WO2015107679A1 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
WO2015107679A1
WO2015107679A1 PCT/JP2014/050821 JP2014050821W WO2015107679A1 WO 2015107679 A1 WO2015107679 A1 WO 2015107679A1 JP 2014050821 W JP2014050821 W JP 2014050821W WO 2015107679 A1 WO2015107679 A1 WO 2015107679A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
coil end
circumferential direction
winding
coil
Prior art date
Application number
PCT/JP2014/050821
Other languages
French (fr)
Japanese (ja)
Inventor
雅樹 堀井
篤史 坂上
井上 正哉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480073375.9A priority Critical patent/CN105917555B/en
Priority to JP2015557657A priority patent/JP6132936B2/en
Priority to EP14878921.7A priority patent/EP3096441B1/en
Priority to US15/107,524 priority patent/US10164491B2/en
Priority to PCT/JP2014/050821 priority patent/WO2015107679A1/en
Publication of WO2015107679A1 publication Critical patent/WO2015107679A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • H02K3/14Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots with transposed conductors, e.g. twisted conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto

Definitions

  • the present invention relates to a rotating electric machine such as an electric motor or a generator, and more particularly to cooling of a stator.
  • the winding configured by winding the conductor wire in a slot separated by two or more slots is referred to as a distributed winding winding. That is, the distributed winding is wound so that the conductor wire extending from one slot enters another slot across two or more consecutive teeth.
  • a conventional rotating electrical machine has a pair of slots separated by one magnetic pole pitch from one end side in the axial direction of a stator core by connecting the ends of a pair of linear portions with a turn portion to form a U-shape. Are inserted into each of them, and the ends of the conductor segments extending to the other axial end of the stator core are joined together to produce a distributed winding stator winding, and perpendicular to the coil end of the stator winding.
  • a liquid refrigerant was supplied from above to cool the stator winding (see, for example, Patent Documents 1 and 2).
  • a stator winding is formed using a conductor segment formed in a U shape by connecting the ends of a pair of linear portions with a turn portion.
  • the liquid refrigerant is difficult to flow in the circumferential direction of the coil end, and the stator winding cannot be effectively cooled.
  • the present invention has been made in order to solve the above-mentioned problems, and devised the coil shape of the distributed winding stator winding to facilitate the flow of liquid refrigerant in the circumferential direction of the coil end, thereby cooling the stator winding.
  • An object of the present invention is to obtain a small, high-output rotating electrical machine that can improve the performance.
  • a rotating electrical machine includes a housing, a rotor fixed to a shaft rotatably supported by the housing, and disposed in the housing, and an annular stator in which slots are arranged in the circumferential direction.
  • a stator having a stator winding attached to the stator core and the stator core, the stator being held in the housing via an air gap between the rotor and the rotor, and the fixed A cooling mechanism that supplies liquid refrigerant to the coil end of the child winding to cool the stator winding.
  • Each of the stator windings is formed by winding a continuous conductor wire that is insulated and has no connection portion, and is arranged at n-slot angular intervals (where n is a natural number of 2 or more) in the circumferential direction.
  • a plurality of winding bodies are provided in one slot, the second slot, and the third slot and arranged at a pitch of one slot in the circumferential direction.
  • the conductor wire is connected to the second slot, the first slot, the second slot, and the third slot in this order, and to the first slot, the second slot, and the third slot.
  • a ⁇ -shaped coil pattern formed by alternately changing the insertion direction from the axial direction is repeatedly wound in the radial direction m times (where m is a natural number of 1 or more).
  • a plurality of linear portions inserted into each of the slot, the second slot, and the third slot are connected in series by a coil end portion, and the coil end is configured by the coil end portion, and the coil The liquid refrigerant supplied to the end flows through a gap between the coil end portions adjacent in the circumferential direction.
  • the winding body is configured as a pattern in which a ⁇ -shaped coil pattern is wound m times in the radial direction. Therefore, the bending radius at the coil end portion is reduced, and the increase in size of the coil end due to the lane change can be suppressed. In addition, the winding body becomes a distributed winding, which suppresses torque pulsation and increases output.
  • a winding body configured in a pattern in which a ⁇ -shaped coil pattern is wound m times in the radial direction is arranged at a 1-slot pitch. Accordingly, a flow path group formed by a gap between coil end portions adjacent to each other in the circumferential direction and having a refrigerant flow path shifted to one side in the circumferential direction toward the outer side in the axial direction is arranged at a one-slot pitch in the circumferential direction.
  • the liquid refrigerant supplied to the coil end flows through the refrigerant flow path of one flow path group to the end face of the stator core, flows radially on the end face of the stator core, and the other flow path group. Since the refrigerant flow flows away from the end surface of the stator core, the liquid refrigerant flows in the radial direction while flowing in the circumferential direction of the coil end, and is supplied to the inside of the coil end, thereby improving the cooling performance of the coil end. It is done.
  • FIG. 1 It is sectional drawing which shows the rotary electric machine which concerns on Embodiment 1 of this invention. It is a perspective view which shows the principal part of the rotary electric machine which concerns on Embodiment 1 of this invention. It is a perspective view which shows the stator applied to the rotary electric machine which concerns on Embodiment 1 of this invention. It is a perspective view which shows the iron core block which comprises the stator iron core applied to the rotary electric machine which concerns on Embodiment 1 of this invention. It is a perspective view which shows the coil
  • FIG. 5 is an end view of the main part of the rotating electrical machine according to the first embodiment of the present invention as viewed from the first coil end side in a state where three winding bodies share one slot and are attached to the stator core. In the rotating electrical machine according to Embodiment 1 of the present invention, FIG.
  • FIG. 3 is a developed view of a state in which three winding bodies share one slot and are attached to a stator core as viewed from the first coil end side. It is the expanded view which looked at the winding body with which the stator iron core was mounted
  • FIG. 1 is a cross-sectional view showing a rotating electrical machine according to Embodiment 1 of the present invention
  • FIG. 2 is a perspective view showing essential parts of the rotating electrical machine according to Embodiment 1 of the present invention
  • FIG. 3 is an embodiment of the present invention.
  • 4 is a perspective view showing a stator applied to the rotary electric machine according to FIG. 1
  • FIG. 4 is a perspective view showing an iron core block constituting the stator core applied to the rotary electric machine according to Embodiment 1 of the present invention
  • FIG. FIG. 6 is a perspective view showing a winding assembly constituting a stator winding of a stator applied to the rotating electrical machine according to Embodiment 1 of the present invention
  • FIG. 6 shows the winding in the rotating electrical machine according to Embodiment 1 of the present invention.
  • 7 is a perspective view showing a winding body constituting the assembly
  • FIG. 7 is a front view showing the winding body constituting the winding assembly in the rotary electric machine according to Embodiment 1 of the invention
  • FIG. 8 is an embodiment of the invention.
  • 1 is a winding assembly of the rotating electrical machine according to FIG. 9 is an end view showing the winding body to be operated
  • FIG. 9 shows a state where the three winding bodies share one slot and are attached to the stator core in the rotary electric machine according to Embodiment 1 of the present invention.
  • FIG. 9 shows a state where the three winding bodies share one slot and are attached to the stator core in the rotary electric machine according to Embodiment 1 of the present invention.
  • FIG. 10 is a first end view of the rotating electrical machine according to the first embodiment of the present invention in which three winding bodies share one slot and are attached to the stator core.
  • FIG. 11 is a development view as seen from the coil end side
  • FIG. 11 is a development view of the winding body mounted on the stator core in the rotary electric machine according to Embodiment 1 of the present invention as seen from the outside in the radial direction
  • FIG. FIG. 13 is an enlarged view of a main part showing the vicinity of the first coil end of the stator applied to the rotating electrical machine according to the first embodiment of the present invention
  • FIG. 13 shows the first of the stator applied to the rotating electrical machine according to the first embodiment of the present invention.
  • the coil end portion is shown linearly for convenience.
  • a rotating electrical machine 100 is a housing having a cylindrical frame 2 and a front frame 3 and a rear frame 4 which are disposed at both axial ends of the frame 2 and form a space to be sealed together with the frame 2.
  • a stator 15 that is fixedly fitted to the frame 2
  • a shaft 7 that is rotatably supported by a front frame 3 and a rear frame 4 via a bearing 5.
  • a cooling mechanism for supplying a liquid refrigerant to the first and second coil ends 20f and 20r of the stator winding 20 of the stator 15.
  • the frame 2 is manufactured by press-fitting and integrating an aluminum cylindrical inner frame 2b inside an iron cylindrical outer frame 2a. And the recessed groove formed in the outer peripheral surface of the inner frame 2b over the whole circumference is closed by the outer frame 2a, and the introduction flow path 30 is configured.
  • a supply hole 31 is formed in the outer frame 2a so as to communicate the introduction flow path 30 and the outer side of the outer frame 2a.
  • the injection hole 32 has the hole direction as a radial direction and the refrigerant flow path 3.
  • the inner frame 2b is formed so as to communicate 0 and the inner side of the inner frame 2b.
  • a plurality of injection holes 32 are arranged at a constant pitch in the circumferential direction on the radially outer side of the first coil end 20f and the second coil end 20r of the stator winding 20 described later.
  • the supply pipe 33 connects the discharge port of the supply pump 34 and the supply hole 31, and the return pipe 35 connects the oil pan 36 attached to the lower side of the frame 2 and the suction port of the supply pump 34.
  • the mechanism is configured.
  • the rotor 6 is mounted so as to pass through the annular rotor core 8, the shaft 7 that is press-fitted and fixed so as to pass through the axial center position of the rotor core 8, and the outer peripheral side of the rotor core 8.
  • the eight permanent magnets 9, the first end plate 10 and the second end plate 11 which are press-fitted and fixed to the shaft 7 and arranged so as to be in contact with both end surfaces of the rotor core 8 in the axial direction; Is provided.
  • stator 15 Next, the configuration of the stator 15 will be specifically described with reference to FIGS. 3 to 11.
  • the stator 15 includes a stator iron core 16 and a stator winding 20 attached to the stator iron core 16.
  • the number of poles of the rotor 6 is eight
  • the number of slots of the stator core 16 is 48
  • the stator winding 20 is a three-phase winding. That is, the slots are formed in the stator core 16 at a ratio of two slots per phase per pole.
  • the core block 17 is obtained by dividing the annular stator core 16 into 48 equal parts in the circumferential direction. As shown in FIG. 4, the core block 17 is produced by laminating and integrating electromagnetic steel plates, and has a core back portion 17a having a circular arc cross section. And teeth 17b projecting radially inward from the inner peripheral wall surface of the core back portion 17a. Then, the stator core 16 is formed by aligning 48 core blocks 17 in the circumferential direction, integrating the circumferential direction side surfaces of the core back portion 17a with the teeth 17b facing inward in the radial direction, It is configured in an annular shape.
  • Slots 18 constituted by iron core blocks 17 adjacent in the circumferential direction are arranged at an equiangular pitch in the circumferential direction so as to open to the inner circumferential side.
  • the teeth 17b are formed in a tapered shape in which the circumferential width gradually decreases inward in the radial direction, and the cross section of the slot 18 is rectangular.
  • the winding body 22 is formed by continuously forming a ⁇ -shaped coil pattern on an edgewise winding of a conductor wire 19 having a rectangular cross section made of a continuous copper wire or an aluminum wire, which is insulated with enamel resin and has no connection portion. And then rolled twice. Specifically, as shown in FIGS.
  • the winding body 22 includes a first straight portion 22a, a first coil end portion 22e, a second straight portion 22b, a second coil end portion 22f, and a third Two ⁇ -shaped coil patterns comprising a straight portion 22c, a third coil end portion 22g, and a fourth straight portion 22d are arranged in the length direction of the short side of the rectangular cross section of the conductor wire 19, and the fourth straight portion 22d and the fourth straight portion 22d A straight line portion 22a is connected by a crossover line 23.
  • the connecting wire 23 constitutes a coil end portion
  • the winding start end portion of the conductor wire 19 constitutes a winding end 22h
  • the winding end end portion constitutes a winding end 22i.
  • the first straight portion 22 a and the third straight portion 22 c have a gap d in the length direction of the short side of the rectangular cross section with the length direction of the long side of the rectangular cross section facing the circumferential direction.
  • Four are arranged in one row.
  • the second straight portion 22b is spaced from the row of the first straight portion 22a and the third straight portion 22c by a six-slot angle interval on the circumferential side, and the length direction of the long side of the rectangular cross section is directed in the circumferential direction.
  • Two are arranged with a gap 3d in the length direction of the short side of the rectangular cross section.
  • the fourth straight portion 22d is spaced apart from the row of the first straight portion 22a and the third straight portion 22c by a 6-slot angular interval on the other side in the circumferential direction, and the length direction of the long side of the rectangular cross section is directed in the circumferential direction.
  • Two are arranged with a gap 3d in the length direction of the short side of the rectangular cross section.
  • the 6-slot angular interval is an interval between the slot centers of the slots 18 on both sides of the six consecutive teeth 17b.
  • the 6-slot angular interval corresponds to one magnetic pole pitch.
  • d is the length of the short side of the conductor wire 19.
  • the 48 iron core blocks 17 position each of the teeth 17b radially outward between the adjacent first to fourth linear portions 22a, 22b, 22c, and 22d of the winding assembly 21. Are arranged at a substantially equiangular pitch in the circumferential direction.
  • the core blocks 17 arranged in the circumferential direction are moved inward in the radial direction, and the teeth 17b of the core block 17 are moved between adjacent first to fourth linear portions 22a, 22b, 22c, 22d. insert.
  • FIGS. 9 and 10 each show a state in which three winding bodies 22 are mounted on the stator core 16 sharing one slot 18, and FIG. 11 shows a winding mounted on the stator core 16.
  • the state which looked at the wire 22 from the radial direction outer side is shown.
  • five slots 18 arranged at an angular interval of 6 slots in the circumferential direction are arranged in the circumferential order in the first slot 18 1 , the second slot 18 2 , the third slot 18 3 , the fourth slot 18 4 ,
  • the fifth slot is 18 5 .
  • the inclination angle extends in the first slot 18 1 side circumferentially theta, only lane change (shift distance d radially outwardly at the top portion Then, it extends to the first slot 18 1 side in the circumferential direction at a reverse inclination angle ⁇ , and is connected to the second straight portion 22b of the second layer from the slot opening side of the first slot 18 1 .
  • the second coil end portion 22f extending from the slot opening side of the first slot 18 1 to the one end side in the axial direction (second coil end 20r side) from the second linear portion 22b of the second layer has an inclination angle ⁇ Extends to the second slot 18 2 side in the circumferential direction, shifted by a distance d outward in the radial direction at the top, and then extended to the second slot 18 2 side in the circumferential direction at a reverse inclination angle ⁇ .
  • the third slot 18 2 is connected to the third straight portion 22c of the third layer from the slot opening side.
  • the third coil end portion 22g extending from the slot opening side of the second slot 18 2 to the first coil end 20f side from the third linear portion 22c of the third layer is third in the circumferential direction at an inclination angle ⁇ . of extending the slot 18 3 side, is shifted parietal distance radially outwards d, then the inclination angle of the opposite ⁇ circumferentially extending in the third slot 18 3 side, the third slot 18 3 It is connected to the fourth linear portion 22d of the fourth layer from the slot opening side.
  • the connecting wire 23 extending from the fourth straight portion 22d of the fourth layer to the second coil end 20r side from the slot opening side of the third slot 18 3 has the second slot 18 in the circumferential direction at an inclination angle ⁇ .
  • the second slot 18 2 extends to the second slot 18 and is shifted radially outward at the top by a distance d, and then extends circumferentially at the opposite inclination angle ⁇ to the second slot 18 2 side.
  • the first coil end portion 22e extending from the first straight portion 22a of the fifth layer to the first coil end 20f side from the slot opening side of the second slot 18 2 is the first slot in the circumferential direction at an inclination angle ⁇ .
  • the second coil end portion 22f extending from the second straight portion 22b of the sixth layer to the second coil end 20r side from the slot opening side of the first slot 181 is second in the circumferential direction at an inclination angle ⁇ .
  • slot 18 extends in two side, is shifted parietal distance radially outwards d, then the inclination angle of the opposite ⁇ circumferentially extending into the second slot 18 2 side, of the second slot 18 2
  • the slot is connected to the third straight portion 22c of the seventh layer from the slot opening side.
  • the third coil end portion 22g extending from the slot opening side of the second slot 18 2 to the first coil end 20f side from the third linear portion 22c of the seventh layer is the third in the circumferential direction at the inclination angle ⁇ . of extending the slot 18 3 side, is shifted parietal distance radially outwards d, then the inclination angle of the opposite ⁇ circumferentially extending in the third slot 18 3 side, the third slot 18 3 The slot is connected to the fourth straight portion 22d of the eighth layer from the slot opening side.
  • the second slot 18 of the first linear portion 22a of the second first layer and the first slot 18 1 of the second layer second linear portion 22b is connected by the first coil end 22e
  • the first The second straight line portion 22b of the second layer of the slot 18 1 and the third straight line portion 22c of the third layer of the second slot 18 2 are connected by the second coil end portion 22f
  • the second slot 18 2 is connected by the second coil end portion 22f
  • the third straight line portion 22c of the third layer and the fourth straight line portion 22d of the fourth layer of the third slot 183 are connected by the third coil end portion 22g to form a ⁇ -shaped coil pattern.
  • the second slot 18 of the first linear portion 22a of the second fifth layer and the first slot 18 1 of the sixth layer second linear portion 22b is connected by the first coil end 22e
  • the first The second straight portion 22b of the sixth layer of the slot 18 1 and the third straight portion 22c of the seventh layer of the second slot 18 2 are connected by the second coil end portion 22f
  • the second slot 18 2 is connected by the seventh straight line portion 22c of the seventh layer and the fourth straight line portion 22d of the eighth layer of the third slot 183
  • the fourth straight portion 22d of the fourth layer of the third slot 18 3 and the first straight portion 22a of the fifth layer of the second slot 18 2 are connected by the crossover 23.
  • the first winding body 221 is configured by connecting two ⁇ -shaped coil patterns with the crossover wires 23 and arranging them in two layers in the radial direction.
  • the inclined portions from the end portions of the first to fourth straight portions 22a, 22b, 22c, 22d to the top of the head are viewed from the axial direction. It is formed in a substantially arc shape. That is, the first to third coil end portions 22e, 22f, 22g and the inclined portion of the crossover wire 23 maintain the radial position.
  • the second winding body 222 is mounted in the second slot 18 2 , the third slot 18 3, and the fourth slot 18 4 , and the third winding body 223 is connected to the third slot 18.
  • the slot 18 3 three windings body 221, 222 and 223 are shared, the fourth straight section 22a from the 1, 22b, 22c, 22 d has a length direction of the long sides of the rectangular cross section of the conductor wire 19 8 are stored in a line in the radial direction, facing the circumferential direction.
  • the first coil end portion 22e extending from the first linear portion 22a located on the first layer of the winding body 22 to the first coil end 20f side has a circumferential shape.
  • One side in the circumferential direction passes above the first coil end portion 22e extending to the first coil end 20f side from the first linear portion 22a located in the first layer of the winding body 22 located next to the one side in the direction.
  • the second coil end portion 22f extending from the second linear portion 22b of the winding body 22 to the second coil end 20r side is second to the second linear end portion 22b of the winding body 22 located next to one side in the circumferential direction. 2 extending to the other side in the circumferential direction through the lower side of the second coil end portion 22f extending to the coil end 20r side, appearing in the trouble of the top of the head, shifted by the distance d radially outward at the top of the head, It passes above the second coil end portion 22f of the winding body 22 located next to one side in the circumferential direction, extends to the other side in the circumferential direction, and is connected to the third linear portion 22c.
  • the third coil end portion 22g extending from the third straight portion 22c of the winding body 22 to the first coil end 20f side extends from the third straight portion 22c of the winding body 22 located adjacent to one side in the circumferential direction. It extends below the third coil end portion 22g that protrudes to one side in the circumferential direction, appears in front of the top of the head, shifts radially outward by a distance d at the top of the head, and next to one side in the circumferential direction.
  • the winding body 22 is positioned so as to pass above the third coil end portion 22g and extend to one side in the circumferential direction, and is connected to the fourth linear portion 22d.
  • a gap is formed between the inclined portions of the first coil end portion 22e adjacent in the circumferential direction and between the inclined portions of the third coil end portion 22g. Is done.
  • a gap is formed between the inclined portions of the second coil end portion 22f and between the inclined portions of the crossover wire 23.
  • Rotating electric machine 100 configured in this manner operates as an 8-pole, 48-slot inner rotor type three-phase motor by supplying AC power to stator winding 20.
  • the supply pump 34 is driven, and liquid refrigerant such as ATF oil and engine oil is supplied to the introduction flow path 30 through the supply pipe 33 and the supply hole 31.
  • the liquid refrigerant supplied to the introduction flow path 30 is injected from the injection hole 32 to the first and second coil ends 20f and 20r.
  • the air gap g between the rotor 6 and the stator 15 is about 1 mm
  • the circumferential gap l between the roots of the first coil end portion 22e is about 5 mm, so that the liquid refrigerant becomes an air gap. Difficult to flow in.
  • the circumferential clearance between the root portions of the second coil end portion 22f, the circumferential clearance between the root portions of the third coil end portion 22g, and the circumferential clearance between the root portions of the connecting wire 23 are also the first coil end. It is equivalent to the clearance of the circumferential clearance between the roots of the portion 22e. Therefore, the liquid refrigerant injected to the first and second coil ends 20f and 20r is used for cooling the first and second coil ends 20r without flowing into the air gap between the rotor 6 and the stator 15. It is made.
  • the liquid refrigerant injected from the radially outer side to the first coil end 20f is inclined at the third coil end portion 22g adjacent to the circumferential direction located at the outermost periphery, as shown by arrows in FIGS.
  • the gap between the parts flows from the top to the root.
  • the liquid refrigerant flows radially inward on the end face of the stator core 16, and is sucked up between the root portions of the third coil end portions 22g adjacent in the radial direction by a capillary phenomenon.
  • the gap between the inclined portions of the third coil end portion 22 g located on the inner diameter side of the inclined portion of the third coil end portion 22 g located on the outermost periphery is the top of the head. Flows to the side. Furthermore, it flows radially inward on the end face of the stator core 16, and is sucked up between the root portions of the first coil end portions 22e adjacent in the radial direction by capillary action. And the clearance gap between the inclination parts of the 1st coil end part 22e adjacent to the circumferential direction flows into the top part side.
