WO2015107791A1 - ステータコイル、アキシャルギャップ型回転電機及びその製造方法 - Google Patents

ステータコイル、アキシャルギャップ型回転電機及びその製造方法 Download PDF

Info

Publication number
WO2015107791A1
WO2015107791A1 PCT/JP2014/082016 JP2014082016W WO2015107791A1 WO 2015107791 A1 WO2015107791 A1 WO 2015107791A1 JP 2014082016 W JP2014082016 W JP 2014082016W WO 2015107791 A1 WO2015107791 A1 WO 2015107791A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
diameter side
coil
inner diameter
axial gap
Prior art date
Application number
PCT/JP2014/082016
Other languages
English (en)
French (fr)
Inventor
田中 雄一郎
幸一 渡部
菊地 聡
明仁 中原
見多 出口
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/108,952 priority Critical patent/US9985491B2/en
Publication of WO2015107791A1 publication Critical patent/WO2015107791A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2798Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets where both axial sides of the stator face a rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a structure of a stator coil in which the number of connection points of the coil is reduced and the size is reduced and the cost is reduced.
  • An axial gap type rotating electrical machine obtains a rotational driving force by a magnetic force acting on each surface of a rotor (rotor) and a stator (stator) disposed opposite to each other with an air gap between end faces in the axial direction of the rotor. It is.
  • Patent Document 1 a structure of a stator coil disposed in a stator has been proposed.
  • Patent Document 1 a plurality of coil pieces are connected in a circumferential direction of a rotating shaft to form a coil loop.
  • a stator coil is disclosed. That is, in order to improve the efficiency of torque and rotational speed generated from the rotating electrical machine while suppressing an increase in the physique of the reluctance type rotating electrical machine, the stator 2 and the rotor 9 that are arranged to face each other through the gap s.
  • An axial gap rotating electrical machine 1 constituted by the following is disclosed.
  • the stator 2 is provided with a plurality of conductor bars 5 which are assigned to each phase of the AC signal and have conductivity and which are joined to each other.
  • the conductor bars 5 are rotors.
  • a plurality of magnetic pole pairs of the permanent magnet 10 arranged at 9 are arranged (see summary).
  • Patent Document 2 discloses a stator coil in which one end side of a plurality of coil pieces is locked to a base member and the other ends of the coil pieces are connected to connection terminals. This configuration is advantageous in that it is not necessary to weld one end side of the coil pieces, and it is not necessary to weld the other end sides of the coil pieces.
  • Patent Document 1 when a conductor bar is produced using a copper rectangular wire with insulation coating, and the end portions on the inner diameter side and the outer diameter side of the coil are tried to be connected by TIG welding, the inner diameter side Only found that can not be connected. The reason is that welding is difficult because the connecting portions on the inner diameter side are too close to each other, and the welding torch cannot be installed on the inner diameter side of the coil in the first place. Even if the ends on the inner diameter side of the coil are welded to each other, the welded portion protrudes toward the center side of the coil, so the inner diameter dimension of the coil cannot be reduced, the coil end dimension increases, and the outer diameter of the rotating electrical machine increases. .
  • connection area after welding is smaller than the conductor cross-sectional area because the ends of the conductor bars are connected to each other on the outer diameter side ends even if they are connected by welding. If the connection area is small, heat may be generated when an exciting current is passed through the coil, and sufficient current may not flow. In order to make the connection area by welding larger than the conductor cross-sectional area, it is necessary to extend the outer diameter side end of the coil in the radial direction, which increases the outer diameter of the rotating electrical machine and causes a problem.
  • Patent Document 2 since one end side of a plurality of coil pieces protrudes toward the coil center side, and a base member that locks the protruded one end side is disposed on the coil inner diameter side, the coil inner diameter dimension cannot be reduced and the coil The dimensions increase and the outer diameter of the rotating electrical machine increases.
  • the connection terminal for connecting the other end side of the plurality of coil pieces is disposed on the outer periphery side of the coil, the outer periphery of the coil becomes larger and the outer diameter of the rotating electrical machine increases.
  • the above-described base member and connection terminals are required on the inner and outer periphery of the coil, which increases costs.
  • the present invention reduces the number of coil connection points without providing a coil piece connection portion or a locking member on the inner diameter side of the stator coil, thereby reducing the size and cost.
  • a stator coil, an axial gap type rotating electrical machine, and a manufacturing method thereof are provided.
  • the present invention is a stator coil disposed in a stator of an axial gap type rotating electrical machine that rotates a rotor, A plurality of coil pieces of rectangular conductors arranged in the circumferential direction of the rotating shaft of the rotor and connected to adjacent connecting ends on the outer diameter side of the stator,
  • the coil piece includes a folded portion that is folded in the direction of the rotation axis on the inner diameter side of the stator, an inner diameter-side spread leg portion that is opened from both sides of the folded portion in the circumferential direction of the rotation shaft, and each inner diameter-side spread leg.
  • a straight portion that is bent from a portion and arranged to pass through the stator from the inner diameter side to the outer diameter side, and an outer diameter side opening that extends from the straight portion in the circumferential direction of the rotating shaft and extends to the connection end portion.
  • the inner diameter side open leg portion connected to the folded portion has a correction portion for correcting the position of the rectangular conductor, and is configured to align the connection end portion connected to the correction portion with the connection end portion of the adjacent coil piece. It is characterized by.
  • the coil piece includes a bulge portion formed by the folded portion and the inner diameter side opening leg portion, and the bulge portion is disposed so as to protrude on the inner diameter side of the stator on the opposite side to the rotor in the axial direction.
  • the inner diameter side opening leg portion and the outer diameter side opening leg portion of the coil piece are formed by combining the respective portions in an arc shape or a linear shape.
  • the present invention includes a rotor that rotates about a rotation axis, a stator that is disposed to face the rotor with a gap, and a stator coil that is disposed on the stator.
  • the stator coil is composed of a plurality of coil pieces of a rectangular conductor that are arranged in the circumferential direction of the rotating shaft and connected to adjacent connection ends on the outer diameter side of the stator,
  • the coil piece includes a folded portion that is folded in the direction of the rotation axis on the inner diameter side of the stator, an inner diameter-side spread leg portion that is opened from both sides of the folded portion in the circumferential direction of the rotation shaft, and each inner diameter-side spread leg.
  • a straight portion that is bent from a portion and arranged to pass through the stator from the inner diameter side to the outer diameter side; and an outer diameter side that extends from the straight portion in the circumferential direction of the rotating shaft and extends to the connection end portion Has an open leg,
  • the inner diameter side open leg portion connected to the folded portion has a correction portion for correcting the position of the rectangular conductor, and is configured to align the connection end portion connected to the correction portion with the connection end portion of the adjacent coil piece. It is characterized by.
  • the present invention provides an axial including a rotor that rotates about a rotation shaft, a stator that is disposed to face the rotor with a gap, and a stator coil that is disposed in a core slot of the stator.
  • a method for manufacturing a gap-type rotating electrical machine The stator coil includes a plurality of coil pieces arranged in the circumferential direction of the rotation shaft, and the coil pieces are turned from the inner diameter side of the stator in the direction of the rotation shaft, and rotated from both sides of the turn-up portion.
  • stator coil is assembled by connecting the connection pieces adjacent to each other on the outer diameter side of the stator in advance. Placing the pre-assembled stator coil in the core slot of the stator; The rotor is arranged to face the stator on which the stator coil is arranged.
  • the size of the stator coil and the axial gap type rotating electrical machine can be reduced and the cost can be reduced.
  • FIG. 1 is a schematic view of an axial gap type electric motor according to an embodiment of the present invention. It is sectional drawing of FIG. It is the schematic explaining the magnet in the rotor of the rotary electric machine of FIG. It is a perspective view explaining the stator of the rotary electric machine. It is the schematic which looked at the stator of FIG. 4 from the front. It is the schematic explaining the structure of the holding member of the same stator, a core, and a slot. It is the schematic which shows the state which has arrange
  • the diameter dimension of the stator coil is reduced by reducing the number of coil connection points without providing a connection portion on the inner diameter side of the stator coil.
  • FIG. 1 is a schematic view of a 48-slot axial gap rotating electric machine according to the present embodiment
