WO2015106562A1 - 一种长桨短叶片复合搅拌器 - Google Patents

一种长桨短叶片复合搅拌器 Download PDF

Info

Publication number
WO2015106562A1
WO2015106562A1 PCT/CN2014/084156 CN2014084156W WO2015106562A1 WO 2015106562 A1 WO2015106562 A1 WO 2015106562A1 CN 2014084156 W CN2014084156 W CN 2014084156W WO 2015106562 A1 WO2015106562 A1 WO 2015106562A1
Authority
WO
WIPO (PCT)
Prior art keywords
long
gas
paddle
short
liquid
Prior art date
Application number
PCT/CN2014/084156
Other languages
English (en)
French (fr)
Inventor
骆培成
吴华
吴俊�
邰芸翠
罗小雨
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2015106562A1 publication Critical patent/WO2015106562A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0721Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis parallel with respect to the rotating axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0725Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis on the free end of the rotating axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/07Stirrers characterised by their mounting on the shaft
    • B01F27/072Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis
    • B01F27/0727Stirrers characterised by their mounting on the shaft characterised by the disposition of the stirrers with respect to the rotating axis having stirring elements connected to the stirrer shaft each by two or more radial rods, e.g. the shaft being interrupted between the rods, or of crankshaft type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/13Openwork frame or cage stirrers not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/192Stirrers with two or more mixing elements mounted in sequence on the same axis with dissimilar elements

