WO2015107654A1 - Receiver and reception method - Google Patents

Receiver and reception method Download PDF

Info

Publication number
WO2015107654A1
WO2015107654A1 PCT/JP2014/050691 JP2014050691W WO2015107654A1 WO 2015107654 A1 WO2015107654 A1 WO 2015107654A1 JP 2014050691 W JP2014050691 W JP 2014050691W WO 2015107654 A1 WO2015107654 A1 WO 2015107654A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
demodulated signal
unit
narrowband noise
reliability information
Prior art date
Application number
PCT/JP2014/050691
Other languages
French (fr)
Japanese (ja)
Inventor
井戸 純
良輔 梅野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015557636A priority Critical patent/JP6022089B2/en
Priority to DE112014006182.4T priority patent/DE112014006182T5/en
Priority to PCT/JP2014/050691 priority patent/WO2015107654A1/en
Publication of WO2015107654A1 publication Critical patent/WO2015107654A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0066Interference mitigation or co-ordination of narrowband interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/0328Arrangements for operating in conjunction with other apparatus with interference cancellation circuitry
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to an orthogonal frequency division multiplex (hereinafter abbreviated as OFDM) signal receiving apparatus and receiving method.
  • OFDM orthogonal frequency division multiplex
  • Viterbi decoding is a decoding method that efficiently performs maximum likelihood decoding using a repetitive structure of a convolutional code.
  • the Viterbi decoder first corrects the phase and amplitude of the subcarrier component.
  • the branch metric indicating the likelihood between the received point arrangement and the signal point arrangement that is uniquely determined depending on the modulation scheme is obtained.
  • all surviving paths of the possible trellis are obtained, the branch metrics of each path are cumulatively added, and the path with the smallest cumulative addition result is selected.
  • the Viterbi decoder outputs the state of the selected path as a decoding result and reproduces the transmission data.
  • the error correction capability of the Viterbi decoder is improved by taking into account the reliability of the demodulated signal for each subcarrier, that is, the probability, when calculating the branch metric. For this reason, in an OFDM signal receiving apparatus using a subcarrier modulation scheme such as QPSK or QAM, a specific method using reliability information for each subcarrier for branch metric calculation has already been proposed.
  • Patent Document 1 discloses a reception technique for solving the above-described problem.
  • the receiving apparatus described in Patent Document 1 is a receiving apparatus that receives a DQPSK-OFDM signal, and performs Viterbi decoding processing. Therefore, a fast discrete Fourier transform (FFT) output of the received signal is converted into phase information, and adjacent symbols are detected.
  • a phase soft decision circuit that calculates a soft decision value from the phase difference information of the two and a weighting coefficient that calculates a weighting coefficient based on the amplitude (or power, or a scalar value proportional to one of these) of the FFT output of two adjacent symbols And a coefficient generation circuit.
  • the output of the phase soft decision circuit is a demodulated signal of the DQPSK signal, and the Viterbi decoding is performed after multiplying the output of the phase soft decision circuit by the weighting coefficient for each subcarrier generated by the weighting coefficient generation circuit.
  • the weighting coefficient represents the high reliability of the demodulated signal, and the higher the value, the higher the reliability.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a receiving apparatus and a receiving method capable of improving the error correction capability in Viterbi decoding and improving the receiving performance.
  • a receiving apparatus is a receiving apparatus that receives an OFDM signal in which a subcarrier is DQPSK modulated, a Fourier transform section that performs discrete Fourier transform on the received signal for each OFDM symbol, and an output of the Fourier transform section
  • a reference symbol extraction unit that extracts and outputs an output signal corresponding to a known reference symbol from the signal, and detects a narrowband noise component included in the reception signal based on the output signal of the reference symbol extraction unit,
  • a narrowband noise detector that outputs the magnitude of the narrowband noise component, a differential demodulator that differentially demodulates the output signal of the Fourier transform unit and outputs a demodulated signal for each subcarrier, a differential demodulator, and a narrower Based on each output signal of the band noise detector, the demodulation signal It comprises a reliability information generator dependability generates and outputs the reliability information of height, and a Viterbi decoding unit that performs Viterbi decoding of the demodulated signal using the reliability information.
  • FIG. 3 is a block diagram illustrating a configuration of a narrowband noise detection unit according to Embodiment 1.
  • FIG. 3 is a block diagram illustrating a configuration of a reliability information generation unit according to Embodiment 1.
  • FIG. 3 is a flowchart showing an operation of the receiving apparatus according to the first embodiment. It is a figure which shows the frequency spectrum of CIR (channel impact response) of a transmission line, and OFDM transmission / reception signal in case narrow-band noise exists.
  • CIR channel impact response
  • It is a block diagram which shows the structure of the reliability information generation part in Embodiment 2 of this invention.
  • It is a block diagram which shows the structure of the reliability information generation part in Embodiment 3 of this invention.
  • FIG. 10 is a block diagram showing another configuration of a reliability information generation unit in the third embodiment.
  • FIG. 1 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 1 of the present invention.
  • the receiving apparatus illustrated in FIG. 1 is a receiving apparatus that receives an OFDM signal in which subcarriers, which are OFDM carriers, are DQPSK modulated.
  • the transmission side uses a convolutional code as an error correction code of transmission data, and transmits by an OFDM transmission scheme having a plurality of subcarriers using differential modulation such as DQPSK and ⁇ / 4 shift DQPSK as primary modulation.
  • the Fourier transform unit 1 performs discrete Fourier transform on the received signal S1 converted into the baseband band for each OFDM symbol, and outputs the result.
  • Each subcarrier component transmitted by the OFDM method is obtained as a frequency domain signal output from the Fourier transform unit 1.
  • the differential demodulator 2 differentially demodulates the output signal of the Fourier transform unit 1 and outputs a demodulated signal for each subcarrier.
  • the demodulation process is performed by complex multiplication of the complex conjugate signal of the subcarrier component of the previous OFDM symbol and the subcarrier component (complex signal) of the current OFDM symbol. Note that the output signal of the differential demodulator 2 is a demodulated signal of the transmission signal transmitted on each subcarrier.
  • the reference symbol extraction unit 3 extracts a Fourier transform output signal corresponding to the reference symbol from the output signal of the Fourier transform unit 1 and outputs it.
  • the reference symbol is a known signal that serves as a phase reference for the subcarrier. For example, in the case of DAB (Digital Audio Broadcasting), the reference symbol is inserted into the transmission signal at a constant period.
  • the narrowband noise detection unit 4 detects a narrowband noise component included in the received signal based on the output signal of the reference symbol extraction unit 3, and outputs the magnitude of the narrowband noise component for each subcarrier.
  • the Viterbi decoder 6 obtains a branch metric indicating the likelihood of the demodulated signal based on the output signals of the differential demodulator 2 and the reliability information generator 5, performs Viterbi decoding on the demodulated signal, and Viterbi-decoded data S2 is output.
  • the Viterbi decoder 6 obtains a branch metric indicating the likelihood of the demodulated signal based on the demodulated signal (IQ signal) from the differential demodulator 2 and the reliability information from the reliability information generator 5.
  • the Viterbi decoding unit 6 obtains all the surviving paths of the possible trellises, and reproduces the transmission data by selecting the path with the smallest result of accumulating the branch metrics of the respective paths.
  • the Fourier transform unit 1, the differential demodulation unit 2, the reference symbol extraction unit 3, the narrowband noise detection unit 4, the reliability information generation unit 5, and the Viterbi decoding unit 6 can be realized as a hardware circuit.
  • the above-described components 1 to 6 can be realized as specific means in which hardware and software cooperate by, for example, a microcomputer executing a program in which processing unique to the present invention is described. it can.
  • FIG. 2 is a block diagram showing the configuration of the narrowband noise detector in the first embodiment.
  • the narrowband noise detection unit 4 includes a CIR detection unit 41, an LPF unit 42, a noise component extraction unit 43, a determination threshold calculation unit 44, and a narrowband noise determination unit 45.
  • the CIR detector 41 detects and outputs the CIR (channel impulse response) of each subcarrier by dividing the output signal of the reference symbol extractor 3 by the known reference symbol value corresponding thereto.
  • the LPF unit 42 smoothes and outputs the output signal of the CIR detection unit 41 with a low-pass filter.
  • the pass band of the low-pass filter has a bandwidth necessary for passing the reflected wave component generated in the transmission path, that is, a bandwidth through which the reflected wave component generated in the transmission path can pass.
  • the noise component extraction unit 43 extracts and outputs the noise component superimposed on the subcarrier based on the output signals of the CIR detection unit 41 and the LPF unit 42.
  • the CIR signal output from the CIR detection unit 41 is delayed by a signal delay (for example, about 200 ⁇ s) generated by the LPF unit 42, and the CIR signal smoothed by the LPF unit 42 from the delayed CIR signal Is subtracted.
  • This subtraction result can be regarded as a noise component superimposed on each subcarrier. By calculating the instantaneous power of this subtraction result, the noise power superimposed on the subcarrier can be obtained.
  • the determination threshold calculation unit 44 inputs the noise power for each subcarrier obtained by the noise component extraction unit 43, calculates an average value thereof, and calculates a determination threshold based on the average value.
  • Examples of the determination threshold include a value obtained by adding or multiplying a predetermined value to the average value. Note that, in a transmission line in which no narrowband noise exists, the noise component is mainly thermal noise, and the component is white noise that is distributed almost uniformly over the entire signal band. In this case, it can be considered that the output signal of the noise component extraction unit 43 is substantially constant regardless of the subcarrier, and the value thereof is close to the average value calculated as described above.
  • the noise power of the subcarrier is increased by the narrow band noise component. Therefore, it is possible to determine the presence or absence of narrowband noise by using the determination threshold value calculated based on the average value.
  • the narrowband noise determination unit 45 determines the presence or absence of narrowband noise for each subcarrier based on the result of comparing the output signal of the noise component extraction unit 43 with the determination threshold calculated by the determination threshold calculation unit 44.
  • the presence / absence of the component and its size are converted into binary or multi-value information and output.
  • the binary information indicating the presence / absence and the magnitude of the narrowband noise component outputs a predetermined value when it is determined that narrowband noise is present, and is 0 when it is determined that narrowband noise is not present. (Zero value) is output.
  • FIG. 3 is a block diagram showing a configuration of the reliability information generation unit in the first embodiment.
  • the reliability information generation unit 5 includes a subcarrier power detection unit 50, a signal point quadrant conversion unit 51, and a reliability information calculation unit 52.
  • the subcarrier power detection unit 50 demodulates each subcarrier based on the Q signal which is the in-phase component and the quadrature component of the demodulated signal (hereinafter also referred to as IQ signal) output from the differential demodulation unit 2. Generate and output signal power or a signal proportional to it.
  • the signal point quadrant conversion unit 51 receives the IQ signal from the differential demodulation unit 2, converts all quadrants having signal points on the IQ plane to the first quadrant, and outputs the first quadrant.
  • the reliability information calculation unit 52 demodulates each subcarrier based on the output signal of the subcarrier power detection unit 50, the output signal of the signal point quadrant conversion unit 51, the output signal of the narrowband noise detection unit 4, and the fixed coefficient k. Reliability information that increases or decreases the reliability of the demodulated signal is calculated according to the power of the signal, the constellation of the demodulated signal, and the magnitude of the narrowband noise component. Note that the reliability information calculated by the reliability information calculation unit 52 is used to generate a branch metric by the Viterbi decoding unit 6 at the subsequent stage.
  • FIG. 4 is a flowchart showing an operation of the receiving apparatus according to Embodiment 1.
  • the Fourier transform unit 1 performs discrete Fourier transform on the received signal S1 for each OFDM symbol (step ST1).
  • the Fourier transform output signal corresponding to the reference symbol is extracted by the reference symbol extraction unit 3 and output to the narrowband noise detection unit 4 (step ST2; YES).
  • the differential demodulator 2 performs processing on the Fourier transform output signal corresponding to other than the reference symbol among the output signals of the Fourier transform unit 1 (step ST2; NO).
  • the CIR detection unit 41 divides the output signal of the reference symbol extraction unit 3 by a known reference symbol value corresponding to the output signal to detect the CIR for each subcarrier (step ST3).
  • C (n) is a CIR corresponding to the nth subcarrier in the OFDM symbol.
  • the LPF unit 42 of the narrowband noise detection unit 4 performs smoothing by performing a low-pass filter (LPF) process on C (n) detected by the CIR detection unit 41 (step ST4). Let the CIR of the nth subcarrier smoothed in this way be L (n).
  • the noise component extraction unit 43 extracts the narrowband noise component superimposed on the subcarrier based on the output signals of the CIR detection unit 41 and the LPF unit 42 (step ST5).
  • the CIR signal C (n) of the nth subcarrier output from the CIR detection unit 41 is delayed by the signal delay generated in the LPF unit 42.
  • the CIR signal L (n) of the nth subcarrier smoothed by the LPF unit 42 is superimposed on the nth subcarrier.
  • Noise component Nz (n) power value
  • the determination threshold calculation unit 44 sequentially inputs the noise component Nz (n) for each subcarrier extracted by the noise component extraction unit 43 to calculate an average value, and calculates the determination threshold T based on the average value.
  • the determination threshold T is, for example, a value obtained by adding or multiplying a predetermined value to the average value.
  • the narrowband noise determination unit 45 determines the presence or absence of narrowband noise for each subcarrier based on whether or not the noise component Nz (n) is greater than the determination threshold T (step ST7). When the noise component Nz (n) is larger than the determination threshold T, that is, when a narrowband noise component is detected (step ST7; YES), the narrowband noise determination unit 45 has a binary value indicating the magnitude of the narrowband noise component. Information or multi-value information is output (step ST8).
  • the narrowband noise determination unit 45 has binary information indicating that there is no narrowband noise component.
  • multi-value information is output (step ST9).
  • the narrowband noise determination unit 45 outputs Z (n) indicating the magnitude of the narrowband noise component superimposed on the nth subcarrier. When narrowband noise is detected, Z (n) is greater than 0 (zero value), and when no narrowband noise is detected, Z (n) is 0 (zero value).
  • the differential demodulator 2 differentially demodulates the Fourier transform output signals corresponding to those other than the reference symbol among the output signals of the Fourier transform unit 1, and outputs a demodulated signal for each subcarrier (step ST10).
  • the demodulation process is a process of performing complex multiplication of the complex conjugate signal of the subcarrier component of the previous OFDM symbol and the subcarrier component (complex signal) of the current OFDM symbol.
  • the in-phase component I (n) and the quadrature component Q (n) of the demodulated signal of the nth subcarrier are obtained.
  • the subcarrier power detection unit 50 determines each subcarrier based on the in-phase component I (n) and the quadrature component Q (n) of the demodulated signal output from the differential demodulation unit 2.
  • the demodulated signal power or P (n) proportional thereto is detected (step ST11).
  • P (n) is, for example, a value obtained by adding the square value of the quadrature component Q (n) to the square value of the in-phase component I (n). Since the input signal of the subcarrier power detection unit 50 is a differential demodulation result by the differential demodulation unit 2, P (n) does not strictly represent the power of the demodulated signal of the subcarrier. However, since the demodulated signal by differential demodulation is a signal obtained by complex multiplication between adjacent OFDM symbols, P (n) is a value proportional to the power of the demodulated signal of the subcarrier.
  • the signal point of the demodulated signal is converted into the first quadrant.
  • the reliability information R (n) of the demodulated signal is calculated (step ST14).
  • the reliability information R (n) is a value that increases or decreases depending on the presence or absence of the narrowband noise component superimposed on the subcarrier and its magnitude.
  • R (n) P (n) ⁇ k ⁇ D (n) ⁇ Z (n) (1)
  • the Viterbi decoding unit 6 receives the demodulated signal of the n-th subcarrier input from the differential demodulation unit 2 (I (based on the reliability information R (n) input from the reliability information generation unit 5). n) and branch metrics indicating the likelihood of Q (n)) are obtained, Viterbi decoding is performed on the demodulated signal, and Viterbi-decoded data S2 is output (step ST15).
  • Viterbi decoding is performed using the power value of the demodulated signal that has been differentially demodulated or phase error information that is the slope of the constellation of the demodulated signal in the IQ plane. It was.
  • Viterbi decoding is performed in consideration of the presence and magnitude of narrowband noise superimposed on the signal band, in addition to the power value of the demodulated signal and the slope of the constellation of the demodulated signal. . For this reason, the error correction capability with respect to the DQPSK-OFDM signal is improved, and the reception performance can be improved.
  • the transmission side assigns a plurality of subcarriers to transmission data, and each subcarrier is digitally modulated by a method such as DQPSK.
  • each subcarrier is digitally modulated by a method such as DQPSK.
  • the transmission path is affected by multipath or frequency selective fading, as shown in FIG. 5B, the signal power for each subcarrier differs depending on the frequency of the subcarrier.
  • phase of the demodulated signal is not deviated from the original phase ( ⁇ / 4, 3 ⁇ / 4, -3 ⁇ / 4, - ⁇ / 4), there is a special channel that has the same channel interference at a specific frequency. Except for the radio wave environment, it can be said that the higher the subcarrier signal power is, the less susceptible to thermal noise, the higher the reliability of the demodulated signal. However, when narrowband noise is superimposed on the signal band, the power of the noise component is also added to the signal power of the subcarrier as shown in FIG. Not necessarily.
  • the C / N is relatively better when the signal power of the subcarrier is larger.
  • the above equation (1) takes into account the above characteristics in the OFDM signal in which the subcarrier is DQPSK modulated, and means that the greater the calculated value of the above equation (1), the higher the reliability of the demodulated signal. .
  • the Fourier transform unit 1 that outputs the received signal by performing discrete Fourier transform for each OFDM symbol, and the output corresponding to a known reference symbol from the output signal of the Fourier transform unit 1
  • a reference symbol extraction unit 3 that extracts and outputs a signal
  • a narrowband noise component included in the received signal is detected based on an output signal of the reference symbol extraction unit 3
  • a narrowband noise detector 4 for outputting a magnitude, a differential demodulator 2 for differentially demodulating the output signal of the Fourier transform unit 1 and outputting a demodulated signal for each subcarrier, a differential demodulator 2 and a narrowband
  • reliability information is generated so that the reliability of the demodulated signal is high or low according to information including the presence or absence and the magnitude of the narrowband noise component.
  • It comprises a reliability information generating unit 5 to and output, and a Viterbi decoding unit 6 for performing Viterbi decoding of the demodulated signal using the reliability information.
  • the narrowband noise detection unit 4 obtains the transmission path CIR signal C (n) obtained by dividing the output signal corresponding to the reference symbol by a known value and the CIR signal. It is determined that a narrowband noise component exists in a frequency band in which the difference value from the signal L (n) smoothed by the LPF is greater than a predetermined determination threshold T. In this way, it is possible to accurately detect the narrowband noise superimposed on the subcarrier.
  • the pass band of the low-pass filter has a bandwidth that allows the reflected wave component generated in the transmission path to pass, the CIR can be appropriately smoothed and the narrow-band noise component is obtained. Can be accurately detected.
  • Reliability information in which the reliability of the demodulated signal is high or low is generated in accordance with the distance D (n), the presence / absence of a narrowband noise component, and the magnitude Z (n) thereof. This enables Viterbi decoding using reliability information corresponding to Z (n) in addition to P (n) and D (n). Even if the demodulated signal constellation is tilted, the reliability of the demodulated signal can be appropriately represented by D (n).
  • FIG. FIG. 6 is a block diagram showing a configuration of the reliability information generation unit according to the second embodiment of the present invention.
  • an intra-symbol averaging unit 53 is added to the configuration of the first embodiment, and instead of the reliability information calculation unit 52, an intra-symbol averaging unit A reliability information calculation unit 52A that calculates reliability information using 53 information is provided.
  • FIG. 6 the same components as those in FIG.
  • the reliability information calculation unit 52A uses the power information P (n) of the demodulated signal, the average value D ′ (n), the presence / absence and the magnitude Z (n) of the narrowband noise component, and the positive fixed coefficient k.
  • the reliability information R (n) for calculating the reliability of the demodulated signal is calculated from the following equation (2).
  • R (n) P (n) ⁇ k ⁇ D ′ (n) ⁇ Z (n) (2)
  • the signal point of the demodulated signal is converted to the first quadrant.
  • Reliability information in which the reliability of the demodulated signal is high or low is generated according to the average value D ′ (n) for each OFDM symbol of the distance to the signal point, the presence / absence of a narrowband noise component, and the magnitude Z (n). .
  • D ′ (n) for each OFDM symbol of the distance to the signal point
  • the presence / absence of a narrowband noise component and the magnitude Z (n).
  • FIG. 7 is a block diagram showing a configuration of the reliability information generation unit according to Embodiment 3 of the present invention.
  • the reliability information generation unit 5B has a phase error detection unit 54 and a variation coefficient conversion unit 55 added to the configuration of the second embodiment, and instead of the reliability information calculation unit 52A, A reliability information calculation unit 52B that calculates reliability information using information from the variation coefficient conversion unit 55 is provided.
  • the phase error detector 54 calculates the phase error ⁇ (n) of the signal point on the IQ plane. Calculate, average within 1 OFDM symbol, and output. Note that ⁇ (n) may be calculated from the arc tangent based on the signal points (I (n), Q (n)), or may be substituted with Q (n) / I (n) as an approximate value. .
  • the value obtained by averaging ⁇ (n) within one OFDM symbol is a value proportional to the average phase rotation amount in the differential demodulated signal of this OFDM symbol.
  • the reliability information calculation unit 52B uses the power information P (n) of the demodulated signal, the average value D ′ (n), the presence / absence and the magnitude Z (n) of the narrowband noise component, and the variation coefficient m as follows: From (3), the reliability information R (n) for calculating the reliability of the demodulated signal is calculated.
  • R (n) P (n) ⁇ m ⁇ D ′ (n) ⁇ Z (n) (3)
  • the signal point of the demodulated signal is converted to the first quadrant.
  • the reliability information calculation unit 52C performs power information P (n) of the demodulated signal, distance D (n), presence / absence of a narrowband noise component, its magnitude Z (n), and a variation coefficient.
  • P (n) P (n) ⁇ m ⁇ D (n) ⁇ Z (n) (4)
  • the reliability of the demodulated signal increases or decreases depending on the value m ⁇ D (n) obtained by changing the distance to the constellation of the demodulated signal, the presence / absence of the narrowband noise component, and the magnitude Z (n) Generate sex information. Even with this configuration, the same effect as described above can be obtained.
  • any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
  • the receiving apparatus is suitable for, for example, a receiver for digital terrestrial broadcasting using the OFDM method because the error correction capability in Viterbi decoding can be improved and the receiving performance can be improved.
  • 1 Fourier transform unit 2 differential demodulation unit, 3 reference symbol extraction unit, 4 narrowband noise detection unit, 5, 5A, 5B, 5C reliability information generation unit, 6 Viterbi decoding unit, 41 CIR detection unit, 42 LPF unit 43, noise component extraction unit, 44 determination threshold calculation unit, 45 narrowband noise determination unit, 50 subcarrier power detection unit, 51 signal point quadrant conversion unit, 52, 52A, 52B, 52C reliability information calculation unit, in 53 symbols Averager, 54 phase error detector, 55 variation coefficient converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Error Detection And Correction (AREA)
  • Circuits Of Receivers In General (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