  • FIG. 2 is a cross-sectional view.
  • axial gap type rotating electrical machine 100 for example, a large number of rectangular cores 5 formed by laminating silicon steel plates are arranged in an annular shape and fixed to the holding member 4 to constitute the stator 1.
  • FIG. 6 which will be described later, the core 5 is inserted from the inner diameter side of the holding member 4 and arranged in an annular shape so as to protrude from both the upper and lower surfaces, and the core slot 7 is formed by the adjacent core 5.
  • annular stator coils 10 a and 10 b made of copper rectangular conductors (rectangular conductors) insulated with enamel or the like are arranged, A disk-shaped stator 1 is configured.
  • Reference numerals 10a and 10b denote stator coils disposed on both upper and lower surfaces of the stator 1, respectively.
  • the stator coil 1 is formed in an annular shape by joining a plurality of coil pieces 6 as described later. As is apparent from the drawing, the cross-sectional shape of the core 5 described above is shown as a quadrangle, but the present invention is not limited to this. It can be changed as appropriate.
  • two rotors 2a and 2b are disposed so as to be rotatable facing both the upper and lower surfaces of the stator 1.
  • the upper and lower rotors 2a and 2b are connected by a rotating shaft 30 disposed at the center of the rotating electrical machine, and are disposed to face both surfaces of the stator 1 via a certain gap (gap).
  • reference numeral 25 denotes a casing of the axial gap type rotating electrical machine 100, which fixes the holding member 4 of the stator 1 and supports the rotary shaft 30 to be rotatable.
  • FIG. 3 is a schematic view illustrating only the magnet of the rotor 2 in the axial gap type rotating electrical machine 100 of the embodiment of the present invention.
  • N poles and S poles of a plurality of magnets 3 are alternately arranged in the circumferential direction on the surface of the rotor 2 facing the upper and lower surfaces of the stator 1.
  • the axial gap type rotating electrical machine 100 described below is an example, and the number of poles and the number of core slots of the rotating electrical machine can be changed as appropriate.
  • FIG. 4 shows only the stator 1 in the axial gap type rotating electrical machine 100 of the embodiment of the present invention.
  • the stator 1 is configured by arranging the annular stator coils 10 a and 10 b made of rectangular conductors that are insulated and coated around the upper and lower cores 5.
  • the stator coils 10 arranged on each surface are arranged in two stages in each core slot 7 in the direction of the rotation axis.
  • Reference numerals 1a and 1b denote an outer diameter side (outer peripheral side) and an inner diameter side (inner peripheral side) of the stator 1, and an outer diameter side (outer peripheral side) and an inner diameter side (inner peripheral side) of the core, respectively.
  • the coil piece 6 has a folded portion that is folded in the direction of the rotation axis at the center, and the folded portion is disposed on the core inner diameter side.
  • the coil piece 6 has a configuration in which both end portions are arranged on the core outer diameter side, and an end portion of a plurality of adjacent coil pieces 6 is connected to each other to form an annular electric circuit. Therefore, since it is not necessary to provide a connection part on the inner diameter side (core inner diameter side) of the stator coil, the number of coil connection points can be reduced and the inner diameter dimension of the coil can be reduced.
  • FIG. 5 is a schematic view of the stator 1 as viewed from the front in the axial gap type rotating electrical machine 100 of the embodiment of the present invention.
  • each of the plurality of coil pieces 6 is disposed with a gap in the radial direction of a fixed rotation axis.
  • the inner diameter side of the core has a smaller space volume that can be used for terminal treatment (connection such as welding) of the coil piece than the outer diameter side of the core.
  • the coil loop is formed by providing a folded portion that is folded back in the axial direction so as to protrude toward the coil center (stator center) side without providing a connection portion on the core inner diameter side.
  • the coil piece 6 is opened along the circumferential direction of the rotating shaft between the turn-up portion and the core slot on the core inner diameter side, and is also opened along the circumferential direction of the rotating shaft on the core outer diameter side. ing.
  • the open leg portion is preferably formed in the same arc shape as shown in FIG. 5, and the coil pieces are closely overlapped with a gap in a constant radial direction. It becomes possible. As a result, the coil end dimensions on the inner diameter side and outer diameter side of the rotating electrical machine can be reduced.
  • FIG. 6 is a schematic view of the configuration of the core 5 and the holding member 4 in the axial gap type rotating electrical machine 100 of the embodiment of the present invention.
  • the core 5 is formed by laminating silicon steel plates, and is assembled in an annular shape so as to be inserted from the inner diameter side and protrude from the upper and lower surfaces with respect to the holding member 4. It is mechanically fixed to the holding member 4 using a fastening plate or the like.
  • FIG. 7 is a schematic view showing a state in which a single-phase coil is arranged with respect to the stator core 5 and the holding member 4 in the axial gap type rotating electrical machine 100 of the embodiment of the present invention.
  • the core 5 has a structure that is vertically divided by the holding member 4, and the core slot formed by the adjacent core is also vertically divided by the holding member 4, so that the core slot is formed on the upper side and the lower side. 7 is formed.
  • one conductor is arranged in each core slot 7 so as to pass from the inner diameter side to the outer diameter side.
  • four conductors of one coil piece are arranged in the upper slot, and two conductors of the coil piece are arranged in the lower slot, and four conductors are arranged per slot.
  • FIG. 8 is a schematic view of FIG. 7 viewed from the front.
  • the core 5 is a square (rectangular) and the coil piece 6 is a rectangular conductor, and the circumferential width of the rotation axis of each core slot 7 is narrow on the inner peripheral side (inner diameter side) and on the outer peripheral side (outer diameter).
  • the gap between the core 5 and the coil piece 9 differs between the inner and outer peripheries. Therefore, in the axial gap type rotating electrical machine having this configuration, the gap between the core and the coil piece is small on the inner diameter side and large on the outer diameter side, and the magnetic resistance due to the gap varies.
  • the shape of the core 5 may be a trapezoid or a triangle.
  • FIG. 9 illustrates a single-phase coil in the axial gap type rotating electrical machine 100 according to the embodiment of the present invention, and the single-phase coil is configured by connecting four coil pieces 6.
  • the coil piece 6 in the state where all the coils are arranged, two coil conductors are arranged on the upper layer and the lower layer (in the direction of the rotation axis) in the upper and lower slots in the axial direction of the stator, respectively.
  • the upper and lower layers (layers) of the conductor in the core slot are shifted (displaced) by the folded portion 20e on the core inner diameter side.
  • the conductor before the coil piece is folded can be the upper layer in the axial direction
  • the conductor after the folding can be made the lower layer by displacing the upper layer conductor downward in the axial direction by the folding portion 20e.
  • FIG. 10 (a) to 10 (c) are schematic views showing a state in which two coil pieces 6 of the embodiment of the present invention are connected.
  • the coil piece 6 has a folded portion 20e that is folded back in the direction of the rotation axis so as to protrude toward the coil center (stator center) side at the center portion.
  • the position of the inner conductor is set, and the position is set so that the connection end portions 20a and 20i are aligned with each other on the core outer diameter side.
  • connection end parts 20a and 20i of the coil piece 6 are extended in linear shape by length L1 to the radial direction of a rotating shaft. This linear end can be stably welded by chucking with another member.
  • FIG. 10B shows a modification in which the connection end portions of the coil piece 6 are connected to each other. That is, the connection end portion shown in FIG. 10A is not extended from the middle in the radial direction of the rotation shaft, but is bent 90 ° upward in the rotation shaft direction to form the connection end portions 20j and 20n to have a narrow cross-sectional width. Are connected. According to the end portions 20j and 20n, the radial length L2 of the connection end portions can be made smaller than the radial length L1 of the connection end portions 20a and 20i, so that the radial dimension of the stator coil can be reduced. Thus, the radial dimension of the stator can be reduced.
  • connection end portions of the coil pieces 6 are bent 90 ° upward in the rotation axis direction, and the narrower cross-sectional width is connected.
  • the length L3 in the radial direction of the connection end can be made smaller than L2.
  • FIG. 10 (d) and 10 (e) show the outer diameter side shape of the continuously wound coil in which the ends are continuous (the ends are not connected by welding or the like).
  • FIG. 10D shows an outer diameter side shape bent by 180 ° and the radial length L4
  • FIG. 10E shows an outer diameter side shape provided with a step shape and a radial length L of zero. In FIG. 10E, the radial length of the stator can be minimized.
  • the coil piece 6 has a structure in which legs are opened in the circumferential direction on both sides starting from a folded portion 20e formed at the center.
  • the folded portion 20e has a structure bent in the edgewise direction (long side direction of the rectangular wire) of the rectangular conductor.
