WO2015105360A1 - 3차원 형상측정장치 및 방법 - Google Patents

3차원 형상측정장치 및 방법 Download PDF

Info

Publication number
WO2015105360A1
WO2015105360A1 PCT/KR2015/000210 KR2015000210W WO2015105360A1 WO 2015105360 A1 WO2015105360 A1 WO 2015105360A1 KR 2015000210 W KR2015000210 W KR 2015000210W WO 2015105360 A1 WO2015105360 A1 WO 2015105360A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
unit
light source
light
data
Prior art date
Application number
PCT/KR2015/000210
Other languages
English (en)
French (fr)
Inventor
이현기
고광일
Original Assignee
주식회사 고영테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 고영테크놀러지 filed Critical 주식회사 고영테크놀러지
Priority to US15/110,494 priority Critical patent/US10417472B2/en
Priority to CN201580003909.5A priority patent/CN105917358B/zh
Publication of WO2015105360A1 publication Critical patent/WO2015105360A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2531Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings, projected with variable angle of incidence on the object, and one detection device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02029Combination with non-interferometric systems, i.e. for measuring the object
    • G01B9/0203With imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02049Interferometers characterised by particular mechanical design details
    • G01B9/02054Hand held
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • G06F21/32User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/586Depth or shape recovery from multiple images from multiple light sources, e.g. photometric stereo
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • G06V20/647Three-dimensional objects by matching two-dimensional images to three-dimensional objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1324Sensors therefor by using geometrical optics, e.g. using prisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10141Special mode during image acquisition
    • G06T2207/10152Varying illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]

