WO2015105026A1 - 回転式熱処理炉 - Google Patents

回転式熱処理炉 Download PDF

Info

Publication number
WO2015105026A1
WO2015105026A1 PCT/JP2014/084539 JP2014084539W WO2015105026A1 WO 2015105026 A1 WO2015105026 A1 WO 2015105026A1 JP 2014084539 W JP2014084539 W JP 2014084539W WO 2015105026 A1 WO2015105026 A1 WO 2015105026A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
storage
hot air
furnace
fan
Prior art date
Application number
PCT/JP2014/084539
Other languages
English (en)
French (fr)
Inventor
悠輔 万代
司 岸村
犬塚史
Original Assignee
三建産業株式会社
中央精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三建産業株式会社, 中央精機株式会社 filed Critical 三建産業株式会社
Priority to CN201480070318.5A priority Critical patent/CN105849490B/zh
Priority to JP2015556776A priority patent/JP6145518B2/ja
Publication of WO2015105026A1 publication Critical patent/WO2015105026A1/ja
Priority to US15/198,681 priority patent/US10139164B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/02Rotary-drum furnaces, i.e. horizontal or slightly inclined of multiple-chamber or multiple-drum type
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0037Rotary furnaces with vertical axis; Furnaces with rotating floor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/14Rotary-drum furnaces, i.e. horizontal or slightly inclined with means for agitating or moving the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/30Arrangements of partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/06Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated
    • F27B9/10Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity heated without contact between combustion gases and charge; electrically heated heated by hot air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/14Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
    • F27B9/16Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a circular or arcuate path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/04Circulating atmospheres by mechanical means
    • F27D2007/045Fans

Definitions

  • the present invention relates to a rotary heat treatment furnace that heats an object to be heated such as an aluminum alloy by circulating hot air.
  • a heat treatment furnace such as a hot air circulation type or a multistage hearth rotary type has been used.
  • the former has the advantage that the temperature in the furnace can be reduced and the quality can be stabilized, and the latter can save space in the heat treatment facility.
  • the present applicant has already filed a patent application for a rotary heat treatment furnace combining such a hot air circulation type and a multistage hearth rotary type (see, for example, Patent Document 1).
  • the rotary heat treatment furnace 10 is provided with a hollow chamber C corresponding to the storage chamber 12a of the storage rotary body 12 disposed in the furnace body 11, and the center portion 12b Then, the hot air supplied from above is supplied from above to all the objects to be heated W through the hollow chamber C.
  • the hot air that heats the object to be heated W does not heat the other object to be heated W before the object to be heated W is heated.
  • the temperature of the hot air acting on the heated object W is substantially equal, and all the objects to be heated W can be heated uniformly.
  • a rotary heat treatment furnace in which hot air is applied to the object to be heated W from below is also disclosed (for example, see Patent Document 2).
  • the rotary heat treatment furnace 20 once sends hot air to the bottom of the furnace by a fan 24 provided at the upper part of the center, puts hot air into the storage chamber 22a located at the lowermost position, These are sent in sequence up to the storage chamber 22a located above. Then, the hot air is sent again to the furnace bottom by the fan 24.
  • a larger air volume and speed In order to distribute more to the heating zone than to the heat zone, it is necessary to provide a fixed inner cylinder at the center. As a result, there has been a problem that the structure of the rotary hearth becomes complicated.
  • the object of the present invention is to reduce the height of the furnace body without reducing the number of containment chambers in the height direction, and further, the structure of the rotary hearth is simple and the capacity of the fan can be suppressed. Is to provide a simple rotary heat treatment furnace.
  • a rotary heat treatment furnace (30) according to claim 1 of the present invention comprises a furnace body (31) whose inner part is divided into a first zone (P) and a second zone (Q). And a plurality of multi-stage storage chambers (32a) of substantially equal size partitioned by a radially extending side wall (32c), and a gap (32b) is formed in the central portion.
  • a storage rotator (32) which is substantially donut-shaped in plan view and is installed so as to straddle the first zone (P) and the second zone (Q) and is rotatably supported; and the storage rotator (32 ), A heating device (39) for heating the air in the furnace body (31), and the air heated by the heating device (39) for storing the rotating body (32).
  • Fan (34) sent as hot air to the furnace body (31)
  • a first partition wall (37) extending from the fan (34) to the storage rotating body (32), and the furnace body (individed into the first zone (P) and the second zone (Q) 31) a second partition wall (38) extending from the wall surface to the storage rotating body (32), an outer peripheral side of the storage chamber (32a) located in the first zone (P), and a blow of the fan (34).
  • the body (32) side portion is close to the other side wall (32c), and the first flow
  • the hot air from the fan (34) through (35) is sent from the outer peripheral side of the storage chamber (32a) located in the first zone (P) substantially horizontally to the gap (32b) side, and further Hot air is sent from the gap (32b) side substantially horizontally to the outer peripheral side of the storage chamber (32a) located in the second zone (Q), and the fan (34) is passed through the second flow path (36). It is characterized by returning to.
  • the rotary heat treatment furnace (30) wherein the storage chamber located in the first zone (P) is more than the number of the storage chambers (32a) located in the second zone (Q).
  • the first partition wall (37) and the second partition wall (38) are arranged so that the number of (32a) increases, and each of the storage chambers (32a) located in the first zone (P).
  • the volume and speed of hot air flowing into each of the storage chambers (32a) located in the second zone (Q) are increased from the volume and speed of hot air flowing into the storage room.
  • the rotary heat treatment furnace (30) is configured such that the loading / unloading port (41) for loading / unloading an object to / from the storage chamber (32a) in the first zone (P). It was provided in the wall surface of the said furnace main body (31) located in the most downstream of rotation of a rotary body (32).
  • the rotary heat treatment furnace (30) according to claim 4 is configured to prevent hot air from flowing into the storage chamber (32a) facing the carry-in / out port (41) upstream of the carry-in / out port (41).
  • a rectifying plate (42) for suppression is provided.
  • the rotary heat treatment furnace (30) according to claim 5 is configured such that the gap (32b) formed in the central portion of the storage rotating body (32) is formed by a heat source different from the heating device (39). (32b) A temperature raising device for raising the temperature of hot air sent to the second zone (Q) from the side is installed.
  • the rotary heat treatment furnace (30) wherein the temperature raising device is a heat supply pipe provided along a gap (32b) formed in a central portion of the storage rotating body (32). (50), a plurality of openings (51) are formed on the peripheral surface of the heat supply pipe (50) on the second zone (Q) side, and the gap (32b) is formed from the first zone (P).
  • a gas having a temperature higher than that of the hot air flowing into the furnace is supplied from the outside of the furnace body (31) to the second zone (Q) side through the heat supply pipe (50).
  • the rotary heat treatment furnace (30) according to claim 7, wherein the temperature raising device is connected to a solution furnace (60), and the high-temperature gas supplied from the outside of the furnace body (31) is It is an exhaust gas discharged from the solution furnace (60).
  • the storage chamber is partitioned by the side wall extending in the radial direction, and the inside of the furnace body is divided into the first zone and the second zone.
  • a first partition wall extending up to the first partition wall, a second partition wall extending from the wall surface of the furnace body to the storage rotator, a first flow path communicating the outer peripheral side of the storage chamber located in the first zone and the fan outlet, Since the second flow path that connects the outer peripheral side of the storage chamber located in the second zone and the suction port of the fan is provided, hot air is sent substantially horizontally from the outer peripheral side of the storage chamber located in the first zone to the gap side, Further, the hot air is sent substantially horizontally from the gap side to the outer peripheral side of the storage chamber located in the second zone.
  • the furnace main body can be transported without disassembling the other by simply removing minimum members such as a heating device such as a rotary drive device and a burner and a fan.
  • the hot air is sent from the first zone to the second zone, there is a fixed inner cylinder in the central portion of the storage rotating body for distributing the hot air from the fan, which was necessary in the conventional example, to the first zone and the second zone. It becomes unnecessary, and the structure of the rotary hearth can be simplified. Also, it is not necessary to select a fan with a large capacity. In addition, the heat loss is reduced because the height of the furnace body is low and the volume of the furnace body is small, leading to energy saving. Moreover, since the hot air whose temperature is not lowered is supplied to the storage chamber located in the first zone, there is little temperature variation in the plurality of storage chambers.
  • the number of storage chambers located in the first zone is greater than the number of storage chambers located in the second zone. Since the first partition wall and the second partition wall are arranged so as to increase in number, each of the storage chambers located in the second zone rather than the volume and speed of hot air flowing into each of the storage chambers located in the first zone The air volume and wind speed of hot air flowing into the air increases. Thereby, since the heat transfer coefficient in the second zone is increased, the object to be heated in the storage chamber in which the second zone is located can be rapidly heated.
  • the carry-in / out port for carrying in / out the object to be heated to / from the storage chamber is provided in the first zone. Since it provided in the wall surface of the furnace main body located in the most downstream of rotation of the storage rotation body in, the heat amount which leaks from a carrying in / out port can be suppressed. That is, in the first zone, the air volume and the wind speed of the hot air are lower than in the second zone, so that heat loss from the carry-in / out port when the heated object is carried in / out can be suppressed.
  • the hot air to the storage chamber facing the carry-out entrance is arranged upstream of the carry-out entrance. Since the baffle plate which suppresses inflow is provided, the heat loss from the carry-in / out port can be further suppressed, and the duct structure around the carry-in / out port becomes unnecessary.
  • a temperature raising device is installed in the gap formed in the central portion of the storage rotary body. Since the temperature of the hot air sent from the gap side to the second zone is raised by a heat source different from the heating device, the atmospheric temperature in the second zone becomes high, and the object to be heated in the storage chamber located in the second zone The temperature can be raised more rapidly.
  • the temperature raising device is provided along the gap formed in the central portion of the storage rotating body.
  • a plurality of openings are formed in the peripheral surface on the second zone side of the heat supply pipe, and a gas having a temperature higher than the temperature of the hot air flowing into the gap from the first zone is supplied from the outside of the furnace body. Since it supplies to the 2nd zone side through the opening part through the heat supply pipe
  • the control which sets the atmospheric temperature in a 2nd zone to desired temperature can be easily performed by changing the opening degree of the opening part formed in the heat supply pipe
  • the temperature raising device is connected to the solution furnace and the high temperature supplied from the outside of the furnace main body. Since the gas is exhaust gas discharged from the solution furnace, energy can be used effectively.
  • hot air is sent from the outer peripheral side of the storage chamber located in the first zone to the gap side substantially horizontally, and further, the hot air is located in the second zone from the gap side substantially horizontally.
  • the point sent to the outer peripheral side of the storage chamber is not described at all in Patent Documents 1 and 2 described above.
  • the rotary heat processing furnace 30 which concerns on embodiment of this invention is demonstrated.
  • the rotary heat treatment furnace 30 is a heat treatment furnace for performing a heat treatment on an object to be heated W such as an aluminum alloy, a furnace main body 31, a storage rotating body 32, a rotation driving device 33, and a burner 39 as a heating device.
  • the rotary heat processing furnace 30 which concerns on this embodiment has the characteristics in the direction and direction of the circulation of the hot air made to act on the to-be-heated material W especially.
  • the furnace body 31 mainly accommodates the retractable rotary body 32 and the fan 34, and is heat-insulated so that the heat in the furnace body 31 is difficult to escape to the outside.
  • a first partition wall 37 extending from the fan 34 to the storage rotator 32 and a second partition wall 38 extending from the wall surface of the furnace body 31 to the storage rotator 32 are provided.
  • the inside of the furnace body 31 is divided into a first zone P and a second zone Q by the first partition wall 37 and the second partition wall 38.
  • the first zone P here is on the outlet side of the fan 34
  • the second zone Q is on the inlet side of the fan 34.