Definitions

  • the invention relates to a novel long blade short blade composite agitator.
  • the agitator of the invention can realize homogeneous system mixing (such as liquid-liquid mixing) and heterogeneous system in a large viscosity range.
  • the dispersion process (such as the dispersion of gas in a liquid, the dispersion of two incompatible liquids, or the efficient mixing and dispersion of a gas-liquid-solid three-phase system) belongs to the field of industrial fluid mixing, multiphase dispersion, and reaction equipment.
  • Gas-liquid dispersion and reaction problems are frequently encountered in the chemical and pharmaceutical industries, such as liquid phase catalytic hydrogenation of nitroaromatics, fatty nitriles, olefins and alkynes, thiolation, carbonylation, oxidation
  • the common feature is that the reaction rate is controlled by gas/liquid mass transfer, and gas/liquid mass transfer involves processes such as gas dispersion, gas circulation, and solid catalyst suspension, so it is actually a complicated process. Due to the incompatibility of gas and liquid, and the density difference is very large, the unreacted gas in the gas-liquid reactor accumulates in the upper space in the reactor, which seriously affects the reaction rate and efficiency; meanwhile, the unevenness of the suspension of the solid catalyst is also constrained. The rate of reaction.
  • the industry In order to increase the reaction rate, the industry generally adopts three modes of gas outer circulation, liquid outer circulation and gas inner circulation (ie, self-priming).
  • (a) Gas external circulation type The reaction gas is taken out from the gas phase space, and the gas is pressurized by the compressor and then introduced from the bottom of the reactor. Under the cooperation of the agitator, a large gas holding capacity and a contact area can be obtained. , thereby increasing the reaction rate; the advantage is that any gas circulation can be obtained, the disadvantage is that additional gas circulation equipment is needed, which increases the complexity of the device, additional energy consumption and capital investment.
  • Liquid external circulation type pumping liquid from the bottom of the reactor, and then pumping the gas in the gas phase space of the reactor through a jet reactor such as a venturi reactor to realize gas and liquid in the jet reactor Fully mixed and dispersed, very fine bubbles can be obtained, and the contact area and reaction rate of the gas-liquid phase are greatly improved; the advantages of the liquid external circulation type are fast reaction rate, continuous production, convenient heat transfer, etc., and the disadvantage is that the energy consumption is large. The requirements for circulating pumps are very demanding.
  • Gas internal circulation type that is, a self-priming gas-liquid stirred tank reactor, which is a reaction device capable of inhaling gas in the upper space of the reactor for gas-liquid contact without additional gas delivery equipment, mainly through special The designed hollow turbine agitator continuously sucks the reaction gas on the liquid surface while mixing the liquid to achieve the purpose of gas-liquid circulation and dispersion.
  • the patent CN102921320A discloses a self-priming gas-liquid dispersing agitator with a turbo suction disc, which has the advantages of small gas bubbles, uniform dispersion, self-aspirating function and the like.
  • Another implementation of the gas internal circulation type is to specially design the stirring paddle, and the gas is sucked into the liquid from the surface. This also requires no injection-compression system, can recycle unreacted gas, and is safer and more reliable. It is widely used in hydrogenation, chlorination, sulfhydrylation, oxidation and other reaction processes, especially suitable for high pressure, reactive gas poisoning, Corrosive working conditions; When there are a lot of solid particles and dust in the system (such as sewage treatment), it can overcome the shortcomings of using gas distributors to easily block; in addition, the surface aspirating stirred tank does not need gas circulation operation, and By using a distributor to blow in gas, the energy consumption of the process can be reduced by about one-third. However, the existing turbine agitating slurry gradually decreases in liquid-phase mass transfer performance as the liquid surface gradually rises in use, and the gas-liquid mass transfer performance of the agitator according to the present invention is substantially unchanged. Summary of the invention
  • the object of the present invention is to provide a long paddle and short blade compound agitator for gas-liquid agitation with surface suction function, which solves the problems of insufficient gas absorption and uneven gas distribution of a conventional agitator.
  • the rapid mixing between the fluids, in particular, the satisfactory agitation of the reaction process with increasing liquid level, the invention is equally applicable to the agitation of the gas external circulation reactor.
  • the invention provides a long paddle short blade compound agitator comprising a fixed plate, a set of long paddles, a connecting plate and a set of short blades; the top end of the long paddle is fixed at the bottom of the fixed plate, and the bottom end is fixed at The top of the lands; the short blades are fixed to the bottom of the lands.
  • the horizontal section of the long paddle is of any shape, preferably rectangular or elliptical, especially when the section is rectangular or elliptical, the effect is better, the long side of the rectangle or the long axis of the ellipse and the axis of the agitator
  • the angle between the radii is ⁇ .
  • the angle ⁇ is 0 to 90°, preferably 0 to 45°.
  • the lands are a set of concentric rings that are fixed to each other by welding or other means.
