WO2015107250A1 - Dispositivo de alta conductancia térmica para sistemas multi-efecto de desalinización de agua - Google Patents
Dispositivo de alta conductancia térmica para sistemas multi-efecto de desalinización de agua Download PDFInfo
- Publication number
- WO2015107250A1 WO2015107250A1 PCT/ES2015/070032 ES2015070032W WO2015107250A1 WO 2015107250 A1 WO2015107250 A1 WO 2015107250A1 ES 2015070032 W ES2015070032 W ES 2015070032W WO 2015107250 A1 WO2015107250 A1 WO 2015107250A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wick
- effect
- capillary structure
- acts
- capillary
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/26—Multiple-effect evaporating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0057—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
- B01D5/006—Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/16—Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
Definitions
- Object A multi-effect distillation device that achieves high thermal conductance. Understanding by thermal conductance the watts per unit area and Kelvin degree transferred through the layers of material and fluids that separate two effects ..
- the thermal conductance resulting from the passage of energy through the wall of the tubes or panels that separates the effects, plus the passage through the sheets of water that cover these surfaces is between 1,000 and 2,000 W / m2 / and C, while there are commercial caloducts that use water as a working liquid whose thermal conductance resulting from the thermal flow through the walls of the caloduct and the porous structures that capillary channel the return of the working liquid, known technically as "wicks", is It places around 60,000 W / m2 / e C, a thermal conductance between 30 and 60 times higher.
- the lower thermal conductance of the current effects implies the need to use large exchange surfaces and / or use large temperature jumps per effect.
- the surface of heat exchange between effects is made of alloys of high thermal conductivity similar to those used to make the external walls of the heat pipes.
- the thickness of the walls of the i Tubes or effect panels is not 30 times greater than the thickness of the external wall of the heat pipes. In fact, they may have similar thicknesses. So the difference between the conductances of 2,000 W / m2 / e C of the effects and the 60,000 / m2 / e C of the heatwaves is not only a function of the thermal properties of the energy exchange surfaces that separate the effects .
- the essential factor that explains the great difference between the thermal efficiency of the heat and the effects of the current multi-effect distillation systems is the difference in their current logistics of the fluids on the evaporation and condensation surfaces. It is known that the thermal conductivity of caloducts is highly dependent on the structure and materials of the internal porous structures "wick" of the caloduct. This "wick” structure allows a controlled flow of fluids on the evaporation and condensation surfaces. Its capillary structure allows to increase the contact areas between the heat transmitting surface and the fluid, minimizes the sheets of water, the effects of the boundary layer and allows to improve other physical factors of complex modeling but that result in an improvement in conductance thermal of the device ..
- porous structures similar to the internal "wick" of the pipes on the evaporation and condensation areas of the multi-effect desalination devices and the correct contribution and extraction of fluids in these areas will allow increasing the conductance of the effects to levels similar to the current thermal conductances of the caloducts.
- the production capacity of distilled water per unit of energy contributed to the heat source of the desalination device would be considerably increased, since the thermal jump differential could be reduced by effect and the energy exchange surfaces improved.
- the present invention increases the thermal conductance of the multi-effect distillation devices by improving the management of the fluids that are supplied and extracted on the evaporation and condensation surfaces; namely, an effect, and the ordering of the flow of liquids through spaces of capillary dimensions in the evaporators and condensers.
- a distillation device comprises at least one condensing zone, which acts as a condenser of an effect, a "wick" capillary structure being arranged on the condensing zone, which channels the fluids, which are supplied and extracted on the condensation surfaces, by spaces of capillary dimensions to reduce the boundary layer and the accumulation of a layer of distilled water in the condensing zone of the effect.
- the distillation device also comprises at least one evaporator zone, which acts as an evaporator of the effect, a "wick" capillary structure being arranged on the evaporator zone, which channels the fluids, which are supplied and extracted on the evaporation surfaces, by capillary dimensions spaces to reduce the boundary layer and the accumulation of a salt or brine layer in the evaporating zone of the effect.
- the desalination device is a high efficiency MED, HE-MED, comprising at least one wall of high thermal conductivity with at least one heat pipe on the outside of the portion of which it acts as an evaporator a "wick" capillary structure is placed so that the condensation of an effect occurs in said capillary structure.
- the desalination device is a high efficiency MED, HE-MED, comprising at least one wall of high thermal conductivity with at least one heat pipe on the outside of the portion of which it acts as a condenser a "wick" capillary structure is placed in a way that the evaporation of the following effect takes place in said capillary structure.
- the desalination device comprising the wall of high thermal conductivity is assembled with a distilled water extractor for each "wick" capillary structure that acts as a condenser of an effect; a brine extractor unit of the different "wick” capillary structure that acts as an evaporator and a salt water supply unit that controls the controlled salt water supply to the different "wick” capillary structure.
- the desalination device is a high efficiency MED, HE-MED, in which at least one heat pipe is reduced to a sandwich formed, in turn, by the union of two "wick” capillary structures, so that a capillary structure "wick” acts as a condenser of one effect and the other capillary structure "wick” acts as an evaporator of the next effect, being the joining surface of the two capillary structures "wick” impermeable to the passage of water and water vapor between effects.