  • the carrying-in / out opening 41 for carrying in / out the to-be-heated material W in the storage chamber 32a is a part located in the most downstream of the rotation of the storing rotary body 32 in the 1st zone P, and it leaves
  • the storage rotator 32 has a plurality of storage chambers 32a in the circumferential direction (eight in this case) and is formed in a multistage shape, and a gap 32b is formed in the center, and has a substantially donut shape in plan view.
  • the storage rotary body 32 is installed inside the furnace body 31 so as to straddle the first zone P and the second zone Q (between the first partition wall 37 and the second partition wall 38), and is rotatable. Supported. Specifically, the storage rotator 32 is supported in a state of hanging from the rotation drive device 33 so as to be able to rotate smoothly. That is, the upper end and the lower end of the storage rotator 32 are not in contact with the furnace body 31, or even if they are in contact, the frictional resistance is small.
  • Each of the storage chambers 32a has a fan shape in plan view having substantially the same size, and is partitioned in the circumferential direction by a side wall 32c extending in the radial direction, and stores the article to be heated W therein.
  • the storage rotator 32 has the first partition wall 37 so that there are six storage chambers 32a in the first zone P in plan view and two storage chambers 32a in the second zone Q in plan view. And the second partition wall 38.
  • the storage rotator 32 rotates and the portion of the first partition wall 37 on the storage rotator 32 side approaches one outer peripheral side of the side wall 32c of the storage rotator 32, the storage of the second partition wall 38 is performed.
  • the part on the rotating body 32 side is close to another outer peripheral side of the side wall 32c of the storing rotating body 32. That is, the first partition wall 37 and the one side wall 32c form a series of partition walls, and the second partition wall 38 and the other one side wall 32c also form a series of partition walls.
  • the series of partition walls divide the interior of the furnace body 31 into a first zone P and a second zone Q.
  • the rotation drive device 33 is a power source that rotates the storage rotator 32 and is mounted on the furnace body 31.
  • the rotation drive device 33 rotates the storage rotator 32 counterclockwise in plan view.
  • the rotation driving device 33 is stopped.
  • the rotation driving device 33 rotates the storage rotating body 32 by 1/8 rotation and then stops the rotation.
  • the storage rotator 32 is rotated 1/8 again.
  • the rotation drive device 33 repeats the operation and the stop, and rotates the retractable rotating body 32 intermittently.
  • the fan 34 is provided at the inner end of the furnace body 31, and on the side of the storage rotating body 32, a burner 39 that heats the air in the furnace body 31 (if the air in the furnace body 31 can be heated).
  • a burner 39 that heats the air in the furnace body 31 (if the air in the furnace body 31 can be heated).
  • other heat sources such as a heater may be used. That is, the blower outlet of the fan 34 faces the retracting rotary body 32 side, and the suction port of the fan 34 faces the burner 39 side.
  • an axial fan, a sirocco radical fan, or the like can be used as the fan 34.
  • the height position of the outlet of the fan 34 is approximately the center in the height direction of the storage rotator 32.
  • the first flow path 35 communicates the outer peripheral side of the storage chamber 32 a located in the first zone P and the blower outlet of the fan 34.
  • the 2nd flow path 36 connects the outer peripheral side of the storage chamber 32a located in the 2nd zone Q, and the suction inlet of the fan 34. As shown in FIG.
  • hot air from the fan 34 is sent to the storage rotator 32 via the first flow path 35.
  • the hot air is sent substantially horizontally from the outer peripheral side of the storage chamber 32a located in the first zone P to the gap 32b side. Further, the hot air is sent from the gap 32b side to the outer peripheral side of the storage chamber 32a located in the second zone Q substantially horizontally. Then, the hot air returns to the fan 34 through the second flow path 36.
  • hot air is not sent substantially horizontally across the first flow path 35 and the second flow path 36, but when the hot air passes through the storage chamber 32a, the gap 32b side or the gap 32b side from the outer periphery side. That is, the hot air flows substantially horizontally from the outer circumference side to the outer circumference side.
  • the number of storage chambers 32a located in the first zone P (six here) is larger than the number of storage chambers 32a located in the second zone Q (here, two).
  • the amount and speed of hot air flowing into each of the storage chambers 32a located in the second zone Q are greater than the amount and speed of hot air flowing into the respective storage chambers 32a. That is, the second zone Q is a heating zone that heats the article to be heated W and raises the temperature, and the first zone P is a soaking zone that maintains the raised temperature.
  • the storage chamber 32a is partitioned by the radially extending side wall 32c, and the inside of the furnace body 31 is divided into the first zone P and the second zone Q. 34, the first partition wall 37 extending from the storage body 32 to the storage rotor 32, the second partition wall 38 extending from the wall surface of the furnace body 31 to the storage rotor 32, the outer peripheral side of the storage chamber 32a located in the first zone P, and the fan 34.
  • the air is sent from the outer peripheral side of the storage chamber 32a located at P substantially horizontally to the gap 32b side, and the hot air is sent from the gap 32b side substantially horizontally to the outer circumference side of the storage chamber 32a located in the second zone Q. That is, since the hot air is sent substantially horizontally to the storage chamber 32a, a space for a hot air flow path is unnecessary above and below the central portion of the storage rotator 32.
  • the height of the furnace body 31 can be reduced without reducing the number of storage chambers 32a in the height direction. Therefore, the furnace body 31 can be transported by simply removing the minimum members such as the rotation drive device 33 and the fan 34 without disassembling the others.
  • the central portion of the storage rotator 32 for distributing the hot air from the fan 34 which was necessary in the conventional example, to the first zone P and the second zone Q. Therefore, the structure of the rotary hearth can be simplified. Further, it is not necessary to select a fan 34 having a large capacity. Moreover, since the height of the furnace body 31 is low and the volume of the furnace body 31 is small, heat loss is reduced, which leads to energy saving. In addition, since the hot air whose temperature is not lowered is supplied to the storage chamber 32a located in the first zone P, there is little temperature variation in the plurality of storage chambers 32a.
  • the first partition wall 37 and the second partition wall 38 are arranged so that the number of storage chambers 32a located in the first zone P is larger than the number of storage chambers 32a located in the second zone Q, the first The amount and speed of hot air flowing into each of the storage chambers 32a located in the second zone Q are greater than the amount and speed of hot air flowing into each of the storage chambers 32a located in one zone P. Thereby, since the heat transfer coefficient in the second zone Q is increased, the object to be heated W in the storage chamber 32a where the second zone Q is located can be rapidly heated.
  • the loading / unloading port 41 for loading / unloading the article W to / from the storage chamber 32a is provided on the wall surface of the furnace main body 31 located on the most downstream side of the rotation of the storage rotating body 32 in the first zone P, the loading / unloading port is provided.
  • the amount of heat leaking from 41 can be suppressed. That is, in the first zone P, the hot air volume and speed are lower than in the second zone Q, so that heat loss from the carry-in / out port 41 when the heated object W is carried in / out can be suppressed.
  • the number of storage chambers 32a located in the first zone P is six in plan view, and the number of storage chambers 32a located in the second zone Q is two in plan view.
  • the number of storage chambers 32a located in the first zone P should be larger than the number of storage chambers 32a located in the second zone Q.
  • the number of the storage chambers 32a located in the first zone P is made larger than the number of the storage chambers 32a located in the second zone Q, so that the diaphragm is substantially provided. It is good also as a nozzle structure (diaphragm) by forming.
  • carry-in / out entrance 41 is provided on the wall surface of the furnace body 31 located at the most downstream side of the rotation of the storage rotator 32 in the first zone P, it is not limited to this position.
  • a rectifying plate 42 that suppresses inflow of hot air into the storage chamber 32 a facing the carry-in / out entrance 41 may be provided on the upstream side of the carry-in / out entrance 41 with respect to the storage rotator 32.
  • the rectifying plate 42 may be appropriately disposed in the first flow path 35 in order to control the flow rate and flow velocity of hot air.
  • the second partition wall 38 is provided so as to protrude from the wall surface of the furnace body 31 toward the storage rotor 32 side, but is not limited to this, and constitutes a series of partition walls together with one of the side walls 32c to form the furnace body. What is necessary is just to be able to divide the inside of 31 into the first zone P and the second zone Q.
  • retractable rotary body 32 is a hanging type, it is not limited to this.
  • air heated by a heating device such as the burner 39 is sent as hot air by the fan 34 provided at the inner end of the furnace main body 31 to the revolving rotator 32 via the first flow path 35.
  • the storage chamber 32a located in the first zone P is sent to the storage chamber 32a located in the second zone Q.
  • the burner 39 or the like is heated in the gap 32b formed in the central portion of the storage rotation body 32.
  • a temperature raising device that raises the temperature of hot air sent from the gap 32b side to the second zone Q by a heat source different from the device can also be installed. More specifically, for example, as shown in FIGS.
  • a heat supply pipe 50 is installed along a gap 32 b formed in the central portion of the storage rotator 32 to perform the storage rotation. You may make it take in a hot air directly into the inside of the body 32.
  • the heat supply pipe 50 is a cylindrical body extending vertically, and as shown in FIGS. 7 and 8, a plurality of openings 51 are formed only on the peripheral surface on the second zone Q side, and flows from the first zone P into the gap 32b.
  • a gas having a temperature higher than that of the hot air is supplied from the outside of the furnace body 31 to the second zone Q side through the heat supply pipe 50.
  • approximately rectangular openings 51 are provided in four places in the left-right direction and five steps in the up-down direction, for a total of 20 places, all of which are on the second zone Q side, that is, the first partition wall 37 and the second partition. It is provided only on the narrower region (region on the second flow path 36 side) partitioned by the wall 38.
  • the amount of hot air discharged from the opening 51 may be adjusted by changing the opening of the opening 51 by providing a shutter, a valve or the like in the opening 51. According to this, the control which sets the atmospheric temperature in the 2nd zone Q to desired temperature can be performed easily.
  • the heat supply pipe 50 is connected to a solution furnace 60 located outside the rotary heat treatment furnace 30, and hot air due to the heat of exhaust gas discharged from the solution furnace 60 is passed through the heat supply pipe 50. Thus, it is adapted to be taken into the storage rotary body 32 of the rotary heat treatment furnace 30.
  • FIG. 9 shows an example of the ambient temperature of the first zone P and the second zone Q and the temperature change of the object to be heated W when the heat supply pipe 50 is not installed and when the heat supply pipe 50 is installed.
  • the ambient temperature of the second zone Q in the present embodiment is about 143 to 153 degrees (° C.) when the heat supply pipe 50 is not installed, but about 155 to 153 ° C. when the heat supply pipe 50 is installed. It was able to be 165 degree

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

高さ方向について格納室の数を減らすことなく炉本体の高さを低くし、しかも回転炉床の構造が単純でファンの容量を抑制可能とすることを課題とする本願発明の回転式熱処理炉は、炉本体(31)と、径方向に延びる側壁(32c)で仕切られた略等しい大きさの格納室(32a)が周方向に複数かつ多段状に形成されるとともに中央部には空隙(32b)が形成されてなる平面視略ドーナツ状で、第一ゾーン(P)と第二ゾーン(Q)を跨ぐように設置されしかも回転自在に支持される格納回転体(32)と、格納回転体(32)を回転させる回転駆動装置(33)と、炉本体(31)の内側を第一ゾーン(P)と第二ゾーン(Q)に分断する第一仕切壁(37)及び第二仕切壁(38)と、第一ゾーン(P)に位置する格納室(32a)の外周側とファン(34)の吹出口とを連通する第一流路(35)と、第二ゾーン(Q)に位置する格納室(32a)の外周側とファン(34)の吸込口とを連通する第二流路(36)を備える。

Description

回転式熱処理炉
 本発明は、熱風を循環させてアルミニウム合金などの被加熱物に熱処理を施す回転式熱処理炉に関するものである。
 従来、例えば、アルミニウム合金等の被加熱物に熱処理を施すために、熱風循環式や多段型炉床回転式といった熱処理炉が使用されている。前者は、炉内温度のバラツキを低減して品質の安定化を図ることができ、後者は、熱処理施設の省スペース化を図ることができるといった利点がある。
 こうした熱風循環式と多段型炉床回転式を組み合わせた回転式熱処理炉について、本出願人は既に特許出願を行っている(例えば、特許文献1参照)。
 この回転式熱処理炉10は、図4に示すように、炉本体11内に配置された格納回転体12の格納室12aに対応して中空のチャンバーCが設けられており、中央部12bに対して上方から供給した熱風を中空のチャンバーCを介して、全ての被加熱物Wに対して上方から熱風を供給するものである。
 特許文献1に記載の回転式熱処理炉10によると、被加熱物Wを加熱する熱風は、その被加熱物Wを加熱する前に他の被加熱物Wを加熱していないので、それぞれの被加熱物Wに作用する熱風の温度は略等しく、全ての被加熱物Wを均等に加熱することができる。
 またこれとは別に、被加熱物Wに下方から熱風を当てる回転式熱処理炉も開示されている(例えば、特許文献2参照)。
 この回転式熱処理炉20は、図5に示すように、中央部上方に設けられたファン24により一旦熱風を炉底まで送り、最も下方に位置する格納室22aに熱風を入れ、その熱風を最も上方に位置する格納室22aまで順に送るものである。そして、その熱風は再びファン24により炉底まで送られる。
特開2011-7471号公報 特開2004-257658号公報
 しかしながら、これらの発明では中央部において上方から下方に熱風を送るため、その中央部の上方や下方に熱風の流路となるスペースが必要である。つまり、そのスペースの分だけ炉本体の高さが高くなってしまう。
 したがって、炉本体の大きさによっては、生産工場から納品場所まで輸送するためには炉本体を分割構造としなければ輸送できないという問題がある。
 また、被加熱物を加熱して昇温させる加熱ゾーンは、昇温した状態を保つ均熱ゾーンよりも多くの熱量、すなわち大きな風量・風速を必要とするので、ファンから吐出される熱風を均熱ゾーンよりも加熱ゾーンに多く分配するために中央部に固定式の内筒を設ける必要がある。その結果、回転炉床の構造が複雑になってしまう問題があった。
 一方、固定式の内筒を設けずに均熱ゾーンの風量・風速を加熱ゾーンに合わせることも考えられるが、そうすると均熱ゾーンには必要以上の風量・風速を供給することになり、ファンの容量が大きくなってしまう問題もある。
 そこで、本発明の目的とするところは、高さ方向について格納室の数を減らすことなく炉本体の高さを低くすることができ、しかも回転炉床の構造が単純でファンの容量も抑制可能な回転式熱処理炉を提供することにある。
 上記の目的を達成するために、本発明の請求項1に記載の回転式熱処理炉(30)は、内側が第一ゾーン(P)と第二ゾーン(Q)に分断された炉本体(31)と、径方向に延びる側壁(32c)で仕切られた略等しい大きさの格納室(32a)が周方向に複数かつ多段状に形成されるとともに中央部には空隙(32b)が形成されてなる平面視略ドーナツ状で、前記第一ゾーン(P)と前記第二ゾーン(Q)を跨ぐように設置されしかも回転自在に支持される格納回転体(32)と、前記格納回転体(32)を回転させる回転駆動装置(33)と、前記炉本体(31)内の空気を加熱する加熱装置(39)と、前記加熱装置(39)により加熱された空気を前記格納回転体(32)に熱風として送るファン(34)と、前記炉本体(31)の内側を前記第一ゾーン(P)と前記第二ゾーン(Q)に分断する、前記ファン(34)から前記格納回転体(32)まで延びる第一仕切壁(37),及び前記炉本体(31)の壁面から前記格納回転体(32)まで延びる第二仕切壁(38)と、前記第一ゾーン(P)に位置する前記格納室(32a)の外周側と前記ファン(34)の吹出口とを連通する第一流路(35)と、前記第二ゾーン(Q)に位置する前記格納室(32a)の外周側と前記ファン(34)の吸込口とを連通する第二流路(36)を備え、前記第一仕切壁(37)の前記格納回転体(32)側の部位が前記側壁(32c)の一つと近接するときに、前記第二仕切壁(38)の前記格納回転体(32)側の部位が前記側壁(32c)の他の一つと近接し、前記第一流路(35)を介した前記ファン(34)からの熱風を、前記第一ゾーン(P)に位置する前記格納室(32a)の外周側から略水平に前記空隙(32b)側へ送り、さらにその熱風を前記空隙(32b)側から略水平に前記第二ゾーン(Q)に位置する前記格納室(32a)の外周側へ送り、前記第二流路(36)を介して前記ファン(34)まで戻すことを特徴とする。
 また、請求項2に記載の回転式熱処理炉(30)は、前記第二ゾーン(Q)に位置する前記格納室(32a)の数よりも前記第一ゾーン(P)に位置する前記格納室(32a)の数が多くなるように前記第一仕切壁(37)及び前記第二仕切壁(38)を配置して、前記第一ゾーン(P)に位置する前記格納室(32a)のそれぞれに流入する熱風の風量及び風速よりも前記第二ゾーン(Q)に位置する前記格納室(32a)のそれぞれに流入する熱風の風量及び風速を増大したことを特徴とする。
 また、請求項3に記載の回転式熱処理炉(30)は、前記格納室(32a)に被加熱物を搬出入するための搬出入口(41)を、前記第一ゾーン(P)における前記格納回転体(32)の回転の最下流に位置する前記炉本体(31)の壁面に設けたことを特徴とする。
 また、請求項4に記載の回転式熱処理炉(30)は、前記搬出入口(41)の上流側に、前記搬出入口(41)に相対向する前記格納室(32a)への熱風の流入を抑制する整流板(42)を設けたことを特徴とする。
 また、請求項5に記載の回転式熱処理炉(30)は、前記格納回転体(32)の中央部に形成された空隙(32b)に、前記加熱装置(39)とは異なる熱源によって前記空隙(32b)側から前記第二ゾーン(Q)へ送られる熱風の温度を上昇させる昇温装置を設置したことを特徴とする。
 また、請求項6に記載の回転式熱処理炉(30)は、前記昇温装置は、前記格納回転体(32)の中央部に形成された空隙(32b)に沿って設けられた熱供給管(50)を備え、該熱供給管(50)の前記第二ゾーン(Q)側の周面には開口部(51)が複数形成され、前記第一ゾーン(P)から前記空隙(32b)に流入する熱風の温度よりも高温の気体を前記炉本体(31)の外部から前記熱供給管(50)を通じて前記第二ゾーン(Q)側へ供給するようにしたことを特徴とする。
 また、請求項7に記載の回転式熱処理炉(30)は、前記昇温装置は溶体化炉(60)に接続され、前記炉本体(31)の外部から供給される高温の気体は、前記溶体化炉(60)から排出される排ガスであることを特徴とする。
 ここで、上記括弧内の記号は、図面および後述する発明を実施するための形態に掲載された対応要素または対応事項を示す。
 本発明の請求項1に記載の回転式熱処理炉によれば、径方向に延びる側壁で格納室が仕切られ、炉本体の内側を第一ゾーンと第二ゾーンに分断する、ファンから格納回転体まで延びる第一仕切壁,及び炉本体の壁面から格納回転体まで延びる第二仕切壁と、第一ゾーンに位置する格納室の外周側とファンの吹出口とを連通する第一流路と、第二ゾーンに位置する格納室の外周側とファンの吸込口とを連通する第二流路を備えるので、熱風が第一ゾーンに位置する格納室の外周側から略水平に空隙側に送られ、さらにその熱風が空隙側から略水平に第二ゾーンに位置する格納室の外周側へ送られる。