  • the number of the long paddles is two or more, and is evenly and symmetrically distributed on the lands.
  • the long paddles are distributed on the lands by: uniformly distributed on the same ring of the concentric rings, or staggered on different rings of the concentric rings, the stagger angle is 0 ⁇ 360 ° / ⁇ , where ⁇ is the total number of long paddles.
  • the shape of the short blade is a flat plate, a slanted leaf or a curved surface.
  • the number of the short blades is 2 to 10 pieces, preferably 4 to 6 pieces, and more preferably 6 pieces, and is evenly distributed at the bottom of the land.
  • the long paddle and short blade compound agitator provided by the invention has the advantages of simple structure, self-suction function on the surface, greatly improved gas-liquid mass transfer efficiency, high operational flexibility, and is suitable for liquid mixing or gas-liquid under different viscosity, Gas-liquid solid and so on Phase dispersion process.
  • the present invention has the following outstanding advantages over the prior art:
  • the gas can be automatically taken into the liquid by the liquid surface and uniformly dispersed in the liquid phase.
  • the present invention relates to the same input power.
  • the long paddle and short blade compound agitator can increase the gas-liquid mass transfer efficiency (expressed by the liquid phase mass transfer coefficient) by at least two times;
  • FIG. 1 is a schematic view showing the fluid flow pattern in a long paddle blade composite agitating tank according to the present invention.
  • Fig. 2 is a schematic view showing the structure of the long paddle blade composite agitator of the first embodiment.
  • Figure 3 is a schematic view showing the distribution of the long paddle of the embodiment 1 on the lands.
  • Fig. 4 is a schematic view showing the distribution of the short blades and the lands of the first embodiment.
  • Fig. 5 is a schematic view showing the distribution of the long paddle of the embodiment 2 on the land.
  • Figure 6 is a schematic view showing the distribution of the long paddle of the embodiment 3 on the lands.
  • Fig. 7 is a schematic view showing the distribution of the short blades and the lands of the fourth embodiment.
  • Figure 8 is a schematic view showing the distribution of the long paddle of the embodiment 5 on the lands.
  • Figure 9 is a schematic view showing the distribution of the short blades and the lands of the embodiment 6.
  • Figure 10 is a schematic view showing the distribution of the long paddle of the embodiment 7 on the lands.
  • Figure 11 is a schematic view showing the distribution of the short blades and the lands of the seventh embodiment.
  • Figure 12 is a schematic view showing the distribution of the short blades and the lands of the eighth embodiment.
  • the stirring effect of the long paddle short blade compound agitator is quantitatively evaluated by experimentally measuring the unit volume power consumption V and the volumetric mass transfer coefficient ⁇ , specifically:
  • the long paddle blade composite agitator as shown in Fig. 2, comprises a fixed plate 1, a long paddle 2, a connecting plate 3 and a short blade 4, and the top end of the long paddle 2 is fixed to the bottom of the fixed plate 1 by a nut, and the bottom end is fixed to the connecting plate 3 At the top, the short blades 4 are fixed to the bottom of the lands 3.
  • the land 3 is a set of concentric rings which are fixed to each other by welding or other means.
  • the outermost ring of the lands 3 is shown in Fig. 3; the height of the long paddle is 850 mm ; the short blade 4 is a flat plate, the length and height are 80 mm and 60 mm, respectively, and the thickness is 3 mm, a total of 6 pieces, see Fig. 4.
  • the working principle of the long blade short blade composite agitator is: connecting the upper part of the fixed disk 1 with the motor stirring shaft to drive the agitator to rotate; as the stirring speed of the agitator is gradually increased, the long paddle and the liquid of the compound agitator The shearing action is gradually enhanced, so that the gas is effectively sucked into the liquid surface, and the internal flow of the gas and liquid phases in the axial and radial directions is realized by the interaction of the long and short blades in the liquid, and the mechanical conversion of the motor is completed. It may be evenly distributed in the system. The good energy distribution makes the bubbles more evenly distributed in different areas of the kettle, and the average size of the bubbles is smaller, so that the gas-liquid two phases can be efficiently circulated and mixed in the axial and radial directions.
  • the flow pattern is shown in Figure 1.
  • the long paddle blade composite agitator of the same structure and size as in Embodiment 1 only the number of long paddles is increased to six, and three of the inner and outer rings of the lands are respectively distributed, and the inner and outer rings are respectively arranged.
  • the long paddles are staggered with a stagger angle of 60°.
  • the operating conditions are also consistent with that of the first embodiment.
  • the above-mentioned long and short paddle compound mixer is used:
  • the number of long pastes 3 is set to two, and is evenly distributed on the outer ring of the lands, as shown in FIG.
  • the number of 4 is also set to 2, as shown in FIG. 11, and the remaining operating conditions are also consistent with Embodiment 1.
  • Example 2 Using the long paddle blade composite agitator of the same structure and size as in Example 1, the number of short blades 4 was set to four, as shown in Fig. 12, and the remaining operating conditions were also in agreement with Example 1.
  • Example 2 Using the long paddle blade composite agitator of the same structure and size as in Example 1, the number of short blades 4 was set to 10, and the remaining operating conditions were also in agreement with Example 1.

Abstract

一种长桨短叶片复合搅拌器,包括固定盘(1)、一组长桨(2)、连接盘(3)和一组短叶片(4);长桨(2)的上端固定在固定盘(1)上,下端固定在连接盘(3)顶部;短叶片(4)固定在连接盘(3)的底部。

Description

一种长桨短叶片复合搅拌器
技术领域
本发明涉及一种新型的长桨短叶片复合搅拌器,具体来说,本发明涉及的搅拌器可在较 大的黏度范围内实现均相体系混合 (如液体一液体混合)、 非均相体系的分散过程 (如气体 在液体中的分散, 不相溶的两种液体的分散, 或者气液固三相体系的高效混合、 分散), 属 于工业流体混合、 多相分散、 反应设备领域。
背景技术
气液分散与反应问题在化工和医药等行业中是经常遇到的, 例如硝基芳烃、 脂肪腈、烯 烃和炔烃的液相催化加氢反应、 垸基化反应、 羰基化反应、 氧化反应等; 其共同特点是反应 速率受气 /液传质的控制, 而气 /液传质涉及到气体分散、 气体循环以及固体催化剂悬浮等过 程, 因此实际是比较复杂的过程。 由于气液的不相容性, 且密度差别非常大, 气液反应器中 未反应的气体聚积在反应器内的上部空间, 严重影响反应速率和效率; 同时, 固体催化剂悬 浮的不均匀也约束了反应的速率。
为提高反应速率, 工业上一般采用气体外循环、 液体外循环和气体内循环 (即自吸式) 三种方式。
(a) 气体外循环式: 是将反应气体从气相空间引出, 气体通过压缩机增压后再从反应 器底部通入, 在搅拌器的配合下, 可得到较大的持气量和相接触面积, 从而提高反应速率; 其优点是可得到任意的气体循环量,缺点是需要额外的气体循环设备,增加了装置的复杂性, 额外的能耗和资金投入。
(b) 液体外循环式: 是用泵将液体从反应器底部抽出, 再通过喷射反应器, 如文丘里 反应器抽吸反应器气相空间内的气体, 在喷射反应器内实现气体和液体的充分混合与分散, 可得到十分细小的气泡,大幅度提高气液相接触面积和反应速率;液体外循环式的优点是反 应速率快, 可连续生产, 传热方便等, 缺点是能耗大, 对循环泵的要求十分苛刻。
(c) 气体内循环式: 即自吸式气液相搅拌釜反应器, 是一种不用额外的气体输送设备 而能自行吸入反应器上部空间气体进行气液接触的反应装置,其主要通过特殊设计的空心涡 轮搅拌器在料液混合的同时不断吸入液面上的反应气体,达到气液循环与分散目的。如专利 CN102921320A公开了一种带有涡轮吸气盘的自吸式气液分散搅拌器,其优点为送入的气体 气泡较小、 分散均匀、 具有自吸气的功能等。
气体内循环式的另外一种实现方式是对搅拌桨进行特殊设计,气体由表面吸入液下, 因 此同样不需要喷射 -压缩系统, 能够再循环未反应的气体, 操作更加安全可靠, 广泛应用于 加氢、 氯化、 垸基化、 氧化等反应过程中, 特别适合于高压、 反应气体有毒、 有腐蚀性的工 况; 当体系中存在大量固体颗粒和粉尘 (如污水处理), 还可以克服使用气体分布器容易堵 塞的缺点;另外,表面吸气式搅拌釜不需要进行气体循环操作,与采用分布器鼓入气体相比, 可将过程的能耗降低三分之一左右。 然而, 现有涡轮式搅拌浆在使用时随着液面逐渐升高, 其气液传质性能会急剧下降, 而采用本发明所述的搅拌器, 其气液传质性能基本不变。 发明内容
发明目的:本发明的目的在于提供一种具有表面吸气功能的用于气液搅拌的长桨短叶片 复合搅拌器, 以解决传统搅拌器的气体吸收不充分、气体分布不均匀等问题, 实现流体间快 速混合, 特别地, 对于液面不断升高的反应过程能够达到满意的搅拌效果, 本发明同样适用 于气体外循环式反应器的搅拌。
技术方案: 本发明提供的一种长桨短叶片复合搅拌器, 包括固定盘、 一组长桨、 连接盘 和一组短叶片; 所述长桨的顶端固定在固定盘底部, 底端固定在连接盘顶部; 所述短叶片固 定在连接盘的底部。
作为改进, 所述长桨的水平截面为任意形状, 优选为长方形或者椭圆形, 尤其当截面为 长方形或者椭圆形时,效果更好,长方形的长边或者椭圆的长轴与指向搅拌器轴心的半径之 间的夹角为 β。
作为进一步改进, 所述角度卩为0〜90°, 优选为 0〜45°。
作为另一种改进, 所述的连接盘为一组同心圆环, 所述一组圆环与短叶片通过焊接或者 其他方式相互固定。
作为进一步改进, 所述长桨的数量为 2根以上, 且均匀、 对称的分布在连接盘上。
作为更进一步改进, 所述长桨在连接盘上的分布方式为: 在同心圆环的同一圆环上均匀 分布, 或者在同心圆环的不同圆环上交错排列, 其交错角为 0 ~ 360°/η, 其中 η是长桨的总 数量。
作为另一种改进, 所述短叶片的形状为平板、 斜叶或者弯曲面。
作为另一种改进, 所述短叶片的数量为 2~10片, 优选为 4~6片, 再优选为 6片, 且均 匀分布在连接盘底部。
有益效果: 本发明提供的长桨短叶片复合搅拌器结构简单、 具有表面自吸气功能、 能大 幅提高气液传质效率、操作灵活性大、适用于不同黏度下的液体混合或者气液、气液固等多 相分散过程。
具体而言, 本发明相对于现有技术, 具有以下突出的优势:
( 1 ) 可实现气体自动由液面吸入液下, 并在液相中均匀分散, 与传统的多桨组合 (如 标准的涡轮桨)相比, 在相同的输入功率下, 本发明所涉及的长桨短叶片复合搅拌器可将气 液传质效率 (以液相传质系数表示) 提高至少两倍以上;
( 2 ) 应用范围广: 既可应用与低黏度液体的混合或者气液 (或者气液固) 分散, 也可 应用于中高黏度液体的混合或者气液(或气液固)分散; 还可用于反应过程中液面不断变化
(如聚合过程) 的情况; 特别适用于具有大高径比的搅拌釜 (高径比大于 1 )。
附图说明
图 1是本发明所述的长桨短叶片复合搅拌釜内的流体流动模式示意图。
图 2是实施例 1的长桨短叶片复合搅拌器的结构示意图。
图 3是实施例 1的长桨在连接盘上的分布示意图。
图 4是实施例 1的短叶片与连接盘的分布示意图。
图 5是实施例 2的长桨在连接盘上的分布示意图。
图 6是实施例 3的长桨在连接盘上的分布示意图。
图 7是实施例 4的短叶片与连接盘的分布示意图。
图 8是实施例 5的长桨在连接盘上的分布示意图。
图 9是实施例 6的短叶片与连接盘的分布示意图。
图 10是实施例 7的长桨在连接盘上的分布示意图。
图 11是实施例 7的短叶片与连接盘的分布示意图。
图 12是实施例 8的短叶片与连接盘的分布示意图。
具体实施方式
下面结合附图对本发明所提供的长桨短叶片复合搅拌器做出进一步说明,但本发明并不 因此而受到任何限制。
本发明中,长桨短叶片复合搅拌器的搅拌效果通过实验测量单位体积功率消耗 V和体 积传质系数 Ω来定量评价, 具体为:
在内径 βτ=600ιη、 高 HT=1500mm的搅拌釜内侧壁上均匀装有 4块宽度为 60mm挡板, 短叶片 4下沿离搅拌釜底的距离为 300mm。 实验采用稳态亚硫酸钠氧化法测量液相体积传 质系数 Ω, 采用扭矩传感器测量功率消耗; 采用蒸馏水作为介质, 温度 25 °C。 液面高度与 搅拌釜釜直径之比 (H/£>T) 在 0.8〜2.0之间。
为了评价更客观, 本发明的设置的短叶片 4形成的类似圆盘涡轮的直径 £> = 300ιηιη。 对比例: 采用现有两个普通标准圆盘涡轮搅拌器叠加, 搅拌桨的直径为 300mm, 下面 一个涡轮搅拌桨距离釜底的距离为 300mm,上面一个涡轮搅拌桨距离釜底的距离为 900mm: 则当 H/DT= 1时, 单位体积功率消耗, W=3.3kW/m3, 体积传质系数 = 0.043 ; 当 H/DT= 1.5时, 单位体积功率消耗, P/\ =4.8kW/m3, 体积传质系数 /tw = 0.012s—1; 当 H/DT=2时, 单位体积功率消耗, W= 5.0kW/m3, 体积传质系数 ^ = 0.032 。 实施例 1
长桨短叶片复合搅拌器, 见图 2, 包括固定盘 1、 长桨 2、 连接盘 3和短叶片 4, 长桨 2 的顶端通过螺母固定在固定盘 1底部, 底端固定在连接盘 3顶部, 短叶片 4固定在连接盘 3 的底部。连接盘 3为一组同心圆环,所述一组圆环与短叶片 4通过焊接或者其他方式相互固 定。
本实施例中, 长桨 2的数量为三根, 长桨 2为长方体, 其水平截面为 16 X 8mm的长方 形,长方形的长边与径向的夹角 β=0°,长桨 2均匀分布在连接盘 3的最外层圆环上,见图 3 ; 长桨的高度 850mm; 短叶片 4为平板, 其长和高分别为 80mm和 60mm, 厚度为 3mm, 共 有 6片, 见图 4。
该长桨短叶片复合搅拌器的工作原理为:将固定盘 1上部与电机搅拌轴连接,从而带动 该搅拌器旋转; 随着搅拌器的搅拌速度逐渐增大,复合搅拌器的长桨与液体的剪切作用逐步 增强, 从而将气体有效吸入液面下, 在液体内部通过长桨和短叶片的共同作用, 实现气液两 相在轴向和径向上的循环流动,将电机转化的机械能尽可能均匀地分布在体系中, 良好的能 量分布可使气泡在釜内不同区域分布更均匀、气泡的平均尺寸更小,从而实现气液两相在轴 向和径向上的高效循环、 混合, 具体流动模式如图 1所示。
当搅拌速度为 N=200rpm, 采用上述长短桨复合搅拌器:
当 H/DT= 1时, 单位体积功率消耗 W=3.5kW/m3, 体积传质系数 ^a z O. lSSs—1; 当 H/DT=2时, 单位体积功率消耗 W= 5.1kW/m3, 体积传质系数 /t^ z O. USs^ 实施例 2
采用与实施例 1相同结构和尺寸大小的长桨短叶片复合搅拌器,仅将长方形的长边与径 向的夹角 β调整 45°, 如图 5所示, 其余的操作条件保持不变。
当搅拌速度为 N=200rpm, 采用上述长短桨复合搅拌器:
Figure imgf000007_0001
lSZs—1; 当 H/DT=2时, 单位体积功率消耗 W=4.8kW/m3, 体积传质系数 = 0.120s—1。 以上结果显示,不论是顺时针还是逆时针旋转,单位体积功率消耗 W略微小于同条件 下, 体积传质系数 Ω值也略微小于实施例 1中采用的长桨短叶片复合搅拌器测量值, 但体 积传质系数减小的幅度均小于 5 %。
实施例 3
采用与实施例 1相同结构和尺寸大小的长桨短叶片复合搅拌器,仅将长桨 3均匀地分布 在连接盘的内环上, 如图 6所示, 其余操作条件亦与实施例 1保持一致。
当搅拌速度为 N=200rpm, 采用上述长短桨复合搅拌器:
当 H/DT= 1时, 单位体积功率消耗 3.8 kW/m3, 体积传质系数 0.121 s—1;
当 H/DT=2时, 单位体积功率消耗 5.6 kW/m3, 体积传质系数 O.OSSs—
实施例 4
采用与实施例 1 相同结构和尺寸大小的长桨短叶片复合搅拌器, 仅将短叶片改为 45° 斜叶, 如图 7所示, 操作条件亦与实施例 1保持一致。 当搅拌速度为 N=200rpm, 采用上述长短桨复合搅拌器:
当 H/DT= 1时, 单位体积功率消耗 3.3 kW/m3, 体积传质系数 0.131 s"1;
当 H/DT=2时, 单位体积功率消耗 4.9 kW/m3, 体积传质系数 O. USs—
实施例 5
采用与实施例 1相同结构和尺寸大小的长桨短叶片复合搅拌器, 仅将长桨的数量增加 至 6根, 在连接盘的内环和外环上分别分布三根, 且内、 外环上的长桨交错排列, 交错角为 60°, 如图 8所示, 操作条件亦与实施例 1保持一致。 当搅拌速度为 N=200rpm, 采用上述长短桨复合搅拌器:
当 H/DT= 1时, 单位体积功率消耗 4.2 kW/m3, 体积传质系数 0.148 s l
当 H/DT=2时, 单位体积功率消耗 6.0 kW/m3, 体积传质系数 (X Ss^
实施例 6
采用与实施例 1相同结构和尺寸大小的长桨短叶片复合搅拌器, 仅将短叶片改为弯曲 面, 如图 9所示, 操作条件亦与实施例 1保持一致。 当搅拌速度为 N=200rpm, 采用上述长短桨复合搅拌器: 当 H/DT= 1时, 单位体积功率消耗 3.4kW/m3, 体积传质系数 0.132 s—1;
当 H/DT=2时, 单位体积功率消耗 4.9kW/m3, 体积传质系数 0.124 。
实施例 7
采用与实施例 1相同结构和尺寸大小的长桨短叶片复合搅拌器,将长浆 3的数量设置为 2个, 且均匀地分布在连接盘的外环上, 如图 10所示, 短叶片 4的数量也设置为 2片, 如 图 11所示, 其余操作条件亦与实施例 1保持一致。
当搅拌速度为 N=200rpm, 采用上述长短桨复合搅拌器:
当 H/DT= 1时, 单位体积功率消耗 2.6kW/m3, 体积传质系数 0.118 s l
当 H/DT=2时, 单位体积功率消耗 3.9kW/m3, 体积传质系数 0.101 。
实施例 8
采用与实施例 1相同结构和尺寸大小的长桨短叶片复合搅拌器,将短叶片 4的数量设置 为 4片, 如图 12所示, 其余操作条件亦与实施例 1保持一致。
当搅拌速度为 N=200rpm, 采用上述长短桨复合搅拌器:
当 H/DT= 1时, 单位体积功率消耗 3.4kW/m3, 体积传质系数 0.133 s—1;
当 H/DT=2时, 单位体积功率消耗 4.9kW/m3, 体积传质系数 0.121 。
实施例 9
采用与实施例 1相同结构和尺寸大小的长桨短叶片复合搅拌器,将短叶片 4的数量设置 为 10片, 其余操作条件亦与实施例 1保持一致。
当搅拌速度为 N=200rpm, 采用上述长短桨复合搅拌器:
当 H/DT= 1时, 单位体积功率消耗 3.8kW/m3, 体积传质系数 0.138 s—1;
当 H/DT=2时, 单位体积功率消耗 5.4kW/m3, 体积传质系数 0.126 。

Claims

权利要求书
1. 一种长桨短叶片复合搅拌器, 其特征在于: 包括固定盘 (1 )、 一组长桨 (2 )、 连接盘
(3 ) 和一组短叶片 (4); 所述长桨 (2) 的顶端固定在固定盘 (1 ) 底部, 底端固定在连 接盘 (3 ) 顶部; 所述短叶片 (4) 固定在连接盘 (3 ) 的底部。
2. 根据权利要求 1所述的一种长桨短叶片复合搅拌器, 其特征在于: 所述长桨 (2) 的水平 截面为长方形或者椭圆形, 长方形的长边或者椭圆的长轴与指向搅拌器轴心的半径之间 的夹角为 。
3. 根据权利要求 2 所述的一种长桨短叶片复合搅拌器, 其特征在于: 所述角度 β 为 0〜 90。。
4. 根据权利要求 1所述的一种长桨短叶片复合搅拌器, 其特征在于: 所述的连接盘 (3 ) 为 一组同心圆环, 所述一组圆环与短叶片 (4) 相互固定。
5. 根据权利要求 4所述的一种长桨短叶片复合搅拌器, 其特征在于: 所述长桨 (2) 的数量 为 2根以上, 且均匀分布在连接盘 (3 ) 上。
6. 根据权利要求 5所述的一种长桨短叶片复合搅拌器, 其特征在于: 所述长桨 (2) 在连接 盘 (3 ) 上的分布方式为: 在同心圆环的同一圆环上均匀分布, 或者在同心圆环的不同圆 环上交错排列, 其交错角为 0 ~ 360°/η, 其中 η是长桨的总数量。
7. 根据权利要求 1所述的一种长桨短叶片复合搅拌器, 其特征在于: 所述短叶片 (4) 的形 状为平板、 斜叶或者弯曲面。
8. 根据权利要求 1 所述的一种长桨短叶片复合搅拌器, 其特征在于: 所述短叶片 (4) 的 数量为 2~10片, 且均匀分布在连接盘 (3 ) 底部。
PCT/CN2014/084156 2014-01-20 2014-08-12 一种长桨短叶片复合搅拌器 WO2015106562A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410025839.0A CN103768980B (zh) 2014-01-20 2014-01-20 一种长桨短叶片复合搅拌器
CN201410025839.0 2014-01-20

Publications (1)

Publication Number Publication Date
WO2015106562A1 true WO2015106562A1 (zh) 2015-07-23

Family

ID=50562016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084156 WO2015106562A1 (zh) 2014-01-20 2014-08-12 一种长桨短叶片复合搅拌器

Country Status (2)

Country Link
CN (1) CN103768980B (zh)
WO (1) WO2015106562A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114917793A (zh) * 2022-05-17 2022-08-19 恒丰泰精密机械股份有限公司 自吸式搅拌器及搅拌设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103768980B (zh) * 2014-01-20 2015-11-18 东南大学 一种长桨短叶片复合搅拌器
CN104941481B (zh) * 2015-06-29 2017-01-18 北京科技大学 一种膏体浓密机集料井搅拌装置
CN106111040B (zh) * 2016-08-24 2017-12-26 宣城英特颜料有限公司 一种反应釜内的自吸式搅拌器
CN107278170B (zh) * 2016-11-08 2022-03-08 重庆大学 一种提高流体混合效果的刚柔组合式搅拌桨
CN106693745B (zh) * 2017-02-21 2019-08-20 东南大学 一种多叶片组合式搅拌器
CN108033476A (zh) * 2018-02-07 2018-05-15 东南大学 一种纳米碳酸钙的制备方法
CN110692534A (zh) * 2019-10-30 2020-01-17 安徽联发畜牧科技有限公司 一种基于远程控制的畜牧用自动投药装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022247A1 (en) * 2000-09-18 2002-03-21 Site-B Company Method and apparatus for mixing viscous fluids
CN203090798U (zh) * 2012-12-18 2013-07-31 天津市腾龙化工科技发展有限公司 一种涂料搅拌器
CN103768980A (zh) * 2014-01-20 2014-05-07 东南大学 一种长桨短叶片复合搅拌器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201524562U (zh) * 2009-10-13 2010-07-14 苏州林通新材料科技有限公司 一种搅拌桨结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022247A1 (en) * 2000-09-18 2002-03-21 Site-B Company Method and apparatus for mixing viscous fluids
CN203090798U (zh) * 2012-12-18 2013-07-31 天津市腾龙化工科技发展有限公司 一种涂料搅拌器
CN103768980A (zh) * 2014-01-20 2014-05-07 东南大学 一种长桨短叶片复合搅拌器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114917793A (zh) * 2022-05-17 2022-08-19 恒丰泰精密机械股份有限公司 自吸式搅拌器及搅拌设备
CN114917793B (zh) * 2022-05-17 2023-05-30 恒丰泰精密机械股份有限公司 自吸式搅拌器及搅拌设备

Also Published As

Publication number Publication date
CN103768980B (zh) 2015-11-18
CN103768980A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
WO2015106562A1 (zh) 一种长桨短叶片复合搅拌器
Hemrajani et al. Mechanically stirred vessels
KR102408877B1 (ko) 회전자 및 교반 디바이스
US9138699B2 (en) Fractal impeller for stirring
US20100177593A1 (en) Stirring Apparatus
CN201855694U (zh) 新型液相反应器
CN111672390A (zh) 一种高粘度物料用搅拌装置
JP3224498B2 (ja) 撹拌装置
CN102091572A (zh) 一种合成橡胶用聚合反应器
CN203484083U (zh) 搪玻璃搅拌器
CN1118318C (zh) 混合装置及聚合装置
CN103962041A (zh) 一种板式搅拌叶片及搪玻璃搅拌器
CN210079493U (zh) 一种双吸式搅拌器
CN204073996U (zh) 一种宽螺带锯齿搅拌器
KR101340712B1 (ko) 드래프트 튜브를 구비한 혼합 장치
CN109207350B (zh) 一种提高液体发酵罐中发酵液溶氧度的搅拌方法
CN207413236U (zh) 一种全能导流型搅拌器
CN215939626U (zh) 一种自吸射流柔性组合搅拌装置
CN206435206U (zh) 一种强化芬顿反应混合搅拌设备
CN105921091B (zh) 一种酯化脱胶磺化反应器
CN213791579U (zh) 一种液体速凝剂生产装置
CN212215354U (zh) 一种浮动式自吸射流搅拌装置
CN213610980U (zh) 用于油橄榄保健食品加工的固液物料混合搅装置
CN218981573U (zh) 一种具有加强混合功能的反应釜
CN217410789U (zh) 一种有机硅混合反应釜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878583

Country of ref document: EP

Kind code of ref document: A1

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE