JP2009303293A - Rotor of rotating electric machine - Google Patents

Rotor of rotating electric machine Download PDF

Info

Publication number
JP2009303293A
JP2009303293A JP2008151535A JP2008151535A JP2009303293A JP 2009303293 A JP2009303293 A JP 2009303293A JP 2008151535 A JP2008151535 A JP 2008151535A JP 2008151535 A JP2008151535 A JP 2008151535A JP 2009303293 A JP2009303293 A JP 2009303293A
Authority
JP
Japan
Prior art keywords
rotor
magnet
resin material
passage portion
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008151535A
Other languages
Japanese (ja)
Inventor
Kentaro Haruno
健太郎 春野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008151535A priority Critical patent/JP2009303293A/en
Publication of JP2009303293A publication Critical patent/JP2009303293A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To sufficiently secure the cooling performance of permanent magnets embedded in a rotor core by preventing a refrigerant from leaking out of the space in magnetic steel sheets, suppressing deterioration in performance of a rotating electric machine. <P>SOLUTION: A rotor 7 includes a rotor rotating shaft 3, the rotor core 11 having laminated steel sheets fixed to the rotor rotating shaft 3 and provided with a plurality of magnet accommodation holes 17 formed by penetrating the laminated steel sheets in the axial direction of the rotor rotating shaft 3, and a plurality of permanent magnets 5 accommodated in the respective magnet accommodation holes 17. In this case, the magnet accommodation holes 17 have each refrigerant passage 18 wider than the portion occupied with the permanent magnet 5, with the inner wall of the passage 18 covered with a resin material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転電機のロータ、特に、ロータコアに永久磁石を埋設した永久磁石埋設型ロータにおいて、永久磁石及びその周辺を冷却する技術に関する。   The present invention relates to a technique for cooling a permanent magnet and its periphery in a rotor of a rotating electrical machine, particularly a permanent magnet embedded rotor in which a permanent magnet is embedded in a rotor core.

回転電機では、ロータに備えられた永久磁石が、ロータの回転時に発熱し、昇温する。この昇温が過剰となれば、永久磁石が不可逆減磁を生じるなどして、回転電機は出力の低下など性能の劣化を招く懸念がある。   In a rotating electrical machine, a permanent magnet provided in a rotor generates heat when the rotor rotates, and the temperature rises. If the temperature rises excessively, the permanent magnet may cause irreversible demagnetization, and the rotating electrical machine may cause performance degradation such as a reduction in output.

ここで、特許文献1には、永久磁石埋設型ロータにおいて、永久磁石が収容されるスロット内に、ロータ回転軸の軸方向に延びる冷媒通路を設け、冷媒により永久磁石を冷却し、永久磁石の昇温を抑える技術が記載されている。また、特許文献1に記載のロータは、ロータコアが、電磁鋼板をロータ回転軸の軸方向に積層した積層鋼板によって構成されている。
特開2006−67777号公報
Here, in Patent Document 1, in the permanent magnet embedded rotor, a refrigerant passage extending in the axial direction of the rotor rotating shaft is provided in a slot in which the permanent magnet is accommodated, and the permanent magnet is cooled by the refrigerant. A technique for suppressing temperature rise is described. In the rotor described in Patent Document 1, the rotor core is constituted by a laminated steel plate in which electromagnetic steel plates are laminated in the axial direction of the rotor rotation shaft.
JP 2006-67777 A

しかしながら、特許文献1に記載のものでは、隣接する電磁鋼板の隙間から冷媒通路内の冷媒が漏れ易い。このため、永久磁石の冷却に寄与する冷媒の量が減少して、永久磁石の過剰な昇温を抑えることができず、回転電機の性能の劣化を招く。   However, in the thing of patent document 1, the refrigerant | coolant in a refrigerant path tends to leak from the clearance gap between adjacent electromagnetic steel plates. For this reason, the quantity of the refrigerant | coolant which contributes to cooling of a permanent magnet reduces, the excessive temperature rise of a permanent magnet cannot be suppressed, and the deterioration of the performance of a rotary electric machine is caused.

本発明は、以上のような問題点に鑑みてなされたものであり、電磁鋼板の隙間から冷媒が漏洩するのを防止することで、永久磁石及びその周辺のロータコア部分の冷却性能を十分に確保し、回転電機の性能劣化を抑制することを目的とする。   The present invention has been made in view of the above problems, and by sufficiently preventing the refrigerant from leaking through the gaps between the electromagnetic steel sheets, the cooling performance of the permanent magnet and the surrounding rotor core portion is sufficiently ensured. And it aims at suppressing the performance deterioration of a rotary electric machine.

このため、本発明では、ロータ回転軸に固定された積層鋼板を有するロータコアに、この積層鋼板をロータ回転軸の軸方向に貫通する複数の磁石収容孔を設け、各磁石収容孔内に永久磁石を収容する。ここで、磁石収容孔は、永久磁石の占有部よりも拡張させて設けられた冷媒の通路部を有し、この通路部の内壁を樹脂材により被覆する。   For this reason, in the present invention, a rotor core having a laminated steel plate fixed to the rotor rotation shaft is provided with a plurality of magnet accommodation holes penetrating the laminated steel plate in the axial direction of the rotor rotation shaft, and a permanent magnet is provided in each magnet accommodation hole. To accommodate. Here, the magnet housing hole has a passage portion of the refrigerant provided so as to be expanded from the occupied portion of the permanent magnet, and covers the inner wall of the passage portion with a resin material.

以上の構成によって、前記通路部を流れる冷媒により、永久磁石及びその周辺が冷却される。ここで、前記通路部の内壁を被覆する樹脂材により、積層鋼板を構成する電磁鋼板の隙間からの冷媒の漏洩が防止され、永久磁石の冷却に寄与する冷媒の量を十分に確保し、永久磁石を効率よく冷却することができる。したがって、永久磁石の過剰な昇温による不可逆減磁を防止し、回転電機の性能劣化を抑制することができる。   With the above configuration, the permanent magnet and its periphery are cooled by the refrigerant flowing through the passage portion. Here, the resin material that covers the inner wall of the passage portion prevents leakage of the refrigerant from the gap between the electromagnetic steel sheets constituting the laminated steel sheet, and ensures a sufficient amount of the refrigerant that contributes to cooling of the permanent magnet. The magnet can be efficiently cooled. Therefore, irreversible demagnetization due to excessive temperature rise of the permanent magnet can be prevented, and performance deterioration of the rotating electrical machine can be suppressed.

