialysate permeated 30 ml per minute into the soy sauce side, and the membrane permeation rate was 0.0046 cm / min. At this time, the decrease rate of Na + ion was only 6.6% and almost no decrease of amino nitrogen was observed. As a result, when dialyzing without applying pressure to the soy sauce, Na + ions could be excluded selectively, but the removal rate was as low as 6.6%, and the sample solution was diluted with dialysate by about 25%. It became clear.
  • Example 2-1 Dialysis was performed at a membrane permeation rate of 0.0009 cm / min by applying a pressure of 15 kPa to soy sauce. At this time, the decrease rate of Na + ions was 39.5%, but the decrease rate of the amino nitrogen component was 4.2%.
  • Example 2-2 Dialysis was performed at a membrane permeation rate of -0.0009 cm / min by applying a pressure of 25 kPa to soy sauce. At this time, the decrease rate of Na + ions was 47.5%, and the decrease rate of amino nitrogen component was 13.1%.
  • Example 2-3 Dialysis was performed at a membrane permeation rate of -0.0018 cm / min by applying a pressure of 35 kPa to soy sauce. At this time, the decrease rate of Na + ion was 52.1%, but the decrease rate of amino nitrogen component was 21.2%. As the dialysate membrane permeation rate decreased to 0.0046, 0.0009, -0.0009, -0.0018 cm / min, the decrease rate of Na + ions increased to 6.6, 39.5, 47.3, 52.1%. Under the same conditions, the decrease rate of amino nitrogen was 0.16, 4.2, 13.1, 21.2%. The selectivity was 41, 9.4, 3.6, and 2.4 under the same conditions.
  • Example 2-1 shows that both the removal rate and selectivity of sodium ions are satisfied.
  • the decrease rate of Na + ions was 47.3%, and the decrease rate of amino nitrogen components was 13.1%. Furthermore, when the pressure applied to soy sauce was increased and dialysis was performed at a membrane permeation rate of -0.0018 cm / min, the decrease rate of Na + ions was 52.1%, and the decrease rate of amino nitrogen components was 21.2%. As described above, in the region where the solute diffusion rate is larger than the advection rate (Peclet number ⁇ 1), a linear relationship was observed between the solute reduction rate and the advection rate.
  • Dialysis was performed in the same manner as in Example 1 and Comparative Example 1 with a soy sauce inlet flow rate of 180 ml / min and a dialysate inlet flow rate of 180 ml / min.
  • Example 3-1 Dialysis was performed by adjusting the supply pressure of soy sauce to 17.2 kPa with a pressure control valve.
  • Example 3-2 Dialysis was performed by adjusting the supply pressure of soy sauce to 28.1 kPa with a pressure control valve.
  • Example 3-3 Dialysis was performed by adjusting the supply pressure of soy sauce to 41.8 kPa with a pressure control valve.
  • Comparative Example 3 Since normal dialysis does not assume the transmembrane pressure difference and the permeation of the solvent, dialysis was performed with the pressure adjustment valve at the soy sauce outlet fully opened, and a comparative experiment was conducted. Table 3 shows the results of Examples 3-1 to 3-3 and Comparative Example 3.
  • Example 3-1 Dialysis was performed at a membrane permeation rate of 0.0065 cm / min by applying a pressure of 17.2 kPa to soy sauce. At this time, the decrease rate of Na + ions was 32.5%, but the decrease rate of amino nitrogen component was 2.9%.
  • Example 3-2 Dialysis was performed at a membrane permeation rate of 0.0046 cm / min by applying a pressure of 28.1 kPa to soy sauce. At this time, the decrease rate of Na + ions was 40.9%, but the decrease rate of amino nitrogen component was 6.5%.
  • Example 3-3 Dialysis was performed at a membrane permeation rate of 0.0000 cm / min by applying a pressure of 41.8 kPa to soy sauce. At this time, the decrease rate of Na + ions was 52.5%, but the decrease rate of amino nitrogen component was 13.0%. The decrease rate of Na + ions increased to 25.4, 32.5, 40.9, and 52.5% as the membrane permeation rate of the dialysate decreased to 0.011, 0.0065, 0.0046, and 0.000 cm / min. Under the same conditions, the decrease rate of amino nitrogen was 0.9, 2.9, 6.5, 13.0%. In addition, the selectivity decreased to 28.8, 10.8, 6.4, and 4.0 under the same conditions. The above results show that the removal rate and selectivity of sodium ions are inversely proportional.
  • FIG. 9 The results of Table 3 (Comparative Example 3, Examples 3-1 to 3-3) are shown in FIG. In the figure, there are four plots of the reduction rate of sodium ion and amino nitrogen, respectively, which show the results of Comparative Example 2, Examples 2-1, 2-2 and 2-3 in order from the right.
  • the results of FIG. 9 differed from the results of FIGS. That is, no pressure was applied to the soy sauce, and 25.4% of Na + ions were discharged to the dialysate side despite the high permeation inflow rate of the dialysate as 0.011 cm / min. At this time, almost no amino nitrogen component was discharged to the dialysate side. This is thought to be because the flow rate of soy sauce in the dialysis membrane increased and the properties of the boundary layer formed on the dialysis membrane surface changed.
  • the selectivity factor Na + ion removal rate / amino nitrogen reduction rate Soy sauce supply flow rate: ⁇ 60 ml / min; ⁇ 120 ml / min; ⁇ 180 ml / min
  • FIG. 10 revealed that a linear relationship was established between dialysis selectivity and dialysate membrane permeation rate under constant dialysis rate conditions.
  • the theoretical consideration and the measured value do not agree with each other in that the thickness of the boundary layer formed on the inner surface of the hollow fiber membrane and the electric strength of the electric double layer are different depending on the flow of soy sauce in the hollow fiber. It is thought to be caused.
  • the membrane permeation rate of the solvent in the dialysis membrane is controlled by independently controlling the soy sauce supply flow rate and the soy sauce discharge flow rate.
  • Dialysis was performed with the soy sauce inlet flow rate of 180 ml / min, the outlet flow rate of 220 ml / min and the dialysate flow rates of 180, 270, 360, and 450 ml / min.
  • FIG. 11 is a plot of Na + ion reduction rate and amino nitrogen component reduction rate against dialysate flow rate at a soy sauce supply flow rate of 180 ml / min and a soy sauce discharge flow rate of 220 ml / min.
  • the decrease rate of Na + ions increased with the flow rate of the dialysate, and 50% or more of desalting could be performed by flowing a dialysate more than twice the soy sauce.
  • the decrease rate of the amino nitrogen component was hardly affected by the flow rate of the dialysate, and did not exceed 2% at any dialysate flow rate.
  • a high desalting efficiency (50%) and a large selection factor (30) were obtained at a dialysate flow rate twice that of the soy sauce supply.
  • a selection factor of about 10 is used as a guideline, so the membrane permeation rate of the dialysate is set to a smaller value (by reducing the difference between the soy sauce supply flow rate and the discharge flow rate), and desalting of 50% or more is possible. It becomes.
  • Example 4 Using the same dialysis machine used in Example 1, an attempt was made to reduce alcohol in white wine.
  • the alcohol in wine was dialyzed with a wine flow rate of 50 ml / min and a dialysate flow rate of 100 ml / min.
  • Example 4-1) Dialysis was performed with the wine outlet pressure regulating valve fully opened (wine supply pressure 1.4 kPa).
  • Example 4-2) Dialysis was performed using a pressure regulating valve at a wine supply pressure of 8.4 kPa.
  • Example 4-3) Wine supply pressure was 18.4 kPa.
  • Table 4 The results of this example are shown in Table 4.
  • the supply pressure of wine when the pressure regulating valve is fully opened is 1.4 kPa, and the pressure loss when flowing through the membrane module is 1.4 kPa.
  • the wine inlet pressure is 8.4 k
  • the outlet flow rate of wine decreased. That is, when the supply pressure is low, the dialysate flows into the wine side. However, when the supply pressure increases, a portion of the wine is discharged to the dialysate side. It is judged that there is no change in wine volume due to dialysis when the wine inlet pressure is around 8 kPa. That is, the osmotic pressure of wine is about 8 kPa in dialysis according to the present invention.
  • the decrease rate of ethanol increased as the wine supply pressure increased, but the amount of wine discharged into the dialysate increased. This is due to the fact that filtration dialysis occurs under these conditions.
  • the ethanol removal rate of wine treated at a wine supply pressure of 8.4 kPa was 79.8%, and its flavor was kept good.
  • this method is also important as a technique for reducing ethanol from alcoholic beverages.
  • the ethanol was quantified by adsorbing and collecting ethanol in the headspace by the micro solid phase extraction (SPME) method (supplied by SUPELCO) and analyzing this by GC (Shimadzu GC-14A).
  • Table 8 shows the concentration in the raw material and the concentration in the dialysis wine as the peak area of the gas chromatogram for the eight components considered to be important for the wine aroma. Furthermore, the residual ratio of each component in the dialysis wine relative to the raw wine is shown in parentheses. As a result, it was found that more than 83% remained except for Ethyl octanoate. The decrease in Ethyl octanoate was thought to be due to sorption on the dialysis membrane. Therefore, after the sorption equilibrium to the membrane is achieved, the decrease due to this treatment is not considered to be a problem.
  • a method for selectively dialysis removing low molecular weight components contained in a sample solution is provided.
  • 30 Multiple dialysis module system
  • 40 Advection diffusion dialysis machine
  • 50 advection diffusion dialysis device
  • 60 dialyzer
  • 402 treatment solution reservoir
  • 403 dialysate reservoir
  • 404 discharge dialysate storage tank
  • 405 sample supply pump
  • 406 sample processing solution discharge pump
  • 407 Dialysate supply pump
  • 408 Pressure gauge
  • 409 Dialysis module 507: Dialysate discharge pump
  • 606 Back pressure adjustment valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Genetics & Genomics (AREA)
  • Nutrition Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Soy Sauces And Products Related Thereto (AREA)

Abstract

A method for removal of low molecular weight components contained in a sample solution by dialysis, the method being characterized in that the direction of movement of the dialysate inside the dialysis membrane is in the direction opposite to the direction of movement of the solutes in the sample solution inside the dialysis membrane and the rate of movement of the dialysate is smaller than the rate of movement of the low molecular weight components.