  • the liquid refrigerant injected to the first coil end 20f is a gap between the inclined portions of the first coil end portion 22e adjacent in the circumferential direction, and the inclined portion of the third coil end portion 22g adjacent in the circumferential direction. It flows in the circumferential direction through the gap between them. Further, the liquid refrigerant flows radially inward along the end surface of the stator core 16. Accordingly, the liquid refrigerant flows in the radial direction and the circumferential direction of the first coil end 20f, flows into the first coil end 20f, and the first coil end 20f is effectively cooled.
  • the liquid refrigerant injected from the radially outer side to the second coil end 20r passes through the gap between the inclined portions of the second coil end portions 22f adjacent to the circumferential direction located on the outermost periphery. Flows from side to root. Then, the liquid refrigerant flows radially inward on the end face of the stator core 16, and is sucked up between the root portions of the second coil end portions 22f adjacent in the radial direction by capillary action. Next, a gap between the inclined portions of the second coil end portion 22f located on the inner diameter side of the inclined portion of the second coil end portion 22f located on the outermost periphery flows to the top portion side.
  • the liquid refrigerant injected to the second coil end 20r is a gap between the inclined portions of the second coil end portion 22f adjacent in the circumferential direction, and a gap between the inclined portions of the connecting wire 23 adjacent in the circumferential direction. Flows in the circumferential direction. Further, the liquid refrigerant flows radially inward along the end surface of the stator core 16. Accordingly, the liquid refrigerant flows in the radial direction and the circumferential direction of the second coil end 20r, flows into the second coil end 20r, and the second coil end 20r is effectively cooled.
  • the liquid refrigerant that has cooled the first and second coil ends 20f, 20r is collected in the lower part of the frame 2, and is returned from the oil pan 36 to the supply pump 34 via the return pipe 35.
  • the winding body 22 includes the conductor wire 19 in the order of the second slot 18 2 , the first slot 18 1 , the second slot 18 2 , the third slot 18 3 , and the first slot.
  • a ⁇ -shaped coil pattern formed by alternately changing the insertion direction from the axial direction into the 18 1 , the second slot 18 2 and the third slot 18 3 is repeatedly wound twice in the radial direction. Have been made.
  • the winding body 22 is a distributed winding, which suppresses torque pulsation and increases output.
  • a refrigerant flow path formed by a gap between the first coil end portions 22e adjacent in the circumferential direction is adjacent to the flow path group in which the circumferential direction is arranged at one slot pitch in the circumferential direction.
  • a refrigerant flow path formed by a gap between the matching third coil end portions 22g is mixed in the radial direction.
  • the liquid refrigerant supplied to the first coil end 20f flows through the refrigerant flow path formed by the gap between the third coil end portions 22g to reach the end surface of the stator core 16, and the end surface of the stator core 16 It flows inward in the radial direction, and flows away from the end face of the stator core 16 through a coolant channel formed by a gap between the first coil end portions 22e.
  • the liquid refrigerant flows inward in the radial direction while flowing through the first coil end 20f in the circumferential direction, and is supplied to the inside of the first coil end 20f, thereby improving the cooling performance of the first coil end 20f.
  • a refrigerant flow path formed by a gap between the second coil end portions 22f adjacent in the circumferential direction is adjacent to the flow path group in which the circumferential direction is arranged at one slot pitch in the circumferential direction.
  • the refrigerant flow path formed by the gap between the connecting crossover wires 23 is mixed in the radial direction.
  • the liquid refrigerant supplied to the second coil end 20r flows through the refrigerant flow path formed by the gap between the second coil end portions 22f, reaches the end surface of the stator core 16, and the end surface of the stator core 16 It flows inward in the radial direction and flows away from the end surface of the stator core 16 through the refrigerant flow path formed by the gap between the connecting wires 23.
  • the liquid refrigerant flows radially inward while flowing through the second coil end 20r in the circumferential direction, and is supplied to the inside of the second coil end 20r, thereby improving the cooling performance of the second coil end 20r.
  • the winding body 22 has a first slot 18 1 , a second slot 18 2, and a third slot 18 3 in the first to fourth straight portions 22 a, 22 b, 22 c, and 22 d in the second slot.
  • the assembly property of the winding assembly 21 is improved.
  • the first and third coil end portions 22e extending in the circumferential direction from the first to fourth linear portions 22a, 22b, 22c, and 22d accommodated in the slot 18 in a line.
  • the 22g direction is repeated in the radial direction alternately in the same direction and in the opposite direction.
  • the second coil end portion 22f extending in the circumferential direction from the first to fourth linear portions 22a, 22b, 22c, and 22d housed in a row in the slot 18 and the transition are provided.
  • the direction of the line 23 is alternately repeated in the radial direction in the same direction and in the opposite direction.
  • a refrigerant flow path formed by a gap between the first coil end portions 22e adjacent in the circumferential direction is adjacent to the flow path group in which the circumferential direction is arranged at a one-slot pitch in the circumferential direction.
  • the refrigerant flow paths formed by the gaps between the matching third coil end portions 22g are alternately and repeatedly arranged in the radial direction.
  • a flow path group in which the flow path direction extends in the circumferential direction toward the outer side in the axial direction and a flow path group in which the flow path direction extends in the circumferential direction toward the outer side in the axial direction are alternately arranged in the radial direction.
  • the liquid refrigerant easily flows in the circumferential direction through the first coil end 20f, and the cooling performance of the first coil end 20f is further enhanced.
  • a refrigerant flow path formed by a gap between the second coil end portions 22f adjacent in the circumferential direction is adjacent to the flow path group in which the circumferential direction is arranged at one slot pitch in the circumferential direction.
  • the refrigerant flow paths formed by the gaps between the connecting crossover wires 23 are alternately and repeatedly arranged in the radial direction.
  • a flow path group in which the flow path direction extends in the circumferential direction toward the outer side in the axial direction and a flow path group in which the flow path direction extends in the circumferential direction toward the outer side in the axial direction are alternately arranged in the radial direction.
  • the liquid refrigerant easily flows in the circumferential direction through the second coil end 20r, and the cooling performance of the second coil end 20r is further enhanced.
  • the hole direction of the injection hole formed in the inner frame 2b is the radial direction, but the liquid refrigerant injection direction is the inclination of the inclined portions of the second coil end portion and the third coil end portion. You may make the hole direction of an injection hole incline with respect to radial direction so that a direction may be followed. As a result, the liquid refrigerant can easily flow into the first and second coil ends 20f, 20r, and the first and second coil ends 20f, 20r can be effectively cooled.
  • FIG. FIG. 14 is an end view of the main part showing the first coil end of the stator applied to the rotating electrical machine according to Embodiment 2 of the present invention
  • FIG. 15 is applied to the rotating electrical machine according to Embodiment 2 of the present invention. It is principal part sectional drawing which shows the surroundings of the 1st coil end of a stator.
  • the insulating sheet 40 as the partition member includes an inclined portion that extends from the first straight portion 22 a to the top of the first coil end portion 22 e and an inclined portion that extends from the second straight portion 22 b to the top of the head. And the gap between the inclined portion from the third straight end portion 22c of the third coil end portion 22g to the top of the head and the inclined portion from the fourth straight portion 22d to the top of the head, respectively. It is inserted over the circumference.
  • the gap between the inclined portion from the second straight line portion 22b of the second coil end portion 22f to the top of the head and the inclined portion from the third straight line portion 22c to the top of the head, and the first of the crossover 23 It is inserted over the entire circumference in the circumferential direction between each of the gaps between the inclined portion extending from the three straight portions 22c to the top of the head and the inclined portion extending from the fourth straight portions 22d to the top of the head.
  • the insulating sheet 40 is obtained by molding a sheet material made of glass cloth, polyether ether ketone, polyphenyl sulfide, polytetrafluoroethylene, or the like into a strip shape. Other configurations are the same as those in the first embodiment.
  • the first and third coil end portions 22e and 22g extend from the second layer of the slot 18 and the second and third straight portions 22b and 22c of the third layer in the same circumferential direction. I understand. Similarly, the first and third coil end portions 22e and 22g extend from the fourth and fifth straight portions 22d and 22a of the slot 18 in the same circumferential direction. Recognize. It can also be seen that the first and third coil end portions 22e and 22g extend in the same circumferential direction from the sixth and seventh straight and second straight portions 22b and 22c of the slot 18. .
  • the straight portions of the second layer and the third layer of the slot 18, the straight portions of the fourth layer and the fifth layer, and the straight portions of the sixth layer and the seventh layer are extended.
  • the coil end portions having the same phase are arranged adjacent to each other in the radial direction, and the potential difference between the coil end portions is small.
  • first coil end portion 22e extends from the first and second straight portions 22a and 22b of the slot 18 in the opposite direction of the circumferential direction.
  • third coil end portion 22g extends from the third layer of the slot 18 and the third and fourth straight portions 22c, 22d of the fourth layer in opposite directions in the circumferential direction.
  • first coil end portion 22e extends from the fifth and sixth layer first and second straight portions 22a and 22b of the slot 18 in the opposite direction of the circumferential direction.
  • third coil end portion 22g extends from the seventh and eighth straight portions 22c and 22d of the slot 18 in the opposite direction of the circumferential direction.
  • the straight portions of the first layer and the second layer of the slot 18 the straight portions of the third layer and the fourth layer, the straight portions of the fifth layer and the sixth layer, and the seventh layer and the first layer.
  • the coil end portions of different phases extending from each of the eight straight portions intersect each other in the radial direction, and the potential difference between the coil end portions becomes large.
  • the insulating sheet 40 extends from the straight portions of the first and second layers of the slot 18 and the straight portions of the fifth and sixth layers.
  • the third coil end portion 22g extending between the inclined portions of the first coil end portion 22e, the straight portions of the third layer and the fourth layer, and the straight portions of the seventh layer and the eighth layer of the slot 18. It is inserted between the inclined parts. Therefore, the withstand voltage between the coil end portions of different phases having a large potential difference can be increased.
  • the second coil end portion 22f and the crossover wire 23 are arranged in the circumferential direction from the third and fourth straight portions 22c and 22d of the third layer and the fourth layer of the slot 18. It can be seen that they extend in the same direction. Similarly, it can be seen that the second coil end portion 22f and the crossover wire 23 extend from the fifth and sixth layer first and second straight portions 22a and 22b of the slot 18 in the same circumferential direction. . In other words, in the second coil end 20r, the coil end portions of the same phase extending from the third layer and fourth layer straight portions of the slot 18 and the fifth layer and sixth layer straight portions are radially arranged. Adjacent to each other, the potential difference between the coil end portions is small.
  • the second coil end portion 22f extends in the direction opposite to the circumferential direction from the second and third straight portions 22b and 22c of the second layer and the third layer of the slot 18, and the crossover wire 23 is connected to the slot.
  • the fourth coil end portion 22f extends in the direction opposite to the circumferential direction from the fourth and first straight portions 22d and 22a of the eighteenth layer and the fifth layer, and the second coil end portion 22f includes the sixth and seventh layers of the slot 18. It can be seen that the second and third straight portions 22b and 22c extend in the direction opposite to the circumferential direction.
  • the straight portions of the second and third layers of the slot 18, the straight portions of the fourth and fifth layers, and the straight portions of the sixth and seventh layers are extended.
  • the coil end portions of different phases intersect in the radial direction, and the potential difference between the coil end portions increases.
  • the insulating sheet 40 extends from the straight portions of the second and third layers of the slot 18 and the straight portions of the sixth and seventh layers.
  • the second coil end portion 22f is inserted between the inclined portions, and between the inclined portions of the crossover wires 23 extending from the straight portions of the fourth layer and the fifth layer of the slot 18, respectively. Therefore, the withstand voltage between the coil end portions of different phases having a large potential difference can be increased.
  • a pair of insulating sheets 40 is formed by a gap between the inclined portions of the first coil end portions 22e adjacent in the circumferential direction, and a gap between the inclined portions of the second coil end portions 22f adjacent in the circumferential direction.
  • FIG. FIG. 16 is a perspective view showing a stator applied to a rotary electric machine according to Embodiment 3 of the present invention.
  • the partition member 41 is formed in a band shape using an insulating material such as glass cloth, polyether ether ketone, polyphenyl sulfide, polytetrafluoroethylene, and the lower end is in contact with the end surface of the stator core 16.
  • the first and second coil ends 20f and 20r of the stator winding 20 are arranged over the entire circumference on the inner circumference side. Other configurations are the same as those in the first embodiment.
  • the partition wall member 41 is arranged on the inner circumference side of the first and second coil ends 20f, 20r of the stator winding 20 over the entire circumference. Therefore, the partition member 41 prevents the liquid refrigerant flowing in the first and second corends from the outer diameter side to the inner diameter side from flowing out from the first and second coil ends 20f and 20r to the inner diameter side. Outflow to the air gap between the stator 15 and the rotor 6 is prevented.
  • FIG. 17 is a sectional view showing a rotary electric machine according to Embodiment 4 of the present invention.
  • the rotor 50 passes through an annular rotor core 51, a shaft 54 that is press-fitted and fixed so as to penetrate the axial center position of the rotor core 51, and an outer peripheral side of the rotor core 51.
  • the first end plate 56 and the second end which are press-fitted and fixed to the shaft 54 and arranged so as to be in contact with both end surfaces of the rotor core 51 in the axial direction.
  • a plate 59 a plate 59.
  • the rotor core 51 is manufactured by stacking and integrating annular core pieces punched from a thin magnetic steel sheet.
  • Each of the magnet housing holes 52 has a rectangular shape in which the cross section perpendicular to the axial direction of the shaft 54 is constant in the axial direction, passes through the outer peripheral side of the rotor core 51 in the axial direction, and has eight equal pitches in the circumferential direction. Is formed.
  • a coolant channel 53 is formed through the rotor core 51 in the axial direction so as to open to the inner diameter side of the magnet housing hole 52 and to the magnet housing hole 52.
  • a permanent magnet 55 is housed in each of the magnet housing holes 52 and attached so as to penetrate the outer peripheral side of the rotor core 51.
  • the first end plate 56 is made of a ring-shaped flat plate having an outer diameter substantially equal to the outer diameter of the rotor core 51.
  • the introduction flow path 57 is formed by recessing one surface of the first end plate 56 by a certain depth leaving the outer peripheral edge portion.
  • the first discharge passages 58 pass through the first end plate 56 in the axial direction so as to connect the outer peripheral portion of the introduction flow channel 57 and the other surface side of the first end plate 56, respectively, and are equidistant in the circumferential direction. 8 are formed.
  • the first end plate 56 is press-fitted and fixed to the shaft 54 from one side in the axial direction with one surface directed to the rotor core 51 through the shaft 54 at the axial center position.
  • One surface of the first end plate 56 is in contact with one end surface of the rotor core 51 in the axial direction, and the opening of the introduction channel 57 is closed.
  • a coolant channel 53 formed in the rotor core 51 is connected to the introduction channel 57.
  • the first discharge passages 58 are located radially outward of the introduction passages 57.
  • the second end plate 59 is made of a ring-shaped flat plate having an outer diameter substantially equal to the outer diameter of the rotor core 51.
  • the discharge channel 60 is formed in a ring shape by being depressed by a certain depth on the outer peripheral side of one surface of the second end plate 59.
  • Eight second discharge passages 61 penetrate the second end plate 59 in the axial direction so as to connect the discharge passage 60 and the other surface side of the second end plate 59, respectively, at equal pitches in the circumferential direction. Is formed.
  • the second end plate 59 is press-fitted and fixed to the shaft 54 from the other side in the axial direction with one surface thereof directed toward the rotor core 51 through the shaft 54 at the axial center position. One surface of the second end plate 59 is in contact with the other end surface of the rotor core 51 in the axial direction, and the opening of the discharge channel 60 is closed.
  • An introduction channel 57 formed in the rotor core 51 is connected to the discharge channel 60.
  • the second discharge passages 61 are located radially outward of the introduction passages 57.
  • the shaft 54 is branched in the radial direction from the in-axis flow path 62 and the in-axis flow path 62 formed to reach the axial center position from one end in the axial direction to a position directly below the first end plate 56, respectively.
  • a branch channel 63 that connects the in-axis channel 62 and the introduction channel 57 formed in the first end plate 56.
  • the supply pipe 33 connects the discharge port of the supply pump 34 and the in-shaft flow path 62, and the return pipe 35 connects the oil pan 36 attached below the frame 2 and the suction port of the supply pump 34, cooling
  • the mechanism is configured.
  • the supply pump 34 is driven, and the liquid refrigerant is supplied to the introduction flow path 57 via the supply pipe 33, the in-axis flow path 62, and the branch flow path 63.
  • a part of the liquid refrigerant supplied to the introduction flow path 57 is supplied to the refrigerant flow path 53 and used for cooling the permanent magnet 55.
  • the remaining portion of the liquid refrigerant supplied to the introduction flow path 57 is discharged from the first discharge path 58.
  • the liquid refrigerant is bent in the centrifugal direction by the rotation of the rotor 50 and is injected to the inner peripheral surface of the first coil end 20 f of the stator winding 20.
  • the liquid refrigerant used for cooling the permanent magnet 55 flows into the discharge passage 60 and is discharged from the second discharge passage 61. At this time, the liquid refrigerant is bent in the centrifugal direction by the rotation of the rotor 50 and is injected onto the inner peripheral surface of the second coil end 20 r of the stator winding 20.
  • the liquid refrigerant jetted from the radially inner side to the first coil end 20f has a gap between the inclined portions of the first coil end portions 22e adjacent to the circumferential direction located on the innermost circumference from the top to the root side. Flowing. Then, the liquid refrigerant flows inward and outward in the radial direction on the end face of the stator core 16, and is sucked up between the root portions of the first coil end portions 22e adjacent in the radial direction by capillary action. Next, a gap between the inclined portions of the first coil end portion 22e located on the outer diameter side of the inclined portion of the first coil end portion 22e located on the innermost circumference flows toward the top of the head.
  • the liquid refrigerant injected to the first coil end 20f is a gap between the inclined portions of the first coil end portion 22e adjacent in the circumferential direction, and the inclined portion of the third coil end portion 22g adjacent in the circumferential direction. It flows in the circumferential direction through the gap between them. Further, the liquid refrigerant flows radially outward along the end face of the stator core 16. Accordingly, the liquid refrigerant flows in the radial direction and the circumferential direction of the first coil end 20f, flows into the first coil end 20f, and the first coil end 20f is effectively cooled.
  • the liquid refrigerant injected from the radially inner side to the second coil end 20r has a gap between the inclined portions of the second coil end portions 22f adjacent to the circumferential direction located at the innermost periphery, and is fundamentally formed from the top side. Flows to the side. Then, the liquid refrigerant flows radially outward on the end face of the stator core 16, and is sucked up between the root portions of the second coil end portions 22f adjacent in the radial direction by capillary action. Next, a gap between the inclined portions of the second coil end portion 22f located on the outer diameter side of the inclined portion of the second coil end portion 22f located on the innermost circumference flows toward the top of the head.
  • the liquid refrigerant injected to the second coil end 20r is a gap between the inclined portions of the second coil end portion 22f adjacent in the circumferential direction, and a gap between the inclined portions of the connecting wire 23 adjacent in the circumferential direction. Flows in the circumferential direction. Further, the liquid refrigerant flows radially outward along the end face of the stator core 16. Accordingly, the liquid refrigerant flows in the radial direction and the circumferential direction of the second coil end 20r, flows into the second coil end 20r, and the second coil end 20r is effectively cooled.
  • the liquid refrigerant that has cooled the first and second coil ends 20f, 20r is collected in the lower part of the frame 2, and is returned from the oil pan 36 to the supply pump 34 via the return pipe 35.
  • the liquid refrigerant is supplied from the first and second discharge passages 58 and 61 formed in the first and second end plates 56 and 59 disposed at both axial ends of the rotor core 51.
  • the first and second coil ends 20f and 20r are sprayed on the inner peripheral surfaces. Therefore, when the rotor 50 rotates, the liquid refrigerant is injected to the inner peripheral surfaces of the first and second coil ends 20f and 20r, so that the liquid refrigerant is uniformly supplied to the first and second coil ends 20f and 20r.
  • the first and second coil ends 20f and 20r can be effectively cooled evenly.
  • the winding body is made of a conductor wire having a rectangular cross section.
  • the cross-sectional shape of the conductor wire constituting the winding body is not limited to a rectangle, for example, a circular cross section
  • the conductor wire may be used.
  • the first to fourth straight portions are arranged in a row in the radial direction in the slot with the length direction of the long side of the rectangular cross section facing the circumferential direction.
  • the first to fourth straight portions may be arranged in a row in the radial direction in the slot with the length direction of the short side of the rectangular cross section oriented in the circumferential direction.
  • an 8-pole 48-slot rotary electric machine has been described, but it goes without saying that the number of poles and the number of slots are not limited to 8 poles and 48 slots. Further, the number of slots is assumed to be formed at a rate of 2 per phase per pole, but the number of slots per phase per pole is not limited to 2, and may be 1 or 3 or more.
  • the number of slots is formed at a ratio of 2 per pole per phase, and the interval between the first straight line portion and the second straight line portion of the winding body is set to a 6-slot angle interval, and the stator winding
  • the wire is configured as a full-pitch winding
  • the interval between the first linear portion and the second linear portion of the winding body is not limited to the 6-slot angular interval.
  • the interval between the first straight portion and the second straight portion of the winding body may be set to a 5-slot angular interval, and the stator winding may be configured to have a short-pitch winding.
  • the winding body is formed by winding a conductor wire so that the ⁇ -shaped coil pattern is repeated twice in the radial direction.
  • the winding body has a diameter of the ⁇ -shaped coil pattern. The number of times the direction is repeated is not limited to two, and may be one or three or more.
  • the liquid refrigerant is injected from the radial direction to the first and second coil ends of the stator winding, but the liquid refrigerant is the first and second coil ends of the stator winding. It may be injected from the outside in the axial direction.