 つまり、格納室に対して略水平に熱風を送るので、格納回転体の中央部の上方や下方に熱風の流路となるスペースが不要である。その結果、高さ方向について格納室の数を減らすことなく炉本体の高さを低くすることができる。よって、回転駆動装置やバーナなどの加熱装置やファンといった最低限の部材を取外すだけで、他は分解せずに炉本体を輸送可能となる。
 また、第一ゾーンから第二ゾーンに熱風を送るので、従来例では必要であったファンからの熱風を第一ゾーンと第二ゾーンに分配するための格納回転体中央部の固定式内筒が不要になり、回転炉床の構造を単純化可能である。また、ファンも容量が大きなものを選択する必要がない。
 しかも、炉本体の高さが低く炉本体の体積が小さいことで熱損失が少なくなるので、省エネにつながる。
 また、第一ゾーンに位置する格納室には温度低下していない熱風が供給されるので、この複数の格納室において温度ばらつきが少ない。
 また、請求項2に記載の回転式熱処理炉によれば、請求項1に記載の発明の作用効果に加え、第二ゾーンに位置する格納室の数よりも第一ゾーンに位置する格納室の数が多くなるように第一仕切壁及び第二仕切壁を配置したので、第一ゾーンに位置する格納室のそれぞれに流入する熱風の風量及び風速よりも第二ゾーンに位置する格納室のそれぞれに流入する熱風の風量及び風速が増大する。これにより、第二ゾーンにおける熱伝達率が上がるので、第二ゾーンの位置する格納室内の被加熱物を急速昇温することができる。
 また、請求項3に記載の回転式熱処理炉によれば、請求項1又は2に記載の発明の作用効果に加え、格納室に被加熱物を搬出入するための搬出入口を、第一ゾーンにおける格納回転体の回転の最下流に位置する炉本体の壁面に設けたので、搬出入口から漏れる熱量を抑制することができる。
 すなわち、第一ゾーンでは第二ゾーンに比較して熱風の風量及び風速が低いので、被加熱物の搬出入時における搬出入口からの熱損失を抑制できる。
 また、請求項4に記載の回転式熱処理炉によれば、請求項1乃至3に記載の発明の作用効果に加え、搬出入口の上流側に、搬出入口に相対向する格納室への熱風の流入を抑制する整流板を設けたので、搬出入口からの熱損失をさらに抑制可能で、搬出入口まわりのダクト構造が不要となる。
 さらに、請求項5に記載の回転式熱処理炉によれば、請求項1乃至4に記載の発明の作用効果に加え、格納回転体の中央部に形成された空隙に昇温装置を設置して、加熱装置とは異なる熱源によって空隙側から第二ゾーンへ送られる熱風の温度を上昇させるようにしたので、第二ゾーンにおける雰囲気温度が高くなり、第二ゾーンに位置する格納室内の被加熱物をより急速に昇温することができる。
 また、請求項6に記載の回転式熱処理炉によれば、請求項5に記載の発明の作用効果に加え、昇温装置は、格納回転体の中央部に形成された空隙に沿って設けられた熱供給管を備えるとともにその熱供給管の第二ゾーン側の周面には開口部が複数形成され、第一ゾーンから空隙に流入する熱風の温度よりも高温の気体を炉本体の外部から熱供給管を通じて開口部を介して第二ゾーン側へ供給するようにしたので、簡易な構成で第二ゾーンにおける雰囲気温度を急速に昇温させることができる。
 また、熱供給管に形成された開口部の開度を変えて熱風の量を調整することで、第二ゾーンにおける雰囲気温度を所望の温度に設定する制御を容易に行うことができる。
 また、請求項7に記載の回転式熱処理炉によれば、請求項6に記載の発明の作用効果に加え、昇温装置は溶体化炉に接続され、炉本体の外部から供給される高温の気体はその溶体化炉から排出される排ガスであるので、エネルギーの有効利用が図れる。
 なお、本発明の回転式熱処理炉のように、熱風を第一ゾーンに位置する格納室の外周側から略水平に空隙側に送り、さらにその熱風を空隙側から略水平に第二ゾーンに位置する格納室の外周側へ送る点は、上述した特許文献1及び2には全く記載されていない。
本発明の実施形態に係る回転式熱処理炉を示す平面図である。 本発明の実施形態に係る回転式熱処理炉を示す縦断面図である。 本発明の他の実施形態に係る回転式熱処理炉を示す平面図である。 従来例に係る回転式熱処理炉を示す縦断面図である。 他の従来例に係る回転式熱処理炉を示す縦断面図である。 本発明の実施形態に係る別の回転式熱処理炉を示す平面図である。 本発明の実施形態に係る別の回転式熱処理炉を示す縦断面図である。 図7に示す熱供給管の拡大断面図である。 図7に示す熱供給管から熱風を排出することによる温度上昇を示すグラフである。
 図1及び図2を参照して、本発明の実施形態に係る回転式熱処理炉30を説明する。
 この回転式熱処理炉30は、アルミニウム合金等の被加熱物Wに熱処理を施すための熱処理炉であり、炉本体31と、格納回転体32と、回転駆動装置33と、加熱装置としてのバーナ39と、ファン34と、第一流路35と、第二流路36を備える。
 そして、本実施形態に係る回転式熱処理炉30は、特に被加熱物Wに作用させる熱風の循環の向き・方向に特徴を有する。
 炉本体31は、主に格納回転体32とファン34とを収容し、炉本体31内の熱が外部に逃げ難くなるように断熱処理されている。
 炉本体31の内部には、ファン34から格納回転体32まで延びる第一仕切壁37と、炉本体31の壁面から格納回転体32まで延びる第二仕切壁38を備える。この第一仕切壁37及び第二仕切壁38によって、炉本体31の内側が第一ゾーンPと第二ゾーンQに分断されている。ここでいう第一ゾーンPはファン34の吹出口側であって、第二ゾーンQはファン34の吸込口側である。
 また、第一仕切壁37及び第二仕切壁38は炉床から天井まで延びているので、第一仕切壁37や第二仕切壁38を直接越えて熱風が第一ゾーンPと第二ゾーンQとの間を行き来することはない。
 そして、格納室32aに被加熱物Wを搬出入するための搬出入口41を、第一ゾーンPにおける格納回転体32の回転の最下流に位置する部位であって、ファン34の吹出口から離れた炉本体31の壁面に設けた。
 格納回転体32は、格納室32aが周方向に複数(ここでは八つ)かつ多段状に形成されるとともに中央部には空隙32bが形成されてなり、平面視略ドーナツ状である。この格納回転体32は、炉本体31の内側に第一ゾーンPと第二ゾーンQを跨ぐように(第一仕切壁37と第二仕切壁38との間に)設置され、しかも回転自在に支持される。
 詳しくは、格納回転体32は円滑に回転可能なように回転駆動装置33からぶら下がった状態で支持されている。つまり、格納回転体32の上端や下端は炉本体31と接触していないか、接触していても摩擦抵抗が小さい。
 また格納室32aは、それぞれが略等しい大きさの平面視扇形であって、径方向に延びる側壁32cで周方向が仕切られており、内部に被加熱物Wを格納する。
 そして、第一ゾーンPに位置する格納室32aが平面視で六つ、第二ゾーンQに位置する格納室32aが平面視で二つになるように、格納回転体32が第一仕切壁37や第二仕切壁38に対して配置されている。
 ここで、格納回転体32が回転し、第一仕切壁37の格納回転体32側の部位が格納回転体32の側壁32cの一つの外周側と近接するときに、第二仕切壁38の格納回転体32側の部位が格納回転体32の側壁32cの他の一つの外周側と近接する。
 つまり、第一仕切壁37と一つの側壁32cが一連の仕切壁となり、第二仕切壁38と他の一つの側壁32cによっても一連の仕切壁が構成される。この一連の仕切壁によって、炉本体31の内部は第一ゾーンPと第二ゾーンQに分断される。
 回転駆動装置33は、格納回転体32を回転させる動力源であり、炉本体31に上載される。
 本実施形態においては、回転駆動装置33は格納回転体32を平面視反時計回りに回転させる。
 一つの格納室32aが搬出入口41の正面となる状態では、回転駆動装置33は停止している。そして、所定時間の経過後に回転駆動装置33は1/8回転だけ格納回転体32を回転させた後、回転を停止する。その後、所定時間が経過するとまた格納回転体32を1/8回転させる。
 このように、回転駆動装置33は作動と停止を繰り返して、格納回転体32を断続的に回転させる。
 ファン34は、炉本体31の内部の端に設けられており、格納回転体32側に、炉本体31内の空気を加熱するバーナ39(炉本体31内の空気を加熱可能なものであれば、バーナ39以外、例えばヒータ等の他の熱源であってもよい)からの熱風を送る。すなわち、ファン34の吹出口が格納回転体32側に、またファン34の吸込口がバーナ39側にそれぞれ向いている。
 このファン34としては、軸流ファンやシロッコラジカルファン等を用いることができる。
 また、ファン34の吹出口の高さ位置は、格納回転体32の高さ方向略中央となっている。
 第一流路35は、第一ゾーンPに位置する格納室32aの外周側とファン34の吹出口とを連通する。