In the present invention, reliability information is generated in which the reliability of a demodulated signal increases or decreases depending on information including the presence and size of a narrowband noise component, and Viterbi decoding is carried out on the demodulated signal using this reliability information.

Description

受信装置および受信方法Receiving apparatus and receiving method
 この発明は、直交周波数分割多重(以下、OFDMと略す)信号の受信装置および受信方法に関する。 The present invention relates to an orthogonal frequency division multiplex (hereinafter abbreviated as OFDM) signal receiving apparatus and receiving method.
 一般に、畳み込み符号化されたデータがOFDMで伝送された場合、受信装置は、これを受信した信号から求めた各サブキャリアの復調信号に対してビタビ復号処理を行う。
 ここで、ビタビ復号とは、畳み込み符号が有する繰り返し構造を利用して、最尤復号を効率的に実行する復号方法である。
In general, when convolutionally encoded data is transmitted by OFDM, the receiving apparatus performs a Viterbi decoding process on the demodulated signal of each subcarrier obtained from the received signal.
Here, Viterbi decoding is a decoding method that efficiently performs maximum likelihood decoding using a repetitive structure of a convolutional code.
 例えば、一次変調方式としてQPSK(4相位相偏移変調)または多値QAM(直角位相振幅変調)が使用されたOFDM信号の場合、まず、ビタビ復号器は、位相および振幅を補正したサブキャリア成分の受信点配置と、変調方式に依存して一義的に定まる信号点配置との間の尤度を示すブランチメトリックを求める。そして、可能性のあるトレリスの全ての生き残りパスを求め、それぞれのパスのブランチメトリックを累積加算し、累積加算結果が最も小さいパスを選択する。ビタビ復号器では、この選択されたパスのステートを復号結果として出力し、送信データを再生する。 For example, in the case of an OFDM signal in which QPSK (quadrature phase shift keying) or multilevel QAM (quadrature phase amplitude modulation) is used as the primary modulation method, first, the Viterbi decoder first corrects the phase and amplitude of the subcarrier component. The branch metric indicating the likelihood between the received point arrangement and the signal point arrangement that is uniquely determined depending on the modulation scheme is obtained. Then, all surviving paths of the possible trellis are obtained, the branch metrics of each path are cumulatively added, and the path with the smallest cumulative addition result is selected. The Viterbi decoder outputs the state of the selected path as a decoding result and reproduces the transmission data.
 ブランチメトリックを算出する際に、サブキャリアごとの復調信号の信頼性、すなわち確からしさを加味すると、ビタビ復号器の誤り訂正能力が向上することが知られている。
 このため、QPSKまたはQAMなどのサブキャリア変調方式を使用したOFDM信号の受信装置においては、サブキャリアごとの信頼性情報をブランチメトリック演算に利用する具体的な方法が既に提案されている。
It is known that the error correction capability of the Viterbi decoder is improved by taking into account the reliability of the demodulated signal for each subcarrier, that is, the probability, when calculating the branch metric.
For this reason, in an OFDM signal receiving apparatus using a subcarrier modulation scheme such as QPSK or QAM, a specific method using reliability information for each subcarrier for branch metric calculation has already been proposed.
 しかし、上述した信頼性情報は、伝送路特性の推定結果から得られたサブキャリアごとの電力情報に基づいて算出されるものである。このため、畳み込み符号化されたデータをDQPSK(差動4相位相偏移変調)で1次変調してOFDMで伝送された信号(以下、DQPSK-OFDM信号と記載する)のように、復調時に伝送路特性を推定しない信号には適用することができない。
 さらに、DQPSKを差動復調する場合に、伝送路特性の急激な時間変動やAFC(自動周波数制御)誤差、位相雑音などによっては、I-Q平面上で直線Q=I、Q=-I(I,Q軸と45度の関係にある直線)に対して復調信号点のコンスタレーションが傾く場合があり、サブキャリアごとの電力情報だけでは信頼性情報を生成することができない。
However, the reliability information described above is calculated based on the power information for each subcarrier obtained from the estimation result of the transmission path characteristics. For this reason, as in the case of a signal (hereinafter, referred to as a DQPSK-OFDM signal) that has been subjected to primary modulation with DQPSK (differential quadrature phase shift keying) and convolutionally encoded data (hereinafter referred to as DQPSK-OFDM signal), It cannot be applied to signals that do not estimate transmission path characteristics.
Further, when DQPSK is differentially demodulated, straight lines Q = I and Q = −I (on the IQ plane depend on abrupt time fluctuation of transmission path characteristics, AFC (automatic frequency control) error, phase noise, etc. A constellation of demodulated signal points may be inclined with respect to a straight line having a 45-degree relationship with the I and Q axes, and reliability information cannot be generated only with power information for each subcarrier.
 例えば、特許文献1には、上述した問題を解決するための受信技術が開示されている。特許文献1に記載の受信装置は、DQPSK-OFDM信号を受信する受信装置であり、ビタビ復号処理を行うため、受信信号の高速離散フーリエ変換(FFT)出力を位相情報に変換して隣接シンボル間の位相差情報から軟判定値を算出する位相軟判定回路と、隣接する2シンボルのFFT出力の振幅(または電力、あるいはこれらのいずれかに比例するスカラー値)を基に重み付け係数を算出する重み付け係数生成回路とが設けられている。
 位相軟判定回路の出力がDQPSK信号の復調信号であって、重み付け係数生成回路が生成したサブキャリアごとの重み付け係数を位相軟判定回路の出力に乗算した上でビタビ復号を行う。このとき、重み付け係数は復調信号の信頼性の高さを表しており、その値が大きいほど信頼性が高いとみなされる。
For example, Patent Document 1 discloses a reception technique for solving the above-described problem. The receiving apparatus described in Patent Document 1 is a receiving apparatus that receives a DQPSK-OFDM signal, and performs Viterbi decoding processing. Therefore, a fast discrete Fourier transform (FFT) output of the received signal is converted into phase information, and adjacent symbols are detected. A phase soft decision circuit that calculates a soft decision value from the phase difference information of the two and a weighting coefficient that calculates a weighting coefficient based on the amplitude (or power, or a scalar value proportional to one of these) of the FFT output of two adjacent symbols And a coefficient generation circuit.
The output of the phase soft decision circuit is a demodulated signal of the DQPSK signal, and the Viterbi decoding is performed after multiplying the output of the phase soft decision circuit by the weighting coefficient for each subcarrier generated by the weighting coefficient generation circuit. At this time, the weighting coefficient represents the high reliability of the demodulated signal, and the higher the value, the higher the reliability.
 周波数選択性フェージング伝送路においては、サブキャリアごとにC/N(搬送波電力対雑音電力比)が異なるだけでなく、上述した通り伝送路特性の時間変動やAFC誤差、位相雑音などによって復調信号の品質が劣化するため、復調信号だけではビタビ復号の性能が十分に得られない。
 これに対して、特許文献1の技術によれば、復調信号の位相回転と振幅情報を利用してビタビ復号を行うため、単に位相情報のみを利用した軟判定復号よりも受信性能を向上させることができる。
In a frequency-selective fading transmission path, not only the C / N (carrier power to noise power ratio) differs for each subcarrier, but also, as described above, the demodulated signal is affected by time fluctuation of the transmission path characteristics, AFC error, phase noise, etc. Since the quality deteriorates, the performance of Viterbi decoding cannot be sufficiently obtained only by the demodulated signal.
On the other hand, according to the technique of Patent Document 1, since the Viterbi decoding is performed using the phase rotation and amplitude information of the demodulated signal, the reception performance is improved as compared with the soft decision decoding using only the phase information. Can do.
特開平11-196141号公報JP 11-196141 A
 一方、実際の電波環境においては、上述した復調信号の品質劣化以外にも、信号帯域に狭帯域雑音が重畳されることで受信性能が著しく劣化する場合がある。
 しかしながら、特許文献1に代表される従来の技術では、復調信号の振幅(または電力あるいはこれらのいずれかに比例するスカラー値)が大きいほどサブキャリアの復調信号の信頼性が高いとみなされる。このため、狭帯域雑音が重畳して電力の大きくなったサブキャリアの復調信号は信頼性が高いとみなされ、かえってビタビ復号処理の誤り訂正能力を低下させるという課題があった。
On the other hand, in an actual radio wave environment, in addition to the above-described quality degradation of the demodulated signal, reception performance may be significantly degraded by narrow band noise superimposed on the signal band.
However, in the conventional technique represented by Patent Document 1, it is considered that the reliability of the demodulated signal of the subcarrier is higher as the amplitude of the demodulated signal (or power or a scalar value proportional to either of them) is larger. For this reason, the demodulated signal of the subcarrier whose power is increased by superimposing the narrow band noise is considered to be highly reliable, and there is a problem that the error correction capability of the Viterbi decoding process is lowered.
 この発明は、上記のような課題を解決するためになされたもので、ビタビ復号における誤り訂正能力が向上して受信性能を改善させることができる受信装置および受信方法を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a receiving apparatus and a receiving method capable of improving the error correction capability in Viterbi decoding and improving the receiving performance.
 この発明に係る受信装置は、サブキャリアがDQPSK変調されたOFDM信号を受信する受信装置であって、OFDMシンボルごとに受信信号を離散フーリエ変換して出力するフーリエ変換部と、フーリエ変換部の出力信号から既知のリファレンスシンボルに対応する出力信号を抽出して出力するリファレンスシンボル抽出部と、リファレンスシンボル抽出部の出力信号に基づいて受信信号に含まれる狭帯域雑音成分を検出し、サブキャリアごとに狭帯域雑音成分の大きさを出力する狭帯域雑音検出部と、フーリエ変換部の出力信号を差動復調してサブキャリアごとの復調信号を出力する差動復調部と、差動復調部および狭帯域雑音検出部の各出力信号に基づいて、狭帯域雑音成分の有無およびその大きさを含む情報に応じて復調信号の信頼性が高低する信頼性情報を生成して出力する信頼性情報生成部と、信頼性情報を用いて復調信号に対するビタビ復号を行うビタビ復号部とを備える。 A receiving apparatus according to the present invention is a receiving apparatus that receives an OFDM signal in which a subcarrier is DQPSK modulated, a Fourier transform section that performs discrete Fourier transform on the received signal for each OFDM symbol, and an output of the Fourier transform section A reference symbol extraction unit that extracts and outputs an output signal corresponding to a known reference symbol from the signal, and detects a narrowband noise component included in the reception signal based on the output signal of the reference symbol extraction unit, A narrowband noise detector that outputs the magnitude of the narrowband noise component, a differential demodulator that differentially demodulates the output signal of the Fourier transform unit and outputs a demodulated signal for each subcarrier, a differential demodulator, and a narrower Based on each output signal of the band noise detector, the demodulation signal It comprises a reliability information generator dependability generates and outputs the reliability information of height, and a Viterbi decoding unit that performs Viterbi decoding of the demodulated signal using the reliability information.
 この発明によれば、ビタビ復号における誤り訂正能力が向上して受信性能を改善させることができるという効果がある。 According to the present invention, there is an effect that the error correction capability in Viterbi decoding is improved and the reception performance can be improved.
この発明の実施の形態1に係る受信装置の構成を示すブロック図である。It is a block diagram which shows the structure of the receiver which concerns on Embodiment 1 of this invention. 実施の形態1における狭帯域雑音検出部の構成を示すブロック図である。3 is a block diagram illustrating a configuration of a narrowband noise detection unit according to Embodiment 1. FIG. 実施の形態1における信頼性情報生成部の構成を示すブロック図である。3 is a block diagram illustrating a configuration of a reliability information generation unit according to Embodiment 1. FIG. 実施の形態1に係る受信装置の動作を示すフローチャートである。3 is a flowchart showing an operation of the receiving apparatus according to the first embodiment. 狭帯域雑音が存在する場合における伝送路のCIR(チャンネルインパクト応答)とOFDM送受信信号の周波数スペクトラムを示す図である。It is a figure which shows the frequency spectrum of CIR (channel impact response) of a transmission line, and OFDM transmission / reception signal in case narrow-band noise exists. この発明の実施の形態2における信頼性情報生成部の構成を示すブロック図である。It is a block diagram which shows the structure of the reliability information generation part in Embodiment 2 of this invention. この発明の実施の形態3における信頼性情報生成部の構成を示すブロック図である。It is a block diagram which shows the structure of the reliability information generation part in Embodiment 3 of this invention. 実施の形態3における信頼性情報生成部の他の構成を示すブロック図である。FIG. 10 is a block diagram showing another configuration of a reliability information generation unit in the third embodiment.