以下に、本発明の第1実施形態について説明する。   The first embodiment of the present invention will be described below.

図1は、本実施形態に係る回転電機としてのモータジェネレータ1を示す。   FIG. 1 shows a motor generator 1 as a rotating electrical machine according to the present embodiment.

モータジェネレータ1は、電動機または発電機としての機能を有し、図示しない内燃機関と共にハイブリッド車両の駆動源を構成する。電動機としてのモータジェネレータ1から出力された動力は、図示しない車輪に回転力として伝達されて、車両を走行させる。一方、車両の回生制動時には、車輪からの回転力により、モータジェネレータ1が発電機として駆動され、発電された電力は、図示しないインバータを介してバッテリに蓄えられる。   The motor generator 1 has a function as an electric motor or a generator, and constitutes a drive source of a hybrid vehicle together with an internal combustion engine (not shown). The power output from the motor generator 1 as an electric motor is transmitted as a rotational force to a wheel (not shown) to drive the vehicle. On the other hand, during regenerative braking of the vehicle, the motor generator 1 is driven as a generator by the rotational force from the wheels, and the generated electric power is stored in a battery via an inverter (not shown).

図2は、図1のロータを詳細に示し、図3は、図2のA−A断面を示す。   2 shows the rotor of FIG. 1 in detail, and FIG. 3 shows an AA cross section of FIG.

ロータ7は、モータジェネレータ1のハウジング2内に、ステータ9と共に格納されている。ロータ7は、ハウジング2に軸受されるロータ回転軸3と、ロータ回転軸3に同軸状態で固定されるロータコア11と、ロータ回転軸3に固定されてロータコア11をロータ回転軸3の軸方向(以下、軸方向とする)両側から挟む非磁性体のエンドプレート21,23と、を含んで構成されている。   The rotor 7 is stored in the housing 2 of the motor generator 1 together with the stator 9. The rotor 7 includes a rotor rotating shaft 3 that is supported by the housing 2, a rotor core 11 that is coaxially fixed to the rotor rotating shaft 3, and a rotor core 11 that is fixed to the rotor rotating shaft 3 in the axial direction of the rotor rotating shaft 3 ( (Hereinafter referred to as the axial direction) and non-magnetic end plates 21 and 23 sandwiched from both sides.

ロータコア11は、鉄または鉄合金など磁性体の電磁鋼板11aを軸方向に積層させた積層鋼板によって構成され、ロータコア11の内周面に設けられたキー13と、ロータ回転軸3の外周面に設けられたキー溝15と、を係合させて、ロータ回転軸3に固定されている。   The rotor core 11 is composed of a laminated steel plate in which magnetic steel plates 11 a made of a magnetic material such as iron or iron alloy are laminated in the axial direction, and a key 13 provided on the inner peripheral surface of the rotor core 11 and an outer peripheral surface of the rotor rotating shaft 3. The key groove 15 provided is engaged and fixed to the rotor rotating shaft 3.

ロータコア11は、軸方向に貫通させて形成された磁石収容孔17を、周方向に複数備えており、各磁石収容孔17には永久磁石5が収容されている。本実施形態では、隣り合う2個の永久磁石5,5(永久磁石群6)により、ロータ7の1つの極が形成されている。このようにして、ロータ7には、合計16個の永久磁石5により、8つの極が形成されている。また、1つの極を形成する永久磁石5を収容する各磁石収容孔17,17同士が、軸方向と交差(ここでは直交)する面内でロータコア11の径方向に対して対称的に傾斜してロータ回転軸3に向かって凸となる略V字状に形成されている。これにより、永久磁石5の磁気損失が低減されている。ただし、磁石収容孔17は、このような形状に限定されるものではなく、軸方向と交差する面内で、幅方向をロータコア11の径方向に対して垂直に形成したものにも本発明を適用できる。   The rotor core 11 includes a plurality of magnet housing holes 17 formed in the axial direction so as to penetrate in the axial direction, and the permanent magnets 5 are housed in the respective magnet housing holes 17. In this embodiment, one pole of the rotor 7 is formed by two adjacent permanent magnets 5 and 5 (permanent magnet group 6). In this manner, eight poles are formed on the rotor 7 by a total of 16 permanent magnets 5. Further, each of the magnet housing holes 17 for housing the permanent magnet 5 forming one pole is inclined symmetrically with respect to the radial direction of the rotor core 11 within a plane intersecting (in this case, orthogonal) with the axial direction. Thus, it is formed in a substantially V shape that is convex toward the rotor rotation shaft 3. Thereby, the magnetic loss of the permanent magnet 5 is reduced. However, the magnet housing hole 17 is not limited to such a shape, and the present invention can be applied to a case in which the width direction is formed perpendicular to the radial direction of the rotor core 11 in a plane intersecting the axial direction. Applicable.

図4は、図3のロータにおける永久磁石周辺の拡大図である。   FIG. 4 is an enlarged view around the permanent magnet in the rotor of FIG.

永久磁石5は、磁石収容孔17の内壁と永久磁石5との間(隙間)にエポキシ系などの樹脂材(第2の樹脂材)を充填してモールドすることにより、磁石収容孔17内に固定されている。さらに、本実施形態では、磁石収容孔17を軸方向と交差(直交)する面内で永久磁石5の占有部よりも拡張させて、冷媒の通路部18が形成されている。そして、この通路部18の内壁のうち、少なくとも前記積層鋼板により形成される部分が、樹脂材(第1の樹脂材)により被覆されている。本実施形態では、通路部18の内壁が、その全周に亘って樹脂材により被覆されている。これにより、通路部18には、ロータコア11の軸方向の全長に亘って、内壁の全周が樹脂材で形成された冷媒通路25が設けられている。換言すれば、磁石収容孔17内における通路部18に充填された樹脂材(第1の樹脂材)と、その他の隙間に充填された樹脂材(第2の樹脂材)と、により樹脂部19が形成され、通路部18内の樹脂部19を軸方向に貫通させて、冷媒通路25が形成されている。この冷媒通路25は、永久磁石5と、その周辺のロータコア11部分と、を冷却するためのものである。   The permanent magnet 5 is filled with an epoxy-based resin material (second resin material) between the inner wall of the magnet housing hole 17 and the permanent magnet 5 (gap), and then molded. It is fixed. Furthermore, in the present embodiment, the passageway 18 for the refrigerant is formed by extending the magnet housing hole 17 in a plane intersecting (orthogonal) with the axial direction as compared with the occupied portion of the permanent magnet 5. And at least the part formed with the said laminated steel plate among the inner walls of this channel | path part 18 is coat | covered with the resin material (1st resin material). In this embodiment, the inner wall of the channel | path part 18 is coat | covered with the resin material over the perimeter. As a result, the passage portion 18 is provided with a refrigerant passage 25 having the entire inner wall formed of the resin material over the entire length of the rotor core 11 in the axial direction. In other words, the resin portion 19 is composed of the resin material (first resin material) filled in the passage portion 18 in the magnet housing hole 17 and the resin material (second resin material) filled in the other gap. The refrigerant passage 25 is formed by penetrating the resin portion 19 in the passage portion 18 in the axial direction. The refrigerant passage 25 is for cooling the permanent magnet 5 and the surrounding rotor core 11 portion.

冷媒通路25は、具体的には、磁石収容孔17に永久磁石5を収容すると共に円柱状など棒状の型を通路部18内に挿入した状態で、磁石収容孔17の通路部18及びその他の隙間に樹脂材を充填し、樹脂材の硬化後、前記型を抜き出して形成することができる。したがって、樹脂材のモールド工程で、冷媒通路25をも同時に形成することができる。ここにおいて、前記型を例えば先細に構成し、通路部18に対して先細の先端から挿入すると共に、前記型の通路部18からの抜き出しを前記型の後端から行うことで、容易に冷媒通路25を形成することができる。或いは、前記型に代えて、非磁性体からなる中空のパイプ部材を通路部18内に挿入した状態で、磁石収容孔17の通路部18(該パイプ部材の外側)及びその他の隙間に樹脂材を充填してもよい。このようにすれば、樹脂材の硬化後に該パイプ部材の抜き出しを行わなくとも、該パイプ部材の内部に冷媒通路が形成され、工数を低減できる。   Specifically, the refrigerant passage 25 accommodates the permanent magnet 5 in the magnet accommodation hole 17 and inserts a rod-like mold such as a columnar shape into the passage portion 18, and the passage portion 18 of the magnet accommodation hole 17 and other parts. The gap can be filled with a resin material, and after the resin material is cured, the mold can be extracted and formed. Therefore, the coolant passage 25 can be formed at the same time in the resin material molding step. Here, the mold is configured to be tapered, for example, and inserted into the passage portion 18 from a tapered tip, and extraction from the passage portion 18 of the mold is performed from the rear end of the die, so that the coolant passage can be easily performed. 25 can be formed. Alternatively, in place of the mold, a hollow pipe member made of a non-magnetic material is inserted into the passage portion 18, and a resin material is inserted into the passage portion 18 (outside the pipe member) of the magnet housing hole 17 and other gaps. May be filled. In this way, even if the pipe member is not extracted after the resin material is cured, a refrigerant passage is formed inside the pipe member, and the number of man-hours can be reduced.

以下、冷媒通路25に冷媒(例えばトルクコンバータの作動油)を導く構成について、図2を参照して説明する。   Hereinafter, a configuration for guiding the refrigerant (for example, hydraulic oil of the torque converter) to the refrigerant passage 25 will be described with reference to FIG.

本実施形態では、ロータ回転軸3を中空軸部材で形成し、ロータ回転軸3の内部を冷媒導入路29としている。ロータ回転軸3の各エンドプレート21,23に接する部分には、径方向に貫通する冷媒流出孔37,39が形成されている。各エンドプレート21,23のロータコア11との接合面において、冷媒流出孔37,39の冷媒出口に面する部分に環状溝41,43が設けられ、各環状溝41,43から放射状に伸びる複数の冷媒分配路31,32が設けられている。ここで、複数の冷媒通路25が周方向に1つおきに、エンドプレート21側の冷媒分配路31と、エンドプレート23側の冷媒分配路32と、に交互に連通するように、冷媒分配路31,32が配設されている。また、各エンドプレート21,23には、各冷媒通路25の冷媒分配路31,32と連通する開口端とは反対側の開口端に面する部分を軸方向に貫通させて、冷媒排出孔45,47が形成されている。   In the present embodiment, the rotor rotation shaft 3 is formed of a hollow shaft member, and the inside of the rotor rotation shaft 3 is used as the refrigerant introduction path 29. Refrigerant outflow holes 37 and 39 penetrating in the radial direction are formed in portions of the rotor rotating shaft 3 that are in contact with the end plates 21 and 23. At the joint surfaces of the end plates 21 and 23 with the rotor core 11, annular grooves 41 and 43 are provided in portions of the refrigerant outflow holes 37 and 39 facing the refrigerant outlet, and a plurality of radial grooves 41 and 43 extend radially from the annular grooves 41 and 43. Refrigerant distribution paths 31 and 32 are provided. Here, every other refrigerant passage 25 in the circumferential direction is alternately connected to the refrigerant distribution passage 31 on the end plate 21 side and the refrigerant distribution passage 32 on the end plate 23 side so as to alternately communicate with each other. 31 and 32 are arranged. Further, each end plate 21, 23 is penetrated in the axial direction at a portion facing the opening end opposite to the opening end communicating with the refrigerant distribution passages 31, 32 of each refrigerant passage 25, and the refrigerant discharge hole 45. , 47 are formed.

以下、上記構成における冷媒の流れを説明する。   Hereinafter, the flow of the refrigerant in the above configuration will be described.

内燃機関により駆動されるポンプ(図示せず)によって圧送された冷媒は、ロータ回転軸3内の冷媒導入路29に導かれた後、両側の冷媒流出孔37,39から流出して環状溝41,43に至り、冷媒分配路31,32を介して、各冷媒通路25に導かれる。   The refrigerant pumped by a pump (not shown) driven by the internal combustion engine is guided to the refrigerant introduction passage 29 in the rotor rotating shaft 3 and then flows out from the refrigerant outflow holes 37 and 39 on both sides, and the annular groove 41. , 43 and led to the respective refrigerant passages 25 through the refrigerant distribution paths 31 and 32.

そして、冷媒は、各冷媒通路25を流れる間に、近接する永久磁石5とその周辺のロータコア11を冷却した後、エンドプレート21,23の冷媒排出孔45,47から排出され、ロータ7の外周側に飛散し、ステータ9のコイルエンド9aを冷却する。   The refrigerant cools the adjacent permanent magnet 5 and the surrounding rotor core 11 while flowing through each refrigerant passage 25, and then is discharged from the refrigerant discharge holes 45 and 47 of the end plates 21 and 23. The coil end 9a of the stator 9 is cooled.

以上のように、冷媒通路25を、通路部18の内壁のうち前記積層鋼板により形成される部分を樹脂材により被覆して形成することで、隣り合う電磁鋼板11aの隙間(積層鋼板の隙間)が樹脂材により塞がれる。これにより、隣り合う電磁鋼板11aの隙間から冷媒通路25内の冷媒が漏れるのが防止され、永久磁石の冷却に寄与する冷媒の量を、十分に確保することができる。この結果、永久磁石5の過剰な昇温を冷却により防止し、永久磁石5の不可逆減磁を確実に回避し、モータジェネレータ1の出力低下など性能劣化を防止することができる。また、冷媒の漏れ分を前記ポンプの出力の増大により補う必要もないことから、前記内燃機関の燃費の悪化を抑制することができる。   As described above, the refrigerant passage 25 is formed by covering the inner wall of the passage portion 18 with the resin material on the portion formed by the laminated steel plate, thereby forming a gap between adjacent electromagnetic steel plates 11a (gap between the laminated steel plates). Is blocked by the resin material. Thereby, it is prevented that the refrigerant in the refrigerant passage 25 leaks from the gap between the adjacent electromagnetic steel plates 11a, and a sufficient amount of the refrigerant contributing to cooling of the permanent magnet can be ensured. As a result, excessive temperature rise of the permanent magnet 5 can be prevented by cooling, irreversible demagnetization of the permanent magnet 5 can be reliably avoided, and performance degradation such as a reduction in output of the motor generator 1 can be prevented. Further, since it is not necessary to compensate for the leakage of the refrigerant by increasing the output of the pump, it is possible to suppress the deterioration of the fuel consumption of the internal combustion engine.

さらに、隣り合う電磁鋼板11aの間から漏れた冷媒がロータ7とステータ9との間のエアギャップに溜まるのを回避することによって、ロータ7の回転抵抗の増大を防止し、モータジェネレータ1の出力の損失を低減することができる。   Further, the refrigerant leaking from between the adjacent electromagnetic steel plates 11a is prevented from accumulating in the air gap between the rotor 7 and the stator 9, thereby preventing an increase in the rotational resistance of the rotor 7 and the output of the motor generator 1. Loss can be reduced.

また、本実施形態では、1つの極を形成する永久磁石5を収容する各磁石収容孔17の各通路部18が、ロータコア11の内側ブリッジ部27に形成されている。ロータコア11の内側ブリッジ部とは、1つの極を形成する各永久磁石の間の部分であって、これら永久磁石の漏れ磁束を低減する目的で狭小に形成された部分を意味する。この内側ブリッジ部27は、狭小に形成されているため、ロータ7の回転時に遠心力による応力が集中しやすいほか、熱応力が増大しやすくなっている。ここで、内側ブリッジ部27は、冷媒通路25を流れる冷媒の冷却効果によって昇温が抑えられるため、熱応力を緩和できる分だけ耐久性を確保することができる。   In the present embodiment, each passage portion 18 of each magnet accommodation hole 17 that accommodates the permanent magnet 5 that forms one pole is formed in the inner bridge portion 27 of the rotor core 11. The inner bridge portion of the rotor core 11 is a portion between each permanent magnet that forms one pole, and means a portion that is narrowly formed for the purpose of reducing the leakage magnetic flux of these permanent magnets. Since the inner bridge portion 27 is formed narrow, stress due to centrifugal force tends to concentrate when the rotor 7 rotates, and thermal stress tends to increase. Here, since the temperature rise is suppressed by the cooling effect of the refrigerant flowing through the refrigerant passage 25, the inner bridge portion 27 can ensure the durability as much as the thermal stress can be relaxed.

さらに、本実施形態では、上述の冷媒通路25を通って冷媒排出孔45,47から流出した冷媒は、ロータ7の回転により生じる遠心力によって、ロータコア11の外周側に配設されたステータ9のコイルエンド9aへ向けて飛散し、コイルエンド9aを冷却する。したがって、隣り合う電磁鋼板11aの間から冷媒が漏れるのが防止されることで、冷媒排出孔45,47から排出される冷媒の量、即ち、ステータ9のコイルエンド9aへ向けて飛散する冷媒の量も十分に確保されるため、コイルエンド9aの冷却性能も十分に確保することができる。また、各冷媒通路25の冷媒の流れ方向を、周方向に1つおきに逆向きとした構成により、各永久磁石5を均等に冷却することができると共に、軸方向両側のコイルエンド9aをも均等に冷却することができる。   Further, in the present embodiment, the refrigerant that has flowed out of the refrigerant discharge holes 45 and 47 through the refrigerant passage 25 described above is caused by the centrifugal force generated by the rotation of the rotor 7 and the stator 9 disposed on the outer peripheral side of the rotor core 11. Spattering toward the coil end 9a cools the coil end 9a. Therefore, by preventing the refrigerant from leaking between the adjacent electromagnetic steel sheets 11a, the amount of the refrigerant discharged from the refrigerant discharge holes 45 and 47, that is, the refrigerant scattered toward the coil end 9a of the stator 9 is obtained. Since the amount is sufficiently secured, the cooling performance of the coil end 9a can be sufficiently secured. In addition, each permanent magnet 5 can be evenly cooled by the configuration in which the flow direction of the refrigerant in each refrigerant passage 25 is reversed every other circumferential direction, and the coil ends 9a on both sides in the axial direction are also provided. Cool evenly.

次に、本発明の第2実施形態について説明する。通路部18以外の構成については、前記第1実施形態と同様である。   Next, a second embodiment of the present invention will be described. The configuration other than the passage portion 18 is the same as that of the first embodiment.

本実施形態では、図5に示すように、通路部18が、永久磁石5とロータコア11の外周との間のロータコア11の外側ブリッジ部33に形成されている。ロータコア11の外側ブリッジ部33とは、永久磁石とロータコア11の外周との間の部分であって、永久磁石の漏れ磁束を低減する目的で狭小に形成された部分を意味する。この外側ブリッジ部33は、狭小に形成されているため、ロータ7の回転時に遠心力による応力が集中しやすいほか、熱応力が増大しやすくなっている。ここで、外側ブリッジ部33は、冷媒通路25を流れる冷媒の冷却効果によって昇温が抑えられるため、熱応力を緩和できる分だけ耐久性を確保することができる。さらに、以上のように各外側ブリッジ部33の冷却性能を高めて耐久性を向上することで、外側ブリッジ部33をより狭小にして、外側ブリッジ部33における漏れ磁束をより低減し、一層モータジェネレータ1の出力性能の向上を図ることもできる。   In the present embodiment, as shown in FIG. 5, the passage portion 18 is formed in the outer bridge portion 33 of the rotor core 11 between the permanent magnet 5 and the outer periphery of the rotor core 11. The outer bridge portion 33 of the rotor core 11 is a portion between the permanent magnet and the outer periphery of the rotor core 11 and means a portion formed narrowly for the purpose of reducing the leakage magnetic flux of the permanent magnet. Since the outer bridge portion 33 is formed narrow, stress due to centrifugal force tends to concentrate when the rotor 7 rotates, and thermal stress tends to increase. Here, since the temperature rise is suppressed by the cooling effect of the refrigerant flowing through the refrigerant passage 25, the outer bridge portion 33 can ensure the durability as much as the thermal stress can be relaxed. Further, as described above, the cooling performance of each outer bridge portion 33 is enhanced to improve the durability, so that the outer bridge portion 33 is further narrowed, the leakage magnetic flux in the outer bridge portion 33 is further reduced, and the motor generator is further reduced. 1 output performance can be improved.

本発明は、上記実施形態に限らず、以下のような変形例としてもよい。   The present invention is not limited to the above embodiment, and may be modified as follows.

まず、図6に示すように、通路部18の内壁の一部で樹脂材を欠如させて、冷媒通路25に対して永久磁石5を露出させ、冷媒通路25内を流れる冷媒が永久磁石5と直接接するようにしてもよい。これにより、冷媒通路25内を流れる冷媒は、永久磁石5から直接吸熱が可能となり、永久磁石5の冷却性能をより向上することができる。   First, as shown in FIG. 6, the resin material is absent from a part of the inner wall of the passage portion 18 to expose the permanent magnet 5 to the refrigerant passage 25, and the refrigerant flowing in the refrigerant passage 25 is separated from the permanent magnet 5. You may make it contact directly. Thereby, the refrigerant flowing in the refrigerant passage 25 can directly absorb heat from the permanent magnet 5, and the cooling performance of the permanent magnet 5 can be further improved.

また、磁石収容孔17へ永久磁石5を固定するには、磁石収容孔17の内壁により永久磁石5を挟持して固定してもよい。この場合、樹脂材は、通路部18へのみ鋳込まれる。   Further, in order to fix the permanent magnet 5 to the magnet accommodation hole 17, the permanent magnet 5 may be sandwiched and fixed by the inner wall of the magnet accommodation hole 17. In this case, the resin material is cast only into the passage portion 18.

また、図7に示すように、図示左右方向について冷媒導入路29の左側端部の位置を冷媒流出孔37の位置とし、前記第1実施形態における冷媒分配路32、冷媒流出孔39及び環状溝41,43を省略し、冷媒分配路31を円盤状の空洞に形成し、冷媒排出孔45を冷媒分配路31と連通させることで、簡易な構成とすることもできる。ここにおいて、各冷媒通路25では、冷媒は図示右側から左側へ向けて流れる。また、冷媒排出孔45は、冷媒分配路31と連通していれば、必ずしも各冷媒通路25に対して同軸上の位置に形成されていなくてもよい。   Further, as shown in FIG. 7, the position of the left end of the refrigerant introduction path 29 in the left-right direction in the drawing is the position of the refrigerant outflow hole 37, and the refrigerant distribution path 32, the refrigerant outflow hole 39, and the annular groove in the first embodiment are used. By omitting 41 and 43, forming the refrigerant distribution path 31 in a disk-shaped cavity, and allowing the refrigerant discharge hole 45 to communicate with the refrigerant distribution path 31, a simple configuration can be achieved. Here, in each refrigerant passage 25, the refrigerant flows from the right side to the left side in the figure. Further, the refrigerant discharge hole 45 does not necessarily have to be formed at a position coaxial with each refrigerant passage 25 as long as it communicates with the refrigerant distribution path 31.

次に、モータジェネレータ1は、ハイブリッド車両に限定されず、燃料電池車又は電気自動車など電動車両に搭載されてもよい。   Next, the motor generator 1 is not limited to a hybrid vehicle, and may be mounted on an electric vehicle such as a fuel cell vehicle or an electric vehicle.

また、本発明に係る冷媒は、トルクコンバータの作動油に限定されるものではなく、他の冷媒としてもよい。   Further, the refrigerant according to the present invention is not limited to the hydraulic oil for the torque converter, but may be other refrigerants.

さらに、本発明は、モータジェネレータに限定されて適用されるものではなく、モータ又はジェネレータの単独の機能を有するものに適用できることは勿論である。   Furthermore, the present invention is not limited to the motor generator, but can be applied to a motor or generator having a single function.

本発明の第1実施形態に係る回転電機を示す図The figure which shows the rotary electric machine which concerns on 1st Embodiment of this invention. 図1のロータを詳細に示す図Detailed view of the rotor of FIG. 図2のA−A断面図AA sectional view of FIG. 図3のロータにおける永久磁石周辺の拡大図Enlarged view around the permanent magnet in the rotor of FIG. 本発明の第2実施形態を示す図The figure which shows 2nd Embodiment of this invention. 上述の実施形態の変形例を示す図The figure which shows the modification of the above-mentioned embodiment. 上述の実施形態の変形例を示す図The figure which shows the modification of the above-mentioned embodiment.

符号の説明Explanation of symbols

1 モータジェネレータ(回転電機)
3 ロータ回転軸
5 永久磁石
7 ロータ
11 ロータコア
11a 電磁鋼板
17 磁石収容孔
18 通路部
19 樹脂部
25 冷媒通路
27 内側ブリッジ部
33 外側ブリッジ部
1 Motor generator
DESCRIPTION OF SYMBOLS 3 Rotor rotating shaft 5 Permanent magnet 7 Rotor 11 Rotor core 11a Magnetic steel plate 17 Magnet accommodating hole 18 Passage part 19 Resin part 25 Refrigerant path 27 Inner bridge part 33 Outer bridge part

Claims (9)

ロータ回転軸と、
前記ロータ回転軸に固定された積層鋼板を有し、この積層鋼板を前記ロータ回転軸の軸方向に貫通させて複数の磁石収容孔が設けられたロータコアと、
前記各磁石収容孔内に収容された複数の永久磁石と、
を含んで構成され、
前記磁石収容孔は、前記永久磁石の占有部よりも拡張させて設けられた冷媒の通路部を有し、この通路部の内壁が樹脂材により被覆された回転電機のロータ。
A rotor rotation axis;
A rotor core having a laminated steel plate fixed to the rotor rotating shaft, and a plurality of magnet housing holes provided by penetrating the laminated steel plate in the axial direction of the rotor rotating shaft;
A plurality of permanent magnets housed in each of the magnet housing holes;
Comprising
The rotor of a rotating electrical machine, wherein the magnet housing hole has a refrigerant passage portion that is provided so as to be expanded from an occupied portion of the permanent magnet, and an inner wall of the passage portion is covered with a resin material.
前記通路部の内壁が、その全周に亘って前記樹脂材により被覆された請求項1に記載の回転電機のロータ。   The rotor for a rotating electrical machine according to claim 1, wherein an inner wall of the passage portion is covered with the resin material over the entire circumference. 前記通路部の内壁の一部で前記樹脂材が欠如して、前記永久磁石が前記通路部内に露出する請求項1に記載の回転電機のロータ。   2. The rotor of a rotating electrical machine according to claim 1, wherein the resin material is absent from a part of an inner wall of the passage portion and the permanent magnet is exposed in the passage portion. 前記ロータコアの周方向に並べて配置された複数の永久磁石により1つの極が形成され、
前記通路部は、前記1つの極を形成する永久磁石に挟まれた、前記ロータコアの内側ブリッジ部に形成された請求項1〜請求項3のいずれか1つに記載の回転電機のロータ。
One pole is formed by a plurality of permanent magnets arranged side by side in the circumferential direction of the rotor core,
The rotor of the rotating electrical machine according to any one of claims 1 to 3, wherein the passage portion is formed in an inner bridge portion of the rotor core sandwiched between permanent magnets forming the one pole.
前記通路部は、前記永久磁石と前記ロータコアの外周との間の前記ロータコアの外側ブリッジ部に形成された請求項1〜請求項4のいずれか1つに記載の回転電機のロータ。   5. The rotor of a rotating electrical machine according to claim 1, wherein the passage portion is formed in an outer bridge portion of the rotor core between the permanent magnet and the outer periphery of the rotor core. 前記通路部の内壁を被覆する樹脂材である第1の樹脂材と一体に、前記永久磁石が収容された磁石収容孔の隙間に第2の樹脂材が充填され、
前記永久磁石は、前記第2の樹脂材により前記磁石収容孔内に固定された請求項1〜請求項5のいずれか1つに記載の回転電機のロータ。
The second resin material is filled in the gap of the magnet accommodation hole in which the permanent magnet is accommodated, integrally with the first resin material that is a resin material that covers the inner wall of the passage portion,
The rotor of a rotating electrical machine according to any one of claims 1 to 5, wherein the permanent magnet is fixed in the magnet housing hole by the second resin material.
前記第1及び第2の樹脂材は、前記通路部に棒状の型を挿入し、前記磁石収容孔の隙間及び前記通路部に樹脂材を鋳込み、樹脂材の硬化後に前記型を抜くことにより形成された請求項6に記載の回転電機のロータ。   The first and second resin materials are formed by inserting a rod-shaped mold into the passage portion, casting a resin material into the gap of the magnet accommodation hole and the passage portion, and removing the mold after the resin material is cured. The rotor of the rotary electric machine according to claim 6. 請求項1〜請求項7のいずれか1つに記載のロータと、
前記ロータの外周側に配置されたステータと、
を含んで構成された回転電機。
The rotor according to any one of claims 1 to 7,
A stator disposed on the outer peripheral side of the rotor;
Rotating electric machine composed of
ロータ回転軸と、
前記ロータ回転軸に固定された積層鋼板を有し、この積層鋼板を前記ロータ回転軸の軸方向に貫通させて複数の磁石収容孔が設けられたロータコアと、
前記各磁石収容孔内に収容された複数の永久磁石と、
前記磁石収容孔に樹脂材が充填されて構成され、前記永久磁石を前記磁石収容孔内に固定する樹脂部と、
を含んで構成され、
前記磁石収容孔は、前記永久磁石の占有部と、この占有部よりも拡張させて設けられた冷媒の通路部と、を有し、
前記通路部において、前記樹脂部を前記軸方向に貫通させて冷媒通路が形成された回転電機のロータ。
A rotor rotation axis;
A rotor core having a laminated steel plate fixed to the rotor rotating shaft, and a plurality of magnet housing holes provided by penetrating the laminated steel plate in the axial direction of the rotor rotating shaft;
A plurality of permanent magnets housed in each of the magnet housing holes;
A resin part configured to be filled with a resin material in the magnet accommodation hole, and fixing the permanent magnet in the magnet accommodation hole;
Comprising
The magnet housing hole has an occupied portion of the permanent magnet, and a refrigerant passage portion provided to be expanded from the occupied portion,
The rotor of the rotating electrical machine in which the refrigerant passage is formed by penetrating the resin portion in the axial direction in the passage portion.
JP2008151535A 2008-06-10 2008-06-10 Rotor of rotating electric machine Pending JP2009303293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008151535A JP2009303293A (en) 2008-06-10 2008-06-10 Rotor of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008151535A JP2009303293A (en) 2008-06-10 2008-06-10 Rotor of rotating electric machine

Publications (1)

Publication Number Publication Date
JP2009303293A true JP2009303293A (en) 2009-12-24

Family

ID=41549608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008151535A Pending JP2009303293A (en) 2008-06-10 2008-06-10 Rotor of rotating electric machine

Country Status (1)

Country Link
JP (1) JP2009303293A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011223717A (en) * 2010-04-08 2011-11-04 Toyota Motor Corp Electromotor and method of manufacturing rotor
JP2012105487A (en) * 2010-11-11 2012-05-31 Komatsu Ltd Cooling device for electric motor
JP2012165620A (en) * 2011-02-09 2012-08-30 Ihi Corp Rotating machine
JP2012210006A (en) * 2011-03-29 2012-10-25 Sinfonia Technology Co Ltd Permanent magnet type rotary electric machine and rotary electric machine
JP2013017297A (en) * 2011-07-04 2013-01-24 Toyota Motor Corp Rotor of rotary electric machine
JP2013021811A (en) * 2011-07-11 2013-01-31 Toyota Motor Corp Rotor of rotary electric machine
JP2013046421A (en) * 2011-08-21 2013-03-04 Toyota Industries Corp Permanent magnet embedded electric motor
JP2013066345A (en) * 2011-09-20 2013-04-11 Nippon Soken Inc Rotary electric machine
JP2013099221A (en) * 2011-11-07 2013-05-20 Toyota Motor Corp Rotor and rotary electric machine
WO2015019402A1 (en) * 2013-08-05 2015-02-12 三菱電機株式会社 Permanent magnet embedded type rotating electric machine
WO2015107679A1 (en) * 2014-01-17 2015-07-23 三菱電機株式会社 Rotating electric machine
US9431860B2 (en) 2009-12-22 2016-08-30 Toyota Jidosha Kabushiki Kaisha Rotor and method of manufacturing rotor
JP2019009866A (en) * 2017-06-21 2019-01-17 トヨタ自動車株式会社 Rotor of rotary electric machine
US20190103775A1 (en) * 2017-10-04 2019-04-04 Honda Motor Co., Ltd. Rotor of rotary electric machine
CN110198091A (en) * 2018-02-27 2019-09-03 本田技研工业株式会社 The rotor and rotating electric machine of rotating electric machine
EP3713048A1 (en) * 2019-03-20 2020-09-23 Kabushiki Kaisha Toshiba Rotating electrical machine
WO2022054339A1 (en) * 2020-09-09 2022-03-17 日立Astemo株式会社 Rotating electric machine rotor, rotating electric machine, and electric drive device
WO2023007778A1 (en) * 2021-07-26 2023-02-02 日立Astemo株式会社 Rotaing electric machine
DE102023103617A1 (en) 2023-02-15 2024-08-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor for an electrical machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113201A (en) * 1997-10-01 1999-04-23 Denyo Co Ltd Rotor provided with permanent magnets
JP2002345188A (en) * 2001-05-14 2002-11-29 Nissan Motor Co Ltd Dynamo-electric rotating machine
JP2003061282A (en) * 2001-08-10 2003-02-28 Nissan Motor Co Ltd Structure of rotor of dynamo-electric machine
JP2006067777A (en) * 2004-07-30 2006-03-09 Honda Motor Co Ltd Cooling structure for rotary electric machine
JP2006149059A (en) * 2004-11-18 2006-06-08 Toyota Motor Corp Rotor and manufacturing method thereof
JP2006174639A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Stator structure for dynamo-electric machine
JP2006238553A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Rotor for rotary electric machine
JP2007116807A (en) * 2005-10-19 2007-05-10 Komatsu Ltd Vertical motor generator
WO2007055192A1 (en) * 2005-11-09 2007-05-18 Kabushiki Kaisha Toshiba Rotor for electric rotating machine and electric rotating machine
JP2007282392A (en) * 2006-04-07 2007-10-25 Mitsui High Tec Inc Rotor laminated core and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113201A (en) * 1997-10-01 1999-04-23 Denyo Co Ltd Rotor provided with permanent magnets
JP2002345188A (en) * 2001-05-14 2002-11-29 Nissan Motor Co Ltd Dynamo-electric rotating machine
JP2003061282A (en) * 2001-08-10 2003-02-28 Nissan Motor Co Ltd Structure of rotor of dynamo-electric machine
JP2006067777A (en) * 2004-07-30 2006-03-09 Honda Motor Co Ltd Cooling structure for rotary electric machine
JP2006149059A (en) * 2004-11-18 2006-06-08 Toyota Motor Corp Rotor and manufacturing method thereof
JP2006174639A (en) * 2004-12-17 2006-06-29 Nissan Motor Co Ltd Stator structure for dynamo-electric machine
JP2006238553A (en) * 2005-02-23 2006-09-07 Toyota Motor Corp Rotor for rotary electric machine
JP2007116807A (en) * 2005-10-19 2007-05-10 Komatsu Ltd Vertical motor generator
WO2007055192A1 (en) * 2005-11-09 2007-05-18 Kabushiki Kaisha Toshiba Rotor for electric rotating machine and electric rotating machine
JP2007282392A (en) * 2006-04-07 2007-10-25 Mitsui High Tec Inc Rotor laminated core and its manufacturing method

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9431860B2 (en) 2009-12-22 2016-08-30 Toyota Jidosha Kabushiki Kaisha Rotor and method of manufacturing rotor
JP2011223717A (en) * 2010-04-08 2011-11-04 Toyota Motor Corp Electromotor and method of manufacturing rotor
JP2012105487A (en) * 2010-11-11 2012-05-31 Komatsu Ltd Cooling device for electric motor
JP2012165620A (en) * 2011-02-09 2012-08-30 Ihi Corp Rotating machine
JP2012210006A (en) * 2011-03-29 2012-10-25 Sinfonia Technology Co Ltd Permanent magnet type rotary electric machine and rotary electric machine
JP2013017297A (en) * 2011-07-04 2013-01-24 Toyota Motor Corp Rotor of rotary electric machine
JP2013021811A (en) * 2011-07-11 2013-01-31 Toyota Motor Corp Rotor of rotary electric machine
JP2013046421A (en) * 2011-08-21 2013-03-04 Toyota Industries Corp Permanent magnet embedded electric motor
JP2013066345A (en) * 2011-09-20 2013-04-11 Nippon Soken Inc Rotary electric machine
JP2013099221A (en) * 2011-11-07 2013-05-20 Toyota Motor Corp Rotor and rotary electric machine
US9991754B2 (en) 2013-08-05 2018-06-05 Mitsubishi Electric Corporation Embedded permanent magnet rotary electric machine
CN105453387A (en) * 2013-08-05 2016-03-30 三菱电机株式会社 Permanent magnet embedded type rotating electric machine
JPWO2015019402A1 (en) * 2013-08-05 2017-03-02 三菱電機株式会社 Permanent magnet embedded rotary electric machine
EP3032709A4 (en) * 2013-08-05 2017-04-26 Mitsubishi Electric Corporation Permanent magnet embedded type rotating electric machine
WO2015019402A1 (en) * 2013-08-05 2015-02-12 三菱電機株式会社 Permanent magnet embedded type rotating electric machine
WO2015107679A1 (en) * 2014-01-17 2015-07-23 三菱電機株式会社 Rotating electric machine
JPWO2015107679A1 (en) * 2014-01-17 2017-03-23 三菱電機株式会社 Rotating electric machine
US10164491B2 (en) 2014-01-17 2018-12-25 Mitsubishi Electric Corporation Rotary electric machine
JP2019009866A (en) * 2017-06-21 2019-01-17 トヨタ自動車株式会社 Rotor of rotary electric machine
US10868450B2 (en) 2017-10-04 2020-12-15 Honda Motor Co., Ltd. Rotor of rotary electric machine
US20190103775A1 (en) * 2017-10-04 2019-04-04 Honda Motor Co., Ltd. Rotor of rotary electric machine
JP2019068690A (en) * 2017-10-04 2019-04-25 本田技研工業株式会社 Rotor of rotary electric machine
CN110198091A (en) * 2018-02-27 2019-09-03 本田技研工业株式会社 The rotor and rotating electric machine of rotating electric machine
JP2019149884A (en) * 2018-02-27 2019-09-05 本田技研工業株式会社 Rotating electric machine rotor and rotating electric machine
EP3713048A1 (en) * 2019-03-20 2020-09-23 Kabushiki Kaisha Toshiba Rotating electrical machine
CN111725927A (en) * 2019-03-20 2020-09-29 株式会社东芝 Rotating electrical machine
JP2020156201A (en) * 2019-03-20 2020-09-24 株式会社東芝 Rotary electric machine
JP7183087B2 (en) 2019-03-20 2022-12-05 株式会社東芝 Rotating electric machine
CN111725927B (en) * 2019-03-20 2023-02-07 株式会社东芝 Rotating electrical machine
WO2022054339A1 (en) * 2020-09-09 2022-03-17 日立Astemo株式会社 Rotating electric machine rotor, rotating electric machine, and electric drive device
JP2022045543A (en) * 2020-09-09 2022-03-22 日立Astemo株式会社 Rotator for rotary electric machine, rotary electric machine, and electric drive device
JP7378369B2 (en) 2020-09-09 2023-11-13 日立Astemo株式会社 Rotor of rotating electric machine, rotating electric machine and electric drive device
WO2023007778A1 (en) * 2021-07-26 2023-02-02 日立Astemo株式会社 Rotaing electric machine
DE102023103617A1 (en) 2023-02-15 2024-08-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor for an electrical machine

Similar Documents

Publication Publication Date Title
JP2009303293A (en) Rotor of rotating electric machine
JP6017067B2 (en) Permanent magnet embedded rotary electric machine
JP5490103B2 (en) Rotating electric machine
JP4560067B2 (en) Rotating electric machine
JP4949983B2 (en) Rotating electric machine
US11309756B2 (en) Motor
WO2015019402A1 (en) Permanent magnet embedded type rotating electric machine
CN110247497B (en) Rotor of rotating electric machine
KR20180069443A (en) Direct cooling type driving motor for vehicle
JP5899716B2 (en) Rotor structure of rotating electrical machine
JP2005261083A (en) Cooling structure of rotating electric machine
JP2009284603A (en) Rotary electric machine
JP5120538B2 (en) Motor cooling structure
JP2013099222A (en) Rotor and rotary electric machine
JP2013099221A (en) Rotor and rotary electric machine
JP6085267B2 (en) Rotating electric machine
JP5392012B2 (en) Electric motor
KR101836259B1 (en) Cooling structure of drive motor
JP5772415B2 (en) Rotor structure of rotating electrical machine
RU2597250C2 (en) Electric machine
JP5710886B2 (en) Rotating electric machine
JP3594007B2 (en) Rotating electric machine
JP2013051805A (en) Cooling structure of rotary electric machine
JP2012210120A (en) Rotary electric machine
JP4032687B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130514