 そして、第二流路36は第二ゾーンQに位置する格納室32aの外周側とファン34の吸込口とを連通する。
 このように構成された回転式熱処理炉30における熱風の循環について説明する。
 まず、ファン34からの熱風が第一流路35を介して格納回転体32に送られる。
 その熱風は第一ゾーンPに位置する格納室32aの外周側から略水平に空隙32b側へ送られる。
 さらにその熱風は空隙32b側から略水平に第二ゾーンQに位置する格納室32aの外周側へ送られる。
 そして、熱風は第二流路36を介してファン34まで戻る。
 ここで、第一流路35や第二流路36の全域で熱風が略水平に送られるというのではなく、格納室32aを熱風が通過するときに、外周側から空隙32b側、あるいは空隙32b側から外周側までの間においては熱風が略水平に流れるということである。
 このとき、第二ゾーンQに位置する格納室32aの数(ここでは二つ)よりも第一ゾーンPに位置する格納室32aの数(ここでは六つ)が多いので、第一ゾーンPに位置する格納室32aのそれぞれに流入する熱風の風量及び風速よりも第二ゾーンQに位置する格納室32aのそれぞれに流入する熱風の風量及び風速が増大する。
 つまり、第二ゾーンQが、被加熱物Wを加熱して昇温させる加熱ゾーンとなり、第一ゾーンPが、その昇温した状態を保つ均熱ゾーンとなる。
 以上のように構成された回転式熱処理炉30によれば、径方向に延びる側壁32cで格納室32aが仕切られ、炉本体31の内側を第一ゾーンPと第二ゾーンQに分断する、ファン34から格納回転体32まで延びる第一仕切壁37,及び炉本体31の壁面から格納回転体32まで延びる第二仕切壁38と、第一ゾーンPに位置する格納室32aの外周側とファン34の吹出口とを連通する第一流路35と、第二ゾーンQに位置する格納室32aの外周側とファン34の吸込口とを連通する第二流路36を備えるので、熱風が第一ゾーンPに位置する格納室32aの外周側から略水平に空隙32b側に送られ、さらにその熱風が空隙32b側から略水平に第二ゾーンQに位置する格納室32aの外周側へ送られる。
 つまり、格納室32aに対して略水平に熱風を送るので、格納回転体32の中央部の上方や下方に熱風の流路となるスペースが不要である。その結果、高さ方向について格納室32aの数を減らすことなく炉本体31の高さを低くすることができる。よって、回転駆動装置33やファン34といった最低限の部材を取外すだけで、他は分解せずに炉本体31を輸送可能となる。
 また、第一ゾーンPから第二ゾーンQに熱風を送るので、従来例では必要であったファン34からの熱風を第一ゾーンPと第二ゾーンQに分配するための格納回転体32中央部の固定式内筒が不要になり、回転炉床の構造を単純化可能である。また、ファン34も容量が大きなものを選択する必要がない。
 しかも、炉本体31の高さが低く炉本体31の体積が小さいことで熱損失が少なくなるので、省エネにつながる。
 また、第一ゾーンPに位置する格納室32aには温度低下していない熱風が供給されるので、この複数の格納室32aにおいて温度ばらつきが少ない。
 また、第二ゾーンQに位置する格納室32aの数よりも第一ゾーンPに位置する格納室32aの数が多くなるように第一仕切壁37及び第二仕切壁38を配置したので、第一ゾーンPに位置する格納室32aのそれぞれに流入する熱風の風量及び風速よりも第二ゾーンQに位置する格納室32aのそれぞれに流入する熱風の風量及び風速が増大する。これにより、第二ゾーンQにおける熱伝達率が上がるので、第二ゾーンQの位置する格納室32a内の被加熱物Wを急速昇温することができる。
 しかも、格納室32aに被加熱物Wを搬出入するための搬出入口41を、第一ゾーンPにおける格納回転体32の回転の最下流に位置する炉本体31の壁面に設けたので、搬出入口41から漏れる熱量を抑制することができる。
 すなわち、第一ゾーンPでは第二ゾーンQに比較して熱風の風量及び風速が低いので、被加熱物Wの搬出入時における搬出入口41からの熱損失を抑制できる。
 なお、本実施形態において、第一ゾーンPに位置する格納室32aの数を平面視で六つ、第二ゾーンQに位置する格納室32aの数を平面視で二つとしたが、これに限られるものではなく、第二ゾーンQに位置する格納室32aの数よりも第一ゾーンPに位置する格納室32aの数が多ければよい。
 このように第二ゾーンQに位置する格納室32aの数よりも第一ゾーンPに位置する格納室32aの数を多くすることで実質的に絞りを設けたが、壁を設けてそこに孔を形成することでノズル構造(絞り)としてもよい。
 また、搬出入口41を、第一ゾーンPにおける格納回転体32の回転の最下流に位置する炉本体31の壁面に設けたが、この位置に限られるものではない。
 また、図3に示すように、搬出入口41の格納回転体32の回転上流側に、搬出入口41に相対向する格納室32aへの熱風の流入を抑制する整流板42を設けてもよい。これにより、被加熱物Wの搬出入時に搬出入口41からの熱損失をさらに抑制可能で、搬出入口41まわりのダクト構造が不要となる。
 さらに、熱風の流量や流速を制御するために第一流路35において整流板42を適宜配置してもよい。
 また、第二仕切壁38を炉本体31の壁面から格納回転体32側に突出して設けたが、これに限られるものではなく、側壁32cの一つとともに一連の仕切壁を構成して炉本体31の内側を第一ゾーンPと第二ゾーンQに分断するできるものであればよい。
 また、格納回転体32をつり下げ式としたが、これに限られるものではない。
 なお、本実施形態では、バーナ39などの加熱装置により加熱された空気を、炉本体31の内部の端に設けられたファン34で熱風として、第一流路35を介して格納回転体32に送り、さらに第一ゾーンPに位置する格納室32aから第二ゾーンQに位置する格納室32aに送るようにしたが、格納回転体32の中央部に形成された空隙32bに、バーナ39などの加熱装置とは異なる熱源によって空隙32b側から第二ゾーンQへ送られる熱風の温度を上昇させる昇温装置を設置することもできる。より具体的には、例えば、図6乃至図8に示すように、昇温装置として、格納回転体32の中央部に形成された空隙32bに沿って、熱供給管50を設置して格納回転体32の内部に直接、熱風を取り入れるようにしてもよい。
 熱供給管50は上下に延びる筒体で、図7及び図8に示すように、第二ゾーンQ側の周面だけに開口部51が複数形成され、第一ゾーンPから空隙32bに流入する熱風の温度よりも高温の気体を炉本体31の外部から熱供給管50を通じて第二ゾーンQ側へ供給するようにしている。ここでは、略矩形状の開口部51が左右方向に4か所,上下方向に5段の計20か所設けられ、いずれも第二ゾーンQ側、すなわち、第一仕切壁37と第二仕切壁38で仕切られた狭い方の領域(第二流路36側の領域)側だけに設けられている。なお、開口部51にシャッターや弁などを設けて開口部51の開度を変えることで開口部51から排出される熱風の量を調整するようにしてもよい。これによれば、第二ゾーンQにおける雰囲気温度を所望の温度に設定する制御を容易に行うことができる。
 また、熱供給管50は回転式熱処理炉30とは別で外部に位置する溶体化炉60に接続されていて、溶体化炉60から排出される排ガスの熱による熱風が熱供給管50を介して、回転式熱処理炉30の格納回転体32に取り込まれるようにしてある。
 図9に、熱供給管50を設置しない場合および熱供給管50を設置した場合における、第一ゾーンPおよび第二ゾーンQの雰囲気温度と被加熱物Wの温度変化の一例を示す。
 図示するように、熱供給管50を設置した場合には、第二ゾーンQにおける雰囲気温度を、第一ゾーンPにおける雰囲気温度よりも高めることができる。
 本実施形態における第二ゾーンQの雰囲気温度は、熱供給管50を設置しない場合には、約143~153度(℃)であるが、熱供給管50を設置した場合には、約155~165度(℃)にすることができた。
 これにより、熱供給管50を設置しない場合に比べて熱供給管50を設置した場合には、第二ゾーンQに位置する格納室32a内の被加熱物Wをより急速に昇温することができる。
 10   回転式熱処理炉
 11   炉本体
 12   格納回転体
 12a  格納室
 12b  中央部
 20   回転式熱処理炉
 22a  格納室
 24   ファン
 30   回転式熱処理炉
 31   炉本体
 32   格納回転体
 32a  格納室
 32b  空隙
 32c  側壁
 33   回転駆動装置
 34   ファン
 35   第一流路
 36   第二流路
 37   第一仕切壁
 38   第二仕切壁
 39   バーナ
 41   搬出入口
 42   整流板
 50   熱供給管
 51   開口部
 60   溶体化炉
  C   チャンバー
  P   第一ゾーン
  Q   第二ゾーン
  W   被加熱物

Claims (7)

  1.  内側が第一ゾーンと第二ゾーンに分断された炉本体と、
     径方向に延びる側壁で仕切られた略等しい大きさの格納室が周方向に複数かつ多段状に形成されるとともに中央部には空隙が形成されてなる平面視略ドーナツ状で、前記第一ゾーンと前記第二ゾーンを跨ぐように設置されしかも回転自在に支持される格納回転体と、
     前記格納回転体を回転させる回転駆動装置と、
     前記炉本体内の空気を加熱する加熱装置と、
     前記加熱装置により加熱された空気を前記格納回転体に熱風として送るファンと、
     前記炉本体の内側を前記第一ゾーンと前記第二ゾーンに分断する、前記ファンから前記格納回転体まで延びる第一仕切壁,及び前記炉本体の壁面から前記格納回転体まで延びる第二仕切壁と、
     前記第一ゾーンに位置する前記格納室の外周側と前記ファンの吹出口とを連通する第一流路と、
     前記第二ゾーンに位置する前記格納室の外周側と前記ファンの吸込口とを連通する第二流路を備え、
     前記第一仕切壁の前記格納回転体側の部位が前記側壁の一つと近接するときに、前記第二仕切壁の前記格納回転体側の部位が前記側壁の他の一つと近接し、
     前記第一流路を介した前記ファンからの熱風を、前記第一ゾーンに位置する前記格納室の外周側から略水平に前記空隙側へ送り、
     さらにその熱風を前記空隙側から略水平に前記第二ゾーンに位置する前記格納室の外周側へ送り、前記第二流路を介して前記ファンまで戻すことを特徴とする回転式熱処理炉。
  2.  前記第二ゾーンに位置する前記格納室の数よりも前記第一ゾーンに位置する前記格納室の数が多くなるように前記第一仕切壁及び前記第二仕切壁を配置して、
     前記第一ゾーンに位置する前記格納室のそれぞれに流入する熱風の風量及び風速よりも前記第二ゾーンに位置する前記格納室のそれぞれに流入する熱風の風量及び風速を増大したことを特徴とする請求項1に記載の回転式熱処理炉。
  3.  前記格納室に被加熱物を搬出入するための搬出入口を、前記第一ゾーンにおける前記格納回転体の回転の最下流に位置する前記炉本体の壁面に設けたことを特徴とする請求項1又は2に記載の回転式熱処理炉。
  4.  前記搬出入口の上流側に、前記搬出入口に相対向する前記格納室への熱風の流入を抑制する整流板を設けたことを特徴とする請求項3に記載の回転式熱処理炉。
  5.  前記格納回転体の中央部に形成された空隙に、前記加熱装置とは異なる熱源によって前記空隙側から前記第二ゾーンへ送られる熱風の温度を上昇させる昇温装置を設置したことを特徴とする請求項1乃至4のうちいずれか一つに記載の回転式熱処理炉。
  6.  前記昇温装置は、前記格納回転体の中央部に形成された空隙に沿って設けられた熱供給管を備え、該熱供給管の前記第二ゾーン側の周面には開口部が複数形成され、前記第一ゾーンから前記空隙に流入する熱風の温度よりも高温の気体を前記炉本体の外部から前記熱供給管を通じて前記第二ゾーン側へ供給するようにしたことを特徴とする請求項5に記載の回転式熱処理炉。
  7.  前記昇温装置は溶体化炉に接続され、前記炉本体の外部から供給される高温の気体は、前記溶体化炉から排出される排ガスであることを特徴とする請求項6に記載の回転式熱処理炉。
PCT/JP2014/084539 2014-01-07 2014-12-26 回転式熱処理炉 WO2015105026A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480070318.5A CN105849490B (zh) 2014-01-07 2014-12-26 旋转式热处理炉
JP2015556776A JP6145518B2 (ja) 2014-01-07 2014-12-26 回転式熱処理炉
US15/198,681 US10139164B2 (en) 2014-01-07 2016-06-30 Rotary heat treatment furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014001196 2014-01-07
JP2014-001196 2014-01-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/198,681 Continuation US10139164B2 (en) 2014-01-07 2016-06-30 Rotary heat treatment furnace

Publications (1)

Publication Number Publication Date
WO2015105026A1 true WO2015105026A1 (ja) 2015-07-16

Family

ID=53523859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084539 WO2015105026A1 (ja) 2014-01-07 2014-12-26 回転式熱処理炉

Country Status (4)

Country Link
US (1) US10139164B2 (ja)
JP (1) JP6145518B2 (ja)
CN (1) CN105849490B (ja)
WO (1) WO2015105026A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053808A1 (ja) * 2017-09-13 2019-03-21 坂本 仁 熱処理炉
JP2019132440A (ja) * 2018-01-29 2019-08-08 三建産業株式会社 ツイン式回転熱処理炉及びそれを使用した熱処理方法
JP2019215101A (ja) * 2018-06-11 2019-12-19 三建産業株式会社 回転式熱処理炉

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110629007A (zh) * 2019-10-14 2019-12-31 沈阳东大三建工业炉制造有限公司 一种强化铝合金制品热处理炉加热效果的热风循环装置
CN116252035B (zh) * 2023-05-15 2023-09-26 杭州沈氏节能科技股份有限公司 一种分步连续式扩散焊接设备及扩散焊接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502930A (ja) * 1987-04-03 1990-09-13 ホルクロフト/ロフタス インコーポレーテッド 回転炉床式多室多目的炉システム
JP2006200823A (ja) * 2005-01-20 2006-08-03 Toyota Motor Corp 熱処理炉、及びそれを備える熱処理設備
JP2008138916A (ja) * 2006-11-30 2008-06-19 Furness Juko Kk 熱風循環炉

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3836320A (en) * 1972-03-17 1974-09-17 Midland Ross Corp Minimum scale reheating furnace and means relating thereto
DE3040159C2 (de) * 1980-07-10 1985-05-02 Kuboyama, Nobuyoshi, Miyamori, Iwate Vorrichtung zum Aufheizen eines gasförmigen Mediums
DE3518347C1 (de) * 1985-05-22 1986-12-04 Ruhrgas Ag, 4300 Essen Ofen zur Waermebehandlung von Werkstuecken
JP4378090B2 (ja) * 2003-02-26 2009-12-02 日本ファーネス株式会社 熱風循環炉
US20070205544A1 (en) * 2005-02-18 2007-09-06 O'brien & Gere Engineers, Inc. Rotary Hearth Sintering Furnace
AT507423B1 (de) * 2009-03-25 2010-05-15 Ebner Ind Ofenbau Verfahren zum vorwärmen von glühgut in einer haubenglühanlage
JP5384226B2 (ja) * 2009-06-29 2014-01-08 三建産業株式会社 熱風加熱装置
CN202359158U (zh) * 2011-11-17 2012-08-01 周厚宏 一种加热炉
MX2012013290A (es) * 2012-02-08 2013-10-08 Shoei Mfg Co Ltd Horno de tratamiento termico.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502930A (ja) * 1987-04-03 1990-09-13 ホルクロフト/ロフタス インコーポレーテッド 回転炉床式多室多目的炉システム
JP2006200823A (ja) * 2005-01-20 2006-08-03 Toyota Motor Corp 熱処理炉、及びそれを備える熱処理設備
JP2008138916A (ja) * 2006-11-30 2008-06-19 Furness Juko Kk 熱風循環炉

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019053808A1 (ja) * 2017-09-13 2019-03-21 坂本 仁 熱処理炉
CN111094884A (zh) * 2017-09-13 2020-05-01 坂本仁 热处理炉
JPWO2019053808A1 (ja) * 2017-09-13 2020-05-28 坂本 仁 熱処理炉
CN111094884B (zh) * 2017-09-13 2021-12-21 坂本仁 热处理炉
JP2019132440A (ja) * 2018-01-29 2019-08-08 三建産業株式会社 ツイン式回転熱処理炉及びそれを使用した熱処理方法
JP2019215101A (ja) * 2018-06-11 2019-12-19 三建産業株式会社 回転式熱処理炉

Also Published As

Publication number Publication date
US20160313061A1 (en) 2016-10-27
CN105849490A (zh) 2016-08-10
US10139164B2 (en) 2018-11-27
CN105849490B (zh) 2017-07-18
JP6145518B2 (ja) 2017-06-14
JPWO2015105026A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6145518B2 (ja) 回転式熱処理炉
JP4374377B2 (ja) 熱風循環炉
EP3626106A3 (en) Dryer
CN105031693A (zh) 一种运行稳定且可调速的医用臭氧消毒柜装置
JP6026795B2 (ja) 回転式熱処理炉
JP6789199B2 (ja) 回転式熱処理炉
JP2011007471A (ja) 熱風加熱装置
JP2015533487A5 (ja)
JP6709258B2 (ja) 乾燥装置
CN105890345B (zh) 一种真空炉
JP6193998B2 (ja) 加熱炉
CN105043065B (zh) 一种实现自动控制的散热型茶叶烘干装置
WO2020121789A1 (ja) 加熱炉
JP2019100632A (ja) 乾燥装置
CN206037691U (zh) 一种真空炉
WO2019053808A1 (ja) 熱処理炉
KR101460340B1 (ko) 박스 오븐
CN105169437B (zh) 一种可散热且带气流加热器的医用臭氧消毒柜装置
JP6924169B2 (ja) 回転式熱処理炉
CN205784316U (zh) 一种可三百六十度循环出风的烘箱
JP2005090949A (ja) 特にガラス物品処理用のオーブンおよびガラス物品の熱処理方法
KR20160021621A (ko) 기판 열처리 장치 및 기판 열처리 방법
JP2016176661A (ja) 焼成炉及びコーティング方法
CN105031692A (zh) 一种可散热的医用臭氧消毒柜装置
CN105148303A (zh) 一种带散热风扇的医用臭氧消毒柜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556776

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201604380

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878370

Country of ref document: EP

Kind code of ref document: A1