Description

低分子量成分の除去方法Method for removing low molecular weight components
 本発明は、試料溶液中に含まれる低分子量成分を透析除去する方法に関する。 The present invention relates to a method for dialysis removal of low molecular weight components contained in a sample solution.
 電気透析装置を用いて醤油の脱塩を行う方法として、「無塩醤油の製造方法」(特許文献1)、「減塩醤油の製造方法」(特許文献2)などがある。これらの方法は、陽電極と陰電極との間に陽イオン交換膜と陰イオン交換膜を配置して、その両イオン交換膜の間のスペースに醤油を供給しつつ、両イオン交換膜と電極の間のスペースに適度な濃度の食塩水が供給されており、電極間の直流電流の作用により醤油中のナトリウムイオンを、陽イオン交換膜を介して陰極側に拡散させ、塩化物イオンを陰イオン交換膜を介して陽極側に拡散させることにより、醤油の脱塩を行うものである。 Examples of methods for desalting soy sauce using an electrodialyzer include “a method for producing unsalted soy sauce” (Patent Document 1) and “a method for producing reduced salt soy sauce” (Patent Document 2). In these methods, a cation exchange membrane and an anion exchange membrane are disposed between a cation electrode and an anion electrode, and soy sauce is supplied to the space between the both ion exchange membranes, An appropriate concentration of saline solution is supplied to the space between the electrodes, and the sodium ions in the soy sauce are diffused to the cathode side through the cation exchange membrane by the action of a direct current between the electrodes, and the chloride ions are anionized. The soy sauce is desalted by diffusing to the anode side through an ion exchange membrane.
 このような方式のイオン交換膜を用いた電気透析法では、交換膜の性能によって所定の通電電圧に達すると、イオン交換膜内で水の電気分解、いわゆる、中性攪乱が生じ電流効率が低下することが知られている。この中性攪乱は、醤油のpH上昇ならびに重要な呈未成分としてのアミノ酸の損失を引き起こすという問題があった。中性攪乱は減塩醤油の品質に影響を及ぼすことから所定の通電電圧の範囲内で脱塩処理を行う必要がある。したがって、この方法による醤油の脱塩には比較的長時間を要することも産業上の課題であった。 In the electrodialysis method using an ion exchange membrane of this type, when a predetermined energization voltage is reached due to the performance of the exchange membrane, electrolysis of water in the ion exchange membrane, so-called neutral disturbance, occurs and current efficiency decreases. It is known to do. This neutral disturbance has a problem in that it causes an increase in the pH of soy sauce and a loss of amino acids as important unexposed components. Since neutral disturbance affects the quality of low-salt soy sauce, it is necessary to perform a desalting treatment within a predetermined energizing voltage range. Therefore, the desalting of soy sauce by this method is also an industrial problem that it takes a relatively long time.
 イオン交換膜を用いたこのような電気透析装置で醤油の脱塩を行うときの問題点を認識して、新たな技術開発が行われた(「減塩醤油の製造方法および製造装置」(特許文献3))。すなわち、この技術は、醤油のpH変化を小さくするとともに、醤油中のアミノ酸組成の変化を最小限にとどめながら脱塩が可能な減塩醤油の製造方法ならびにその製造装置に関するものである。 Recognizing the problems associated with desalting soy sauce with such an electrodialysis machine using an ion exchange membrane, a new technology was developed ("Method for producing reduced soy sauce and manufacturing apparatus" (patent Reference 3)). That is, this technique relates to a method for producing low-salt soy sauce that can be desalted while minimizing changes in the pH of soy sauce and minimizing changes in the amino acid composition in the soy sauce, and an apparatus for producing the same.
 詳細には、陰陽両電極間に陽極側から陽イオン交換膜、バイポーラ膜、陰イオン交換膜の順に配置した1組以上の繰り返し単位と、陽イオン交換膜、陰イオン交換膜の順に配置した1組以上の繰り返し単位とにより構成される電気透析装置を有することを特徴とする減塩醤油の製造装置、ならびにこれを用いて、その脱塩室に醤油を送液し、その醤油中の塩分を減少させることを特徴とする減塩醤油の製造方法である。このような三室式電気透析槽を用いた方法は、醤油のpH上昇とアミノ酸の損失を低減しうると考えられるが、装置の構成とその運用が煩雑になることが懸念される。さらに、電気透析法では脱塩所要時間は脱塩すべき全イオン量(塩濃度)に依存することから、食塩濃度の高い醤油においては脱塩に要する時間が長くなることを免れない。 Specifically, one or more sets of repeating units arranged in the order of a cation exchange membrane, a bipolar membrane, and an anion exchange membrane from the anode side between the anion and cation electrodes, and a cation exchange membrane and an anion exchange membrane arranged in this order 1 A low-salt soy sauce production apparatus characterized by having an electrodialysis apparatus composed of at least a pair of repeating units, and using this, the soy sauce is fed to the desalting chamber, and the salt content in the soy sauce is A method for producing reduced-salt soy sauce, characterized in that it is reduced. Such a method using a three-chamber electrodialysis tank is thought to reduce the pH increase of soy sauce and the loss of amino acids, but there is a concern that the configuration and operation of the apparatus become complicated. Furthermore, since the time required for desalting depends on the total ion amount (salt concentration) to be desalted in the electrodialysis method, the time required for desalting is unavoidable in soy sauce with a high salt concentration.
 電気透析脱塩法に替わる技術として、ナノ濾過膜を用いた方法が研究されている(非特許文献1及び2)。すなわち、ナトリウムイオンと塩化物イオンを自由に透過させる一方、アミノ態窒素化合物に対しては59.47%の阻止率を示す膜を装着した透析ろ過モジュールを用いて醤油の脱塩が行われた。膜間差圧(処理圧力)24 bar一定の条件で、2倍に希釈された醤油を連続的に供給し、供給された醤油の体積が1/2、すなわち元の濃度になるまでクロスフロー濾過を行った。本法の食塩除去率は51%、アミノ態窒素化合物の除去率(損失率)は25.27%であった。ナノ濾過膜を用いる脱塩は、染料からの脱塩など、多くの分野で利用されている。すなわち、染料分子と除去対象分子(イオン)サイズが大きく異なるために、塩分を選択的に透析ろ過することができるが、醤油の脱塩においてはナトリウムイオンとアミノ酸の分子サイズがそれほど違わないために、51%の脱塩率に対して25%のアミノ酸の損失が生じたと考えられる。さらには、ナノ濾過法で醤油のような複雑な組成の濃厚溶液を濾過すると膜の汚れ(Fouling)が問題となる。 As a technique that replaces the electrodialysis desalting method, a method using a nanofiltration membrane has been studied (Non-patent Documents 1 and 2). That is, soy sauce was desalted by using a diafiltration module equipped with a membrane that allowed sodium ions and chloride ions to permeate freely while having a 59.47% blocking rate for amino nitrogen compounds. Continuously supply soy sauce diluted twice, with transmembrane pressure (treatment pressure) constant at 24 bar, and cross-flow filtration until the volume of soy sauce supplied is ½, that is, the original concentration Went. The salt removal rate of this method was 51%, and the amino nitrogen compound removal rate (loss rate) was 25.27%. Desalting using nanofiltration membranes is used in many fields, such as desalting from dyes. That is, since the dye molecule and the molecule to be removed (ion) size are significantly different, the salt content can be selectively diafiltered, but in soy sauce desalting, the molecular size of sodium ion and amino acid is not so different. It is considered that a loss of 25% of amino acids occurred for a desalting rate of 51%. Furthermore, membrane fouling becomes a problem when a concentrated solution having a complicated composition such as soy sauce is filtered by a nanofiltration method.
特公昭47-46360号公報Japanese Patent Publication No. 47-46360 特公昭61-20263号公報Japanese Examined Patent Publication No. 61-20263 特公平7-313098号公報Japanese Patent Publication No. 7-313098
 希薄水溶液中の低分子成分を排除するために、透析法が専ら使用されてきた。しかしながら、試料溶液の浸透圧が透析液に比べて相当に高いとき、透析液の試料溶液への流れ込み(浸透流)の速度が大きいために、試料溶液中のいかなる溶質分子(イオン)も浸透流に抗して透析側へ拡散移動することができない。本発明は、透析膜の細孔内における溶媒の移動流量又は移動速度を制御することにより、試料溶液中の低分子量成分を選択的に透析除去する方法を提供することを目的とする。 Dialysis methods have been used exclusively to eliminate low molecular components in dilute aqueous solutions. However, when the osmotic pressure of the sample solution is considerably higher than that of the dialysate, any solute molecules (ions) in the sample solution can be osmotically flowed because the rate of the dialysate flowing into the sample solution (osmotic flow) is large. It is impossible to diffuse and move to the dialysis side against this. An object of the present invention is to provide a method for selectively dialysis-removing a low molecular weight component in a sample solution by controlling the movement flow rate or movement speed of a solvent in the pores of a dialysis membrane.
  本発明者は、上記課題を解決するため鋭意研究を行った結果、透析液の透析膜内における移動方向を、前記試料溶液中の溶質の透析膜内における移動方向とは逆向きに、かつ前記透析液の移流速度を前記低分子量成分の移動速度より小さくすることで上記課題を解決し得ることを見出し、本発明を完成するに至った。
  すなわち、本発明は以下の通りである。
(1)試料溶液中に含まれる低分子量成分を透析除去する方法であって、透析液の透析膜内における移動方向を、前記試料溶液中の溶質の透析膜内における移動方向とは逆向きに、かつ前記透析液の移動速度を前記低分子量成分の移動速度より小さくすることを特徴とする前記方法。
(2)以下の(a)~(c)からなる群から選ばれる少なくとも1つの工程を含む、(1)に記載の方法。
  (a)試料溶液の供給流量と排出流量を独立に制御する工程
  (b)透析液の供給流量と排出流量を独立に制御する工程
  (c)試料溶液に付加する圧力を透析液に付加する圧力よりも高くする工程
(3)前記試料溶液の供給流量(A)と排出流量(B)との比(A/B)が0.7以上1.0未満の範囲にある、(1)又は(2)に記載の方法。
(4)前記試料溶液が調味料又はアルコール飲料である、(1)~(3)のいずれか1項に記載の方法。
(5)前記透析液が水である、(1)~(4)のいずれか1項に記載の方法。
(6)試料溶液の流路1、透析液の流路2及び前記流路1と流路2とを隔てる透析膜を有する透析装置において行われることを特徴とする、(1)~(5)のいずれか1項に記載の方法。
(7)試料溶液の流路1、透析液の流路2、前記流路1と流路2とを隔てる透析膜、並びに試料溶液の供給流量と排出流量を独立に制御する試料流量制御機構及び透析液の供給流量と排出流量を独立に制御する透析液流量制御機構から選ばれる少なくとも1つの流量制御機構を備えた透析装置。
(8)試料溶液の流路1、透析液の流路2、前記流路1と流路2とを隔てる透析膜、並びに試料溶液に付加する圧力及び透析液に付加する圧力を制御する圧力制御機構を備えた透析装置。
(9)前記流量制御機構は、前記試料溶液の供給流量と排出流量との比が0.7以上1.0未満の範囲となるように前記試料溶液の供給流量及び排出流量を独立して制御する、又は前記透析液の供給流量及び排出流量を独立して制御するものである(7)に記載の装置。
(10)前記圧力制御機構は、前記試料溶液の供給流量(A)と排出流量(B)との比(A/B)が0.7以上1.0未満の範囲となるように圧力を制御するものである(8)に記載の装置。
(11)前記(1)~(6)のいずれか1項に記載の方法を使用して、又は前記(7)~(10)のいずれか1項に記載の装置を用いて、試料溶液中に含まれる低分子量成分を透析除去し、得られる透析処理後の試料溶液を回収することを特徴とする、低分子量成分除去溶液の製造方法。
(12)試料溶液が調味料又はアルコール飲料である(11)に記載の方法。
(13)調味料が醤油である(12)に記載の方法。
As a result of intensive studies to solve the above problems, the present inventor found that the movement direction of the dialysate in the dialysis membrane was opposite to the movement direction of the solute in the sample solution in the dialysis membrane, and It has been found that the above problem can be solved by making the advection speed of the dialysate smaller than the movement speed of the low molecular weight component, and the present invention has been completed.
That is, the present invention is as follows.
(1) A method for removing low molecular weight components contained in a sample solution by dialysis, wherein the moving direction of the dialysate in the dialysis membrane is opposite to the moving direction of the solute in the sample solution in the dialysis membrane. And the said dialysate moving speed is made smaller than the moving speed of the said low molecular weight component, The method characterized by the above-mentioned.
(2) The method according to (1), comprising at least one step selected from the group consisting of the following (a) to (c):
(A) The step of independently controlling the supply flow rate and the discharge flow rate of the sample solution (b) The step of independently controlling the supply flow rate and the discharge flow rate of the dialysate (c) The pressure that applies the pressure applied to the sample solution to the dialysate (3) The ratio (A / B) of the supply flow rate (A) and the discharge flow rate (B) of the sample solution is in the range of 0.7 or more and less than 1.0, (1) or ( The method according to 2).
(4) The method according to any one of (1) to (3), wherein the sample solution is a seasoning or an alcoholic beverage.
(5) The method according to any one of (1) to (4), wherein the dialysate is water.
(6) Performed in a dialysis apparatus having a sample solution flow path 1, a dialysate flow path 2 and a dialysis membrane separating the flow path 1 and the flow path 2 (1) to (5) The method of any one of these.
(7) Sample solution flow path 1, dialysate flow path 2, dialysis membrane separating the flow path 1 and flow path 2, and a sample flow rate control mechanism for independently controlling the supply flow rate and discharge flow rate of the sample solution; A dialysis apparatus provided with at least one flow rate control mechanism selected from a dialysate flow rate control mechanism that independently controls a supply flow rate and a discharge flow rate of a dialysate.
(8) Sample solution channel 1, dialysate channel 2, dialysis membrane separating channel 1 and channel 2, and pressure control for controlling pressure applied to sample solution and pressure applied to dialysate Dialysis machine with mechanism.
(9) The flow rate control mechanism independently controls the supply flow rate and the discharge flow rate of the sample solution so that the ratio of the supply flow rate and the discharge flow rate of the sample solution is in the range of 0.7 to less than 1.0. Or the apparatus according to (7), wherein the supply flow rate and the discharge flow rate of the dialysate are controlled independently.
(10) The pressure control mechanism controls the pressure so that the ratio (A / B) of the supply flow rate (A) to the discharge flow rate (B) of the sample solution is in a range of 0.7 or more and less than 1.0. The apparatus according to (8).
(11) In the sample solution using the method described in any one of (1) to (6) or using the apparatus described in any one of (7) to (10) The method for producing a low molecular weight component removing solution is characterized in that the low molecular weight component contained in is dialyzed and the sample solution after dialysis treatment is collected.
(12) The method according to (11), wherein the sample solution is a seasoning or an alcoholic beverage.
(13) The method according to (12), wherein the seasoning is soy sauce.
  本発明により、試料溶液中に含まれる低分子量成分のみを選択的に透析することが可能である。 According to the present invention, it is possible to selectively dialyze only low molecular weight components contained in a sample solution.
本発明の概念を説明する模式図である。It is a schematic diagram explaining the concept of this invention. 本発明の透析装置における透析モジュールを示す図である。It is a figure which shows the dialysis module in the dialysis apparatus of this invention. 透析モジュールを連結した態様を示す図である。It is a figure which shows the aspect which connected the dialysis module. 試料溶液の供給流量と排出流量制御に基づく本発明の流量制御による透析装置を示す図である。It is a figure which shows the dialysis apparatus by the flow control of this invention based on the supply flow rate and discharge flow rate control of a sample solution. 透析液の供給流量と排出流量制御に基づく本発明の流量制御による透析装置を示す図である。It is a figure which shows the dialysis apparatus by the flow control of this invention based on the supply flow rate and discharge flow rate control of a dialysate. 本発明の圧力制御による透析装置を示す図である。It is a figure which shows the dialysis apparatus by the pressure control of this invention. Na+イオンとアミノ態窒素化合物の減少率に及ぼす膜透過速度の影響をまとめたグラフである(実施例1-1~1-3、比較例1)。ただし、膜透過速度=(透析膜細孔内の溶媒移動速度)×(透析膜の空隙率)である。3 is a graph summarizing the influence of membrane permeation rate on the reduction rate of Na + ions and amino nitrogen compounds (Examples 1-1 to 1-3, Comparative Example 1). However, membrane permeation rate = (solvent movement rate in dialysis membrane pores) × (dialysis membrane porosity). 醤油の脱塩処理の結果(実施例2-1~2-3、比較例2)を示す図である。FIG. 3 is a diagram showing the results of desalting treatment of soy sauce (Examples 2-1 to 2-3, Comparative Example 2). 醤油の脱塩処理の結果(実施例3-1~3-3、比較例3)を示す図である。FIG. 3 is a diagram showing the results of desalting treatment of soy sauce (Examples 3-1 to 3-3, Comparative Example 3). 透析の選択性に及ぼす膜透過速度の影響を示す図である。It is a figure which shows the influence of the membrane permeation | transmission speed | rate which has on the selectivity of dialysis. Na+イオンとアミノ態窒素の除去率に及ぼす透析液供給流量の影響を示す図である。It is a figure which shows the influence of the dialysate supply flow rate on the removal rate of Na + ion and amino nitrogen.
  以下、本発明を詳細に説明する。なお、本明細書において引用した文献、及び公開公報、特許公報その他の特許文献は、参照として本明細書に組み込むものとする。また本明細書は、本願優先権主張の基礎となる特願2014-6023号(2014年1月16日出願)の明細書の内容を包含する。
1.透析方法
  本発明は、試料溶液中に含まれる低分子量成分を透析除去するために、透析膜を用いて試料溶液中の低分子量成分を選択的に透析除去する方法に関する。
 具体的には、本発明は、試料溶液中に含まれる低分子量成分を透析除去する方法であって、透析膜の細孔内における透析液の移動速度及びその方向、並びに試料中の低分子成分の移動速度及びその方向を調整することを特徴とする方法(以下、「本発明の透析方法」という)を提供する。
  本発明の一態様においては、本発明の透析方法は、透析液の透析膜内における移動方向を、前記試料溶液中の溶質の透析膜内における移動方向とは逆向きに、かつ前記透析液の移動速度を前記低分子量成分の移動速度より小さくすることを特徴とする。また、本発明の一態様においては、本発明の透析方法は、(1)試料溶液の供給流量と排出流量を独立に制御する、(2)透析液の供給流量と排出流量を独立に制御する、あるいは(3)前記試料溶液に付加する圧力を透析液に付加する圧力よりも高くすることを特徴とする。
Hereinafter, the present invention will be described in detail. It should be noted that documents cited in the present specification, as well as published gazettes, patent gazettes, and other patent documents are incorporated herein by reference. This specification also includes the content of the specification of Japanese Patent Application No. 2014-6023 (filed on Jan. 16, 2014), which is the basis for claiming priority of the present application.
1. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively dialysis removing low molecular weight components in a sample solution using a dialysis membrane in order to dialyze off low molecular weight components contained in the sample solution.
Specifically, the present invention relates to a method for dialysis removal of low molecular weight components contained in a sample solution, the dialysis fluid moving speed and direction in the pores of the dialysis membrane, and the low molecular weight components in the sample. A method characterized by adjusting the moving speed and the direction thereof (hereinafter referred to as “dialysis method of the present invention”) is provided.
In one aspect of the present invention, in the dialysis method of the present invention, the direction of movement of the dialysate in the dialysis membrane is opposite to the direction of movement of the solute in the sample solution in the dialysis membrane, and The moving speed is made smaller than the moving speed of the low molecular weight component. In one embodiment of the present invention, the dialysis method of the present invention includes (1) independently controlling the supply flow rate and the discharge flow rate of the sample solution, and (2) independently controlling the supply flow rate and the discharge flow rate of the dialysate. Or (3) The pressure applied to the sample solution is higher than the pressure applied to the dialysate.
  透析法には、非イオン性の半透膜を使用する拡散透析法、及びイオン交換膜又は荷電膜を使用する電気透析法若しくは電解透析法がある。一般に、「透析」とは、非イオン性の膜を使用する方法を意味する。
  非イオン性透析膜の細孔内における溶液の流動状態により、透析は以下の態様に分類される。
 (a) 透析膜の細孔内において溶媒は実質的に移動(対流)しない。この場合、溶質分子は拡散によってのみ高濃度側から低濃度側へ移動する。
  (b) 試料溶液の一部を透析液側へ濾過しつつ、低分子量成分は分子拡散によって透析液側へ排出する。これを濾過透析と呼ぶ。濾過透析法は拡散のみでなく、濾過にともなう溶液移動により拡散速度の小さい比較的大きな分子(イオン)も透析側に排出できることが特徴である。
The dialysis method includes a diffusion dialysis method using a nonionic semipermeable membrane, and an electrodialysis method or an electrodialysis method using an ion exchange membrane or a charged membrane. In general, “dialysis” means a method using a non-ionic membrane.
Dialysis is classified into the following modes according to the flow state of the solution in the pores of the nonionic dialysis membrane.
(a) The solvent does not substantially move (convect) in the pores of the dialysis membrane. In this case, the solute molecules move from the high concentration side to the low concentration side only by diffusion.
(b) While filtering a part of the sample solution to the dialysate side, low molecular weight components are discharged to the dialysate side by molecular diffusion. This is called filtration dialysis. The filtration dialysis method is characterized in that not only diffusion but also relatively large molecules (ions) having a low diffusion rate can be discharged to the dialysis side by solution movement accompanying filtration.
  上記(a)及び(b)の透析法は公知である。これらの透析法では、透析される分子サイズは透析膜の分画分子量に依存する。
  これに対し、本発明の方法は、透析膜を介して透析液を制御された流速で試料溶液側へ透過させつつ、低分子量成分のみを透析するものである。本発明の方法では、排除分子サイズは透析膜の分画分子量に依存するのではなく、透析液の試料溶液側への移動速度(透過速度)と溶質成分の移動速度(拡散速度)との比(ペクレ数)によって制御する。
 すなわち、本発明の方法は試料溶液の供給流量と排出流量を独立して制御しながら透析を行うものである。ここで、本明細書では、透析液の試料溶液側への移動のことを「透過」又は「移流」と呼び、その移動速度を「透過速度」又は「移流速度」ともいう。また、試料溶液中の溶質成分の移動のことを「拡散」と呼び、その移動速度を「拡散速度」ともいう。なお、本明細書では、物質や溶液の動きを「移動」という用語で表現するが、上記定義により、透析液の「移動」は「透過」又は「移流」を意味し、試料溶液中の溶質成分の移動は「拡散」を意味することは、当業者であれば容易に理解することができる。
The dialysis methods (a) and (b) are known. In these dialysis methods, the size of the molecule to be dialyzed depends on the molecular weight cut off of the dialysis membrane.
In contrast, the method of the present invention dialyzes only the low molecular weight component while allowing the dialysate to permeate through the dialysis membrane to the sample solution side at a controlled flow rate. In the method of the present invention, the excluded molecule size does not depend on the molecular weight cut off of the dialysis membrane, but the ratio between the rate of movement of the dialysate toward the sample solution (permeation rate) and the rate of movement of the solute component (diffusion rate). Control by (Peclet number).
That is, the method of the present invention performs dialysis while independently controlling the supply flow rate and the discharge flow rate of the sample solution. Here, in this specification, the movement of the dialysate toward the sample solution is referred to as “permeation” or “advection”, and the movement speed is also referred to as “permeation speed” or “advection speed”. The movement of the solute component in the sample solution is called “diffusion”, and the moving speed is also called “diffusion speed”. In this specification, the movement of a substance or solution is expressed by the term “movement”. However, according to the above definition, “movement” of dialysate means “permeation” or “advection”, and a solute in a sample solution. Those skilled in the art can easily understand that the movement of components means “diffusion”.
  本発明の方法を、図1を用いて説明する。
  図1は、透析膜細孔中における溶媒及び溶質の移動(それぞれ、移流、拡散)を表す模式図である。試料と透析液との間には透析膜が存在し、試料中のA成分(●)及びB成分(▲)、並びに透析液が移動する細孔を有している。この細孔の中を、試料中の成分及び透析液が移動する。図1では、透析膜の細孔中にA成分及びB成分並びに透析液が存在する態様を示している。矢印の方向及び長さは、A成分及びB成分の移動方向及び移動速度、並びに透析液(溶媒)の移動方向及び移動速度を示している。なお、図1において、移動方向は、左右方向(3次元右手系座標におけるx軸方向)へのベクトルで考え、上下方向(3次元右手系座標におけるy軸方向)及び前後方向(3次元右手系座標におけるz軸方向へのベクトルの存在は無視することができる。
The method of the present invention will be described with reference to FIG.
FIG. 1 is a schematic diagram showing movement of a solvent and a solute (advection and diffusion, respectively) in the dialysis membrane pores. A dialysis membrane exists between the sample and the dialysate, and has A component (●) and B component (▲) in the sample, and pores through which the dialysate moves. The components and dialysate in the sample move through the pores. FIG. 1 shows an embodiment in which the A component, the B component, and the dialysate are present in the pores of the dialysis membrane. The direction and length of the arrow indicate the moving direction and moving speed of the A component and the B component, and the moving direction and moving speed of the dialysate (solvent). In FIG. 1, the moving direction is considered as a vector in the left-right direction (x-axis direction in the three-dimensional right-handed system coordinate), and the vertical direction (y-axis direction in the three-dimensional right-handed system coordinate) and the front-back direction (three-dimensional right-handed system). The presence of a vector in the z-axis direction in the coordinates can be ignored.
  図1aに示すように、試料溶液の供給流量と排出流量との比(供給流量/排出流量)が小さい場合(例えば、0.7未満の場合)は、透析液(水)の移動(移流)速度(図1aの左向き矢印)がA及びBの両成分の移動(拡散)速度(図1aの右向き矢印)よりも大きくなる。このため、透析液が試料方向に向かって進み、試料中の成分は透析液方向には進まない。
  図1bは、試料溶液の供給流量と排出流量との比(供給流量/排出流量)が所定の値の範囲内の様態を示す。「所定の値」は、透析液の移動速度(膜透過速度)が、A成分の移動速度(拡散速度)よりも小さい値であり、B成分の移動(拡散)速度よりも大きくなる範囲内の値である。この態様では、透析液の膜透過方向が、A成分及びB成分とは逆向きであるが、透析液の膜透過速度(矢印の長さ)が、A成分より小さくB成分より大きくなっている。この場合は、A成分の拡散速度が透析液の移流速度に勝るため、A成分は透析液側に移動する。これに対し、B成分の拡散速度は透析液の移流速度よりも小さいため、B成分は透析液側に移動しない。
  図1cは、試料溶液の供給流量と排出流量との比(供給流量/排出流量)が1より大きい場合の様態を示す。この態様では、細孔中の透析液(溶媒)の移流の向きはA及びBの両成分の拡散方向と同じであることから、A及びBの両成分ともに透析液側に排出される(濾過透析)。
As shown in FIG. 1a, when the ratio between the supply flow rate and the discharge flow rate of the sample solution (supply flow rate / discharge flow rate) is small (for example, less than 0.7), the dialysate (water) moves (transfers). The speed (left arrow in FIG. 1a) is larger than the movement (diffusion) speed of both components A and B (right arrow in FIG. 1a). For this reason, dialysate advances toward the sample, and components in the sample do not advance toward the dialysate.
FIG. 1b shows a state in which the ratio between the supply flow rate and the discharge flow rate of the sample solution (supply flow rate / discharge flow rate) is within a predetermined value range. The “predetermined value” is a value in which the moving speed of the dialysate (membrane permeation speed) is smaller than the moving speed (diffusion speed) of the A component and is larger than the moving speed (diffusion speed) of the B component Value. In this aspect, the membrane permeation direction of the dialysate is opposite to the A component and the B component, but the membrane permeation rate of the dialysate (the length of the arrow) is smaller than the A component and larger than the B component. . In this case, since the diffusion rate of the A component is higher than the advection rate of the dialysate, the A component moves to the dialysate side. On the other hand, since the diffusion rate of the B component is smaller than the advection rate of the dialysate, the B component does not move to the dialysate side.
FIG. 1c shows a state in which the ratio of the supply flow rate and the discharge flow rate of the sample solution (supply flow rate / discharge flow rate) is larger than 1. In this embodiment, since the direction of advection of the dialysate (solvent) in the pores is the same as the diffusion direction of both components A and B, both components A and B are discharged to the dialysate side (filtering). Dialysis).
  本発明においては、図1bの態様を利用するものである。A成分をナトリウムイオンやエタノール分子とし、B成分をアミノ酸や香気成分とすると、図1bにおける試料溶液の供給流量と排出流量との比を所定の値に設定することにより、又は所定の圧力を付加することで、A成分(Naイオン、エタノール分子等)は試料から除去させつつ、B成分(アミノ酸、香気成分等)は試料中に残留させることができる。 In the present invention, the embodiment shown in FIG. 1b is used. If the A component is sodium ions or ethanol molecules, and the B component is an amino acid or aroma component, the ratio of the sample solution supply flow rate to the discharge flow rate in FIG. 1b is set to a predetermined value, or a predetermined pressure is applied. Thus, the A component (Na ions, ethanol molecules, etc.) can be removed from the sample, while the B component (amino acid, aroma component, etc.) can remain in the sample.
  本発明の方法によれば、透析膜の細孔中の透析液の流れに抗して拡散可能な低分子量成分のみが透析液側に排出される。例えば、アミノ酸や香気成分等の分子量100程度の化合物を試料中に保持しながら、Naイオン、Kイオン、Clイオン、さらにはエタノール分子を透析液側に排出することができる。
  従って、本発明の方法は、透析膜を透過する液の流れ方向が従来の濾過透析とは真逆であることを利用する方法である。
According to the method of the present invention, only low molecular weight components that can diffuse against the flow of the dialysate in the pores of the dialysis membrane are discharged to the dialysate side. For example, Na ions, K ions, Cl ions, and even ethanol molecules can be discharged to the dialysate side while holding a compound having a molecular weight of about 100 such as amino acids and aromatic components in the sample.
Therefore, the method of the present invention is a method that utilizes the fact that the flow direction of the liquid that permeates through the dialysis membrane is the opposite of conventional filtration dialysis.
  また、本発明は、浸透圧によって発生する透析液の試料溶液への流れ込み(浸透)速度を制御することにより、低分子量成分を選択的に透析することを可能とする。これによって、醤油やワインなどの高浸透圧試料から低分子量物質のみを透析除去することができる。 In addition, the present invention makes it possible to selectively dialyze low molecular weight components by controlling the flow rate (osmosis) of the dialysate generated by osmotic pressure into the sample solution. Thereby, only low molecular weight substances can be removed by dialysis from high osmotic pressure samples such as soy sauce and wine.
  本発明は、試料溶液の供給流量と排出流量の比(供給流量/排出流量)を0.7以上1.0未満(すなわち1.0を含まない)の範囲で調整することにより、有用成分を保持しながら、脱塩あるいは脱エタノールなどを行うものである。本法では非イオン性の半透膜を使用するのでイオン性物質のみならず非イオン性物質の除去が可能である。 The present invention adjusts the ratio of the supply flow rate and the discharge flow rate of the sample solution (supply flow rate / discharge flow rate) within a range of 0.7 or more and less than 1.0 (that is, not including 1.0). While holding, desalting or ethanol removal is performed. In this method, since a nonionic semipermeable membrane is used, not only an ionic substance but also a nonionic substance can be removed.
   本発明において、透析膜の細孔内の溶液の移動速度は、(1)試料溶液の供給流量と排出流量を制御することにより、(2)透析液の供給流量と排出流量を制御することにより、(3)試料溶液と透析液に付加される圧力の差により、あるいは上記(1)~(3)を適宜組み合わせて所望の値に設定することができる。本発明者らは、このとき、拡散速度の大きな成分(低分子量成分)は溶媒の移動に抗して膜を透過することができるが、拡散速度の小さな成分は膜を透過しないように、透析膜の細孔内における溶媒の移動速度を制御することによって、低分子量成分のみを選択的に透析することができることを見出し、本発明を完成させた。 In the present invention, the moving speed of the solution in the pores of the dialysis membrane is controlled by (1) controlling the supply flow rate and discharge flow rate of the sample solution, and (2) controlling the supply flow rate and discharge flow rate of the dialysate. (3) The desired value can be set by the difference in pressure applied to the sample solution and the dialysate, or by appropriately combining the above (1) to (3). At this time, the present inventors have been able to permeate the membrane against the movement of the solvent while the component having a high diffusion rate (low molecular weight component), but to prevent the component having a low diffusion rate from permeating the membrane. By controlling the speed of movement of the solvent in the pores of the membrane, it was found that only low molecular weight components can be selectively dialyzed, and the present invention has been completed.
  本発明の透析方法において、前記低分子量成分は、分子量が20~150、好ましくは20~100、より好ましくは20~80、さらに好ましくは20~70、よりさらに好ましくは20~60のものである。
  本発明の透析方法において、前記低分子量溶質は、アルカリ金属、アルカリ土類金属、アルコール、カルボン酸及び無機の酸・塩基からなる群から選択される少なくとも1種以上の分子あるいはイオンである。
In the dialysis method of the present invention, the low molecular weight component has a molecular weight of 20 to 150, preferably 20 to 100, more preferably 20 to 80, still more preferably 20 to 70, and still more preferably 20 to 60. .
In the dialysis method of the present invention, the low molecular weight solute is at least one molecule or ion selected from the group consisting of alkali metals, alkaline earth metals, alcohols, carboxylic acids, and inorganic acids / bases.
 アルカリ金属分子の例としてはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウムが挙げられ、好ましくは、リチウム、ナトリウム、カリウムである。
 アルカリ土類金属分子の例としてはベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、好ましくは、ベリリウム、マグネシウム、カルシウムである。
Examples of the alkali metal molecule include lithium, sodium, potassium, rubidium, cesium, and francium, preferably lithium, sodium, and potassium.
Examples of alkaline earth metal molecules include beryllium, magnesium, calcium, strontium and barium, preferably beryllium, magnesium and calcium.
 アルコール分子の例としては低級アルコールが挙げられ、より具体的にはメタノール、エタノール、プロピルアルコール、ブチルアルコール、エチレングリコール、グリセリンなどが挙げられ、好ましくはメタノール、エタノール、プロピルアルコールである。
 カルボン酸の例としてはギ酸、酢酸、プロピオン酸、酪酸、乳酸などが挙げられ、好ましくは酢酸、乳酸である。
 無機の酸の例としては塩酸、硝酸、リン酸、硫酸など、無機の塩基としては水酸化ナトリウム、アンモニアが挙げられる。
Examples of alcohol molecules include lower alcohols, and more specifically, methanol, ethanol, propyl alcohol, butyl alcohol, ethylene glycol, glycerin, and the like, preferably methanol, ethanol, and propyl alcohol.
Examples of carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, lactic acid, and the like, preferably acetic acid and lactic acid.
Examples of the inorganic acid include hydrochloric acid, nitric acid, phosphoric acid, and sulfuric acid, and examples of the inorganic base include sodium hydroxide and ammonia.
  本発明の透析方法は、図2及び3に示す透析膜モジュール用いて行うことができる。この透析膜モジュールによれば、移流拡散透析を行うことができ、そのような装置の例としては、試料溶液の流路(流路1という)、透析液の流路(流路2という)及び前記試料溶液流路(流路1)と透析液流路(流路2)とを隔てる透析膜を有する透析装置が挙げられる。
 このような装置を用いて本発明の透析方法を行う場合、(1)試料溶液の供給流量と排出流量とを独立に制御することにより、(2)透析液の供給流量と排出流量とを独立に制御することにより、(3)前記試料溶液を、前記透析液の供給圧力よりも高い供給圧力で前記流路1に供給することにより、あるいは上記(1)~(3)を適宜組み合わせて前記試料溶液に含まれる低分子量成分を選択的に透析除去することができる。流量の制御の詳細は後述する。
The dialysis method of the present invention can be performed using the dialysis membrane module shown in FIGS. According to this dialysis membrane module, advection diffusion dialysis can be performed. Examples of such devices include a sample solution flow path (referred to as flow path 1), a dialysate flow path (referred to as flow path 2), and Examples thereof include a dialysis apparatus having a dialysis membrane that separates the sample solution flow path (flow path 1) and the dialysate flow path (flow path 2).
When the dialysis method of the present invention is performed using such an apparatus, (1) the supply flow rate and the discharge flow rate of the sample solution are controlled independently, and (2) the supply flow rate and the discharge flow rate of the dialysate are made independent. (3) by supplying the sample solution to the flow path 1 at a supply pressure higher than the supply pressure of the dialysate, or by appropriately combining the above (1) to (3) Low molecular weight components contained in the sample solution can be selectively removed by dialysis. Details of the flow rate control will be described later.
  本発明の透析方法において、前記試料溶液及び前記透析液は、同じ流量でそれぞれの流路1及び流路2に供給されてもよく、異なる流量で供給されてもよい。
 前記試料溶液及び前記透析液の流量は、除去対象成分の除去率、除去すべきでない成分の残存率を考慮して設定される。さらには、試料溶液及び透析液の膜モジュール内での流動により圧力損失が発生するが、本発明の透析方法においてはこれらの圧力損失を小さくすることが好ましい。すなわち、圧力損失が膜間差圧の1.0倍以下、好ましくは0.5倍以下、より好ましくは0.1倍以下となるように試料溶液並びに透析液の流速を制御する必要がある。さらに、発生する圧力損失は中空糸膜の内径にも依存するので圧力損失を小さくするためには内径の大きな中空糸膜が好ましい。しかしながら、中空糸膜中の試料溶液の流れに垂直な方向の物質移動が、本発明の透析において律速とならないように過度に大きな内径であってはならない。本発明の透析方法において中空糸膜の内径は0.1mm以上、2.0mm以下、好ましくは0.2mm以上、1.0mm以下、より好ましくは0.3mm以上、0.6mm以下である。
In the dialysis method of the present invention, the sample solution and the dialysate may be supplied to the respective flow paths 1 and 2 at the same flow rate, or may be supplied at different flow rates.
The flow rates of the sample solution and the dialysate are set in consideration of the removal rate of components to be removed and the residual rate of components that should not be removed. Furthermore, although pressure loss occurs due to the flow of the sample solution and dialysate in the membrane module, it is preferable to reduce these pressure losses in the dialysis method of the present invention. That is, it is necessary to control the flow rates of the sample solution and the dialysate so that the pressure loss is 1.0 times or less, preferably 0.5 times or less, more preferably 0.1 times or less of the transmembrane pressure difference. Furthermore, since the generated pressure loss also depends on the inner diameter of the hollow fiber membrane, a hollow fiber membrane having a large inner diameter is preferable in order to reduce the pressure loss. However, the mass transfer in the direction perpendicular to the flow of the sample solution in the hollow fiber membrane should not have an excessively large inner diameter so as not to be rate limiting in the dialysis of the present invention. In the dialysis method of the present invention, the hollow fiber membrane has an inner diameter of 0.1 mm or more and 2.0 mm or less, preferably 0.2 mm or more and 1.0 mm or less, more preferably 0.3 mm or more and 0.6 mm or less.
  前記試料溶液は、低分子量成分を含むものであれば特に限定されるものではないが、好ましくは調味料又はアルコール飲料である。調味料の例としては、だし汁、醤油、魚醤、アミノ酸混液、みりん、ブイヨン、果実酢、醸造酢などが挙げられる。また、アルコール飲料の例としては、ビール、ワイン、日本酒などの醸造酒に加え、ウィスキー、ブランデー、リキュール、テキーラ、ウォッカ、ラムなどの蒸留酒が挙げられる。
  さらには、乳清中のナトリウムイオン及びカリウムイオンを選択的に低減することができる。タンパク質の塩酸分解物からの水素イオン及び塩化物イオンの透析あるいは中和後のナトリウムイオン及び塩化物イオンの透析にも有効である。さらに、塩酸分解中に生成するクロロプロパノール類は発癌性が懸念される物質であるが、本発明の透析法によってこれを低減することができる。
エタノール発酵液、アセトン-ブタノール発酵液からのエタノール、あるいはアセトン及びブタノールの回収にも適用可能である。
The sample solution is not particularly limited as long as it contains a low molecular weight component, but is preferably a seasoning or an alcoholic beverage. Examples of seasonings include soup stock, soy sauce, fish sauce, amino acid mixture, mirin, bouillon, fruit vinegar, and brewed vinegar. Examples of alcoholic beverages include distilled liquors such as whiskey, brandy, liqueur, tequila, vodka, and rum in addition to brewed liquors such as beer, wine, and sake.
Furthermore, sodium ions and potassium ions in the whey can be selectively reduced. It is also effective for dialysis of hydrogen ions and chloride ions from hydrochloric acid hydrolyzate of protein or dialysis of sodium ions and chloride ions after neutralization. Furthermore, although chloropropanols produced during the decomposition of hydrochloric acid are substances that are carcinogenic, they can be reduced by the dialysis method of the present invention.
The present invention is also applicable to ethanol fermentation liquid, ethanol from acetone-butanol fermentation liquid, and recovery of acetone and butanol.
  本発明に使用される透析液は特に限定されるものではなく、好ましくは水を使用することができる。例えば、除去対象低分子量成分を含有しない水、あるいは試料溶液中の件の成分を含有していてもその濃度が試料中の濃度の10%未満、好ましくは5%未満、さらに好ましくは2%未満である水溶液(件の成分を実質的に含有しない水)を透析液として使用することができる。このような水としては、一般に飲料水として市販されている水、水道水、脱イオン水、精密濾過水、蒸留水などが挙げられる。移流拡散透析を多段で行う場合、2段目で流した透析液を1段目で再利用することも可能である。
  試料溶液から溶存酸素を除去する、あるいは溶存酸素濃度が上昇するのを避けるためには、脱気した水を透析液として使用することができる。
The dialysate used in the present invention is not particularly limited, and water can be preferably used. For example, water that does not contain the low-molecular-weight component to be removed, or the concentration of the component in the sample solution is less than 10%, preferably less than 5%, more preferably less than 2% of the concentration in the sample. Aqueous solution (water substantially free of the components in question) can be used as the dialysate. Examples of such water include water commercially available as drinking water, tap water, deionized water, precision filtered water, and distilled water. When advection diffusion dialysis is performed in multiple stages, it is possible to reuse the dialysate flown in the second stage in the first stage.
In order to remove dissolved oxygen from the sample solution or avoid an increase in the dissolved oxygen concentration, degassed water can be used as the dialysate.
  本発明の透析方法を実施することにより、又は本発明の透析装置を用いて、試料溶液中に含まれる低分子量成分を透析除去し、得られる透析処理後の試料溶液を回収することで、低分子量成分の濃度が低下した溶液を製造することができる。従って、本発明は、別の態様として、本発明の透析方法を実施することにより低分子量成分の濃度が低下した溶液を製造する方法、及び当該製造方法により製造された低分子量成分の濃度が低下した溶液を提供する。透析液中に取り込まれる低分子量成分を新たに有効利用することもできる。例えば、エタノールを含有する透析液を新たな低アルコール飲料の素材として利用することができる。発酵液から目的物質を回収する目的で使用することもできる。
  透析処理後の試料溶液としては、例えば脱塩調味料又は低濃度アルコール飲料が挙げられる。試料溶液として醤油やアルコール飲料を用いると、本発明の方法により脱塩醤油、低濃度アルコール飲料が製造される。
By carrying out the dialysis method of the present invention or using the dialysis apparatus of the present invention, the low molecular weight component contained in the sample solution is removed by dialysis, and the resulting sample solution after dialysis treatment is recovered. A solution with a reduced concentration of molecular weight components can be produced. Therefore, the present invention provides, as another aspect, a method for producing a solution in which the concentration of the low molecular weight component is reduced by carrying out the dialysis method of the present invention, and the concentration of the low molecular weight component produced by the production method is reduced. Provide the prepared solution. A low molecular weight component taken into the dialysate can be newly used effectively. For example, a dialysate containing ethanol can be used as a material for a new low alcohol beverage. It can also be used for the purpose of recovering the target substance from the fermentation broth.
Examples of the sample solution after the dialysis treatment include desalted seasonings and low-concentration alcoholic beverages. When soy sauce or alcoholic beverage is used as the sample solution, desalted soy sauce and low-concentration alcoholic beverage are produced by the method of the present invention.
 本発明の適用は醤油の脱塩や低アルコール飲料の調製に限定されるものではないが、適用例の一つとして醤油の脱塩に関して本発明を説明する。
 透析膜を挟んで高濃度試料溶液と透析液(水)が存在するとき、水分子は膜の細孔を通って透析側から試料側へ流れ込む。これを浸透流と呼ぶ。一方、試料中の低分子量の溶質分子(イオン)は試料溶液側から透析液側へ拡散移動する。透析液の試料への流れ込み、すなわち浸透流の流速は、透析膜の諸特性(例えば、細孔径や膜厚)を考慮しなければ試料溶液と透析液の間の圧力差(浸透圧)に依存する。本発明における浸透圧とは、一般に周知されているものと少なからず異なるので以下にその説明を記す。すなわち、浸透圧は半透膜を介して二つの溶液が接するとき全溶質の濃度差に依存して発生する膜間差圧と考えられる。醤油の浸透圧は10 MPaを超えることが知られている。一方、分画分子量が10kDの透析膜において生ずる膜間差圧は、本発明の方法では約18.5kPa(実施例1、溶媒の移動速度がゼロとなる付加圧力20kPaから圧力損失分1.5 kPaを引く)と著しく低いことが明らかとなった。この浸透圧は膜の孔径(分画分子量)が大きくなるほど小さくなると考えられる。
Although the application of the present invention is not limited to the desalination of soy sauce and the preparation of a low alcohol beverage, the present invention will be described with respect to the desalting of soy sauce as one of application examples.
When a high-concentration sample solution and dialysate (water) are present across the dialysis membrane, water molecules flow from the dialysis side to the sample side through the membrane pores. This is called osmotic flow. On the other hand, low molecular weight solute molecules (ions) in the sample diffuse and move from the sample solution side to the dialysate side. The flow rate of the dialysate into the sample, that is, the flow rate of the osmotic flow depends on the pressure difference (osmotic pressure) between the sample solution and the dialysate unless the characteristics of the dialysis membrane (for example, pore diameter and film thickness) are considered. To do. The osmotic pressure in the present invention is not a little different from that generally known, and will be described below. That is, the osmotic pressure is considered to be a transmembrane pressure difference generated depending on the concentration difference of all solutes when two solutions contact each other through a semipermeable membrane. It is known that the osmotic pressure of soy sauce exceeds 10 MPa. On the other hand, the transmembrane pressure difference generated in a dialysis membrane having a molecular weight cut-off of 10 kD is approximately 18.5 kPa (Example 1, subtracting 1.5 kPa of pressure loss from the additional pressure of 20 kPa at which the solvent moving speed is zero) in the method of the present invention. ) Was found to be extremely low. This osmotic pressure is considered to decrease as the pore size (fractional molecular weight) of the membrane increases.
  本発明の透析において使用される透析膜の分画分子量は、透析可能な分子量を意味するものではないことは明らかである。この膜により発生する浸透圧が外部から付加される圧力により容易に制御し得るものであればよい。あるいは、試料溶液の供給量と排出量を容易に制御し得るものであればよい。ただし、透析膜の各々の細孔内を流れる溶媒の移動速度が揃っていることが重要であるので、細孔径分布はできるだけ小さいものが良い。
 更なる態様として、透析膜の細孔内の溶媒の移動を制御するためには、下記の方法が可能である。
It is clear that the fractional molecular weight of the dialysis membrane used in the dialysis of the present invention does not mean a molecular weight that can be dialyzed. It is sufficient if the osmotic pressure generated by this membrane can be easily controlled by the pressure applied from the outside. Or what is necessary is just to be able to control the supply amount and discharge | emission amount of a sample solution easily. However, since it is important that the moving speed of the solvent flowing in each pore of the dialysis membrane is uniform, the pore size distribution should be as small as possible.
As a further aspect, in order to control the movement of the solvent in the pores of the dialysis membrane, the following method is possible.
1.流量制御
  ・試料溶液の膜モジュールへの流入流量と膜モジュールからの排出流量を個別に制御することにより、透析膜の細孔内における溶媒の移動速度を制御することができる。
  ・透析液の膜モジュールへの流入流量と膜モジュールからの排出流量を個別に制御することにより、透析膜の細孔内における溶媒の移動速度を制御することができる。
  上記制御は、単独で、又は適宜組み合わせることができる。
1. Flow rate control-The movement speed of the solvent in the pores of the dialysis membrane can be controlled by individually controlling the flow rate of the sample solution flowing into the membrane module and the flow rate of discharge from the membrane module.
-The moving speed of the solvent in the pores of the dialysis membrane can be controlled by individually controlling the flow rate of the dialysate into the membrane module and the discharge flow rate from the membrane module.
The above controls can be used alone or in combination as appropriate.
 2.圧力制御
  ・透析膜で隔てられた試料溶液と透析液の間に差圧を生じさせることにより、膜細孔内の溶媒の移動速度を制御することができる。
  ・ポンプにより試料溶液を膜モジュールに供給する方法において、試料溶液の膜モジュール排出口に差圧弁を設置する。
  ・透析液が膜モジュールに流入する流入口に差圧弁を設置して、膜モジュール出口にポンプを設置して、透析液をポンプで吸引排出させる。
   ・試料溶液排出口を大気連通させる位置と透析液出口を大気と連通させる位置の水頭圧差により、試料溶液と透析液の間に差圧を付加することができる。
  上記制御は、単独で、又は適宜組み合わせることができる。
2. Pressure control ・ By generating a differential pressure between the sample solution and the dialysate separated by the dialysis membrane, the moving speed of the solvent in the membrane pores can be controlled.
In the method of supplying the sample solution to the membrane module by a pump, a differential pressure valve is installed at the membrane module outlet of the sample solution.
-A differential pressure valve is installed at the inlet where the dialysate flows into the membrane module, a pump is installed at the outlet of the membrane module, and the dialysate is sucked and discharged by the pump.
A differential pressure can be applied between the sample solution and the dialysate by the head pressure difference between the position where the sample solution discharge port communicates with the atmosphere and the position where the dialysate outlet communicates with the atmosphere.
The above controls can be used alone or in combination as appropriate.
 試料溶液あるいは透析液が膜モジュールを流通するとき発生する圧力損失は、その系で生ずる浸透圧の1.0倍以下であり、好ましくは、浸透圧の0.5倍以下であり、さらに好ましくは、浸透圧の0.1倍以下である。 The pressure loss generated when the sample solution or dialysate flows through the membrane module is 1.0 times or less of the osmotic pressure generated in the system, preferably 0.5 times or less of the osmotic pressure, and more preferably The osmotic pressure is 0.1 times or less.
  本発明において使用される透析膜は、均質膜及び不均質膜のいずれでもよく、中空糸の内面に緻密な薄層を有する不均質膜であることが好ましい。実施例で使用されているポリスルホン膜(Spectrum Laboratories社製)は、内面に緻密層を有する不均質膜である。 透析 The dialysis membrane used in the present invention may be either a homogeneous membrane or a heterogeneous membrane, and is preferably a heterogeneous membrane having a dense thin layer on the inner surface of the hollow fiber. The polysulfone membrane (Spectrum Laboratories) used in the examples is a heterogeneous membrane having a dense layer on the inner surface.
  試料中に溶解している低分子量成分の透析膜細孔内における移動は、対象とする分子やイオンの拡散によるのみならず、溶液の移動によって引き起こされる。すなわち、低分子量成分の移動は拡散による移動と溶液の移流による移動の合計として考えなければならない。この現象は移流拡散と呼ばれる。この移流拡散現象を食塩やアルコールなど低分子量成分の透析除去プロセスに応用するためには、透析膜の細孔内における溶媒の移動速度を低分子量成分の移動速度との関連のもとに精密に制御することが重要となる。 The movement of the low molecular weight component dissolved in the sample in the pores of the dialysis membrane is caused not only by the diffusion of the target molecules and ions but also by the movement of the solution. That is, the movement of the low molecular weight component must be considered as the sum of movement due to diffusion and movement due to the advection of the solution. This phenomenon is called advection diffusion. In order to apply this advection diffusion phenomenon to the dialysis removal process of low molecular weight components such as salt and alcohol, the movement speed of the solvent in the pores of the dialysis membrane is precisely related to the movement speed of the low molecular weight components. It is important to control.
  再度、透析膜を挟んで高濃度試料溶液と透析液(例えば水)が存在する場合を考える。前述のように水分子は透析膜の細孔を通って試料側へ流入する。これと同時に、低分子量成分は固有の拡散速度にしたがって、試料側から透析側へ拡散移動する。試料液と透析液の間の浸透圧差が大きい場合には、細孔内の水の移動速度も大きいので、試料中の低分子量成分は透析液流入の勢いに逆らって透析側に拡散移動することができない。そこで、溶媒の流れによる溶質の移動と拡散による溶質の移動の比率を表わす無次元数としてペクレ数(Pe = uL/d)を考える。uは水の流入速度、Lは細孔長さ(膜厚)、dは溶質の拡散係数である。 Consider again the case where a high-concentration sample solution and dialysate (for example, water) are present with the dialysis membrane sandwiched. As described above, water molecules flow to the sample side through the pores of the dialysis membrane. At the same time, the low molecular weight component diffuses and moves from the sample side to the dialysis side according to the inherent diffusion rate. When the osmotic pressure difference between the sample solution and dialysate is large, the movement speed of the water in the pores is also large, so that low molecular weight components in the sample diffuse and move to the dialysis side against the momentum of dialysate inflow. I can't. Therefore, the Peclet number (Pe = uL / d) is considered as a dimensionless number representing the ratio of solute movement due to solvent flow and solute movement due to diffusion. u is the flow rate of water, L is the pore length (film thickness), and d is the diffusion coefficient of the solute.
  ペクレ数が1より大きいときは溶質の移動は拡散よりも溶媒の流れの寄与が大きいこと、逆にペクレ数が1より小さいときは溶液の流れよりも拡散の寄与が大きいこと示す。膜厚はペクレ数に直接関係する重要なパラメーターである。膜の細孔毎に決まるペクレ数の分布を小さくするためには、中空糸膜の部位による細孔径変動と膜厚変動は最小限であるべきである。膜厚が薄い場合は溶媒の移動速度を大きくする必要がある。これは試料溶液の透析液による希釈が増大するので、過度に薄い膜は使用に適さない。しかしながら、膜厚が厚い場合は膜を介しての物質移動速度が大きく低減するので、これも好ましくない。以上から、本発明の透析法において、好ましい膜厚は20 μm以上、80μm以下、より好ましくは30μm以上、60μm以下である。
  本発明において、排出しようとする低分子量成分に関して、ペクレ数は好ましくは 0以上、1.0以下であり、より好ましくは0.1以上、0.6以下である。試料中に残留させたい成分に関して、ペクレ数は好ましくは0.6以上2.0以下であり、より好ましくは0.8以上1.5以下である。
When the Peclet number is greater than 1, the movement of the solute indicates that the solvent flow contributes more than the diffusion, and conversely when the Peclet number is less than 1, the diffusion contributes more than the solution flow. Film thickness is an important parameter directly related to the Peclet number. In order to reduce the distribution of the Peclet number determined for each pore of the membrane, the pore diameter variation and the thickness variation due to the site of the hollow fiber membrane should be minimized. When the film thickness is thin, it is necessary to increase the moving speed of the solvent. This increases the dilution of the sample solution with dialysate, so an excessively thin membrane is not suitable for use. However, when the film thickness is large, the mass transfer speed through the film is greatly reduced, which is also not preferable. From the above, in the dialysis method of the present invention, the preferred film thickness is 20 μm or more and 80 μm or less, more preferably 30 μm or more and 60 μm or less.
In the present invention, with respect to the low molecular weight component to be discharged, the Peclet number is preferably 0 or more and 1.0 or less, more preferably 0.1 or more and 0.6 or less. Regarding the component to be left in the sample, the Peclet number is preferably 0.6 or more and 2.0 or less, more preferably 0.8 or more and 1.5 or less.
  本発明は、ごく短い流路をプラグフロー方式で溶液を移動させるために透析膜を利用する点に特徴がある。溶媒の移動と溶質分子の移動(拡散)には、細孔内の溶媒の移動方向と溶質分子(イオン)の拡散方向が逆向きの場合(すなわち透析液が流入する場合)と、溶媒の移動方向と溶質の移動方向が同じ場合(すなわち細孔内を醤油の一部が押し出される場合)がある。溶媒の移動方向と溶質の移動方向とが逆で、溶媒移動速度が件の成分の拡散速度よりも大きいとき、件の成分は透析液側に排出されない。溶媒の移動方向と拡散方向が逆であり、溶媒移動速度が低分子量成分以外の成分の拡散速度より大きく、透析除去したい低分子量成分の拡散速度より小さい場合には、低分子量成分を選択的に透析することができる。 The present invention is characterized in that a dialysis membrane is used to move a solution through a very short flow path by a plug flow method. Solvent movement and solute molecule movement (diffusion) are performed when the solvent movement direction in the pores and the solute molecule (ion) diffusion direction are opposite (that is, when dialysate flows in), and the solvent movement. In some cases, the direction of the solute and the direction of movement of the solute are the same (that is, a portion of the soy sauce is extruded through the pores). When the solvent moving direction and the solute moving direction are opposite and the solvent moving speed is larger than the diffusion speed of the component, the component is not discharged to the dialysate side. If the solvent movement direction and the diffusion direction are opposite and the solvent movement rate is greater than the diffusion rate of components other than the low molecular weight component and smaller than the diffusion rate of the low molecular weight component to be dialyzed, the low molecular weight component is selectively selected. Dialysis can be performed.
  溶媒の移動速度がゼロ付近では、溶質分子の移動は拡散にのみ支配される。溶媒の移動方向と溶質の拡散方向が同じ場合、すなわち試料溶液の一部が透析側に排出される場合、溶質の移動は溶媒の移動と溶質の拡散の寄与の合計となる。透析膜の分画分子量は数kDから数10kDであることから、溶媒の移動方向と溶質の拡散方向が同じ場合、低分子量成分のみならず分画分子量以下の比較的大きな分子(イオン)も膜を透過することから低分子量成分の透析の選択性は低下する。
  本発明において、低分子を透析しつつ目的の分子を試料中に残存させるための選択性(選択係数)は、例えばNa+イオンの除去率/アミノ態窒素の減少率によって表される。この値は10以上であれば選択性がよく、効率的に低分子を除去できると判断される。選択係数が4~20であるときの低分子量成分の除去効率は、90%~30%である。すなわち透析前に含まれていた低分子量物質全体の90%~30%が除去される。
When the solvent movement rate is near zero, the movement of solute molecules is governed only by diffusion. When the solvent movement direction and the solute diffusion direction are the same, that is, when a part of the sample solution is discharged to the dialysis side, the solute movement is the sum of the solvent movement and the solute diffusion contribution. Since the molecular weight of the dialysis membrane is from several kD to several tens of kD, when the solvent movement direction and the solute diffusion direction are the same, not only low molecular weight components but also relatively large molecules (ions) below the molecular weight cut-off As a result, the selectivity of dialysis of low molecular weight components decreases.
In the present invention, the selectivity (selectivity coefficient) for allowing the target molecule to remain in the sample while dialyzing the low molecule is represented by, for example, the Na + ion removal rate / amino nitrogen reduction rate. If this value is 10 or more, it is judged that selectivity is good and low molecules can be efficiently removed. The removal efficiency of the low molecular weight component when the selection coefficient is 4 to 20 is 90% to 30%. That is, 90% to 30% of the entire low molecular weight substance contained before dialysis is removed.
 以上要するに、透析膜の細孔内における溶媒の移動速度を制御することにより、試料中に保持すべき溶質の損失を抑制しつつ、排除すべき低分子量成分の透析を効率的に行うために、本発明の透析、すなわち移流拡散透析法を考案するに至った。
  本発明においては、試料中に保持すべき溶質(アミノ酸等のアミノ態窒素等)の損失は、25%以下、好ましくは15%以下、さらに好ましくは10%以下に抑えることができる。
In short, in order to efficiently perform dialysis of low molecular weight components to be eliminated while controlling the loss of the solute to be retained in the sample by controlling the moving speed of the solvent in the pores of the dialysis membrane, The dialysis of the present invention, that is, the advection diffusion dialysis method has been devised.
In the present invention, the loss of the solute (amino nitrogen such as amino acid) to be retained in the sample can be suppressed to 25% or less, preferably 15% or less, more preferably 10% or less.
 本発明の適用例の一つとして、醤油の脱塩を行った。すなわち、ナトリウムイオン、カリウムイオン及び塩化物イオンの透析液側への移動は拡散支配となる一方、アミノ態窒素化合物(アミノ酸)や香気成分の移動は溶媒の移動支配となるように、膜の細孔内における溶媒の移動速度を制御することによって、風味の劣化を伴わない減塩醤油の製造を行った。
  さらに、本法によると醤油は膜を透過せずに、膜を透過するのは透析液(水)のみであることから、膜の汚れが起こり難いのも本法の特徴である。
As one application example of the present invention, soy sauce was desalted. That is, the movement of sodium ions, potassium ions and chloride ions toward the dialysate side is governed by diffusion, while the movement of amino nitrogen compounds (amino acids) and aroma components is governed by the movement of the solvent. By controlling the moving speed of the solvent in the pores, low-salt soy sauce was produced without any deterioration in flavor.
Furthermore, according to this method, since the soy sauce does not permeate the membrane and only the dialysate (water) permeates the membrane, it is also a feature of this method that the membrane is hardly soiled.
3.透析装置
  本発明の装置は、試料溶液の流路1、透析液の流路2、前記流路1と流路2とを隔てる透析膜、並びに透析液の供給流量と排出流量を独立に制御する透析膜を透過する流量制御機構を備えた透析装置である。
  図4は、上記流路1、流路2、透析膜及び透析膜を透過する溶液の流量制御機構を含む移流拡散透析装置40の一例であり、試料溶液貯留槽401、処理溶液貯留槽402、透析液貯留槽403、排出透析液貯留槽404、試料供給ポンプ405、試料処理液排出ポンプ406、透析液供給ポンプ407、圧力計408及び透析モジュール409などを備える。透析モジュール409には、試料溶液の流路、透析液の流路、前記試料溶液流路と透析液流路とを隔てる透析膜が含まれる。流量制御機構は、試料供給ポンプ405、試料処理液排出ポンプ406から構成される。なお、本明細書において、同一符号は本発明の装置における同一の要素を指すものとする。
3. The apparatus of the present invention independently controls the sample solution flow path 1, the dialysate flow path 2, the dialysis membrane separating the flow path 1 and the flow path 2, and the supply flow rate and the discharge flow rate of the dialysate. It is a dialysis apparatus provided with a flow rate control mechanism that permeates through a dialysis membrane.
FIG. 4 is an example of the advection diffusion dialysis apparatus 40 including the flow path 1, the flow path 2, the dialysis membrane, and a flow rate control mechanism for the solution that permeates the dialysis membrane. The sample solution storage tank 401, the treatment solution storage tank 402, A dialysate storage tank 403, a discharge dialysate storage tank 404, a sample supply pump 405, a sample treatment liquid discharge pump 406, a dialysate supply pump 407, a pressure gauge 408, a dialysis module 409, and the like are provided. The dialysis module 409 includes a sample solution channel, a dialysate channel, and a dialysis membrane that separates the sample solution channel and the dialysate channel. The flow rate control mechanism includes a sample supply pump 405 and a sample processing liquid discharge pump 406. In the present specification, the same reference numerals indicate the same elements in the apparatus of the present invention.
  図4に示す移流拡散透析装置40において、透析モジュール409は、図2に示す形態とすることができ、例えば外径280μm、内径200μm、長さ208mm、分画分子量10000 Daのポリスルホン製の中空糸膜約5000本を、ポリプロピン製の円筒容器(直径33 mm、長さ250 mm)に収納したものとすることができる。この場合、透析モジュール409に収納されている透析膜の表面積は約6500 cm2である。
  透析モジュール409の上面と下面にはそれぞれ醤油などの試料溶液の入口201と排出口202があり、試料溶液の流路1と透析液の流路2(図示せず)を備える。
  透析モジュール409の円筒側面(例えばポリプロピレン製)には透析液(例えば水)を供給するための導入口203と排出するための排出口204が設けてある。
  試料液貯留槽401内の試料溶液は、流量可変の試料供給ポンプ405で吸引し、透析モジュール409に供給される。このときの試料供給圧力は圧力計408により計測する。透析モジュール409のチューブ210(図2)は、透析モジュール409の頂部に連結されており、試料溶液は、試料供給口201からチューブ210を介して透析モジュール409の頂部に供給される。透析モジュール409の頂部に供給された試料溶液は、透析モジュール409内の試料溶液流路、すなわち中空糸膜内を下降し、底部の試料排出口202から流量可変の試料排出ポンプ406を経て処理溶液貯留槽402に至る。
In the advection diffusion dialysis apparatus 40 shown in FIG. 4, the dialysis module 409 can be configured as shown in FIG. 2. Approximately 5,000 membranes can be stored in a polypropyne cylindrical container (diameter 33 mm, length 250 mm). In this case, the surface area of the dialysis membrane accommodated in the dialysis module 409 is about 6500 cm 2 .
An upper surface and a lower surface of the dialysis module 409 have an inlet 201 and an outlet 202 for sample solution such as soy sauce, respectively, and are provided with a sample solution flow path 1 and a dialysate flow path 2 (not shown).
A cylindrical side surface (for example, made of polypropylene) of the dialysis module 409 is provided with an introduction port 203 for supplying dialysate (for example, water) and a discharge port 204 for discharging.
The sample solution in the sample solution storage tank 401 is sucked by the sample supply pump 405 having a variable flow rate and supplied to the dialysis module 409. The sample supply pressure at this time is measured by a pressure gauge 408. The tube 210 (FIG. 2) of the dialysis module 409 is connected to the top of the dialysis module 409, and the sample solution is supplied from the sample supply port 201 to the top of the dialysis module 409 through the tube 210. The sample solution supplied to the top of the dialysis module 409 descends in the sample solution flow path in the dialysis module 409, that is, in the hollow fiber membrane, and passes through the sample discharge port 202 at the bottom through the sample discharge pump 406 whose flow rate is variable, and the treatment solution It reaches the storage tank 402.
  一方、透析液貯留槽403の透析液(例えば水)は、流量可変の透析液送液ポンプ407により透析モジュール409の底部近くの円筒側部の導入口203から導入され、多数の中空糸膜の隙間を通って上昇し、透析モジュール409の頂部近くの円筒側部の排出口204から排出され、排出透析液貯留槽404に至る。
 試料溶液の流路1と透析液の流路2は透析膜の細孔により連通していることから、試料溶液の供給量と排出量が設定され、かつ透析液の供給量が設定されるとき透析液の排出量は自動的に決まる。
On the other hand, the dialysate (for example, water) in the dialysate storage tank 403 is introduced from the introduction port 203 on the cylindrical side near the bottom of the dialysis module 409 by a dialysate feed pump 407 having a variable flow rate. It rises through the gap, is discharged from the discharge port 204 on the cylindrical side near the top of the dialysis module 409, and reaches the discharged dialysate storage tank 404.
Since the sample solution flow path 1 and the dialysate flow path 2 communicate with each other through the pores of the dialysis membrane, the sample solution supply amount and discharge amount are set, and the dialysate supply amount is set. The amount of dialysate discharged is automatically determined.
 図5は、上記流路1、流路2、透析膜及び透析膜を透過する流量制御機構を含む移流拡散透析装置50の一例であり、試料溶液貯留槽401、処理溶液貯留槽402、透析液貯留槽403、排出透析液貯留槽404、試料供給ポンプ405、透析液供給ポンプ407、透析液排出ポンプ507、圧力計408及び透析モジュール409などを備える。透析モジュール409には、試料溶液の流路1、透析液の流路2、前記流路1と流路2とを隔てる透析膜が含まれる。透析膜を透過する透析液の流量制御機構は、透析液供給ポンプ407、透析液排出ポンプ507から構成される。
  透析モジュール409の構成例、並びに試料溶液及び透析液の流れなどは、図4に示す移流拡散透析装置40についての説明に準じることができる。
FIG. 5 is an example of the advection diffusion dialysis apparatus 50 including the flow path 1, the flow path 2, the dialysis membrane and the flow rate control mechanism that permeates the dialysis membrane, and includes a sample solution storage tank 401, a treatment solution storage tank 402, and a dialysate A storage tank 403, a discharged dialysate storage tank 404, a sample supply pump 405, a dialysate supply pump 407, a dialysate discharge pump 507, a pressure gauge 408, a dialysis module 409, and the like are provided. The dialysis module 409 includes a sample solution channel 1, a dialysate channel 2, and a dialysis membrane that separates the channel 1 and the channel 2. The flow control mechanism of the dialysate that permeates through the dialysis membrane includes a dialysate supply pump 407 and a dialysate discharge pump 507.
The configuration example of the dialysis module 409, the flow of the sample solution and the dialysate, and the like can be based on the description of the advection diffusion dialysis apparatus 40 shown in FIG.
  さらに、本発明の透析装置は、試料溶液の流路1、透析液の流路2、前記流路1と流路2とを隔てる透析膜、並びに試料溶液に付加する圧力及び透析液に付加する圧力を制御する圧力制御機構を備えた透析装置であり、試料液と透析液間の差圧制御機構を備える。
  図6は、試料溶液の流路1、透析液の流路2、前記流路1と流路2とを隔てる透析膜、並びに膜間差圧の制御機構を備えた透析装置60の一例であり、試料溶液貯留槽401、処理溶液貯留槽402、透析液貯留槽403、排出透析液貯留槽404、試料供給ポンプ405、背圧調整弁606、透析液送液ポンプ407、圧力計408、及び透析モジュール409などを備える。
Furthermore, the dialysis apparatus of the present invention is applied to the sample solution flow path 1, the dialysate flow path 2, the dialysis membrane separating the flow path 1 and the flow path 2, and the pressure applied to the sample solution and the dialysate. A dialysis apparatus including a pressure control mechanism for controlling pressure, and includes a differential pressure control mechanism between a sample solution and a dialysis solution.
FIG. 6 is an example of a dialysis apparatus 60 provided with a sample solution flow path 1, a dialysate flow path 2, a dialysis membrane separating the flow path 1 and the flow path 2, and a transmembrane differential pressure control mechanism. , Sample solution reservoir 401, treatment solution reservoir 402, dialysate reservoir 403, discharge dialysate reservoir 404, sample supply pump 405, back pressure adjustment valve 606, dialysate feed pump 407, pressure gauge 408, and dialysis A module 409 and the like are provided.
  図6に示す移流拡散透析装置60において、透析モジュール409は、図2に示す形態とすることができ、例えば外径280μm、内径200μm、長さ208mm、分画分子量10000 Daのポリスルホン製の中空糸膜約5000本を、ポリプロピン製の円筒容器(直径33 mm、長さ250 mm)に収納したものとすることができる。このときの透析モジュール409に収納されている透析膜の表面積は約6500 cm2である。透析モジュール409の上面と下面にはそれぞれ試料溶液の入口201と排出口202がある。ポリプロピレン製の円筒側面には透析液を供給するための導入口203と排出するための排出口204が設けてある。試料溶液貯留槽内401の試料溶液を流量可変の試料供給ポンプ405で吸引し、透析モジュール409に供給する。このときの試料供給圧力は圧力計408により計測する。透析モジュール409の頂部に供給された試料溶液は透析モジュール409内の中空糸膜内を下降し、底部の試料排出口から排出されて処理溶液貯留槽402に至る。背圧調整弁606は、透析モジュール409の試料溶液の出口側に設けられており、試料溶液に所定の圧力を付加することにより、透析液の試料溶液内への流入を抑える。 In the advection diffusion dialysis apparatus 60 shown in FIG. 6, the dialysis module 409 can be configured as shown in FIG. 2, for example, a polysulfone hollow fiber having an outer diameter of 280 μm, an inner diameter of 200 μm, a length of 208 mm, and a molecular weight cut off of 10,000 Da. Approximately 5,000 membranes can be stored in a polypropyne cylindrical container (diameter 33 mm, length 250 mm). The surface area of the dialysis membrane accommodated in the dialysis module 409 at this time is about 6500 cm 2 . On the upper and lower surfaces of the dialysis module 409 are a sample solution inlet 201 and an outlet 202, respectively. A cylindrical side surface made of polypropylene is provided with an inlet 203 for supplying dialysate and an outlet 204 for discharging. The sample solution in the sample solution storage tank 401 is sucked by the sample supply pump 405 having a variable flow rate and supplied to the dialysis module 409. The sample supply pressure at this time is measured by a pressure gauge 408. The sample solution supplied to the top of the dialysis module 409 descends through the hollow fiber membrane in the dialysis module 409, is discharged from the sample outlet at the bottom, and reaches the treatment solution storage tank 402. The back pressure regulating valve 606 is provided on the sample solution outlet side of the dialysis module 409, and suppresses the inflow of the dialysate into the sample solution by applying a predetermined pressure to the sample solution.
  透析液貯留槽403の透析液(例えば水)は流量可変の透析液供給ポンプ407により透析モジュール409の底部近くの円筒側部の導入口203から導入され、多数の中空糸膜の隙間を通って上昇し、透析モジュール409の頂部近くの円筒側部の排出口204から排出される。このシステムでは、試料供給ポンプ405と処理液排出ポンプ406の流量を個別に設定することにより、透析液の膜透過速度が決まる。すなわち、試料供給ポンプ405の流量をV5[ml/min]、試料処理液排出ポンプ406の流量をV6[ml/min]、透析膜の総表面積をS[cm2]とすると、
  膜透過速度=(V6 - V5)/S  [cm/min] である。
  試料供給ポンプ405、試料処理液排出ポンプ406、及び透析液送液ポンプ407には、歯車ポンプ、モノーポンプなどが好ましく使用されるが、チービングポンプも使用することができる。
The dialysate (for example, water) in the dialysate storage tank 403 is introduced from the introduction port 203 on the cylindrical side near the bottom of the dialysis module 409 by a dialysate supply pump 407 having a variable flow rate, and passes through the gaps of a number of hollow fiber membranes. Ascended and discharged from the outlet 204 on the side of the cylinder near the top of the dialysis module 409. In this system, the membrane permeation rate of the dialysate is determined by individually setting the flow rates of the sample supply pump 405 and the treatment liquid discharge pump 406. That is, if the flow rate of the sample supply pump 405 is V5 [ml / min], the flow rate of the sample treatment liquid discharge pump 406 is V6 [ml / min], and the total surface area of the dialysis membrane is S [cm 2 ],
Membrane permeation rate = (V6−V5) / S [cm / min].
As the sample supply pump 405, the sample processing liquid discharge pump 406, and the dialysate liquid feed pump 407, a gear pump, a mono pump, or the like is preferably used, but a cheving pump can also be used.
  一方、試料溶液貯留槽401の試料溶液は流量可変の試料供給ポンプ405により、透析モジュール409の頂部に供給された試料溶液は透析モジュール409内の中空糸膜内を下降し、底部の試料排出口202から排出され処理溶液貯留槽402に至る。このシステムでは、透析液供給ポンプ407と透析液排出ポンプ507の流量を独立して制御することにより、透析液の膜透過速度を制御することができる。すなわち、透析液供給ポンプ407の流量をV6[ml/min]、透析液排出ポンプ507の流量をV7[ml/min]、透析膜の総表面積をS[cm2]とすると、膜透過速度は次式により求めることができる。
  膜透過速度=(V6 - V7)/S  [cm/min] である。
On the other hand, the sample solution supplied from the sample solution storage tank 401 to the top of the dialysis module 409 descends through the hollow fiber membrane in the dialysis module 409 by the sample supply pump 405 having a variable flow rate, and the sample outlet at the bottom. It is discharged from 202 and reaches the processing solution storage tank 402. In this system, the membrane permeation rate of the dialysate can be controlled by independently controlling the flow rates of the dialysate supply pump 407 and the dialysate discharge pump 507. That is, when the flow rate of the dialysate supply pump 407 is V6 [ml / min], the flow rate of the dialysate discharge pump 507 is V7 [ml / min], and the total surface area of the dialysis membrane is S [cm 2 ], the membrane permeation rate is It can be obtained by the following equation.
Membrane permeation rate = (V6−V7) / S [cm / min].
 ここで、試料溶液の処理速度を高めるためには、本発明の装置は、図2のような透析モジュールを試料溶液および透析液の流れに対して並列に複数本(2本から数百本)を配置することができる。図3は、透析モジュール409を10本配列させた複数透析モジュールシステム30の態様の一例である。
  複数透析モジュールシステム30は、透析モジュール409、試料溶液供給管301、試料処理液排出管302、透析液供給管303、透析液排出管304、第1の流量可変ポンプ305、第2の流量可変ポンプ306、第3の流量可変ポンプ307を備える。第1の流量可変ポンプ305、第2の流量可変ポンプ306、第3の流量可変ポンプ307は、それぞれ、試料供給ポンプ405、試料処理液排出ポンプ406、透析液供給ポンプ407(図4~6)に対応する。
  図3において、透析モジュール409の頂部は、チューブ311を介して試料液供給管301と連結し、チューブ312を介して透析液排出管304と連結する。透析モジュール409の底部は、チューブ313を介して透析液供給管303と連結し、チューブ314を介して試料処理液排出官302と連結する。
Here, in order to increase the processing speed of the sample solution, the apparatus of the present invention includes a plurality of dialysis modules as shown in FIG. 2 in parallel with respect to the flow of the sample solution and the dialysate (2 to several hundreds). Can be arranged. FIG. 3 is an example of an embodiment of a multiple dialysis module system 30 in which ten dialysis modules 409 are arranged.
The multiple dialysis module system 30 includes a dialysis module 409, a sample solution supply pipe 301, a sample processing liquid discharge pipe 302, a dialysate supply pipe 303, a dialysate discharge pipe 304, a first flow variable pump 305, and a second flow variable pump. 306, a third variable flow rate pump 307 is provided. The first flow rate variable pump 305, the second flow rate variable pump 306, and the third flow rate variable pump 307 are respectively a sample supply pump 405, a sample processing liquid discharge pump 406, and a dialysate supply pump 407 (FIGS. 4 to 6). Corresponding to
In FIG. 3, the top of the dialysis module 409 is connected to the sample solution supply pipe 301 via the tube 311 and connected to the dialysate discharge pipe 304 via the tube 312. The bottom of the dialysis module 409 is connected to the dialysate supply pipe 303 via the tube 313 and is connected to the sample processing liquid discharger 302 via the tube 314.
 本発明を実施するための透析モジュール409の膜は、中空糸膜、スパイラル膜あるいは平板膜いずれでも使用可能であるが、透析モジュール409の容積当たりの膜面積を大きくとるためには中空糸膜が好ましい。本発明の透析法において浸透圧はせいぜい20kPa程度であるので、中空糸膜の全域において細孔径内の溶媒の移動速度の部位による変動を小さくするためには、試料溶液及び透析液が膜モジュールを流通するときの圧力損失が小さいほど良い。すなわち、圧力損失が浸透圧の1.0倍以下、好ましくは0.5倍以下、より好ましくは0.1倍以下となるように試料溶液及び透析液の流速を制御する必要がある。中空糸膜内を試料溶液が流れる場合、発生する圧力損失は試料溶液の流速のみならず中空糸膜の内径にも依存するので、処理速度を高く維持して圧力損失を小さくするためには内径の大きな中空糸膜が好ましい。一方、中空糸膜内の試料溶液の流れに垂直な方向の物質移動が本発明の透析において律速とならないように過度に大きな内径であってはならない。本発明の透析方法における中空糸膜の内径は0.1mm以上、2.0 mm以下、好ましくは0.2mm以上、1.0mm以下、より好ましくは0.3mm以上、0.6mm以下である。 The membrane of the dialysis module 409 for carrying out the present invention can be any of a hollow fiber membrane, a spiral membrane, or a flat membrane, but in order to increase the membrane area per volume of the dialysis module 409, the hollow fiber membrane is used. preferable. In the dialysis method of the present invention, the osmotic pressure is at most about 20 kPa. Therefore, in order to reduce the fluctuation due to the site of the solvent moving speed within the pore diameter in the entire area of the hollow fiber membrane, the sample solution and the dialysis solution are used for the membrane module. The smaller the pressure loss when circulating, the better. That is, it is necessary to control the flow rates of the sample solution and the dialysate so that the pressure loss is 1.0 times or less, preferably 0.5 times or less, more preferably 0.1 times or less of the osmotic pressure. When the sample solution flows through the hollow fiber membrane, the generated pressure loss depends not only on the flow rate of the sample solution but also on the inner diameter of the hollow fiber membrane. Therefore, in order to maintain a high processing speed and reduce the pressure loss, A large hollow fiber membrane is preferred. On the other hand, the inner diameter should not be excessively large so that mass transfer in the direction perpendicular to the flow of the sample solution in the hollow fiber membrane is not rate-limiting in the dialysis of the present invention. The inner diameter of the hollow fiber membrane in the dialysis method of the present invention is 0.1 mm or more and 2.0 mm or less, preferably 0.2 mm or more and 1.0 mm or less, more preferably 0.3 mm or more and 0.6 mm or less.
  分画分子量が10kDの透析膜を用いた本実施例において生ずる膜間差圧(本発明の浸透圧)は約18kPaと低いことが明らかとなった。この浸透圧は膜細孔径が大きくなるほど小さくなると考えられる。本発明の透析において使用される浸透膜の分画分子量は透析可能な分子量を意味するのではない。発生する浸透圧が外部から付加される操作パラメーター(圧力及び流量)により容易に制御される程度の大きさであれば良い。ただし、透析膜の各々の細孔内を流れる溶媒の移動速度に変動がないことが重要であるので、細孔径分布はできるだけ小さいものが良い。
  ペクレ数の定義式から明らかなように、膜厚は本発明の透析を行う上で溶媒の移動速度と関連する重要なパラメーターである。実施例の結果から、好ましい膜厚は20μm以上、80μm以下、より好ましくは30μm以上、60μm以下である。
It was revealed that the transmembrane pressure difference (osmotic pressure of the present invention) generated in this Example using a dialysis membrane having a molecular weight cut off of 10 kD was as low as about 18 kPa. This osmotic pressure is considered to decrease as the membrane pore diameter increases. The molecular weight cutoff of the osmotic membrane used in the dialysis of the present invention does not mean a molecular weight that can be dialyzed. It is sufficient that the generated osmotic pressure is easily controlled by operating parameters (pressure and flow rate) applied from the outside. However, since it is important that there is no fluctuation in the moving speed of the solvent flowing in each pore of the dialysis membrane, the pore size distribution should be as small as possible.
As is apparent from the definition equation for the Peclet number, the film thickness is an important parameter related to the moving speed of the solvent in the dialysis of the present invention. From the results of the examples, the preferred film thickness is 20 μm or more and 80 μm or less, more preferably 30 μm or more and 60 μm or less.
  内径0.2 mm、長さ208 mm、膜厚40μm、分画分子量10000Daのポリスルホン中空糸膜を用いて醤油を透析するとき、浸透圧は18 kPaであった。一方、中空糸膜を流れる醤油の平均線速度が6.3 mm/sのとき圧力損失は1.5 kPa、10 mm/sのとき2.5kPa、17mm/sのとき7.7kPaであった。中空糸膜内の醤油に圧力を付加しない場合は、透析液が醤油側へ流入したのに対して、透析モジュール出口に設けた圧力調整弁により醤油に20~42 kPaの圧力を付加することにより、見かけ上は透析液の流入を抑えることができた。醤油の入口流量が大きくて圧力損失が7.7 kPaと大きいときは、醤油供給圧が41.8kPaのとき醤油の入口流量と出口流量が等しくなった。見かけ上は、膜細孔内の溶媒の移動速度は0であるが、実際は中空糸膜の上流部分の膜間差圧は大きく、醤油の一部分は透析側に排出されている。一方、中空糸膜の下流部分では膜間差圧は小さく、透析液が醤油側に流入している。このような現象が起こるので試料溶液の圧力損失が大きい場合は低分子量成分の選択的透析除去が困難になる。 When soy sauce was dialyzed using a polysulfone hollow fiber membrane having an inner diameter of 0.2 mm, a length of 208 mm, a film thickness of 40 μm, and a molecular weight cut off of 10000 Da, the osmotic pressure was 18 kPa. On the other hand, when the average linear velocity of the soy sauce flowing through the hollow fiber membrane was 6.3 mm / s, the pressure loss was 1.5 kg, 2.5 kPa at 10 mm / s, and 7.7 kPa at 17 mm / s. When no pressure is applied to the soy sauce in the hollow fiber membrane, the dialysate flows into the soy sauce side, whereas the pressure control valve provided at the dialysis module outlet applies a pressure of 20 to 42 kPa to the soy sauce. Apparently, the inflow of dialysate could be suppressed. When the soy sauce inlet flow rate was large and the pressure loss was as large as 7.7 kPa, the soy sauce inlet flow rate and outlet flow rate were equal when the soy sauce supply pressure was 41.8 kPa. Apparently, the moving speed of the solvent in the membrane pores is zero, but actually the transmembrane pressure difference in the upstream part of the hollow fiber membrane is large, and a part of the soy sauce is discharged to the dialysis side. On the other hand, the transmembrane pressure difference is small in the downstream portion of the hollow fiber membrane, and the dialysate flows into the soy sauce side. Since such a phenomenon occurs, selective dialysis removal of low molecular weight components becomes difficult when the pressure loss of the sample solution is large.
  細孔内における溶媒の移動速度を制御する方法としては、次のような方法が考えられる。
 膜間差圧の制御は、試料溶液排出口に差圧弁を設置することにより行うことができる。
あるいは、試料溶液排出口から排出される処理液を一時的に貯留する貯留槽と、排出される透析液の開口部の水頭圧差を制御することにより、差圧を発生させることができる。すなわち、処理された試料の貯留槽の設置位置と透析液の排出口の開口位置の落差により、膜間圧力を調整することができる。試料溶液の入口流量と出口流量の制御、あるいは透析液の入口流量と出口流量の制御によっても、細孔内の溶媒の移動速度を調整することができる。例えば、モノーポンプのような高度に流量制御可能で脈流を発生しないポンプを試料溶液の供給部と試料溶液の排出部にそれぞれ設置し、両ポンプの流量が僅かに異なる状態で運転することにより目的を達成することができる。あるいは、透析液について同様の制御を施すことによっても目的を達成することができる。
As a method for controlling the moving speed of the solvent in the pores, the following method can be considered.
The transmembrane pressure can be controlled by installing a differential pressure valve at the sample solution outlet.
Alternatively, the differential pressure can be generated by controlling the head pressure difference between the storage tank that temporarily stores the processing liquid discharged from the sample solution discharge port and the opening of the dialysate to be discharged. That is, the transmembrane pressure can be adjusted by the difference between the installation position of the treated sample storage tank and the opening position of the dialysate discharge port. The movement speed of the solvent in the pores can also be adjusted by controlling the inlet flow rate and outlet flow rate of the sample solution, or controlling the inlet flow rate and outlet flow rate of the dialysate. For example, it is possible to install a pump that can control the flow rate highly and does not generate a pulsating flow, such as a mono pump, in the sample solution supply part and the sample solution discharge part, respectively, and operate the pumps with slightly different flow rates. Can be achieved. Alternatively, the object can be achieved by applying the same control to the dialysate.
 透析装置の設計にあたっては、透析膜のポリマー素材、分画分子量、膜厚、透析膜の開口率(空隙率)、中空糸膜の内径と長さ、膜透過速度(移流速度)の制御方法、試料溶液の流速と流れ方向、透析液の流速と流れ方向など、十分に考慮する必要がある。 In designing the dialysis machine, the polymer material of the dialysis membrane, the molecular weight cut off, the film thickness, the aperture ratio (void ratio) of the dialysis membrane, the inner diameter and length of the hollow fiber membrane, the method of controlling the membrane permeation rate (convection rate), It is necessary to fully consider the flow rate and flow direction of the sample solution and the flow rate and flow direction of the dialysate.
  以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
実施例1
 Spectrum Laboratories社製のSPポリスルホン中空糸膜を装着した透析モジュール(分画分子量10kD、内径200μm×外径280μm、中空糸膜本数5750本、膜表面積6500cm2(内面)・9100cm2(外面))を用いて、市販の濃口醤油の脱塩を行った。すなわち、中空糸膜の内部に醤油を流し、外部に透析液を向流方式で流すことにより、透析を行った。醤油および透析液の送液には、東京理化機器社製ローラーポンプRP-2100を使用した。図6のように、醤油の排出口に圧力調整用のバルブを取り付けることにより、醤油と透析液の間に差圧を発生させた。醤油の入口側に圧力センサーを取り付けて、醤油の供給圧力をモニターした。
 醤油流量60 ml/min、透析液流量60 ml/minにおいて以下の実験を行った。
Example 1
Using a dialysis module equipped with SP polysulfone hollow fiber membrane manufactured by Spectrum Laboratories (fractionated molecular weight 10kD, inner diameter 200μm × outer diameter 280μm, number of hollow fiber membranes 5750, membrane surface area 6500cm2 (inner surface), 9100cm2 (outer surface)) Then, desalting of commercially available concentrated soy sauce was performed. That is, dialysis was performed by flowing soy sauce inside the hollow fiber membrane and flowing the dialysate outside in a countercurrent manner. A roller pump RP-2100 manufactured by Tokyo Rika Kikai Co., Ltd. was used for feeding soy sauce and dialysate. As shown in FIG. 6, a differential pressure was generated between the soy sauce and the dialysate by attaching a pressure adjusting valve to the soy sauce outlet. A pressure sensor was attached to the soy sauce inlet side to monitor the soy sauce supply pressure.
The following experiment was conducted at a soy sauce flow rate of 60 ml / min and a dialysate flow rate of 60 ml / min.
比較例1
  実施例1-1)圧力調整バルブにより、醤油の供給圧力を9.0 kPaに調整して透析を行った。
  実施例1-2)圧力調整バルブにより、醤油の供給圧力を20 kPaに調整して透析を行った。
  実施例1-3)圧力調整バルブにより、醤油の供給圧力を32 kPaに調整して透析を行った。
  比較例1)通常の透析では膜間差圧及び溶媒の膜透過を想定しないことから、醤油出口の圧力調整バルブを全開にして透析を行い、比較実験とした。このとき醤油供給圧力は1.5 kPaであった。
Comparative Example 1
Example 1-1) Dialysis was performed by adjusting the supply pressure of soy sauce to 9.0 kPa with a pressure adjusting valve.
Example 1-2) Dialysis was performed by adjusting the supply pressure of soy sauce to 20 kPa using a pressure adjusting valve.
Example 1-3) Dialysis was performed by adjusting the supply pressure of soy sauce to 32 kPa using a pressure control valve.
Comparative Example 1) Since normal dialysis does not assume transmembrane pressure and solvent permeation, dialysis was performed with the pressure adjustment valve at the soy sauce outlet fully opened, and a comparative experiment was conducted. At this time, the soy sauce supply pressure was 1.5 kPa.
 実施例1-1~1-3及び比較例1における醤油の入口流量と出口流量ならびに透析液の入口流量と出口流量を表1に示す。醤油の入口流量と出口流量の差を透析膜面積で除することにより膜透過速度を算出した。さらに、実施例1-1~1-3及び比較例1におけるNa+イオンとK+イオンの減少率ならびにアミノ態窒素の減少率を表1に示す。 Table 1 shows the inlet flow rate and outlet flow rate of soy sauce and the inlet flow rate and outlet flow rate of dialysate in Examples 1-1 to 1-3 and Comparative Example 1. The membrane permeation rate was calculated by dividing the difference between the soy sauce inlet flow rate and the outlet flow rate by the dialysis membrane area. Further, Table 1 shows the reduction rate of Na + ions and K + ions and the reduction rate of amino nitrogen in Examples 1-1 to 1-3 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1;醤油出口に装着された圧力調整バルブを全開にしたときの醤油入口圧力は1.5 kPaであった。このとき醤油入口流量60 ml/minに対して出口流量は102 ml/minであり、透析液が醤油側へ毎分42 ml浸透流入しており、膜透過速度は0.0065 cm/minであった。このときNa+イオンンの減少率は僅かに1.4%、アミノ態窒素の減少はほとんど認められなかった。以上の結果、比較例1では、醤油のように浸透圧が高い試料から低分子量成分(イオン)を透析除去しようとしても、透析膜中における透析液の浸透速度が大きいためにこれに抗して拡散移動することは困難であった。すなわち、透析することができなかった。
 そこで透析膜中の透析液の浸透速度を制御しながら透析を行った。
Comparative Example 1 The soy sauce inlet pressure was 1.5 kPa when the pressure regulating valve attached to the soy sauce outlet was fully opened. At this time, the outlet flow rate was 102 ml / min with respect to the soy sauce inlet flow rate of 60 ml / min, the dialysate permeated 42 ml per minute into the soy sauce side, and the membrane permeation rate was 0.0065 cm / min. At this time, the decrease rate of Na + ion was only 1.4%, and almost no decrease of amino nitrogen was observed. As a result, in Comparative Example 1, even when trying to dialy remove low molecular weight components (ions) from a sample with high osmotic pressure such as soy sauce, the permeation rate of the dialysate in the dialysis membrane is high, which is against this. Diffusing movement was difficult. That is, dialysis could not be performed.
Therefore, dialysis was performed while controlling the permeation rate of the dialysate in the dialysis membrane.
  実施例1-1;醤油出口に装着された圧力調整バルブにより醤油の入口圧力を9.0 kPaに設定して透析を行ったところ、醤油入口流量60 ml/minに対して醤油出口流量は72 ml/minであった。この結果、醤油が中空糸膜を通過する間に透析液が醤油中に毎分12 ml浸透流入した。このときの膜透過速度は0.0018 cm/minであった。
  実施例1-2;醤油の入口圧20 kPaにおいて醤油の入口流量と出口流量は等しく、透析液の流入は停止した(膜透過速度はゼロ)。したがって、本条件下における浸透圧は20 kPaである。
  実施例1-3;醤油入口圧力32 kPaでは、醤油入口流量60 ml/minに対して出口流量は43 ml/minであり、醤油の一部が毎分17 ml透析液側へ排出された。このときの膜透過速度は-0.0026 cm/minであった。
Na+イオンの減少率は透析液が醤油側へ流入する膜透過速度が0.0065、0.0018、0.000、-0.0026 cm/minと小さくなるにつれて、1.4、20.9、39.3、54.7%と増大した。同条件下でのアミノ態窒素の減少率は、<0.1、0.8、7.3、23.2%であった。
Example 1-1: Dialysis was performed by setting the pressure of a soy sauce inlet to 9.0 kPa using a pressure adjusting valve attached to the soy sauce outlet, and the soy sauce outlet flow rate was 72 ml / min with respect to the soy sauce inlet flow rate of 60 ml / min. It was min. As a result, while the soy sauce passed through the hollow fiber membrane, the dialysate permeated 12 ml per minute into the soy sauce. The membrane permeation rate at this time was 0.0018 cm / min.
Example 1-2: At the soy sauce inlet pressure of 20 kPa, the soy sauce inlet flow rate and outlet flow rate were equal, and the dialysate flow stopped (the membrane permeation rate was zero). Therefore, the osmotic pressure under this condition is 20 kPa.
Example 1-3; At a soy sauce inlet pressure of 32 kPa, the outlet flow rate was 43 ml / min with respect to the soy sauce inlet flow rate of 60 ml / min, and a portion of soy sauce was discharged to the 17 ml dialysate side per minute. The membrane permeation rate at this time was -0.0026 cm / min.
The decrease rate of Na + ions increased to 1.4, 20.9, 39.3, and 54.7% as the membrane permeation rate of the dialysate flowing into the soy sauce side decreased to 0.0065, 0.0018, 0.000, and -0.0026 cm / min. The reduction rate of amino nitrogen under the same conditions was <0.1, 0.8, 7.3, 23.2%.
  表1(比較例1、実施例1-1~1-3)の結果を図7に示す。図中、ナトリウムイオンおよびアミノ態窒素の減少率のプロットが各々四点あるが、これは右から順に比較例1、実施例1-1、1-2および1-3の結果を示している。 FIG. 7 shows the results of Table 1 (Comparative Example 1, Examples 1-1 to 1-3). In the figure, there are four plots of the reduction rate of sodium ion and amino nitrogen, respectively, which show the results of Comparative Example 1, Examples 1-1, 1-2, and 1-3 in order from the right.
  図7はNa+イオンの減少率及びアミノ態窒素の減少率に及ぼす透析液の浸透流速(膜透過速度)の影響を示している。正の値は透析液が醤油側に浸透流入する方向であり、負の値は醤油の一部分が透析液側へ流出するときの膜透過速度を表している。
  比較例1;醤油に圧力を付加しないときの透析液の膜透過速度は0.0065 cm/minであり、Na+イオンもアミノ態窒素成分(アミノ酸)も濃度勾配にしたがって透析液側に実質的に拡散移動することができない。すなわち、透析は不可能であることを示している。
 実施例1-1;醤油に9.0 kPaの圧力を付加して膜透過速度0.0018 cm/minで透析を行った。このときNa+イオンの減少率は20.9 %となったが、アミノ態窒素成分の減少はほとんど認められなかった。
  実施例1-2;醤油に20 kPaの圧力を付加して膜中で透析液が静止した状態で透析を行った。このときNa+イオンの減少率は39.3 %、アミノ態窒素成分の減少率は7.3 %であった。
  実施例1-3;醤油に付加する圧力を32 kPaに上げて膜透過流の向きを反転(-0.0026 cm/min)させ、醤油の一部が透析液側に排出(ろ過)される状況下で透析を行った。このときNa+イオンの減少率は54.7 %、アミノ態窒素成分の減少率は23.2 %であった。
FIG. 7 shows the influence of the dialysate permeation flow rate (membrane permeation rate) on the decrease rate of Na + ions and the decrease rate of amino nitrogen. A positive value is a direction in which the dialysate permeates and flows into the soy sauce side, and a negative value indicates a membrane permeation rate when a part of the soy sauce flows out to the dialysate side.
Comparative Example 1: The membrane permeation rate of the dialysate when no pressure was applied to the soy sauce was 0.0065 cm / min, and both Na + ions and amino nitrogen components (amino acids) were substantially diffusely transferred to the dialysate side according to the concentration gradient. Can not do it. That is, dialysis is impossible.
Example 1-1: Dialysis was performed at a membrane permeation rate of 0.0018 cm / min by applying a pressure of 9.0 kPa to soy sauce. At this time, the decrease rate of Na + ions was 20.9%, but almost no decrease in amino nitrogen component was observed.
Example 1-2: Dialysis was performed in a state where the pressure of 20 kPa was applied to soy sauce and the dialysate was stationary in the membrane. At this time, the decrease rate of Na + ions was 39.3%, and the decrease rate of amino nitrogen component was 7.3%.
Example 1-3: Under a situation where the pressure applied to soy sauce is increased to 32 kPa to reverse the direction of the membrane permeate flow (-0.0026 cm / min), and a portion of the soy sauce is discharged (filtered) to the dialysate side Dialysis was performed. At this time, the decrease rate of Na + ions was 54.7%, and the decrease rate of amino nitrogen component was 23.2%.
 以上のとおり、Na+イオン及びアミノ態窒素成分の移動に及ぼす拡散と溶媒の移流の影響を明瞭にすることができた。すなわち、拡散速度が移流速度より大きな領域(ペクレ数>1)においては、溶質の減少率と移流速度の間に直線関係が認められた。Na+イオンに関してペクレ数=1となる膜透過速度は約0.0045cm/min、アミノ態窒素成分では膜透過速度0.001cm/min近傍でペクレ数=1となることが判明した。 As described above, the influence of diffusion and solvent advection on the movement of Na + ions and amino nitrogen components could be clarified. That is, in a region where the diffusion rate is larger than the advection rate (Peclet number> 1), a linear relationship was observed between the solute reduction rate and the advection rate. The membrane permeation rate at which the Peclet number = 1 for Na + ions was about 0.0045 cm / min, and the amino nitrogen component was found to have a Peclet number = 1 near the membrane permeation rate of 0.001 cm / min.
 本実験において、Na+イン濃度はNa+イオン選択性電極(HORIBA B-722)により、K+イオン濃度はK+イオン選択性電極(HORIBA B-731)により測定した。アミノ態窒素はニンヒドリン反応生成物の570 nmでの吸光度より測定した。 In this experiment, Na + in concentration was measured with Na + ion selective electrode (HORIBA B-722), and K + ion concentration was measured with K + ion selective electrode (HORIBA B-731). The amino nitrogen was measured from the absorbance of the ninhydrin reaction product at 570 nm.
 醤油入口流量を120 ml/min、透析液入口流量を120 ml/minとして実施例1及び比較例1と同様の透析を行った。
実施例2-1)圧力調整バルブにより、醤油の供給圧力を15 kPaに調整して透析を行った。
実施例2-2)圧力調整バルブにより、醤油の供給圧力を25 kPaに調整して透析を行った。
実施例2-3)圧力調整バルブにより、醤油の供給圧力を35 kPaに調整して透析を行った。
比較例2)通常の透析では膜間差圧及び溶媒の膜透過を想定しないことから、醤油出口の圧力調整バルブを全開にして透析を行い、比較実験とした。このとき醤油の供給圧力は2.5kPaであった。
 実施例2-1~2-3及び比較例2の結果を表2に示す。
Dialysis similar to Example 1 and Comparative Example 1 was performed with the soy sauce inlet flow rate of 120 ml / min and the dialysate inlet flow rate of 120 ml / min.
Example 2-1) Dialysis was performed by adjusting the supply pressure of soy sauce to 15 kPa using a pressure adjusting valve.
Example 2-2) Dialysis was performed by adjusting the supply pressure of soy sauce to 25 kPa using a pressure adjusting valve.
Example 2-3) Dialysis was performed by adjusting the supply pressure of soy sauce to 35 kPa using a pressure adjusting valve.
Comparative Example 2) Since normal dialysis does not assume transmembrane pressure and solvent permeation, dialysis was performed with the pressure adjustment valve at the soy sauce outlet fully opened, and a comparative experiment was conducted. At this time, the supply pressure of soy sauce was 2.5 kPa.
The results of Examples 2-1 to 2-3 and Comparative Example 2 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 比較例2;醤油出口に装着された圧力調整バルブを全開にしたときの醤油入口圧力は2.5 kPaであった。このとき醤油入口流量120 ml/minに対して出口流量は150 ml/minであり、透析液が醤油側へ毎分30 ml浸透流入しており、膜透過速度は0.0046 cm/minであった。このときNa+イオンンの減少率は僅かに6.6 %、アミノ態窒素の減少はほとんど認められなかった。以上の結果、醤油への圧力付加なしに透析した場合、Na+イオンを選択性に排除することができたが、除去率は6.6 %と低いこと、さらに試料溶液が透析液で25%ほど希釈されることが明らかとなった。 Comparative Example 2: The pressure at the soy sauce inlet when the pressure control valve attached to the soy sauce outlet was fully opened was 2.5 kPa. At this time, the outlet flow rate was 150 ml / min with respect to the soy sauce inlet flow rate of 120 ml / min, the dialysate permeated 30 ml per minute into the soy sauce side, and the membrane permeation rate was 0.0046 cm / min. At this time, the decrease rate of Na + ion was only 6.6% and almost no decrease of amino nitrogen was observed. As a result, when dialyzing without applying pressure to the soy sauce, Na + ions could be excluded selectively, but the removal rate was as low as 6.6%, and the sample solution was diluted with dialysate by about 25%. It became clear.
 そこで透析膜中の透析液の浸透速度を制御しながら透析を行った。
実施例2-1;醤油に15 kPaの圧力を付加して膜透過速度0.0009 cm/minで透析を行った。このときNa+イオンの減少率は39.5 %であったが、アミノ態窒素成分の減少率は4.2 %であった。
  実施例2-2;醤油に25 kPaの圧力を付加して膜透過速度-0.0009 cm/minで透析を行った。このときNa+イオンの減少率は47.5 %であり、アミノ態窒素成分の減少率は13.1 %であった。
  実施例2-3;醤油に35 kPaの圧力を付加して膜透過速度-0.0018 cm/minで透析を行った。このときNa+イオンの減少率は52.1 %となったが、アミノ態窒素成分の減少率は21.2 %であった。
  透析液の膜透過速度が0.0046、0.0009、-0.0009、-0.0018 cm/minと減少するにつれて、Na+イオンの減少率は6.6、39.5、47.3、52.1%と増大した。同条件下でアミノ態窒素の減少率は、0.16、4.2、13.1、21.2%であった。また、同条件下で選択性は41、9.4、3.6、2.4であった。上記の結果は、ナトリウムイオンの除去率と選択性が逆比例することを示している。膜透過速度が負の値(実施例2-2、2-3)は、濾過透析が起こっていることを示す。移流拡散透析が行われているのは実施例2-1であり、ナトリウムイオンの除去率および選択性の両方を満たしていることがわかる。
Therefore, dialysis was performed while controlling the permeation rate of the dialysate in the dialysis membrane.
Example 2-1: Dialysis was performed at a membrane permeation rate of 0.0009 cm / min by applying a pressure of 15 kPa to soy sauce. At this time, the decrease rate of Na + ions was 39.5%, but the decrease rate of the amino nitrogen component was 4.2%.
Example 2-2: Dialysis was performed at a membrane permeation rate of -0.0009 cm / min by applying a pressure of 25 kPa to soy sauce. At this time, the decrease rate of Na + ions was 47.5%, and the decrease rate of amino nitrogen component was 13.1%.
Example 2-3: Dialysis was performed at a membrane permeation rate of -0.0018 cm / min by applying a pressure of 35 kPa to soy sauce. At this time, the decrease rate of Na + ion was 52.1%, but the decrease rate of amino nitrogen component was 21.2%.
As the dialysate membrane permeation rate decreased to 0.0046, 0.0009, -0.0009, -0.0018 cm / min, the decrease rate of Na + ions increased to 6.6, 39.5, 47.3, 52.1%. Under the same conditions, the decrease rate of amino nitrogen was 0.16, 4.2, 13.1, 21.2%. The selectivity was 41, 9.4, 3.6, and 2.4 under the same conditions. The above results show that the removal rate and selectivity of sodium ions are inversely proportional. A negative membrane permeation rate (Examples 2-2, 2-3) indicates that filtration dialysis is occurring. Advection diffusion dialysis is performed in Example 2-1, which shows that both the removal rate and selectivity of sodium ions are satisfied.
  表2(比較例2、実施例2-1~2-3)の結果を図8に示す。図中、ナトリウムイオンおよびアミノ態窒素の減少率のプロットが各々四点あるが、これは右から順に比較例2、実施例2-1、2-2および2-3の結果を示している。
  醤油に圧力を付加しないとき、Na+イオンの減少率は6.6%であり透析液の浸透流に抗してわずかながら拡散移動することができたが、アミノ態窒素成分の拡散速度はNa+イオンほど大きくないためにほとんど透析液側に排出されなかった。
 膜透過速度0.0009 cm/minにおいてNa+イオンの減少率は39.5 %、アミノ態窒素成分の減少は4.2%であった。膜透過速度-0.0009 cm/minにおいて、Na+イオンの減少率は47.3%、アミノ態窒素成分の減少率は13.1 %であった。さらに、醤油に付加する圧力を増大して膜透過速度-0.0018 cm/minで透析を行ったところ、Na+イオンの減少率は52.1 %、アミノ態窒素成分の減少率は21.2 %であった。
 以上のとおり、溶質の拡散速度が移流速度より大きな領域(ペクレ数<1)においては、溶質の減少率と移流速度の間に直線関係が認められた。
 
The results of Table 2 (Comparative Example 2, Examples 2-1 to 2-3) are shown in FIG. In the figure, there are four plots of the reduction rate of sodium ion and amino nitrogen, respectively, which show the results of Comparative Example 2, Examples 2-1, 2-2 and 2-3 in order from the right.
When no pressure was applied to soy sauce, the decrease rate of Na + ions was 6.6%, which was able to diffuse and move slightly against the osmotic flow of the dialysate, but the diffusion rate of amino nitrogen component was as large as Na + ions As a result, it was hardly discharged to the dialysate side.
At the membrane permeation rate of 0.0009 cm / min, the decrease rate of Na + ions was 39.5%, and the decrease of amino nitrogen component was 4.2%. At the membrane permeation rate of -0.0009 cm / min, the decrease rate of Na + ions was 47.3%, and the decrease rate of amino nitrogen components was 13.1%. Furthermore, when the pressure applied to soy sauce was increased and dialysis was performed at a membrane permeation rate of -0.0018 cm / min, the decrease rate of Na + ions was 52.1%, and the decrease rate of amino nitrogen components was 21.2%.
As described above, in the region where the solute diffusion rate is larger than the advection rate (Peclet number <1), a linear relationship was observed between the solute reduction rate and the advection rate.
 醤油入口流量を180 ml/min、透析液入口流量を180 ml/minとして実施例1及び比較例1と同様の透析を行った。
  実施例3-1;圧力調整バルブにより、醤油の供給圧力を17.2 kPaに調整して透析を行った。
  実施例3-2;圧力調整バルブにより、醤油の供給圧力を28.1 kPaに調整して透析を行った。
  実施例3-3;圧力調整バルブにより、醤油の供給圧力を41.8 kPaに調整して透析を行った。
  比較例3;通常の透析では膜間差圧及び溶媒の膜透過を想定しないことから、醤油出口の圧力調整バルブを全開にして透析を行い、比較実験とした。
 実施例3-1~3-3及び比較例3の結果を表3に示す。
Dialysis was performed in the same manner as in Example 1 and Comparative Example 1 with a soy sauce inlet flow rate of 180 ml / min and a dialysate inlet flow rate of 180 ml / min.
Example 3-1: Dialysis was performed by adjusting the supply pressure of soy sauce to 17.2 kPa with a pressure control valve.
Example 3-2: Dialysis was performed by adjusting the supply pressure of soy sauce to 28.1 kPa with a pressure control valve.
Example 3-3: Dialysis was performed by adjusting the supply pressure of soy sauce to 41.8 kPa with a pressure control valve.
Comparative Example 3: Since normal dialysis does not assume the transmembrane pressure difference and the permeation of the solvent, dialysis was performed with the pressure adjustment valve at the soy sauce outlet fully opened, and a comparative experiment was conducted.
Table 3 shows the results of Examples 3-1 to 3-3 and Comparative Example 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例3:醤油出口に装着された圧力調整バルブを全開にしたときの醤油入口圧力は7.7 kPaであった。このとき醤油入口流量180 ml/minに対して出口流量は250 ml/minであり、透析液が醤油側へ毎分70 ml浸透流入しており、膜透過速度は0.011 cm/minであった。このときNa+イオンンの減少率は僅かに25.4 %、アミノ態窒素の減少はほとんど認められなかった。以上の結果、醤油への圧力付加なしに透析した場合、Na+イオンを選択性に排除することができたが、試料溶液が透析液で39%ほど希釈されることが明らかとなった。 Comparative Example 3: The pressure at the soy sauce inlet when the pressure control valve attached to the soy sauce outlet was fully opened was 7.7 kPa. At this time, the outlet flow rate was 250 ml / min with respect to the soy sauce inlet flow rate of 180 ml / min, the dialysate permeated 70 ml per minute into the soy sauce side, and the membrane permeation rate was 0.011 cm / min. At this time, the decrease rate of Na + ion was only 25.4% and almost no decrease of amino nitrogen was observed. As a result, when dialyzing without applying pressure to the soy sauce, Na + ions could be selectively removed, but it was revealed that the sample solution was diluted by about 39% with the dialysate.
 そこで透析膜中の透析液の浸透速度を制御しながら透析を行った。
  実施例3-1:醤油に17.2 kPaの圧力を付加して膜透過速度0.0065 cm/minで透析を行った。このときNa+イオンの減少率は32.5 %であったが、アミノ態窒素成分の減少率は2.9 %であった。
  実施例3-2:醤油に28.1 kPaの圧力を付加して膜透過速度0.0046 cm/minで透析を行った。このときNa+イオンの減少率は40.9 %であったが、アミノ態窒素成分の減少率は6.5 %であった。
  実施例3-3:醤油に41.8 kPaの圧力を付加して膜透過速度0.0000 cm/minで透析を行った。このときNa+イオンの減少率は52.5 %であったが、アミノ態窒素成分の減少率は13.0 %であった。
  Na+イオンの減少率は透析液の膜透過速度が0.011、0.0065、0.0046、0.000 cm/minと減少するにつれて、25.4、32.5、40.9、52.5%と増大した。同条件下でアミノ態窒素の減少率は、0.9、2.9、6.5、13.0%であった。また、同条件下で選択性は、28.8、10.8、6.4、4.0と減少した。上記の結果は、ナトリウムイオンの除去率と選択性が逆比例することを示している。
Therefore, dialysis was performed while controlling the permeation rate of the dialysate in the dialysis membrane.
Example 3-1: Dialysis was performed at a membrane permeation rate of 0.0065 cm / min by applying a pressure of 17.2 kPa to soy sauce. At this time, the decrease rate of Na + ions was 32.5%, but the decrease rate of amino nitrogen component was 2.9%.
Example 3-2: Dialysis was performed at a membrane permeation rate of 0.0046 cm / min by applying a pressure of 28.1 kPa to soy sauce. At this time, the decrease rate of Na + ions was 40.9%, but the decrease rate of amino nitrogen component was 6.5%.
Example 3-3: Dialysis was performed at a membrane permeation rate of 0.0000 cm / min by applying a pressure of 41.8 kPa to soy sauce. At this time, the decrease rate of Na + ions was 52.5%, but the decrease rate of amino nitrogen component was 13.0%.
The decrease rate of Na + ions increased to 25.4, 32.5, 40.9, and 52.5% as the membrane permeation rate of the dialysate decreased to 0.011, 0.0065, 0.0046, and 0.000 cm / min. Under the same conditions, the decrease rate of amino nitrogen was 0.9, 2.9, 6.5, 13.0%. In addition, the selectivity decreased to 28.8, 10.8, 6.4, and 4.0 under the same conditions. The above results show that the removal rate and selectivity of sodium ions are inversely proportional.
  表3(比較例3、実施例3-1~3-3)の結果を図9に示す。図中、ナトリウムイオンおよびアミノ態窒素の減少率のプロットが各々四点あるが、これは右から順に比較例2、実施例2-1、2-2および2-3の結果を示している。
  図9の結果は図7及び8の結果と異なった。すなわち、醤油に圧力を付加せず、透析液の浸透流入速度が0.011 cm/minと大きいにもかかわらず25.4%のNa+イオンが透析液側へ排出された。なお、このときアミノ態窒素成分は透析液側にほとんど排出されなかった。これは透析膜内における醤油の流速が増大したために、透析膜表面に形成される境界層の性質が変化したためと考えられる。
The results of Table 3 (Comparative Example 3, Examples 3-1 to 3-3) are shown in FIG. In the figure, there are four plots of the reduction rate of sodium ion and amino nitrogen, respectively, which show the results of Comparative Example 2, Examples 2-1, 2-2 and 2-3 in order from the right.
The results of FIG. 9 differed from the results of FIGS. That is, no pressure was applied to the soy sauce, and 25.4% of Na + ions were discharged to the dialysate side despite the high permeation inflow rate of the dialysate as 0.011 cm / min. At this time, almost no amino nitrogen component was discharged to the dialysate side. This is thought to be because the flow rate of soy sauce in the dialysis membrane increased and the properties of the boundary layer formed on the dialysis membrane surface changed.
 醤油の脱塩では、Na+イオンの減少率をアミノ態窒素成分(アミノ酸)の減少率で除した値(以後、選択係数と呼ぶ)は減塩醤油の品質に大きな影響を与える。そこで、醤油の透析における選択係数に及ぼす透析液の膜透過速度と透析モジュールへの醤油供給流量(透析速度)の影響を明らかにする必要がある。図10は透析速度をパラメーターとして、透析液の膜透過速度に対して選択係数をプロットしたものである。
  選択係数=Na+イオンの除去率/アミノ態窒素の減少率
  醤油の供給流量:△ 60ml/min; ▲ 120 ml/min; ○ 180 ml/min
In the desalting of soy sauce, the value obtained by dividing the rate of Na + ion reduction by the rate of reduction of amino nitrogen components (amino acids) (hereinafter referred to as the selectivity factor) has a significant effect on the quality of the reduced salt soy sauce. Therefore, it is necessary to clarify the influence of the membrane permeation rate of dialysate and the soy sauce supply flow rate (dialysis rate) to the dialysis module on the selection factor in dialysis of soy sauce. FIG. 10 plots the selectivity coefficient against the membrane permeation rate of the dialysate using the dialysis rate as a parameter.
Selection factor = Na + ion removal rate / amino nitrogen reduction rate Soy sauce supply flow rate: △ 60 ml / min; ▲ 120 ml / min; ○ 180 ml / min
 図10より透析速度一定条件下で透析の選択性と透析液の膜透過速度の間に直線関係が成立することが明らかとなった。透析液の膜透過速度を大きくするほど選択係数を高くすることができるが低分子量溶質の排出速度は小さくなるので効率的な透析を行うためには、選択係数と透析速度のバランスを考慮して条件設定する必要がある。いずれの透析速度においても透析液の膜透過速度が-0.002近傍で選択係数は0.35程度になることが判明した。透析膜中の溶媒移動がない状況下では各成分の移動は各成分の拡散速度に依存するので、理想的には膜透過速度ゼロにおいて選択係数は一定値に収束すると考えられるが、実際の値と理論値の間に0.002cm/min程度の違いが生じた。また、各透析処理の直線の傾きも、理論的には等しくなることが予測されるが、実際には透析速度の影響を顕著に受けた。すなわち、透析速度が大きくなるほど選択係数に及ぼす透析液の膜透過速度の影響が小さくなる(直線の傾きが小さくなる)ことが判明した。 FIG. 10 revealed that a linear relationship was established between dialysis selectivity and dialysate membrane permeation rate under constant dialysis rate conditions. The larger the dialysate membrane permeation rate, the higher the selection factor, but the lower molecular weight solute discharge rate becomes smaller. Therefore, in order to perform efficient dialysis, consider the balance between the selection factor and the dialysis rate. It is necessary to set conditions. At any dialysis rate, it was found that the permeation rate of dialysate was around -0.002 and the selectivity coefficient was about 0.35. In the situation where there is no solvent movement in the dialysis membrane, the movement of each component depends on the diffusion rate of each component, so it is ideal that the selectivity coefficient converges to a constant value at a membrane permeation rate of zero. A difference of about 0.002 cm / min occurred between the theoretical value and the theoretical value. In addition, the slope of the straight line of each dialysis treatment is predicted to be theoretically the same, but in practice, it was significantly affected by the dialysis rate. That is, it has been found that the greater the dialysis rate, the smaller the influence of the membrane permeation rate of the dialysate on the selection coefficient (the smaller the slope of the straight line).
  以上のように、理論的考察と実測値が一致しない理由として、中空糸内の醤油の流れによって中空糸膜内面に形成される境界層の厚さや電気二重層の電荷の強さが異なることに起因すると考えられる。
 本法による醤油の脱塩を考える場合、選択係数を10程度に設定することは妥当と考える。そこで選択係数が10のところに破線を施したところ、透析速度が大きいほど透析液の膜透過速度も大きくなることが判る。
As described above, the theoretical consideration and the measured value do not agree with each other in that the thickness of the boundary layer formed on the inner surface of the hollow fiber membrane and the electric strength of the electric double layer are different depending on the flow of soy sauce in the hollow fiber. It is thought to be caused.
When considering desalination of soy sauce by this method, it is considered appropriate to set the selection coefficient to about 10. Therefore, when the selection coefficient is 10 and a broken line is given, it can be seen that the greater the dialysis rate, the greater the membrane permeation rate of the dialysate.
 実施例1~3及び比較例1~3では、いずれも試料溶液の供給流量と透析液の供給流量を同等にして実験を行った。透析処理では透析液の流量を増やすほど透析対象成分の減少率を大きくすることができる。
  そこで、図4に模式的に示した移流拡散透析装置を使用して醤油の脱塩に及ぼす透析液流量の影響を検討した。図6のシステムでは、処理された醤油出口に設置された圧力調整バルブにより中空糸膜を流れる醤油の圧力を制御することにより、透析膜中の溶媒の膜透過速度を制御したのに対して、図4のシステムでは、醤油供給流量と醤油排出流量を独立して制御することにより透析膜中の溶媒の膜透過速度を制御するものである。醤油の入口流速を180 ml/min、出口流量を220 ml/minとして、透析液の流量を180、270、360、450 ml/minと変化させて透析を行った。図11は、醤油供給流量180ml/minおよび醤油排出流量220ml/minにおけるNa+イオンの減少率とアミノ態窒素成分の減少率を透析液流量に対してプロットしたものである。
In each of Examples 1 to 3 and Comparative Examples 1 to 3, the experiment was performed with the sample solution supply flow rate and the dialysate supply flow rate equal. In dialysis treatment, the rate of decrease in the components to be dialyzed can be increased as the flow rate of the dialysate is increased.
Then, the influence of the dialysate flow rate on the desalination of soy sauce was examined using the advection diffusion dialysis apparatus schematically shown in FIG. In the system of FIG. 6, the membrane permeation rate of the solvent in the dialysis membrane was controlled by controlling the pressure of the soy sauce flowing through the hollow fiber membrane by the pressure adjustment valve installed at the treated soy sauce outlet, In the system of FIG. 4, the membrane permeation rate of the solvent in the dialysis membrane is controlled by independently controlling the soy sauce supply flow rate and the soy sauce discharge flow rate. Dialysis was performed with the soy sauce inlet flow rate of 180 ml / min, the outlet flow rate of 220 ml / min and the dialysate flow rates of 180, 270, 360, and 450 ml / min. FIG. 11 is a plot of Na + ion reduction rate and amino nitrogen component reduction rate against dialysate flow rate at a soy sauce supply flow rate of 180 ml / min and a soy sauce discharge flow rate of 220 ml / min.
  図11より明らかなように、Na+イオンの減少率は透析液の流量とともに上昇し醤油の2倍以上の透析液を流すことにより50%以上の脱塩を行うことができた。
 一方、アミノ態窒素成分の減少率は透析液の流量にほとんど影響を受けず、いずれの透析液流量においても2%を超えることはなかった。以上の結果、醤油供給量の2倍の透析液流量において、高い脱塩効率(50%)と大きな選択係数(30)が得られることが判った。実際の適応においては、選択係数10程度を目安とするので透析液の膜透過速度をもっと小さく設定する(醤油供給流量と排出流量の差を小さくする)ことにより、50%以上の脱塩が可能となる。
As is clear from FIG. 11, the decrease rate of Na + ions increased with the flow rate of the dialysate, and 50% or more of desalting could be performed by flowing a dialysate more than twice the soy sauce.
On the other hand, the decrease rate of the amino nitrogen component was hardly affected by the flow rate of the dialysate, and did not exceed 2% at any dialysate flow rate. As a result, it was found that a high desalting efficiency (50%) and a large selection factor (30) were obtained at a dialysate flow rate twice that of the soy sauce supply. In actual adaptation, a selection factor of about 10 is used as a guideline, so the membrane permeation rate of the dialysate is set to a smaller value (by reducing the difference between the soy sauce supply flow rate and the discharge flow rate), and desalting of 50% or more is possible. It becomes.
実施例4
  実施例1で使用した透析装置と同様のものを使用して白ワイン中のアルコールの低減化を試みた。ワイン流量を50 ml/min、透析液流量を100 ml/minとしてワイン中のアルコールの透析を行った。
  実施例4-1)ワイン出口の圧力調整バルブを全開にて(ワイン供給圧力1.4 kPa)透析を行った。
  実施例4-2)圧力調整バルブにより、ワインの供給圧力8.4 kPaで透析を行った。
  実施例4-3)ワインの供給圧力18.4 kPaで行った。
  本実施例の結果を表4に示す。
Example 4
Using the same dialysis machine used in Example 1, an attempt was made to reduce alcohol in white wine. The alcohol in wine was dialyzed with a wine flow rate of 50 ml / min and a dialysate flow rate of 100 ml / min.
Example 4-1) Dialysis was performed with the wine outlet pressure regulating valve fully opened (wine supply pressure 1.4 kPa).
Example 4-2) Dialysis was performed using a pressure regulating valve at a wine supply pressure of 8.4 kPa.
Example 4-3) Wine supply pressure was 18.4 kPa.
The results of this example are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 圧力調整バルブを全開にした時のワインの供給圧力は1.4 kPaであり、膜モジュールを
流れるときの圧力損失が1.4 kPaであることがわかる。次いで、ワインの入口圧力が8.4 k
Pa、18.4 kPaと高くなるにしたがって、ワインの出口流量は減少した。すなわち、供給圧
が低いときは透析液がワイン側へ流入するが、供給圧が高くなると逆にワインの一部が透
析液側に排出されることがわかる。ワインの入口圧力が8 kPa近傍で透析によるワインの体積変化が起こらないと判断される。すなわち、本発明における透析においてワインの浸透圧が8 kPa程度であることを示す。エタノールの減少率はワインの供給圧力が高くなるほど増加したがワインの透析液側への排出量も増大した。これは本条件下で濾過透析が起こっておることに起因する。ワイン供給圧力8.4 kPaで処理したワインのエタノール除去率は79.8%であり、その風味は良好に保たれていた。以上のように、本法がアルコール飲料からエタノールを低減する手法としても重要であることが判明した。
 エタノールの定量は、マイクロ固相抽出(SPME)法(SUPELCO社製)でヘッドスペース中のエタノールを吸着捕集し、これをGC(島津GC-14A)分析することにより行った。
It can be seen that the supply pressure of wine when the pressure regulating valve is fully opened is 1.4 kPa, and the pressure loss when flowing through the membrane module is 1.4 kPa. Then the wine inlet pressure is 8.4 k
As Pa increased to 18.4 kPa, the outlet flow rate of wine decreased. That is, when the supply pressure is low, the dialysate flows into the wine side. However, when the supply pressure increases, a portion of the wine is discharged to the dialysate side. It is judged that there is no change in wine volume due to dialysis when the wine inlet pressure is around 8 kPa. That is, the osmotic pressure of wine is about 8 kPa in dialysis according to the present invention. The decrease rate of ethanol increased as the wine supply pressure increased, but the amount of wine discharged into the dialysate increased. This is due to the fact that filtration dialysis occurs under these conditions. The ethanol removal rate of wine treated at a wine supply pressure of 8.4 kPa was 79.8%, and its flavor was kept good. As mentioned above, it turned out that this method is also important as a technique for reducing ethanol from alcoholic beverages.
The ethanol was quantified by adsorbing and collecting ethanol in the headspace by the micro solid phase extraction (SPME) method (supplied by SUPELCO) and analyzing this by GC (Shimadzu GC-14A).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 白ワイン中の香気成分の分析は、スペルコ社製Polyacrylate coating SPME Fiberを使用した固相マイクロ抽出法により行った。すなわち、ワイン20 mlを50 mlヘッドスペースガスサンプリングガラス容器に採取して、30℃、20分間恒温槽でインキュベートして香気成分の気液平衡を達成させた。次いで、SPME Fiberを20分間ヘッドスペース中に露出することにより、香気成分の捕集を行った。香気成分の分析はキャピラリーカラム(DB-WAX)を装着したGC-MS(島津製作所製GC-MS QP2010 plus)を使用して行った。 Analysis of aroma components in white wine was carried out by solid phase microextraction using Polyacrylate®coating®SPME®Fiber manufactured by Spellco. That is, 20 liters of wine was collected in a 50 liter ml headspace gas sampling glass container and incubated in a thermostatic bath at 30 ° C. for 20 minutes to achieve vapor-liquid equilibrium of fragrance components. Next, the fragrance components were collected by exposing SPME Fiber in the head space for 20 minutes. Analysis of the aroma component was performed using GC-MS (Shimadzu GC-MS QP2010 plus) equipped with a capillary column (DB-WAX).
 表5にワインの香りに重要と考えられる8成分について、原料中の濃度と透析ワイン中の濃度を何れもガスクロマトグラムのピーク面積として示す。さらに、原料ワインに対する透析ワイン中の各成分の残存率をカッコ内に示す。この結果、Ethyl octanoateを除いて83%以上が残存していることが判明した。Ethyl octanoateの減少は透析膜への収着が原因と考えられた。したがって、膜への収着平衡が達成されたのちは、本処理による減少は問題とならないと考えられる。
 以上のように、本発明の透析方法によると55%以上(多くは80%以上)の香気成分が残存する、香りの低下が少ない約80%のエタノールが除去された脱アルコールワインを製造することができた。
Table 8 shows the concentration in the raw material and the concentration in the dialysis wine as the peak area of the gas chromatogram for the eight components considered to be important for the wine aroma. Furthermore, the residual ratio of each component in the dialysis wine relative to the raw wine is shown in parentheses. As a result, it was found that more than 83% remained except for Ethyl octanoate. The decrease in Ethyl octanoate was thought to be due to sorption on the dialysis membrane. Therefore, after the sorption equilibrium to the membrane is achieved, the decrease due to this treatment is not considered to be a problem.
As described above, according to the dialysis method of the present invention, it is possible to produce a dealcoholized wine in which 55% or more (mostly 80% or more) of aroma components remain and about 80% of ethanol is removed with little reduction in aroma. I was able to.
 本発明により、試料溶液中に含まれる低分子量成分を選択的に透析除去する方法が提供される。 According to the present invention, a method for selectively dialysis removing low molecular weight components contained in a sample solution is provided.
30:複数透析モジュールシステム、40:移流拡散透析装置、
50:移流拡散透析装置、60:透析装置
401:試料溶液貯留槽、402:処理溶液貯留槽、403:透析液貯留槽、
404:排出透析液貯留槽、405:試料供給ポンプ、406:試料処理液排出ポンプ、
407:透析液供給ポンプ、408:圧力計、409:透析モジュール
507:透析液排出ポンプ、606:背圧調整弁
 
 
30: Multiple dialysis module system, 40: Advection diffusion dialysis machine,
50: advection diffusion dialysis device, 60: dialyzer 401: sample solution reservoir, 402: treatment solution reservoir, 403: dialysate reservoir,
404: discharge dialysate storage tank, 405: sample supply pump, 406: sample processing solution discharge pump,
407: Dialysate supply pump, 408: Pressure gauge, 409: Dialysis module 507: Dialysate discharge pump, 606: Back pressure adjustment valve

Claims (13)

  1.  試料溶液中に含まれる低分子量成分を透析除去する方法であって、透析液の透析膜内における移動方向を、前記試料溶液中の溶質の透析膜内における移動方向とは逆向きに、かつ前記透析液の移動速度を前記低分子量成分の移動速度より小さくすることを特徴とする前記方法。 A method for dialysis removal of low molecular weight components contained in a sample solution, wherein the direction of movement of the dialysate in the dialysis membrane is opposite to the direction of movement of the solute in the sample solution in the dialysis membrane, and The method according to claim 1, wherein the moving speed of the dialysate is made smaller than the moving speed of the low molecular weight component.
  2.   以下の(a)~(c)からなる群から選ばれる少なくとも1つの工程を含む、請求項1に記載の方法。
    (a)試料溶液の供給流量と排出流量を独立に制御する工程
    (b)透析液の供給流量と排出流量を独立に制御する工程
    (c)試料溶液に付加する圧力を透析液に付加する圧力よりも高くする工程
    The method according to claim 1, comprising at least one step selected from the group consisting of the following (a) to (c):
    (A) Step of independently controlling the supply flow rate and the discharge flow rate of the sample solution (b) Step of independently controlling the supply flow rate and the discharge flow rate of the dialysate (c) Pressure for applying the pressure applied to the sample solution to the dialysate Higher than the process
  3.   前記試料溶液の供給流量(A)と排出流量(B)との比(A/B)が0.7以上1.0未満の範囲にある、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the ratio (A / B) of the supply flow rate (A) and the discharge flow rate (B) of the sample solution is in the range of 0.7 or more and less than 1.0.
  4.   前記試料溶液が調味料又はアルコール飲料である、請求項1~3のいずれか1項に記載の方法。 方法 The method according to any one of claims 1 to 3, wherein the sample solution is a seasoning or an alcoholic beverage.
  5.   前記透析液が水である、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the dialysate is water.
  6.   試料溶液の流路1、透析液の流路2及び前記流路1と流路2とを隔てる透析膜を有する透析装置において行われることを特徴とする、請求項1~5のいずれか1項に記載の方法。 6. The dialysis apparatus having a sample solution flow path 1, a dialysate flow path 2 and a dialysis membrane separating the flow path 1 and the flow path 2 from each other. The method described in 1.
  7.   試料溶液の流路1、透析液の流路2、前記流路1と流路2とを隔てる透析膜、並びに試料溶液の供給流量と排出流量を独立に制御する試料流量制御機構及び透析液の供給流量と排出流量を独立に制御する透析液流量制御機構から選ばれる少なくとも1つの流量制御機構を備えた透析装置。 Sample solution flow path 1, dialysate flow path 2, dialysis membrane separating the flow path 1 and flow path 2, sample flow rate control mechanism for independently controlling the supply flow rate and discharge flow rate of the sample solution, and the dialysate flow rate A dialysis apparatus comprising at least one flow rate control mechanism selected from a dialysate flow rate control mechanism that independently controls a supply flow rate and a discharge flow rate.
  8.   試料溶液の流路1、透析液の流路2、前記流路1と流路2とを隔てる透析膜、並びに試料溶液に付加する圧力及び透析液に付加する圧力を制御する圧力制御機構を備えた透析装置。 A sample solution flow path 1, a dialysate flow path 2, a dialysis membrane separating the flow path 1 and the flow path 2, and a pressure control mechanism for controlling the pressure applied to the sample solution and the pressure applied to the dialysate are provided. Dialyzer.
  9.  前記流量制御機構は、前記試料溶液の供給流量(A)と排出流量(B)との比(A/B)が0.7以上1.0未満の範囲となるように前記試料溶液の供給流量及び排出流量を独立して制御する、又は前記透析液の供給流量及び排出流量を独立して制御するものである請求項7に記載の装置。 The flow rate control mechanism is configured to supply a flow rate of the sample solution so that a ratio (A / B) of the supply flow rate (A) to the discharge flow rate (B) of the sample solution is in a range of 0.7 or more and less than 1.0. And the discharge flow rate is controlled independently, or the supply flow rate and the discharge flow rate of the dialysate are controlled independently.
  10.  前記圧力制御機構は、前記試料溶液の供給流量(A)と排出流量(B)との比(A/B)が0.7以上1.0未満の範囲となるように圧力を制御するものである請求項8に記載の装置。 The pressure control mechanism controls the pressure so that the ratio (A / B) between the supply flow rate (A) and the discharge flow rate (B) of the sample solution is in the range of 0.7 or more and less than 1.0. The apparatus of claim 8.
  11.   請求項1~6のいずれか1項に記載の方法を使用して、又は請求項7~10のいずれか1項に記載の装置を用いて、試料溶液中に含まれる低分子量成分を透析除去し、得られる透析処理後の試料溶液を回収することを特徴とする、低分子量成分が除去された試料溶液の製造方法。 The low molecular weight component contained in the sample solution is removed by dialysis using the method according to any one of claims 1 to 6 or the apparatus according to any one of claims 7 to 10. And collecting the obtained sample solution after the dialysis treatment, a method for producing a sample solution from which low molecular weight components have been removed.
  12.   試料溶液が調味料又はアルコール飲料である請求項11に記載の方法。 The method according to claim 11, wherein the sputum sample solution is a seasoning or an alcoholic beverage.
  13.   調味料が醤油である請求項12に記載の方法。 The method according to claim 12, wherein the koji seasoning is soy sauce.
PCT/JP2015/051086 2014-01-16 2015-01-16 Method for removing low molecular weight components WO2015108148A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015557889A JP6146831B2 (en) 2014-01-16 2015-01-16 Method for removing low molecular weight components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014006023 2014-01-16
JP2014-006023 2014-01-16

Publications (1)

Publication Number Publication Date
WO2015108148A1 true WO2015108148A1 (en) 2015-07-23

Family

ID=53543032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051086 WO2015108148A1 (en) 2014-01-16 2015-01-16 Method for removing low molecular weight components

Country Status (2)

Country Link
JP (1) JP6146831B2 (en)
WO (1) WO2015108148A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3107641A1 (en) * 2014-02-17 2016-12-28 Bayer Aktiengesellschaft Ultrafiltration unit for continuous buffer or media exchange from a protein solution
WO2019026859A1 (en) * 2017-07-31 2019-02-07 株式会社ハセラボ Method for manufacturing rapid-aging distilled liquor, and method for manufacturing ethanol-containing liquid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148699A (en) * 1976-05-31 1977-12-10 Kuraray Co Ltd Preparation of low salt soy
JPS5488882A (en) * 1977-12-26 1979-07-14 Agency Of Ind Science & Technol Solute separating method by dialysis
JPH05176751A (en) * 1990-09-29 1993-07-20 Khs Processtechnik Gmbh Method and equipment for performing dealcohol from drink
JPH08295697A (en) * 1995-04-26 1996-11-12 Kanebo Ltd Production of aqueous solution of silk fibroin at high concentration
JP2003265597A (en) * 2002-03-14 2003-09-24 Asahi Kasei Corp Hemodialysis filter and filtering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148699A (en) * 1976-05-31 1977-12-10 Kuraray Co Ltd Preparation of low salt soy
JPS5488882A (en) * 1977-12-26 1979-07-14 Agency Of Ind Science & Technol Solute separating method by dialysis
JPH05176751A (en) * 1990-09-29 1993-07-20 Khs Processtechnik Gmbh Method and equipment for performing dealcohol from drink
JPH08295697A (en) * 1995-04-26 1996-11-12 Kanebo Ltd Production of aqueous solution of silk fibroin at high concentration
JP2003265597A (en) * 2002-03-14 2003-09-24 Asahi Kasei Corp Hemodialysis filter and filtering device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3107641A1 (en) * 2014-02-17 2016-12-28 Bayer Aktiengesellschaft Ultrafiltration unit for continuous buffer or media exchange from a protein solution
WO2019026859A1 (en) * 2017-07-31 2019-02-07 株式会社ハセラボ Method for manufacturing rapid-aging distilled liquor, and method for manufacturing ethanol-containing liquid
JPWO2019026859A1 (en) * 2017-07-31 2020-08-06 株式会社ハセラボ Method for producing early-ripening distilled spirit and method for producing ethanol-containing liquid

Also Published As

Publication number Publication date
JPWO2015108148A1 (en) 2017-03-23
JP6146831B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
US20230182076A1 (en) Methods of dewatering of alcoholic solutions via forward osmosis and related systems
US11439953B2 (en) Brine concentration
Onsekizoglu Membrane distillation: principle, advances, limitations and future prospects in food industry
US11541352B2 (en) Removing components of alcoholic solutions via forward osmosis and related systems
KR20200087271A (en) Osmotic pressure assisted reverse osmosis process and method of using the same
EP2969145A1 (en) Advancements in osmotically driven membrane systems including multi-stage purification
JP2018069198A (en) Concentration method and concentrator
CN103922530B (en) Circulating forward osmosis and pervaporation integrated water treatment method
NL8003366A (en) METHOD AND APPARATUS FOR REDUCING THE ALCOHOL CONTENT OF FERRED BEVERAGES
US20160136578A1 (en) Flow control in multi-step filtration, and associated systems
CN110636894A (en) Osmotic pressure assisted reverse osmosis membrane and module
de Pinho et al. Introduction in membrane technologies
JP6146831B2 (en) Method for removing low molecular weight components
JP6862935B2 (en) Concentration system and concentration method
JP2008080255A (en) Pure water making apparatus
Basile et al. Pervaporation and membrane contactors
JP4031789B2 (en) Manufacturing method and manufacturing apparatus for high-concentration mineral liquid
JPS59156402A (en) Concentration of organic substance by reverse osmosis membrane
WO2022004381A1 (en) Membrane separation device and concentrating method
DasGupta et al. Membrane applications in fruit processing technologies
TWI487671B (en) Waste water treatment system and method
JPS61119180A (en) Preparation of beer having low alcoholic content
JP2022158609A (en) Rich-flavor soy sauce and process for producing the same
Ferrarini et al. Membrane processing across the vinification chain
JP2008037666A (en) Apparatus and method for purifying hydrogen iodide for hydrogen production, apparatus and method for concentrating hydrogen iodide for hydrogen production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737378

Country of ref document: EP

Kind code of ref document: A1