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る受信装置の構成を示すブロック図である。図1に示す受信装置は、OFDM方式の各搬送波であるサブキャリアがDQPSK変調されたOFDM信号を受信する受信装置である。なお、送信側は、送信データの誤り訂正符号として畳み込み符号を使用し、1次変調としてDQPSKやπ/4シフトDQPSKなどの差動変調を使用したサブキャリアを複数有するOFDM伝送方式で送信する。
Hereinafter, in order to describe the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a receiving apparatus according to Embodiment 1 of the present invention. The receiving apparatus illustrated in FIG. 1 is a receiving apparatus that receives an OFDM signal in which subcarriers, which are OFDM carriers, are DQPSK modulated. The transmission side uses a convolutional code as an error correction code of transmission data, and transmits by an OFDM transmission scheme having a plurality of subcarriers using differential modulation such as DQPSK and π / 4 shift DQPSK as primary modulation.
 フーリエ変換部1は、ベースバンド帯域に変換された受信信号S1をOFDMシンボルごとに離散フーリエ変換して出力する。なお、OFDM方式で伝送された各サブキャリア成分は、フーリエ変換部1から出力される周波数ドメイン信号として得られる。
 差動復調部2は、フーリエ変換部1の出力信号を差動復調してサブキャリアごとの復調信号を出力する。復調処理は、1つ前のOFDMシンボルのサブキャリア成分の複素共役信号と現在のOFDMシンボルのサブキャリア成分(複素信号)を複素乗算して行う。
 なお、差動復調部2の出力信号は、各サブキャリアで送信された送信信号の復調信号である。
The Fourier transform unit 1 performs discrete Fourier transform on the received signal S1 converted into the baseband band for each OFDM symbol, and outputs the result. Each subcarrier component transmitted by the OFDM method is obtained as a frequency domain signal output from the Fourier transform unit 1.
The differential demodulator 2 differentially demodulates the output signal of the Fourier transform unit 1 and outputs a demodulated signal for each subcarrier. The demodulation process is performed by complex multiplication of the complex conjugate signal of the subcarrier component of the previous OFDM symbol and the subcarrier component (complex signal) of the current OFDM symbol.
Note that the output signal of the differential demodulator 2 is a demodulated signal of the transmission signal transmitted on each subcarrier.
 リファレンスシンボル抽出部3は、フーリエ変換部1の出力信号からリファレンスシンボルに対応するフーリエ変換出力信号を抽出して出力する。なお、リファレンスシンボルはサブキャリアの位相基準となる既知の信号であって、例えば、DAB(Digital Audio Broadcasting)の場合は、一定の周期で送信信号に挿入されている。狭帯域雑音検出部4は、リファレンスシンボル抽出部3の出力信号に基づいて受信信号に含まれる狭帯域雑音成分を検出し、サブキャリアごとに狭帯域雑音成分の大きさを出力する。 The reference symbol extraction unit 3 extracts a Fourier transform output signal corresponding to the reference symbol from the output signal of the Fourier transform unit 1 and outputs it. The reference symbol is a known signal that serves as a phase reference for the subcarrier. For example, in the case of DAB (Digital Audio Broadcasting), the reference symbol is inserted into the transmission signal at a constant period. The narrowband noise detection unit 4 detects a narrowband noise component included in the received signal based on the output signal of the reference symbol extraction unit 3, and outputs the magnitude of the narrowband noise component for each subcarrier.
 信頼性情報生成部5は、差動復調部2および狭帯域雑音検出部4の各出力信号に基づいて、狭帯域雑音成分の有無およびその大きさを含む情報に応じて復調信号の信頼性が高低する信頼性情報を生成して出力する。例えば、I-Q平面上の直線Q=IまたはQ=-Iと復調信号の信号点との距離を予め定めた定数倍した値および狭帯域雑音成分の検出値を復調信号の瞬時電力値から減算した値を信頼性情報とする。この場合に、信頼性情報は、その値が大きいほど復調信号の信頼性が高いとみなされ、ビタビ復号部6によるブランチメトリックの算出に利用される。 Based on the output signals of the differential demodulator 2 and the narrowband noise detector 4, the reliability information generator 5 determines the reliability of the demodulated signal according to the information including the presence or absence of the narrowband noise component and the magnitude thereof. Generate and output high and low reliability information. For example, a value obtained by multiplying a distance between the straight line Q = I or Q = −I on the IQ plane and the signal point of the demodulated signal by a predetermined constant and a detected value of the narrowband noise component from the instantaneous power value of the demodulated signal The subtracted value is used as reliability information. In this case, the reliability information is considered to have a higher reliability of the demodulated signal as its value is larger, and is used for branch metric calculation by the Viterbi decoding unit 6.
 ビタビ復号部6は、差動復調部2および信頼性情報生成部5の出力信号に基づいて復調信号の尤度を示すブランチメトリックを求めて当該復調信号に対するビタビ復号を行い、ビタビ復号されたデータS2を出力する。例えば、ビタビ復号部6は、差動復調部2からの復調信号(I-Q信号)および信頼性情報生成部5からの信頼性情報に基づいて、復調信号の尤度を示すブランチメトリックを求める。さらにビタビ復号部6は、可能性のあるトレリスの全ての生き残りパスを求め、それぞれのパスのブランチメトリックを累積加算した結果が最も小さいパスを選択することにより、送信データを再生する。 The Viterbi decoder 6 obtains a branch metric indicating the likelihood of the demodulated signal based on the output signals of the differential demodulator 2 and the reliability information generator 5, performs Viterbi decoding on the demodulated signal, and Viterbi-decoded data S2 is output. For example, the Viterbi decoder 6 obtains a branch metric indicating the likelihood of the demodulated signal based on the demodulated signal (IQ signal) from the differential demodulator 2 and the reliability information from the reliability information generator 5. . Further, the Viterbi decoding unit 6 obtains all the surviving paths of the possible trellises, and reproduces the transmission data by selecting the path with the smallest result of accumulating the branch metrics of the respective paths.
 なお、フーリエ変換部1、差動復調部2、リファレンスシンボル抽出部3、狭帯域雑音検出部4、信頼性情報生成部5およびビタビ復号部6は、ハードウェアの回路として実現可能である。また、上記構成要素1~6は、例えば、マイクロコンピュータが、この発明に特有な処理が記述されたプログラムを実行することで、ハードウェアとソフトウェアが協働した具体的な手段として実現することができる。 The Fourier transform unit 1, the differential demodulation unit 2, the reference symbol extraction unit 3, the narrowband noise detection unit 4, the reliability information generation unit 5, and the Viterbi decoding unit 6 can be realized as a hardware circuit. In addition, the above-described components 1 to 6 can be realized as specific means in which hardware and software cooperate by, for example, a microcomputer executing a program in which processing unique to the present invention is described. it can.
 図2は実施の形態1における狭帯域雑音検出部の構成を示すブロック図である。図2に示すように、狭帯域雑音検出部4は、CIR検出部41、LPF部42、雑音成分抽出部43、判定閾値算出部44および狭帯域雑音判定部45を備えて構成される。
 CIR検出部41は、リファレンスシンボル抽出部3の出力信号をこれに対応する既知のリファレンスシンボル値で除算することによって、各サブキャリアのCIR(チャネルインパルス応答)を検出して出力する。
FIG. 2 is a block diagram showing the configuration of the narrowband noise detector in the first embodiment. As shown in FIG. 2, the narrowband noise detection unit 4 includes a CIR detection unit 41, an LPF unit 42, a noise component extraction unit 43, a determination threshold calculation unit 44, and a narrowband noise determination unit 45.
The CIR detector 41 detects and outputs the CIR (channel impulse response) of each subcarrier by dividing the output signal of the reference symbol extractor 3 by the known reference symbol value corresponding thereto.
 LPF部42は、低域通過フィルタによってCIR検出部41の出力信号を平滑化して出力する。この低域通過フィルタの通過帯域は、伝送路で生じる反射波成分を通過させるために必要な帯域幅、すなわち伝送路で生じる反射波成分が通過可能な帯域幅を有する。このような通過帯域を採用することにより、CIRの適切な平滑化が可能となり、狭帯域雑音成分を的確に検出することができる。 The LPF unit 42 smoothes and outputs the output signal of the CIR detection unit 41 with a low-pass filter. The pass band of the low-pass filter has a bandwidth necessary for passing the reflected wave component generated in the transmission path, that is, a bandwidth through which the reflected wave component generated in the transmission path can pass. By adopting such a pass band, the CIR can be appropriately smoothed, and a narrow band noise component can be accurately detected.
 雑音成分抽出部43は、CIR検出部41およびLPF部42の各出力信号に基づいてサブキャリアに重畳されている雑音成分を抽出して出力する。例えば、CIR検出部41から出力された各サブキャリアのCIR信号をLPF部42で生じる信号遅延分(例えば200μs程度)だけ遅延させ、遅延させたCIR信号からLPF部42で平滑化されたCIR信号を減算する。この減算結果は、各サブキャリアに重畳された雑音成分とみなすことができ、この減算結果の瞬時電力を算出することで、サブキャリアに重畳されている雑音電力が得られる。 The noise component extraction unit 43 extracts and outputs the noise component superimposed on the subcarrier based on the output signals of the CIR detection unit 41 and the LPF unit 42. For example, the CIR signal output from the CIR detection unit 41 is delayed by a signal delay (for example, about 200 μs) generated by the LPF unit 42, and the CIR signal smoothed by the LPF unit 42 from the delayed CIR signal Is subtracted. This subtraction result can be regarded as a noise component superimposed on each subcarrier. By calculating the instantaneous power of this subtraction result, the noise power superimposed on the subcarrier can be obtained.
 判定閾値算出部44は、雑音成分抽出部43によって得られたサブキャリアごとの雑音電力を入力してその平均値を算出し、この平均値に基づいて判定閾値を算出する。
 判定閾値としては、例えば、上記平均値に予め定めた値を加算または乗算した値が挙げられる。なお、狭帯域雑音が存在しない伝送路において、雑音成分は主に熱雑音であり、その成分は信号帯域全体に概ね均一に分布する白色雑音となる。この場合、雑音成分抽出部43の出力信号はサブキャリアによらずほぼ一定であると考えることができ、その値は上述のように算出した平均値に近い値となる。
 一方、熱雑音だけでなく狭帯域雑音が重畳されている場合は、狭帯域雑音成分によってサブキャリアの雑音電力が大きくなっている。従って、上記平均値を基に算出した判定閾値を使用することで狭帯域雑音の有無を判定することが可能となる。
The determination threshold calculation unit 44 inputs the noise power for each subcarrier obtained by the noise component extraction unit 43, calculates an average value thereof, and calculates a determination threshold based on the average value.
Examples of the determination threshold include a value obtained by adding or multiplying a predetermined value to the average value. Note that, in a transmission line in which no narrowband noise exists, the noise component is mainly thermal noise, and the component is white noise that is distributed almost uniformly over the entire signal band. In this case, it can be considered that the output signal of the noise component extraction unit 43 is substantially constant regardless of the subcarrier, and the value thereof is close to the average value calculated as described above.
On the other hand, when not only thermal noise but also narrow band noise is superimposed, the noise power of the subcarrier is increased by the narrow band noise component. Therefore, it is possible to determine the presence or absence of narrowband noise by using the determination threshold value calculated based on the average value.
 狭帯域雑音判定部45は、雑音成分抽出部43の出力信号を判定閾値算出部44が算出した判定閾値と比較した結果に基づいてサブキャリアごとに狭帯域雑音の有無を判定し、狭帯域雑音成分の有無およびその大きさを2値または多値の情報に変換して出力する。
 狭帯域雑音成分の有無およびその大きさを示す2値の情報は、例えば狭帯域雑音が存在すると判定した場合は予め定めた値を出力し、狭帯域雑音が存在しないと判定した場合には0(ゼロ値)を出力する。多値の情報として出力する場合は、例えば狭帯域雑音が存在すればその電力の大きさに比例した値を出力し、狭帯域雑音が存在しなければ0(ゼロ値)を出力する。いずれにおいても狭帯域雑音判定部45の出力値が大きいほど狭帯域雑音電力も大きいことを示している。
The narrowband noise determination unit 45 determines the presence or absence of narrowband noise for each subcarrier based on the result of comparing the output signal of the noise component extraction unit 43 with the determination threshold calculated by the determination threshold calculation unit 44. The presence / absence of the component and its size are converted into binary or multi-value information and output.
For example, the binary information indicating the presence / absence and the magnitude of the narrowband noise component outputs a predetermined value when it is determined that narrowband noise is present, and is 0 when it is determined that narrowband noise is not present. (Zero value) is output. When outputting as multi-level information, for example, a value proportional to the magnitude of the power is output if narrowband noise is present, and 0 (zero value) is output if no narrowband noise is present. In any case, the larger the output value of the narrowband noise determination unit 45, the larger the narrowband noise power.