Abstract

This invention provides a compact, high-output rotating electric machine wherein the coil shape of a distributed-winding type stator winding is designed such that a liquid refrigerant easily flows in the circumferential direction of the coil ends, and the ability to cool the stator winding can be increased. Winding bodies are manufactured by winding a δ-shaped coil pattern twice in the diameter direction, with the δ-shaped coil pattern being formed by inserting conductor wires into a second slot, a first slot, the second slot, and a third slot, in that order, and alternately changing the insertion direction into the first slot, the second slot, and the third slot from the axial direction. Multiple linear sections inserted respectively into the first slot, the second slot, and the third slot are linked continuously by means of coil end sections, and a liquid refrigerant is supplied to coil ends formed by the coil end sections.

Description

回転電機Rotating electric machine
 この発明は、例えば電動機や発電機などの回転電機に関し、特に固定子の冷却に関するものである。 The present invention relates to a rotating electric machine such as an electric motor or a generator, and more particularly to cooling of a stator.
 近年、電動機や発電機などの回転電機において、小型高出力が求められている。この種の回転電機を小型化するに当たり、有効な磁束を発生しないコイルエンドを小型化する観点から、導体線を固定子鉄心のティースのそれぞれに巻回した集中巻の固定子巻線が用いられていた。しかしながら、トルク脈動が抑えられ、高出力化が可能な分布巻構造の固定子巻線を用いた固定子が要望されている。
 さらに、高出力化にともなって固定子巻線での発熱が大きくなるので、固定子巻線の高い冷却性が求められている。
2. Description of the Related Art In recent years, small and high output has been demanded in rotating electrical machines such as electric motors and generators. In order to reduce the size of this type of rotating electrical machine, concentrated stator windings in which conductor wires are wound around the teeth of the stator core are used from the viewpoint of reducing the size of coil ends that do not generate effective magnetic flux. It was. However, there is a demand for a stator using a distributed winding structure stator winding that can suppress torque pulsation and increase output.
Furthermore, since the heat generation in the stator windings increases as the output increases, high cooling performance of the stator windings is required.
 ここでは、導体線を1つのティースに巻回して構成された集中巻の巻線に対し、導体線を2スロット以上離れたスロットに巻回して構成された巻線を分布巻の巻線とする。つまり、分布巻の巻線は、1のスロットから延び出た導体線が連続する2つ以上のティースをまたいで他のスロットに入るように巻回されている。 Here, with respect to the concentrated winding winding formed by winding the conductor wire around one tooth, the winding configured by winding the conductor wire in a slot separated by two or more slots is referred to as a distributed winding winding. . That is, the distributed winding is wound so that the conductor wire extending from one slot enters another slot across two or more consecutive teeth.
 従来の回転電機は、一対の直線部の端部間をターン部により連結してU字状に成形された導体セグメントを、固定子鉄心の軸方向一端側から、1磁極ピッチ離れたスロットの対のそれぞれに挿入し、固定子鉄心の軸方向他端側に延び出た導体セグメントの端部同士を接合して、分布巻きの固定子巻線を作製し、固定子巻線のコイルエンドに鉛直上方から液体冷媒を供給して、固定子巻線を冷却していた(例えば、特許文献1,2参照)。 A conventional rotating electrical machine has a pair of slots separated by one magnetic pole pitch from one end side in the axial direction of a stator core by connecting the ends of a pair of linear portions with a turn portion to form a U-shape. Are inserted into each of them, and the ends of the conductor segments extending to the other axial end of the stator core are joined together to produce a distributed winding stator winding, and perpendicular to the coil end of the stator winding. A liquid refrigerant was supplied from above to cool the stator winding (see, for example, Patent Documents 1 and 2).
特開2013-034330号公報JP 2013-034330 A 特開2013-062963号公報JP 2013-062963 A
 従来の回転電機では、一対の直線部の端部間をターン部により連結してU字状に成形された導体セグメントを用いて固定子巻線を作製しているので、構造上、隙間を形成することが困難であり、コイルエンドの周方向には液体冷媒が流れにくく、固定子巻線を効果的に冷却できないという課題があった。 In a conventional rotating electrical machine, a stator winding is formed using a conductor segment formed in a U shape by connecting the ends of a pair of linear portions with a turn portion. There is a problem that the liquid refrigerant is difficult to flow in the circumferential direction of the coil end, and the stator winding cannot be effectively cooled.
 この発明は、上記課題を解決するためになされたもので、分布巻きの固定子巻線のコイル形状を工夫して、液体冷媒をコイルエンドの周方向に流れやすくし、固定子巻線の冷却性を高めることができる、小型高出力の回転電機を得ることを目的とする。 The present invention has been made in order to solve the above-mentioned problems, and devised the coil shape of the distributed winding stator winding to facilitate the flow of liquid refrigerant in the circumferential direction of the coil end, thereby cooling the stator winding. An object of the present invention is to obtain a small, high-output rotating electrical machine that can improve the performance.
 この発明の回転電機は、ハウジングと、上記ハウジングに回転可能に支持されたシャフトに固着されて、上記ハウジング内に配設された回転子と、スロットが周方向に配列された円環状の固定子鉄心、および上記固定子鉄心に装着された固定子巻線を有し、上記回転子の外周側に上記回転子との間にエアギャップを介して上記ハウジングに保持された固定子と、上記固定子巻線のコイルエンドに液体冷媒を供給して上記固定子巻線を冷却する冷却機構と、を備えている。上記固定子巻線は、それぞれ、絶縁被覆された、かつ接続部のない連続した導体線を巻き回して作製され、周方向にnスロット角度間隔(但し、nは2以上の自然数)で並ぶ第1スロット、第2スロットおよび第3スロットに装着されて、周方向に1スロットピッチで配列された複数の巻線体を備えている。上記巻線体は、上記導体線を、上記第2スロット、上記第1スロット、上記第2スロット、上記第3スロットの順に、かつ上記第1スロット、上記第2スロットおよび上記第3スロットへの軸方向からの挿入方向を交互に変えて挿入して形成されたδ状のコイルパターンを、径方向にm回(但し、mは1以上の自然数)繰り返して巻き回して作製され、上記第1スロット、上記第2スロットおよび上記第3スロットのそれぞれに挿入される複数の直線部をコイルエンド部により一続きに連結して構成され、上記コイルエンドが、上記コイルエンド部により構成され、上記コイルエンドに供給された上記液体冷媒が、周方向に隣り合う上記コイルエンド部間の隙間を流れる。 A rotating electrical machine according to the present invention includes a housing, a rotor fixed to a shaft rotatably supported by the housing, and disposed in the housing, and an annular stator in which slots are arranged in the circumferential direction. A stator having a stator winding attached to the stator core and the stator core, the stator being held in the housing via an air gap between the rotor and the rotor, and the fixed A cooling mechanism that supplies liquid refrigerant to the coil end of the child winding to cool the stator winding. Each of the stator windings is formed by winding a continuous conductor wire that is insulated and has no connection portion, and is arranged at n-slot angular intervals (where n is a natural number of 2 or more) in the circumferential direction. A plurality of winding bodies are provided in one slot, the second slot, and the third slot and arranged at a pitch of one slot in the circumferential direction. In the winding body, the conductor wire is connected to the second slot, the first slot, the second slot, and the third slot in this order, and to the first slot, the second slot, and the third slot. A δ-shaped coil pattern formed by alternately changing the insertion direction from the axial direction is repeatedly wound in the radial direction m times (where m is a natural number of 1 or more). A plurality of linear portions inserted into each of the slot, the second slot, and the third slot are connected in series by a coil end portion, and the coil end is configured by the coil end portion, and the coil The liquid refrigerant supplied to the end flows through a gap between the coil end portions adjacent in the circumferential direction.
 この発明によれば、巻線体が、δ状のコイルパターンを径方向にm回繰り返して巻き回したパターンに構成されている。そこで、コイルエンド部での曲げ半径が小さくなり、レーンチェンジに起因するコイルエンドの大型化を抑制できる。また、巻線体が分布巻の巻線となり、トルク脈動が抑えられ、高出力化が図られる。 According to the present invention, the winding body is configured as a pattern in which a δ-shaped coil pattern is wound m times in the radial direction. Therefore, the bending radius at the coil end portion is reduced, and the increase in size of the coil end due to the lane change can be suppressed. In addition, the winding body becomes a distributed winding, which suppresses torque pulsation and increases output.
 δ状のコイルパターンを径方向にm回繰り返して巻き回したパターンに構成された巻線体を1スロットピッチで配列している。そこで、周方向に隣り合うコイルエンド部間の隙間により形成された、軸方向外側に向かって周方向の一側にシフトする冷媒流路が周方向に1スロットピッチで配列された流路群と、周方向に隣り合うコイルエンド部間の隙間により形成された、軸方向外側に向かって周方向の他側にシフトする冷媒流路が周方向に1スロットピッチで配列された流路群とが、径方向に混在する。これにより、コイルエンドに供給された液体冷媒が、一方の流路群の冷媒流路を流れて固定子鉄心の端面に至り、固定子鉄心の端面上を径方向に流れ、他方の流路群の冷媒流路を固定子鉄心の端面から離れるように流れるので、液体冷媒が、コイルエンドを周方向に流れつつ、径方向に流れて、コイルエンド内部に供給され、コイルエンドの冷却性が高められる。 A winding body configured in a pattern in which a δ-shaped coil pattern is wound m times in the radial direction is arranged at a 1-slot pitch. Accordingly, a flow path group formed by a gap between coil end portions adjacent to each other in the circumferential direction and having a refrigerant flow path shifted to one side in the circumferential direction toward the outer side in the axial direction is arranged at a one-slot pitch in the circumferential direction. A flow path group formed by a gap between coil end portions adjacent to each other in the circumferential direction, the refrigerant flow paths shifting outward in the axial direction toward the other side in the circumferential direction and arranged at a one-slot pitch in the circumferential direction. , Mixed in the radial direction. As a result, the liquid refrigerant supplied to the coil end flows through the refrigerant flow path of one flow path group to the end face of the stator core, flows radially on the end face of the stator core, and the other flow path group. Since the refrigerant flow flows away from the end surface of the stator core, the liquid refrigerant flows in the radial direction while flowing in the circumferential direction of the coil end, and is supplied to the inside of the coil end, thereby improving the cooling performance of the coil end. It is done.
この発明の実施の形態1に係る回転電機を示す断面図である。It is sectional drawing which shows the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機の要部を示す斜視図である。It is a perspective view which shows the principal part of the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機に適用される固定子を示す斜視図である。It is a perspective view which shows the stator applied to the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機に適用される固定子鉄心を構成する鉄心ブロックを示す斜視図である。It is a perspective view which shows the iron core block which comprises the stator iron core applied to the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機に適用される固定子の固定子巻線を構成する巻線アッセンブリを示す斜視図である。It is a perspective view which shows the coil | winding assembly which comprises the stator coil | winding of the stator applied to the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機における巻線アッセンブリを構成する巻線体を示す斜視図である。It is a perspective view which shows the coil | winding body which comprises the coil | winding assembly in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機における巻線アッセンブリを構成する巻線体を示す正面図である。It is a front view which shows the winding body which comprises the coil | winding assembly in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機における巻線アッセンブリを構成する巻線体を示す端面図である。It is an end elevation which shows the winding body which comprises the coil | winding assembly in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機において3つの巻線体が1つのスロットを共有して固定子鉄心に装着されている状態を第1コイルエンド側から見た要部端面図である。FIG. 5 is an end view of the main part of the rotating electrical machine according to the first embodiment of the present invention as viewed from the first coil end side in a state where three winding bodies share one slot and are attached to the stator core. この発明の実施の形態1に係る回転電機において3つの巻線体が1つのスロットを共有して固定子鉄心に装着されている状態を第1コイルエンド側から見た展開図である。In the rotating electrical machine according to Embodiment 1 of the present invention, FIG. 3 is a developed view of a state in which three winding bodies share one slot and are attached to a stator core as viewed from the first coil end side. この発明の実施の形態1に係る回転電機において固定子鉄心に装着された巻線体を径方向外方から見た展開図である。It is the expanded view which looked at the winding body with which the stator iron core was mounted | worn from the radial direction outer side in the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機に適用される固定子の第1コイルエンド周りを示す要部拡大図である。It is a principal part enlarged view which shows the surroundings of the 1st coil end of the stator applied to the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る回転電機に適用される固定子の第1コイルエンドにおける冷媒の流れを説明する模式図である。It is a schematic diagram explaining the flow of the refrigerant | coolant in the 1st coil end of the stator applied to the rotary electric machine which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る回転電機に適用される固定子の第1コイルエンドを示す要部端面図である。It is a principal part end elevation which shows the 1st coil end of the stator applied to the rotary electric machine which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る回転電機に適用される固定子の第1コイルエンド周りを示す要部断面図である。It is principal part sectional drawing which shows the surroundings of the 1st coil end of the stator applied to the rotary electric machine which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る回転電機に適用される固定子を示す斜視図である。It is a perspective view which shows the stator applied to the rotary electric machine which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る回転電機を示す断面図である。It is sectional drawing which shows the rotary electric machine which concerns on Embodiment 4 of this invention.
 以下、本発明による回転電機の好適な実施の形態につき図面を用いて説明する。 Hereinafter, preferred embodiments of a rotating electrical machine according to the present invention will be described with reference to the drawings.
 実施の形態1.
 図1はこの発明の実施の形態1に係る回転電機を示す断面図、図2はこの発明の実施の形態1に係る回転電機の要部を示す斜視図、図3はこの発明の実施の形態1に係る回転電機に適用される固定子を示す斜視図、図4はこの発明の実施の形態1に係る回転電機に適用される固定子鉄心を構成する鉄心ブロックを示す斜視図、図5はこの発明の実施の形態1に係る回転電機に適用される固定子の固定子巻線を構成する巻線アッセンブリを示す斜視図、図6はこの発明の実施の形態1に係る回転電機における巻線アッセンブリを構成する巻線体を示す斜視図、図7はこの発明の実施の形態1に係る回転電機における巻線アッセンブリを構成する巻線体を示す正面図、図8はこの発明の実施の形態1に係る回転電機における巻線アッセンブリを構成する巻線体を示す端面図、図9はこの発明の実施の形態1に係る回転電機において3つの巻線体が1つのスロットを共有して固定子鉄心に装着されている状態を第1コイルエンド側から見た要部端面図、図10はこの発明の実施の形態1に係る回転電機において3つの巻線体が1つのスロットを共有して固定子鉄心に装着されている状態を第1コイルエンド側から見た展開図、図11はこの発明の実施の形態1に係る回転電機において固定子鉄心に装着された巻線体を径方向外方から見た展開図、図12はこの発明の実施の形態1に係る回転電機に適用される固定子の第1コイルエンド周りを示す要部拡大図、図13はこの発明の実施の形態1に係る回転電機に適用される固定子の第1コイルエンドにおける冷媒の流れを説明する模式図である。なお、図10では、便宜上、コイルエンド部を直線的に示している。
Embodiment 1 FIG.
1 is a cross-sectional view showing a rotating electrical machine according to Embodiment 1 of the present invention, FIG. 2 is a perspective view showing essential parts of the rotating electrical machine according to Embodiment 1 of the present invention, and FIG. 3 is an embodiment of the present invention. 4 is a perspective view showing a stator applied to the rotary electric machine according to FIG. 1, FIG. 4 is a perspective view showing an iron core block constituting the stator core applied to the rotary electric machine according to Embodiment 1 of the present invention, and FIG. FIG. 6 is a perspective view showing a winding assembly constituting a stator winding of a stator applied to the rotating electrical machine according to Embodiment 1 of the present invention, and FIG. 6 shows the winding in the rotating electrical machine according to Embodiment 1 of the present invention. 7 is a perspective view showing a winding body constituting the assembly, FIG. 7 is a front view showing the winding body constituting the winding assembly in the rotary electric machine according to Embodiment 1 of the invention, and FIG. 8 is an embodiment of the invention. 1 is a winding assembly of the rotating electrical machine according to FIG. 9 is an end view showing the winding body to be operated, and FIG. 9 shows a state where the three winding bodies share one slot and are attached to the stator core in the rotary electric machine according to Embodiment 1 of the present invention. FIG. 10 is a first end view of the rotating electrical machine according to the first embodiment of the present invention in which three winding bodies share one slot and are attached to the stator core. FIG. 11 is a development view as seen from the coil end side, FIG. 11 is a development view of the winding body mounted on the stator core in the rotary electric machine according to Embodiment 1 of the present invention as seen from the outside in the radial direction, and FIG. FIG. 13 is an enlarged view of a main part showing the vicinity of the first coil end of the stator applied to the rotating electrical machine according to the first embodiment of the present invention, and FIG. 13 shows the first of the stator applied to the rotating electrical machine according to the first embodiment of the present invention. In the schematic diagram explaining the flow of the refrigerant in one coil end That. In FIG. 10, the coil end portion is shown linearly for convenience.
 図1および図2において、回転電機100は、円筒状のフレーム2、およびフレーム2の軸方向両端に配設されて、フレーム2とともに密閉する空間を形成するフロントフレーム3およびリヤフレーム4を有するハウジング1と、フレーム2に内嵌状態に固着された固定子15と、フロントフレーム3およびリヤフレーム4に軸受5を介して回転可能に支持されたシャフト7に固着されて、固定子15の内周側に回転可能に配設された回転子6と、固定子15の固定子巻線20の第1および第2コイルエンド20f,20rに液体冷媒を供給する冷却機構と、を備えている。 1 and 2, a rotating electrical machine 100 is a housing having a cylindrical frame 2 and a front frame 3 and a rear frame 4 which are disposed at both axial ends of the frame 2 and form a space to be sealed together with the frame 2. 1, a stator 15 that is fixedly fitted to the frame 2, and a shaft 7 that is rotatably supported by a front frame 3 and a rear frame 4 via a bearing 5. And a cooling mechanism for supplying a liquid refrigerant to the first and second coil ends 20f and 20r of the stator winding 20 of the stator 15.
 フレーム2は、鉄製の円筒状の外フレーム2aの内側にアルミ製の円筒状の内フレーム2bを圧入、一体化して作製されている。そして、内フレーム2bの外周面に全周にわたって形成された凹溝が外フレーム2aにより塞がれ、導入流路30が構成される。供給穴31が、導入流路30と外フレーム2aの外側とを連通するように外フレーム2aに形成されている。さらに、噴射穴32が、穴方向を径方向として、冷媒流路3
0と内フレーム2bの内側とを連通するように内フレーム2bに形成されている。噴射穴32は、後述する固定子巻線20の第1コイルエンド20fおよび第2コイルエンド20rの径方向外側に、周方向に一定のピッチで複数配置されている。そして、供給配管33が、供給ポンプ34の吐出口と供給穴31とを連結し、戻り配管35がフレーム2の下方に取り付けられたオイルパン36と供給ポンプ34の吸入口とを連結し、冷却機構が構成される。
The frame 2 is manufactured by press-fitting and integrating an aluminum cylindrical inner frame 2b inside an iron cylindrical outer frame 2a. And the recessed groove formed in the outer peripheral surface of the inner frame 2b over the whole circumference is closed by the outer frame 2a, and the introduction flow path 30 is configured. A supply hole 31 is formed in the outer frame 2a so as to communicate the introduction flow path 30 and the outer side of the outer frame 2a. Further, the injection hole 32 has the hole direction as a radial direction and the refrigerant flow path 3.
The inner frame 2b is formed so as to communicate 0 and the inner side of the inner frame 2b. A plurality of injection holes 32 are arranged at a constant pitch in the circumferential direction on the radially outer side of the first coil end 20f and the second coil end 20r of the stator winding 20 described later. The supply pipe 33 connects the discharge port of the supply pump 34 and the supply hole 31, and the return pipe 35 connects the oil pan 36 attached to the lower side of the frame 2 and the suction port of the supply pump 34. The mechanism is configured.
 回転子6は、円環状の回転子鉄心8と、回転子鉄心8の軸心位置を貫通するように圧入、固定されたシャフト7と、それぞれ回転子鉄心8の外周側を貫通するように装着された8個の永久磁石9と、シャフト7に圧入、固定されて、回転子鉄心8の軸方向の両端面に接するように配設された第1端板10および第2端板11と、を備える。 The rotor 6 is mounted so as to pass through the annular rotor core 8, the shaft 7 that is press-fitted and fixed so as to pass through the axial center position of the rotor core 8, and the outer peripheral side of the rotor core 8. The eight permanent magnets 9, the first end plate 10 and the second end plate 11 which are press-fitted and fixed to the shaft 7 and arranged so as to be in contact with both end surfaces of the rotor core 8 in the axial direction; Is provided.
 つぎに、固定子15の構成について具体的に図3乃至図11を参照しつつ説明する。 Next, the configuration of the stator 15 will be specifically described with reference to FIGS. 3 to 11.
 固定子15は、図3に示されるように、固定子鉄心16と、固定子鉄心16に装着された固定子巻線20と、を備えている。ここで、説明の便宜上、回転子6の極数を8極、固定子鉄心16のスロット数を48個、固定子巻線20を三相巻線とする。すなわち、スロットは、毎極毎相当たり2個の割合で固定子鉄心16に形成されている。 As shown in FIG. 3, the stator 15 includes a stator iron core 16 and a stator winding 20 attached to the stator iron core 16. Here, for convenience of explanation, the number of poles of the rotor 6 is eight, the number of slots of the stator core 16 is 48, and the stator winding 20 is a three-phase winding. That is, the slots are formed in the stator core 16 at a ratio of two slots per phase per pole.
 鉄心ブロック17は、円環状の固定子鉄心16を周方向に48等分割したもので、図4に示されるように、電磁鋼板を積層一体化して作製され、断面円弧形のコアバック部17aと、コアバック部17aの内周壁面から径方向内方に突出するティース17bと、を備えている。そして、固定子鉄心16は、ティース17bを径方向内方に向けて、コアバック部17aの周方向の側面同士を突き合わせて、48個の鉄心ブロック17を周方向に配列、一体化して、円環状に構成されている。周方向に隣り合う鉄心ブロック17により構成されるスロット18が、内周側に開口するように、周方向に等角ピッチで配列されている。ティース17bは周方向幅が径方向内方に向って漸次狭くなる先細り形状に形成されており、スロット18の断面は長方形となっている。 The core block 17 is obtained by dividing the annular stator core 16 into 48 equal parts in the circumferential direction. As shown in FIG. 4, the core block 17 is produced by laminating and integrating electromagnetic steel plates, and has a core back portion 17a having a circular arc cross section. And teeth 17b projecting radially inward from the inner peripheral wall surface of the core back portion 17a. Then, the stator core 16 is formed by aligning 48 core blocks 17 in the circumferential direction, integrating the circumferential direction side surfaces of the core back portion 17a with the teeth 17b facing inward in the radial direction, It is configured in an annular shape. Slots 18 constituted by iron core blocks 17 adjacent in the circumferential direction are arranged at an equiangular pitch in the circumferential direction so as to open to the inner circumferential side. The teeth 17b are formed in a tapered shape in which the circumferential width gradually decreases inward in the radial direction, and the cross section of the slot 18 is rectangular.
 巻線体22は、例えば、エナメル樹脂で絶縁被覆された、かつ接続部のない連続した銅線やアルミニウム線などからなる長方形断面の導体線19をエッジワイズ巻きにδ状のコイルパターンを連続して2度巻いて作製される。具体的には、巻線体22は、図6から図8に示されるように、第1直線部22a、第1コイルエンド部22e、第2直線部22b、第2コイルエンド部22f、第3直線部22c、第3コイルエンド部22gおよび第4直線部22dからなるδ状のコイルパターンを導体線19の長方形断面の短辺の長さ方向に2つ配列し、第4直線部22dと第1直線部22aとを渡り線23で連結して構成される。そして、渡り線23がコイルエンド部を構成し、導体線19の巻き始め端部が巻線端22hを構成し、巻き終わり端部が巻線端22iを構成する。 For example, the winding body 22 is formed by continuously forming a δ-shaped coil pattern on an edgewise winding of a conductor wire 19 having a rectangular cross section made of a continuous copper wire or an aluminum wire, which is insulated with enamel resin and has no connection portion. And then rolled twice. Specifically, as shown in FIGS. 6 to 8, the winding body 22 includes a first straight portion 22a, a first coil end portion 22e, a second straight portion 22b, a second coil end portion 22f, and a third Two δ-shaped coil patterns comprising a straight portion 22c, a third coil end portion 22g, and a fourth straight portion 22d are arranged in the length direction of the short side of the rectangular cross section of the conductor wire 19, and the fourth straight portion 22d and the fourth straight portion 22d A straight line portion 22a is connected by a crossover line 23. The connecting wire 23 constitutes a coil end portion, the winding start end portion of the conductor wire 19 constitutes a winding end 22h, and the winding end end portion constitutes a winding end 22i.
 この巻線体22では、第1直線部22aおよび第3直線部22cが、長方形断面の長辺の長さ方向を周方向に向け、長方形断面の短辺の長さ方向に隙間dをあけて1列に4本配列されている。また、第2直線部22bが、第1直線部22aおよび第3直線部22cの列から周方向一側に6スロット角度間隔離れて、長方形断面の長辺の長さ方向を周方向に向け、長方形断面の短辺の長さ方向に隙間3dをあけて2本配列される。また、第4直線部22dが、第1直線部22aおよび第3直線部22cの列から周方向他側に6スロット角度間隔離れて、長方形断面の長辺の長さ方向を周方向に向け、長方形断面の短辺の長さ方向に隙間3dをあけて2本配列される。なお、6スロット角度間隔とは、連続する6つのティース17bの両側のスロット18のスロット中心間の間隔である。ここでは、6スロット角度間隔が、1磁極ピッチに相当する。dは、導体線19の短辺の長さである。 In this winding body 22, the first straight portion 22 a and the third straight portion 22 c have a gap d in the length direction of the short side of the rectangular cross section with the length direction of the long side of the rectangular cross section facing the circumferential direction. Four are arranged in one row. Further, the second straight portion 22b is spaced from the row of the first straight portion 22a and the third straight portion 22c by a six-slot angle interval on the circumferential side, and the length direction of the long side of the rectangular cross section is directed in the circumferential direction. Two are arranged with a gap 3d in the length direction of the short side of the rectangular cross section. Further, the fourth straight portion 22d is spaced apart from the row of the first straight portion 22a and the third straight portion 22c by a 6-slot angular interval on the other side in the circumferential direction, and the length direction of the long side of the rectangular cross section is directed in the circumferential direction. Two are arranged with a gap 3d in the length direction of the short side of the rectangular cross section. The 6-slot angular interval is an interval between the slot centers of the slots 18 on both sides of the six consecutive teeth 17b. Here, the 6-slot angular interval corresponds to one magnetic pole pitch. d is the length of the short side of the conductor wire 19.
 このように構成された巻線体22が周方向に1スロットピッチで48個配列され、図5に示される巻線アッセンブリ21が組み立てられる。この巻線アッセンブリ21では、径方向に1列に並んだ8本の第1から第4直線部22a,22b,22c,22dが、1スロットピッチで周方向に48列配列される。そして、径方向に1列に並んだ8本の第1から第4直線部22a,22b,22c,22dの各列が、スロット18のそれぞれに収納される。 48 pieces of the winding bodies 22 configured in this way are arranged at a one-slot pitch in the circumferential direction, and the winding assembly 21 shown in FIG. 5 is assembled. In this winding assembly 21, eight first to fourth linear portions 22a, 22b, 22c, and 22d arranged in one row in the radial direction are arranged in 48 rows in the circumferential direction at a one-slot pitch. Then, each of the eight first to fourth linear portions 22a, 22b, 22c, and 22d arranged in one row in the radial direction is housed in each of the slots 18.
 そして、48個の鉄心ブロック17が、ティース17bのそれぞれを、巻線アッセンブリ21の隣り合う第1から第4直線部22a,22b,22c,22dの列間の径方向外方に位置させるように、周方向に略等角ピッチで配列される。ついで、周方向に配列された鉄心ブロック17を、径方向内方に移動させ、鉄心ブロック17のティース17bのそれぞれを隣り合う第1から第4直線部22a,22b,22c,22dの列間に挿入する。 Then, the 48 iron core blocks 17 position each of the teeth 17b radially outward between the adjacent first to fourth linear portions 22a, 22b, 22c, and 22d of the winding assembly 21. Are arranged at a substantially equiangular pitch in the circumferential direction. Next, the core blocks 17 arranged in the circumferential direction are moved inward in the radial direction, and the teeth 17b of the core block 17 are moved between adjacent first to fourth linear portions 22a, 22b, 22c, 22d. insert.
 そして、図3に示されるように、隣り合う鉄心ブロック17の周方向の側面同士が突き合わされ、48個の鉄心ブロック17が巻線アッセンブリ21に装着される。ついで、円環状に配列された鉄心ブロック17がフレーム2内に圧入、固着されて一体化され、固定子鉄心16が作製される。さらに、巻線アッセンブリ21に結線処理が施され、固定子巻線20が形成される。これにより、固定子巻線20が固定子鉄心16に装着され、固定子15が組み立てられる。そして、各スロット18には、8本の第1から第4直線部22a,22b,22c,22dが長方形断面の長辺の長さ方向を周方向に向けて径方向に1列に配列されて収納されている。 Then, as shown in FIG. 3, the side surfaces in the circumferential direction of adjacent iron core blocks 17 are abutted with each other, and 48 iron core blocks 17 are attached to the winding assembly 21. Next, the iron core blocks 17 arranged in an annular shape are press-fitted and fixed into the frame 2 to be integrated, whereby the stator iron core 16 is manufactured. Further, the winding assembly 21 is connected to form the stator winding 20. As a result, the stator winding 20 is mounted on the stator core 16 and the stator 15 is assembled. In each slot 18, eight first to fourth straight portions 22 a, 22 b, 22 c, 22 d are arranged in a row in the radial direction with the length direction of the long side of the rectangular cross section facing the circumferential direction. It is stored.
 図9および図10は、それぞれ、3つの巻線体22が、1つのスロット18を共用して固定子鉄心16に装着されている状態を示し、図11は固定子鉄心16に装着された巻線体22を径方向外方から見た状態を示している。ここで、周方向に6スロット角度間隔で並ぶ5つのスロット18を周方向の並び順に1番目のスロット181、2番目のスロット182、3番目のスロット183、4番目のスロット184、5番目のスロット185とする。 FIGS. 9 and 10 each show a state in which three winding bodies 22 are mounted on the stator core 16 sharing one slot 18, and FIG. 11 shows a winding mounted on the stator core 16. The state which looked at the wire 22 from the radial direction outer side is shown. Here, five slots 18 arranged at an angular interval of 6 slots in the circumferential direction are arranged in the circumferential order in the first slot 18 1 , the second slot 18 2 , the third slot 18 3 , the fourth slot 18 4 , The fifth slot is 18 5 .
 1番目の巻線体22(以下、巻線体221とする)に着目すれば、2番目のスロット182のスロット開口側から第1層の第1直線部22aから軸方向他端側(第1コイルエンド20f側)に延び出た第1コイルエンド部22eは、傾斜角度θで周方向に1番目のスロット181側に延び、頭頂部で径方向外方に距離dだけレーンチェンジ(シフト)され、その後逆向きの傾斜角度θで周方向に1番目のスロット181側に延び、1番目のスロット181のスロット開口側から第2層の第2直線部22bに連結されている。ついで、1番目のスロット181のスロット開口側から第2層の第2直線部22bから軸方向一端側(第2コイルエンド20r側)に延び出た第2コイルエンド部22fは、傾斜角度θで周方向に2番目のスロット182側に延び、頭頂部で径方向外方に距離dだけシフトされ、その後逆向きの傾斜角度θで周方向に2番目のスロット182側に延び、2番目のスロット182のスロット開口側から第3層の第3直線部22cに連結されている。 Paying attention to the first winding body 22 (hereinafter referred to as the winding body 221), from the slot opening side of the second slot 182, from the first linear portion 22a of the first layer to the other axial end side (first 1 the first coil end 22e which extend out to the coil end 20f side), the inclination angle extends in the first slot 18 1 side circumferentially theta, only lane change (shift distance d radially outwardly at the top portion Then, it extends to the first slot 18 1 side in the circumferential direction at a reverse inclination angle θ, and is connected to the second straight portion 22b of the second layer from the slot opening side of the first slot 18 1 . Next, the second coil end portion 22f extending from the slot opening side of the first slot 18 1 to the one end side in the axial direction (second coil end 20r side) from the second linear portion 22b of the second layer has an inclination angle θ Extends to the second slot 18 2 side in the circumferential direction, shifted by a distance d outward in the radial direction at the top, and then extended to the second slot 18 2 side in the circumferential direction at a reverse inclination angle θ. The third slot 18 2 is connected to the third straight portion 22c of the third layer from the slot opening side.
 ついで、2番目のスロット182のスロット開口側から第3層の第3直線部22cから第1コイルエンド20f側に延び出た第3コイルエンド部22gは、傾斜角度θで周方向に3番目のスロット183側に延び、頭頂部で径方向外方に距離dだけシフトされ、その後逆向きの傾斜角度θで周方向に3番目のスロット183側に延び、3番目のスロット183のスロット開口側から第4層の第4直線部22dに連結されている。 Next, the third coil end portion 22g extending from the slot opening side of the second slot 18 2 to the first coil end 20f side from the third linear portion 22c of the third layer is third in the circumferential direction at an inclination angle θ. of extending the slot 18 3 side, is shifted parietal distance radially outwards d, then the inclination angle of the opposite θ circumferentially extending in the third slot 18 3 side, the third slot 18 3 It is connected to the fourth linear portion 22d of the fourth layer from the slot opening side.
 ついで、3番目のスロット183のスロット開口側から第4層の第4直線部22dから第2コイルエンド20r側に延び出た渡り線23は、傾斜角度θで周方向に2番目のスロット182側に延び、頭頂部で径方向外方に距離dだけシフトされ、その後逆向きの傾斜角度θで周方向に2番目のスロット182側に延び、2番目のスロット182のスロット開口側から第5層の第1直線部22aに連結されている。2番目のスロット182のスロット開口側から第5層の第1直線部22aから第1コイルエンド20f側に延び出た第1コイルエンド部22eは、傾斜角度θで周方向に1番目のスロット181側に延び、頭頂部で径方向外方に距離dだけシフトされ、その後逆向きの傾斜角度θで周方向に1番目のスロット181側に延び、1番目のスロット181のスロット開口側から第6層の第2直線部22bに連結されている。 Subsequently, the connecting wire 23 extending from the fourth straight portion 22d of the fourth layer to the second coil end 20r side from the slot opening side of the third slot 18 3 has the second slot 18 in the circumferential direction at an inclination angle θ. The second slot 18 2 extends to the second slot 18 and is shifted radially outward at the top by a distance d, and then extends circumferentially at the opposite inclination angle θ to the second slot 18 2 side. To the first straight portion 22a of the fifth layer. The first coil end portion 22e extending from the first straight portion 22a of the fifth layer to the first coil end 20f side from the slot opening side of the second slot 18 2 is the first slot in the circumferential direction at an inclination angle θ. 18 1 side, is shifted by a distance d radially outward at the top of the head, and then extends to the first slot 18 1 side in the circumferential direction at a reverse inclination angle θ, and the slot opening of the first slot 18 1 It is connected to the second straight portion 22b of the sixth layer from the side.
 ついで、1番目のスロット181のスロット開口側から第6層の第2直線部22bから第2コイルエンド20r側に延び出た第2コイルエンド部22fは、傾斜角度θで周方向に2番目のスロット182側に延び、頭頂部で径方向外方に距離dだけシフトされ、その後逆向きの傾斜角度θで周方向に2番目のスロット182側に延び、2番目のスロット182のスロット開口側から第7層の第3直線部22cに連結されている。ついで、2番目のスロット182のスロット開口側から第7層の第3直線部22cから第1コイルエンド20f側に延び出た第3コイルエンド部22gは、傾斜角度θで周方向に3番目のスロット183側に延び、頭頂部で径方向外方に距離dだけシフトされ、その後逆向きの傾斜角度θで周方向に3番目のスロット183側に延び、3番目のスロット183のスロット開口側から第8層の第4直線部22dに連結されている。 Next, the second coil end portion 22f extending from the second straight portion 22b of the sixth layer to the second coil end 20r side from the slot opening side of the first slot 181 is second in the circumferential direction at an inclination angle θ. slot 18 extends in two side, is shifted parietal distance radially outwards d, then the inclination angle of the opposite θ circumferentially extending into the second slot 18 2 side, of the second slot 18 2 The slot is connected to the third straight portion 22c of the seventh layer from the slot opening side. Then, the third coil end portion 22g extending from the slot opening side of the second slot 18 2 to the first coil end 20f side from the third linear portion 22c of the seventh layer is the third in the circumferential direction at the inclination angle θ. of extending the slot 18 3 side, is shifted parietal distance radially outwards d, then the inclination angle of the opposite θ circumferentially extending in the third slot 18 3 side, the third slot 18 3 The slot is connected to the fourth straight portion 22d of the eighth layer from the slot opening side.
 そこで、2番目のスロット182の第1層の第1直線部22aと1番目のスロット181の第2層の第2直線部22bとが、第1コイルエンド部22eにより連結され、1番目のスロット181の第2層の第2直線部22bと2番目のスロット182の第3層の第3直線部22cとが、第2コイルエンド部22fにより連結され、2番目のスロット182の第3層の第3直線部22cと3番目のスロット183の第4層の第4直線部22dとが、第3コイルエンド部22gにより連結され、δ状のコイルパターンを構成する。 Therefore, the second slot 18 of the first linear portion 22a of the second first layer and the first slot 18 1 of the second layer second linear portion 22b is connected by the first coil end 22e, the first The second straight line portion 22b of the second layer of the slot 18 1 and the third straight line portion 22c of the third layer of the second slot 18 2 are connected by the second coil end portion 22f, and the second slot 18 2. The third straight line portion 22c of the third layer and the fourth straight line portion 22d of the fourth layer of the third slot 183 are connected by the third coil end portion 22g to form a δ-shaped coil pattern.
 さらに、2番目のスロット182の第5層の第1直線部22aと1番目のスロット181の第6層の第2直線部22bとが、第1コイルエンド部22eにより連結され、1番目のスロット181の第6層の第2直線部22bと2番目のスロット182の第7層の第3直線部22cとが、第2コイルエンド部22fにより連結され、2番目のスロット182の第7層の第3直線部22cと3番目のスロット183の第8層の第4直線部22dとが、第3コイルエンド部22gにより連結され、δ状のコイルパターンを構成する。そして、3番目のスロット183の第4層の第4直線部22dと2番目のスロット182の第5層の第1直線部22aとが、渡り線23により連結される。 Further, the second slot 18 of the first linear portion 22a of the second fifth layer and the first slot 18 1 of the sixth layer second linear portion 22b is connected by the first coil end 22e, the first The second straight portion 22b of the sixth layer of the slot 18 1 and the third straight portion 22c of the seventh layer of the second slot 18 2 are connected by the second coil end portion 22f, and the second slot 18 2. The seventh straight line portion 22c of the seventh layer and the fourth straight line portion 22d of the eighth layer of the third slot 183 are connected by the third coil end portion 22g to form a δ-shaped coil pattern. Then, the fourth straight portion 22d of the fourth layer of the third slot 18 3 and the first straight portion 22a of the fifth layer of the second slot 18 2 are connected by the crossover 23.
 このように、1番目の巻線体221は、2つのδ状のコイルパターンを渡り線23で連結して、径方向に2層に配列されて、構成される。第1から第3コイルエンド部22e,22f,22gおよび渡り線23において、第1から第4直線部22a,22b,22c,22dの端部から頭頂部に至る傾斜部は、軸方向から見て、略円弧状に形成されている。即ち、第1から第3コイルエンド部22e,22f,22gおよび渡り線23の傾斜部は、径方向位置を維持している。 Thus, the first winding body 221 is configured by connecting two δ-shaped coil patterns with the crossover wires 23 and arranging them in two layers in the radial direction. In the first to third coil end portions 22e, 22f, 22g and the crossover wire 23, the inclined portions from the end portions of the first to fourth straight portions 22a, 22b, 22c, 22d to the top of the head are viewed from the axial direction. It is formed in a substantially arc shape. That is, the first to third coil end portions 22e, 22f, 22g and the inclined portion of the crossover wire 23 maintain the radial position.
 同様に、2番目の巻線体222が、2番目のスロット182、3番目のスロット183および4番目のスロット184に装着され、3番目の巻線体223が、3番目のスロット183、4番目のスロット184および5番目のスロット185に装着される。そして、3つの巻線体221,222,223が共用するスロット183には、第1から第4直線部22a,22b,22c,22dが、導体線19の長方形断面の長辺の長さ方向を周方向に向けて、径方向に1列に並んで、8本収納されている。 Similarly, the second winding body 222 is mounted in the second slot 18 2 , the third slot 18 3, and the fourth slot 18 4 , and the third winding body 223 is connected to the third slot 18. 3 Mounted in the fourth slot 18 4 and the fifth slot 18 5 . Then, the slot 18 3 three windings body 221, 222 and 223 are shared, the fourth straight section 22a from the 1, 22b, 22c, 22 d has a length direction of the long sides of the rectangular cross section of the conductor wire 19 8 are stored in a line in the radial direction, facing the circumferential direction.
 このように構成された固定子巻線20においては、巻線体22の第1層に位置する第1直線部22aから第1コイルエンド20f側に延び出た第1コイルエンド部22eは、周方向一側の隣に位置する巻線体22の第1層に位置する第1直線部22aから第1コイルエンド20f側に延び出た第1コイルエンド部22eの上方を通って周方向一側に延び、頭頂部で径方向外方に距離dだけシフトして、周方向一側の隣に位置する巻線体22の第1コイルエンド部22eの下方を通って周方向一側に延び、第2直線部22bに接続される。 In the stator winding 20 configured as described above, the first coil end portion 22e extending from the first linear portion 22a located on the first layer of the winding body 22 to the first coil end 20f side has a circumferential shape. One side in the circumferential direction passes above the first coil end portion 22e extending to the first coil end 20f side from the first linear portion 22a located in the first layer of the winding body 22 located next to the one side in the direction. Is shifted by a distance d outward in the radial direction at the top of the head, and extends to one side in the circumferential direction through the lower side of the first coil end portion 22e of the winding body 22 located next to one side in the circumferential direction. Connected to the second straight portion 22b.
 巻線体22の第2直線部22bから第2コイルエンド20r側に延び出た第2コイルエンド部22fは、周方向一側の隣に位置する巻線体22の第2直線部22bから第2コイルエンド20r側に延び出た第2コイルエンド部22fの下方を通って周方向他側に延び、頭頂部の手間で出現し、頭頂部で径方向外方に距離dだけシフトして、周方向一側の隣に位置する巻線体22の第2コイルエンド部22fの上方を通って周方向他側に延び、第3直線部22cに接続される。 The second coil end portion 22f extending from the second linear portion 22b of the winding body 22 to the second coil end 20r side is second to the second linear end portion 22b of the winding body 22 located next to one side in the circumferential direction. 2 extending to the other side in the circumferential direction through the lower side of the second coil end portion 22f extending to the coil end 20r side, appearing in the trouble of the top of the head, shifted by the distance d radially outward at the top of the head, It passes above the second coil end portion 22f of the winding body 22 located next to one side in the circumferential direction, extends to the other side in the circumferential direction, and is connected to the third linear portion 22c.
 巻線体22の第3直線部22cから第1コイルエンド20f側に延び出た第3コイルエンド部22gは、周方向一側の隣に位置する巻線体22の第3直線部22cから延び出た第3コイルエンド部22gの下方を通って周方向一側に延び、頭頂部の手前で出現し、頭頂部で径方向外方に距離dだけシフトして、周方向一側の隣に位置する巻線体22の第3コイルエンド部22gの上方を通って周方向一側に延び、第4直線部22dに接続される。 The third coil end portion 22g extending from the third straight portion 22c of the winding body 22 to the first coil end 20f side extends from the third straight portion 22c of the winding body 22 located adjacent to one side in the circumferential direction. It extends below the third coil end portion 22g that protrudes to one side in the circumferential direction, appears in front of the top of the head, shifts radially outward by a distance d at the top of the head, and next to one side in the circumferential direction. The winding body 22 is positioned so as to pass above the third coil end portion 22g and extend to one side in the circumferential direction, and is connected to the fourth linear portion 22d.
 このように、図12に示されるように、第1コイルエンド20fでは、周方向に隣り合う第1コイルエンド部22eの傾斜部間、および第3コイルエンド部22gの傾斜部間に隙間が形成される。また、第2コイルエンド20rでは、第2コイルエンド部22fの傾斜部間、および渡り線23の傾斜部間に隙間が形成される。これらの隙間が液体冷媒の流路を構成する。 Thus, as shown in FIG. 12, in the first coil end 20f, a gap is formed between the inclined portions of the first coil end portion 22e adjacent in the circumferential direction and between the inclined portions of the third coil end portion 22g. Is done. In the second coil end 20r, a gap is formed between the inclined portions of the second coil end portion 22f and between the inclined portions of the crossover wire 23. These gaps constitute a flow path for the liquid refrigerant.
 このように構成された回転電機100は、交流電力が固定子巻線20に給電され、8極、48スロットのインナーロータ型の三相モータとして動作する。供給ポンプ34が駆動され、ATFオイル、エンジンオイルなどの液体冷媒が供給配管33および供給穴31を介して導入流路30に供給される。導入流路30に供給された液体冷媒は、噴射穴32から第1および第2コイルエンド20f,20rに噴射される。回転子6と固定子15と間のエアギャップgが約1mmであるのに対し、第1コイルエンド部22eの根本部間の周方向隙間lが約5mmであるので、液体冷媒がエアギャップに流入しにくい。また、第2コイルエンド部22fの根本部間の周方向隙間、第3コイルエンド部22gの根本部間の周方向隙間、および渡り線23の根本部間の周方向隙間も、第1コイルエンド部22eの根本部間の周方向隙間の隙間と同等である。そこで、第1および第2コイルエンド20f,20rに噴射された液体冷媒は、回転子6と固定子15と間のエアギャップに流入することなく、第1および第2コイルエンド20rの冷却に供せられる。 Rotating electric machine 100 configured in this manner operates as an 8-pole, 48-slot inner rotor type three-phase motor by supplying AC power to stator winding 20. The supply pump 34 is driven, and liquid refrigerant such as ATF oil and engine oil is supplied to the introduction flow path 30 through the supply pipe 33 and the supply hole 31. The liquid refrigerant supplied to the introduction flow path 30 is injected from the injection hole 32 to the first and second coil ends 20f and 20r. Whereas the air gap g between the rotor 6 and the stator 15 is about 1 mm, the circumferential gap l between the roots of the first coil end portion 22e is about 5 mm, so that the liquid refrigerant becomes an air gap. Difficult to flow in. Further, the circumferential clearance between the root portions of the second coil end portion 22f, the circumferential clearance between the root portions of the third coil end portion 22g, and the circumferential clearance between the root portions of the connecting wire 23 are also the first coil end. It is equivalent to the clearance of the circumferential clearance between the roots of the portion 22e. Therefore, the liquid refrigerant injected to the first and second coil ends 20f and 20r is used for cooling the first and second coil ends 20r without flowing into the air gap between the rotor 6 and the stator 15. It is made.
 第1コイルエンド20fに径方向外方から噴射された液体冷媒は、図12および図13に矢印で示されるように、最外周に位置する、周方向に隣り合う第3コイルエンド部22gの傾斜部間の隙間を頭頂部側から根本側に流れる。そして、液体冷媒は、固定子鉄心16の端面上を径方向内方に流れ、毛細管現象により、径方向に隣り合う第3コイルエンド部22gの根本部間に吸い上げられる。ついで、図12および図13に矢印で示されるように、最外周に位置する第3コイルエンド部22gの傾斜部の内径側に位置する第3コイルエンド部22gの傾斜部間の隙間を頭頂部側に流れる。さらに、固定子鉄心16の端面上を径方向内方に流れ、毛細管現象により、径方向に隣り合う第1コイルエンド部22eの根本部間に吸い上げられる。そして、周方向に隣り合う第1コイルエンド部22eの傾斜部間の隙間を頭頂部側に流れる。 The liquid refrigerant injected from the radially outer side to the first coil end 20f is inclined at the third coil end portion 22g adjacent to the circumferential direction located at the outermost periphery, as shown by arrows in FIGS. The gap between the parts flows from the top to the root. Then, the liquid refrigerant flows radially inward on the end face of the stator core 16, and is sucked up between the root portions of the third coil end portions 22g adjacent in the radial direction by a capillary phenomenon. Next, as indicated by arrows in FIGS. 12 and 13, the gap between the inclined portions of the third coil end portion 22 g located on the inner diameter side of the inclined portion of the third coil end portion 22 g located on the outermost periphery is the top of the head. Flows to the side. Furthermore, it flows radially inward on the end face of the stator core 16, and is sucked up between the root portions of the first coil end portions 22e adjacent in the radial direction by capillary action. And the clearance gap between the inclination parts of the 1st coil end part 22e adjacent to the circumferential direction flows into the top part side.
 このように、第1コイルエンド20fに噴射された液体冷媒は、周方向に隣り合う第1コイルエンド部22eの傾斜部間の隙間、および周方向に隣り合う第3コイルエンド部22gの傾斜部間の隙間を介して周方向に流れる。さらに、液体冷媒は、固定子鉄心16の端面に沿って径方向内方に流れる。これにより、液体冷媒が、第1コイルエンド20fの径方向および周方向に流れ、第1コイルエンド20fの内部まで流入し、第1コイルエンド20fが効果的に冷却される。 As described above, the liquid refrigerant injected to the first coil end 20f is a gap between the inclined portions of the first coil end portion 22e adjacent in the circumferential direction, and the inclined portion of the third coil end portion 22g adjacent in the circumferential direction. It flows in the circumferential direction through the gap between them. Further, the liquid refrigerant flows radially inward along the end surface of the stator core 16. Accordingly, the liquid refrigerant flows in the radial direction and the circumferential direction of the first coil end 20f, flows into the first coil end 20f, and the first coil end 20f is effectively cooled.
 図示していないが、第2コイルエンド20rに径方向外方から噴射された液体冷媒は、最外周に位置する、周方向に隣り合う第2コイルエンド部22fの傾斜部間の隙間を頭頂部側から根本側に流れる。そして、液体冷媒は、固定子鉄心16の端面上を径方向内方に流れ、毛細管現象により、径方向に隣り合う第2コイルエンド部22fの根本部間に吸い上げられる。ついで、最外周に位置する第2コイルエンド部22fの傾斜部の内径側に位置する第2コイルエンド部22fの傾斜部間の隙間を頭頂部側に流れる。さらに、固定子鉄心16の端面上を径方向内方に流れ、毛細管現象により、径方向に隣り合う渡り線23の根本部間に吸い上げられる。そして、周方向に隣り合う渡り線23の傾斜部間の隙間を頭頂部側に流れる。 Although not shown, the liquid refrigerant injected from the radially outer side to the second coil end 20r passes through the gap between the inclined portions of the second coil end portions 22f adjacent to the circumferential direction located on the outermost periphery. Flows from side to root. Then, the liquid refrigerant flows radially inward on the end face of the stator core 16, and is sucked up between the root portions of the second coil end portions 22f adjacent in the radial direction by capillary action. Next, a gap between the inclined portions of the second coil end portion 22f located on the inner diameter side of the inclined portion of the second coil end portion 22f located on the outermost periphery flows to the top portion side. Furthermore, it flows radially inward on the end face of the stator core 16 and is sucked up between the roots of the connecting wires 23 adjacent in the radial direction by capillary action. And the clearance gap between the inclination parts of the connecting wire 23 adjacent to the circumferential direction flows to the top part side.
 このように、第2コイルエンド20rに噴射された液体冷媒は、周方向に隣り合う第2コイルエンド部22fの傾斜部間の隙間、および周方向に隣り合う渡り線23の傾斜部間の隙間を介して周方向に流れる。さらに、液体冷媒は、固定子鉄心16の端面に沿って径方向内方に流れる。これにより、液体冷媒が、第2コイルエンド20rの径方向および周方向に流れ、第2コイルエンド20rの内部まで流入し、第2コイルエンド20rが効果的に冷却される。 Thus, the liquid refrigerant injected to the second coil end 20r is a gap between the inclined portions of the second coil end portion 22f adjacent in the circumferential direction, and a gap between the inclined portions of the connecting wire 23 adjacent in the circumferential direction. Flows in the circumferential direction. Further, the liquid refrigerant flows radially inward along the end surface of the stator core 16. Accordingly, the liquid refrigerant flows in the radial direction and the circumferential direction of the second coil end 20r, flows into the second coil end 20r, and the second coil end 20r is effectively cooled.
 第1および第2コイルエンド20f,20rを冷却した液体冷媒は、フレーム2内の下部に集められ、オイルパン36から戻り配管35を介して供給ポンプ34に戻される。 The liquid refrigerant that has cooled the first and second coil ends 20f, 20r is collected in the lower part of the frame 2, and is returned from the oil pan 36 to the supply pump 34 via the return pipe 35.
 この実施の形態1によれば、巻線体22は、導体線19を、第2スロット182、第1スロット181、第2スロット182、第3スロット183の順に、かつ第1スロット181、第2スロット182および第3スロット183への軸方向からの挿入方向を交互に変えて挿入して形成されたδ状のコイルパターンを、径方向に2回繰り返して巻き回して作製されている。 According to the first embodiment, the winding body 22 includes the conductor wire 19 in the order of the second slot 18 2 , the first slot 18 1 , the second slot 18 2 , the third slot 18 3 , and the first slot. A δ-shaped coil pattern formed by alternately changing the insertion direction from the axial direction into the 18 1 , the second slot 18 2 and the third slot 18 3 is repeatedly wound twice in the radial direction. Have been made.
 そこで、第1から第3コイルエンド部22e,22f,22gおよび渡り線23の頭頂部での曲げ半径が小さくなり、レーンチェンジに起因する第1および第2コイルエンド20f,20rの大型化を抑制できる。また、巻線体22が分布巻の巻線となり、トルク脈動が抑えられ、高出力化が図られる。 Therefore, the bending radii at the tops of the first to third coil end portions 22e, 22f and 22g and the crossover wire 23 are reduced, and the increase in size of the first and second coil ends 20f and 20r due to the lane change is suppressed. it can. In addition, the winding body 22 is a distributed winding, which suppresses torque pulsation and increases output.
 また、第1コイルエンド20fでは、周方向に隣り合う第1コイルエンド部22e間の隙間により形成された冷媒流路が周方向に1スロットピッチで配列された流路群と、周方向に隣り合う第3コイルエンド部22g間の隙間により形成された冷媒流路とが径方向に混在する。これにより、第1コイルエンド20fに供給された液体冷媒が、第3コイルエンド部22g間の隙間により形成された冷媒流路を流れて固定子鉄心16の端面に至り、固定子鉄心16の端面上を径方向内方に流れ、第1コイルエンド部22e間の隙間により形成された冷媒流路を固定子鉄心16の端面から離れるように流れる。これにより、液体冷媒が、第1コイルエンド20fを周方向に流れつつ、径方向内方に流れて、第1コイルエンド20fの内部に供給され、第1コイルエンド20fの冷却性が高められる。 Further, in the first coil end 20f, a refrigerant flow path formed by a gap between the first coil end portions 22e adjacent in the circumferential direction is adjacent to the flow path group in which the circumferential direction is arranged at one slot pitch in the circumferential direction. A refrigerant flow path formed by a gap between the matching third coil end portions 22g is mixed in the radial direction. As a result, the liquid refrigerant supplied to the first coil end 20f flows through the refrigerant flow path formed by the gap between the third coil end portions 22g to reach the end surface of the stator core 16, and the end surface of the stator core 16 It flows inward in the radial direction, and flows away from the end face of the stator core 16 through a coolant channel formed by a gap between the first coil end portions 22e. As a result, the liquid refrigerant flows inward in the radial direction while flowing through the first coil end 20f in the circumferential direction, and is supplied to the inside of the first coil end 20f, thereby improving the cooling performance of the first coil end 20f.
 一方、第2コイルエンド20rでは、周方向に隣り合う第2コイルエンド部22f間の隙間により形成された冷媒流路が周方向に1スロットピッチで配列された流路群と、周方向に隣り合う渡り線23間の隙間により形成された冷媒流路とが径方向に混在する。これにより、第2コイルエンド20rに供給された液体冷媒が、第2コイルエンド部22f間の隙間により形成された冷媒流路を流れて固定子鉄心16の端面に至り、固定子鉄心16の端面上を径方向内方に流れ、渡り線23間の隙間により形成された冷媒流路を固定子鉄心16の端面から離れるように流れる。これにより、液体冷媒が、第2コイルエンド20rを周方向に流れつつ、径方向内方に流れて、第2コイルエンド20rの内部に供給され、第2コイルエンド20rの冷却性が高められる。 On the other hand, in the second coil end 20r, a refrigerant flow path formed by a gap between the second coil end portions 22f adjacent in the circumferential direction is adjacent to the flow path group in which the circumferential direction is arranged at one slot pitch in the circumferential direction. The refrigerant flow path formed by the gap between the connecting crossover wires 23 is mixed in the radial direction. Thereby, the liquid refrigerant supplied to the second coil end 20r flows through the refrigerant flow path formed by the gap between the second coil end portions 22f, reaches the end surface of the stator core 16, and the end surface of the stator core 16 It flows inward in the radial direction and flows away from the end surface of the stator core 16 through the refrigerant flow path formed by the gap between the connecting wires 23. As a result, the liquid refrigerant flows radially inward while flowing through the second coil end 20r in the circumferential direction, and is supplied to the inside of the second coil end 20r, thereby improving the cooling performance of the second coil end 20r.
 巻線体22は、第1から第4直線部22a,22b,22c,22dの第1スロット181、第2スロット182および第3スロット183内の径方向における収納位置が、第2スロット182、第1スロット181、第2スロット182、第3スロット183の順に、第1から第4直線部22a,22b,22c,22dの径方向厚みdだけ、径方向の一側に順次シフトしている。これにより、巻線アッセンブリ21の組立性が向上される。 The winding body 22 has a first slot 18 1 , a second slot 18 2, and a third slot 18 3 in the first to fourth straight portions 22 a, 22 b, 22 c, and 22 d in the second slot. 18 2 , 1st slot 18 1 , 2nd slot 18 2 , 3rd slot 18 3 in order of radial thickness d of first to fourth linear portions 22a, 22b, 22c, 22d on one side in the radial direction Shifting sequentially. Thereby, the assembly property of the winding assembly 21 is improved.
 第1コイルエンド20fでは、スロット18に1列に配列して収納されている第1から第4直線部22a,22b,22c,22dから周方向に延び出る第1および第3コイルエンド部22e,22gの方向が、径方向に、同方向と逆方向とを交互に繰り返されている。また、第2コイルエンド20rでは、スロット18に1列に配列して収納されている第1から第4直線部22a,22b,22c,22dから周方向に延び出る第2コイルエンド部22fおよび渡り線23の方向が、径方向に、同方向と逆方向とを交互に繰り返されている。 In the first coil end 20f, the first and third coil end portions 22e extending in the circumferential direction from the first to fourth linear portions 22a, 22b, 22c, and 22d accommodated in the slot 18 in a line. The 22g direction is repeated in the radial direction alternately in the same direction and in the opposite direction. Further, in the second coil end 20r, the second coil end portion 22f extending in the circumferential direction from the first to fourth linear portions 22a, 22b, 22c, and 22d housed in a row in the slot 18 and the transition are provided. The direction of the line 23 is alternately repeated in the radial direction in the same direction and in the opposite direction.
 そこで、第1コイルエンド20fでは、周方向に隣り合う第1コイルエンド部22e間の隙間により形成された冷媒流路が周方向に1スロットピッチで配列された流路群と、周方向に隣り合う第3コイルエンド部22g間の隙間により形成された冷媒流路とが、径方向に、交互に繰り返し配列される。そして、流路方向が軸方向外方に向かって周方向一側に延びる流路群と流路方向が軸方向外方に向かって周方向他側に延びる流路群とが、径方向に交互に繰り返し配列される。これにより、液体冷媒が、第1コイルエンド20fを周方向に流れやすくなり、第1コイルエンド20fの冷却性がさらに高められる。 Therefore, in the first coil end 20f, a refrigerant flow path formed by a gap between the first coil end portions 22e adjacent in the circumferential direction is adjacent to the flow path group in which the circumferential direction is arranged at a one-slot pitch in the circumferential direction. The refrigerant flow paths formed by the gaps between the matching third coil end portions 22g are alternately and repeatedly arranged in the radial direction. Then, a flow path group in which the flow path direction extends in the circumferential direction toward the outer side in the axial direction and a flow path group in which the flow path direction extends in the circumferential direction toward the outer side in the axial direction are alternately arranged in the radial direction. Are arranged repeatedly. As a result, the liquid refrigerant easily flows in the circumferential direction through the first coil end 20f, and the cooling performance of the first coil end 20f is further enhanced.
 また、第2コイルエンド20rでは、周方向に隣り合う第2コイルエンド部22f間の隙間により形成された冷媒流路が周方向に1スロットピッチで配列された流路群と、周方向に隣り合う渡り線23間の隙間により形成された冷媒流路とが、径方向に、交互に繰り返し配列される。そして、流路方向が軸方向外方に向かって周方向一側に延びる流路群と流路方向が軸方向外方に向かって周方向他側に延びる流路群とが、径方向に交互に繰り返し配列される。これにより、液体冷媒が、第2コイルエンド20rを周方向に流れやすくなり、第2コイルエンド20rの冷却性がさらに高められる。 Further, in the second coil end 20r, a refrigerant flow path formed by a gap between the second coil end portions 22f adjacent in the circumferential direction is adjacent to the flow path group in which the circumferential direction is arranged at one slot pitch in the circumferential direction. The refrigerant flow paths formed by the gaps between the connecting crossover wires 23 are alternately and repeatedly arranged in the radial direction. Then, a flow path group in which the flow path direction extends in the circumferential direction toward the outer side in the axial direction and a flow path group in which the flow path direction extends in the circumferential direction toward the outer side in the axial direction are alternately arranged in the radial direction. Are arranged repeatedly. As a result, the liquid refrigerant easily flows in the circumferential direction through the second coil end 20r, and the cooling performance of the second coil end 20r is further enhanced.
 なお、上記実施の形態1では、内フレーム2bに形成される噴射穴の穴方向を径方向としているが、液体冷媒の噴射方向が第2コイルエンド部および第3コイルエンド部の傾斜部の傾斜方向に沿うように、噴射穴の穴方向を径方向に対して傾斜させてもよい。これにより、液体冷媒が、第1および第2コイルエンド20f,20r内に流入しやすくなり、第1および第2コイルエンド20f,20rを効果的に冷却できる。 In the first embodiment, the hole direction of the injection hole formed in the inner frame 2b is the radial direction, but the liquid refrigerant injection direction is the inclination of the inclined portions of the second coil end portion and the third coil end portion. You may make the hole direction of an injection hole incline with respect to radial direction so that a direction may be followed. As a result, the liquid refrigerant can easily flow into the first and second coil ends 20f, 20r, and the first and second coil ends 20f, 20r can be effectively cooled.
 実施の形態2.
 図14はこの発明の実施の形態2に係る回転電機に適用される固定子の第1コイルエンドを示す要部端面図、図15はこの発明の実施の形態2に係る回転電機に適用される固定子の第1コイルエンド周りを示す要部断面図である。
Embodiment 2. FIG.
FIG. 14 is an end view of the main part showing the first coil end of the stator applied to the rotating electrical machine according to Embodiment 2 of the present invention, and FIG. 15 is applied to the rotating electrical machine according to Embodiment 2 of the present invention. It is principal part sectional drawing which shows the surroundings of the 1st coil end of a stator.
 図14および図15において、仕切り部材としての絶縁シート40が、第1コイルエンド部22eの第1直線部22aから頭頂部に至る傾斜部と第2直線部22bから頭頂部に至る傾斜部との間の隙間、および第3コイルエンド部22gの第3直線部22cから頭頂部に至る傾斜部と第4直線部22dから頭頂部に至る傾斜部との間の隙間のそれぞれに、周方向の全周にわたって挿入されている。図示していないが、第2コイルエンド部22fの第2直線部22bから頭頂部に至る傾斜部と第3直線部22cから頭頂部に至る傾斜部との間の隙間、および渡り線23の第3直線部22cから頭頂部に至る傾斜部と第4直線部22dから頭頂部に至る傾斜部との間の隙間のそれぞれに、周方向の全周にわたって挿入されている。絶縁シート40は、ガラスクロス、ポリエーテルエーテルケトン、ポリフェニルサルファイド、ポリテトラフルオロエチレンなどからなるシート材を帯状に成形したものである。
 なお、他の構成は上記実施の形態1と同様に構成されている。
14 and 15, the insulating sheet 40 as the partition member includes an inclined portion that extends from the first straight portion 22 a to the top of the first coil end portion 22 e and an inclined portion that extends from the second straight portion 22 b to the top of the head. And the gap between the inclined portion from the third straight end portion 22c of the third coil end portion 22g to the top of the head and the inclined portion from the fourth straight portion 22d to the top of the head, respectively. It is inserted over the circumference. Although not shown, the gap between the inclined portion from the second straight line portion 22b of the second coil end portion 22f to the top of the head and the inclined portion from the third straight line portion 22c to the top of the head, and the first of the crossover 23 It is inserted over the entire circumference in the circumferential direction between each of the gaps between the inclined portion extending from the three straight portions 22c to the top of the head and the inclined portion extending from the fourth straight portions 22d to the top of the head. The insulating sheet 40 is obtained by molding a sheet material made of glass cloth, polyether ether ketone, polyphenyl sulfide, polytetrafluoroethylene, or the like into a strip shape.
Other configurations are the same as those in the first embodiment.
 したがって、この実施の形態2においても、上記実施の形態1と同様の効果が得られる。 Therefore, also in the second embodiment, the same effect as in the first embodiment can be obtained.
 図10から、第1および第3コイルエンド部22e,22gが、スロット18の第2層と第3層の第2および第3直線部22b、22cから周方向の同じ方向に延び出していることがわかる。同様に、第1および第3コイルエンド部22e,22gが、スロット18の第4層と第5層の第4および第1直線部22d,22aから周方向の同じ方向に延び出していることがわかる。また、第1および第3コイルエンド部22e,22gが、スロット18の第6層と第7層の第2および第3直線部22b,22cから周方向の同じ方向に延び出していることがわかる。つまり、第1コイルエンド20fでは、スロット18の第2層と第3層の直線部、第4層と第5層の直線部、および第6層と第7層の直線部のそれぞれから延び出した同じ相のコイルエンド部が、径方向に隣り合って配置され、コイルエンド部間の電位差は小さい。 From FIG. 10, the first and third coil end portions 22e and 22g extend from the second layer of the slot 18 and the second and third straight portions 22b and 22c of the third layer in the same circumferential direction. I understand. Similarly, the first and third coil end portions 22e and 22g extend from the fourth and fifth straight portions 22d and 22a of the slot 18 in the same circumferential direction. Recognize. It can also be seen that the first and third coil end portions 22e and 22g extend in the same circumferential direction from the sixth and seventh straight and second straight portions 22b and 22c of the slot 18. . That is, at the first coil end 20f, the straight portions of the second layer and the third layer of the slot 18, the straight portions of the fourth layer and the fifth layer, and the straight portions of the sixth layer and the seventh layer are extended. The coil end portions having the same phase are arranged adjacent to each other in the radial direction, and the potential difference between the coil end portions is small.
 図10から、第1コイルエンド部22eが、スロット18の第1層と第2層の第1および第2直線部22a,22bから周方向の逆の方向に延び出していることがわかる。また、第3コイルエンド部22gが、スロット18の第3層と第4層の第3および第4直線部22c,22dから周方向の逆の方向に延び出していることがわかる。また、第1コイルエンド部22eが、スロット18の第5層と第6層の第1および第2直線部22a,22bからから周方向の逆の方向に延び出していることがわかる。さらに、第3コイルエンド部22gが、スロット18の第7層と第8層の第3および第4直線部22c,22dから周方向の逆の方向に延び出していることがわかる。つまり、第1コイルエンド20fでは、スロット18の第1層と第2層の直線部、第3層と第4層の直線部、第5層と第6層の直線部および第7層と第8層の直線部のそれぞれから延び出した異なる相のコイルエンド部が、径方向で交差し、コイルエンド部間の電位差が大きくなる。 10 that the first coil end portion 22e extends from the first and second straight portions 22a and 22b of the slot 18 in the opposite direction of the circumferential direction. Further, it can be seen that the third coil end portion 22g extends from the third layer of the slot 18 and the third and fourth straight portions 22c, 22d of the fourth layer in opposite directions in the circumferential direction. It can also be seen that the first coil end portion 22e extends from the fifth and sixth layer first and second straight portions 22a and 22b of the slot 18 in the opposite direction of the circumferential direction. Further, it can be seen that the third coil end portion 22g extends from the seventh and eighth straight portions 22c and 22d of the slot 18 in the opposite direction of the circumferential direction. That is, in the first coil end 20f, the straight portions of the first layer and the second layer of the slot 18, the straight portions of the third layer and the fourth layer, the straight portions of the fifth layer and the sixth layer, and the seventh layer and the first layer. The coil end portions of different phases extending from each of the eight straight portions intersect each other in the radial direction, and the potential difference between the coil end portions becomes large.
 この実施の形態2では、第1コイルエンド20fにおいては、絶縁シート40が、スロット18の第1層と第2層の直線部、および第5層と第6層の直線部のそれぞれから延び出した第1コイルエンド部22eの傾斜部間、およびスロット18の第3層と第4層の直線部および第7層と第8層の直線部のそれぞれから延び出した第3コイルエンド部22gの傾斜部間に挿入されている。そこで、電位差が大きい異なる相のコイルエンド部間の絶縁耐圧を大きくできる。 In the second embodiment, at the first coil end 20f, the insulating sheet 40 extends from the straight portions of the first and second layers of the slot 18 and the straight portions of the fifth and sixth layers. Of the third coil end portion 22g extending between the inclined portions of the first coil end portion 22e, the straight portions of the third layer and the fourth layer, and the straight portions of the seventh layer and the eighth layer of the slot 18. It is inserted between the inclined parts. Therefore, the withstand voltage between the coil end portions of different phases having a large potential difference can be increased.
 図10から、第2コイルエンド20r側では、第2コイルエンド部22fと渡り線23が、スロット18の第3層と第4層の第3および第4の直線部22c,22dから周方向の同じ方向に延び出していることがわかる。同様に、第2コイルエンド部22fと渡り線23が、スロット18の第5層と第6層の第1および第2直線部22a,22bから周方向の同じ方向に延び出していることがわかる。つまり、第2コイルエンド20rでは、スロット18の第3層と第4層の直線部、および第5層と第6層の直線部のそれぞれから延び出した同じ相のコイルエンド部が径方向に隣り合って配置され、コイルエンド部間の電位差は小さい。 From FIG. 10, on the second coil end 20r side, the second coil end portion 22f and the crossover wire 23 are arranged in the circumferential direction from the third and fourth straight portions 22c and 22d of the third layer and the fourth layer of the slot 18. It can be seen that they extend in the same direction. Similarly, it can be seen that the second coil end portion 22f and the crossover wire 23 extend from the fifth and sixth layer first and second straight portions 22a and 22b of the slot 18 in the same circumferential direction. . In other words, in the second coil end 20r, the coil end portions of the same phase extending from the third layer and fourth layer straight portions of the slot 18 and the fifth layer and sixth layer straight portions are radially arranged. Adjacent to each other, the potential difference between the coil end portions is small.
 図10から、第2コイルエンド部22fが、スロット18の第2層と第3層の第2および第3直線部22b,22cから周方向の逆の方向に延び出し、渡り線23が、スロット18の第4層と第5層の第4および第1直線部22d,22aから周方向の逆の方向に延び出し、第2コイルエンド部22fが、スロット18の第6層目と第7層の第2および第3直線部22b,22cから周方向の逆の方向に延び出していることがわかる。つまり、第2コイルエンド20rでは、スロット18の第2層と第3層の直線部、第4層と第5層の直線部、および第6層と第7層の直線部のそれぞれから延び出した異なる相のコイルエンド部が径方向で交差し、コイルエンド部間の電位差が大きくなる。 From FIG. 10, the second coil end portion 22f extends in the direction opposite to the circumferential direction from the second and third straight portions 22b and 22c of the second layer and the third layer of the slot 18, and the crossover wire 23 is connected to the slot. The fourth coil end portion 22f extends in the direction opposite to the circumferential direction from the fourth and first straight portions 22d and 22a of the eighteenth layer and the fifth layer, and the second coil end portion 22f includes the sixth and seventh layers of the slot 18. It can be seen that the second and third straight portions 22b and 22c extend in the direction opposite to the circumferential direction. In other words, at the second coil end 20r, the straight portions of the second and third layers of the slot 18, the straight portions of the fourth and fifth layers, and the straight portions of the sixth and seventh layers are extended. The coil end portions of different phases intersect in the radial direction, and the potential difference between the coil end portions increases.
 この実施の形態2では、第2コイルエンド20rにおいては、絶縁シート40が、スロット18の第2層と第3層の直線部、および第6層と第7層の直線部のそれぞれから延び出した第2コイルエンド部22fの傾斜部間、およびスロット18の第4層と第5層の直線部のそれぞれから延び出した渡り線23の傾斜部間に挿入されている。そこで、電位差が大きい異なる相のコイルエンド部間の絶縁耐圧を大きくできる。 In the second embodiment, at the second coil end 20r, the insulating sheet 40 extends from the straight portions of the second and third layers of the slot 18 and the straight portions of the sixth and seventh layers. The second coil end portion 22f is inserted between the inclined portions, and between the inclined portions of the crossover wires 23 extending from the straight portions of the fourth layer and the fifth layer of the slot 18, respectively. Therefore, the withstand voltage between the coil end portions of different phases having a large potential difference can be increased.
 さらに、一対の絶縁シート40が、周方向に隣り合う第1コイルエンド部22eの傾斜部間の隙間により形成される流路、周方向に隣り合う第2コイルエンド部22fの傾斜部間の隙間により形成される流路、周方向に隣り合う第3コイルエンド部22gの傾斜部間の隙間により形成される流路、および周方向に隣り合う渡り線23の傾斜部間の隙間により形成される流路のそれぞれの径方向両側に配置される。これにより、各流路の四方が閉じられ、冷却冷媒を効果的に流すことができる。 Further, a pair of insulating sheets 40 is formed by a gap between the inclined portions of the first coil end portions 22e adjacent in the circumferential direction, and a gap between the inclined portions of the second coil end portions 22f adjacent in the circumferential direction. Formed by the gap between the inclined portions of the third coil end portions 22g adjacent in the circumferential direction, and the gap between the inclined portions of the connecting wires 23 adjacent in the circumferential direction. It arrange | positions at each radial direction both sides of a flow path. Thereby, the four sides of each flow path are closed, and a cooling refrigerant can be flowed effectively.
 実施の形態3.
 図16はこの発明の実施の形態3に係る回転電機に適用される固定子を示す斜視図である。
Embodiment 3 FIG.
FIG. 16 is a perspective view showing a stator applied to a rotary electric machine according to Embodiment 3 of the present invention.
 図16において、隔壁部材41は、ガラスクロス、ポリエーテルエーテルケトン、ポリフェニルサルファイド、ポリテトラフルオロエチレンなどの絶縁性材料を用いて帯状に成形され、下端を固定子鉄心16の端面に接するように、固定子巻線20の第1および第2コイルエンド20f,20rの内周側に、全周にわたって配置されている。
 なお、他の構成は、上記実施の形態1と同様に構成されている。
In FIG. 16, the partition member 41 is formed in a band shape using an insulating material such as glass cloth, polyether ether ketone, polyphenyl sulfide, polytetrafluoroethylene, and the lower end is in contact with the end surface of the stator core 16. The first and second coil ends 20f and 20r of the stator winding 20 are arranged over the entire circumference on the inner circumference side.
Other configurations are the same as those in the first embodiment.
 したがって、この実施の形態3においても、上記実施の形態1と同様の効果が得られる。
 この実施の形態3によれば、隔壁部材41が、固定子巻線20の第1および第2コイルエンド20f,20rの内周側に、全周にわたって配置されている。そこで、第1および第2コルエンド内を外径側から内径側に流れてきた液体冷媒の第1および第2コイルエンド20f,20rから内径側への流出が隔壁部材41により阻止され、液体冷媒の固定子15と回転子6との間のエアギャップへの流出が防止される。
Therefore, also in the third embodiment, the same effect as in the first embodiment can be obtained.
According to the third embodiment, the partition wall member 41 is arranged on the inner circumference side of the first and second coil ends 20f, 20r of the stator winding 20 over the entire circumference. Therefore, the partition member 41 prevents the liquid refrigerant flowing in the first and second corends from the outer diameter side to the inner diameter side from flowing out from the first and second coil ends 20f and 20r to the inner diameter side. Outflow to the air gap between the stator 15 and the rotor 6 is prevented.
 実施の形態4.
 図17はこの発明の実施の形態4に係る回転電機を示す断面図である。
Embodiment 4 FIG.
FIG. 17 is a sectional view showing a rotary electric machine according to Embodiment 4 of the present invention.
 図17において、回転子50は、円環状の回転子鉄心51と、回転子鉄心51の軸心位置を貫通するように圧入、固定されたシャフト54と、それぞれ回転子鉄心51の外周側を貫通するように装着された8個の永久磁石55と、シャフト54に圧入、固定されて、回転子鉄心51の軸方向の両端面に接するように配設された第1端板56および第2端板59と、を備える。 In FIG. 17, the rotor 50 passes through an annular rotor core 51, a shaft 54 that is press-fitted and fixed so as to penetrate the axial center position of the rotor core 51, and an outer peripheral side of the rotor core 51. The first end plate 56 and the second end, which are press-fitted and fixed to the shaft 54 and arranged so as to be in contact with both end surfaces of the rotor core 51 in the axial direction. And a plate 59.
 回転子鉄心51は、電磁鋼板の薄板から打ち抜かれた円環状の鉄心片を積層一体化して作製されている。磁石収納穴52が、それぞれ、シャフト54の軸方向と直交する断面を軸方向に一定とする矩形とし、回転子鉄心51の外周側を軸方向に貫通して、周方向に等ピッチで8つ形成されている。冷媒流路53が、磁石収納穴52の内径側に、かつ磁石収納穴52に開口するように、回転子鉄心51を軸方向に貫通して形成されている。永久磁石55が、磁石収納穴52のそれぞれに収納されて、回転子鉄心51の外周側を貫通するように装着されている。 The rotor core 51 is manufactured by stacking and integrating annular core pieces punched from a thin magnetic steel sheet. Each of the magnet housing holes 52 has a rectangular shape in which the cross section perpendicular to the axial direction of the shaft 54 is constant in the axial direction, passes through the outer peripheral side of the rotor core 51 in the axial direction, and has eight equal pitches in the circumferential direction. Is formed. A coolant channel 53 is formed through the rotor core 51 in the axial direction so as to open to the inner diameter side of the magnet housing hole 52 and to the magnet housing hole 52. A permanent magnet 55 is housed in each of the magnet housing holes 52 and attached so as to penetrate the outer peripheral side of the rotor core 51.
 第1端板56は、回転子鉄心51の外径と略等しい外径を有するリング状平板に作製されている。導入流路57が、第1端板56の一面を、その外周縁部を残して一定の深さだけ窪ませて形成されている。第1排出路58が、それぞれ、導入流路57の外周部と第1端板56の他面側とを連結するように第1端板56を軸方向に貫通して、周方向に等ピッチで8個形成されている。 The first end plate 56 is made of a ring-shaped flat plate having an outer diameter substantially equal to the outer diameter of the rotor core 51. The introduction flow path 57 is formed by recessing one surface of the first end plate 56 by a certain depth leaving the outer peripheral edge portion. The first discharge passages 58 pass through the first end plate 56 in the axial direction so as to connect the outer peripheral portion of the introduction flow channel 57 and the other surface side of the first end plate 56, respectively, and are equidistant in the circumferential direction. 8 are formed.
 第1端板56は、軸心位置にシャフト54を通して、一面を回転子鉄心51に向けて軸方向一側からシャフト54に圧入固定される。第1端板56の一面が回転子鉄心51の軸方向の一端面に接し、導入流路57の開口が塞口される。回転子鉄心51に形成された冷媒流路53が導入流路57に接続される。第1排出路58が、導入流路57のそれぞれの径方向外方に位置している。 The first end plate 56 is press-fitted and fixed to the shaft 54 from one side in the axial direction with one surface directed to the rotor core 51 through the shaft 54 at the axial center position. One surface of the first end plate 56 is in contact with one end surface of the rotor core 51 in the axial direction, and the opening of the introduction channel 57 is closed. A coolant channel 53 formed in the rotor core 51 is connected to the introduction channel 57. The first discharge passages 58 are located radially outward of the introduction passages 57.
 第2端板59は、回転子鉄心51の外径と略等しい外径を有するリング状平板に作製されている。排出流路60が、第2端板59の一面の外周側に、一定の深さだけ窪ませてリング状に形成されている。第2排出路61が、それぞれ、排出流路60と第2端板59の他面側とを連結するように第2端板59を軸方向に貫通して、周方向に等ピッチで8個形成されている。 The second end plate 59 is made of a ring-shaped flat plate having an outer diameter substantially equal to the outer diameter of the rotor core 51. The discharge channel 60 is formed in a ring shape by being depressed by a certain depth on the outer peripheral side of one surface of the second end plate 59. Eight second discharge passages 61 penetrate the second end plate 59 in the axial direction so as to connect the discharge passage 60 and the other surface side of the second end plate 59, respectively, at equal pitches in the circumferential direction. Is formed.
 第2端板59は、軸心位置にシャフト54を通して、一面を回転子鉄心51に向けて軸方向他側からシャフト54に圧入固定される。第2端板59の一面が回転子鉄心51の軸方向の他端面に接し、排出流路60の開口が塞口される。回転子鉄心51に形成された導入流路57が排出流路60に接続される。第2排出路61が、導入流路57のそれぞれの径方向外方に位置している。 The second end plate 59 is press-fitted and fixed to the shaft 54 from the other side in the axial direction with one surface thereof directed toward the rotor core 51 through the shaft 54 at the axial center position. One surface of the second end plate 59 is in contact with the other end surface of the rotor core 51 in the axial direction, and the opening of the discharge channel 60 is closed. An introduction channel 57 formed in the rotor core 51 is connected to the discharge channel 60. The second discharge passages 61 are located radially outward of the introduction passages 57.
 シャフト54は、軸心位置に、軸方向一端から第1端板56の真下位置まで至るように形成された軸内流路62と、それぞれ、軸内流路62から径方向に分岐して、軸内流路62と第1端板56に形成された導入流路57とを連結する分岐流路63と、を備える。 The shaft 54 is branched in the radial direction from the in-axis flow path 62 and the in-axis flow path 62 formed to reach the axial center position from one end in the axial direction to a position directly below the first end plate 56, respectively. A branch channel 63 that connects the in-axis channel 62 and the introduction channel 57 formed in the first end plate 56.
 供給配管33が、供給ポンプ34の吐出口と軸内流路62とを連結し、戻り配管35がフレーム2の下方に取り付けられたオイルパン36と供給ポンプ34の吸入口とを連結し、冷却機構が構成される。 The supply pipe 33 connects the discharge port of the supply pump 34 and the in-shaft flow path 62, and the return pipe 35 connects the oil pan 36 attached below the frame 2 and the suction port of the supply pump 34, cooling The mechanism is configured.
 このように構成された回転電機100Aでは、供給ポンプ34が駆動され、液体冷媒が供給配管33、軸内流路62および分岐流路63を介して導入流路57に供給される。導入流路57に供給された液体冷媒の一部が、冷媒流路53に供給され、永久磁石55の冷却に供せられる。導入流路57に供給された液体冷媒の残部が、第1排出路58から排出される。この時、液体冷媒は、回転子50の回転により、遠心方向に曲げられ、固定子巻線20の第1コイルエンド20fの内周面に噴射される。一方、永久磁石55の冷却に供せられた液体冷媒は、排出流路60内に流入し、第2排出路61から排出される。この時、液体冷媒は、回転子50の回転により、遠心方向に曲げられ、固定子巻線20の第2コイルエンド20rの内周面に噴射される。 In the rotating electrical machine 100A configured as described above, the supply pump 34 is driven, and the liquid refrigerant is supplied to the introduction flow path 57 via the supply pipe 33, the in-axis flow path 62, and the branch flow path 63. A part of the liquid refrigerant supplied to the introduction flow path 57 is supplied to the refrigerant flow path 53 and used for cooling the permanent magnet 55. The remaining portion of the liquid refrigerant supplied to the introduction flow path 57 is discharged from the first discharge path 58. At this time, the liquid refrigerant is bent in the centrifugal direction by the rotation of the rotor 50 and is injected to the inner peripheral surface of the first coil end 20 f of the stator winding 20. On the other hand, the liquid refrigerant used for cooling the permanent magnet 55 flows into the discharge passage 60 and is discharged from the second discharge passage 61. At this time, the liquid refrigerant is bent in the centrifugal direction by the rotation of the rotor 50 and is injected onto the inner peripheral surface of the second coil end 20 r of the stator winding 20.
 第1コイルエンド20fに径方向内方から噴射された液体冷媒は、最内周に位置する、周方向に隣り合う第1コイルエンド部22eの傾斜部間の隙間を頭頂部側から根本側に流れる。そして、液体冷媒は、固定子鉄心16の端面上を径方向内外に流れ、毛細管現象により、径方向に隣り合う第1コイルエンド部22eの根本部間に吸い上げられる。ついで、最内周に位置する第1コイルエンド部22eの傾斜部の外径側に位置する第1コイルエンド部22eの傾斜部間の隙間を頭頂部側に流れる。さらに、固定子鉄心16の端面上を径方向外方に流れ、毛細管現象により、径方向に隣り合う第3コイルエンド部22gの根本部間に吸い上げられる。そして、周方向に隣り合う第3コイルエンド部22gの傾斜部間の隙間を頭頂部側に流れる。 The liquid refrigerant jetted from the radially inner side to the first coil end 20f has a gap between the inclined portions of the first coil end portions 22e adjacent to the circumferential direction located on the innermost circumference from the top to the root side. Flowing. Then, the liquid refrigerant flows inward and outward in the radial direction on the end face of the stator core 16, and is sucked up between the root portions of the first coil end portions 22e adjacent in the radial direction by capillary action. Next, a gap between the inclined portions of the first coil end portion 22e located on the outer diameter side of the inclined portion of the first coil end portion 22e located on the innermost circumference flows toward the top of the head. Further, it flows radially outward on the end face of the stator core 16, and is sucked up between the root portions of the third coil end portions 22g adjacent in the radial direction by capillary action. And the clearance gap between the inclination parts of the 3rd coil end part 22g adjacent to the circumferential direction flows to the top part side.
 このように、第1コイルエンド20fに噴射された液体冷媒は、周方向に隣り合う第1コイルエンド部22eの傾斜部間の隙間、および周方向に隣り合う第3コイルエンド部22gの傾斜部間の隙間を介して周方向に流れる。さらに、液体冷媒は、固定子鉄心16の端面に沿って径方向外方に流れる。これにより、液体冷媒が、第1コイルエンド20fの径方向および周方向に流れ、第1コイルエンド20fの内部まで流入し、第1コイルエンド20fが効果的に冷却される。 As described above, the liquid refrigerant injected to the first coil end 20f is a gap between the inclined portions of the first coil end portion 22e adjacent in the circumferential direction, and the inclined portion of the third coil end portion 22g adjacent in the circumferential direction. It flows in the circumferential direction through the gap between them. Further, the liquid refrigerant flows radially outward along the end face of the stator core 16. Accordingly, the liquid refrigerant flows in the radial direction and the circumferential direction of the first coil end 20f, flows into the first coil end 20f, and the first coil end 20f is effectively cooled.
 また、第2コイルエンド20rに径方向内方から噴射された液体冷媒は、最内周に位置する、周方向に隣り合う第2コイルエンド部22fの傾斜部間の隙間を頭頂部側から根本側に流れる。そして、液体冷媒は、固定子鉄心16の端面上を径方向外方に流れ、毛細管現象により、径方向に隣り合う第2コイルエンド部22fの根本部間に吸い上げられる。ついで、最内周に位置する第2コイルエンド部22fの傾斜部の外径側に位置する第2コイルエンド部22fの傾斜部間の隙間を頭頂部側に流れる。さらに、固定子鉄心16の端面上を径方向外方に流れ、毛細管現象により、径方向に隣り合う渡り線23の根本部間に吸い上げられる。そして、周方向に隣り合う渡り線23の傾斜部間の隙間を頭頂部側に流れる。 In addition, the liquid refrigerant injected from the radially inner side to the second coil end 20r has a gap between the inclined portions of the second coil end portions 22f adjacent to the circumferential direction located at the innermost periphery, and is fundamentally formed from the top side. Flows to the side. Then, the liquid refrigerant flows radially outward on the end face of the stator core 16, and is sucked up between the root portions of the second coil end portions 22f adjacent in the radial direction by capillary action. Next, a gap between the inclined portions of the second coil end portion 22f located on the outer diameter side of the inclined portion of the second coil end portion 22f located on the innermost circumference flows toward the top of the head. Furthermore, it flows radially outward on the end face of the stator core 16 and is sucked up between the root portions of the connecting wires 23 adjacent in the radial direction by capillary action. And the clearance gap between the inclination parts of the connecting wire 23 adjacent to the circumferential direction flows to the top part side.
 このように、第2コイルエンド20rに噴射された液体冷媒は、周方向に隣り合う第2コイルエンド部22fの傾斜部間の隙間、および周方向に隣り合う渡り線23の傾斜部間の隙間を介して周方向に流れる。さらに、液体冷媒は、固定子鉄心16の端面に沿って径方向外方に流れる。これにより、液体冷媒が、第2コイルエンド20rの径方向および周方向に流れ、第2コイルエンド20rの内部まで流入し、第2コイルエンド20rが効果的に冷却される。 Thus, the liquid refrigerant injected to the second coil end 20r is a gap between the inclined portions of the second coil end portion 22f adjacent in the circumferential direction, and a gap between the inclined portions of the connecting wire 23 adjacent in the circumferential direction. Flows in the circumferential direction. Further, the liquid refrigerant flows radially outward along the end face of the stator core 16. Accordingly, the liquid refrigerant flows in the radial direction and the circumferential direction of the second coil end 20r, flows into the second coil end 20r, and the second coil end 20r is effectively cooled.
 第1および第2コイルエンド20f,20rを冷却した液体冷媒は、フレーム2内の下部に集められ、オイルパン36から戻り配管35を介して供給ポンプ34に戻される。 The liquid refrigerant that has cooled the first and second coil ends 20f, 20r is collected in the lower part of the frame 2, and is returned from the oil pan 36 to the supply pump 34 via the return pipe 35.
 したがって、この実施の形態4においても、上記実施の形態1と同様の効果が得られる。
 この実施の形態4によれば、回転子鉄心51の軸方向両端に配置された第1および第2端板56,59に形成された第1および第2排出路58,61から液体冷媒を第1および第2コイルエンド20f,20rの内周面に噴射している。そこで、回転子50の回転時に、液体冷媒が、第1および第2コイルエンド20f,20rの内周面に噴射されるので、液体冷媒を第1および第2コイルエンド20f,20rに均一に供給でき、第1および第2コイルエンド20f,20rをむらなく効果的に冷却できる。
Therefore, also in the fourth embodiment, the same effect as in the first embodiment can be obtained.
According to the fourth embodiment, the liquid refrigerant is supplied from the first and second discharge passages 58 and 61 formed in the first and second end plates 56 and 59 disposed at both axial ends of the rotor core 51. The first and second coil ends 20f and 20r are sprayed on the inner peripheral surfaces. Therefore, when the rotor 50 rotates, the liquid refrigerant is injected to the inner peripheral surfaces of the first and second coil ends 20f and 20r, so that the liquid refrigerant is uniformly supplied to the first and second coil ends 20f and 20r. Thus, the first and second coil ends 20f and 20r can be effectively cooled evenly.
 なお、上記各実施の形態では、巻線体が長方形断面の導体線で作製されているものとしているが、巻線体を構成する導体線の断面形状は、長方形に限定されず、例えば円形断面の導体線を用いてもよい。
 また、上記各実施の形態では、第1から第4直線部が長方形断面の長辺の長さ方向を周方向に向けてスロット内に径方向に1列に配列されているものとしているが、第1から第4直線部は長方形断面の短辺の長さ方向を周方向に向けてスロット内に径方向に1列に配列してもよい。
In each of the above embodiments, the winding body is made of a conductor wire having a rectangular cross section. However, the cross-sectional shape of the conductor wire constituting the winding body is not limited to a rectangle, for example, a circular cross section The conductor wire may be used.
In each of the above embodiments, the first to fourth straight portions are arranged in a row in the radial direction in the slot with the length direction of the long side of the rectangular cross section facing the circumferential direction. The first to fourth straight portions may be arranged in a row in the radial direction in the slot with the length direction of the short side of the rectangular cross section oriented in the circumferential direction.
 また、上記各実施の形態では、8極48スロットの回転電機について説明しているが、極数およびスロット数は、8極48スロットに限定されないことは言うまでもないことである。また、スロット数が毎極毎相当たり2の割合で形成されているものとしているが、毎極毎相当たりのスロット数は2に限定されず、1でもよく、3以上でもよい。 In each of the above embodiments, an 8-pole 48-slot rotary electric machine has been described, but it goes without saying that the number of poles and the number of slots are not limited to 8 poles and 48 slots. Further, the number of slots is assumed to be formed at a rate of 2 per phase per pole, but the number of slots per phase per pole is not limited to 2, and may be 1 or 3 or more.
 また、上記各実施の形態では、スロット数が毎極毎相当たり2の割合で形成され、巻線体の第1直線部と第2直線部との間隔が6スロット角度間隔として、固定子巻線を全節巻きに構成しているが、巻線体の第1直線部と第2直線部との間隔は6スロット角度間隔に限定されない。たとえば、巻線体の第1直線部と第2直線部との間隔を5スロット角度間隔とし、固定子巻線を短節巻きに構成してもよい。 Further, in each of the above embodiments, the number of slots is formed at a ratio of 2 per pole per phase, and the interval between the first straight line portion and the second straight line portion of the winding body is set to a 6-slot angle interval, and the stator winding Although the wire is configured as a full-pitch winding, the interval between the first linear portion and the second linear portion of the winding body is not limited to the 6-slot angular interval. For example, the interval between the first straight portion and the second straight portion of the winding body may be set to a 5-slot angular interval, and the stator winding may be configured to have a short-pitch winding.
 また、上記各実施の形態では、巻線体はδ状のコイルパターンを径方向に2回繰り返すように導体線を巻き回して作製されているが、巻線体はδ状のコイルパターンの径方向の繰り返し回数は2回に限定されず、1回でもよく、3回以上でもよい。 In each of the above embodiments, the winding body is formed by winding a conductor wire so that the δ-shaped coil pattern is repeated twice in the radial direction. However, the winding body has a diameter of the δ-shaped coil pattern. The number of times the direction is repeated is not limited to two, and may be one or three or more.
 また、上記各実施の形態では、液体冷媒が固定子巻線の第1および第2コイルエンドに径方向から噴射されているが、液体冷媒は、固定子巻線の第1および第2コイルエンドに軸方向外方から噴射されてもよい。 Further, in each of the above embodiments, the liquid refrigerant is injected from the radial direction to the first and second coil ends of the stator winding, but the liquid refrigerant is the first and second coil ends of the stator winding. It may be injected from the outside in the axial direction.

Claims (9)

  1.  ハウジングと、
     上記ハウジングに回転可能に支持されたシャフトに固着されて、上記ハウジング内に配設された回転子と、
     スロットが周方向に配列された円環状の固定子鉄心、および上記固定子鉄心に装着された固定子巻線を有し、上記回転子の外周側に上記回転子との間にエアギャップを介して上記ハウジングに保持された固定子と、
     上記固定子巻線のコイルエンドに液体冷媒を供給して上記固定子巻線を冷却する冷却機構と、を備え、
     上記固定子巻線は、それぞれ、絶縁被覆された、かつ接続部のない連続した導体線を巻き回して作製され、周方向にnスロット角度間隔(但し、nは2以上の自然数)で並ぶ第1スロット、第2スロットおよび第3スロットに装着されて、周方向に1スロットピッチで配列された複数の巻線体を備え、
     上記巻線体は、上記導体線を、上記第2スロット、上記第1スロット、上記第2スロット、上記第3スロットの順に、かつ上記第1スロット、上記第2スロットおよび上記第3スロットへの軸方向からの挿入方向を交互に変えて挿入して形成されたδ状のコイルパターンを、径方向にm回(但し、mは1以上の自然数)繰り返して巻き回して作製され、上記第1スロット、上記第2スロットおよび上記第3スロットのそれぞれに挿入される複数の直線部をコイルエンド部により一続きに連結して構成され、
     上記コイルエンドが、上記コイルエンド部により構成され、
     上記コイルエンドに供給された上記液体冷媒が、周方向に隣り合う上記コイルエンド部間の隙間を流れることを特徴とする回転電機。
    A housing;
    A rotor fixed to a shaft rotatably supported by the housing and disposed in the housing;
    An annular stator core having slots arranged in the circumferential direction, and a stator winding mounted on the stator core, with an air gap between the rotor and the rotor on the outer peripheral side of the rotor A stator held in the housing,
    A cooling mechanism for cooling the stator winding by supplying a liquid refrigerant to the coil end of the stator winding,
    Each of the stator windings is formed by winding a continuous conductor wire that is insulated and has no connection portion, and is arranged at n-slot angular intervals (where n is a natural number of 2 or more) in the circumferential direction. A plurality of winding bodies mounted in one slot, the second slot and the third slot and arranged at a pitch of one slot in the circumferential direction;
    In the winding body, the conductor wire is connected to the second slot, the first slot, the second slot, and the third slot in this order, and to the first slot, the second slot, and the third slot. A δ-shaped coil pattern formed by alternately changing the insertion direction from the axial direction is repeatedly wound in the radial direction m times (where m is a natural number of 1 or more). A plurality of linear portions inserted into each of the slot, the second slot and the third slot are connected together by a coil end portion;
    The coil end is constituted by the coil end portion,
    The rotating electrical machine, wherein the liquid refrigerant supplied to the coil end flows through a gap between the coil end portions adjacent in the circumferential direction.
  2.  上記巻線体は、上記直線部の上記第1スロット、上記第2スロットおよび上記第3スロット内の径方向における収納位置が、上記第2スロット、上記第1スロット、上記第2スロット、上記第3スロットの順に、上記直線部の径方向厚み分、径方向の一側に順次シフトしていることを特徴とする請求項1記載の回転電機。 The winding body has a storage position in the radial direction in the first slot, the second slot, and the third slot of the linear portion, the second slot, the first slot, the second slot, the second slot The rotating electrical machine according to claim 1, wherein the rotating electrical machine is sequentially shifted to one side in the radial direction by the radial thickness of the linear portion in the order of three slots.
  3.  上記直線部は、上記スロットのそれぞれに1列に配列して4ラm層に収納され、
     上記スロットに収納された、径方向に隣り合う上記直線部から周方向に延び出る上記コイルエンド部の方向が、径方向に、同方向と逆方向とを交互に繰返されていることを特徴とする請求項2記載の回転電機。
    The straight portions are arranged in one row in each of the slots and are accommodated in a 4 ram layer,
    The coil end portion housed in the slot and extending in the circumferential direction from the linear portion adjacent in the radial direction is alternately repeated in the radial direction in the same direction and in the opposite direction. The rotating electrical machine according to claim 2.
  4.  帯状の仕切り部材が、上記コイルエンドの異なる相の上記コイルエンド部間に周方向の全周にわたって配設されていることを特徴とする請求項1から請求項3のいずれか1項に記載の回転電機。 The strip-shaped partition member is arrange | positioned over the perimeter of the circumferential direction between the said coil end parts of a different phase of the said coil end, The Claim 1 characterized by the above-mentioned. Rotating electric machine.
  5.  周方向に隣り合う上記コイルエンド部の根本部間の隙間が、上記エアギャップより大きいことを特徴とする請求項1から請求項4のいずれか1項に記載の回転電機。 The rotating electrical machine according to any one of claims 1 to 4, wherein a gap between base portions of the coil end portions adjacent to each other in a circumferential direction is larger than the air gap.
  6.  帯状の隔壁部材が、上記コイルエンドの内周側に、上記コイルエンドに接して周方向の全周にわたって配設されていることを特徴とする請求項1から請求項5のいずれか1項に記載の回転電機。 The band-shaped partition member is disposed on the inner peripheral side of the coil end over the entire circumference in contact with the coil end, according to any one of claims 1 to 5. The rotating electrical machine described.
  7.  上記冷却機構は、上記液体冷媒を上記コイルエンドに径方向外方から噴射するように構成されていることを特徴とする請求項1から請求項6のいずれか1項に記載の回転電機。 The rotating electrical machine according to any one of claims 1 to 6, wherein the cooling mechanism is configured to inject the liquid refrigerant into the coil end from the outside in the radial direction.
  8.  上記液体冷媒が、最外径に位置する上記コイルエンド部の傾斜方向に沿って上記コイルエンドに噴射されることを特徴とする請求項7記載の回転電機。 The rotating electrical machine according to claim 7, wherein the liquid refrigerant is injected to the coil end along an inclination direction of the coil end portion located at the outermost diameter.
  9.  上記冷却機構は、上記液体冷媒を上記コイルエンドに径方向内方から噴射するように構成されていることを特徴とする請求項1から請求項5のいずれか1項に記載の回転電機。 The rotating electrical machine according to any one of claims 1 to 5, wherein the cooling mechanism is configured to inject the liquid refrigerant into the coil end from the inside in the radial direction.
PCT/JP2014/050821 2014-01-17 2014-01-17 Rotating electric machine WO2015107679A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480073375.9A CN105917555B (en) 2014-01-17 2014-01-17 Electric rotating machine
JP2015557657A JP6132936B2 (en) 2014-01-17 2014-01-17 Rotating electric machine
EP14878921.7A EP3096441B1 (en) 2014-01-17 2014-01-17 Rotary electric machine
US15/107,524 US10164491B2 (en) 2014-01-17 2014-01-17 Rotary electric machine
PCT/JP2014/050821 WO2015107679A1 (en) 2014-01-17 2014-01-17 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050821 WO2015107679A1 (en) 2014-01-17 2014-01-17 Rotating electric machine