- a capillary structure "wick” acts as a condenser of one effect
- the other capillary structure "wick” acts as an evaporator of the next effect, being the joining surface of the two capillary structures "wick” impermeable to the passage of water and water vapor between effects.
- the desalination device is a high efficiency MED, HE-MED, the sandwich comprising a distilled water extractor for each "wick" capillary structure that acts as an effect condenser; a brine extractor unit of the different "wick” capillary structure and a salt water supply unit that controls the controlled saltwater supply to the different "wick” capillary structure.
- Figure 1 shows a diagram of a wall of high thermal conductivity of a multi-effect distillation device MED of high efficiency HE-MED with a pipe with outer "wick” capillary structures that act as a condenser of an effect and as an evaporator of the next and with a liquid flow logistics system integrated in the wall with high thermal conductivity and that allows distilled water and brine flows to be extracted point by point and that allows to provide salt water in a controlled and point to point manner.
- Figure 2 shows a diagram of a wall of high thermal conductivity of a HE-MED device in which at least one heat pipe is reduced to a sandwich of two "wick" capillary structures that act as a condenser of an effect and as an evaporator of the following effect and with a liquid flow logistics system integrated in the wall of high thermal conductivity and that allows the extraction of distilled water and brine flows point by point and that allows to provide salt water in a controlled way and point to point.
- FIG. 1 A portion of a high conductivity wall of a high efficiency MED device, HE-MED, is illustrated in Figure 1, in which the wall of high thermal conductivity (1) with at least one heat pipe (2) includes a structure "wick” capillary (4) on the outside of the portion of the heat pipe that acts as an evaporator (6).
- This structure (4) has a structure similar to those used as internal capillary structures "wick” (3) of the caloducts.
- the water vapor (5) of an effect is captured and condensed on this capillary structure (4).
- the capillary structure (4) channels the fluids through spaces with capillary dimensions and will have a thermal efficiency similar to that achieved by the internal "wick” capillary structure (3) of the caloduct in its condensation zone (8).
- the distilled water resulting from the condensation within the structure (4) is channeled through the capillary structure to an extraction point (7) so that the logistics of the distilled water that is evacuated through internal canalizations of the wall is optimized instead of flow over the
- This structure (13) has a structure similar to those used as “wick” internal capillary structures (3) of the caloducts in their evaporation zone (6).
- Salt water (9) is provided on this structure (13), which is distributed neatly by the "wick” capillary structure (13) so that the thermal conductance is increased by reducing the effects of the boundary layer and the insulating effects of the sheets of water, as with the "wick” capillary structure in the internal evaporator (6) of the pipeline.
- the salt water is supplied on the "wick" capillary structure (13) of each caloduct from a point of contribution (9) from conduits that circulate inside the wall, and the remaining brine is channeled through the capillary structure to a point extraction (12) that is evacuated by internal conduits of the wall. In this way, salt water only flows through the exact evaporation point and within capillary structures.
- PACT is added a system of intelligent logistics of contribution and extraction of liquids.
- This system provides salt water (9) on the outer capillary structure (13) of the heat pipe that acts as an evaporator of an effect, the contribution is made following a controlled flow according to the rate of evaporation (1 1) so that the brine salinity does not exceed the desired level according to the operating conditions of the desalination plant and which is extracted in a controlled manner (12).
- This system also extracts all distilled water (7) generated in each capillary structure (4). This extraction is channeled through ducts that circulate inside the PACT wall.
- Figure 2 illustrates a section of a high conductivity wall of a high efficiency MED device, HE-MED, in which at least one wall of the high thermal conductivity wall is replaced by a sandwich created by joining or fusion (14) of two "wick” capillary structures. So one of these "wick” capillary structures (15) acts as a condenser of one effect and the other "wick (16) capillary structure acts as an evaporator of the following effect.
- the fluid logistics system can be applied to these capillary structures described for figure 1, with the salt water intake in the capillary structure (16) that acts as an evaporator and its subsequent extraction of brine, as well as the extraction of distilled water from the "wick” capillary structure (15) that acts as a condenser.
- the integration of the two capillary structures (15) and (16) is carried out in such a way that at their point of attachment (14) the capillary spaces are eliminated, forming a continuous impermeable surface through which a liquid water molecule cannot pass or of water vapor.
- This junction point (14) does not require the shape of a wall with a certain thickness to withstand structural forces.
- Capillary structures can provide the necessary forces for the support of the sandwich and for the support of tensions due to pressure differences between effects.
- the internal structure of the PACT also provides the structural forces necessary to support each of these sandwiches between the two effects.
- the flow of liquids in the evaporation and condensation zone is ordered of the desalination device by placing porous structures similar to the internal porous structures "wick" of the caloducts, so that the fluids are ordered in spaces of capillary dimensions.
- porous structures similar to the internal porous structures "wick" of the caloducts which allows to increase the heat transfer surface, allows to optimize the boundary layer of liquids, allows to reduce the sheets of water and other factors that allow to improve the resulting thermal conductance in the areas of evaporation and condensation of the effects of a device multi-effect desalination.
- the desalination device is a high efficiency MED, HE-MED
- This external structure will channel water vapor through its pores allowing efficient condensation on the effect and channeling of distilled water to a point of extraction of distilled water (7), so that this water does not hinder the thermal transfer of others dew points of the separation wall between effects.
- This external structure will channel the salt water from the evaporator of the effect, previously filtered so that it does not contain particles with a diameter greater than the capillary, which is provided in a controlled way from inside the wall (9).
- the capillary structure will order the flow of salt water so that the boundary layers are reduced and the phase change to steam (1 1).
- the remaining brine is removed in an orderly manner (12) from each effect evaporator through internal ducts of the separation wall.
- the sandwich (14) of two "wicks” capillary structures represents a remarkable improvement in HE-MED devices that allows eliminating one of the faces of the heat transfer in the heat flux, which simplifies the construction of the High thermal conductivity walls of the HE-MED and prevents the gain of entropy that involves a cycle of evaporation and condensation through a wall of heat pipe and its wick capillary structures.
- the sandwich (14) of two "wicks” capillary structures also makes it possible to apply all current knowledge of interior wicks of caduducts on the evaporation surface and on the condensation surface of the effects of a distillation device using the multi-effect system. This allows reducing the problems of the boundary layer and unnecessary thicknesses of liquid sheets on current evaporators and condensers.
- Sandwiches (14) of "wick” structures can be made by fusing or joining two structures (15) (16) that adopt any of the known formats of interior capillary structures of caloducts such as the so-called “wrap screen” screen wrappings; sintered metal, axial grooves, “open annulus” open rings, “open artery” open artery, “integral artery” integrated arteries or composite structures such as those known as “composite screen” composite screen, grooves covered by screen or sintered metal, " composite slab “, spiral artery, monoranura or double wall artery.
- the union or fusion of the two capillary structures is carried out in such a way that on their joint surface (14), the capillary spaces are eliminated, forming a continuous impermeable surface through which a water or water vapor molecule cannot pass.
- the internal "wick” structures of a caloduct can incorporate a composite structure that includes grooves or ducts called arteries through which the working liquid flows more easily following the direction marked by the capillary tension.
- the "wick” structure placed on the evaporation surface of a desalination device must manage the evacuation of the brine, a problem that does not occur in the internal structures of the caloducts since in them the working fluid does not leave salts when evaporating .
- the "wick” structure placed on an evaporator of a desalination effect can incorporate a network of arteries through which salt water flows by gravity or by pressure to a network of arteries through which salt water flows by capillarity to a sintered structure or porous in which evaporation takes place.
- the resulting brine can be extracted through a network of "veins” in which the brine circulates by capillarity, by pressure difference or by gravity to an evacuation point.
- the "wick" structure placed on a condenser of a desalination effect can incorporate a network of "veins” in which the distilled water circulates by capillarity, by pressure difference or by gravity to an evacuation point
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Dispositivo de alta conductancia térmica para sistemas multiefecto de desalinización de agua con mejorada conductancia térmica mediante una gestión punto a punto de los fluidos que se aportan y se extraen en las superficies de evaporación y condensación y la ordenación del flujo de líquidos a través de espacios de dimensiones capilares en los evaporadores y condensadores.
Description
DISPOSITIVO DE ALTA CONDUCTANCIA TÉRMICA PARA SISTEMAS MULTI-EFECTO DE DESALINEACIÓN DE AGUA
DESCRIPCIÓN
Objeto Un dispositivo de destilación multiefecto que logra una alta conductancia térmica. Entendiendo por conductancia térmica los vatios por unidad de superficie y por grado Kelvin transferidos a través de las capas de material y fluidos que separan dos efectos..
Estado de la técnica
Los sistemas térmicos actuales de desalinización utilizan la técnica multi-efecto para mejorar su eficiencia térmica, es decir que el vapor de agua producido en un efecto provee la energía térmica para la evaporación en el siguiente efecto que se mantiene a una presión y temperatura inferiores a las del primer efecto. Son sistemas en los que cada efecto se mantiene bajo condiciones de presión controlada y en los que se utiliza el equilibrio dinámico entre la fase de vapor y la líquida del agua. En cierto modo, cada efecto se podría visualizar como un gran caloducto abierto, cuyo fluido de trabajo es agua con sales que se aporta en la zona del evaporador, se extrae el exceso de salmuera y en la zona del condensador se extrae el agua destilada. Pero hay una gran diferencia en la eficiencia térmica entre un caloducto con agua como fluido de trabajo y un efecto de los actuales sistemas de destilación multiefecto, ya sea MED, Multi-Effect Distillation, o MSF, Multi-Stage Flash.
La conductancia térmica resultante del paso de la energía por la pared de los tubos o de los paneles que separa los efectos, más el paso por las láminas de agua que recubren estas superficies se sitúa entre los 1 .000 y los 2.000 W/m2/eC, mientras que existen caloductos comerciales que usan agua como líquido de trabajo cuya conductancia térmica resultante al atravesar el flujo térmico las paredes del caloducto y las estructuras porosas que canalizan capilarmente el retorno del líquido de trabajo, conocidas técnicamente como "wicks", se sitúa en torno a los 60.000 W/m2/eC, una conductancia térmica entre 30 y 60 veces superior. La menor conductancia térmica de los actuales efectos comporta la necesidad de usar grandes superficies de intercambio y/o usar grandes saltos de temperatura por efecto. La superficie de intercambio térmico entre efectos, ya sea en forma de tubo o de panel, está realizada con aleaciones de elevada conductividad térmica similares a las que se usan para la confección de las paredes externas de los caloductos. El grosor de las paredes de los i
tubos o de los paneles de los efectos no es 30 veces superiores al grosor de la pared externa de los caloductos. De hecho, pueden tener grosores similares. Por lo que la diferencia entre las conductancias de 2.000 W/m2/eC de los efectos y los 60.000/m2/eC de los caloductos no es sólo una función de las propiedades térmicas de las superficies de intercambio de energía que separan los efectos.
El factor esencial que explica la gran diferencia entre la eficiencia térmica de los caloductos y la de los efectos de los actuales sistemas de destilación multiefecto es la la diferencia en sus actuales logísticas de los fluidos sobre las superficies de evaporación y condensación. Es conocido que la conductividad térmica de los caloductos depende mucho de la estructura y materiales de las estructuras porosas internas "wick" del caloducto. Esta estructura "wick" permite un flujo controlado de fluidos sobre la superficie de evaporación y la de condensación. Su estructura capilar permite incrementar las áreas de contacto entre la superficie transmisora de calor y el fluido, permite minimizar las láminas de agua, los efectos de la capa límite y permite mejorar otros factores físicos de compleja modelizacion pero que resultan en una mejoría de la conductancia térmica del dispositivo.. Es conocido que la conductancia térmica resultante entre una superficie y un flujo de agua depende de muchos factores como la velocidad de tránsito, la textura, la superficie, la forma de esta superficie, su mojabilidad y otros factores con efectos muy complejos y difíciles de modelizar y cuya mejor comprensión permite la permanente evolución en nuevas estructuras internas de los caloductos que permiten mejorar sus conductancias.
La colocación de estructuras porosas similares a las "wick" internas de los caloductos sobre las áreas de evaporación y condensación de los dispositivos de desalación multiefecto y el correcto aporte y extracción de fluidos en estas áreas permitirán aumentar la conductancia de los efectos hasta niveles similares a las actuales conductancias térmicas de los caloductos. De forma que se aumentaría considerablemente la capacidad de producción de agua destilada por unidad de energía aportada en la fuente de calor del dispositivo de desalinización, al poder reducir el diferencial de salto térmico por efecto y mejorar las superficies de intercambio de energía.
Las estructuras internas "wick" de un caloducto no incorporan un sistema de evacuación de salmuera de la zona del evaporador puesto que el fluido de trabajo no deja sales tras su evaporación. En el caso de las estructuras porosas "wick" situados sobre evaporadores se incluirá la logística de extracción de la salmuera.
Sumario
La presente invención incrementa la conductancia térmica de los dispositivos de destilación multiefecto mediante una mejora de la gestión de los fluidos que se aportan y se extraen en las superficies de evaporación y condensación; a saber, un efecto, y la ordenación del flujo de líquidos a través de espacios de dimensiones capilares en los evaporadores y condensadores.
Un dispositivo de destilación comprende al menos una zona condensadora, que actúa como condensador de un efecto, disponiéndose sobre la zona condensadora una estructura capilar "wick", que canaliza los fluidos, que se aportan y se extraen en las superficies de condensación, por espacios de dimensiones capilares para reducir la capa límite y la acumulación de una capa de agua destilada en la zona condensadora del efecto.
El dispositivo de destilación comprende también al menos sobre una zona evaporadora, que actúa como evaporador del efecto, disponiéndose sobre la zona evaporadora una estructura capilar "wick", que canaliza los fluidos, que se aportan y se extraen en las superficies de evaporación, por espacios de dimensiones capilares para reducir la capa límite y la acumulación de una capa de agua salada o de salmuera en la zona evaporadora del efecto.
El dispositivo de desalinización es un MED de alta eficiencia, HE-MED, comprendiendo al menos una pared de alta conductividad térmica con al menos un caloducto sobre el exterior de la porción del cual actúa como evaporador se coloca una estructura capilar "wick" de forma que la condensación de un efecto se produce en dicha estructura capilar.
El dispositivo de desalinización es un MED de alta eficiencia, HE-MED, comprendiendo al menos una pared de alta conductividad térmica con al menos un caloducto sobre el exterior de la porción del cual actúa como condensador se coloca una estructura capilar "wick" de forma que la evaporación del siguiente efecto tiene lugar en dicha estructura capilar. El dispositivo de desalinización comprendiendo la pared de alta conductividad térmica se le ensambla un extractor de agua destilada para cada estructura capilar "wick" que actúa como condensador de un efecto; una unidad extractora de salmuera de la diferente estructura capilar "wick" que actúa como evaporador y una unidad suministradora de agua salada que controla el suministro de agua salada controlado a la diferente estructura capilar "wick". El dispositivo de desalinización es un MED de alta eficiencia, HE-MED, en el que al menos un caloducto se reduce a un sándwich formado, a su vez, por la unión de dos estructuras capilares "wick", de forma que una estructura capilar "wick" actúa como condensador de un efecto y la otra estructura capilar "wick" actúa como evaporador del siguiente efecto, siendo
la superficie de unión de las dos estructuras capilares "wick" impermeable al paso del agua y del vapor de agua entre efectos.
El dispositivo de desalinización es un MED de alta eficiencia, HE-MED, comprendiendo el sándwich se ensambla un extractor de agua destilada para cada estructura capilar "wick" que actúa como condensador de un efecto; una unidad extractora de salmuera de la diferente estructura capilar "wick" y una unidad suministradora de agua salada que controla el suministro de agua salada controlado a la diferente estructura capilar "wick".
Breve descripción de las figuras
Una explicación más detallada del dispositivo de acuerdo con las realizaciones de la invención se da en la siguiente descripción basada en las figuras adjuntas en las que:
La figura 1 muestra un esquema de una pared de alta conductividad térmica de un dispositivo de destilación multi-efecto MED de alta eficiencia HE-MED con un caloducto con estructuras capilares "wick" exteriores que actúan como condensador de un efecto y como evaporador del siguiente y con un sistema de logística de flujos de líquidos integrado en la pared de alta conductividad térmica y que permite extraer punto a punto los flujos de agua destilada y de salmuera y que permite aportar agua salada de modo controlado y punto a punto.
La figura 2 muestra un esquema de una pared de alta conductividad térmica de un dispositivo HE-MED en la que al menos un tubo de calor se reduce a un sándwich de dos estructuras capilares "wick" que actúan como condensador de un efecto y como evaporador del siguiente efecto y con un sistema de logística de flujos de líquidos integrado en la pared de alta conductividad térmica y que permite extraer punto a punto los flujos de agua destilada y de salmuera y que permite aportar agua salada de modo controlado y punto a punto. Descripción de un modo de realización
En la figura 1 se ilustra una porción de una pared de alta conductividad de un dispositivo MED de alta eficiencia, HE-MED, en el que en la pared de alta conductividad térmica (1 ) con al menos un caloducto (2) incluye una estructura capilar "wick" (4) sobre el exterior de la porción del caloducto que actúa como evaporador (6). Esta estructura (4) tiene una estructura similar a las que se usan como estructuras capilares internas "wick" (3) de los caloductos.
Sobre esta estructura capilar (4) se capta y se condensa el vapor de agua (5) de un efecto. La estructura capilar (4) canaliza los fluidos por unos espacios con dimensiones capilares y tendrá una eficiencia térmica similar a la que logra la estructura capilar "wick" interna (3) del caloducto en su zona de condensación (8). El agua destilada resultante de la condensación dentro de la estructura (4) queda canalizada por la estructura capilar hasta un punto de extracción (7) de forma que se optimiza la logística del agua destilada que se evacúa por canalizaciones interiores de la pared en lugar de fluir sobre las siguientes áreas de condensación.
Una estructura capilar "wick" (13) sobre el exterior de la porción del caloducto que actúa como condensador (8). Esta estructura (13) tiene una estructura similar a las que se usan como estructuras capilares internas "wick" (3) de los caloductos en su zona de evaporación (6). Sobre esta estructura (13) se aporta agua salada (9) que se distribuye ordenadamente por la estructura capilar "wick" (13) de forma que se incrementa la conductancia térmica por reducción de los efectos de capa límite y los efectos aislantes de las láminas de agua, como sucede con la estructura capilar "wick" en el evaporador (6) interno del caloducto. El agua salada se aporta sobre la estructura capilar "wick "(13) de cada caloducto desde un punto de aporte (9) a partir de conducciones que circulan dentro de la pared, y la salmuera restante se canaliza por la estructura capilar hasta un punto de extracción (12) que se evacúa por conducciones internas de la pared. De este modo el agua salada sólo fluye por el punto exacto de evaporación y dentro de estructuras capilares.
Dentro de la pared de alta conductividad térmica PACT se añade un sistema de logística inteligente de aporte y extracción de líquidos. Este sistema aporta el agua salada (9) sobre la estructura capilar (13) exterior del tubo de calor que actúa como evaporador de un efecto, el aporte se hace siguiendo un flujo controlado según el ritmo de evaporación (1 1 ) de forma que la salinidad de la salmuera no supere el nivel que se desee según las condiciones de explotación de la desalinizadora y que se extrae de forma controlada (12). Este sistema también extrae todo el agua destilada (7) generada en cada estructura capilar (4). Esta extracción se canaliza por conductos que circulan en el interior de la pared PACT.
En la figura 2 se ilustra una sección de una pared de alta conductividad de un dispositivo MED de alta eficiencia, HE-MED, en el cual al menos un caloducto de la pared de alta conductividad térmica se substituye por un sándwich creado mediante la unión o fusión (14) de dos estructuras capilares "wick". De forma que una de estas estructuras capilares "wick" (15) actúa como condensador de un efecto y la otra estructura capilar "wick (16) actúa como evaporador del siguiente efecto. Sobre estas estructuras capilares se puede aplicar el sistema de logística de fluidos descrito para la figura 1 , con el aporte de agua salada en la
estructura capilar (16) que actúa como evaporador y su subsiguiente extracción de salmuera, así como la extracción de agua destilada de la estructura capilar "wick" (15) que actúa como condensador. La integración de las dos estructuras capilares (15) y (16) se realiza de forma que en su punto de unión (14) los espacios capilares se eliminan, formando una superficie continua impermeable por la que no puede transitar una molécula de agua líquida ni de vapor de agua. Este punto de unión (14) no requiere tener la forma de una pared con un determinado grosor para soportar fuerzas estructurales. Las estructuras capilares pueden aportar las fuerzas necesarias para el sostén del sándwich y para el soporte de las tensiones por diferencias de presión entre efectos. La estructura interior de la PACT aporta además las fuerzas estructurales necesarias para el soporte de cada uno de estos sándwiches entre los dos efectos.
Para la optimización de la logística de fluidos en los evaporadores y condensadores de un dispositivo de destilación que usa el sistema multiefecto se pueden realizar los siguientes avances: - En primer lugar, se ordena el flujo de los líquidos en la zona de evaporación y de condensación del dispositivo de desalinización colocando unas estructuras porosas similares a las estructuras porosas internas "wick" de los caloductos, de forma que los fluidos se ordenen en espacios de dimensiones capilares. Lo cual permite incrementar la superficie de transferencia de calor, permite optimizar la capa límite de los líquidos, permite reducir las láminas de agua y otros factores que permiten mejorar la conductancia térmica resultante en las zonas de evaporación y condensación de los efectos de un dispositivo de desalinización multiefecto.
- En segundo lugar, si el dispositivo de desalinización es un MED de alta eficiencia, HE- MED, tendremos una pared de alta conductividad térmica (1 ) con al menos un caloducto (2), sobre el cual podemos colocar una estructura "wick" externa al evaporador del caloducto (4). Esta estructura externa canalizará el vapor de agua a través de sus poros permitiendo una eficiente condensación en el efecto y la canalización del agua destilada hasta un punto de extracción del agua destilada (7), de forma que esta agua no entorpezca la transferencia térmica de otros puntos de condensación de la pared de separación entre efectos. También podemos colocar una estructura "wick" (13) sobre la parte externa al condensador del caloducto. Esta estructura externa canalizará el agua salada del evaporador del efecto, previamente filtrada para que no contenga partículas con un diámetro superior al capilar, que se aporta de forma controlada desde el interior de la pared (9). La estructura capilar ordenará el flujo de agua salada de forma que se reduzcan las capas límite y se facilite el
cambio de fase a vapor (1 1 ). La salmuera restante se extrae de modo ordenado (12) de cada evaporador del efecto a través de conducciones interiores de la pared de separación.
- En tercer lugar podemos mejorar la conductancia térmica de un HE-MED reduciendo la figura del caloducto a un sándwich de estructuras capilares wick (14) de forma que se mantienen los componentes de aporte y extracción de líquidos pero sólo se mantiene lo que sería equivalente a una pared del caloducto y una estructura capilar wick (15) que actúa como condensador de un efecto y la estructura capilar wick (16) que en lugar de actuar como evaporador interior del caloducto, actúa como evaporador del efecto siguiente..
El sándwich (14) de dos estructuras capilares "wicks" representa una notable mejoría en los dispositivos HE-MED que permite eliminar una de las caras de los caloductos en el tránsito del flujo de calor, lo cual aporta una simplificación de la construcción de las paredes de alta conductividad térmica del HE-MED y evita la ganancia de entropía que comporta un ciclo de evaporación y condensación a través de una pared de tubo de calor y sus estructuras capilares wick. El sándwich (14) de dos estructuras capilares "wicks" permite también aplicar todo el conocimiento actual de wicks interiores de caloductos en la superficie de evaporación y en la superficie de condensación de los efectos de un dispositivo de destilación que use el sistema multiefecto. Ello permite reducir los problemas de capa límite y grosores innecesarios de láminas de líquidos sobre los actuales evaporadores y condensadores. La logística de líquidos con un aporte y extracción de líquidos punto a punto elimina los tránsitos en zonas de evaporación o de condensación de líquidos que pueden ser necesarios o resultantes de zonas precedentes o posteriores, pero que no son flujos de líquido necesarios para una determinada zona de evaporación o de condensación. Ello permite reducir grosores innecesarios de agua salada circulando sobre los evaporadores y grosores innecesarios de agua destilada circulando sobre los condensadores.
Los sándwiches (14) de estructuras "wick" se pueden realizar fusionando o uniendo dos estructuras (15) (16) que adoptan cualquiera de los formatos conocidos de estructuras capilares interiores de caloductos como los denominados envoltorios de pantallas "wrapped screen"; metal sinterizado, ranuras axiales, anillos abiertos "open annulus", arteria abierta "open artery", arterias integradas "integral artery" o estructuras compuestas como las conocidas por pantalla compuesta "composite screen", ranuras cubiertas por pantalla o por metal sinterizado, "composite slab", arteria espiral, monoranura o arteria de doble pared.
La unión o fusión de las dos estructuras capilares se realiza de forma que en su superficie de unión (14), los espacios capilares se eliminan, formando una superficie continua impermeable por la que no puede transitar una molécula de agua o de vapor de agua.
Las estructuras internas "wick" de un caloducto pueden incorporar una estructura compuesta que incluye unas ranuras o conductos denominados arterias por los que el líquido de trabajo fluye más fácilmente siguiendo la dirección marcada por la tensión capilar. La estructura "wick" colocada sobre la superficie de evaporación de un dispositivo de desalinizacion deberá gestionar la evacuación de la salmuera, un problema que no se presenta en las estructuras internas de los caloductos ya que en ellos el fluido de trabajo no deja sales al evaporarse. La estructura "wick" colocada sobre un evaporador de un efecto de desalinizacion puede incorporar una red de arterias por las que el agua salada fluya por gravedad o por presión hasta una red de arterias por las que el agua salada fluya por capilaridad hasta una estructura sinterizada o porosa en la que tenga lugar la evaporación. La salmuera resultante se puede extraer mediante una red de "venas" en las que la salmuera circule por capilaridad, por diferencia de presión o por gravedad hasta un punto de evacuación. La estructura "wick" colocada sobre un condensador de un efecto de desalinizacion puede incorporar una red de "venas" en las que el agua destilada circule por capilaridad, por diferencia de presión o por gravedad hasta un punto de evacuación
Claims
1 . Un dispositivo de destilación multiefecto; caracterizado porque el dispositivo de destilación comprende al menos una zona condensadora, que actúa como condensador de un efecto, disponiéndose sobre la zona condensadora una estructura capilar "wick", que canaliza los fluidos, el vapor de agua que llega y el agua destilada que se genera, por espacios de dimensiones capilares para incrementar la superficie de transferencia de calor, optimizar la capa límite de los líquidos, reducir las láminas de agua y otros factores que permiten mejorar la conductancia térmica resultante.
2. Dispositivo de acuerdo a la reivindicación 1 ; caracterizado porque el dispositivo de destilación comprende al menos una zona evaporadora, que actúa como evaporador de un efecto, disponiéndose sobre la zona evaporadora una estructura capilar "wick" que canaliza el aporte de agua salada, salmuera que se evacúa, y el vapor de agua liberado, por espacios de dimensiones capilares para incrementar la superficie de transferencia de calor, optimizar la capa límite de los líquidos, reducir las láminas de agua y otros factores que permiten mejorar la conductancia térmica resultante.
3. Dispositivo de acuerdo a la reivindicación 2; caracterizado porque el dispositivo de desalinizacion es un MED de alta eficiencia, HE-MED, comprendiendo al menos un tubo de calor de una pared de alta conductividad térmica, sobre las caras exteriores del cual se dispone una estructura capilar "wick" (4) sobre la zona que actúa como condensador de un efecto y una estructura capilar "wick" (13) sobre la zona que actúa como evaporador del siguiente efecto, para incrementar la superficie de transferencia de calor, optimizar la capa límite de los líquidos, reducir las láminas de agua y otros factores que permiten mejorar la conductancia térmica resultante.
4. Dispositivo de acuerdo a la reivindicación 3; caracterizado porque en la pared de alta conductividad térmica se ensambla un extractor de agua destilada (7) para cada estructura capilar "wick" (4) que actúa como condensador de un efecto; una unidad extractora (12) de salmuera de la diferente estructura capilar "wick" (13) que actúa como evaporador y una unidad suministradora (9) de agua salada que controla el suministro de agua salada a la diferente estructura capilar "wick" (13).
5. Dispositivo de acuerdo a la reivindicación 3; caracterizado porque al menos un tubo de calor se reduce a un sándwich formado por la unión o fusión (14) de dos estructuras capilares "wick", de forma que una estructura capilar "wick" (15) actúa como condensador de un efecto y la otra estructura capilar "wick" (16) actúa como evaporador del siguiente efecto
y de forma que la superficie de unión (14) de las dos estructuras (15) (16) es impermeable al paso del agua y del vapor de agua entre efectos.
6. Dispositivo de acuerdo a la reivindicación 5; caracterizado porque en el sándwich (14) se ensambla un extractor de agua destilada para cada estructura capilar "wick" (15) que actúa como condensador de un efecto; una unidad extractora de salmuera de la diferente estructura capilar "wick" (16) que actúa como evaporador de un efecto y una unidad suministradora de agua salada que controla el suministro de agua salada a la diferente estructura capilar "wick" (16).
7. Dispositivo de acuerdo a la reivindicación 1 , 2, 3 o 5 caracterizado porque la estructura capilar wick del evaporador de un efecto de desalinizacion incorpora una red interna de arterias por las que el agua salada fluye por gravedad o por presión hasta una red de arterias por las que el agua salada fluye por capilaridad hasta una estructura sinterizada o porosa en la que tiene lugar la evaporación; y la salmuera resultante de la evaporación se evacúa mediante una red de venas en las que la salmuera circula por capilaridad, por diferencia de presión o por gravedad hasta un punto de evacuación.
8. Dispositivo de acuerdo a la reivindicación 1 , 2, 3, 5 o 7 caracterizado porque la estructura capilar wick del condensador de un efecto de desalinizacion incorpora una red de venas por las que el agua destilada circula por capilaridad, por diferencia de presión o por gravedad hasta un punto de evacuación.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201430054A ES2473190B1 (es) | 2014-01-20 | 2014-01-20 | Dispositivo de Destilación Multi-Efecto |
ESP201430054 | 2014-01-20 | ||
ES201430329A ES2548106B1 (es) | 2014-01-20 | 2014-03-11 | Un dispositivo de destilación multi-efecto MED de alta eficiencia HE-MED |
ESP201430329 | 2014-03-11 | ||
ESP201430740 | 2014-05-20 | ||
ES201430740A ES2554550B1 (es) | 2014-01-20 | 2014-05-20 | Dispositivo de alta conductancia térmica para sistemas multi-efecto de desalinización de agua |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015107250A1 true WO2015107250A1 (es) | 2015-07-23 |
Family
ID=53542448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2015/070032 WO2015107250A1 (es) | 2014-01-20 | 2015-01-20 | Dispositivo de alta conductancia térmica para sistemas multi-efecto de desalinización de agua |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015107250A1 (es) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107954493A (zh) * | 2017-11-27 | 2018-04-24 | 中国船舶重工集团公司第七〇九研究所 | 一种海水淡化装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5925223A (en) * | 1993-11-05 | 1999-07-20 | Simpson; Gary D. | Process for improving thermal efficiency while producing power and desalinating water |
ES2302224T3 (es) * | 2004-08-27 | 2008-07-01 | O.H.D.L. Optimised Hybrid Desalination Limited | Proceso de desalinizacion por destilacion msf y aparato. |
CN201367361Y (zh) * | 2009-03-13 | 2009-12-23 | 国家海洋局天津海水淡化与综合利用研究所 | 一种箱柜式低温多效蒸馏海水淡化整体装置 |
WO2012032355A1 (en) * | 2010-09-09 | 2012-03-15 | Pdx Technologies Ag | Thermal desalination using breaking jet flash vaporisation |
CN202226691U (zh) * | 2011-10-12 | 2012-05-23 | 上海东硕环保科技有限公司 | 集热供盐水蒸发装置 |
-
2015
- 2015-01-20 WO PCT/ES2015/070032 patent/WO2015107250A1/es active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5925223A (en) * | 1993-11-05 | 1999-07-20 | Simpson; Gary D. | Process for improving thermal efficiency while producing power and desalinating water |
ES2302224T3 (es) * | 2004-08-27 | 2008-07-01 | O.H.D.L. Optimised Hybrid Desalination Limited | Proceso de desalinizacion por destilacion msf y aparato. |
CN201367361Y (zh) * | 2009-03-13 | 2009-12-23 | 国家海洋局天津海水淡化与综合利用研究所 | 一种箱柜式低温多效蒸馏海水淡化整体装置 |
WO2012032355A1 (en) * | 2010-09-09 | 2012-03-15 | Pdx Technologies Ag | Thermal desalination using breaking jet flash vaporisation |
CN202226691U (zh) * | 2011-10-12 | 2012-05-23 | 上海东硕环保科技有限公司 | 集热供盐水蒸发装置 |
Non-Patent Citations (1)
Title |
---|
DATABASE WPI Week 201006, Derwent World Patents Index; Class D15, AN 2010-A18366 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107954493A (zh) * | 2017-11-27 | 2018-04-24 | 中国船舶重工集团公司第七〇九研究所 | 一种海水淡化装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4279294A (en) | Heat pipe bag system | |
US20030136555A1 (en) | Heat pipe loop with pump assistance | |
JP6587618B2 (ja) | 蒸発及び吸収装置 | |
US20140245768A1 (en) | Co-fired absorption system generator | |
KR20110003760A (ko) | 상변화 매체를 이용한 증발식 해수 담수화 장치 | |
US10648678B2 (en) | Building-integrated solar energy system | |
US4339929A (en) | Heat pipe bag system | |
US9052126B2 (en) | Heat exchange circulatory system | |
SG11201804834SA (en) | Intermediate fluid type vaporizer | |
ES2554550B1 (es) | Dispositivo de alta conductancia térmica para sistemas multi-efecto de desalinización de agua | |
US8434308B2 (en) | Heat pipes for transferring heat to an organic rankine cycle evaporator | |
WO2015107250A1 (es) | Dispositivo de alta conductancia térmica para sistemas multi-efecto de desalinización de agua | |
US20130098582A1 (en) | Method using heat pipes with multiple evaporator/condenser zones and heat exchangers using same | |
WO2019110861A1 (es) | Disposicion de camara intercambiadora de calor latente | |
AR122384A1 (es) | Sistema y método de control de temperatura de un medio a través de la vaporización refrigerada y la condensación del gas operacional | |
JP2856246B2 (ja) | 熱回収・供給装置 | |
US4745963A (en) | Heat exchanger and systems and methods for using the same | |
JP2016133287A (ja) | ループ型ヒートパイプ | |
KR20160136889A (ko) | 복수의 플레이트에 해수를 공급하는 해수공급부를 포함하는 담수 장치 | |
JPH0424370Y2 (es) | ||
RU2533354C2 (ru) | Теплотрубная энергосберегающая система терморегулирования приточного воздуха | |
JP2005337336A (ja) | 液化ガス気化装置 | |
RU2334379C1 (ru) | Тепловая труба с принудительной циркуляцией жидкости | |
ES2390049B1 (es) | Sistema de climatización para estancias. | |
WO2016123997A1 (zh) | 烧结热管及具有其的半导体制冷冰箱 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15737337 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC 8 EPO FORM 1205A DATED 25-11.2016 ) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15737337 Country of ref document: EP Kind code of ref document: A1 |