Definitions

  • the present invention relates to a three-dimensional shape measuring apparatus and method. More specifically, a precise three-dimensional measurement of the measurement object is performed through a three-dimensional measuring apparatus using a grid pattern, optical interference, and OCT, and in particular, the characteristic value generated through three-dimensional shape measurement of a user's finger is measured. It relates to a three-dimensional shape measurement method and apparatus that can improve the accuracy of fingerprint recognition by using the fingerprint recognition.
  • Fingerprint, palm, voice, retina, iris, face, blood vessel recognition is used as a general body authentication means.
  • the fingerprint, the retina or blood vessels are authenticated using a pattern of a fingerprint, eye capillary vessel or vein.
  • a fingerprint refers to a pattern in which a ridge formed by the ridge of the fingertip of a human finger is formed into a predetermined pattern. Fingerprints on the fingers of different people are formed with different patterns, and the fingerprint formed once does not change. Fingerprints are formed in different patterns on the fingers of different people, and because they do not change once formed, they have been used in recent years for personal authentication. Therefore, recently, a method of recognizing a user's fingerprint for personal authentication has been developed.
  • a system for recognizing a user's fingerprint includes a contact member made of a transparent material to which the user's finger is in contact, an illumination unit that irradiates light on the user's finger that is in contact with the contact member, and a camera unit which photographs a finger that is irradiated with light by contacting the contact member. And a recognition unit for recognizing and comparing a fingerprint by using a fingerprint image generated by photographing a finger of the camera unit. In this case, the recognition unit extracts a pattern of the fingerprint from the fingerprint image, and recognizes and compares the fingerprint.
  • a finger when photographed through a camera, basically, it is a two-dimensional method, and in the state where the finger is in contact with the contact member, light is not uniformly irradiated by the ridge of the finger, so that the image of the finger is distorted, Depending on the condition (for example, a wet or dry finger or some loss of fingerprint), the image of the finger may be distorted. That is, when the fingerprint is recognized using the distorted image, the recognition unit does not easily extract the fingerprint pattern from the fingerprint image, thereby reducing the accuracy of fingerprint recognition.
  • the conventional three-dimensional measuring method is a contact type to calculate the shape through the pin contact to the surface of the measurement object, but through the development of technology, a non-contact three-dimensional measuring method using a laser and light is used in various industries.
  • a non-contact three-dimensional measuring method using a laser and light is used in various industries.
  • it is vulnerable to vibration, so the measurement device and the measurement object have to be measured in a fixed state, so there is a disadvantage in that portability or convenience is poor.
  • Embodiments of the present invention can provide a three-dimensional shape measuring apparatus and method capable of measuring the three-dimensional shape of the measurement object based on the grid pattern light, optical interference and OCT method in a portable device.
  • Another embodiment of the present invention extracts the feature value of the fingerprint from the phase data for the phase of the fingerprint and compares the feature value and the stored feature value of the fingerprint to identify the user, thereby improving the accuracy of the fingerprint recognition three-dimensional It is possible to provide a shape measuring apparatus and method.
  • 3D shape measurement apparatus for solving the above problems is a light source unit, a pattern unit for forming a pattern on the light irradiated from the light source unit, image data by photographing the object to which the pattern is irradiated And a data generator for generating phase data of the object by using the image data and the image data, and generating feature value data of the object by using the phase data.
  • the light source unit, the pattern unit, The camera unit and the data generator may be installed in the electronic device.
  • the pattern portion may include a first filter for forming a first pattern on light emitted from the light source unit, a second filter for forming a second pattern on light emitted and passed from the light source unit, and an irradiation from the light source unit. It may include a third filter for forming a third pattern in the light passing through.
  • the first filter, the second filter and the third filter may be arranged in a circular shape.
  • the apparatus may further include a moving unit which rotates the pattern unit to sequentially arrange the first filter, the second filter, and the third filter on the front surface of the light source unit.
  • the first filter, the second filter and the third filter may be arranged in a line.
  • the apparatus may further include a moving unit which linearly moves the pattern unit to sequentially arrange the first filter, the second filter, and the third filter on the front surface of the light source unit.
  • the pattern unit may include a pattern display device that displays a filter for forming a first pattern, a second pattern, and a third pattern in light emitted from the light source unit.
  • a filter for forming a pattern can be provided.
  • the pattern unit may include at least one slit for forming a pattern in the light emitted from the light source unit.
  • the apparatus may further include a vibrating unit having a vibrating weight generating a vibration and a rotating part rotating the vibrating weight in one direction.
  • the light source unit includes a first light source unit, a second light source unit, and a third light source unit, wherein the pattern unit includes: a first pattern unit for forming a first pattern on light emitted and disposed on the front surface of the first light source unit; And a second pattern portion for forming a second pattern on the light irradiated and disposed on the front surface of the second light source portion, and a third pattern portion for forming a third pattern on the light disposed and irradiated on the front surface of the third light source portion.
  • the pattern unit includes: a first pattern unit for forming a first pattern on light emitted and disposed on the front surface of the first light source unit; And a second pattern portion for forming a second pattern on the light irradiated and disposed on the front surface of the second light source portion, and a third pattern portion for forming a third pattern on the light disposed and irradiated on the front surface of the third light source portion.
  • the pattern unit includes: a first pattern
  • the pattern part may be disposed in front of the light source part and the camera part.
  • the object may be a finger of a subject to be measured, and the phase data may be phase data of a fingerprint of the finger.
  • the apparatus may further include a determiner configured to determine whether the feature value data matches the previously stored reference value data.
  • the subject may be at least one of a part of the body or skin tissue of the subject.
  • a method of measuring a three-dimensional shape wherein a pattern unit installed in a mobile device forms a pattern on light irradiated to an object from a light source unit installed in the electronic device. Photographing the object to which the patterned light is irradiated by the camera unit to be installed to generate image data, and the data generation unit installed to the mobile device generates phase data of the object by using the image data; Generating feature value data for the feature value of the object using phase data.
  • 3D shape measurement apparatus for solving the above problems by photographing the light source unit, the pattern unit for forming a pattern on the light emitted from the light source unit, the user's finger is irradiated with the pattern formed light
  • a camera unit for generating image data, a data generator for generating phase data for the fingerprint of the finger using the image data, and a feature generator for generating feature value data for the fingerprint of the finger using the phase data
  • the feature It includes a determination unit for determining whether the match using the value data and the pre-stored reference value data.
  • 3D shape measurement apparatus for solving the above problems is a light source unit, a beam splitter for separating light emitted from the light source unit (beam spliter), reflecting the light incident from the beam splitter A reference mirror unit, a camera unit which generates optical coherence tomography (OCT) image data by photographing light incident and reflected from the beam splitter and the light reflected through the reference mirror, and the object using the image data
  • OCT optical coherence tomography
  • a data generator for generating phase data for the target data and generating feature value data for the feature value of the object using the phase data
  • a determination unit for determining whether the feature value coincides with previously stored reference value data.
  • the determination unit may determine whether the finger is based on the feature value of the object, and when the foreign material is included in addition to the finger, it may be determined as an artificial fingerprint.
  • the three-dimensional shape measuring method and apparatus it is possible to accurately measure the three-dimensional shape of the measurement object based on the grating pattern light, optical interference and OCT method in a portable device.
  • the data generation unit generates the feature value data of the object from the phase data of the object, and the determination unit identifies the user by processing the user authentication using the feature value data Can increase the accuracy.
  • a three-dimensional fingerprint is extracted by extracting phase data of a depth of fingerprint ridges from a finger image data of a finger on which a patterned light is irradiated. Recognize patterns effectively.
  • 1 is a flow chart showing the procedure of the three-dimensional shape measurement method according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a three-dimensional shape measuring apparatus according to an embodiment of the present invention.
  • FIG. 3 is a view schematically showing a first embodiment of a configuration applicable to the pattern portion shown in FIG. 2.
  • FIG. 4 is a view schematically showing a second embodiment of the configuration applicable to the pattern portion shown in FIG. 2.
  • FIG. 5 is a view schematically showing an embodiment of a configuration applicable to the vibrator shown in FIG. 2.
  • FIG. 6 is a view schematically showing a third embodiment of the configuration applicable to the pattern portion shown in FIG. 2.
  • FIG. 7 is a flow chart showing the procedure of the three-dimensional shape measurement method according to another embodiment of the present invention.
  • FIG. 8 is a view schematically showing a fourth embodiment of the configuration applicable to the pattern portion shown in FIG. 2.
  • FIG. 9 is a configuration diagram of a three-dimensional shape measuring apparatus according to an embodiment of the present invention.
  • FIG. 10 is a view for explaining the principle of measurement in the three-dimensional shape measuring apparatus according to an embodiment of the present invention.
  • the object to be measured in the three-dimensional shape may be at least one of a part of the body or skin tissue of the object to be measured, hereinafter will be described assuming the object as a finger for convenience of description.
  • 1 is a flow chart showing the procedure of the three-dimensional shape measurement method according to an embodiment of the present invention.
  • a pattern unit 110 installed in an electronic device is the electronic device.
  • a pattern is formed on the light irradiated to the user's finger from the light source unit 130 installed at (S110).
  • the pattern unit 110 may be installed in the electronic device to be spaced apart from the light source unit 130 by a predetermined interval.
  • the predetermined pattern may be a grid pattern.
  • the electronic device may be installed around the door, or may include a mobile device such as a smartphone or a tablet PC as a portable device, but is not limited thereto. That is, it can include any device that can be manufactured in a compact portable or handheld manner.
  • Such electronic devices may be supplied with power in a wired or wireless manner, and may be used wirelessly with a separate battery.
  • the pattern unit 110 may include a first filter 111a for forming a first pattern on light emitted from the light source unit 130 and a second filter 112a for forming a second pattern on light emitted from the light source unit 130. And a third filter 113a for forming a third pattern on the light emitted from the light source unit 130 (see FIG. 3).
  • the first pattern, the second pattern, and the third pattern may be lattice patterns of different phases.
  • the first filter 111a, the second filter 112a, and the third filter 113a may be disposed in a circular shape.
  • the moving part 120 connected to the pattern part 110 the first filter 111a, the second filter 112a, and the third filter 113a of the pattern part 110 are sequentially disposed on the front surface of the light source part 130. It can be rotated to be placed.
  • the moving unit 120 may be electrically connected to the control unit 170 and the operation may be controlled by the control unit 170.
  • the first filter 111b, the second filter 112b, and the third filter 113b may be arranged in a line (see FIG. 4).
  • the moving part 120 may be the first filter 111b or the second filter 112b of the pattern part 110.
  • the third filter 113b may be moved in a linear direction so as to be sequentially disposed on the front surface of the light source unit 120. Therefore, the light on which the first pattern, the second pattern, and the third pattern are formed may be sequentially illuminated on the user's finger.
  • the moving unit 120 may be configured as a linear actuator. Therefore, the moving unit 120 can easily move the first filter 111b, the second filter 112b, and the third filter 113b in a linear direction.
  • the pattern unit 110 may be configured as a pattern display device. That is, the pattern unit 110 may be configured as a pattern display device that can sequentially display a predetermined number of preset patterns.
  • the pattern unit 110 may be configured as a digital pattern syringe, but is not limited to the above example.
  • the pattern unit 110 may be formed of a pattern display device to sequentially display three types of filters for forming the first pattern, the second pattern, and the third pattern on the light emitted from the light source unit 130. Therefore, the light on which the first pattern, the second pattern, and the third pattern are formed may be sequentially illuminated on the user's finger.
  • the pattern unit 110 is disposed so as to be spaced apart from the light source unit 130 by a predetermined distance to collect the light irradiated from the light source unit 130 (not shown), is arranged to be spaced apart from the cylinder lens by a predetermined distance and rotated in one direction
  • the pattern formed through the filter may be changed.
  • the first pattern may be formed in the light passing through the filter.
  • a second pattern may be formed in the light passing through the filter.
  • a third pattern may be formed in the light passing through the filter. Therefore, the light on which the first pattern, the second pattern, and the third pattern are formed may be sequentially illuminated on the user's finger.
  • the pattern unit 110 may be formed of a projector structure using optical interference.
  • at least one slit (not shown) may be formed in the pattern unit 110.
  • Light irradiated from the light source unit 130 may pass through the slit of the pattern unit 110.
  • a pattern may be formed on the light irradiated to the user's finger.
  • the moving unit 120 may linearly move the pattern unit 110.
  • the position where the slit is disposed in front of the light source unit 130 may be changed.
  • the pattern formed in the light passing through the pattern unit 110 may be changed.
  • the first pattern may be formed in the light passing through the pattern unit 110.
  • a second pattern may be formed in the light passing through the pattern unit 110.
  • a third pattern may be formed in the light passing through the pattern unit 110. Therefore, the light on which the first pattern, the second pattern, and the third pattern are formed may be sequentially illuminated on the user's finger.
  • the device may further include a vibrator 180.
  • the pattern unit 110 may be formed as a filter to form a grid pattern in the light that is irradiated from the light source unit 130
  • the moving unit 120 is the pattern unit 110 of the light source unit 120 It can be moved in a straight direction so as to be disposed on the front surface.
  • the vibrator 180 may include a vibrating weight 181 for generating vibration and a rotating part 182 for rotating the vibrating weight 181 in one direction.
  • the rotating unit 182 may be connected to the control unit 170 and may be controlled to rotate the vibrating weight 190 by the control unit 170.
  • the controller 170 may detect the vibration weight 181 when the vibration weight 181 moves to positions 1, 2, 3, and 4 of the vibration device 180 illustrated in FIG. 5. That is, when the vibration weight 181 is rotated in the vibrator 180, the mobile device generates vibration, that is, repetitive movement about one point.
  • the pattern unit 110 when imaging is performed through the camera unit 140 at the time when the oscillating weight 181 completes movement to each of the areas 1, 2, 3, and 4, the pattern unit 110 is placed on the upper portion of the light source unit 130. Since the grid pattern of the pattern unit 110 may be moved according to the rotation of the vibration weight 190 in the arranged state, the pattern of various grid patterns may be generated through one pattern unit 110.
  • the camera unit 140 may cause shaking due to vibration of the mobile device while photographing a user's finger to which the patterned light is radiated.
  • the data generator 150 to be described below may include a vibration weight 190.
  • the shake generated by the rotation may be included as a variable to perform shake correction of the image captured by the camera unit 140 to generate phase data used for fingerprint recognition.
  • the pattern unit 110 may include the first light source unit 131.
  • the first pattern portion 111d for forming a first pattern in the light irradiated from the first light source unit 131 and disposed in front of the second light source unit, and disposed in front of the second light source unit and for the light irradiated from the second light source unit 132.
  • the third pattern part 113d disposed in front of the second pattern part 112d for forming the second pattern and the third light source part 133 and for forming the third pattern in the light emitted from the third light source part 133.
  • the first light source unit 131, the second light source unit 132, and the third light source unit 133 may be controlled by the controller of the portable device to sequentially radiate light.
  • the first light source 131, the second light source 132, and the third light source 133 sequentially irradiate light
  • the user's finger sequentially irradiates light with the first pattern, the second pattern, and the third pattern. Can be.
  • the light having various patterns irradiated to the user's finger may be sequentially irradiated by the embodiment of the pattern unit 110 described above.
  • the above-described configuration of the pattern unit 110 is only an example, and the pattern unit 110 may have a structure that may form grid patterns having different phases in light emitted by the light source unit 130. And arrangement may be variously applicable.
  • the pattern unit 110 includes a first filter 111a, a second filter 112a, and a third filter 113a, and includes a first filter 111a and a second filter 112a.
  • the third filter 113a is disposed in a circular shape, the present disclosure is not limited thereto, and the various embodiments described above may be applicable.
  • the camera unit 140 installed in the electronic device photographs the user's finger to which the patterned light is irradiated to generate image data (S120).
  • the camera unit 140 may be controlled by the controller 170 to photograph the user's finger whenever the pattern formed by the light irradiated on the user's finger changes.
  • the pattern unit 110 is rotated by the moving unit 120 so that the light having the first pattern formed on the user's finger is irradiated with the first filter 111a disposed in front of the light source unit 130.
  • the camera unit 140 may photograph the user's finger to generate image data.
  • the pattern unit 119 is rotated again by the moving unit 120 to irradiate the light having the second pattern formed on the user's finger with the second filter 112a disposed on the front surface of the light source unit 130.
  • the camera unit 140 may photograph the user's finger to generate image data.
  • the pattern unit 110 is rotated again by the moving unit 120 so that the light having the third pattern formed on the user's finger while the third filter 113c is disposed in front of the light source unit 130 is irradiated.
  • the camera unit 140 may photograph the user's finger to generate image data. That is, the camera unit 140 may generate three image data corresponding to the number of patterns formed in the light irradiated to the user's finger.
  • the user's finger may be positioned at a position spaced apart from the camera unit 140 by a predetermined distance.
  • the three-dimensional shape measurement method according to an embodiment of the present invention can be taken in the state where the user's finger is in contact with the camera unit 140 can prevent the finger image is distorted.
  • the finger image using the finger image data is not distorted, it is possible to improve the accuracy of fingerprint recognition.
  • the data generation unit 150 installed in the electronic device extracts the phase of the fingerprint of the user's finger using the finger image data to generate the phase data (S130). Since three image data are generated from the camera unit 140 as described above, the data generator 150 may generate phase data using the three image data. A method of generating the phase data by the data generator 150 will be described in more detail below.
  • the data generating unit 150 may extract three brightness degrees ⁇ I i 1, I i 2, I i 3 ⁇ from the three image data.
  • the data generator 150 extracts the brightness ⁇ P i (x, y) ⁇ , the average brightness ⁇ A i (x, y) ⁇ and the visibility ⁇ V i (x, y) through the extracted brightness and the 3-bucket algorithm. ) ⁇ Can be calculated.
  • the equation used when the data generator 150 calculates phase ⁇ P i (x, y) ⁇ , average brightness ⁇ A i (x, y) ⁇ and visibility ⁇ V i (x, y) ⁇ is as follows. It may be the same as Equation 1 below.
  • I i 1 may be a + b cos ( ⁇ )
  • I i 2 may be a + b cos ( ⁇ + 2 ⁇ / 3)
  • I i 3 may be a + b cos ( ⁇ + 4 ⁇ / 3).
  • Equation 1 B i (x, y) may mean an amplitude of video signals of three video data.
  • the data generator 150 may calculate the initial height Hi (x, y) from the phase Pi (x, y).
  • the equation used when the data generator calculates the height ⁇ H i (x, y) ⁇ may be as shown in Equation 2 below.
  • Equation 2 k i (x, y) represents a conversion ratio between phase and height and may mean a phase to height conversion scale.
  • the data generator 150 may use the height weight ⁇ W i () by using at least one of average brightness ⁇ A i (x, y) ⁇ , visibility ⁇ V i (x, y) ⁇ , and a measurement range ⁇ . x, y) ⁇ .
  • the pattern formed on the light irradiated to the finger may be a grid pattern, and the measurement range ⁇ may mean an interval between the grids of the grid pattern.
  • the fingerprint data generating unit 150 uses the average brightness ⁇ A i (x, y) ⁇ , the visibility ⁇ V i (x, y) ⁇ , and the weight function ⁇ f (A, V) as parameters. i, ⁇ ) ⁇ height weight ⁇ W i through (x, y) ⁇ to be calculated, and high weight ⁇ W i (x, y) ⁇ a formula used to calculate the following formula 3; May be the same as
  • the data generation unit 150 multiplies the initial height ⁇ H i (x, y) ⁇ by the height weight ⁇ W i (x, y) ⁇ to weight the height ⁇ H i (x, y) * W i (x, y) ⁇ Can be calculated.
  • the data generator 150 may calculate the final height by dividing the weight height ⁇ H i (x, y) * W i (x, y) ⁇ by the sum of the height weights ⁇ W i (x, y) ⁇ .
  • the calculated final height value is a value close to the average of the weight height ⁇ H i (x, y) * W i (x, y) ⁇ or the weight height ⁇ H i (x, y) * calculated from each of three pieces of image data.
  • W i (x, y) ⁇ may be the middle of the values.
  • a signal out of the allowable range based on at least one of brightness, SNR, and phase blurring of the pattern image in the unit of pixel when calculating the initial height ⁇ H i (x, y) ⁇ For example, when a bouncing signal is generated, it is determined that the noise is removed, and then an initial height ⁇ H i (x, y) ⁇ is calculated, and when there is a bouncing height outside the preset allowable range at each initial height, After removing as noise, the final height may be calculated.
  • the data generator 150 may extract phase data of a phase generated by the ridge of the fingerprint at a predetermined position of the user's finger. That is, in the fingerprint recognition method according to an embodiment of the present invention, the data generator 150 may recognize the fingerprint in three dimensions by extracting phase data from the finger image data.
  • the data generation unit 150 generates the feature value data for the feature value of the fingerprint using the phase data (S140).
  • the phase data is data about a phase generated by a concave fingerprint ridge at a predetermined position of the user's finger
  • the three-dimensional image or pattern having the curvature generated by the ridge of the fingerprint or It may be a feature value extracted from a two-dimensional image or a pattern generated by unwrapping it.
  • the determination unit 160 determines whether or not the match using the feature value data and the reference value data (S150).
  • the reference value data may be generated by previously storing the reference value generated by recognizing the user's fingerprint by the above-described process in a memory unit (not shown) of the electronic device.
  • the determination unit 160 may determine whether the previously stored fingerprint matches the currently recognized fingerprint by comparing the feature value included in the feature value data with the reference value included in the reference value data. For example, the determination unit 160 may compare the feature value included in the feature value data with the reference value included in the reference value data, and if the two values match, may determine that the pre-stored fingerprint matches the currently recognized fingerprint. On the other hand, the determination unit 160 may compare the feature value included in the feature value data with the reference value included in the reference value data, and if the two values do not match, it may determine that the pre-stored fingerprint and the currently recognized fingerprint do not match.
  • the data generator 150 generates the feature value data of the fingerprint from the phase data of the fingerprint, and the determination unit 160 uses the feature value data. By recognizing the fingerprint of the user can improve the accuracy of the fingerprint recognition.
  • the information about the determination result generated in the three-dimensional shape measuring apparatus and method according to an embodiment of the present invention is provided to the electronic device, for example, various applications requiring authentication, such as opening the door, unlocking the mobile phone and payment. It can be used to.
  • the reference value data may be MRI, CT, ultrasound and X-ray image data
  • Matching with the feature value data may be performed in a state previously stored in a memory unit (not shown) of the electronic device. That is, the shape information of the feature value data and the shape information of the reference value data may be set to overlap, and then displayed on the screen mounted on the electronic device as matching data or the matching data may be transmitted to a separate display device.
  • FIG. 7 showing a procedure of a 3D shape measuring method according to another exemplary embodiment of the present invention.
  • the same reference numerals may represent the same members, and will be described below with the focus on the parts different from the three-dimensional shape measuring method according to an embodiment of the present invention.
  • a pattern unit 110 installed on an electronic device forms a pattern on light emitted from a light source unit 130 installed on the electronic device to a user's finger (S210).
  • the pattern unit 110 may be provided with a predetermined pattern in the light passing through the light installed in the electronic device so as to be spaced apart from the light source unit 130 by a predetermined distance. That is, light having a predetermined pattern may be irradiated onto the user's finger.
  • the predetermined pattern may be a grid pattern.
  • the pattern unit 110 may be formed in a shape that may be disposed in front of the light source unit 130 and the camera unit 140 (see FIG. 8).
  • the pattern unit 110 may be formed in a rectangular shape, and may be disposed in front of the light source unit 130 and the camera unit 140, but is not limited thereto.
  • the moving unit 120 connected to the pattern unit 110 may move the pattern unit 110 to arrange the pattern unit 110 in front of the light source unit 130 and the camera unit 140.
  • the camera unit 140 generates image data by photographing the user's finger to which the patterned light is irradiated through the pattern unit 110 (S220). Since the camera unit 140 photographs a user's finger through the pattern unit 110, the finger image data photographed by the camera unit 140 includes a pattern and a pattern unit 110 formed on light emitted from the user's finger on the finger image. The pattern overlapping the pattern of) may be formed. In this case, the pattern in which the pattern formed on the light irradiated on the user's finger and the pattern of the pattern unit 110 overlap each other may be a moire pattern. That is, the image data generated from the camera unit 140 may be formed as an image in which a moire pattern is formed on the finger image.
  • the data generator 150 installed in the electronic device extracts the phase of the fingerprint of the user's finger using the image data to generate the phase data (S230).
  • the data generator 150 may generate phase data by extracting a phase of the fingerprint of the user's finger by applying a Fast Fourier Transform (FFT) to the image data.
  • FFT Fast Fourier Transform
  • the data generation unit 150 generates the feature value data for the feature value of the fingerprint using the phase data (S240).
  • the phase of the fingerprint and the feature value of the fingerprint can be extracted even using only one image data having a grid pattern formed on the finger image. That is, the fingerprint recognition method according to another embodiment of the present invention can simplify the process for recognizing the fingerprint.
  • the determination unit 160 determines whether there is a match using the feature value data and the reference value data (S250).
  • the determination unit 160 may compare the feature value included in the feature value data with the reference value included in the reference value data and determine that the fingerprints match if the two values match.
  • the determination unit 160 may compare the feature value included in the feature value data with the reference value included in the reference value data, and may determine that the fingerprint does not match when the two values do not match.
  • FIG. 9 is a configuration diagram of a three-dimensional shape measuring apparatus according to an embodiment of the present invention
  • Figure 10 is a view illustrating a measuring principle in a three-dimensional shape measuring apparatus according to an embodiment of the present invention.
  • the three-dimensional shape measuring apparatus may be mounted in a small electronic device and implemented in a portable or handheld manner, and separates light emitted from the light source 220 and the light source.
  • a beam splitter 240 for reflecting light a reference mirror part 210 for reflecting light incident from the beam splitter part 240, and light incident and reflected from the beam splitter part 240 to an object
  • OCT optical coherence tomography
  • the controller 250 generates phase data of the object by using the image data, and generates feature value data of a feature value of the object by using the phase data.
  • the data generation unit 260 may include a determination unit 270 that determines whether the feature value is identical to the previously stored reference value data.
  • Light incident on the beam splitter 240 through the light source 220 is branched and incident on the reference mirror 210 and the object 280.
  • the light incident on the reference mirror 210 and the object 280 is reflected and incident on the camera unit 230 through the beam splitter 240.
  • the camera unit 230 generates optical coherence tomography (OCT) 3D image data by using the incident light.
  • OCT optical coherence tomography
  • the OCT three-dimensional image data can be generated up to the image of the tissue of a predetermined depth in the skin. Since not only the epidermal shape of the skin but also an image of the tissue of a predetermined depth in the skin can be generated, it is possible to identify whether or not the artificial fingerprint is used when using an artificial fingerprint made of silicon. That is, since the artificial fingerprint is located in front of the epidermis of the skin, it is possible to accurately determine this.
  • the data generator 260 may generate feature value data of skin tissue having a predetermined depth from the epidermis as well as feature value data of a fingerprint of a finger based on OCT 3D image data, and the determination unit 270 may generate the feature. By comparing the value with the preset reference value, it is possible to further improve the reliability of authentication by checking whether the fingerprint is matched or not.
  • the present invention may calculate a three-dimensional shape for various objects other than a fingerprint, and do not depart from the spirit of the present invention described in the claims. Without departing from the scope of the present invention, various modifications and changes of the present invention may be made by adding, changing, deleting, or adding components, which will also be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Security & Cryptography (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

본 발명은 3차원 형상측정방법에 관한 것이다. 본 발명의 실시예에 따른 3차원 형상측정방법은 전자기기에 설치되는 패턴부가 상기 전자기기에 설치되는 광원부로부터 대상체에 조사되는 빛에 패턴을 형성하는 단계, 상기 전자기기에 설치되는 카메라부가 패턴이 형성된 빛이 조사되는 상기 대상체를 촬영하여 영상데이터를 생성하는 단계, 데이터 생성부가 상기 영상데이터를 이용하여 상기 대상체에 대한 위상데이터를 생성하고, 상기 위상데이터를 이용하여 상기 대상체의 특징값에 대한 특징값 데이터를 생성하는 단계, 및 판단부가 상기 특징값 데이터와 기 저장된 기준값 데이터를 이용하여 일치여부를 판단하는 단계를 포함한다.

Description

3차원 형상측정장치 및 방법
본 발명은 3차원 형상측정장치 및 방법에 관한 것이다. 더욱 상세하게는 격자패턴, 광 간섭 및 OCT 등을 이용한 3차원 측정장치를 통하여 측정대상물에 대한 정밀한 3차원 측정을 수행하고, 특히, 사용자의 손가락에 대한 3차원 형상측정을 통해 생성된 특징값을 이용하여 지문을 인식함으로써 지문인식의 정확도를 향상시킬 수 있는 3차원 형상 측정 방법 및 장치에 관한 것이다.
일반적인 신체 인증 수단으로 지문, 손바닥, 음성, 망막, 홍채, 얼굴, 혈관인식 등의 기술이 사용되고 있다. 이 중에서, 지문, 망막 또는 혈관의 경우에는 지문, 안구의 모세혈관 또는 정맥의 패턴을 이용하여 인증을 하게 된다.
예를 들어, 지문은 사람의 손가락 끝의 표피가 융기되어 생긴 융선이 소정 무늬로 형성된 무늬를 의미한다. 서로 다른 사람들의 손가락에 생긴 지문은 서로 다른 무늬로 형성되며, 한번 형성된 지문은 변하지 않는다. 지문은 서로 다른 사람들의 손가락에 서로 다른 무늬로 형성되고, 한번 형성되면 변하지 않는 특성 때문에 최근에는 개인인증에 많이 사용되고 있다. 따라서, 최근에는 개인인증을 위하여 사용자의 지문을 인식하는 방법이 개발되고 있다.
사용자의 지문을 인식하는 시스템은 사용자의 손가락이 접촉되는 투명한 소재의 접촉부재, 접촉부재에 접촉된 사용자의 손가락에 빛을 조사하는 조명부, 접촉부재에 접촉되어 빛이 조사되는 손가락을 촬영하는 카메라부 및 카메라부가 손가락을 촬영하여 생성된 지문화상을 이용하여 지문을 인식 및 비교하는 인식부를 포함하여 구성될 수 있다. 이때, 인식부는 지문화상으로부터 지문의 패턴 등을 추출하여 지문을 인식 및 비교할 수 있다.
하지만, 기본적으로 2차원 방식이며 카메라를 통해 손가락이 촬영될 때, 손가락이 접촉부재에 접촉된 상태에서는 손가락의 융선 등에 의해 빛이 균일하게 조사되지 않아 손가락이 촬영된 이미지가 왜곡되거나, 사용자의 손가락 상태(예를 들어, 손가락이 습하거나 건조하거나 지문에 일부 손실이 있는 상태)에 따라 손가락이 촬영된 이미지가 왜곡될 수 있다. 즉, 왜곡된 이미지를 사용하여 지문을 인식하게 되면, 인식부가 지문화상으로부터 지문의 패턴을 용이하게 추출하지 못하므로 지문인식의 정확도가 저하된다는 문제점이 있었다.
따라서 신체 각 부위의 3차원 형상을 측정하거나, 신체 인증 수단 시에 인식의 정확도를 향상시킬 수 있는 3차원 형상측정방법 및 장치의 개발이 요구된다.
한편, 종래의 3차원 측정 방식은 접촉식으로 측정대상물의 표면에 핀 접촉을 통하여 형상을 산출했으나, 기술발전을 통하여 레이저 및 광을 이용한 비접촉식 3차원 측정 방식이 다양한 산업에서 사용되고 있다. 다만, 진동 등에 취약하여 측정 장치와 측정 대상물이 고정된 상태에서 측정해야 하므로 휴대성이나 편의성이 떨어진다는 단점이 있었다.
본 발명의 실시예는 휴대용 기기에서 격자 패턴광, 광 간섭 및 OCT 방식을 토대로 측정 대상물의 3차원 형상을 측정할 수 있는 3차원 형상 측정 장치 및 방법을 제공할 수 있다.
본 발명의 다른 실시예는 지문의 위상에 대한 위상데이터로부터 지문의 특징값을 추출하고 특징값과 기 저장된 지문의 특징값을 비교하여 사용자를 식별함으로써, 지문인식의 정확도를 향상시킬 수 있는 3차원 형상측정장치 및 방법을 제공할 수 있다.
본 발명의 목적은 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 해결하기 위한 본 발명의 일 양상에 따른 3차원 형상 측정 장치는 광원부, 상기 광원부로부터 조사되는 빛에 패턴을 형성하기 위한 패턴부, 패턴이 형성된 빛이 조사되는 상기 대상체를 촬영하여 영상데이터를 생성하는 카메라부, 및 상기 영상데이터를 이용하여 상기 대상체에 대한 위상데이터를 생성하고, 상기 위상데이터를 이용하여 상기 대상체의 특징값 데이터를 생성하는 데이터 생성부를 포함하며, 상기 광원부, 패턴부, 카메라부 및 데이터 생성부는 전자기기에 설치될 수 있다.
상기 패턴부는, 상기 광원부로부터 조사되어 통과되는 빛에 제 1 패턴을 형성하기 위한 제 1 필터와, 상기 광원부로부터 조사되어 통과되는 빛에 제 2 패턴을 형성하기 위한 제 2 필터와, 상기 광원부로부터 조사되어 통과되는 빛에 제 3 패턴을 형성하기 위한 제 3 필터를 포함할 수 있다.
상기 제 1 필터, 상기 제 2 필터 및 상기 제 3 필터는 원형으로 배치될 수 있다.
상기 장치는 상기 패턴부를 회전이동시켜 상기 제 1 필터, 상기 제 2 필터 및 상기 제 3 필터를 순차적으로 상기 광원부의 전면에 배치시키는 이동부를 더 포함할 수 있다.
상기 제 1 필터, 상기 제 2 필터 및 상기 제 3 필터는 일렬로 배치될 수 있다.
상기 장치는 상기 패턴부를 직선이동시켜 상기 제 1 필터, 상기 제 2 필터 및 상기 제 3 필터를 순차적으로 상기 광원부의 전면에 배치시키는 이동부를 더 포함할 수 있다.
상기 패턴부는 상기 광원부로부터 조사되어 통과되는 빛에 제 1 패턴, 제 2 패턴 및 제 3 패턴을 형성하기 위한 필터를 표시하는 패턴 표시장치를 포함할 수 있다.
상기 패턴부는, 상기 광원부로부터 조사되는 빛을 모으는 실린더렌즈와,일측방향으로 회전되면서 상기 실린더렌즈를 통해 모인 빛의 방향을 전환시키는 회전다만경과,상기 회전다만경을 통해 방향이 전환되어 통과되는 빛에 패턴을 형성하기 위한 필터를 할 수 있다.
상기 패턴부는 상기 광원부로부터 조사되어 통과되는 빛에 패턴을 형성하기 위한 적어도 하나의 슬릿을 포함할 수 있다.
상기 장치는 진동을 발생시키는 진동추 및 상기 진동추를 일측방향으로 회전시키는 회전부를 구비하는 진동부를 더 포함할 수 있다.
상기 광원부는 제 1 광원부, 제 2 광원부 및 제 3 광원부를 포함하고, 상기 패턴부는, 상기 제 1 광원부의 전면에 배치되어 조사되는 빛에 제 1 패턴을 형성하기 위한 제 1 패턴부와, 상기 제 2 광원부의 전면에 배치되어 조사되는 빛에 제 2 패턴을 형성하기 위한 제 2 패턴부와, 상기 제 3 광원부의 전면에 배치되어 조사되는 빛에 제 3 패턴을 형성하기 위한 제 3 패턴부를 포함할 수 있다.
상기 패턴부는 상기 광원부와 상기 카메라부의 전면에 배치될 수 있다.
상기 대상체는 측정 대상자의 손가락이고, 상기 위상데이터는 상기 손가락의 지문에 대한 위상데이터일 수 있다.
상기 장치는 상기 특징값 데이터와 기 저장된 기준값 데이터를 이용하여 일치여부를 판단하는 판단부를 더 포함할 수 있다.
상기 대상체는 측정 대상자의 신체의 일부 또는 피부조직 중 적어도 하나일 수 있다.
상기 과제를 해결하기 위한 본 발명의 다른 양상에 따른 3차원 형상 측정 방법은 휴대기기에 설치되는 패턴부가 상기 전자기기에 설치되는 광원부로부터 대상체에 조사되는 빛에 패턴을 형성하는 단계, 상기 휴대기기에 설치되는 카메라부가 패턴이 형성된 빛이 조사되는 상기 대상체를 촬영하여 영상데이터를 생성하는 단계, 및 상기 휴대기기에 설치되는 데이터 생성부가 상기 영상데이터를 이용하여 상기 대상체에 대한 위상데이터를 생성하고, 상기 위상데이터를 이용하여 상기 대상체의 특징값에 대한 특징값 데이터를 생성하는 단계를 포함한다.
상기 과제를 해결하기 위한 본 발명의 또 다른 양상에 따른 3차원 형상 측정 장치는 광원부, 상기 광원부로부터 조사되는 빛에 패턴을 형성하기 위한 패턴부, 패턴이 형성된 빛이 조사되는 사용자의 손가락을 촬영하여 영상데이터를 생성하는 카메라부, 상기 영상데이터를 이용하여 상기 손가락의 지문에 대한 위상데이터를 생성하고, 상기 위상데이터를 이용하여 상기 손가락의 지문에 대한 특징값 데이터를 생성하는 데이터 생성부, 상기 특징값 데이터와 기 저장된 기준값 데이터를 이용하여 일치여부를 판단하는 판단부를 포함한다.
상기 과제를 해결하기 위한 본 발명의 또 다른 양상에 따른 3차원 형상 측정 장치는 광원부, 상기 광원부로부터 조사되는 빛을 분리하기 위한 빔스플리터부(beam spliter), 상기 빔스플리터부로부터 입사된 빛을 반사하는 기준미러부, 상기 빔스플리터로부터 대상체에 입사되어 반사되는 빛과 상기 기준미러를 통해 반사되는 빛을 촬영하여 OCT(Optical Coherence Tomography) 영상데이터를 생성하는 카메라부, 상기 영상데이터를 이용하여 상기 대상체에 대한 위상데이터를 생성하고, 상기 위상데이터를 이용하여 상기 대상체의 특징값에 대한 특징값 데이터를 생성하는 데이터 생성부, 및 상기 특징값과 기 저장된 기준값 데이터를 이용하여 일치여부를 판단하는 판단부를 포함한다.
상기 판단부는, 상기 대상체의 특징값을 토대로 상기 손가락 여부를 판단하고, 상기 손가락 외에 다른 이물질이 포함되어 있는 경우, 인조 지문으로 판단할 수 있다.
본 발명의 실시예에 따른 3차원 형상 측정 방법 및 장치 에 의하면, 휴대용 기기에서 격자 패턴광, 광 간섭 및 OCT 방식을 토대로 측정 대상물의 3차원 형상을 정확하게 측정할 수 있다.
본 발명의 실시예에 따른 3차원 형상 측정 방법 및 장치에 의하면, 데이터 생성부가 대상체의 위상데이터로부터 상기 대상체의 특징값 데이터를 생성하고, 판단부가 특징값 데이터를 이용하여 사용자 인증을 처리함으로써 사용자 식별의 정확도를 높일 수 있다.
본 발명의 실시예에 따른 3차원 형상 측정 방법 및 장치에 의하면, 데이터 생성부가 패턴이 형성된 빛이 조사된 손가락이 촬영된 손가락영상데이터로부터 지문 융선들의 깊이에 대한 위상데이터를 추출함으로써 3차원 상의 지문 패턴을 효과적으로 인식할 수 있다.
본 발명의 효과는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 3차원 형상측정방법 의 순서를 보여주는 순서도이다.
도 2는 본 발명의 일 실시예에 따른 3차원 형상측정장치의 구성도이다.
도 3은 도 2에 도시된 패턴부에 적용 가능한 구성의 제 1 실시예를 개략적으로 보여주는 도면이다.
도 4는 도 2에 도시된 패턴부에 적용 가능한 구성의 제 2 실시예를 개략적으로 보여주는 도면이다.
도 5는 도 2에 도시된 진동부에 적용 가능한 구성의 실시예를 개략적으로 보여주는 도면이다.
도 6은 도 2에 도시된 패턴부에 적용 가능한 구성의 제 3 실시예를 개략적으로 보여주는 도면이다.
도 7은 본 발명의 다른 실시예에 따른 3차원 형상 측정 방법 의 순서를 보여주는 순서도이다.
도 8은 도 2에 도시된 패턴부에 적용 가능한 구성의 제 4 실시예를 개략적으로 보여주는 도면이다.
도 9는 본 발명의 일 실시예에 따른 3차원 형상 측정 장치의 구성도이다.
도 10은 본 발명의 일 실시예에 따른 3차원 형상 측정 장치에서의 측정원리를 설명하는 도면이다.
110: 패턴부
120: 이동부
130: 광원부
140: 카메라부
150: 데이터 생성부
160: 판단부
170: 제어부
180: 진동부
본 발명의 목적 및 효과, 그리고 그것들을 달성하기 위한 기술적 구성들은 첨부되는 도면과 함께 상세하게 뒤에 설명이 되는 실시 예들을 참조하면 명확해질 것이다. 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐를 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 뒤에 설명되는 용어들은 본 발명에서의 구조, 역할 및 기능 등을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다.
그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 오로지 특허청구범위에 기재된 청구항의 범주에 의하여 정의될 뿐이다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 또는 "구비"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하에서는 본 발명의 실시예에 따른 3차원 형상 측정 방법 및 장치 에 대하여 첨부한 도면을 참고하여 구체적으로 설명하기로 한다. 그리고 3차원 형상 측정의 대상이 되는 대상체는 측정 대상자의 신체의 일부 또는 피부조직 중 적어도 하나일 수 있으며, 이하에서는 설명의 편의를 위하여 대상체를 손가락으로 가정하여 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 3차원 형상 측정 방법의 순서를 보여주는 순서도이다.
도 2는 본 발명의 일 실시예에 따른 3차원 형상 측정 장치의 구성도이다.도 1 및 도 2를 참고 하면, 먼저, 전자기기(미도시)에 설치되는 패턴부(110)가 상기 전자기기에 설치되는 광원부(130)로부터 사용자의 손가락에 조사되는 빛에 패턴을 형성한다(S110). 패턴부(110)는 광원부(130)로부터 소정간격 이격되도록 전자기기에 설치될 수 있다. 그 결과, 사용자의 손가락에는 광원부(130)로부터 소정의 패턴이 형성된 빛이 조사될 수 있다. 이때, 소정의 패턴은 격자 패턴일 수 있다.
한편, 전자기기는 출입문 주변에 설치되거나, 휴대용 기기로서 스마트폰 또는 태블릿 PC와 같은 모바일기기를 포함할 수 있으나 이에 국한되는 것은 아니다. 즉, 콤팩트하게 포터블 또는 핸드헬드 방식으로 제작될 수 있는 모든 기기를 포함할 수 있다.
이러한 전자기기는 유무선 방식으로 전원을 공급받을 수 있고, 별도의 배터리를 구비하여 무선으로도 사용할 수 있다.
패턴부(110)는 광원부(130)로부터 조사되는 빛에 제 1 패턴을 형성하기 위한 제 1 필터(111a), 광원부(130)로부터 조사되는 빛에 제 2 패턴을 형성하기 위한 제 2 필터(112a) 및 광원부(130)로부터 조사되는 빛에 제 3 패턴을 형성하기 위한 제 3 필터(113a)를 포함할 수 있다(도 3 참고). 제 1 패턴, 제 2 패턴 및 제 3 패턴은 서로 다른 위상의 격자 패턴일 수 있다.
또한, 제 1 필터(111a), 제 2 필터(112a) 및 제 3 필터(113a)는 원형으로 배치될 수 있다. 패턴부(110)에 연결되는 이동부(120)는 패턴부(110)의 제 1 필터(111a), 제 2 필터(112a) 및 제 3 필터(113a)가 순차적으로 광원부(130)의 전면에 배치되도록 회전이동시킬 수 있다. 이때, 이동부(120)는 제어부(170)에 전기적으로 연결되어 제어부(170)에 의해 작동이 제어될 수 있다.
한편, 제 1 필터(111b), 제 2 필터(112b) 및 제 3 필터(113b)는 일렬로 배치될 수 있다(도 4 참고). 제 1 필터(111b), 제 2 필터(112b) 및 제 3 필터(113b)가 일렬로 배치되면, 이동부(120)가 패턴부(110)의 제 1 필터(111b), 제 2 필터(112b) 및 제 3 필터(113b)가 순차적으로 광원부(120)의 전면에 배치되도록 직선방향으로 이동시킬 수 있다. 따라서, 사용자의 손가락에는 제 1 패턴, 제 2 패턴 및 제 3 패턴이 형성된 빛이 순차적으로 조사될 수 있다. 이때, 제 1 필터(111b), 제 2 필터(112b) 및 제 3 필터(113b)는 일렬로 배치되는 경우, 이동부(120)는 리니어 액츄에이터(linear actuator)로 구성될 수 있다. 따라서, 이동부(120)는 제 1 필터(111b), 제 2 필터(112b) 및 제 3 필터(113b)를 용이하게 직선방향으로 이동시킬 수 있다.
한편, 패턴부(110)는 패턴 표시장치로 구성될 수 있다. 즉, 패턴부(110)는 기 설정된 소정개수의 패턴을 순차적으로 표시할 수 있는 패턴 표시장치로 구성될 수 있다. 예를 들어, 패턴부(110)는 디지털 패턴(Digital Pattern) 주사기로 구성될 수 있으며, 상기 예에 국한되는 것은 아니다. 패턴부(110)는 패턴 표시장치로 형성됨으로써, 광원부(130)로부터 조사되는 빛에 제 1 패턴, 제 2 패턴 및 제 3 패턴을 형성하기 위한 3 종류의 필터를 순차적으로 표시할 수 있다. 따라서, 사용자의 손가락에는 제 1 패턴, 제 2 패턴 및 제 3 패턴이 형성된 빛이 순차적으로 조사될 수 있다.
또한, 패턴부(110)는 광원부(130)로부터 소정간격 이격되도록 배치되어 광원부(130)로부터 조사되는 빛을 모으는 실린더렌즈(미도시), 실린더렌즈로부터 소정간격 이격되도록 배치되며 일측방향으로 회전되면서 실린더렌즈를 통해 모인 빛의 방향을 전환시키는 회전다만경(polygon mirror, 미도시) 및 회전다만경으로부터 소정간격 이격되도록 배치되며 회전다만경을 통해 방향이 전환되어 통과되는 빛에 패턴을 형성하는 필터(미도시)를 포함할 수 있다. 회전다만경은 일측방향으로 회전됨으로써 필터에 조사되는 빛의 각도를 전환시킬 수 있다. 필터에 조사되는 빛의 각도가 전환되면, 필터를 통해 형성되는 패턴이 변화될 수 있다. 예를 들어, 회전다만경이 기 설정된 각도만큼 회전되어 실린더렌즈를 통해 모인 빛의 방향을 전환시키면, 필터를 통과하는 빛에 제 1 패턴이 형성될 수 있다. 또한, 회전다만경이 기 설정된 각도만큼 더 회전되어 실린더렌즈를 통해 모인 빛의 방향을 전환시키면, 필터를 통과하는 빛에 제 2 패턴이 형성될 수 있다. 또한, 회전다만경이 기 설정된 각도만큼 또다시 회전되어 실린더렌즈를 통해 모인 빛의 방향을 전환시키면, 필터를 통과하는 빛에 제 3 패턴이 형성될 수 있다. 따라서, 사용자의 손가락에는 제 1 패턴, 제 2 패턴 및 제 3 패턴이 형성된 빛이 순차적으로 조사될 수 있다.
다른 한편으로는, 패턴부(110)는 광 간섭을 이용한 프로젝터 구조로 형성될 수 있다. 보다 구체적으로 설명하면, 패턴부(110)는 적어도 하나의 슬릿(미도시)이 형성될 수 있다. 광원부(130)로부터 조사된 빛은 패턴부(110)의 슬릿을 통과할 수 있다. 광원부(130)로부터 조사되는 빛이 패턴부(110)의 슬릿을 통과함으로써 사용자의 손가락에 조사되는 빛에 패턴이 형성될 수 있다. 이때, 이동부(120)가 패턴부(110)를 직선이동시킬 수 있다. 패턴부(110)가 이동되면, 슬릿이 광원부(130)의 전면에 배치되는 위치가 변경될 수 있다. 즉, 슬릿이 광원부(130)의 전면에 배치되는 위치가 변경되면, 패턴부(110)를 통과하는 빛에 형성되는 패턴이 변경될 수 있다. 예를 들어, 패턴부(110)가 이동부(120)에 의해 일측방향으로 이동되면, 패턴부(110)를 통과하는 빛에 제 1 패턴이 형성될 수 있다. 또한, 패턴부(110)가 이동부에 의해 일측방향으로 더 이동되면, 패턴부(110)를 통과하는 빛에 제 2 패턴이 형성될 수 있다. 또한, 패턴부(110)가 이동부(120)에 의해 일측방향으로 또 다시 이동되면, 패턴부(110)를 통과하는 빛에 제 3 패턴이 형성될 수 있다. 따라서, 사용자의 손가락에는 제 1 패턴, 제 2 패턴 및 제 3 패턴이 형성된 빛이 순차적으로 조사될 수 있다.
또 다른 한편으로는, 상기 장치는 진동부(180)를 추가적으로 포함할 수 있다. 이때, 패턴부(110)는 광원부(130)로부터 조사되어 통과되는 빛에 격자무늬의 패턴을 형성하는 필터로 형성될 수 있으며, 이동부(120)는 패턴부(110)가 광원부(120)의 전면에 배치되도록 직선방향으로 이동시킬 수 있다. 도 5를 참조하면, 진동부(180)는 진동을 발생시키는 진동추(181), 진동추(181)를 일측방향으로 회전시키는 회전부(182) 등을 포함할 수 있다.
이때, 회전부(182)는 제어부(170)에 연결될 수 있으며, 제어부(170)에 의해 진동추(190)를 회전시키도록 제어될 수 있다. 제어부(170)에서는 진동추(181)가 도 5에 도시된 진동장치(180) 내 1, 2, 3 및 4 영역의 위치로 이동하는 경우, 이를 감지할 수 있다. 즉, 진동추(181)가 진동장치(180) 내에서 회전되는 경우, 휴대기기는 진동 즉, 하나의 점을 중심으로 반복적인 움직임이 발생하게 된다.
이에 1, 2, 3 및 4의 각 영역으로 진동추(181)가 이동을 완료하는 시점에 카메라부(140)를 통해 촬상을 수행하는 경우, 패턴부(110)가 광원부(130)의 상부에 배치된 상태에서 진동추(190)의 회전에 따라 패턴부(110)의 격자무늬가 이동되는 효과를 나타낼 수 있으므로, 하나의 패턴부(110)를 통해 다양한 격자패턴의 무늬를 생성할 수 있다.
이때, 카메라부(140)는 패턴이 형성된 빛이 조사되는 사용자의 손가락을 촬영하는 동안 휴대기기의 진동에 의한 흔들림이 발생할 수 있으나, 하기에서 설명할 데이터 생성부(150)는 진동추(190) 회전에 따라 발생되는 흔들림을 변수로서 포함시켜 카메라부(140)로부터 촬상된 이미지의 흔들림 보정을 수행하여 지문인식에 사용되는 위상데이터를 생성할 수 있다.
한편, 광원부(130)가 메인 광원부(미표시) 이외에 제 1 광원부(131), 제 2 광원부(132) 및 제 3 광원부(133)를 포함하는 경우, 패턴부(110)는 제 1 광원부(131)의 전면에 배치되며 제 1 광원부(131)로부터 조사되는 빛에 제 1 패턴을 형성하기 위한 제 1 패턴부(111d), 제 2 광원부의 전면에 배치되며 제 2 광원부(132)로부터 조사되는 빛에 제 2 패턴을 형성하기 위한 제 2 패턴부(112d) 및 제 3 광원부(133)의 전면에 배치되며 제 3 광원부(133)로부터 조사되는 빛에 제 3 패턴을 형성하기 위한 제 3 패턴부(113d)를 포함할 수 있다(도 6 참고). 제 1 광원부(131), 제 2 광원부(132) 및 제 3 광원부(133)는 휴대기기의 제어부에 의해 제어되어 순차적으로 빛을 조사할 수 있다. 제 1 광원부(131), 제 2 광원부(132) 및 제 3 광원부(133)가 순차적으로 빛을 조사하면, 사용자의 손가락에는 제 1 패턴, 제 2 패턴 및 제 3 패턴이 형성된 빛이 순차적으로 조사될 수 있다.
즉, 본 발명의 일 실시예에 따른 3차원 형상측정방법은 상기에서 설명한 패턴부(110)의 실시예에 의해 사용자의 손가락에 조사되는 다양한 패턴이 형성된 빛이 순차적으로 조사될 수 있다.
또한, 상기에서 설명한 패턴부(110)의 구성은 일 예에 불과한 것으로, 패턴부(110)는 광원부(130)에 의해 조사되는 빛에 서로 다른 위상의 격자 패턴을 형성할 수 있는 구성이라면 그 구조 및 배열은 다양하게 적용 가능할 수 있다.
이하에서는 설명의 편의를 위하여, 패턴부(110)가 제 1 필터(111a), 제 2 필터(112a) 및 제 3 필터(113a)를 포함하고, 제 1 필터(111a), 제 2 필터(112a) 및 제 3 필터(113a)가 원형으로 배치되는 경우를 중심으로 설명할 것이나, 이에 한정되지 않으며 위에서 기재한 다양한 실시예가 모두 적용 가능함은 물론이다.
다음으로, 전자기기에 설치되는 카메라부(140)가 패턴이 형성된 빛이 조사되는 사용자의 손가락을 촬영하여 영상데이터를 생성한다(S120). 이때, 카메라부(140)는 사용자의 손가락에 조사되는 빛에 형성되는 패턴이 바뀔 때 마다 사용자의 손가락을 촬영하도록 제어부(170)에 의해 제어될 수 있다. 예를 들어, 패턴부(110)가 이동부(120)에 의해 회전이동되어 제 1 필터(111a)가 광원부(130)의 전면에 배치된 상태에서 사용자의 손가락에 제 1 패턴이 형성된 빛이 조사될 때, 카메라부(140)는 사용자의 손가락을 촬영하여 영상데이터를 생성할 수 있다. 또한, 패턴부(119)가 이동부(120)에 의해 다시 회전되어 제 2 필터(112a)가 광원부(130)의 전면에 배치된 상태에서 사용자의 손가락에 제 2 패턴이 형성된 빛이 조사될 때, 카메라부(140)는 사용자의 손가락을 촬영하여 영상데이터를 생성할 수 있다. 마지막으로, 패턴부(110)가 이동부(120)에 의해 또다시 회전되어 제 3 필터(113c)가 광원부(130)의 전면에 배치된 상태에서 사용자의 손가락에 제 3 패턴이 형성된 빛이 조사될 때, 카메라부(140)는 사용자의 손가락을 촬영하여 영상데이터를 생성할 수 있다. 즉, 카메라부(140)는 사용자의 손가락에 조사되는 빛에 형성되는 패턴의 수에 대응하여 3개의 영상데이터를 생성할 수 있다.
한편, 카메라부(140)가 패턴이 형성된 빛이 조사되는 사용자의 손가락을 촬영하는 동안, 사용자의 손가락은 카메라부(140)로부터 소정간격 이격된 위치에 위치될 수 있다. 그 결과, 본 발명의 일 실시예에 따른 3차원 형상측정방법은 카메라부(140)에 사용자의 손가락이 접촉된 상태에서 촬영되어 손가락영상이 왜곡되는 것을 방지할 수 있다. 또한, 손가락영상이 왜곡되지 않은 손가락영상데이터를 이용하므로, 지문인식의 정확도를 향상시킬 수 있다.
다음으로, 전자기기에 설치되는 데이터 생성부(150)가 손가락영상데이터를 이용하여 사용자 손가락의 지문에 대한 위상을 추출하여 위상데이터를 생성한다(S130). 상기에서 설명한 것과 같이 카메라부(140)로부터 3개의 영상데이터가 생성되므로, 데이터 생성부(150)는 3개의 영상데이터를 이용하여 위상데이터를 생성할 수 있다. 데이터 생성부(150)가 위상데이터를 생성하는 방법에 대하여 하기에서 보다 구체적으로 설명하기로 한다.
데이터 생성부(150)는 3개의 영상데이터로부터 3개의 밝기정도{Ii 1, Ii 2, Ii 3}를 추출할 수 있다. 데이터 생성부(150)는 추출된 밝기정도와 3-버켓 알고리즘을 통해 위상{Pi(x,y)}, 평균밝기{Ai(x,y)} 및 가시도{Vi(x,y)}를 산출할 수 있다. 데이터 생성부(150)가 위상{Pi(x,y)}, 평균밝기{Ai(x,y)} 및 가시도{Vi(x,y)}를 산출할 때 사용하는 수식은 하기의 [수학식 1]과와 같을 수 있다. 이때, Ii 1은 a+b cos(φ)이고, Ii 2는 a+b cos(φ+2π/3)이며, Ii 3은 a+b cos(φ+4π/3)일 수 있다.
수학식 1
Figure PCTKR2015000210-appb-M000001
상기의 [수학식 1]에서 Bi(x,y)는 3개의 영상데이터의 영상신호의 진폭을 의미할 수 있다.
이어서, 데이터 생성부(150)는 위상{Pi(x,y)}으로부터 최초 높이{Hi(x,y)}를 산출할 수 있다. 데이터 생성부가 높이{Hi(x,y)}를 산출할 때 사용하는 수식은 하기의 [수학식 2]와 같을 수 있다.
수학식 2
Figure PCTKR2015000210-appb-M000002
상기의 [수학식 2]에서 ki(x,y)는 위상과 높이 사이의 변환비율을 나타내며 위상 대 높이 변환 스케일을 의미할 수 있다.
또한, 데이터 생성부(150)는 평균밝기{Ai(x,y)}, 가시도{Vi(x,y)} 및 측정범위(λ) 중 적어도 하나를 이용하여 높이 가중치{Wi(x,y)}를 산출할 수 있다. 이때, 상기에서 설명한 것과 같이 손가락에 조사되는 빛에 형성되는 패턴은 격자패턴일 수 있으며, 측정범위(λ)는 격자패턴의 격자 사이의 간격을 의미할 수 있다. 지문데이터 생성부(150)가 평균밝기{Ai(x,y)}, 가시도{Vi(x,y)} 및 측정범위(λ)를 매개변수로 하는 가중치 함수{f(A,Vi,λ)}를 통해 높이 가중치{Wi(x,y)}를 산출할 수 있으며, 높이 가중치{Wi(x,y)}를 산출할 때 사용하는 수식은 하기의 [수학식 3]과 같을 수 있다.
수학식 3
Figure PCTKR2015000210-appb-M000003
데이터 생성부(150)는 최초 높이{Hi(x,y)}에 높이 가중치{Wi(x,y)}를 곱하여 가중치 높이{Hi(x,y)*Wi(x,y)}를 산출할 수 있다. 데이터 생성부(150)는 가중치 높이{Hi(x,y)*Wi(x,y)}를 높이 가중치{Wi(x,y)}의 합으로 나누어 최종 높이를 산출할 수 있으며, 산출된 최종 높이 값은 가중치 높이{Hi(x,y)*Wi(x,y)}의 평균치에 가까운 값 또는 3개의 영상데이터 각각으로부터 산출된 가중치 높{Hi(x,y)*Wi(x,y)}이 값들의 가운데 값일 수 있다.
한편, 최종 높이를 산출하는 다른 방식으로는, 최초 높이{Hi(x,y)}의 산출 시 픽셀 단위의 패턴 영상을 밝기, SNR, 위상번짐 중 적어도 하나를 기준으로 허용범위를 벗어나는 신호, 예컨대 튀는 신호가 발생하는 경우, 이를 노이즈로 판단하여 제거한 후, 최초 높이{Hi(x,y)}를 산출하고, 각각의 최초 높이에 기 설정된 허용범위를 벗어나는 튀는 높이가 존재하는 경우, 이를 노이즈로서 제거한 후, 최종 높이를 산출할 수도 있다.
즉, 데이터 생성부(150)는 사용자 손가락의 소정위치에서 지문의 융선에 의해 발생되는 위상에 대한 위상데이터를 추출할 수 있다. 즉, 본 발명의 일 실시예에 따른 지문인식방법은 데이터 생성부(150)가 손가락영상데이터로부터 위상데이터를 추출함으로써 지문을 3차원으로 인식할 수 있다.
다음으로, 데이터 생성부(150)는 위상데이터를 이용하여 지문의 특징값에 대한 특징값 데이터를 생성한다(S140). 이때, 상기에서 설명한 것과 같이 위상데이터는 사용자 손가락의 소정위치에서 오목한 형태(concave)의 지문 융선에 의해 발생되는 위상에 대한 데이터이므로, 지문의 융선에 의해 발생되는 굴곡이 있는 3차원 이미지 또는 패턴이나, 이를 언래핑하여 생성된 2차원 이미지 또는 패턴으로부터 추출한 특징값일 수 있다.
마지막으로, 판단부(160)가 특징값 데이터와 기준값 데이터를 이용하여 일치여부를 판단한다(S150). 이때, 기준값 데이터는 상기에서 설명한 과정에 의해 사용자의 지문이 인식되어 생성된 기준값이 전자기기의 메모리부(미도시)에 기 저장됨으로써 생성될 수 있다.
판단부(160)는 특징값 데이터에 포함된 특징값과 기준값 데이터에 포함된 기준값을 비교하여 기 저장된 지문과 현재 인식한 지문의 일치여부를 판단할 수 있다. 예를 들어, 판단부(160)는 특징값 데이터에 포함된 특징값과 기준값 데이터에 포함된 기준값을 비교하여 두 값이 일치하면, 기 저장된 지문과 현재 인식한 지문이 일치한다고 판단할 수 있다. 반면, 판단부(160)는 특징값 데이터에 포함된 특징값과 기준값 데이터에 포함된 기준값을 비교하여 두 값이 일치하지 않으면, 기 저장된 지문과 현재 인식한 지문이 일치하지 않는다고 판단할 수 있다.
본 발명의 일 실시예에 따른 3차원 형상측정장치 및 방법에 의하면, 데이터 생성부(150)가 지문의 위상데이터로부터 지문의 특징값 데이터를 생성하고, 판단부(160)가 특징값 데이터를 이용하여 사용자의 지문을 인식함으로써 지문인식의 정확도를 향상시킬 수 있다.
한편, 본 발명의 일 실시예에 따른 3차원 형상측정장치 및 방법에 생성되는 판단결과에 대한 정보는 전자기기에 제공되어 예를 들어, 출입문 오픈, 휴대폰 잠금해제 및 결제 등 인증을 요구하는 다양한 어플리케이션에 이용될 수 있다.
판단부(160)가 특징값 데이터와 기준값 데이터를 이용하여 일치여부를 판단하는 단계(S150)의 다른 실시예로서 이때, 기준값 데이터는 MRI, CT, 초음파 및 X-ray 영상 데이터가 될 수 있으며, 전자기기의 메모리부(미도시)에 기 저장된 상태에서 특징값 데이터와 정합을 수행할 수 있다. 즉, 특징값 데이터의 형상 정보와, 기준값 데이터의 형상 정보를 겹치도록 설정한 후, 이를 정합 데이터로서 전자기기에 장착된 화면에 디스플레이하거나 또는 별도의 디스플레이 장치로 정합데이터를 전송할 수도 있다.
이하에서는 본 발명의 다른 실시예에 따른 3차원 형상측정방법의 순서를 보여주는 도 7을 참고하여 사용자의 지문을 인식하는 방법에 대하여 설명하기로 한다. 또한, 상기와 동일한 부호는 동일한 부재를 나타낼 수 있으며, 이하에서는 본 발명의 일 실시예에 따른 3차원 형상측정방법과 상이한 부분을 중심으로 설명하기로 한다.
도 7을 참고 하면, 먼저, 전자기기(미도시)에 설치되는 패턴부(110)가 전자기기에 설치되는 광원부(130)로부터 사용자의 손가락에 조사되는 빛에 패턴을 형성한다(S210). 패턴부(110)는 광원부(130)로부터 소정간격 이격되도록 전자기기에 설치되어 통과하는 빛에 소정의 패턴이 형성되도록 할 수 있다. 즉, 사용자의 손가락에는 소정의 패턴이 형성된 빛이 조사될 수 있다. 이때, 소정의 패턴은 격자 패턴일 수 있다.
패턴부(110)는 광원부(130)와 카메라부(140)의 전면에 배치될 수 있는 형상으로 형성될 수 있다(도 8 참고). 예를 들어, 도 8에 도시된 것과 같이 패턴부(110)는 직사각형 형상으로 형성되어, 광원부(130)와 카메라부(140)의 전면에 배치될 수 있으며, 상기 예에 국한되는 것은 아니다. 패턴부(110)에 연결되는 이동부(120)가 패턴부(110)를 이동시켜 패턴부(110)를 광원부(130)와 카메라부(140)의 전면에 배치시킬 수 있다.
다음으로, 카메라부(140)가 패턴이 형성된 빛이 조사되는 사용자의 손가락을 패턴부(110)를 통해 촬영하여 영상데이터를 생성한다(S220). 카메라부(140)는 패턴부(110)를 통해 사용자의 손가락을 촬영하므로, 카메라부(140)가 촬영하는 손가락영상데이터에는 손가락이미지 위에 사용자의 손가락에 조사되는 빛에 형성된 패턴과 패턴부(110)의 패턴이 중첩된 패턴이 형성될 수 있다. 이때, 사용자의 손가락에 조사되는 빛에 형성된 패턴과 패턴부(110)의 패턴이 중첩된 패턴은 모아레무늬의 패턴일 수 있다. 즉, 카메라부(140)로부터 생성된 영상데이터는 손가락이미지 위에 모아레무늬의 패턴이 형성된 이미지로 형성될 수 있다.
다음으로, 전자기기에 설치되는 데이터 생성부(150)가 영상데이터를 이용하여 사용자 손가락의 지문에 대한 위상을 추출하여 위상데이터를 생성한다(S230). 이때, 데이터 생성부(150)는 영상데이터에 고속퓨리에변환(FFT, Fast Fourier Tranform)을 적용하여 사용자 손가락의 지문에 대한 위상을 추출하여 위상데이터를 생성할 수 있다.
다음으로, 데이터 생성부(150)는 위상데이터를 이용하여 지문의 특징값에 대한 특징값 데이터를 생성한다(S240).
본 발명의 다른 실시예에 따른 3차원 형상측정방법에서는 손가락이미지 위에 격자 패턴이 형성된 하나의 영상데이터만을 사용하여도 지문에 대한 위상 및 지문의 특징값을 추출할 수 있다. 즉, 본 발명의 다른 실시예에 따른 지문인식방법은 지문을 인식하기 위한 과정을 간소화시킬 수 있다.
마지막으로, 판단부(160)가 특징값 데이터와 기준값 데이터를 이용하여 일치여부를 판단한다(S250). 판단부(160)는 특징값 데이터에 포함된 특징값과 기준값 데이터에 포함된 기준값을 비교하여 두 값이 일치하면, 지문이 일치한다고 판단할 수 있다. 반면, 판단부(160)는 특징값 데이터에 포함된 특징값과 기준값 데이터에 포함된 기준값을 비교하여 두 값이 일치하지 않으면, 지문이 일치하지 않는다고 판단할 수 있다.
한편, 이하에서는 본 발명의 다른 실시예에 따른 3차원 형상측정장치에 대해서 설명하기로 한다. 도 9는 본 발명의 일 실시예에 따른 3차원 형상 측정 장치의 구성도이고, 도 10은 본 발명의 일 실시예에 따른 3차원 형상 측정 장치에서의 측정원리를 설명하는 도면이다.
상기 도 9를 참조하면, 본 발명의 일 실시예에 따른 3차원 형상측정장치는 소형 전자기기에 장착되어 휴대용 또는 헨드헬드 방식으로 구현할 수 있으며, 광원부(220), 상기 광원부로부터 조사되는 빛을 분리하기 위한 빔스플리터부(beam spliter)(240), 상기 빔스플리터로부(240)부터 입사된 빛을 반사하는 기준미러부(210), 상기 빔스플리터부(240)로부터 대상체에 입사되어 반사되는 빛과 상기 기준미러부(210)를 통해 반사되는 빛을 촬영하여 OCT(Optical Coherence Tomography) 영상데이터를 생성하는 카메라부(230)와 상기 광원부(220) 및 상기 카메라부(230)를 제어하는 제어부(250)를 포함하며, 상기 제어부(250)는 상기 영상데이터를 이용하여 상기 대상체에 대한 위상데이터를 생성하고, 상기 위상데이터를 이용하여 상기 대상체의 특징값에 대한 특징값 데이터를 생성하는 데이터 생성부(260)와 상기 특징값과 기 저장된 기준값 데이터를 이용하여 일치여부를 판단하는 판단부(270) 등을 포함할 수 있다.
제어부(250), 데이터 생성부(260) 및 판단부(270)의 작동과 동일한 작동에 대해서는 설명의 편의를 위해 생략하기로 한다.
광원부(220)를 통해 빔 스플리터부(240)에 입사된 빛은 분기되어 기준미러부(210)와 대상체(280)에 입사된다. 상기 기준미러부(210)와 대상체(280)에 입사된 빛은 반사되어 빔스플리터부(240)를 통해 카메라부(230)로 입사된다.
카메라부(230)는 입사된 빛을 이용하여 OCT(Optical Coherence Tomography) 3차원 영상데이터를 생성한다. 이때 상기 OCT 3차원 영상 데이터는 피부 내 소정 깊이의 조직에 대한 영상까지 생성할 수 있다. 피부의 표피 형상뿐만 이니라 피부 내 소정 깊이의 조직에 대한 영상까지 생성할 수 있기 때문에 실리콘으로 만들어진 인조 지문을 사용하는 경우에 이를 인조지문인지 아닌지를 식별할 수 있게 된다. 즉, 피부의 표피 앞단에 인조 지문이 위치하게 되므로, 이에 대해 정확한 판별이 가능하다.
데이터 생성부(260)는 OCT 3차원 영상데이터를 기초로 손가락의 지문에 대한 특징값데이터 뿐만 아니라 표피로부터 소정 깊이의 피부조직의 특징값 데이터를 생성할 수 있으며, 판단부(270)는 상기 특징값과 기 설정된 기준값을 비교하여 지문의 일치여부 뿐만 아니라 인조 지문인지 여부까지 확인하여 인증의 신뢰도를 더욱 향상시킬 수 있다. 이상, 본 발명의 실시예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면, 지문 외 다양한 오브젝트에 대한 3차원 형상을 산출할 수 있고, 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한, 본 발명의 권리 범위 내에 포함된다고 할 것이다.

Claims (19)

  1. 광원부;
    상기 광원부로부터 조사되는 빛에 패턴을 형성하기 위한 패턴부;
    패턴이 형성된 빛이 조사되는 상기 대상체를 촬영하여 영상데이터를 생성하는 카메라부; 및
    상기 영상데이터를 이용하여 상기 대상체에 대한 위상데이터를 생성하고, 상기 위상데이터를 이용하여 상기 대상체의 특징값 데이터를 생성하는 데이터 생성부를 포함하며,
    상기 광원부, 패턴부, 카메라부 및 데이터 생성부는 전자기기에 설치되는,
    3차원 형상 측정 장치.
  2. 제 1 항에 있어서,
    상기 패턴부는,
    상기 광원부로부터 조사되어 통과되는 빛에 제 1 패턴을 형성하기 위한 제 1 필터와,
    상기 광원부로부터 조사되어 통과되는 빛에 제 2 패턴을 형성하기 위한 제 2 필터와,
    상기 광원부로부터 조사되어 통과되는 빛에 제 3 패턴을 형성하기 위한 제 3 필터를 포함하는,
    3차원 형상 측정 장치.
  3. 제 2 항에 있어서,
    상기 제 1 필터, 상기 제 2 필터 및 상기 제 3 필터는 원형으로 배치되는,
    3차원 형상 측정 장치.
  4. 제 3 항에 있어서,
    상기 장치는
    상기 패턴부를 회전이동시켜 상기 제 1 필터, 상기 제 2 필터 및 상기 제 3 필터를 순차적으로 상기 광원부의 전면에 배치시키는 이동부를 더 포함하는,
    3차원 형상 측정 장치.
  5. 제 2 항에 있어서,
    상기 제 1 필터, 상기 제 2 필터 및 상기 제 3 필터는 일렬로 배치되는,
    3차원 형상 측정 장치.
  6. 제 5 항에 있어서,
    상기 장치는
    상기 패턴부를 직선이동시켜 상기 제 1 필터, 상기 제 2 필터 및 상기 제 3 필터를 순차적으로 상기 광원부의 전면에 배치시키는 이동부를 더 포함하는,
    3차원 형상 측정 장치.
  7. 제 1 항에 있어서,
    상기 패턴부는 상기 광원부로부터 조사되어 통과되는 빛에 제 1 패턴, 제 2 패턴 및 제 3 패턴을 형성하기 위한 필터를 표시하는 패턴 표시장치를 포함하는,
    3차원 형상 측정 장치.
  8. 제 1 항에 있어서,
    상기 패턴부는,
    상기 광원부로부터 조사되는 빛을 모으는 실린더렌즈와,
    일측방향으로 회전되면서 상기 실린더렌즈를 통해 모인 빛의 방향을 전환시키는 회전다만경과,
    상기 회전다만경을 통해 방향이 전환되어 통과되는 빛에 패턴을 형성하기 위한 필터를 포함하는,
    3차원 형상 측정 장치.
  9. 제 1 항에 있어서,
    상기 패턴부는 상기 광원부로부터 조사되어 통과되는 빛에 패턴을 형성하기 위한 적어도 하나의 슬릿을 포함하는,
    3차원 형상 측정 장치.
  10. 제 1 항에 있어서,
    상기 장치는
    진동을 발생시키는 진동추 및 상기 진동추를 일측방향으로 회전시키는 회전부를 구비하는 진동부를 더 포함하는,,
    3차원 형상 측정 장치.
  11. 제 1 항에 있어서,
    상기 광원부는 제 1 광원부, 제 2 광원부 및 제 3 광원부를 포함하고,
    상기 패턴부는,
    상기 제 1 광원부의 전면에 배치되어 조사되는 빛에 제 1 패턴을 형성하기 위한 제 1 패턴부와,
    상기 제 2 광원부의 전면에 배치되어 조사되는 빛에 제 2 패턴을 형성하기 위한 제 2 패턴부와,
    상기 제 3 광원부의 전면에 배치되어 조사되는 빛에 제 3 패턴을 형성하기 위한 제 3 패턴부를 포함하는,
    3차원 형상 측정 장치.
  12. 제 1 항에 있어서,
    상기 패턴부는 상기 광원부와 상기 카메라부의 전면에 배치되는,
    3차원 형상 측정 장치.
  13. 제1항에 있어서,
    상기 대상체는
    측정 대상자의 손가락이고, 상기 위상데이터는 상기 손가락의 지문에 대한 위상데이터인, 3차원 형상 측정 장치.
  14. 제13항에 있어서,
    상기 장치는
    상기 특징값 데이터와 기 저장된 기준값 데이터를 이용하여 일치여부를 판단하는 판단부를 더 포함하는, 3차원 형상 측정 장치.
  15. 제1항에 있어서,
    상기 대상체는 측정 대상자의 신체의 일부 또는 피부조직 중 적어도 하나인,
    3차원 형상 측정 장치.
  16. 휴대기기에 설치되는 패턴부가 상기 전자기기에 설치되는 광원부로부터 대상체에 조사되는 빛에 패턴을 형성하는 단계;
    상기 휴대기기에 설치되는 카메라부가 패턴이 형성된 빛이 조사되는 상기 대상체를 촬영하여 영상데이터를 생성하는 단계; 및
    상기 휴대기기에 설치되는 데이터 생성부가 상기 영상데이터를 이용하여 상기 대상체에 대한 위상데이터를 생성하고, 상기 위상데이터를 이용하여 상기 대상체의 특징값에 대한 특징값 데이터를 생성하는 단계를 포함하는
    3차원 형상 측정 방법.
  17. 광원부;
    상기 광원부로부터 조사되는 빛에 패턴을 형성하기 위한 패턴부;
    패턴이 형성된 빛이 조사되는 사용자의 손가락을 촬영하여 영상데이터를 생성하는 카메라부;
    상기 영상데이터를 이용하여 상기 손가락의 지문에 대한 위상데이터를 생성하고, 상기 위상데이터를 이용하여 상기 손가락의 지문에 대한 특징값 데이터를 생성하는 데이터 생성부;
    상기 특징값 데이터와 기 저장된 기준값 데이터를 이용하여 일치여부를 판단하는 판단부를 포함하는,
    3차원 형상 측정 장치.
  18. 광원부;
    상기 광원부로부터 조사되는 빛을 분리하기 위한 빔스플리터부(beam spliter);
    상기 빔스플리터부로부터 입사된 빛을 반사하는 기준미러부;
    상기 빔스플리터로부터 대상체에 입사되어 반사되는 빛과 상기 기준미러를 통해 반사되는 빛을 촬영하여 OCT(Optical Coherence Tomography) 영상데이터를 생성하는 카메라부;
    상기 영상데이터를 이용하여 상기 대상체에 대한 위상데이터를 생성하고, 상기 위상데이터를 이용하여 상기 대상체의 특징값에 대한 특징값 데이터를 생성하는 데이터 생성부; 및
    상기 특징값과 기 저장된 기준값 데이터를 이용하여 일치여부를 판단하는 판단부를 포함하는,
    3차원 형상 측정 장치.
  19. 제 18항에 있어서,
    상기 판단부는,
    상기 대상체의 특징값을 토대로 상기 손가락 여부를 판단하고,
    상기 손가락 외에 다른 이물질이 포함되어 있는 경우, 인조 지문으로 판단하는
    3차원 형상 측정 장치.
PCT/KR2015/000210 2014-01-10 2015-01-08 3차원 형상측정장치 및 방법 WO2015105360A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/110,494 US10417472B2 (en) 2014-01-10 2015-01-08 Device and method for measuring three-dimensional shape
CN201580003909.5A CN105917358B (zh) 2014-01-10 2015-01-08 三维形状测定装置及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0003407 2014-01-10
KR20140003407 2014-01-10

Publications (1)

Publication Number Publication Date
WO2015105360A1 true WO2015105360A1 (ko) 2015-07-16

Family

ID=53524132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000210 WO2015105360A1 (ko) 2014-01-10 2015-01-08 3차원 형상측정장치 및 방법

Country Status (4)

Country Link
US (1) US10417472B2 (ko)
KR (1) KR101736266B1 (ko)
CN (1) CN105917358B (ko)
WO (1) WO2015105360A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067270A1 (zh) * 2015-10-19 2017-04-27 广东欧珀移动通信有限公司 指纹图像的识别的方法、装置及终端
CN110081832A (zh) * 2019-04-12 2019-08-02 佛山科学技术学院 逻辑投影成像测量非透明物体结构参数的方法及装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6319395B2 (ja) * 2016-10-14 2018-05-09 オムロン株式会社 3次元測定装置および3次元測定方法
DE102017108193A1 (de) * 2017-04-18 2018-10-18 Rowiak Gmbh OCT-Bilderfassungvorrichtung
FR3066294B1 (fr) * 2017-05-10 2019-06-28 Idemia Identity And Security Dispositif de capture d'empreintes
FR3067493B1 (fr) * 2017-06-07 2021-07-16 Safran Identity & Security Procede de detection d'une fausse empreinte
JP6897398B2 (ja) * 2017-07-31 2021-06-30 セイコーエプソン株式会社 三次元形状測定装置、ロボットシステム、及び三次元形状測定方法
KR102545980B1 (ko) 2018-07-19 2023-06-21 액티브 서지컬, 인크. 자동화된 수술 로봇을 위한 비전 시스템에서 깊이의 다중 모달 감지를 위한 시스템 및 방법
KR102668223B1 (ko) * 2018-09-04 2024-05-23 삼성전자주식회사 초음파 방식 인 디스플레이 지문 센서를 포함하는 전자 장치 및 그의 동작 방법
CN109858418B (zh) * 2019-01-23 2021-10-15 上海思立微电子科技有限公司 指纹图像的处理方法和装置
JP2022526626A (ja) 2019-04-08 2022-05-25 アクティブ サージカル, インコーポレイテッド 医療撮像のためのシステムおよび方法
CN109900223B (zh) * 2019-04-18 2021-10-08 盎锐(上海)信息科技有限公司 用于投影光栅建模的成像方法及装置
CN114599263A (zh) 2019-08-21 2022-06-07 艾科缇弗外科公司 用于医疗成像的系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351098A (ja) * 2000-06-05 2001-12-21 Nec Corp 指紋入力装置
KR20050020327A (ko) * 2003-08-22 2005-03-04 주식회사 우량정보기술 회절격자판을 이용한 지문인식장치
KR200399917Y1 (ko) * 2005-08-09 2005-11-01 이재인 지문인식부를 가지는 체지방 측정기
KR20100066192A (ko) * 2008-12-09 2010-06-17 국방부 군비국 중산 과학 연구원 광 스펙클들을 위한 대면적의 비왜곡 이미징 장치 및 그의 방법
JP2013022338A (ja) * 2011-07-25 2013-02-04 Fujitsu Ltd 生体成分測定装置及び生体成分測定方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648717A (en) * 1984-02-06 1987-03-10 Robotic Vision Systems, Inc. Method of three-dimensional measurement with few projected patterns
DE4007500A1 (de) * 1990-03-09 1991-09-12 Zeiss Carl Fa Verfahren und vorrichtung zur beruehrungslosen vermessung von objektoberflaechen
JP5356650B2 (ja) * 2004-01-15 2013-12-04 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド 三次元ビデオスキャナ
KR100714280B1 (ko) * 2006-04-27 2007-05-02 삼성전자주식회사 오버레이 계측설비 및 그를 이용한 오버레이 계측방법
US7791734B2 (en) * 2006-05-02 2010-09-07 Lawrence Livermore National Security, Llc High-resolution retinal imaging using adaptive optics and Fourier-domain optical coherence tomography
US7995832B2 (en) * 2007-01-11 2011-08-09 Kla-Tencor Corporation Photomask inspection and verification by lithography image reconstruction using imaging pupil filters
US7327859B1 (en) * 2007-02-14 2008-02-05 Lam Ko Chau Methods and systems for automated fingerprint recognition
US8948851B2 (en) * 2009-01-20 2015-02-03 The Trustees Of Dartmouth College Method and apparatus for depth-resolved fluorescence, chromophore, and oximetry imaging for lesion identification during surgery
DE102010064593A1 (de) 2009-05-21 2015-07-30 Koh Young Technology Inc. Formmessgerät und -verfahren
JP5409263B2 (ja) * 2009-10-28 2014-02-05 京セラ株式会社 携帯電子機器及び携帯電話機
US8514284B2 (en) * 2009-12-17 2013-08-20 Raytheon Company Textured pattern sensing and detection, and using a charge-scavenging photodiode array for the same
US20110175981A1 (en) * 2010-01-19 2011-07-21 Chun-Hung Lai 3d color image sensor
US8660324B2 (en) * 2010-03-29 2014-02-25 Raytheon Company Textured pattern sensing using partial-coherence speckle interferometry
US8366273B2 (en) * 2011-01-31 2013-02-05 National Chiao Tung University Iris image definition estimation system using the astigmatism of the corneal reflection of a non-coaxial light source
US10012953B2 (en) * 2011-12-13 2018-07-03 Canon Kabushiki Kaisha Method of reconstructing a holographic image and apparatus therefor
CN102589476B (zh) * 2012-02-13 2014-04-02 天津大学 高速扫描整体成像三维测量方法
JP6005750B2 (ja) * 2012-08-28 2016-10-12 株式会社日立製作所 認証装置、及び認証方法
JP6248533B2 (ja) * 2013-10-22 2017-12-20 富士通株式会社 画像処理装置、画像処理方法および画像処理プログラム
EP2879004A1 (en) * 2013-12-02 2015-06-03 IMEC vzw Apparatus and method for performing in-line lens-free digital holography of an object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351098A (ja) * 2000-06-05 2001-12-21 Nec Corp 指紋入力装置
KR20050020327A (ko) * 2003-08-22 2005-03-04 주식회사 우량정보기술 회절격자판을 이용한 지문인식장치
KR200399917Y1 (ko) * 2005-08-09 2005-11-01 이재인 지문인식부를 가지는 체지방 측정기
KR20100066192A (ko) * 2008-12-09 2010-06-17 국방부 군비국 중산 과학 연구원 광 스펙클들을 위한 대면적의 비왜곡 이미징 장치 및 그의 방법
JP2013022338A (ja) * 2011-07-25 2013-02-04 Fujitsu Ltd 生体成分測定装置及び生体成分測定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017067270A1 (zh) * 2015-10-19 2017-04-27 广东欧珀移动通信有限公司 指纹图像的识别的方法、装置及终端
US10572714B2 (en) 2015-10-19 2020-02-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Fingerprint image recognition method, apparatus and terminal
US10755076B2 (en) 2015-10-19 2020-08-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Fingerprint image recognition method, apparatus and terminal
CN110081832A (zh) * 2019-04-12 2019-08-02 佛山科学技术学院 逻辑投影成像测量非透明物体结构参数的方法及装置

Also Published As

Publication number Publication date
US10417472B2 (en) 2019-09-17
CN105917358A (zh) 2016-08-31
KR101736266B1 (ko) 2017-05-17
KR20150083794A (ko) 2015-07-20
CN105917358B (zh) 2020-03-24
US20160335472A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
WO2015105360A1 (ko) 3차원 형상측정장치 및 방법
JP6523925B2 (ja) 生体情報を用いた認証装置及び認証方法
US10659456B2 (en) Method, device and computer program for authenticating a user
Labati et al. Toward unconstrained fingerprint recognition: A fully touchless 3-D system based on two views on the move
WO2016084214A1 (ja) 血管画像撮影装置および個人認証システム
WO2011093538A1 (en) Iris scanning apparatus employing wide-angle camera, for identifying subject, and method thereof
JP4308220B2 (ja) 個人認識装置
KR20120019410A (ko) 제스처 기반 바이오메트릭 시스템의 방법 및 장치
US9100582B2 (en) Image capturing method and image capturing apparatus for illuminating subject
JP2010250466A (ja) 個人認証装置
CN105763779A (zh) 一种电子设备及提示方法
CN109447052A (zh) 一种可精确定位手掌位置的掌静脉识别装置及其实现方法
JP4802121B2 (ja) 生体認証装置および生体認証装置を用いた認証方法
JP2020129175A (ja) 3次元情報生成装置、生体認証装置および3次元画像生成装置
KR20120035964A (ko) 생체 정보 수집 장치 및 방법
KR101044079B1 (ko) 광각 카메라를 사용한 타인 인증용 홍채 인식 장치 및 방법
KR101547659B1 (ko) 손가락 정맥 스캐닝을 이용하는 생체 인증 장치 및 이를 구비한 단말기
KR20140133762A (ko) 스마트폰의 근거리 홍채 촬영용 카메라를 이용한 홍채 인식 방법 및 장치
US11869225B2 (en) Three-dimensional authentication device, three-dimensional authentication system, portable information terminal, and three-dimensional authentication method
JP2002000567A (ja) 瞳孔中心位置計測方法及び視点位置検出方法
CN110720897A (zh) 光学脉波影像量测仪及脉象量测方法
JP2010072693A (ja) 認証装置及び撮影装置
WO2015037797A1 (ko) 3차원 형상 측정 장치 및 방법
WO2018185992A1 (ja) 生体認証装置、及び方法
CN113678138A (zh) 能够提高图像数据质量的用于捕获人的身体部位的图像数据的生物特征成像设备和生物特征成像方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15735220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15110494

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15735220

Country of ref document: EP

Kind code of ref document: A1