JPH08295697A - Production of aqueous solution of silk fibroin at high concentration - Google Patents

Production of aqueous solution of silk fibroin at high concentration

Info

Publication number
JPH08295697A
JPH08295697A JP12705995A JP12705995A JPH08295697A JP H08295697 A JPH08295697 A JP H08295697A JP 12705995 A JP12705995 A JP 12705995A JP 12705995 A JP12705995 A JP 12705995A JP H08295697 A JPH08295697 A JP H08295697A
Authority
JP
Japan
Prior art keywords
silk fibroin
stock solution
aqueous solution
solution
dialyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12705995A
Other languages
Japanese (ja)
Inventor
Hiroshi Nakayama
博 中山
Kiyoshi Otoi
清 音居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP12705995A priority Critical patent/JPH08295697A/en
Publication of JPH08295697A publication Critical patent/JPH08295697A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To simply produce the subject aqueous solution without containing any microgelled part therein at a high efficiency by feeding a stock solution prepared by dissolving silk fibroin in an aqueous solution of a salt to a dialyzer, applying a pressure to the stock solution in a dialytic membrane, causing a pressure difference between the inside and the outside of the dialytic membrane and desalting and dialyzing the stock solution. CONSTITUTION: A raw silk waste freed of a gluey protein sericin and oils by degumming is dissolved in a 40wt.% aqueous solution of calcium chloride and ethyl alcohol using a kneader under heating at 50 deg.C to prepare a stock solution comprising the silk fibroin solution. The resultant stock solution is then fed to a hollow fiber type dialyzer formed of a hollow fiber type membrane made of Cuprophane (R) as a material and a pressure is applied to the stock solution so as to provide a discharge flow rate of the aqueous solution of the silk fibroin from the dialyzer of 0.5-1.5 times based on the flow rate of the stock solution to the dialyzer. Thereby, a pressure difference is caused between the inside and the outside of the dialytic membrane to desalt and dialyze the stock solution. Thereby, the objective aqueous solution of the silk fibroin at a high concentration useful for fibers and fiber processing, cosmetics, materials for medical uses, other immobilized membranes for biosensors, etc., is efficiently obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維及び繊維加工,化
粧品・医用材料,その他バイオセンサー用固定化膜等に
有用に用いられる絹フィブロイン水溶液の製造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of an aqueous silk fibroin solution which is useful for fibers and fiber processing, cosmetics / medical materials, and other immobilization membranes for biosensors.

【0002】[0002]

【従来の技術】絹フィブロイン水溶液は、再生絹繊維,
化粧品用パウダー,化粧品や食品用のフィブロインペプ
チド,バイオセンサー等に利用される酵素や抗体固定化
膜等の製造や繊維製品の絹蛋白(フィブロイン)加工な
どの原料溶液として用いられている。この絹フィブロイ
ン水溶液を製造するには、生糸,生糸屑,絹紡糸,絹紡
原料や紡績工程で発生する屑絹などを必要に応じて精練
し、セリシン等を取り除いて得られるフィブロイン原料
を、一旦高濃度の塩水溶液に溶解した後透析脱塩する方
法が一般に行われる。
2. Description of the Related Art An aqueous solution of silk fibroin is used
It is used as a raw material solution for manufacturing cosmetic powders, fibroin peptides for cosmetics and foods, enzymes and antibody-immobilized membranes used in biosensors, and silk protein (fibroin) processing for textile products. In order to produce this silk fibroin aqueous solution, raw silk, raw silk scraps, silk spinning, silk spinning raw materials, silk spinning raw materials and scrap silk generated in the spinning process are refined as necessary, and the fibroin raw material obtained by removing sericin etc. A method of dialysis desalting after dissolving in a high-concentration salt aqueous solution is generally performed.

【0003】前記溶解塩としては、銅−エチレンジアミ
ン,水酸化銅−アンモニア,臭化リチウム,カルシウム
若しくはマグネシウム若しくは亜鉛をカチオンとする塩
酸塩又は硝酸塩又はチオシアン酸塩,チオシアン酸ナト
リウム等が用いられる。この絹フィブロイン溶解液に用
いられる溶媒の塩濃度としては、溶媒の種類によって異
なるが通常少なくとも40重量%である。また、溶解促
進剤としてエチルアルコール等のアルコール類が用いら
れることもある。このように絹フィブロイン溶解液は多
量の塩等を含んでいるため、工業的にこれを透析脱塩し
て高品質の絹フィブロイン水溶液を効率良く得ることは
容易でない。更に、所要時間も長く、腐敗を招いたり場
合によっては部分的にゲル化等の品質劣化が発生するト
ラブルも起こる。
As the above-mentioned dissolved salts, there are used copper-ethylenediamine, copper hydroxide-ammonia, lithium bromine, hydrochlorides having cations of calcium or magnesium or zinc, nitrates or thiocyanates, sodium thiocyanate and the like. The salt concentration of the solvent used in the silk fibroin solution is usually at least 40% by weight, although it varies depending on the type of the solvent. In addition, alcohols such as ethyl alcohol may be used as the dissolution accelerator. Thus, since the silk fibroin solution contains a large amount of salt and the like, it is not easy to industrially obtain a high-quality silk fibroin aqueous solution by dialysis desalting this solution. Further, the time required is long, and there is a problem that it causes decay or, in some cases, partially deteriorates quality such as gelation.

【0004】こうした問題に対処し高品質の絹フィブロ
イン水溶液を効率良く製造する方法として、多層膜構造
物又は中空糸集束構造物(即ち、ホローファイバー型)
の透析器を用いる方法(特公昭57−4723号公報に
開示)が提案されている。しかし、絹フィブロイン溶解
液の段階における絹フィブロイン濃度は、液粘性や操作
面から実質上最大10%程度に限定されるため、これを
透析して得られる水溶液中の絹フィブロイン濃度は通常
5%程度となり、再生繊維製造用の紡糸原液とするには
濃度が低すぎる。また、酵素や抗体の固定化膜の製造原
料として用いるにも効率及び性能面で有利でない。特に
免疫測定に利用される抗体固定化膜の場合、表面の抗体
固定化密度を高めることが感度面で重要である。包括法
により抗体固定化膜を調製するには、基盤面上にいった
ん抗体溶液を流延,乾燥した後、この面上にフィブロイ
ン水溶液を流延,乾燥する方法(特公平4−39623
号公報に開示)が有効に用いられるが、絹フィブロイン
水溶液の濃度が低いと乾燥が完了するまでに抗体がかな
り拡散し、得られた抗体固定化膜の表面抗体密度が低下
する。
A multi-layer membrane structure or a hollow fiber focusing structure (that is, hollow fiber type) is a method for coping with these problems and efficiently producing a high-quality silk fibroin aqueous solution.
A method using a dialyzer (disclosed in Japanese Patent Publication No. 57-4723) has been proposed. However, since the silk fibroin concentration at the stage of the silk fibroin solution is practically limited to about 10% in terms of liquid viscosity and operation, the concentration of silk fibroin in the aqueous solution obtained by dialysis of this is usually about 5%. Therefore, the concentration is too low for use as a spinning dope for the production of recycled fibers. Further, it is not advantageous in terms of efficiency and performance even when used as a raw material for manufacturing an immobilized film of an enzyme or an antibody. Particularly in the case of an antibody-immobilized membrane used for immunoassay, it is important in terms of sensitivity to increase the density of antibody immobilization on the surface. In order to prepare an antibody-immobilized membrane by the entrapment method, a method in which an antibody solution is once cast and dried on a substrate surface, and then an aqueous fibroin solution is cast and dried on this surface (Japanese Patent Publication No. 4-39623).
However, when the concentration of the silk fibroin aqueous solution is low, the antibodies are considerably diffused by the time the drying is completed, and the surface antibody density of the obtained antibody-immobilized membrane is lowered.

【0005】したがって、一般に紡糸や製膜に際しては
透析して得られた絹フィブロイン水溶液を更に濃縮して
用いる必要があった。そして、この濃縮に当たって、従
来は透析して得られた絹フィブロイン水溶液を加熱し、
水分を蒸発させて濃縮するという方法が用いられてい
た。
Therefore, it is generally necessary to further concentrate and use the aqueous silk fibroin solution obtained by dialysis during spinning and film formation. And, in this concentration, conventionally, the silk fibroin aqueous solution obtained by dialysis is heated,
A method of evaporating and concentrating water has been used.

【0006】[0006]

【発明が解決しようとする課題】ところが、従来の濃縮
法には、濃縮中にゲル化部が生成され、これが微小核
となって紡糸時の糸切れや製膜に於ける膜欠陥部の原因
となったり、加熱によって分子量の低下が起こり、得
られた糸物性や膜強度が低下するといった品質上の問題
に加え、加熱溶媒除去に伴い液表面に膜が生成し、歩
留まり低下や不均一化をもたらすため頻繁にこれを取り
除かねばならず、工程的にも非常に煩雑となる等の問題
があった。また、脱塩後の絹フィブロイン水溶液は準
安定な状態にあり、ズリ応力が加わるとフィブロインが
結晶化して固化するという性質を持つため、絹フィブロ
イン水溶液の濃度を高めるべく当該脱塩後の絹フィブロ
イン水溶液を連続的に濃縮系に供給すると、ポンプ部や
流路系でフィブロインが固化し、詰まりが発生するとい
う問題があり、このため高濃度の絹フィブロイン水溶液
を大量に生産する、即ち工業化を図る上での一つの問題
となっていた。
However, in the conventional concentration method, a gelled portion is generated during the concentration, which becomes a micronucleus and causes a yarn breakage during spinning or a film defect portion during film formation. In addition to the quality problems such as the decrease in molecular weight due to heating and the deterioration of the physical properties and film strength of the obtained yarn, a film is formed on the surface of the liquid as the heating solvent is removed, resulting in reduced yield and non-uniformity. Therefore, it has to be removed frequently, which causes a problem that the process becomes very complicated. In addition, the silk fibroin aqueous solution after desalting is in a metastable state, and since fibroin has the property of crystallizing and solidifying when shear stress is applied, in order to increase the concentration of the silk fibroin aqueous solution, the silk fibroin aqueous solution after desalting can be increased. When the aqueous solution is continuously supplied to the concentrating system, there is a problem that the fibroin is solidified in the pump section and the flow path system and clogging occurs. Therefore, a large amount of highly concentrated silk fibroin aqueous solution is produced, that is, industrialization is aimed at. It was one of the problems above.

【0007】こうした事情から、これら課題を解決し得
る絹フィブロイン水溶液の優れた濃縮法の開発が望まれ
ていた。本発明者は上述の課題を解決すべく検討した結
果本発明に到達したものであり、本発明の目的は、高効
率,簡便,高濃度かつ微小ゲル化部等を含まない高品質
の絹フィブロイン水溶液の製造法を提供することにあ
る。
Under these circumstances, it has been desired to develop an excellent method for concentrating an aqueous silk fibroin solution which can solve these problems. The present inventor has arrived at the present invention as a result of studying to solve the above-mentioned problems, and an object of the present invention is to provide high-efficiency, simple, high-concentration, and high-quality silk fibroin that does not include a microgelling portion. It is to provide a method for producing an aqueous solution.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
の本発明の請求項1に係る発明は、絹フィブロインを塩
水溶液に溶解して原液とした後、透析膜より形成した透
析器に前記原液を供給し、前記原液を脱塩透析するに際
し、前記透析膜内の前記原液に圧力を加え、透析膜内外
に圧力差を生じせしめることを特徴とするものである。
In order to achieve the above object, the invention according to claim 1 of the present invention is that the silk fibroin is dissolved in an aqueous salt solution to prepare a stock solution, and the silk fibroin is applied to a dialyzer formed from a dialysis membrane. When the stock solution is supplied and the stock solution is desalted and dialyzed, a pressure is applied to the stock solution in the dialysis membrane to cause a pressure difference between the inside and the outside of the dialysis membrane.

【0009】また、請求項2に係る発明は、請求項1の
発明において、透析膜内の原液に加える前記圧力を、前
記透析器への原液供給量に対する前記透析器よりの絹フ
ィブロイン水溶液流出量が0.5〜1.5倍となるよう
な圧力に設定したものである。
According to a second aspect of the invention, in the invention of the first aspect, the pressure applied to the stock solution in the dialysis membrane is adjusted so that the silk fibroin aqueous solution outflow rate from the dialyzer is relative to the stock solution supply rate to the dialyzer. Is set to 0.5 to 1.5 times.

【0010】また、請求項3に係る発明は、請求項1又
は2の発明における前記透析膜が再生セルロース又はこ
の誘導体であるものである。
The invention according to claim 3 is that the dialysis membrane according to claim 1 or 2 is regenerated cellulose or a derivative thereof.

【0011】本発明で用いられる前記透析膜には、クプ
ロファン,セルロースアセテート,ポロメチルメタクリ
レート,ポリアクリロニトリル,ポリスルホン,エチレ
ン−ポリビニルアルコール及びこれらの系列化合物から
成るもの適用できる。
For the dialysis membrane used in the present invention, those comprising cuprophan, cellulose acetate, poromethyl methacrylate, polyacrylonitrile, polysulfone, ethylene-polyvinyl alcohol and series compounds thereof can be applied.

【0012】また、前記透析器は透析膜で形成した流路
と透析膜外に形成した流路とを備えるもので、透析膜で
形成した流路内に前記原液を流し、透析膜外に形成した
流路に透析液を流して、例えば原液内の塩類を透析液側
に移動せしめ、当該原液を脱塩等するものであり、その
具体的態様はチューブ状の透析膜をプラスチックの網と
共に巻取り構成したコイル型のものであると,支持プレ
ート間に2枚の透析膜を配設し、これを多層に積層して
構成した積層型のものであると,前記透析膜より成る中
空糸を多数本集束し、開口部を閉塞することなく両端を
樹脂で固めたものを所定の容器内に収めて構成した中空
糸型のものであると、或いはこれら以外の透析器である
とを問わない。尚、前記コイル型の透析器においては原
液がチューブ内を流れ、透析液がチューブとプラスチッ
ク網との間を流れる。また、前記積層型の透析器におい
ては原液が前記2枚の透析膜間を流れ、透析液が前記支
持プレートに刻んだ溝を通って透析膜と支持プレートの
間を流れる。また、前記中空糸型透析器においては前記
原液が中空糸内を流れ、透析液が中空糸外の容器内を流
れる。
Further, the dialyzer is provided with a flow channel formed of a dialysis membrane and a flow channel formed outside the dialysis membrane. The stock solution is flown into the flow channel formed of the dialysis membrane to form outside the dialysis membrane. The dialysate is caused to flow through the flow path, for example, salts in the stock solution are moved to the dialysate side to desalt the stock solution, and a specific embodiment thereof is a tubular dialysis membrane wound with a plastic mesh. If the coil type is constructed, two hollow dialysis membranes are arranged between the support plates, and if the laminated type is constructed by laminating the dialysis membranes in multiple layers, the hollow fiber made of the dialysis membrane is formed. It does not matter whether it is a hollow fiber type in which a large number are bundled and the both ends are solidified with a resin without blocking the opening and are housed in a predetermined container, or a dialyzer other than these. . In the coil type dialyzer, the undiluted solution flows in the tube and the dialysate flows between the tube and the plastic mesh. Further, in the laminated dialyzer, the stock solution flows between the two dialysis membranes, and the dialysis solution flows between the dialysis membrane and the support plate through the grooves cut in the support plate. In the hollow fiber dialyzer, the stock solution flows in the hollow fiber and the dialysate flows in a container outside the hollow fiber.

【0013】また、上述のように、本発明においては透
析膜で形成した流路中の原液に圧力を加え、透析膜内の
原液と透析膜外の透析液との間で圧力差を生じるよう
に、即ち、透析液の圧力に対して原液の圧力が高くなる
ようにしているが、具体的には、前記透析膜で形成した
流路の出側を絞って抵抗を与えたり、或いは透析器より
流出した絹フィブロイン水溶液を排出せしめる排出口の
位置高さを十分高くすることによりこれを達成すること
ができる。
As described above, in the present invention, pressure is applied to the stock solution in the flow path formed by the dialysis membrane so that a pressure difference is generated between the stock solution inside the dialysis membrane and the dialysate outside the dialysis membrane. That is, the pressure of the stock solution is made higher than the pressure of the dialysate. Specifically, the outlet side of the flow path formed by the dialysis membrane is squeezed to provide resistance, or the dialyzer. This can be achieved by sufficiently increasing the height of the position of the outlet for discharging the silk fibroin aqueous solution that has flowed out.

【0014】[0014]

【作用】以上の構成を備えた本発明方法によれば、前記
透析膜で形成した流路出口より最大15重量%程度の絹
フィブロイン水溶液が得られ、従来の透析による絹フィ
ブロイン濃縮法に比べて高い濃度の絹フィブロイン水溶
液を製造することができる。その原理的作用については
必ずしも明確ではないが、以下の作用によるもの推定さ
れる。即ち、透析膜を挟んでその両側にある、原液の塩
類濃度と透析液の塩類濃度の濃度差から原液に含まれる
塩類が透析膜を通って透析液側に移動する(これを「透
析」という)が、その際原液の圧力を透析液の圧力より
も高くしているので、塩類の透析液側への移動が一層促
進される。一方、浸透圧差に基づき透析液の移動が透析
とは逆方向に起こる(即ち、透析液が原液側に移動す
る)が、原液の圧力を透析液の圧力よりも高くしている
ので、透析液の原液側への移動が抑制される。以上によ
り、前記絹フィブロイン水溶液の絹フィブロイン濃度は
従来よりも高濃度となる。
According to the method of the present invention having the above structure, a silk fibroin aqueous solution having a maximum of about 15% by weight can be obtained from the flow path outlet formed by the dialysis membrane, which is more than that of the conventional silk fibroin concentration method by dialysis. A high-concentration silk fibroin aqueous solution can be produced. Although its principle action is not always clear, it is presumed to be due to the following action. That is, the salts contained in the stock solution move to the dialysate side through the dialysis membrane due to the difference in salt concentration between the stock solution and the dialysate on both sides of the dialysis membrane (this is called "dialysis"). However, since the pressure of the stock solution is higher than the pressure of the dialysate at this time, the movement of salts to the dialysate side is further promoted. On the other hand, the movement of the dialysate occurs in the opposite direction of dialysis due to the osmotic pressure difference (that is, the dialysate moves to the stock solution side), but since the pressure of the stock solution is higher than that of the dialysate, Is suppressed from moving to the stock solution side. As described above, the silk fibroin concentration of the silk fibroin aqueous solution becomes higher than the conventional concentration.

【0015】また、上述したように、原液に加える圧力
は、透析器への原液供給量に対する透析器よりの絹フィ
ブロイン水溶液流出量が0.5〜1.5倍となるような
圧力が好ましい。これは、絹フィブロイン水溶液流出量
が0.5倍以下となるような圧力であると、加える圧力
が高すぎて透析膜に詰まりを生じて透析効率が悪くなる
からであり、逆に1.5倍以上となるような圧力である
と加える圧力が低すぎて所望濃度の絹フィブロイン水溶
液とならないからである。
As described above, the pressure applied to the stock solution is preferably such that the silk fibroin aqueous solution outflow rate from the dialyzer is 0.5 to 1.5 times the stock solution supply rate to the dialyzer. This is because when the pressure is such that the outflow amount of the silk fibroin aqueous solution is 0.5 times or less, the pressure applied is too high and the dialysis membrane is clogged, resulting in poor dialysis efficiency. This is because if the pressure is doubled or more, the applied pressure is too low to form a silk fibroin aqueous solution having a desired concentration.

【0016】また、透析膜は再生セルロース又はこの誘
導体である、クプロファン,セルロースアセテートより
なるものが好ましいが、これらの透析膜については、処
理効率はやや低いが長期使用に耐え処理可能量が大きい
という有利な点があるからである。
The dialysis membrane is preferably made of regenerated cellulose or its derivative, cuprophane, or cellulose acetate. These dialysis membranes have a slightly low treatment efficiency, but can withstand long-term use and have a large treatable amount. This is because there are advantages.

【0017】[0017]

【実施例】次に、本発明の実施例について説明する。 (実施例1)精練により膠状蛋白セリシン及び油分を除
いた生糸屑2Kgを、ニーダーを用いて40重量%の塩化
カルシウム水溶液18Kg及びエチルアルコール2Kgに、
50℃の加熱下で溶解し絹フィブロイン溶解液(原液)
とした。ついでこの原液をステンレスメッシュにより処
理し、ゴミ,不溶物等を濾別した後、ホローファイバー
型透析器(中空糸型透析器)による脱塩濃縮実験に供し
た。尚、ホローファイバー型透析器として、クプロファ
ンを材質とするテルモ社製のダイアライザー(CL-C15N
)を用い、水道水を透析液として透析を行った。
Next, an embodiment of the present invention will be described. (Example 1) 2 kg of raw silk waste from which the gelatinous protein sericin and oil were removed by scouring was added to a 40 wt% calcium chloride aqueous solution of 18 kg and ethyl alcohol of 2 kg using a kneader.
Silk fibroin solution (undiluted solution) dissolved under heating at 50 ℃
And Then, this stock solution was treated with a stainless mesh to remove dusts, insolubles and the like, and then subjected to a desalting and concentration experiment using a hollow fiber type dialyzer (hollow fiber type dialyzer). As a hollow fiber type dialyzer, Terumo's dialyzer (CL-C15N) made of cuprophane is used.
) Was used as a dialysate with tap water.

【0018】前記透析器に対する前記原液の供給量を1
0ml/minとし、前記透析器の出側流路を狭搾して絹フィ
ブロイン水溶液の流出量が9ml/minとなるように調節し
て20時間透析した。尚、出側流路で測定した絹フィブ
ロイン水溶液の静圧(以下、「出口静圧」という)は1
300〜1600 mmH2 O であった。透析器から排出さ
れる絹フィブロイン水溶液を経時的にサンプリングし、
濃度,溶液電導度を計測した結果を下表表1に示す。同
表に示すように、絹フィブロイン水溶液の絹フィブロイ
ン濃度は10〜11重量%の範囲でほぼ一定であった。
また、溶液電導度は300〜400μS/cmであり、透析
脱塩効果も十分満足できるレベルであった。得られた絹
フィブロイン水溶液は全量で10.3Kgであった。この
水溶液5g をアクリル板上に10×10cmの広さで流延
した後25℃で風乾する方法で絹フィブロイン膜を作製
した。該絹フィブロイン膜の中心部8×8cm領域を顕微
鏡で観察したところ微小ゲル化部生成による核及び粒状
体の形成は認められなかった。該領域の厚みも56±4
μm の範囲にあり異常点発生による厚み変動も認められ
ないことから、本発明の方法で得られた絹フィブロイン
水溶液の品質が優れていることは明かである。また、絹
フィブロインとしての収率も、通常の濃縮に伴うゲル化
部や膜の生成によるロス及び工程ロスが小さいため約8
3%と良好であった。
The supply amount of the stock solution to the dialyzer is 1
The flow rate on the outlet side of the dialyzer was narrowed to 0 ml / min, and the outflow rate of the silk fibroin aqueous solution was adjusted to 9 ml / min for dialysis for 20 hours. The static pressure of the silk fibroin aqueous solution measured in the outlet channel (hereinafter referred to as “exit static pressure”) was 1
300~1600 mmH was 2 O. The silk fibroin aqueous solution discharged from the dialyzer is sampled over time,
The results of measuring the concentration and the conductivity of the solution are shown in Table 1 below. As shown in the table, the silk fibroin concentration of the silk fibroin aqueous solution was almost constant in the range of 10 to 11% by weight.
Further, the solution conductivity was 300 to 400 μS / cm, and the dialysis desalting effect was at a sufficiently satisfactory level. The total amount of the obtained silk fibroin aqueous solution was 10.3 Kg. A silk fibroin membrane was prepared by casting 5 g of this aqueous solution on an acrylic plate in an area of 10 × 10 cm and then air-drying at 25 ° C. When the central 8 × 8 cm region of the silk fibroin film was observed with a microscope, formation of nuclei and granules due to formation of microgelated parts was not observed. The thickness of the area is 56 ± 4
Since the thickness is in the range of μm and the thickness variation due to the occurrence of abnormal points is not observed, it is clear that the quality of the silk fibroin aqueous solution obtained by the method of the present invention is excellent. In addition, the yield as silk fibroin is about 8 because the loss due to the formation of a gelled portion and a film due to normal concentration and the process loss are small.
It was as good as 3%.

【0019】[0019]

【表1】 [Table 1]

【0020】(実施例2)ホローファイバー型透析器に
クプロファンを材質とするテルモ社製のダイアライザー
(CL-C15N )を用い、実施例1と同様に調製した絹フィ
ブロイン溶解液(原液)の透析濃縮試験を行った。透析
液としては水道水を使用した。透析器への絹フィブロイ
ン溶解液の供給量を8ml/minとし、透析器の出側流路を
狭搾して絹フィブロイン水溶液の流出量を変化させた。
各条件設定の後、前記出口静圧が安定してから20分
間、排出される絹フィブロイン水溶液を採取した。各条
件で得られた絹フィブロイン水溶液の濃度、及び出口静
圧を下表表2に示す(尚、表2において、原液をA液と
いい、絹フィブロイン水溶液をB液という)。同表に示
すように、加圧力が高い程高濃度の絹フィブロイン水溶
液が得られるが、いずれの条件のものもゲル状や核状体
を含まず品質面でも良好であった。
(Example 2) A dialyzer concentration of silk fibroin solution (stock solution) prepared in the same manner as in Example 1 using a dialyzer (CL-C15N) made of Terumo made of cuprophan in a hollow fiber type dialyzer. The test was conducted. Tap water was used as the dialysate. The supply amount of the silk fibroin solution to the dialyzer was set to 8 ml / min, and the outlet flow passage of the dialyzer was narrowed to change the outflow amount of the silk fibroin aqueous solution.
After each condition was set, the silk fibroin aqueous solution discharged was collected for 20 minutes after the static pressure at the outlet was stabilized. The concentration of the silk fibroin aqueous solution obtained under each condition and the outlet static pressure are shown in Table 2 below (in Table 2, the stock solution is referred to as solution A and the silk fibroin aqueous solution is referred to as solution B). As shown in the table, the higher the applied pressure, the higher the concentration of silk fibroin aqueous solution was obtained.

【0021】[0021]

【表2】 [Table 2]

【0022】(実施例3)ホローファイバー型透析器に
ポリスルホン製のダイアライザー(クラレ社製,PS-1.6
UW)を用い、実施例1と同様に調製した絹フィブロイン
溶解液(原液)の透析濃縮試験を行った。透析液として
は水道水を使用した。前記透析器への原液の供給量を2
8ml/minとし、出側流路を狭搾して絹フィブロイン水溶
液の流出量を20ml/minに設定して2時間稼働した。経
時的にサンプリングして測定した結果、この間に得られ
た絹フィブロイン水溶液の濃度は12.3〜12.6重
量%、電導度350〜430μS/cmであった。また、こ
の絹フィブロイン水溶液を用いて実施例1と同様の製膜
試験を行ったところ微小ゲル化部生成による核や粒状体
の形成は認められなかった。
Example 3 A polysulfone dialyzer (PS-1.6, manufactured by Kuraray Co., Ltd.) was added to a hollow fiber type dialyzer.
UW) was used to perform a dialysis concentration test of a silk fibroin solution (stock solution) prepared in the same manner as in Example 1. Tap water was used as the dialysate. Adjust the amount of stock solution supplied to the dialyzer to 2
The flow rate was set to 8 ml / min, the outlet channel was squeezed to set the outflow rate of the silk fibroin aqueous solution to 20 ml / min, and the operation was continued for 2 hours. As a result of sampling and measuring with time, the concentration of the silk fibroin aqueous solution obtained during this period was 12.3 to 12.6% by weight, and the electric conductivity was 350 to 430 μS / cm. In addition, when a film forming test similar to that of Example 1 was performed using this silk fibroin aqueous solution, formation of nuclei or granules due to formation of microgelated parts was not observed.

【0023】(比較例)実施例1と同様の透析器を用
い、実施例1と同様に調製した絹フィブロイン溶解液
(原液)の透析濃縮試験を行った。尚、透析液としては
水道水を使用した。また、前記透析器への原液の供給量
を8ml/minとし、出側流路は狭搾しなかった(即ち、原
液を加圧しなかった)。これによると絹フィブロイン水
溶液の流出量は18ml/minであった。このような条件の
下、2時間稼働し、経時的にサンプリングして測定した
結果、この間に得られた絹フィブロイン水溶液の濃度は
4.9〜5.3重量%、電導度360〜380μS/cmで
あった。
Comparative Example Using the same dialyzer as in Example 1, a dialysis concentration test of a silk fibroin solution (stock solution) prepared in the same manner as in Example 1 was conducted. Tap water was used as the dialysate. The feed rate of the stock solution to the dialyzer was set to 8 ml / min, and the outlet channel was not narrowed (that is, the stock solution was not pressurized). According to this, the outflow rate of the silk fibroin aqueous solution was 18 ml / min. As a result of operating for 2 hours under such conditions and sampling and measuring over time, the concentration of the silk fibroin aqueous solution obtained during this period was 4.9 to 5.3% by weight, and the electric conductivity was 360 to 380 μS / cm. Met.

【0024】[0024]

【発明の効果】本発明に係る製造法によれば、紡糸に於
ける糸切れの原因となる微小ゲル化部を含まない高品質
の高濃度絹フィブロイン水溶液を得ることができる。従
って、これを抗体固定化膜等の製膜に用いてもゲル化部
に起因する膜欠陥点の発生がなく、均質な製品を得るこ
とができる。また、透析脱塩効果も高く、加熱を行わな
いことから絹フィブロインの低分子量化による劣化を生
じず、品質,収率,経済性の全ての点で優れたものであ
る。
According to the production method of the present invention, it is possible to obtain a high-quality, high-concentration silk fibroin aqueous solution that does not contain a fine gelling portion that causes yarn breakage during spinning. Therefore, even if this is used for forming a film such as an antibody-immobilized film, a film defect point due to a gelled portion does not occur, and a homogeneous product can be obtained. Further, it has a high dialysis desalting effect, and since it is not heated, it does not deteriorate due to the reduction of the molecular weight of silk fibroin, and it is excellent in all aspects of quality, yield and economical efficiency.

【0025】さらに、本発明によれば十分に高い濃度の
絹フィブロイン水溶液を得ることができるので、後の濃
縮工程が不要であり、所望濃度の絹フィブロイン水溶液
を得るについての工程が従来に比して非常に簡便なもの
となる。
Furthermore, according to the present invention, since a silk fibroin aqueous solution having a sufficiently high concentration can be obtained, a subsequent concentration step is unnecessary, and a step for obtaining a silk fibroin aqueous solution having a desired concentration is performed as compared with the conventional method. It will be very simple.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 絹フィブロインを塩水溶液に溶解させて
原液とした後、透析膜より形成した透析器に前記原液を
供給し、前記原液を脱塩透析するに際し、前記透析膜内
の前記原液に圧力を加え、透析膜内外に圧力差を生じせ
しめることを特徴とする高濃度絹フィブロイン水溶液の
製造方法。
1. After dissolving silk fibroin in an aqueous salt solution to prepare a stock solution, the stock solution is supplied to a dialyzer formed from a dialysis membrane, and when the stock solution is desalted and dialyzed, the stock solution in the dialysis membrane is added to the stock solution. A method for producing a high-concentration silk fibroin aqueous solution, which comprises applying a pressure to generate a pressure difference between the inside and outside of a dialysis membrane.
【請求項2】 透析膜内の原液に加える前記圧力を、前
記透析器への原液供給量に対する前記透析器よりの絹フ
ィブロイン水溶液流出量が0.5〜1.5倍となるよう
な圧力に設定した請求項1記載の高濃度絹フィブロイン
水溶液の製造方法。
2. The pressure applied to the stock solution in the dialysis membrane is adjusted so that the outflow amount of the silk fibroin aqueous solution from the dialyzer is 0.5 to 1.5 times the stock solution supply amount to the dialyzer. The method for producing a high-concentration silk fibroin aqueous solution according to claim 1, which has been set.
【請求項3】 前記透析膜が再生セルロース又はこの誘
導体である請求項1又は2記載の高濃度絹フィブロイン
水溶液の製造方法。
3. The method for producing a high-concentration silk fibroin aqueous solution according to claim 1, wherein the dialysis membrane is regenerated cellulose or a derivative thereof.
JP12705995A 1995-04-26 1995-04-26 Production of aqueous solution of silk fibroin at high concentration Pending JPH08295697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12705995A JPH08295697A (en) 1995-04-26 1995-04-26 Production of aqueous solution of silk fibroin at high concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12705995A JPH08295697A (en) 1995-04-26 1995-04-26 Production of aqueous solution of silk fibroin at high concentration

Publications (1)

Publication Number Publication Date
JPH08295697A true JPH08295697A (en) 1996-11-12

Family

ID=14950580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12705995A Pending JPH08295697A (en) 1995-04-26 1995-04-26 Production of aqueous solution of silk fibroin at high concentration

Country Status (1)

Country Link
JP (1) JPH08295697A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045336A1 (en) * 2001-11-29 2003-06-05 National Institute Of Agrobiological Sciences Emulsifier and process for producing the same
WO2004057068A1 (en) * 2002-12-23 2004-07-08 Spin'tec Engineering Gmbh Apparatus and method for storing proteins
JP2007515391A (en) * 2003-04-10 2007-06-14 タフツ ユニバーシティー Concentrated aqueous silk fibroin solutions and their use
US8372436B2 (en) 2005-08-01 2013-02-12 Amsik GmbH Methods of producing nano-and microcapsules of spider silk proteins
US8501172B2 (en) 2008-09-26 2013-08-06 Trustees Of Tufts College pH-induced silk gels and uses thereof
US8715740B2 (en) 2009-09-29 2014-05-06 Trustees Of Tufts College Silk nanospheres and microspheres and methods of making same
US8722067B2 (en) 2007-05-29 2014-05-13 Trustees Of Tufts College Method for silk fibroin gelation using sonication
US8728498B2 (en) 2009-07-14 2014-05-20 Trustees Of Tufts College Electrospun silk material systems for wound healing
US9040073B2 (en) 2008-05-15 2015-05-26 Trustees Of Tufts College Silk polymer-based adenosine release: therapeutic potential for epilepsy
US9074302B2 (en) 2009-09-28 2015-07-07 Trustees Of Tufts College Methods of making drawn silk fibers
WO2015108148A1 (en) * 2014-01-16 2015-07-23 国立大学法人九州大学 Method for removing low molecular weight components
US9102916B2 (en) 2007-02-27 2015-08-11 Trustees Of Tufts College Tissue-engineered silk organs
US9132197B2 (en) 2003-01-07 2015-09-15 Massachusetts Institute Of Technology Silk fibroin materials and use thereof
WO2016024510A1 (en) * 2014-08-11 2016-02-18 国立大学法人大阪大学 Dialyzer, liposome manufacturing device, concentration controller for fluid to be dialyzed, and method for controlling concentration of fluid to be dialyzed
US9308070B2 (en) 2008-12-15 2016-04-12 Allergan, Inc. Pliable silk medical device
US9394355B2 (en) 2014-08-20 2016-07-19 Silk Technologies, Ltd. Fibroin-derived protein composition
US9504575B2 (en) 2008-02-07 2016-11-29 Trustees Of Tufts College 3-dimensional silk hydroxyapatite compositions
US9539362B2 (en) 2003-06-06 2017-01-10 Trustees Of Tufts College Method for forming inorganic coatings
US9566365B2 (en) 2010-09-01 2017-02-14 Trustees Of Tufts College Silk fibroin and polyethylene glycol-based biomaterials
US9603971B2 (en) 2010-03-05 2017-03-28 Trustees Of Tufts College Silk-based ionomeric compositions
US10335519B2 (en) 2011-04-20 2019-07-02 Trustees Of Tufts College Dynamic silk coatings for implantable devices
US10493179B2 (en) 2008-10-09 2019-12-03 Trustees Of Tufts College Modified silk films containing glycerol
US10912862B2 (en) 2012-02-06 2021-02-09 Children's Medical Center Corporation Multi-layer biomaterial for tissue regeneration and wound healing
US10933173B2 (en) 2010-10-19 2021-03-02 Trustees Of Tufts College Silk fibroin-based microneedles and methods of making the same
US10953132B2 (en) 2016-04-08 2021-03-23 Cornell University Method to enhance wound healing using silk-derived protein
US11242367B2 (en) 2016-08-12 2022-02-08 Silk Technologies, Ltd. Silk-derived protein for treating inflammation