 図3は実施の形態1における信頼性情報生成部の構成を示すブロック図である。図3に示すように、信頼性情報生成部5は、サブキャリア電力検出部50、信号点象限変換部51および信頼性情報演算部52を備えて構成される。
 サブキャリア電力検出部50は、差動復調部2が出力した復調信号(以下、I-Q信号ともいう)の同相成分であるI信号と直交成分であるQ信号に基づいてサブキャリアごとの復調信号の電力またはそれに比例する信号を生成して出力する。
FIG. 3 is a block diagram showing a configuration of the reliability information generation unit in the first embodiment. As shown in FIG. 3, the reliability information generation unit 5 includes a subcarrier power detection unit 50, a signal point quadrant conversion unit 51, and a reliability information calculation unit 52.
The subcarrier power detection unit 50 demodulates each subcarrier based on the Q signal which is the in-phase component and the quadrature component of the demodulated signal (hereinafter also referred to as IQ signal) output from the differential demodulation unit 2. Generate and output signal power or a signal proportional to it.
 信号点象限変換部51は、差動復調部2からI-Q信号を入力してI-Q平面で信号点の存在する象限を全て第1象限に変換して出力する。
 信頼性情報演算部52は、サブキャリア電力検出部50の出力信号、信号点象限変換部51の出力信号、狭帯域雑音検出部4の出力信号および固定係数kに基づいて、サブキャリアごとの復調信号の電力、復調信号のコンスタレーションおよび狭帯域雑音成分の大きさに応じて復調信号の信頼性が高低する信頼性情報を算出する。なお、信頼性情報演算部52が算出した信頼性情報は、後段のビタビ復号部6によるブランチメトリックの生成に利用される。
The signal point quadrant conversion unit 51 receives the IQ signal from the differential demodulation unit 2, converts all quadrants having signal points on the IQ plane to the first quadrant, and outputs the first quadrant.
The reliability information calculation unit 52 demodulates each subcarrier based on the output signal of the subcarrier power detection unit 50, the output signal of the signal point quadrant conversion unit 51, the output signal of the narrowband noise detection unit 4, and the fixed coefficient k. Reliability information that increases or decreases the reliability of the demodulated signal is calculated according to the power of the signal, the constellation of the demodulated signal, and the magnitude of the narrowband noise component. Note that the reliability information calculated by the reliability information calculation unit 52 is used to generate a branch metric by the Viterbi decoding unit 6 at the subsequent stage.
 次に動作について説明する。
 図4は、実施の形態1に係る受信装置の動作を示すフローチャートである。なお、実施の形態1に係る受信装置の構成については、図1から図3までを参照する。
 まず、フーリエ変換部1が、受信信号S1をOFDMシンボルごとに離散フーリエ変換する(ステップST1)。ここで、フーリエ変換部1の出力信号のうち、リファレンスシンボルに対応するフーリエ変換出力信号は、リファレンスシンボル抽出部3に抽出されて狭帯域雑音検出部4へ出力される(ステップST2;YES)。一方、差動復調部2は、フーリエ変換部1の出力信号のうち、リファレンスシンボル以外に対応するフーリエ変換出力信号について処理を行う(ステップST2;NO)。
Next, the operation will be described.
FIG. 4 is a flowchart showing an operation of the receiving apparatus according to Embodiment 1. For the configuration of the receiving apparatus according to Embodiment 1, reference is made to FIGS.
First, the Fourier transform unit 1 performs discrete Fourier transform on the received signal S1 for each OFDM symbol (step ST1). Here, among the output signals of the Fourier transform unit 1, the Fourier transform output signal corresponding to the reference symbol is extracted by the reference symbol extraction unit 3 and output to the narrowband noise detection unit 4 (step ST2; YES). On the other hand, the differential demodulator 2 performs processing on the Fourier transform output signal corresponding to other than the reference symbol among the output signals of the Fourier transform unit 1 (step ST2; NO).
 狭帯域雑音検出部4において、CIR検出部41は、リファレンスシンボル抽出部3の出力信号をこれに対応する既知のリファレンスシンボル値で除算してサブキャリアごとのCIRを検出する(ステップST3)。ここで、C(n)は、OFDMシンボルにおける第n番目のサブキャリアに対応するCIRである。
 続いて、狭帯域雑音検出部4のLPF部42が、CIR検出部41によって検出されたC(n)に対して低域通過フィルタ(LPF)処理を行って平滑化する(ステップST4)。このように平滑化された第n番目のサブキャリアのCIRをL(n)とする。
In the narrowband noise detection unit 4, the CIR detection unit 41 divides the output signal of the reference symbol extraction unit 3 by a known reference symbol value corresponding to the output signal to detect the CIR for each subcarrier (step ST3). Here, C (n) is a CIR corresponding to the nth subcarrier in the OFDM symbol.
Subsequently, the LPF unit 42 of the narrowband noise detection unit 4 performs smoothing by performing a low-pass filter (LPF) process on C (n) detected by the CIR detection unit 41 (step ST4). Let the CIR of the nth subcarrier smoothed in this way be L (n).
 次に、雑音成分抽出部43は、CIR検出部41およびLPF部42の各出力信号に基づいて、サブキャリアに重畳されている狭帯域雑音成分を抽出する(ステップST5)。例えば、CIR検出部41から出力された第n番目のサブキャリアのCIR信号C(n)をLPF部42で生じる信号遅延分だけ遅延させる。そして、この遅延させたCIR信号C(n)からLPF部42で平滑化された第n番目のサブキャリアのCIR信号L(n)を減算することで、第n番目のサブキャリアに重畳されている雑音成分Nz(n)(電力値)を求める。なお、雑音成分の抽出処理は全てのサブキャリアについて実行される。 Next, the noise component extraction unit 43 extracts the narrowband noise component superimposed on the subcarrier based on the output signals of the CIR detection unit 41 and the LPF unit 42 (step ST5). For example, the CIR signal C (n) of the nth subcarrier output from the CIR detection unit 41 is delayed by the signal delay generated in the LPF unit 42. Then, by subtracting the CIR signal L (n) of the nth subcarrier smoothed by the LPF unit 42 from the delayed CIR signal C (n), it is superimposed on the nth subcarrier. Noise component Nz (n) (power value) is obtained. Note that the noise component extraction processing is executed for all subcarriers.
 次いで、判定閾値算出部44は、雑音成分抽出部43によって抽出されたサブキャリアごとの雑音成分Nz(n)を逐次入力して平均値を算出し、この平均値に基づいて判定閾値Tを算出する(ステップST6)。なお、判定閾値Tは、例えば上記平均値に予め定めた値を加算または乗算した値である。 Next, the determination threshold calculation unit 44 sequentially inputs the noise component Nz (n) for each subcarrier extracted by the noise component extraction unit 43 to calculate an average value, and calculates the determination threshold T based on the average value. (Step ST6). The determination threshold T is, for example, a value obtained by adding or multiplying a predetermined value to the average value.
 狭帯域雑音判定部45は、雑音成分Nz(n)が判定閾値Tより大きいか否かに基づいてサブキャリアごとに狭帯域雑音の有無を判定する(ステップST7)。
 雑音成分Nz(n)が判定閾値Tよりも大きい、すなわち狭帯域雑音成分が検出された場合(ステップST7;YES)、狭帯域雑音判定部45は、狭帯域雑音成分の大きさを示す2値情報または多値情報を出力する(ステップST8)。
The narrowband noise determination unit 45 determines the presence or absence of narrowband noise for each subcarrier based on whether or not the noise component Nz (n) is greater than the determination threshold T (step ST7).
When the noise component Nz (n) is larger than the determination threshold T, that is, when a narrowband noise component is detected (step ST7; YES), the narrowband noise determination unit 45 has a binary value indicating the magnitude of the narrowband noise component. Information or multi-value information is output (step ST8).
 また、雑音成分Nz(n)が判定閾値T以下、すなわち狭帯域雑音成分が検出されない場合(ステップST7;NO)、狭帯域雑音判定部45は、狭帯域雑音成分がないことを示す2値情報または多値情報を出力する(ステップST9)。
 例えば、狭帯域雑音判定部45は、第n番目のサブキャリアに重畳されている狭帯域雑音成分の大きさを示すZ(n)を出力する。狭帯域雑音が検出された場合、Z(n)は、0(ゼロ値)より大きい値となり、狭帯域雑音が検出されなければ、Z(n)は0(ゼロ値)となる。
In addition, when the noise component Nz (n) is equal to or less than the determination threshold T, that is, when the narrowband noise component is not detected (step ST7; NO), the narrowband noise determination unit 45 has binary information indicating that there is no narrowband noise component. Alternatively, multi-value information is output (step ST9).
For example, the narrowband noise determination unit 45 outputs Z (n) indicating the magnitude of the narrowband noise component superimposed on the nth subcarrier. When narrowband noise is detected, Z (n) is greater than 0 (zero value), and when no narrowband noise is detected, Z (n) is 0 (zero value).
 差動復調部2は、フーリエ変換部1の出力信号のうち、リファレンスシンボル以外に対応するフーリエ変換出力信号を差動復調してサブキャリアごとの復調信号を出力する(ステップST10)。復調処理とは、1つ前のOFDMシンボルのサブキャリア成分の複素共役信号と現在のOFDMシンボルのサブキャリア成分(複素信号)を複素乗算する処理である。ここで、第n番目のサブキャリアの復調信号の同相成分I(n)、直交成分Q(n)が得られる。 The differential demodulator 2 differentially demodulates the Fourier transform output signals corresponding to those other than the reference symbol among the output signals of the Fourier transform unit 1, and outputs a demodulated signal for each subcarrier (step ST10). The demodulation process is a process of performing complex multiplication of the complex conjugate signal of the subcarrier component of the previous OFDM symbol and the subcarrier component (complex signal) of the current OFDM symbol. Here, the in-phase component I (n) and the quadrature component Q (n) of the demodulated signal of the nth subcarrier are obtained.
 次に、信頼性情報生成部5において、サブキャリア電力検出部50は、差動復調部2が出力した復調信号の同相成分I(n)と直交成分Q(n)に基づいて、サブキャリアごとの復調信号の電力またはそれに比例するP(n)を検出する(ステップST11)。
 P(n)は、例えば同相成分I(n)の2乗値に直交成分Q(n)の2乗値を加算した値である。なお、サブキャリア電力検出部50の入力信号は差動復調部2による差動復調結果であるため、P(n)は、厳密にはサブキャリアの復調信号の電力を表していない。しかし、差動復調による復調信号が、隣接したOFDMシンボル間の複素乗算で得られる信号であるため、P(n)はサブキャリアの復調信号の電力に比例した値となる。
Next, in the reliability information generation unit 5, the subcarrier power detection unit 50 determines each subcarrier based on the in-phase component I (n) and the quadrature component Q (n) of the demodulated signal output from the differential demodulation unit 2. The demodulated signal power or P (n) proportional thereto is detected (step ST11).
P (n) is, for example, a value obtained by adding the square value of the quadrature component Q (n) to the square value of the in-phase component I (n). Since the input signal of the subcarrier power detection unit 50 is a differential demodulation result by the differential demodulation unit 2, P (n) does not strictly represent the power of the demodulated signal of the subcarrier. However, since the demodulated signal by differential demodulation is a signal obtained by complex multiplication between adjacent OFDM symbols, P (n) is a value proportional to the power of the demodulated signal of the subcarrier.
 信号点象限変換部51は、差動復調部2が出力した復調信号(I-Q信号)を入力し、I-Q平面上で信号点の存在する象限を全て第1象限に変換する(ステップST12)。
 例えば、入力した第n番目のサブキャリアの復調信号の信号点がI-Q平面の第1象限に存在する場合は、入力した復調信号の同相成分I(n)と直交成分Q(n)をそのまま出力する。すなわち変換後の信号点(Id(n),Qd(n))をId(n)=I(n)、Qd(n)=Q(n)とする。
 また、復調信号の信号点がI-Q平面の第2象限に存在する場合には、この復調信号の同相成分I(n)と直交成分Q(n)の代わりに、変換後の信号点(Id(n),Qd(n))をId(n)=-I(n)、Qd(n)=Q(n)として出力する。
 さらに、復調信号の信号点がI-Q平面の第3象限に存在する場合には、この復調信号の同相成分I(n)と直交成分Q(n)の代わりに、変換後の信号点(Id(n),Qd(n))をId(n)=-I(n)、Qd(n)=-Q(n)として出力する。
 さらに、復調信号の信号点がI-Q平面の第4象限に存在する場合には、この復調信号の同相成分I(n)と直交成分Q(n)の代わりに、変換後の信号点(Id(n),Qd(n))をId(n)=I(n)、Qd(n)=-Q(n)として出力する。
The signal point quadrant conversion unit 51 receives the demodulated signal (IQ signal) output from the differential demodulation unit 2 and converts all quadrants in which signal points exist on the IQ plane into the first quadrant (step) ST12).
For example, when the signal point of the demodulated signal of the input nth subcarrier exists in the first quadrant of the IQ plane, the in-phase component I (n) and the quadrature component Q (n) of the input demodulated signal are Output as is. That is, the converted signal points (Id (n), Qd (n)) are set to Id (n) = I (n) and Qd (n) = Q (n).
When the signal point of the demodulated signal exists in the second quadrant of the IQ plane, the converted signal point (instead of the in-phase component I (n) and quadrature component Q (n) of the demodulated signal ( Id (n), Qd (n)) is output as Id (n) = − I (n), Qd (n) = Q (n).
Further, when the signal point of the demodulated signal exists in the third quadrant of the IQ plane, the converted signal point (instead of the in-phase component I (n) and quadrature component Q (n) of the demodulated signal ( Id (n), Qd (n)) is output as Id (n) = − I (n) and Qd (n) = − Q (n).
Further, when the signal point of the demodulated signal exists in the fourth quadrant of the IQ plane, the converted signal point (instead of the in-phase component I (n) and quadrature component Q (n) of the demodulated signal ( Id (n), Qd (n)) is output as Id (n) = I (n), Qd (n) = − Q (n).
 次に、信頼性情報演算部52は、信号点象限変換部51によって第1象限に変換された復調信号点(Id(n),Qd(n))および狭帯域雑音検出部4の出力信号Z(n)に基づいて、I-Q平面の直線Q=Iと上記復調信号点との間の距離D(n)を算出する(ステップST13)。なお、上記説明では、復調信号の信号点を第1象限に変換した場合を示したが、第2象限または第4象限の信号点に変換して直線Q=-Iとの距離をD(n)として用いてもよい。 Next, the reliability information calculation unit 52 outputs the demodulated signal points (Id (n), Qd (n)) converted into the first quadrant by the signal point quadrant conversion unit 51 and the output signal Z of the narrowband noise detection unit 4. Based on (n), a distance D (n) between the straight line Q = I on the IQ plane and the demodulated signal point is calculated (step ST13). In the above description, the signal point of the demodulated signal is converted into the first quadrant. However, the signal point in the second quadrant or the fourth quadrant is converted into the distance from the straight line Q = −I to D (n ).
 次に、信頼性情報演算部52は、第n番目のサブキャリアの復調信号の電力情報P(n)、I-Q平面上での直線Q=Iと第n番目のサブキャリアの復調信号点との距離D(n)、第n番目のサブキャリアに重畳した狭帯域雑音の検出値Z(n)および正の固定係数kを用いて、下記式(1)から、第n番目のサブキャリアの復調信号の信頼性情報R(n)を算出する(ステップST14)。このように信頼性情報R(n)は、サブキャリアに重畳している狭帯域雑音成分の有無およびその大きさに応じて高低する値となる。
 R(n)=P(n)-k×D(n)-Z(n)   ・・・(1)
Next, the reliability information calculation unit 52 calculates power information P (n) of the demodulated signal of the nth subcarrier, a straight line Q = I on the IQ plane, and a demodulated signal point of the nth subcarrier. And the detected value Z (n) of the narrowband noise superimposed on the nth subcarrier and the positive fixed coefficient k, the following formula (1) is used to calculate the nth subcarrier: The reliability information R (n) of the demodulated signal is calculated (step ST14). Thus, the reliability information R (n) is a value that increases or decreases depending on the presence or absence of the narrowband noise component superimposed on the subcarrier and its magnitude.
R (n) = P (n) −k × D (n) −Z (n) (1)
 この後、ビタビ復号部6が、信頼性情報生成部5から入力した上記信頼性情報R(n)に基づいて、差動復調部2から入力した第n番目のサブキャリアの復調信号(I(n),Q(n))の尤度を示すブランチメトリックを求めて当該復調信号に対するビタビ復号を行い、ビタビ復号されたデータS2を出力する(ステップST15)。
 従来の受信装置では、ビタビ復号による誤り訂正を行う場合、差動復調した復調信号の電力値やI-Q平面における復調信号のコンスタレーションの傾きである位相誤差情報を利用してビタビ復号を行っていた。
 これに対して、この発明によれば、復調信号の電力値や復調信号のコンスタレーションの傾きに加え、信号帯域に重畳されている狭帯域雑音の有無およびその大きさを考慮したビタビ復号を行う。このためDQPSK-OFDM信号に対する誤り訂正能力が向上し、受信性能を改善することが可能である。
Thereafter, the Viterbi decoding unit 6 receives the demodulated signal of the n-th subcarrier input from the differential demodulation unit 2 (I (based on the reliability information R (n) input from the reliability information generation unit 5). n) and branch metrics indicating the likelihood of Q (n)) are obtained, Viterbi decoding is performed on the demodulated signal, and Viterbi-decoded data S2 is output (step ST15).
In a conventional receiver, when performing error correction by Viterbi decoding, Viterbi decoding is performed using the power value of the demodulated signal that has been differentially demodulated or phase error information that is the slope of the constellation of the demodulated signal in the IQ plane. It was.
In contrast, according to the present invention, Viterbi decoding is performed in consideration of the presence and magnitude of narrowband noise superimposed on the signal band, in addition to the power value of the demodulated signal and the slope of the constellation of the demodulated signal. . For this reason, the error correction capability with respect to the DQPSK-OFDM signal is improved, and the reception performance can be improved.
 OFDM方式の伝送においては、図5(a)に示すように、送信側が、複数のサブキャリアを送信データに割り当て、各サブキャリアにおいてDQPSKなどの方式でデジタル変調されている。また、伝送路においてマルチパスや周波数選択性フェージングの影響を受けると、図5(b)に示すように、サブキャリアごとの信号電力はサブキャリアの周波数によって異なるものとなる。 In OFDM transmission, as shown in FIG. 5A, the transmission side assigns a plurality of subcarriers to transmission data, and each subcarrier is digitally modulated by a method such as DQPSK. When the transmission path is affected by multipath or frequency selective fading, as shown in FIG. 5B, the signal power for each subcarrier differs depending on the frequency of the subcarrier.
 復調信号の位相が、本来の位相(π/4,3π/4,-3π/4,-π/4)に対してずれていなければ、特定の周波数において同一のチャンネル妨害があるような特殊な電波環境を除いて、通常はサブキャリアの信号電力が大きい方が熱雑音の影響を受けにくく、復調信号の信頼性が高いと言える。
 しかし、信号帯域に狭帯域雑音が重畳されている場合、図5(c)に示すように、雑音成分の電力もサブキャリアの信号電力に加算されるため、その電力値がそのまま信頼性を表すとは限らない。
If the phase of the demodulated signal is not deviated from the original phase (π / 4, 3π / 4, -3π / 4, -π / 4), there is a special channel that has the same channel interference at a specific frequency. Except for the radio wave environment, it can be said that the higher the subcarrier signal power is, the less susceptible to thermal noise, the higher the reliability of the demodulated signal.
However, when narrowband noise is superimposed on the signal band, the power of the noise component is also added to the signal power of the subcarrier as shown in FIG. Not necessarily.
 またDQPSKにおいては、復調信号の理想信号点はI-Q平面上の直線Q=IまたはQ=-Iに存在するが、情報が振幅ではなく位相に重畳されているため、QPSKなどのように4つの理想信号点に定めることができない。
 この場合は、サブキャリアの信号電力が大きい方が相対的にC/Nがよいと言えるが、同じ電力であっても復調信号点が直線Q=IまたはQ=-Iに近いほど復調信号の信頼性は高くなる。
In DQPSK, the ideal signal point of the demodulated signal exists on the straight line Q = I or Q = −I on the IQ plane, but the information is superimposed on the phase, not the amplitude, so that It is not possible to define four ideal signal points.
In this case, it can be said that the C / N is relatively better when the signal power of the subcarrier is larger. However, even if the power is the same, the demodulated signal point becomes closer to the straight line Q = I or Q = −I. Reliability increases.
 さらに、伝送路の時間変動あるいは周波数誤差などによって、差動復調した復調信号のコンスタレーションがI-Q平面上で傾く場合がある。この場合、復調信号の電力だけで信頼性を評価することがさらに困難になるが、同じ電力値の復調信号であってもその復調信号点が直線Q=IまたはQ=-Iに近いものほど信頼性は高くなる。 Furthermore, the constellation of the demodulated signal that is differentially demodulated may be tilted on the IQ plane due to time fluctuations or frequency errors in the transmission path. In this case, it becomes more difficult to evaluate the reliability only with the power of the demodulated signal, but even if the demodulated signal has the same power value, the demodulated signal point is closer to the straight line Q = I or Q = −I. Reliability increases.
 上記式(1)は、サブキャリアがDQPSK変調されたOFDM信号における上記特徴を考慮しており、上記式(1)の演算値が大きいほどその復調信号の信頼性が高いことを意味している。
 例えば、サブキャリアの電力情報P(n)が大きい方がR(n)は大きな値となり信頼性が高い。また、サブキャリアの復調信号が理想信号点である直線Q=IまたはQ=-Iに存在すればD(n)=0となり、R(n)は大きな値となる。
 一方、復調信号のコンスタレーションがI-Q平面上で傾いても、復調信号点が直線Q=IまたはQ=-Iに近いほどD(n)が小さくなり、R(n)は大きな値となる。
 さらに、サブキャリアに重畳された狭帯域雑音成分の検出値Z(n)は雑音成分の有無およびその大きさに応じた値であるので、雑音成分がなくZ(n)がゼロ値であれば、R(n)は大きな値となり、狭帯域雑音が存在してZ(n)が大きくなると、これに応じてR(n)は小さくなる。
The above equation (1) takes into account the above characteristics in the OFDM signal in which the subcarrier is DQPSK modulated, and means that the greater the calculated value of the above equation (1), the higher the reliability of the demodulated signal. .
For example, the larger the subcarrier power information P (n), the larger the R (n) value and the higher the reliability. If the demodulated signal of the subcarrier is present on the straight line Q = I or Q = −I, which is an ideal signal point, D (n) = 0 and R (n) becomes a large value.
On the other hand, even if the constellation of the demodulated signal is inclined on the IQ plane, D (n) becomes smaller as the demodulated signal point is closer to the straight line Q = I or Q = −I, and R (n) has a larger value. Become.
Furthermore, since the detection value Z (n) of the narrowband noise component superimposed on the subcarrier is a value according to the presence / absence of the noise component and its magnitude, if there is no noise component and Z (n) is zero, , R (n) becomes a large value, and when narrow band noise exists and Z (n) increases, R (n) decreases accordingly.
 以上のように、この実施の形態1によれば、OFDMシンボルごとに受信信号を離散フーリエ変換して出力するフーリエ変換部1と、フーリエ変換部1の出力信号から既知のリファレンスシンボルに対応する出力信号を抽出して出力するリファレンスシンボル抽出部3と、リファレンスシンボル抽出部3の出力信号に基づいて受信信号に含まれる狭帯域雑音成分を検出し、サブキャリアごとに狭帯域雑音成分の有無およびその大きさを出力する狭帯域雑音検出部4と、フーリエ変換部1の出力信号を差動復調してサブキャリアごとの復調信号を出力する差動復調部2と、差動復調部2および狭帯域雑音検出部4の各出力信号に基づいて、狭帯域雑音成分の有無およびその大きさを含む情報に応じて復調信号の信頼性が高低する信頼性情報を生成して出力する信頼性情報生成部5と、信頼性情報を用いて復調信号に対するビタビ復号を行うビタビ復号部6とを備える。
 このように構成することで、サブキャリアに重畳された狭帯域雑音成分の有無およびその大きさを考慮した信頼性情報を生成できる。この信頼性情報を用いてビタビ復号を行うことで、復調信号における狭帯域雑音の影響が抑圧される。このためビタビ復号における誤り訂正能力が向上して受信性能を改善させることができる。
As described above, according to the first embodiment, the Fourier transform unit 1 that outputs the received signal by performing discrete Fourier transform for each OFDM symbol, and the output corresponding to a known reference symbol from the output signal of the Fourier transform unit 1 A reference symbol extraction unit 3 that extracts and outputs a signal; a narrowband noise component included in the received signal is detected based on an output signal of the reference symbol extraction unit 3; A narrowband noise detector 4 for outputting a magnitude, a differential demodulator 2 for differentially demodulating the output signal of the Fourier transform unit 1 and outputting a demodulated signal for each subcarrier, a differential demodulator 2 and a narrowband Based on each output signal of the noise detection unit 4, reliability information is generated so that the reliability of the demodulated signal is high or low according to information including the presence or absence and the magnitude of the narrowband noise component. It comprises a reliability information generating unit 5 to and output, and a Viterbi decoding unit 6 for performing Viterbi decoding of the demodulated signal using the reliability information.
With this configuration, it is possible to generate reliability information in consideration of the presence / absence and the size of the narrowband noise component superimposed on the subcarrier. By performing Viterbi decoding using this reliability information, the influence of narrowband noise in the demodulated signal is suppressed. For this reason, the error correction capability in Viterbi decoding is improved and the reception performance can be improved.
 また、この実施の形態1によれば、狭帯域雑音検出部4が、リファレンスシンボルに対応する出力信号を既知の値で除算して得た伝送路のCIR信号C(n)とこのCIR信号をLPFで平滑化した信号L(n)との差分値が予め定めた判定閾値Tより大きい周波数帯域内に狭帯域雑音成分が存在すると判定する。このようにすることで、サブキャリアに重畳された狭帯域雑音を的確に検出することができる。 Further, according to the first embodiment, the narrowband noise detection unit 4 obtains the transmission path CIR signal C (n) obtained by dividing the output signal corresponding to the reference symbol by a known value and the CIR signal. It is determined that a narrowband noise component exists in a frequency band in which the difference value from the signal L (n) smoothed by the LPF is greater than a predetermined determination threshold T. In this way, it is possible to accurately detect the narrowband noise superimposed on the subcarrier.
 さらに、この実施の形態1によれば、低域通過フィルタの通過帯域が、伝送路で生じる反射波成分が通過可能な帯域幅を有するので、CIRの適切な平滑化が可能となり狭帯域雑音成分を的確に検出することができる。 Furthermore, according to the first embodiment, since the pass band of the low-pass filter has a bandwidth that allows the reflected wave component generated in the transmission path to pass, the CIR can be appropriately smoothed and the narrow-band noise component is obtained. Can be accurately detected.
 さらに、この実施の形態1によれば、信頼性情報生成部5が、復調信号の電力情報P(n)、I-Q平面上のQ=IまたはQ=-I直線と復調信号の信号点との距離D(n)、狭帯域雑音成分の有無およびその大きさZ(n)に応じて復調信号の信頼性が高低する信頼性情報を生成する。これによりP(n)およびD(n)に加え、Z(n)に応じた信頼性情報を用いたビタビ復号が可能となる。また、復調信号のコンスタレーションが傾いた場合であっても、D(n)によって復調信号の信頼性を適切に表すことができる。 Further, according to the first embodiment, the reliability information generating unit 5 performs the demodulation signal power information P (n), the Q = I or Q = −I line on the IQ plane, and the signal point of the demodulation signal. Reliability information in which the reliability of the demodulated signal is high or low is generated in accordance with the distance D (n), the presence / absence of a narrowband noise component, and the magnitude Z (n) thereof. This enables Viterbi decoding using reliability information corresponding to Z (n) in addition to P (n) and D (n). Even if the demodulated signal constellation is tilted, the reliability of the demodulated signal can be appropriately represented by D (n).
実施の形態2.
 図6は、この発明の実施の形態2における信頼性情報生成部の構成を示すブロック図である。図6に示すように、信頼性情報生成部5Aには、実施の形態1の構成に対してシンボル内平均化部53を追加し、信頼性情報演算部52の代わりに、シンボル内平均化部53の情報を用いて信頼性情報を演算する信頼性情報演算部52Aを設けている。なお、図6において、図3と同一構成要素には同一符号を付して重複する説明を省略する。
Embodiment 2. FIG.
FIG. 6 is a block diagram showing a configuration of the reliability information generation unit according to the second embodiment of the present invention. As shown in FIG. 6, in the reliability information generation unit 5A, an intra-symbol averaging unit 53 is added to the configuration of the first embodiment, and instead of the reliability information calculation unit 52, an intra-symbol averaging unit A reliability information calculation unit 52A that calculates reliability information using 53 information is provided. In FIG. 6, the same components as those in FIG.
 シンボル内平均化部53は、信号点象限変換部51によって第1象限に変換された復調信号点(Id(n),Qd(n))を入力すると、この復調信号点と直線Q=Iとの距離D(n)を1OFDMシンボル内で平均化して平均値D’(n)を出力する。
 信頼性情報演算部52Aは、復調信号の電力情報P(n)、平均値D’(n)、狭帯域雑音成分の有無およびその大きさZ(n)、正の固定係数kを用いて、下記式(2)から復調信号の信頼性が高低する信頼性情報R(n)を算出する。
 R(n)=P(n)-k×D’(n)-Z(n)   ・・・(2)
When the demodulated signal point (Id (n), Qd (n)) converted into the first quadrant by the signal point quadrant converting unit 51 is input to the intra-symbol averaging unit 53, the demodulated signal point and the straight line Q = I Are averaged within one OFDM symbol, and an average value D ′ (n) is output.
The reliability information calculation unit 52A uses the power information P (n) of the demodulated signal, the average value D ′ (n), the presence / absence and the magnitude Z (n) of the narrowband noise component, and the positive fixed coefficient k. The reliability information R (n) for calculating the reliability of the demodulated signal is calculated from the following equation (2).
R (n) = P (n) −k × D ′ (n) −Z (n) (2)
 なお、上記説明では復調信号の信号点を第1象限に変換した場合を示したが、第2象限または第4象限の信号点に変換して直線Q=-Iとの距離をD(n)とし、これらの値のOFDMシンボル内の平均値を用いてもよい。 In the above description, the signal point of the demodulated signal is converted to the first quadrant. However, the signal point of the second quadrant or the fourth quadrant is converted into the distance from the straight line Q = −I to D (n). And an average value of these values in the OFDM symbol may be used.
 以上のように、この実施の形態2によれば、信頼性情報生成部5Aが、復調信号の電力情報P(n)、I-Q平面上の直線Q=IまたはQ=-Iと復調信号の信号点との距離のOFDMシンボルごとの平均値D’(n)、狭帯域雑音成分の有無およびその大きさZ(n)に応じて復調信号の信頼性が高低する信頼性情報を生成する。
 このようにすることで、復調信号における全てのサブキャリアに共通の位相回転成分を考慮した信頼性情報を生成することが可能であり、上記実施の形態1に比べて信頼性情報の精度を向上させることができる。
As described above, according to the second embodiment, the reliability information generating unit 5A determines the demodulated signal power information P (n), the straight line Q = I or Q = −I on the IQ plane, and the demodulated signal. Reliability information in which the reliability of the demodulated signal is high or low is generated according to the average value D ′ (n) for each OFDM symbol of the distance to the signal point, the presence / absence of a narrowband noise component, and the magnitude Z (n). .
In this way, it is possible to generate reliability information in consideration of a phase rotation component common to all subcarriers in the demodulated signal, and the accuracy of the reliability information is improved as compared with the first embodiment. Can be made.
実施の形態3.
 図7は、この発明の実施の形態3における信頼性情報生成部の構成を示すブロック図である。図7に示すように、信頼性情報生成部5Bには、実施の形態2の構成に対して位相誤差検出部54および変動係数変換部55を追加し、信頼性情報演算部52Aの代わりに、変動係数変換部55からの情報を用いて信頼性情報を演算する信頼性情報演算部52Bを設けている。なお、図7において図3および図6と同一構成要素には同一符号を付して重複する説明を省略する。
Embodiment 3 FIG.
FIG. 7 is a block diagram showing a configuration of the reliability information generation unit according to Embodiment 3 of the present invention. As shown in FIG. 7, the reliability information generation unit 5B has a phase error detection unit 54 and a variation coefficient conversion unit 55 added to the configuration of the second embodiment, and instead of the reliability information calculation unit 52A, A reliability information calculation unit 52B that calculates reliability information using information from the variation coefficient conversion unit 55 is provided. In FIG. 7, the same components as those in FIGS.
 位相誤差検出部54は、差動復調部2から入力した復調信号の信号点(I(n),Q(n))を基にI-Q平面における当該信号点の位相誤差θ(n)を算出し、1OFDMシンボル内で平均化して出力する。なお、θ(n)は、信号点(I(n),Q(n))に基づき逆正接から算出してもよく、近似値としてQ(n)/I(n)で代用してもよい。
 またθ(n)を1OFDMシンボル内で平均化した値は、このOFDMシンボルの差動復調信号における平均の位相回転量に比例した値となる。
Based on the signal points (I (n), Q (n)) of the demodulated signal input from the differential demodulator 2, the phase error detector 54 calculates the phase error θ (n) of the signal point on the IQ plane. Calculate, average within 1 OFDM symbol, and output. Note that θ (n) may be calculated from the arc tangent based on the signal points (I (n), Q (n)), or may be substituted with Q (n) / I (n) as an approximate value. .
The value obtained by averaging θ (n) within one OFDM symbol is a value proportional to the average phase rotation amount in the differential demodulated signal of this OFDM symbol.
 変動係数変換部55は、I-Q平面上の直線Q=IまたはQ=-Iと復調信号の信号点との距離D(n)に乗算される正の変動係数mを、復調信号における平均の位相回転量に比例した値が大きいほど大きな値になるように変動させる。
 信頼性情報演算部52Bは、復調信号の電力情報P(n)、平均値D’(n)、狭帯域雑音成分の有無およびその大きさZ(n)、変動係数mを用いて、下記式(3)から復調信号の信頼性が高低する信頼性情報R(n)を算出する。
 R(n)=P(n)-m×D’(n)-Z(n)   ・・・(3)
The variation coefficient converting unit 55 calculates a positive variation coefficient m multiplied by the distance D (n) between the straight line Q = I or Q = −I on the IQ plane and the signal point of the demodulated signal as an average in the demodulated signal. The larger the value proportional to the amount of phase rotation, the larger the value.
The reliability information calculation unit 52B uses the power information P (n) of the demodulated signal, the average value D ′ (n), the presence / absence and the magnitude Z (n) of the narrowband noise component, and the variation coefficient m as follows: From (3), the reliability information R (n) for calculating the reliability of the demodulated signal is calculated.
R (n) = P (n) −m × D ′ (n) −Z (n) (3)
 なお、上記説明では復調信号の信号点を第1象限に変換した場合を示したが、第2象限または第4象限の信号点に変換して直線Q=-Iとの距離をD(n)とし、これらの値のOFDMシンボル内の平均値を用いてもよい。 In the above description, the signal point of the demodulated signal is converted to the first quadrant. However, the signal point of the second quadrant or the fourth quadrant is converted into the distance from the straight line Q = −I to D (n). And an average value of these values in the OFDM symbol may be used.
 また、図8に示すように、信頼性情報演算部52Cが、復調信号の電力情報P(n)、距離D(n)、狭帯域雑音成分の有無およびその大きさZ(n)、変動係数mを用いて、下記式(4)から復調信号の信頼性が高低する信頼性情報R(n)を算出してもよい。
 R(n)=P(n)-m×D(n)-Z(n)   ・・・(4)
Further, as shown in FIG. 8, the reliability information calculation unit 52C performs power information P (n) of the demodulated signal, distance D (n), presence / absence of a narrowband noise component, its magnitude Z (n), and a variation coefficient. Using m, the reliability information R (n) that makes the demodulated signal highly reliable may be calculated from the following equation (4).
R (n) = P (n) −m × D (n) −Z (n) (4)
 以上のように、この実施の形態3によれば、信頼性情報生成部5Bが、復調信号の電力情報P(n)、I-Q平面上の直線Q=IまたはQ=-Iと復調信号の信号点との距離のOFDMシンボルごとの平均値を復調信号のコンスタレーションの傾きに応じて変動させた値m×D’(n)、狭帯域雑音成分の有無およびその大きさZ(n)に応じて復調信号の信頼性が高低する信頼性情報を生成する。このように構成することで、復調信号の位相オフセット、すなわちコンスタレーションの傾きを実施の形態1および実施の形態2よりも的確に反映した信頼性情報を得ることができる。 As described above, according to the third embodiment, the reliability information generation unit 5B determines that the demodulated signal power information P (n), the straight line Q = I or Q = −I on the IQ plane, and the demodulated signal A value m × D ′ (n) obtained by changing the average value of each distance from the signal point for each OFDM symbol in accordance with the slope of the constellation of the demodulated signal, the presence / absence of a narrowband noise component, and its magnitude Z (n) Accordingly, reliability information in which the reliability of the demodulated signal is high or low is generated. With this configuration, it is possible to obtain reliability information that more accurately reflects the phase offset of the demodulated signal, that is, the constellation slope, than in the first and second embodiments.
 また、この実施の形態3によれば、信頼性情報生成部5Cが、復調信号の電力情報P(n)、I-Q平面上のQ=IまたはQ=-I直線と復調信号の信号点との距離を復調信号のコンスタレーションの傾きに応じて変動させた値m×D(n)、狭帯域雑音成分の有無および大きさZ(n)に応じて復調信号の信頼性が高低する信頼性情報を生成する。このように構成することでも、上記と同様の効果を得ることができる。 Further, according to the third embodiment, the reliability information generation unit 5C performs the demodulation signal power information P (n), the Q = I or Q = −I line on the IQ plane, and the signal point of the demodulation signal. The reliability of the demodulated signal increases or decreases depending on the value m × D (n) obtained by changing the distance to the constellation of the demodulated signal, the presence / absence of the narrowband noise component, and the magnitude Z (n) Generate sex information. Even with this configuration, the same effect as described above can be obtained.
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
 この発明に係る受信装置は、ビタビ復号における誤り訂正能力が向上して受信性能を改善させることができるので、例えば、OFDM方式を用いた地上デジタル放送の受信機に好適である。 The receiving apparatus according to the present invention is suitable for, for example, a receiver for digital terrestrial broadcasting using the OFDM method because the error correction capability in Viterbi decoding can be improved and the receiving performance can be improved.
 1 フーリエ変換部、2 差動復調部、3 リファレンスシンボル抽出部、4 狭帯域雑音検出部、5,5A,5B,5C 信頼性情報生成部、6 ビタビ復号部、41 CIR検出部、42 LPF部、43 雑音成分抽出部、44 判定閾値算出部、45 狭帯域雑音判定部、50 サブキャリア電力検出部、51 信号点象限変換部、52,52A,52B,52C 信頼性情報演算部、53 シンボル内平均化部、54 位相誤差検出部、55 変動係数変換部。 1 Fourier transform unit, 2 differential demodulation unit, 3 reference symbol extraction unit, 4 narrowband noise detection unit, 5, 5A, 5B, 5C reliability information generation unit, 6 Viterbi decoding unit, 41 CIR detection unit, 42 LPF unit 43, noise component extraction unit, 44 determination threshold calculation unit, 45 narrowband noise determination unit, 50 subcarrier power detection unit, 51 signal point quadrant conversion unit, 52, 52A, 52B, 52C reliability information calculation unit, in 53 symbols Averager, 54 phase error detector, 55 variation coefficient converter.

Claims (8)

  1.  サブキャリアがDQPSK変調されたOFDM信号を受信する受信装置であって、
     OFDMシンボルごとに受信信号を離散フーリエ変換して出力するフーリエ変換部と、
     前記フーリエ変換部の出力信号からリファレンスシンボルに対応する出力信号を抽出して出力するリファレンスシンボル抽出部と、
     前記リファレンスシンボル抽出部の出力信号に基づいて前記受信信号に含まれる狭帯域雑音成分を検出し、前記サブキャリアごとに前記狭帯域雑音成分の有無およびその大きさを出力する狭帯域雑音検出部と、
     前記フーリエ変換部の出力信号を差動復調して前記サブキャリアごとの復調信号を出力する差動復調部と、
     前記差動復調部および前記狭帯域雑音検出部の各出力信号に基づいて、前記狭帯域雑音成分の有無およびその大きさを含む情報に応じて前記復調信号の信頼性が高低する信頼性情報を生成する信頼性情報生成部と、
     前記信頼性情報を用いて前記復調信号に対するビタビ復号を行うビタビ復号部とを備える受信装置。
    A receiving device for receiving an OFDM signal whose subcarrier is DQPSK modulated,
    A Fourier transform unit that outputs a received signal by discrete Fourier transform for each OFDM symbol; and
    A reference symbol extraction unit that extracts and outputs an output signal corresponding to a reference symbol from the output signal of the Fourier transform unit;
    A narrowband noise detection unit that detects a narrowband noise component included in the received signal based on an output signal of the reference symbol extraction unit, and outputs the presence / absence and the magnitude of the narrowband noise component for each subcarrier; ,
    A differential demodulator that differentially demodulates the output signal of the Fourier transform unit and outputs a demodulated signal for each subcarrier;
    Based on the respective output signals of the differential demodulator and the narrowband noise detector, reliability information that makes the demodulated signal highly reliable according to information including the presence or absence of the narrowband noise component and its magnitude A reliability information generator to generate;
    And a Viterbi decoding unit that performs Viterbi decoding on the demodulated signal using the reliability information.
  2.  前記狭帯域雑音検出部は、前記リファレンスシンボルに対応する出力信号を既知の値で除算して得た伝送路のチャネルインパルス応答信号とこのチャネルインパルス応答信号を低域通過フィルタで平滑化した信号との差分値が予め定めた閾値より大きい周波数帯域内に前記狭帯域雑音成分が存在すると判定することを特徴とする請求項1記載の受信装置。 The narrowband noise detector includes a channel impulse response signal of a transmission path obtained by dividing an output signal corresponding to the reference symbol by a known value, and a signal obtained by smoothing the channel impulse response signal with a low-pass filter, The receiving apparatus according to claim 1, wherein it is determined that the narrowband noise component is present in a frequency band in which a difference value of is greater than a predetermined threshold.
  3.  前記低域通過フィルタの通過帯域は、前記伝送路で生じる反射波成分が通過可能な帯域幅を有することを特徴とする請求項2記載の受信装置。 The receiving apparatus according to claim 2, wherein the pass band of the low-pass filter has a bandwidth through which a reflected wave component generated in the transmission path can pass.
  4.  前記信頼性情報生成部は、前記復調信号の電力情報、I-Q平面上のQ=IまたはQ=-I直線と前記復調信号の信号点との距離および前記狭帯域雑音成分の大きさに応じて前記復調信号の信頼性が高低する信頼性情報を生成することを特徴とする請求項1記載の受信装置。 The reliability information generation unit determines the power information of the demodulated signal, the distance between the Q = I or Q = -I line on the IQ plane and the signal point of the demodulated signal, and the magnitude of the narrowband noise component. The receiving apparatus according to claim 1, wherein reliability information is generated in response to the reliability of the demodulated signal.
  5.  前記信頼性情報生成部は、前記復調信号の電力情報、I-Q平面上の直線Q=IまたはQ=-Iと前記復調信号の信号点との距離のOFDMシンボルごとの平均値、前記狭帯域雑音成分の有無およびその大きさに応じて前記復調信号の信頼性が高低する信頼性情報を生成することを特徴とする請求項1記載の受信装置。 The reliability information generation unit includes power information of the demodulated signal, an average value for each OFDM symbol of a distance between a straight line Q = I or Q = −I on the IQ plane and a signal point of the demodulated signal, The receiving apparatus according to claim 1, wherein reliability information is generated in which reliability of the demodulated signal is high or low according to presence / absence of a band noise component and its magnitude.
  6.  前記信頼性情報生成部は、前記復調信号の電力情報、I-Q平面上のQ=IまたはQ=-I直線と前記復調信号の信号点との距離を前記復調信号のコンスタレーションの傾きに応じて変動させた値、前記狭帯域雑音成分の有無および大きさに応じて前記復調信号の信頼性が高低する信頼性情報を生成することを特徴とする請求項1記載の受信装置。 The reliability information generation unit uses the power information of the demodulated signal, the distance between the Q = I or Q = -I line on the IQ plane and the signal point of the demodulated signal as the slope of the constellation of the demodulated signal. The receiving apparatus according to claim 1, wherein reliability information that increases or decreases reliability of the demodulated signal is generated in accordance with a value varied according to the presence or absence and a magnitude of the narrowband noise component.
  7.  前記信頼性情報生成部は、前記復調信号の電力情報、I-Q平面上の直線Q=IまたはQ=-Iと前記復調信号の信号点との距離のOFDMシンボルごとの平均値を前記復調信号のコンスタレーションの傾きに応じて変動させた値、前記狭帯域雑音成分の有無およびその大きさに応じて前記復調信号の信頼性が高低する信頼性情報を生成することを特徴とする請求項1記載の受信装置。 The reliability information generating unit demodulates the power information of the demodulated signal, the average value for each OFDM symbol of the distance between the straight line Q = I or Q = -I on the IQ plane and the signal point of the demodulated signal The reliability information in which the reliability of the demodulated signal is high or low is generated according to a value changed according to a slope of a signal constellation, presence / absence of the narrowband noise component, and a magnitude thereof. The receiving device according to 1.
  8.  サブキャリアがDQPSK変調されたOFDM信号の受信方法であって、
     フーリエ変換部が、OFDMシンボルごとに受信信号を離散フーリエ変換して出力するステップと、
     リファレンスシンボル抽出部が、前記フーリエ変換部の出力から既知のリファレンスシンボルに対応するフーリエ変換出力信号を抽出して出力するステップと、
     狭帯域雑音検出部が、前記リファレンスシンボル抽出部の出力信号に基づいて前記受信信号に含まれる狭帯域雑音成分を検出し、前記サブキャリアごとに前記狭帯域雑音成分の有無およびその大きさを出力するステップと、
     差動復調部が、前記フーリエ変換部の出力信号を差動復調して前記サブキャリアごとの復調信号を出力するステップと、
     信頼性情報生成部が、前記差動復調部および前記狭帯域雑音検出部の各出力信号に基づいて、前記狭帯域雑音成分の有無およびその大きさを含む情報に応じて前記復調信号の信頼性が高低する信頼性情報を生成して出力するステップと、
     ビタビ復号部が、前記信頼性情報を用いて前記復調信号に対するビタビ復号を行うステップとを備える受信方法。
    An OFDM signal reception method in which subcarriers are DQPSK modulated,
    A Fourier transform unit for performing discrete Fourier transform on the received signal for each OFDM symbol and outputting the received signal;
    A reference symbol extracting unit extracting and outputting a Fourier transform output signal corresponding to a known reference symbol from the output of the Fourier transform unit; and
    A narrowband noise detection unit detects a narrowband noise component included in the received signal based on the output signal of the reference symbol extraction unit, and outputs the presence / absence and the magnitude of the narrowband noise component for each subcarrier And steps to
    A differential demodulator that differentially demodulates an output signal of the Fourier transform unit and outputs a demodulated signal for each subcarrier;
    A reliability information generator configured to determine the reliability of the demodulated signal according to information including the presence or absence of the narrowband noise component and the magnitude thereof based on the output signals of the differential demodulator and the narrowband noise detector; Generating and outputting reliability information that is high and low,
    A reception method comprising: a Viterbi decoding unit performing Viterbi decoding on the demodulated signal using the reliability information.
PCT/JP2014/050691 2014-01-16 2014-01-16 Receiver and reception method WO2015107654A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015557636A JP6022089B2 (en) 2014-01-16 2014-01-16 Receiving apparatus and receiving method
DE112014006182.4T DE112014006182T5 (en) 2014-01-16 2014-01-16 Receiving device and receiving method
PCT/JP2014/050691 WO2015107654A1 (en) 2014-01-16 2014-01-16 Receiver and reception method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050691 WO2015107654A1 (en) 2014-01-16 2014-01-16 Receiver and reception method

Publications (1)

Publication Number Publication Date
WO2015107654A1 true WO2015107654A1 (en) 2015-07-23

Family

ID=53542573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050691 WO2015107654A1 (en) 2014-01-16 2014-01-16 Receiver and reception method

Country Status (3)

Country Link
JP (1) JP6022089B2 (en)
DE (1) DE112014006182T5 (en)
WO (1) WO2015107654A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174327A (en) * 2022-08-31 2022-10-11 交通运输部规划研究院 Signal demodulation method and device based on united one and two bit difference Viterbi

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003088538A1 (en) * 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Receiver and its receiving method
JP2006020190A (en) * 2004-07-05 2006-01-19 Matsushita Electric Ind Co Ltd Interfering signal detector
JP2006094226A (en) * 2004-09-24 2006-04-06 Toshiba Corp Radio receiving apparatus
WO2007046503A1 (en) * 2005-10-21 2007-04-26 Matsushita Electric Industrial Co., Ltd. Inter-carrier interference removal device and reception device using the same
JP2008271018A (en) * 2007-04-18 2008-11-06 Mega Chips Corp Ofdm receiver
JP2011045130A (en) * 2000-07-13 2011-03-03 Panasonic Corp Ofdm receiver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011045130A (en) * 2000-07-13 2011-03-03 Panasonic Corp Ofdm receiver
WO2003088538A1 (en) * 2002-04-15 2003-10-23 Matsushita Electric Industrial Co., Ltd. Receiver and its receiving method
JP2006020190A (en) * 2004-07-05 2006-01-19 Matsushita Electric Ind Co Ltd Interfering signal detector
JP2006094226A (en) * 2004-09-24 2006-04-06 Toshiba Corp Radio receiving apparatus
WO2007046503A1 (en) * 2005-10-21 2007-04-26 Matsushita Electric Industrial Co., Ltd. Inter-carrier interference removal device and reception device using the same
JP2008271018A (en) * 2007-04-18 2008-11-06 Mega Chips Corp Ofdm receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115174327A (en) * 2022-08-31 2022-10-11 交通运输部规划研究院 Signal demodulation method and device based on united one and two bit difference Viterbi

Also Published As

Publication number Publication date
JP6022089B2 (en) 2016-11-09
JPWO2015107654A1 (en) 2017-03-23
DE112014006182T5 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
CN113228578B (en) Apparatus and method for improved demodulation of multiple modulation schemes
JP4749501B2 (en) OFDM receiver
JP5782366B2 (en) Receiving device, signal processing device, and signal processing method
JP3662579B2 (en) OFDM signal receiving apparatus and OFDM signal receiving method
JPWO2006068186A1 (en) OFDM receiver
JP3740468B2 (en) OFDM receiver and data demodulation method
JP3872950B2 (en) Frequency division multiplex transmission signal receiver
KR20090115232A (en) Method and apparatus for mitigating interference in multicarrier modulation systems
KR20010042709A (en) Differential coding and carrier recovery for multicarrier systems
GB2355164A (en) COFDM demodulator circuit for a digital television receiver
JPWO2008099572A1 (en) Receiving apparatus and receiving method
JP2008277936A (en) Ofdm reception device
US20070192048A1 (en) System and method for estimating phase offset in a communication system
JP4657223B2 (en) Modulation error calculation device and method, digital broadcast receiver, and digital broadcast wave measurement device
JP4380407B2 (en) Branch metric calculation method
JP6022089B2 (en) Receiving apparatus and receiving method
JP5682226B2 (en) Receiving device and method, demodulating device and method, and program
US7609615B2 (en) Method and apparatus for performing channel compensation and symbol demodulation for coherent demodulation in an OFDM system
CN107666456B (en) Receiver circuit
JP2005286362A (en) Digital receiver
JP5637034B2 (en) Receiving apparatus and receiving method
JP5572453B2 (en) Broadcast receiving apparatus and broadcast receiving method
JP2011166330A (en) Signal processing apparatus and receiving apparatus
JP2001136144A (en) Receiver and demodulation method
JP5257748B2 (en) Modulation error ratio measuring apparatus and measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557636

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014006182

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878716

Country of ref document: EP

Kind code of ref document: A1