  • the sharp bending structure in the edgewise direction destroys the insulation coating such as enamel at the time of molding. Therefore, in order to prevent this, it is molded so as to form a gentle bending structure so as to form an arc-shaped gap inside.
  • the folded portion 20e has a rigid structure because the flat wire is bent in the edgewise direction, and is suitable for maintaining the molded shape of the coil piece 6 alone. Therefore, the connection work by welding the connection ends of the coil piece 6 at both ends is facilitated, and the work is facilitated even when a plurality of coils are assembled in advance, and the shape of the assembled stator coil is maintained. .
  • the coil piece 6 is further bent from the inner diameter side open leg portions 20d and 20f that are opened from both sides of the folded portion 20e in the circumferential direction of the rotating shaft, and the stator core slot 7 is bent from each inner diameter side spread leg portion.
  • Linear portions 20c, 20g disposed so as to pass from the inner diameter side to the outer diameter side, and the connecting end portions that are opened in the circumferential direction of the rotating shaft on the outer diameter side of the stator from the straight portions 20c, 20g.
  • the outer diameter side open leg portions 20b and 20h are connected to each other. From the outer diameter side opening leg portions 20b and 20h, the connecting end portions 20a and 20i are extended in the radial direction to form a linear shape.
  • the folded portion 20e has a bent structure in the edgewise direction, and the folded conductor is greatly displaced in the direction of the rotation axis by this structure. Therefore, it is necessary to correct this displacement. That is, the folded conductor passes through the slot 7 and is connected to the connection end of another coil piece on the core outer diameter side, so it is necessary to correct the position so that each position becomes an appropriate position. is there.
  • This correction is performed by bending one of the inner diameter side open leg portions 20d and 20f between the folded portion 20e and the core slot 7 in the direction of the rotation axis. In the present embodiment, bending is performed at the inner diameter side leg 20f.
  • the inner diameter side open leg portion 20f includes a correction portion 20k bent in the direction of the rotation axis in order to correct the displacement of the conductor after the folding, and a linear portion 20L connected to the correction portion 20k. Yes.
  • the bending direction of the correction unit 20k is opposite to the bending direction of the folded portion 20e.
  • the straight line portion 20L defines the position in the axial direction of the straight line portion 20g passing through the core slot connected to the straight line portion and the position in the axial direction of the connecting terminal 20i.
  • the straight portion 20g passing through the core slot is positioned in the lower layer of the core slot, and the connection terminal 20i is aligned below the connection end 20a of the other coil piece, depending on the bending amount of the correction portion 20k and the straight portion 20L.
  • the position is set.
  • the linear portion 20b of the other coil piece is located in the upper layer of the linear portion 20g located in the lower layer of the core slot arranged as described above.
  • FIG. 13 and FIG. 14 show the structure from different angles, and FIG. 13 shows the structure in a portion surrounded by a broken line. Due to the correction of the position, as shown by the one-dot chain line in FIG. It matches the position of the upper surface. This position is adjusted to the positions of the lower surfaces of the inner diameter side leg 20d extending from the folded part 20e to the opposite side, the straight part 20c passing through the core slot, the outer diameter side leg 20b, and the connection terminal 20a. Further, if both the connection terminals are brought into elastic contact so that the lower surface position of the connection terminal 20a is located slightly below the upper surface position of the connection terminal 20i, welding can be facilitated.
  • the portion of the coil piece 6 including the folded portion 20e and the core inner diameter side opening leg portion 20f is deformed a plurality of times in the axial direction, so that the entire structure is swollen in the rotation axis direction and the inner diameter direction. 12 to 14, this bulging structure is shown as the bulging portion 20M.
  • the bulge portions are shown as an upper bulge portion 20Ma and a lower bulge portion 20Mb. As shown in FIG. 16B, the bulge portions protrude toward the core inner diameter side and protrude toward the opposite side of the rotors 2 to face each other.
  • the bulge portions protrude toward the core inner diameter side and protrude toward the opposite side of the rotors 2 to face each other.
  • the core 5 is fixed by the holding member 4, and the fixed portion is located on the inner diameter side of the ring-shaped holding member, but this portion is a space that does not contribute to the performance of the rotating electrical machine.
  • the bulging portion 20M is disposed so as to protrude toward the inner diameter side in a space that does not contribute to the performance of the rotating electrical machine.
  • the bulging portion 20M is disposed so as to protrude to the opposite side of the rotor 2.
  • FIG. 17 is a schematic view showing a state in which single-phase coils are arranged with respect to the core 5 and the holding member 4 in the axial gap type rotating electric machine 100 of the embodiment of the present invention.
  • the bulging portion composed of the folded portion 20e of the coil piece 6 and the core inner diameter side opening leg portion 20f is surrounded by the round broken line in FIG. It arrange
  • FIG. 18 is a schematic view of a state in which the coil piece 6 is disposed with respect to the core 5 and the holding member 4 in the axial gap type rotating electric machine 100 according to the second embodiment of the present invention, as viewed from the front.
  • the inner diameter side open leg portion and the outer diameter side spread leg portion in the circumferential direction of the coil piece 6 are arranged with a certain radial gap between the plurality of coil pieces by forming an arc shape. Therefore, the coil end dimensions of the inner diameter side and the outer diameter side of the rotating electrical machine can be reduced.
  • each leg portion in the circumferential direction of the coil piece 6 is divided into a plurality of parts as shown in FIG.
  • each part is combined (a combination of arcs, a combination of arcs and straight lines, a combination of straight lines).
  • the inner diameter side is divided into two (curvature radii R1, R2), and the outer diameter side is divided into three (curvature radii R3, R4, R5). Constitutes the open leg part.
  • the insulation of the rectangular conductor with insulation coating is used. It is necessary to take measures such as increasing the film thickness of the material (for example, enamel).
  • Example 3 In the third embodiment, a manufacturing method for assembling a stator coil with respect to a core and a holding member will be described.
  • FIG. 19 is a schematic view showing a method of assembling the stator coils 10 a and 10 b with respect to the core 5 and the holding member 4 in the axial gap type rotating electric machine 100.
  • the stator coils 10 a and 10 b are assembled in advance by connecting the connection ends of the coil pieces by welding or the like, and the stator coils are coaxially arranged with respect to the core 5 and the holding member 4. It is characterized by being assembled by sandwiching.
  • stator coils 10a and 10b are composed of a plurality of coil pieces 6 arranged in the circumferential direction of the rotating shaft, and the connection ends adjacent to each other on the outer diameter side of the stator are connected in advance to each other.
  • the stator coil is assembled in advance, and the stator coils 10a and 10b assembled in advance are sandwiched from the upper and lower surfaces as indicated by arrows, and are arranged coaxially in the core slots 7 on both surfaces to connect the stator and the stator coil. I'm assembling.
  • the two rotors 2 are arranged and assembled with a gap so as to face both surfaces of the stator 4 on which the stator coils 10a and 10b are arranged.
  • the maintainability of the shape of the coil piece is good, the workability is good when assembling the stator coil in advance, and the workability when placing the assembled stator coil in the core slot 7 of the stator 4 is also good. Can be improved.
  • stator coil 10 and the rotor 2 are one set, the stator coil assembled in advance is arranged on one side of the stator to assemble the stator and the stator coil. Thereafter, one of the rotors shown in FIGS. 1 and 2 is assembled with a gap so as to face the surface of the stator on which the stator coil is arranged.
  • the connecting end of the stator coil is arranged on the outer diameter side circumference, and a space for chucking by a jig (not shown) is secured to join the connecting end. It is possible to arrange a welding torch in this space. Therefore, it is possible to weld and fix the coil piece 6 at both ends of the coil piece 6 with high accuracy with the jig chucked, and the stator coil after welding does not interfere with the core slot of the holding member 4. Assembling can be performed with high accuracy, and assembling efficiency can be improved and costs can be reduced.
  • stator coil fixing method will be described.
  • a rectangular conductor in which the insulating coating portion is further covered with an adhesive layer it is possible to bond the stator coil after welding, the holding member, and the core.
  • the stator coil structure of FIGS. 10B and 10C the stator coil, the holding member, and the core can be first bonded and fixed, and the connection end portions can be welded later. is there.
  • the stator coil structure shown in FIGS. 10B and 10C it is possible to arrange a jig for chucking the connection ends, and to arrange a welding torch above the connection ends. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

ステータコイル(10a,10b)であって、ステータ(1)の外径側で隣接する接続端部(20a,20i、20j、20n)同士が接続された矩形導体の複数のコイルピース(6)からなり、コイルピースはステータの内径側において回転軸方向に折り返した折り返し部(20e)と、折り返し部の両側から回転軸の周方向に開脚された内径側開脚部(20d,20f)と、各内径側開脚部から折り曲げられて前記ステータに内径側から外径側に通過するように配置される直線部(20c,20g)と、直線部から回転軸の周方向に開脚されて前記接続端部に延びる外径側開脚部(20b,20h)を有し、折り返し部に連なる内径側開脚部は、矩形導体の位置を補正する補正部(20k)を有し、この補正部に連なる接続端部を隣接するコイルピースの接続端部に揃えるように構成されたことを特徴とする。

Description

ステータコイル、アキシャルギャップ型回転電機及びその製造方法
 本発明は、コイルの接続点数を減少させ、寸法の小型化とコスト低減を図ったステータコイルの構造に関するものである。
 アキシャルギャップ型回転電機は、ロータ(回転子)と、このロータの軸線方向の端面に空隙を挟んで対向配置させたステータ(固定子)との各表面で作用する磁力によって回転駆動力を得るものである。
 従来から、アキシャルギャップ型回転電機では、ステータに配置されるステータコイルの構造が提案されており、特許文献1には、複数のコイルピースを回転軸の周方向に接続してコイルループを形成するステータコイルが開示されている。すなわち、リラクタンス型の回転電機の体格量の増大を抑えながら、当該回転電機から発生させるトルク及び回転速度の効率向上を図るために、空隙sを介して対向配置される固定子2及び回転子9から構成されるアキシャルギャップ回転電機1が開示されている。
 この固定子2には、交流信号の各相ごとに割り当てられ、導電性を有し互いに導通すべき端部同士が接合された複数本の導体バー5が配置され、この導体バー5は回転子9に配置された永久磁石10の磁極対ごとに複数配置されている(要約参照)。
 また、特許文献2には、複数のコイルピースの一端側をベース部材に係止し、各コイルピースの他端同士を接続端子に接続したステータコイルが示されている。そして、この構成によって、コイルピースの一端側を溶接する必要がなく、コイルピース同士の他端側も溶接する必要がなくなる点を効果としている。
特開2006-288074号公報 特開2010-284001号公報
 特許文献1の構成において、絶縁被覆付きの銅の平角線を用いて、導体バーを作製し、コイルの内径側と外径側の端部同士をTIG溶接で接続することを試みると、内径側のみ接続できないことが判った。内径側の接続部が相互に近すぎるため溶接が困難であることと、そもそも溶接トーチをコイルの内径側に設置できないのがその理由である。仮に、コイルの内径側の端部同士を溶接したとしても、溶接部分がコイルの中心側に突出するためコイルの内径寸法を小さくできずコイルエンド寸法が増大し、回転電機外径寸法が大きくなる。
 外径側の端部同士については、溶接で接続しても導体バーの先端同士を接続しているため、溶接後の接続面積が導体断面積よりも小さくなることが判った。接続面積が小さいと、コイルに励磁電流を流したとき発熱して十分な電流が流れない恐れがある。溶接による接続面積を導体断面積以上にするためには、コイルの外径側端部を径方向に延伸させる必要があり、回転電機外径寸法が増大して問題となる。
 特許文献2では、複数のコイルピースの一端側がコイル中心側に突出し、この突出した一端側を係止するベース部材がコイル内径側に配置されるため、コイル内径寸法を小さくすることができずコイル寸法が大きくなり、回転電機外径寸法が増大する。他方、複数のコイルピース他端側を接続する接続端子がコイル外周側に配置されるため、コイル外周が大きくなり回転電機外径寸法が増大する。また、コイルの内外周に上記したベース部材と接続端子が必要となってコスト増加となる。
 本発明は、上記従来技術の問題点にかんがみ、ステータコイルの内径側にコイルピースの接続部や係止部材を設けることなくコイルの接続点数を減少させ、寸法の小型化とコスト低減を図ったステータコイル、アキシャルギャップ型回転電機およびその製造方法を提供するものである。
 上記課題を解決するため、本発明は、ロータを回転させるアキシャルギャップ型回転電機のステータに配置されるステータコイルであって、
  前記ロータの回転軸の周方向に複数配置され、前記ステータの外径側で隣接する接続端部同士が接続された矩形導体の複数のコイルピースからなり、
  前記コイルピースは、前記ステータの内径側において回転軸方向に折り返した折り返し部と、前記折り返し部の両側から回転軸の周方向に開脚された内径側開脚部と、前記各内径側開脚部から折り曲げられて前記ステータに内径側から外径側に通過するように配置される直線部と、前記直線部から回転軸の周方向に開脚されて前記接続端部に延びる外径側開脚部を有し、
  前記折り返し部に連なる内径側開脚部は、矩形導体の位置を補正する補正部を有し、この補正部に連なる接続端部を隣接するコイルピースの接続端部に揃えるように構成されたことを特徴とする。
 また、前記コイルピースは、前記折り返し部と前記内径側開脚部で膨らみ部を構成し、この膨らみ部は前記ステータの内径側で前記ロータと軸方向反対側に突出させて配置されたことを特徴とする。
 また、前記コイルピースの内径側開脚部と外径側開脚部は、各部分を円弧形状または直線形状にして各部分を組み合わせて形成されたことを特徴とする。
 上記課題を解決するため、本発明は、回転軸を中心に回転するロータと、前記ロータと空隙をおいて対向配置されるステータと、前記ステータに配置されたステータコイルを備え、前記ステータコイルを励磁することにより前記ロータを回転させるアキシャルギャップ型回転電機であって、
  前記ステータコイルは、回転軸の周方向に複数配置され、前記ステータの外径側で隣接する接続端部同士が接続された矩形導体の複数のコイルピースからなり、
  前記コイルピースは、前記ステータの内径側において回転軸方向に折り返した折り返し部と、前記折り返し部の両側から回転軸の周方向に開脚された内径側開脚部と、前記各内径側開脚部から折り曲げられて前記ステータに内径側から外径側に通過するように配置される直線部と、前記直線部から前記回転軸の周方向に開脚されて前記接続端部に延びる外径側開脚部を有し、
  前記折り返し部に連なる内径側開脚部は、矩形導体の位置を補正する補正部を有し、この補正部に連なる接続端部を隣接するコイルピースの接続端部に揃えるように構成されたことを特徴とする。
 上記課題を解決するため、本発明は、回転軸を中心に回転するロータと、前記ロータと空隙をおいて対向配置されるステータと、前記ステータのコアスロットに配置されたステータコイルを備えたアキシャルギャップ型回転電機の製造方法であって、
  前記ステータコイルは、回転軸の周方向に複数配置された複数のコイルピースからなり、前記コイルピースは、前記ステータの内径側において回転軸方向に折り返した折り返し部と、前記折り返し部の両側から回転軸の周方向に開脚された内径側開脚部と、前記各内径側開脚部から折り曲げられて前記ステータに内径側から外径側に通過するように配置される直線部と、前記直線部から回転軸の周方向に開脚されて前記接続端部に延びる外径側開脚部を有し、
  前記コイルピースを前記ステータの外径側で隣接する接続端部同士を予め接続して前記ステータコイルを組立てておき、
  予め組立てられた前記ステータコイルを前記ステータのコアスロットに配置し、
  前記ステータコイルが配置された前記ステータに対向するように前記ロータを配置することを特徴とする。
 本発明によれば、ステータコイル、アキシャルギャップ型回転電機の寸法の小型化とコスト低減を図ることができる。
本発明実施例のアキシャルギャップ型電動機の概略図である。 図1の断面図である。 図1の同回転電機のロータ内のマグネットを説明する概略図である。 同回転電機のステータを説明する斜視図である。 図4のステータを正面から見た概略図である。 同ステータの保持部材とコアとスロットの構成を説明する概略図である。 同ステータに単相コイルを配置した状態を示す概略図である。 図7のステータを正面から見た概略図である。 図8の単相コイルのコイルピースの接続状況を説明する斜視図である。 コイルピースを2個接続した状態の説明図である。 コイルピースを90°曲げで断面幅の狭い方を接続した状態の説明図である。 コイルピースを90°曲げで断面幅の広い方を接続した状態の説明図である。 180°曲げの連続巻きコイルの外径形状の説明図である。 段差形状にした連続巻きコイルの外径形状の説明図である。 コイルピース単体を説明する斜視図である。 コイルピース単体の構成を説明する斜視図である。 図12のコイルピース単体を別の角度から見た斜視図である。 コイルピース単体を説明する側面図である。 上下の2組のステータコイルを説明する斜視図である。 図15のステータコイルと回転電機に組みこんだ説明図である。 ステータに単相コイルを配置した状態の説明である。 コイルピースの開脚部の形状を説明する概略図である。 ステータの両面にステータコイルを組み立てる状態の説明図である。
 以下、本発明に係るアキシャルギャップ型電動機のステータコイル、同電動機及びその製造方法について、図1~図19を用いて説明する。
(実施例1)
 本実施例では、ステータコイルの内径側に接続部を設けずにコイルの接続点数を減少させることでステータコイルの径寸法を減少させている。
 図1は、本実施例の48個のスロットのアキシャルギャップ型回転電機の概略図で、図2は断面図である。アキシャルギャップ型回転電機100では、例えば、ケイ素鋼板を積層して形成した矩形のコア5を円環状に多数配置し、保持部材4に固定してステータ1を構成する。コア5は後述の図6に示すように、保持部材4の内径側から挿入されて上下両面に突出するように円環状に配置され、隣接するコア5によってコアスロット7が形成される。
 保持部材4の上下両面のコア5で形成されるコアスロット7に、エナメル等で絶縁被覆された銅の平角線の導体(矩形導体)からなる円環状のステータコイル10a、10bを配置して、円盤状のステータ1を構成する。10a、10bはそれぞれ、ステータ1の上下の両面に配置されたステータコイルである。ステータコイル1は後述するように複数のコイルピース6を接合して円環状に構成される。上述したコア5は、図から明らかなように、その断面形状を四角形として示されているが、本発明はこれに限定されることなく、その他、例えば、断面形状を台形や三角形等の角形に適宜変更可能である。
 また、ステータ1の上下の両面に対向して、回転可能に2個のロータ2a、2bを配置する。上下のロータ2a、2bは、回転電機の中心に配置される回転軸30で連結されており、ステータ1の両面に対向して、一定の空隙(ギャップ)を介して配置される。図2において、25はアキシャルギャップ型回転電機100のケーシングで、ステータ1の保持部材4を固定すると共に、回転軸30を回転可能に支えている。
 図3は、本発明実施例のアキシャルギャップ型回転電機100における、上記ロータ2のマグネットのみを図示した概略図である。図3に示すように、ステータ1の上下両面との対向するロータ2の面には、複数のマグネット3(本実施例ではフェライト磁石)のN極とS極が周方向に交互に配置されている。なお、以下で説明するアキシャルギャップ型回転電機100は一例であって、回転電機の極数とコアスロット数は、適宜、変更可能である。
 図4は、本発明実施例のアキシャルギャップ型回転電機100における、ステータ1のみを示したものである。上述の通り、ステータ1は、上下の両面のコア5の周りに絶縁被覆された矩形導体からなる円環状のステータコイル10a、10bを、配置して構成される。各面に配置されるステータコイル10は、各コアスロット7に回転軸方向に2段に重ねて配置される。なお、1aと1bはそれぞれ、ステータ1の外径側(外周側)と内径側(内周側)、およびコアの外径側(外周側)と内径側(内周側)を示す。
 コイルピース6は、中央部に回転軸方向に折り返した折り返し部を有し、その折り返し部をコア内径側に配置する。また、コイルピース6は、その両端部をコア外径側に配置する構成とし、隣接する複数のコイルピース6の端部同士を接続することで、円環状の電気回路を構成する。従って、ステータコイルの内径側(コア内径側)に接続部を設ける必要がないのでコイルの接続点数を減少させ、コイルの内径寸法を小さくすることができる。
 図5は、本発明実施例のアキシャルギャップ型回転電機100における、ステータ1を正面から見た概略図である。図5に示すように、ステータコイル10aにおいて、複数の各コイルピース6は相互に一定の回転軸の径方向にギャップを有して配置されている。アキシャルギャップ回転電機はコイルが円環状に配置されているため、コア内径側は、コア外径側に対しコイルピースの端末処理(溶接等の接続)に使用できる空間体積が小さい。本実施例ではコア内径側に接続部を設けずに、コイル中心(ステータ中心)側に突出するように軸方向に折り返した折り返し部を設けることでコイルループを形成している。
 また、コイルピース6は、コア内径側において、折り返し部からコアスロットまでの間に回転軸の周方向に沿って開脚され、コア外径側においても回転軸の周方向に沿って開脚されている。前記開脚部は、各コイルピース6において、図5に示すように同一の円弧形状にするのが良く、コイルピース間は相互に一定の径方向にギャップを有して密に重ねて配置することが可能となる。この結果、回転電機の内径側と外径側のコイルエンド寸法を小さくすることができる。
 図6は、本発明実施例のアキシャルギャップ型回転電機100における、コア5と保持部材4の構成の概略図である。コア5は、前記のように、ケイ素鋼板を積層して形成され、保持部材4に対し、内径側から挿入して上下両面に突出するように円環状に組立てられ、図示していないが、例えば締結板などを用いて、保持部材4に機械的に固定される。
 図7は、本発明実施例のアキシャルギャップ型回転電機100における、ステータのコア5と保持部材4に対し、単相コイルを配置した状態を示す概略図である。図7に示すように、コア5は保持部材4により上下に分断された構造であり、隣接するコアで形成されるコアスロットも保持部材4により上下に分断されて、上側と下側にコアスロット7が形成される。図7では単相コイル一本であるため、各コアスロット7に一本の導体が内径側から外径側に通過するように配置されている。複数の全コイルが配置された状態では、上側スロットにコイルピースの導体2本分、下側スロットにコイルピースの導体2本分で、1スロット当たり4本の導体が配置される。
 図8は、図7を正面から見た概略図である。本実施例ではコア5が四角形(長方形)であってコイルピース6が矩形導体であり、各コアスロット7の回転軸の周方向の幅が内周側(内径側)で狭く外周側(外径側)で広くなっているので、図8に示す通り、コア5とコイルピース9との間のギャップが内外周で異なる。従って、この構成のアキシャルギャップ型回転電機では、コアとコイルピースとのギャップが内径側で小、外径側で大となって、ギャップによる磁気抵抗が異なってくる。これを解決してコアとコイルピースとのギャップを一定にするには、コア5の形状を台形や三角形にするとよい。
 図9は、本発明実施例のアキシャルギャップ型回転電機100における、単相コイルを図示したものであり、単相コイルは、コイルピース6を4個接続して構成される。上述の通り、全コイルが配置された状態では、ステータの軸方向の上側と下側のスロットにそれぞれ、コイルの導体を上層と下層(回転軸方向)に2本重ねて配置する。そして、コイルピース6は、コア内径側の折り返し部20eによって、コアスロット内の導体の上下の層(レイヤー)が移行(変位)されている。この構成によれば、コイルピースの折り返し前の導体を軸方向の上層とし、この上層の導体を折り返し部20eによって軸方向の下方に変位することによって、折り返し後の導体を下層とすることができる。
 図10(a)~図10(c)は、本発明実施例のコイルピース6を2個接続した状態を示す概略図である。図10(a)の通り、コイルピース6は、中央部にコイル中心(ステータ中心)側に突出するように回転軸方向に折り返した折り返し部20eを有し、この折り返し部20eによって、コアスロット7内の導体の位置が設定され、コア外径側において接続端部20aと20i同士が揃うように位置が設定される。
 コイルピース6の接続端部同士を接続する場合、溶接では平角線導体の側面(平角線の短辺)同士を回転軸方向に重ねて揃える必要がある。従って、軸方向の上側の接続端部20aの下側端面が、下側の接続端部20iの上側端面より若干下の位置になるように成形して、接続端部同士を回転軸方向に弾性接触する状態にすれば、安定的に重ねて揃えることができる。なお、溶接での接続面積を導体断面積以上に確保するために、コイルピース6の接続端部20aと20iを回転軸の径方向に長さL1だけ直線形状に延伸させている。この直線形状の端部は他の部材でチャックすることで、安定して溶接することができる。
 図10(b)は、コイルピース6の接続端部同士を接続する変形例を示したものである。すなわち、図10(a)に示す接続端部を途中から回転軸の径方向に延ばさずに、回転軸方向の上方に90°折り曲げて、接続端部20j、20nを形成して断面幅の狭い方を接続している。この端部20j、20nによれば、接続端部の径方向の長さL2を、接続端部20aと20iの径方向のL1より小さくすることができるので、ステータコイルの径方向の寸法を小さくして、ステータの径方向寸法を小さくすることができる。
 図10(c)は、コイルピース6の接続端部同士を回転軸方向の上方に90°折り曲げて、断面幅の狭い方を接続している。接続端部の径方向の長さL3をL2よりさらに小さくすることができる。
 図10(d)、図10(e)は、端部同士が連続している(端部同士を溶接等で接続しない)連続巻きコイルの外径側形状を示している。図10(d)は180°曲げた外径側形状で径方向長さをL4とし、図10(e)は段差形状を設けた外径側形状で径方向長さLを0としている。図10(e)はステータの径方向長さを最も小さくすることができる。
 図11、図12、図13、図14は、本発明実施例のアキシャルギャップ型回転電機100における、コイルピース6の単体の種々の角度から見た概略図である。図11に示す通り、コイルピース6は、中央部に形成された折り返し部20eを起点として、両側に周方向に開脚した構造有している。折り返し部20eは、矩形導体のエッジワイズ方向(平角線の長辺方向)に曲げた構造である。エッジワイズ方向の急激な曲げ構造は成形時にエナメル等の絶縁被覆を破壊するので、これを防止するために内部に円弧状の隙間を形成するように緩やかな曲げ構造になるように成形される。
 折り返し部20eは、平角線をエッジワイズ方向の曲げ構造であるため剛性が強く、コイルピース6単体の成形された形状を維持するのに適している。従って、コイルピース6の両端の接続端部同士の溶接による接続作業が容易となり、また、複数コイルを予めステータコイルを組立てる際にも作業が容易となり、組立て後のステータコイルの形状も維持される。
 前記コイルピース6はさらに、前記折り返し部20eの両側から回転軸の周方向に開脚された内径側開脚部20d、20fと、各内径側開脚部から折り曲げられて前記ステータのコアスロット7に内径側から外径側に通過するように配置される直線部20c、20gと、前記直線部20c、20gからステータの外径側において、回転軸の周方向に開脚されて前記接続端部に連なる外径側開脚部20b、20hを有する。外径側開脚部20b、20hからは、接続端部20a、20iを径方向に延伸させて、直線形状として形成する。
 上述したように、折り返し部20eのエッジワイズ方向の曲げ構造を有しているが、この構造により折り返し後の導体は回転軸方向に大きく変位している。従って、この変位を補正する必要がある。すなわち、折り返し後の導体はスロット7内を通過し、さらにコア外径側において他のコイルピースの接続端部と接続されるため、各位置が適切な位置になるように位置を補正する必要がある。この補正は、折り返し部20eからコアスロット7までの間の内径側開脚部20d、20fのどちらかで回転軸方向に曲げることで行われる。本実施例では内径側開脚部20fで曲げが行われる。
 図12に示すように、内径側開脚部20fは、折り返し後の導体の変位を補正するために回転軸方向に折り曲げた補正部20kと、この補正部20kに連なる直線部20Lを有している。補正部20kの曲げ方向は、折り返し部20eの曲げ方向と逆方向となる。直線部20Lは、これに連なるコアスロットを通過する直線部20gの軸方向の位置と、さらに連なる接続端子20iの軸方向の位置を規定する。すなわち、補正部20kの曲げ量と直線部20Lによって、コアスロットを通過する直線部20gがコアスロットの下層に位置し、接続端子20iが他のコイルピースの接続端部20aの下に揃うように位置が設定される。上記ように配置されたコアスロットの下層に位置する直線部20gの上層には、他のコイルピースの直線部20bが位置する。
 図13と図14は上記構造を別角度から示し、図13には破線で囲まれた部分で上記構造を示している。上記位置の補正により、図14に一点鎖線で示すように、補正部20kに連なる直線部20Lの上面が、コアスロットを通過する直線部20g、外径側開脚部20hおよび接続端子20iの各上面の位置に合わせている。そしてこの位置は、折り返し部20eから反対側に延びる内径側開脚部20d、コアスロットを通過する直線部20c、外径側開脚部20bおよび接続端子20aの各下面の位置に合わせている。また、接続端子20aの下面位置が接続端子20iの上面位置より少し下に位置するようにして両接続端子を弾性接触させれば、溶接し易くすることができる。
 ところで、コイルピース6の折り返し部20eとコア内径側開脚部20fからなる部分は、軸方向に複数回変形しているので、全体として回転軸方向と内径方向とに膨らんだ構造となる。図12~図14では、この膨らんだ構造を膨らみ部20Mとして示している。
 図15、図16は、本発明実施例のアキシャルギャップ型回転電機100における、上下のステータコイル10a、10bのみを示している。膨らみ部は、上方の膨らみ部20Maと下方の膨らみ部20Mbとして示しており、図16(b)に示すように、コア内径側に突出し、かつ、両ロータ2と反対側に突出して互いに対向するように配置される。このように構成すれば、ステータ1の両面とロータ2a、2bの間に膨らみ部20Mが介在することなく、小さな空隙で対向させることができるので、アキシャルギャップ型回転電機の軸方向長さを小さくできると共に、回転電機の性能を劣化させることがない。
 図6に示した通り、コア5は保持部材4で固定され、固定部分はリング状の保持部材の内径側に位置するが、この部分は回転電機の性能には寄与しない空間である。本実施例では、この回転電機の性能に寄与しない空間に、上記膨らみ部20Mを内径側に突出させて配置している。このように膨らみ部20Mを保持部材の中心部側に配置することにより、ステータコイルの径方向の寸法を小さくできると共に、回転電機の性能を劣化させることがない。
 また、ステータコイル10が一個で、これに対向するロータ2が一個の場合でも、膨らみ部20Mはロータ2と反対側に突出して配置される。
 図17は、本発明実施例のアキシャルギャップ型回転電機100における、コア5と保持部材4に対し、単相コイルを配置した状態を示す概略図である。上述の通り、コイルピース6の折り返し部20eとコア内径側開脚部20fからなる膨らみ部が、図17の丸い破線に囲まれるように、ロータ2と反対側の軸方向下側で内径方向に突出するように配置される。
(実施例2)
 図18は、本発明本実施例2のアキシャルギャップ型回転電機100における、コア5と保持部材4に対し、コイルピース6を配置した状態を正面から見た概略図である。上述した通り、コイルピース6の周方向の内径側開脚部と外径側開脚部は、円弧形状にすることで複数コイルピースの相互間に一定の径方向のギャップを有して配置することが可能となり、回転電機の内径側と外径側のコイルエンド寸法を小さくすることができる。
 内径側と外径側のコイルエンド寸法をさらに小さくするために、図18に示すようにコイルピース6の周方向の各開脚部を複数部分に分割して、各部分を円弧形状または直線形状にして各部分を組み合わせて(円弧状同士の組合せ、円弧状と直線状の組合せ、直線状同士の組合せ)構成している。
 このように構成すれば単純な円弧形状だけでなく、複雑な自由曲線(例えば放物線)にも対応が可能である。図18では内径側を2分割(曲率半径R1、R2)、外径側を3分割(曲率半径R3、R4、R5)して、5種類の異なる半径の円弧形状で、コイルピース6の周方向の開脚部を構成している。この方法では、コイルピース間の径方向のギャップは略ゼロになるまで設計することが可能であるが、ギャップを略ゼロにする場合は絶縁強度を上げるために、絶縁被覆付きの矩形導体の絶縁材料(例えばエナメル)の皮膜厚を厚くするなどの対応が必要である。
 なお、各部分を円弧形状および/または直線形状にしてこれらを組み合わせる構成によれば、全体を円弧状にするより成形が容易で、成形後の形状も維持し易いので、作業効率を向上させることができる。
(実施例3)
 本実施例3では、コアと保持部材に対し、ステータコイルを組み立てる製造方法を説明する。
 図19は、アキシャルギャップ型回転電機100における、コア5と保持部材4に対し、ステータコイル10a、10bを組み立てる方法を示した概略図である。図19に示すように、ステータコイル10a、10bは、各コイルピースの接続端部を溶接などで接続して予め組み立てておき、コア5と保持部材4に対し、ステータコイルを同軸上に配置して、挟んで組み立てることを特徴とする。
 すなわち、ステータコイル10a、10bは、回転軸の周方向に複数配置された複数のコイルピース6からなり、前記コイルピース6を前記ステータの外径側で隣接する接続端部同士を予め接続することで前記ステータコイルを組立てておき、予め組立てられた前記ステータコイル10a、10bをステータ4を矢印で示すように上下両面から挟み、両面のコアスロット7に同軸上に配置してステータとステータコイルを組立てる。
 その後、図1、図2に示すように、前記ステータコイル10a、10bが配置された前記ステータ4の両面に対向するように隙間を持たせて2個のロータ2を配置して組立てる。
 前記したように、コイルピースの形状の維持性が良いので、予め、ステータコイルを組立てるに際し作業性が良く、また、組立てられたステータコイルをステータ4のコアスロット7に配置する際にも作業性を良くすることができる。
 ステータコイル10とロータ2が1組みの場合は、ステータの片面に予め組立てたステータコイルを配置してステータとステータコイルを組立てる。その後、図1、図2に示すロータの一方をステータコイルが配置されたステータの面に対向するように隙間を持たせて配置して組立てる。
 この製造方法によれば、ステータコイルの接続端部が外径側の円周上に配置されており、接続端部を接合するために治具(図示せず)によってチャックするスペースを確保することが可能であり、このスペースに溶接トーチを配置することも可能である。従って、コイルピース6の両端の接続端部同士を治具によってチャックした状態で高い精度で溶接固定することができ、溶接後のステータコイルを、保持部材4のコアのスロットに、干渉することなく精度良く組み立てることができ、組立ての効率向上とコスト低減を図ることができる。
 また、ステータコイルの固定方法ついて説明する。一例として、絶縁被覆部をさらに接着層で覆った矩形導体を用いることで、溶接後のステータコイルと保持部材およびコアと接着させることが可能である。また、図10(b),図10(c)のステータコイル構造であれば、先にステータコイルと保持部材およびコアと接着して固定し、後から接続端部同士を溶接することも可能である。図10(b),図10(c)のステータコイル構造であれば、接続端部同士をチャックする治具を配置することが可能であり、接続端部の上方に溶接トーチを配置することも可能である。
1…ステータ
1a…ステータの外径側
1b…ステータの内径側
2(2a、2b)…ロータ
3…マグネット
4…保持部材
5…コア
6…コイルピース
7…コアスロット(スロット)
10(10a,10b)…ステータコイル
20e…折り返し部
20d,20f…コア内径側開脚部
20c,20g…直線部
20b,20h…コア外径側開脚部
20a,20i、20j、20n…接続端部
20k…補正部
20L…直線部
20M(20Ma、20Mb)…膨らみ部
100…アキシャルギャップ型回転電機

Claims (12)

  1.  ロータを回転させるアキシャルギャップ型回転電機のステータに配置されるステータコイルであって、
     前記ロータの回転軸の周方向に複数配置され、前記ステータの外径側で隣接する接続端部同士が接続された矩形導体の複数のコイルピースからなり、
     前記コイルピースは、前記ステータの内径側において回転軸方向に折り返した折り返し部と、前記折り返し部の両側から回転軸の周方向に開脚された内径側開脚部と、前記各内径側開脚部から折り曲げられて前記ステータに内径側から外径側に通過するように配置される直線部と、前記直線部から回転軸の周方向に開脚されて前記接続端部に延びる外径側開脚部を有し、
     前記折り返し部に連なる内径側開脚部は、矩形導体の位置を補正する補正部を有し、この補正部に連なる接続端部を隣接するコイルピースの接続端部に揃えるように構成されたことを特徴とするステータコイル。
  2.  請求項1に記載のステータコイルにおいて、
     前記折り返し部の補正部は回転軸方向に折り曲げられ、前記ステータの外径側で隣接する接続端部同士は、矩形導体を回転軸方向に重ねて接続されることを特徴とするステータコイル。
  3.  請求項1に記載のステータコイルにおいて、
     前記ステータの外径側で隣接する接続端部同士は、回転軸方向に折り曲げられて径方向に重ねて接続されることを特徴とするステータコイル。
  4.  請求項1に記載のステータコイルにおいて、
     前記コイルピースは、前記折り返し部と前記内径側開脚部で膨らみ部を構成し、この膨らみ部は前記ステータの内径側で前記ロータと軸方向反対側に突出させて配置されたことを特徴とするステータコイル。
  5.  請求項1に記載のステータコイルにおいて、
     前記コイルピースの内径側開脚部と外径側開脚部は、各部分を円弧形状または直線形状にして各部分を組み合わせて形成されたことを特徴とするステータコイル。
  6.  回転軸を中心に回転するロータと、前記ロータと空隙をおいて対向配置されるステータと、前記ステータに配置されたステータコイルを備え、前記ステータコイルを励磁することにより前記ロータを回転させるアキシャルギャップ型回転電機であって、
     前記ステータコイルは、回転軸の周方向に複数配置され、前記ステータの外径側で隣接する接続端部同士が接続された矩形導体の複数のコイルピースからなり、
     前記コイルピースは、前記ステータの内径側において回転軸方向に折り返した折り返し部と、前記折り返し部の両側から回転軸の周方向に開脚された内径側開脚部と、前記各内径側開脚部から折り曲げられて前記ステータに内径側から外径側に通過するように配置される直線部と、前記直線部から前記回転軸の周方向に開脚されて前記接続端部に延びる外径側開脚部を有し、
     前記折り返し部に連なる内径側開脚部は、矩形導体の位置を補正する補正部を有し、この補正部に連なる接続端部を隣接するコイルピースの接続端部に揃えるように構成されたことを特徴とするアキシャルギャップ型回転電機。
  7.  請求項6に記載のアキシャルギャップ型回転電機において、
     前記折り返し部の補正部は回転軸方向に折り曲げられ、前記ステータの外径側で隣接さする接続端部同士は、矩形導体を回転軸方向に重ねて接続されることを特徴とするアキシャルギャップ型回転電機。
  8.  請求項6に記載のアキシャルギャップ型回転電機において、
     前記ステータの外径側で隣接する接続端部同士は、回転軸方向に折り曲げられて径方向に重ねて接続されることを特徴とするアキシャルギャップ型回転電機。
  9.  請求項6に記載のアキシャルギャップ型回転電機において、
     前記コイルピースは、前記折り返し部と前記内径側開脚部で膨らみ部を構成し、この膨らみ部は前記ステータの内径側で前記ロータと軸方向反対側に突出させて配置されたことを特徴とするアキシャルギャップ型回転電機。
  10.  請求項9に記載のアキシャルギャップ型回転電機において、
     前記ステータコイルは前記ステータの両面に2組配置され、前記ロータは同軸上で前記ステータの両面に対向して配置され、前記膨らみ部は前記ステータ側に突出するように配置されたことを特徴とするアキシャルギャップ型回転電機。
  11.  回転軸を中心に回転するロータと、前記ロータと空隙をおいて対向配置されるステータと、前記ステータのコアスロットに配置されたステータコイルを備えたアキシャルギャップ型回転電機の製造方法であって、
     前記ステータコイルは、回転軸の周方向に複数配置された複数のコイルピースからなり、前記コイルピースは、前記ステータの内径側において回転軸方向に折り返した折り返し部と、前記折り返し部の両側から回転軸の周方向に開脚された内径側開脚部と、前記各内径側開脚部から折り曲げられて前記ステータに内径側から外径側に通過するように配置される直線部と、前記直線部から回転軸の周方向に開脚されて前記接続端部に延びる外径側開脚部を有し、
     前記コイルピースを前記ステータの外径側で隣接する接続端部同士を予め接続して前記ステータコイルを組立てておき、
     予め組立てられた前記ステータコイルを前記ステータのコアスロットに配置し、
     前記ステータコイルが配置された前記ステータに対向するように前記ロータを配置することを特徴とするアキシャルギャップ型回転電機の製造方法。
  12.  請求項11に記載のアキシャルギャップ型回転電機の製造方法において、
     前記ロータは回転軸上に2組有し、前記ステータコイルは同軸上に2組有し、前記ステータは回転軸の周方向に複数配置された複数のコアとコアスロットを両面に有し、
     予め組立てられた前記ステータコイルを前記ステータの両面を挟んで前記コアスロットに配置し、
     前記ステータコイルが配置された前記ステータの両面を挟んで対向するように隙間を持たせて前記2組のロータを配置して組立てることを特徴とするアキシャルギャップ型回転電機の製造方法。
PCT/JP2014/082016 2014-01-15 2014-12-03 ステータコイル、アキシャルギャップ型回転電機及びその製造方法 WO2015107791A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/108,952 US9985491B2 (en) 2014-01-15 2014-12-03 Stator coil, axial gap-type rotating electric machine, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-004701 2014-01-15
JP2014004701A JP6253994B2 (ja) 2014-01-15 2014-01-15 ステータコイル、アキシャルギャップ型回転電機及びその製造方法

Publications (1)

Publication Number Publication Date
WO2015107791A1 true WO2015107791A1 (ja) 2015-07-23

Family

ID=53542695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082016 WO2015107791A1 (ja) 2014-01-15 2014-12-03 ステータコイル、アキシャルギャップ型回転電機及びその製造方法

Country Status (3)

Country Link
US (1) US9985491B2 (ja)
JP (1) JP6253994B2 (ja)
WO (1) WO2015107791A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017220939A1 (fr) * 2016-06-23 2017-12-28 Valeo Equipements Electriques Moteur Induit bobine d'une machine electrique a entrefer axial
CN108711985A (zh) * 2018-08-23 2018-10-26 上海适达动力科技股份有限公司 绕组定子及电动机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017204072A1 (de) * 2017-03-13 2018-09-13 Green Fox e-solutions GmbH Elektrische Maschine
GB2580916B (en) * 2019-01-29 2021-09-29 Saietta Group PLC Axial flux electrical machine
CN116325453A (zh) * 2020-10-07 2023-06-23 舍弗勒技术股份两合公司 用于旋转电机的定子、用于制造该定子的方法以及旋转电机
WO2024060039A1 (zh) * 2022-09-20 2024-03-28 宁德时代(上海)智能科技有限公司 电机、定子及定子的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047089A2 (en) * 1999-12-21 2001-06-28 Richard Fletcher Electronically commutated electrical machine
JP2006288074A (ja) * 2005-03-31 2006-10-19 Equos Research Co Ltd 回転電機
JP2010284001A (ja) * 2009-06-04 2010-12-16 Honda Motor Co Ltd アキシャルギャップ型回転電機のステータコイル

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8878413B2 (en) * 2006-12-29 2014-11-04 Robert Bosch Gmbh Alternating-current generator having a stator and a stator winding made of winding elements inserted in stator slots and a method for producing a stator of the present invention
US7646132B2 (en) * 2007-05-02 2010-01-12 Empire Magnetics Inc. Arcuate coil winding and assembly for axial gap electro-dynamo machines (EDM)
WO2009100426A2 (en) * 2008-02-08 2009-08-13 Empire Magnetics Inc. Nested serpentine winding for an axial gap electric dynamo machine
CN102668333A (zh) * 2010-02-18 2012-09-12 爱信艾达株式会社 旋转电机用电枢
JP5590225B2 (ja) * 2011-04-01 2014-09-17 トヨタ自動車株式会社 回転電機のステータ及びその製造方法並びに製造装置
JP6044382B2 (ja) * 2013-02-20 2016-12-14 株式会社デンソー マルチギャップ型回転電機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047089A2 (en) * 1999-12-21 2001-06-28 Richard Fletcher Electronically commutated electrical machine
JP2006288074A (ja) * 2005-03-31 2006-10-19 Equos Research Co Ltd 回転電機
JP2010284001A (ja) * 2009-06-04 2010-12-16 Honda Motor Co Ltd アキシャルギャップ型回転電機のステータコイル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017220939A1 (fr) * 2016-06-23 2017-12-28 Valeo Equipements Electriques Moteur Induit bobine d'une machine electrique a entrefer axial
FR3053177A1 (fr) * 2016-06-23 2017-12-29 Valeo Equip Electr Moteur Induit bobine d'une machine electrique a entrefer axial
CN108711985A (zh) * 2018-08-23 2018-10-26 上海适达动力科技股份有限公司 绕组定子及电动机

Also Published As

Publication number Publication date
JP2015133854A (ja) 2015-07-23
JP6253994B2 (ja) 2017-12-27
US20160329766A1 (en) 2016-11-10
US9985491B2 (en) 2018-05-29

Similar Documents

Publication Publication Date Title
JP6253994B2 (ja) ステータコイル、アキシャルギャップ型回転電機及びその製造方法
JP5885890B1 (ja) 回転電機用固定子コア、回転電機及び回転電機の製造方法
US7893590B2 (en) Stator having high assembly
JP3137510B2 (ja) 同期機の固定子,その製造方法並びにティース片及びヨーク片
CN112640274A (zh) 轴向磁通电机
JP2013183512A (ja) 電動モータ
WO2018138859A1 (ja) アキシャルギャップ型回転電機
JP7107663B2 (ja) 回転電機のステータ
JP2014207785A (ja) モータ
US10236735B2 (en) Electric conductor for coil and rotating electric machine
JP2009106008A (ja) 回転電機の固定子
CN112673559A (zh) 轴向磁通电机
US20220294298A1 (en) Stator of rotary electric machine and rotary electric machine
WO2020100311A1 (ja) 固定子の製造方法
WO2021230113A1 (ja) 回転電機
JP6350612B2 (ja) 回転電機
WO2019225665A1 (ja) 電動機、固定子、電動機の製造方法
WO2021176661A1 (ja) 回転電機の固定子および回転電機
JP2022190332A (ja) ステータおよびモータ
WO2015162765A1 (ja) アキシャルギャップ型回転電機のステータコイル、ステータ、それを用いた回転電機及びその製造方法
WO2017150312A1 (ja) ブラシレスモータのステータ、ブラシレスモータ及びブラシレスモータのステータの製造方法
JP7156420B2 (ja) コイル接続部材
WO2021010009A1 (ja) モータ
WO2011104764A1 (ja) 回転機および回転機の製造方法
WO2022264588A1 (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15108952

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878696

Country of ref document: EP

Kind code of ref document: A1