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1459728A1 (en) * 2001-11-29 2004-09-22 National Institute of Agrobiological Sciences Emulsifier and process for producing the same
EP1459728A4 (en) * 2001-11-29 2005-04-20 Nat Inst Of Agrobio Sciences Emulsifier and process for producing the same
WO2003045336A1 (en) * 2001-11-29 2003-06-05 National Institute Of Agrobiological Sciences Emulsifier and process for producing the same
US7901668B2 (en) 2001-11-29 2011-03-08 Eaudelman Co., Ltd. Silk fibroin emulsifier and process for the production thereof
WO2004057068A1 (en) * 2002-12-23 2004-07-08 Spin'tec Engineering Gmbh Apparatus and method for storing proteins
EA008044B1 (en) * 2002-12-23 2007-02-27 Спин`Тек Инжиниринг Гмбх Apparatus and method for storing proteins
US9993527B2 (en) 2003-01-07 2018-06-12 Trustees Of Tufts College Silk fibroin materials and use thereof
US9132197B2 (en) 2003-01-07 2015-09-15 Massachusetts Institute Of Technology Silk fibroin materials and use thereof
US11110148B2 (en) 2003-01-07 2021-09-07 Trustees Of Tufts College Silk fibroin materials and use thereof
US11129921B2 (en) 2003-04-10 2021-09-28 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
JP4698596B2 (en) * 2003-04-10 2011-06-08 タフツ ユニバーシティー Concentrated aqueous silk fibroin solutions and their use
US8614293B2 (en) 2003-04-10 2013-12-24 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
JP2007515391A (en) * 2003-04-10 2007-06-14 タフツ ユニバーシティー Concentrated aqueous silk fibroin solutions and their use
US9623147B2 (en) 2003-04-10 2017-04-18 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US8742069B2 (en) 2003-04-10 2014-06-03 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
EP1613796A4 (en) * 2003-04-10 2007-08-15 Univ Tufts Concentrated aqueous silk fibroin solution and use thereof
US10314938B2 (en) 2003-04-10 2019-06-11 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US9084840B2 (en) 2003-04-10 2015-07-21 Trustees Of Tufts College Concentrated aqueous silk fibroin solution and use thereof
US9539362B2 (en) 2003-06-06 2017-01-10 Trustees Of Tufts College Method for forming inorganic coatings
US8372436B2 (en) 2005-08-01 2013-02-12 Amsik GmbH Methods of producing nano-and microcapsules of spider silk proteins
US9102916B2 (en) 2007-02-27 2015-08-11 Trustees Of Tufts College Tissue-engineered silk organs
US9655993B2 (en) 2007-02-27 2017-05-23 Trustees Of Tufts College Tissue-engineered silk organs
US10478524B2 (en) 2007-02-27 2019-11-19 Trustees Of Tufts College Tissue-engineered silk organs
US9254333B2 (en) 2007-05-29 2016-02-09 Trustees Of Tufts College Method for silk fibroin gelation using sonication
US8722067B2 (en) 2007-05-29 2014-05-13 Trustees Of Tufts College Method for silk fibroin gelation using sonication
US9504575B2 (en) 2008-02-07 2016-11-29 Trustees Of Tufts College 3-dimensional silk hydroxyapatite compositions
US9040073B2 (en) 2008-05-15 2015-05-26 Trustees Of Tufts College Silk polymer-based adenosine release: therapeutic potential for epilepsy
US9694082B2 (en) 2008-09-26 2017-07-04 Trustees Of Tufts College pH induced silk gels and uses thereof
US8501172B2 (en) 2008-09-26 2013-08-06 Trustees Of Tufts College pH-induced silk gels and uses thereof
US10493179B2 (en) 2008-10-09 2019-12-03 Trustees Of Tufts College Modified silk films containing glycerol
US9308070B2 (en) 2008-12-15 2016-04-12 Allergan, Inc. Pliable silk medical device
US8728498B2 (en) 2009-07-14 2014-05-20 Trustees Of Tufts College Electrospun silk material systems for wound healing
US9074302B2 (en) 2009-09-28 2015-07-07 Trustees Of Tufts College Methods of making drawn silk fibers
US9381164B2 (en) 2009-09-29 2016-07-05 Trustees Of Tufts College Silk nanospheres and microspheres and methods of making same
US8715740B2 (en) 2009-09-29 2014-05-06 Trustees Of Tufts College Silk nanospheres and microspheres and methods of making same
US9603971B2 (en) 2010-03-05 2017-03-28 Trustees Of Tufts College Silk-based ionomeric compositions
US9566365B2 (en) 2010-09-01 2017-02-14 Trustees Of Tufts College Silk fibroin and polyethylene glycol-based biomaterials
US10933173B2 (en) 2010-10-19 2021-03-02 Trustees Of Tufts College Silk fibroin-based microneedles and methods of making the same
US11266339B2 (en) 2011-04-20 2022-03-08 Trustees Of Tufts College Dynamic silk coatings for implantable devices
US10335519B2 (en) 2011-04-20 2019-07-02 Trustees Of Tufts College Dynamic silk coatings for implantable devices
US10912862B2 (en) 2012-02-06 2021-02-09 Children's Medical Center Corporation Multi-layer biomaterial for tissue regeneration and wound healing
JPWO2015108148A1 (en) * 2014-01-16 2017-03-23 国立大学法人九州大学 Method for removing low molecular weight components
WO2015108148A1 (en) * 2014-01-16 2015-07-23 国立大学法人九州大学 Method for removing low molecular weight components
WO2016024510A1 (en) * 2014-08-11 2016-02-18 国立大学法人大阪大学 Dialyzer, liposome manufacturing device, concentration controller for fluid to be dialyzed, and method for controlling concentration of fluid to be dialyzed
JPWO2016024510A1 (en) * 2014-08-11 2017-07-13 国立大学法人大阪大学 Dialysis apparatus, liposome production apparatus, and liposome production method
US11633699B2 (en) 2014-08-11 2023-04-25 Osaka University Dialyzer, liposome producing apparatus, and liposome producing method
US9394355B2 (en) 2014-08-20 2016-07-19 Silk Technologies, Ltd. Fibroin-derived protein composition
US11045524B2 (en) 2014-08-20 2021-06-29 Silk Technologies, Ltd. Fibroin-derived protein composition
US10471128B2 (en) 2014-08-20 2019-11-12 Silk Technologies, Ltd. Fibroin-derive protein composition
US9907836B2 (en) 2014-08-20 2018-03-06 Silk Technologies, Ltd. Fibroin-derived protein composition
US11890328B2 (en) 2014-08-20 2024-02-06 Silk Technologies, Ltd. Fibroin-derived protein composition
US10953132B2 (en) 2016-04-08 2021-03-23 Cornell University Method to enhance wound healing using silk-derived protein
US11242367B2 (en) 2016-08-12 2022-02-08 Silk Technologies, Ltd. Silk-derived protein for treating inflammation

Similar Documents

Publication Publication Date Title
JPH08295697A (en) Production of aqueous solution of silk fibroin at high concentration
Chai et al. Ultrasound-associated cleaning of polymeric membranes for water treatment
WO2015032786A1 (en) Permselective asymmetric membranes
JPH11309351A (en) Washing of hollow fiber membrane module
US5505890A (en) Process for manufacturing cellulose acetate membranes
JP3577992B2 (en) Membrane separation method
JP5212837B2 (en) Permselective hollow fiber membrane
GB1565113A (en) Semipermeable membranes and method for producing same
CN1298397C (en) Blood purifying apparatus
DE2845797C2 (en)
JPH11309355A (en) Polysulfone hollow fiber type blood purifying membrane and its production
JP4103037B2 (en) Diaphragm cleaning hollow fiber membrane and method for producing the same
JP2001190934A (en) Hollow fiber membrane module with a little effluent
JPH028706B2 (en)
JPH0211263B2 (en)
JP2008194647A (en) Hollow fiber membrane
JP2002336000A (en) Purification apparatus for sugar liquid
JP4164730B2 (en) Selective separation membrane
JP2004121922A (en) Hollow fiber membrane
JP4164774B2 (en) Method for producing selective separation membrane
JP2717458B2 (en) Filtration method
JP2000210544A (en) Production of semipermeable membrane
JPH11215980A (en) Treatment of liquid containing microbial cell
EP0262656A2 (en) A membrane for the separation of blood plasma components
JP2005261601A (en) Hollow fiber type plasma component separator with little protein adsorption amount