Publications (1)

Publication Number Publication Date
WO2015107679A1 true WO2015107679A1 (en) 2015-07-23

Family

ID=53542597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050821 WO2015107679A1 (en) 2014-01-17 2014-01-17 Rotating electric machine

Country Status (5)

Country Link
US (1) US10164491B2 (en)
EP (1) EP3096441B1 (en)
JP (1) JP6132936B2 (en)
CN (1) CN105917555B (en)
WO (1) WO2015107679A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216832A (en) * 2016-06-01 2017-12-07 本田技研工業株式会社 Stator for rotary electric machine
WO2018033388A1 (en) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Electrical machine and vehicle comprising the electrical machine
JP2019097347A (en) * 2017-11-27 2019-06-20 本田技研工業株式会社 Cooling structure of rotary electric machine and vehicle provided with the same
JP2019129628A (en) * 2018-01-25 2019-08-01 現代自動車株式会社Hyundai Motor Company motor
JP2019134563A (en) * 2018-01-30 2019-08-08 本田技研工業株式会社 Stator of rotary electric machine
JP2020078215A (en) * 2018-11-09 2020-05-21 本田技研工業株式会社 Stator unit of rotary electric machine
WO2020105467A1 (en) * 2018-11-20 2020-05-28 ジヤトコ株式会社 Motor oil cooling structure
JP2020120556A (en) * 2019-01-28 2020-08-06 株式会社 神崎高級工機製作所 Oil cooling structure of electric vehicle motor
WO2020202931A1 (en) * 2019-03-29 2020-10-08 日本電産株式会社 Motor
CN111969749A (en) * 2019-05-20 2020-11-20 Zf腓特烈斯哈芬股份公司 Cooling assembly for an electric machine and electric machine
JP2020198749A (en) * 2019-06-05 2020-12-10 ジヤトコ株式会社 Power transmission device
JP2022528222A (en) * 2019-06-27 2022-06-09 ファーウェイ デジタル パワー テクノロジーズ カンパニー リミテッド Rotors, motors and electric vehicles
JP7444042B2 (en) 2020-12-16 2024-03-06 トヨタ自動車株式会社 Stator of rotating electrical machine and stator cooling structure

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6272526B1 (en) * 2017-04-25 2018-01-31 三菱電機株式会社 Rotating electric machine
WO2018218314A1 (en) * 2017-06-02 2018-12-06 magniX Technologies Pty Ltd Cooling arrangements in devices or components with windings
JP6594401B2 (en) * 2017-12-19 2019-10-23 本田技研工業株式会社 Rotating electric machine
JP6508318B1 (en) * 2017-12-25 2019-05-08 株式会社明電舎 Stator of rotating machine
JP6621114B2 (en) 2018-02-21 2019-12-18 本田技研工業株式会社 Rotating electric machine
JP7071845B2 (en) * 2018-03-02 2022-05-19 本田技研工業株式会社 Rotating electric machine
DE102019124462A1 (en) * 2019-09-11 2021-03-11 Valeo Siemens Eautomotive Germany Gmbh Stator with pins and an adjacent connection for an electrical machine
DE102019124464A1 (en) * 2019-09-11 2021-03-11 Valeo Siemens Eautomotive Germany Gmbh Stator with pins for an electrical machine
DE102019124463A1 (en) * 2019-09-11 2021-03-11 Valeo Siemens Eautomotive Germany Gmbh Stator with pins and an internal connection for an electrical machine
DE102019131973A1 (en) * 2019-11-26 2021-05-27 Valeo Siemens Eautomotive Germany Gmbh Stator with pins for an electrical machine
DE102019133549A1 (en) * 2019-12-09 2021-06-10 Valeo Siemens Eautomotive Germany Gmbh Stator with pins for an electrical machine
JP7118946B2 (en) * 2019-12-10 2022-08-16 本田技研工業株式会社 Rotating electric machine stator
US11095192B1 (en) * 2020-01-28 2021-08-17 Arthur Leon Kowitz System for cooling an electric motor
DE102020104149A1 (en) * 2020-02-18 2021-08-19 Audi Aktiengesellschaft Rotor for an electric machine, electric machine and automobile
CN113824224A (en) * 2021-10-20 2021-12-21 广州小鹏汽车科技有限公司 Stator core and motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828841B1 (en) * 1968-10-01 1973-09-05
JP2005020943A (en) * 2003-06-27 2005-01-20 Denso Corp Rotating electric machine
JP2009522991A (en) * 2005-12-30 2009-06-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Especially for automotive generators
JP2009303293A (en) * 2008-06-10 2009-12-24 Toyota Motor Corp Rotor of rotating electric machine
JP2013034330A (en) 2011-08-02 2013-02-14 Toyota Motor Corp Stator
JP2013062963A (en) 2011-09-14 2013-04-04 Denso Corp Rotary electric machine
JP2013141410A (en) * 2013-04-24 2013-07-18 Hitachi Automotive Systems Ltd Stator of rotary electric machine and rotary electric machine using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965965A (en) * 1997-05-26 1999-10-12 Denso Corporation Stator winding arrangement of alternator for vehicle
JP3407643B2 (en) * 1997-05-26 2003-05-19 株式会社デンソー AC generator for vehicles
FR2844646B1 (en) * 2002-09-17 2006-02-24 Denso Corp HIGH VOLTAGE ELECTRIC ROTATING MACHINE
JP5233441B2 (en) * 2008-06-26 2013-07-10 株式会社デンソー Rotating electric machine
US8519581B2 (en) * 2010-06-08 2013-08-27 Remy Technologies, Llc Electric machine cooling system and method
US8456046B2 (en) * 2010-06-08 2013-06-04 Remy Technologies, Llc Gravity fed oil cooling for an electric machine
JP5575055B2 (en) * 2010-06-24 2014-08-20 株式会社日本自動車部品総合研究所 Rotating electric machine
JP5560176B2 (en) 2010-12-08 2014-07-23 トヨタ自動車株式会社 Motor and motor manufacturing method
US8803380B2 (en) * 2011-06-03 2014-08-12 Remy Technologies, Llc Electric machine module cooling system and method
JP2013183480A (en) * 2012-02-29 2013-09-12 Toyota Motor Corp Cooling structure of rotor for rotary electric machine and rotary electric machine
JP5791805B2 (en) * 2012-07-06 2015-10-07 三菱電機株式会社 Rotating electric machine and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828841B1 (en) * 1968-10-01 1973-09-05
JP2005020943A (en) * 2003-06-27 2005-01-20 Denso Corp Rotating electric machine
JP2009522991A (en) * 2005-12-30 2009-06-11 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Especially for automotive generators
JP2009303293A (en) * 2008-06-10 2009-12-24 Toyota Motor Corp Rotor of rotating electric machine
JP2013034330A (en) 2011-08-02 2013-02-14 Toyota Motor Corp Stator
JP2013062963A (en) 2011-09-14 2013-04-04 Denso Corp Rotary electric machine
JP2013141410A (en) * 2013-04-24 2013-07-18 Hitachi Automotive Systems Ltd Stator of rotary electric machine and rotary electric machine using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3096441A4
TOYOTA MOTOR CORP,JAPAN INSTITUTE OF INVENTION AND INNOVATION: "Motor no Coil Reikyaku Sochi, Japan Institute of Invention and Innovation, Journal of Technical Disclosure, Journal Number 2002-83", 4 January 2002 (2002-01-04), XP008184904 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216832A (en) * 2016-06-01 2017-12-07 本田技研工業株式会社 Stator for rotary electric machine
US10680478B2 (en) 2016-08-17 2020-06-09 Bayerische Motoren Werke Aktiengesellschaft Electrical machine and vehicle equipped with the electrical machine
WO2018033388A1 (en) * 2016-08-17 2018-02-22 Bayerische Motoren Werke Aktiengesellschaft Electrical machine and vehicle comprising the electrical machine
JP2019097347A (en) * 2017-11-27 2019-06-20 本田技研工業株式会社 Cooling structure of rotary electric machine and vehicle provided with the same
JP2019129628A (en) * 2018-01-25 2019-08-01 現代自動車株式会社Hyundai Motor Company motor
JP2019134563A (en) * 2018-01-30 2019-08-08 本田技研工業株式会社 Stator of rotary electric machine
US11374445B2 (en) 2018-11-09 2022-06-28 Honda Motor Co., Ltd. Stator unit of rotary electric machine
JP2020078215A (en) * 2018-11-09 2020-05-21 本田技研工業株式会社 Stator unit of rotary electric machine
JPWO2020105467A1 (en) * 2018-11-20 2021-09-27 ジヤトコ株式会社 Motor oil cooling structure
WO2020105467A1 (en) * 2018-11-20 2020-05-28 ジヤトコ株式会社 Motor oil cooling structure
JP7053886B2 (en) 2018-11-20 2022-04-12 ジヤトコ株式会社 Motor oil cooling structure
JP7267578B2 (en) 2019-01-28 2023-05-02 株式会社 神崎高級工機製作所 Oil cooling structure for electric vehicle motors
JP2020120556A (en) * 2019-01-28 2020-08-06 株式会社 神崎高級工機製作所 Oil cooling structure of electric vehicle motor
WO2020202931A1 (en) * 2019-03-29 2020-10-08 日本電産株式会社 Motor
CN111969749A (en) * 2019-05-20 2020-11-20 Zf腓特烈斯哈芬股份公司 Cooling assembly for an electric machine and electric machine
JP2020198749A (en) * 2019-06-05 2020-12-10 ジヤトコ株式会社 Power transmission device
JP2022528222A (en) * 2019-06-27 2022-06-09 ファーウェイ デジタル パワー テクノロジーズ カンパニー リミテッド Rotors, motors and electric vehicles
JP7279185B2 (en) 2019-06-27 2023-05-22 ファーウェイ デジタル パワー テクノロジーズ カンパニー リミテッド Rotors, motors and electric vehicles
US11901775B2 (en) 2019-06-27 2024-02-13 Huawei Digital Power Technologies Co., Ltd. Rotor, motor, and electric vehicle
JP7444042B2 (en) 2020-12-16 2024-03-06 トヨタ自動車株式会社 Stator of rotating electrical machine and stator cooling structure

Also Published As

Publication number Publication date
CN105917555B (en) 2018-09-04
US20160322876A1 (en) 2016-11-03
EP3096441A1 (en) 2016-11-23
EP3096441B1 (en) 2020-03-11
EP3096441A4 (en) 2017-09-06
US10164491B2 (en) 2018-12-25
CN105917555A (en) 2016-08-31
JPWO2015107679A1 (en) 2017-03-23
JP6132936B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP6132936B2 (en) Rotating electric machine
US9941760B2 (en) Rotary electric machine
WO2014017361A1 (en) Rotary electric machine
JP5774082B2 (en) Rotating electric machine
JPWO2014006927A1 (en) Rotating electric machine and manufacturing method thereof
CN111245119B (en) Stator for rotating electrical machine, and rotating electrical machine provided with same
JPWO2014162626A1 (en) Rotating electric machine stator
JP2012222922A (en) Stator of rotary electric machine
JP2016054608A (en) Rotor for rotary electric machine
JP2020120470A (en) Rotary electric machine
US20130062978A1 (en) Electric rotating machine
US10153673B2 (en) Production method for rotating electrical machine
JP2015211543A (en) Cooling structure of rotary electric machine
JP5995883B2 (en) Rotating electric machine stator
US9257881B2 (en) Rotating electric machine
JP7449657B2 (en) motor
CN110176837A (en) The cooling structure and rotating electric machine of rotating electric machine
JP5330860B2 (en) Rotating electric machine
US11356000B2 (en) Electric machine cooling with rotor having cooling pipe
CN110176822B (en) Cooling structure of rotating electrical machine and rotating electrical machine
JP2013192339A (en) Induction motor
JP5889235B2 (en) Armature of rotating electric machine and method for manufacturing the same
JP2011019311A (en) Rotor of rotary electric machine
JP5901503B2 (en) Rotating electric machine
JP6116327B2 (en) Armature of electric machine and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557657

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15107524

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014878921

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014878921

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE