WO2015104995A1 - Transmission synchronizing device - Google Patents

Transmission synchronizing device Download PDF

Info

Publication number
WO2015104995A1
WO2015104995A1 PCT/JP2014/084046 JP2014084046W WO2015104995A1 WO 2015104995 A1 WO2015104995 A1 WO 2015104995A1 JP 2014084046 W JP2014084046 W JP 2014084046W WO 2015104995 A1 WO2015104995 A1 WO 2015104995A1
Authority
WO
WIPO (PCT)
Prior art keywords
fork
gear
shaft
shift
section
Prior art date
Application number
PCT/JP2014/084046
Other languages
French (fr)
Japanese (ja)
Inventor
隆雄 上野
拓矢 野村
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201480070578.2A priority Critical patent/CN105849442B/en
Priority to JP2015556764A priority patent/JP6351631B2/en
Publication of WO2015104995A1 publication Critical patent/WO2015104995A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/32Gear shift yokes, e.g. shift forks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/08Multiple final output mechanisms being moved by a single common final actuating mechanism
    • F16H63/20Multiple final output mechanisms being moved by a single common final actuating mechanism with preselection and subsequent movement of each final output mechanism by movement of the final actuating mechanism in two different ways, e.g. guided by a shift gate
    • F16H63/22Multiple final output mechanisms being moved by a single common final actuating mechanism with preselection and subsequent movement of each final output mechanism by movement of the final actuating mechanism in two different ways, e.g. guided by a shift gate the final output mechanisms being simultaneously moved by the final actuating mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/3069Interrelationship between two or more final output mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/08Multiple final output mechanisms being moved by a single common final actuating mechanism
    • F16H63/20Multiple final output mechanisms being moved by a single common final actuating mechanism with preselection and subsequent movement of each final output mechanism by movement of the final actuating mechanism in two different ways, e.g. guided by a shift gate
    • F16H2063/202Multiple final output mechanisms being moved by a single common final actuating mechanism with preselection and subsequent movement of each final output mechanism by movement of the final actuating mechanism in two different ways, e.g. guided by a shift gate using cam plates for selection or shifting, e.g. shift plates with recesses or groves moved by a selector extension

Definitions

  • the present invention relates to a synchronizer for a transmission including a sleeve for synchronizing rotation of a rotating shaft and a gear, and a shift fork for sliding the sleeve.
  • a synchronization device (synchromesh) is provided as a mechanism for performing a shift operation quickly and easily by reducing a synchro load (shift operation load) at the time of a shift that involves switching of the meshing state of gears.
  • the synchronous device as described above is slidable in the axial direction of the rotation shaft, and is engaged with the hub and the gear, which are fixed relative to the rotation shaft, and a hub fixed to the rotation shaft.
  • a sleeve (synchro sleeve) that synchronizes the rotation of the rotating shaft and the gear by mating, a shift fork for axially sliding the sleeve, and a shift fork shaft to which the shift fork is attached. Then, according to the movement of the shift fork shaft in the axial direction, the sleeve is slid in the axial direction by the shift fork to form a predetermined gear.
  • the fork shaft needs to have high rigidity because of functional requirements on the vehicle side.
  • the cross section of the fork shaft has anisotropy in order to reduce the offset force due to the left and right unbalance of the shift fork and the wear resulting therefrom. That is, when the length of the arm of the shift fork differs from side to side, the rigidity of the cross section of the fork shaft is anisotropic, and the distance between the center line extending in the direction of the strongest rigidity and the claw of the long arm is The balance of stiffness is improved by making the distance between the short arm portion and the claws shorter.
  • Patent Document 2 aims to adjust the balance of the shift fork, and does not consider improvement in the rigidity and weight reduction of the fork shaft itself. Even if uneven wear or the like does not occur in the shift fork according to the technique of Patent Document 2, if the rigidity of the fork shaft itself is low, the deformation of the fork shaft due to the load is large, which causes a delay in switching gear stages and responds There is still the risk of causing a decline.
  • the present invention has been made in view of the above-described point, and an object thereof is to provide a synchronizer of a transmission capable of achieving both weight reduction and high rigidity of a fork shaft and a shift fork with a simple and inexpensive configuration. It is to do.
  • a base (161), and at least a part of the cross section (A3) of the fork shaft (151) has high rigidity of the fork shaft (151) in a plane (H) orthogonal to the axis of the fork shaft (151)
  • the driving member (121) has a first direction (S1) and a second direction (S2) in the plane (H) which is lower in rigidity than the first direction (S1), and the first direction (S1)
  • the fork shaft (151) is disposed in a direction along a straight line (L3) connecting the second load application point (P
  • the cross section of at least a part of the fork shaft is a first direction in which the fork shaft has high rigidity in a plane perpendicular to the axis of the fork shaft; It is configured to have a second direction lower in rigidity than one direction.
  • the shift fork is disposed so that the first direction in which the rigidity is high coincides with the direction along the straight line connecting the first load application point and the second load application point. Can be made to coincide with the direction in which the fork shaft stiffness is high. Thereby, it is possible to reduce the deformation of the fork shaft due to the load while securing the weight reduction of the shift fork. Therefore, it is possible to promptly complete the switching of the shift position accompanied by the in-gear operation by the shift fork, and to improve the response of the shift position switching.
  • the first direction (S1) may be the direction in which the rigidity of the fork shaft (151) is the highest in the above-described plane (H). According to this configuration, since the direction in which the rigidity of the fork shaft is the highest can be made to correspond to the direction of the load applied to the fork shaft, the deformation of the fork shaft due to the load can be more effectively suppressed.
  • the cross section (A3) of the fork shaft (151) may have an elliptical shape in which the axial direction of the long axis coincides with the first direction (S1). According to this, it is possible to secure the rigidity of the fork shaft with a simple and inexpensive configuration. Further, rigidity anisotropy can be obtained only by compressively deforming a part of the fork shaft having a circular cross section in the radial direction to make it elliptical. Therefore, it can contribute to simplification and cost reduction of the manufacturing process of a fork shaft.
  • the fork shaft (151-1, 151-2) has another circular cross section (A1), and the other cross section (A1) is the fork shaft (151). It may be a cross section of a portion (151-1a, 151-2a) to be fitted to the fitting portion (161-1, 161-2) in
  • the fork shafts (151-1 and 151-2) are one end (151-1a, 1) fitted into the fitting portion (161-1 and 161-2). 151-2a), the other end (151-1b, 151-2b) slidably supported in the axial direction, one end (151-1a, 151-2a), and the other end ( 151-1 b and 151-2 b) and an intermediate portion (151-1 c, 151-2 c) between them, and the cross section (A3) of the intermediate portion (151-1 c, 151-2 c) is an elliptical cross section
  • the cross section (A1) of one end (151-1a, 151-2a) may be a circular cross section.
  • the cross section of the portion fitted to the fitting portion in the fork shaft can maintain its shape (original shape) as it is without deforming the fork shaft having a circular cross section.
  • rigidity anisotropy can be obtained.
  • the fork shaft of the present invention can be configured by deforming a part of the conventional configuration of the fork shaft having a circular cross section as a whole, the conventional fork shaft can be diverted. Therefore, the manufacturing cost of the fork shaft and the shift fork can be kept low.
  • the fork shafts (151-1, 151-2) may be formed in a hollow cylindrical shape. According to this configuration, by forming the fork shaft in a hollow cylindrical shape, weight reduction can be achieved while securing rigidity against a load.
  • the fitting portions (161-1 and 161-2) are provided at respective end portions on both sides in the axial direction in the base portion (161), and the fork shaft (151) It may be divided into two fork shafts (151-1, 151-2) fitted in the fitting portions (161-1, 161-2).
  • the fork shaft is divided into two fork shafts which are respectively fitted to the fitting portions on both sides of the base, so that a part of the fork shaft passing through the base is omitted. Since it becomes a structure, weight reduction of a shift fork can be achieved by that much.
  • FIG. 1 is a skeleton view of a transmission provided with a synchronization device according to an embodiment of the present invention. It is a sectional side view which shows a synchronizer. It is a partial expansion perspective view which shows a part of gear operation mechanism. It is a partial expansion perspective view which shows a part of gear operation mechanism. It is a figure for demonstrating the operation
  • FIG. 7A is a view seen from the X direction of FIG. 6, FIG.
  • FIG. 6B is a view seen from the Y direction
  • FIG. 6C is a view seen from the Z direction. It is a figure for demonstrating the load concerning a shift fork, (a) is the side view which looked at the shift fork from the axial direction of a fork shaft, (b) is a top view showing the projection piece of a shift fork.
  • FIG. 1 is a skeleton diagram of a transmission provided with a synchronization device according to an embodiment of the present invention.
  • the transmission according to the present embodiment is a transmission mounted on a hybrid vehicle equipped with an engine (internal combustion engine) 2 and a motor (electric motor) 3 as drive sources.
  • the engine 2 is an internal combustion engine that generates driving power for causing a vehicle to travel by mixing fuel with air and burning it.
  • Motor 3 generates a driving force for causing the vehicle to travel using electric energy of a battery (not shown) during cooperative traveling of engine 2 and motor 3 or traveling alone of motor 3 alone. While functioning as a motor, when decelerating the vehicle, it functions as a generator that generates electric power by regeneration of the motor 3. At the time of regeneration of the motor 3, the battery is charged by the electric power (regenerated energy) generated by the motor 3.
  • the transmission 4 is a parallel-shaft transmission with nine forward gears and one reverse gear, and is a twin clutch transmission.
  • an inner main shaft (first input shaft) IMS connected to the engine output shaft 2a of the engine 2 and the motor 3
  • an outer main shaft (second input shaft) forming an outer cylinder of the inner main shaft IMS ) OMS
  • secondary shaft (second input shaft) SS parallel to inner main shaft IMS
  • reverse shaft RVS counter shaft (output shaft) CS parallel to these shafts
  • output shaft OPS connected to differential mechanism 5 And are provided.
  • the outer main shaft OMS is always engaged with the reverse shaft RVS and the secondary shaft SS, and the countershaft CS is further arranged to be always engaged with the differential mechanism 5 via the output shaft OPS.
  • the transmission 4 further includes a first clutch C1 for the odd gear and a second clutch C2 for the even gear.
  • the first clutch C1 is coupled to the inner main shaft IMS.
  • the second clutch C2 is coupled to the outer main shaft OMS (a part of the second input shaft), and through the gear 42 fixed on the outer main shaft OMS, the reverse shaft RVS and the secondary shaft SS (of the second input shaft Partially linked to
  • the third gear drive gear 43, the fifth gear drive gear 45, the seventh gear drive gear 47, and the ninth gear drive gear 49 are sequentially from the right side (first clutch C1 side) in FIG.
  • the first speed drive gear 41 is disposed.
  • the third speed drive gear 43, the fifth speed drive gear 45, the seventh speed drive gear 47, and the ninth speed drive gear 49 are rotatable relative to the inner main shaft IMS, and the first speed drive gear 41 is the inner main shaft It is fixed to IMS.
  • a 3-5-speed synchromesh mechanism (synchronization engagement device) 83 is provided axially slidably between the 3-speed drive gear 43 and the 5-speed drive gear 45, and Between the seventh speed drive gear 47 and the ninth speed drive gear 49, a 9-7 speed synchromesh mechanism (synchronization engagement device) 87 is provided slidably in the axial direction.
  • the gear stages are coupled to the inner main shaft IMS by sliding a synchromesh mechanism (synchronous engagement device) corresponding to the desired gear stage to synchronize the gear stages.
  • the gears and the synchromesh mechanism provided in association with the inner main shaft IMS constitute a first transmission mechanism GR1 for performing odd-numbered shifting. Each drive gear of the first transmission mechanism GR1 meshes with a corresponding driven gear provided on the counter shaft CS to rotationally drive the counter shaft CS.
  • the second speed drive gear 42, the fourth speed drive gear 44, the sixth speed drive gear 46, and the eighth speed drive gear 48 are relative to each other in order from the right in FIG. Are arranged rotatably.
  • a 2-4 speed synchromesh mechanism (synchronous engagement device) 82 is provided slidably in the axial direction between second speed drive gear 42 and fourth speed drive gear 44, and between the sixth speed drive gear 46 and the eighth speed drive gear 48, an 8-6 half synchromesh mechanism (synchronization engagement device) 86 is provided slidably in the axial direction.
  • the gear stage is connected to the secondary shaft SS (second input shaft) by sliding the synchromesh mechanism (synchronous engagement device) corresponding to the desired gear stage to synchronize the gear stage.
  • the gear and the synchromesh mechanism provided in association with the secondary shaft SS (second input shaft) constitute a second transmission mechanism GR2 for performing an even-numbered shift.
  • Each drive gear of the second transmission mechanism GR2 also meshes with a corresponding driven gear provided on the counter shaft CS to rotationally drive the counter shaft CS.
  • the gear 57 fixed to the secondary shaft SS is coupled to the gear 42 on the outer main shaft OMS, and is coupled to the second clutch C2 via the outer main shaft OMS.
  • a reverse drive gear 60 is relatively rotatably disposed on the outer periphery of the reverse shaft RVS. Further, on the reverse shaft RVS, a reverse synchromesh mechanism (synchronization engagement device) 85 is provided slidably in the axial direction corresponding to the reverse drive gear 60, and engaged with the gear 42 on the outer main shaft OMS. The mating idle gear 50 is fixed. When the vehicle travels in reverse, the synchromesh mechanism 85 is synchronized and the second clutch C2 is engaged, whereby the rotation of the second clutch C2 is transmitted to the reverse shaft RVS via the outer main shaft OMS and the idle gear 50. And the reverse drive gear 60 is rotated.
  • a reverse synchromesh mechanism 85 synchronization engagement device
  • the reverse drive gear 60 meshes with the gear 53 on the counter shaft CS, and when the reverse drive gear 60 rotates, the counter shaft CS rotates in the opposite direction to that at the time of forward movement.
  • the reverse rotation of the countershaft CS is transmitted to the differential mechanism 5 via the gear 59 on the output shaft OPS.
  • the 2-speed driven gear 52 meshing with the 2-speed driving gear 42, the 3-speed driven gear 53 meshing with the 3-speed driving gear 43, the 4-speed driving gear 44 and the 5-speed A 4-5 speed driven gear 54 engaged with the drive gear 45, a 6-7 speed driven gear 56 engaged with the 6 speed drive gear 46 and the 7 speed drive gear 47, 8 engaged with the 8 speed drive gear 48 and the 9 speed drive gear 49
  • the -9th driven gear 58 is fixedly arranged.
  • a first speed driven gear 51 meshing with the first speed driving gear 41 is provided so as to be relatively rotatable via a first speed one-way clutch mechanism 81.
  • the engagement / non-engagement of the first speed one-way clutch mechanism 81 is switched according to the relative rotational speed of the first speed driven gear 51 (inner main shaft IMS) and the counter shaft CS. Further, the third speed driven gear 53 meshes with the gear 59 on the output shaft OPS, whereby the rotation of the countershaft CS is transmitted to the differential mechanism 5 via the output shaft OPS.
  • the first speed driven gear 51 is coupled to the counter shaft CS (first speed in gear), and the first speed is selected.
  • the 3-speed drive gear 43 is coupled to the inner main shaft IMS to shift the 3-speed
  • the fifth gear gear 45 is coupled to the inner main shaft IMS to select the fifth gear (five gear in gear).
  • the transmission 4 is an odd gear (1st gear, 3rd gear, 5th gear, 7th gear or 9th gear) Set to
  • the synchromesh mechanism 83 and the 9-7th synchro mesh mechanism 87 constitute a first transmission mechanism GR1 for setting an odd gear.
  • the mesh mechanism 86 and the second transmission mechanism GR2 for setting the even gear stage are configured.
  • the 2nd gear is preshifted while the 1st clutch C1 is engaged and the 1st gear is established, and the 1st clutch C1 is By releasing the engagement and engaging the second clutch C2, the second gear is established, and while the second clutch C2 is engaged and the second gear is established, the third gear is preshifted, The third clutch is established by disengaging the second clutch C2 and engaging the first clutch C1. Repeat this to repeat the shift up.
  • the determination of the gear position to be realized by the transmission 4 and the control for realizing the gear position selection of the gear position in the first transmission mechanism GR1 and the second transmission mechanism GR2 (control to switch synchro), and
  • the electronic control unit (control means) 10 controls the engagement of the clutch C1 and the second clutch C2, etc. This is performed based on the target shift speed determined in accordance with the map). That is, the shift to the target gear is performed according to the driving situation including the current vehicle speed and the driver's intention.
  • FIG. 2 is a cross-sectional view showing the synchromesh mechanism 82.
  • the synchromesh mechanism 82 shown in the same figure is a synchronization device for the 2nd gear and the 4th gear included in the transmission 4 and is a synchronization coupling mechanism for the 2nd speed drive gear 42 disposed on both sides in the axial direction.
  • a synchronous coupling mechanism for the fourth speed drive gear 44 is provided.
  • the synchronous coupling mechanism for the 2-speed drive gear 42 and the synchronous coupling mechanism for the 4-speed drive gear 44 described above have substantially the same configuration in the axial direction, they will be described below for the 2-speed drive gear 42.
  • the configuration and operation of the synchronous coupling mechanism will be mainly described.
  • the term “axial direction” or “radial direction” refers to the axial direction and radial direction of the secondary shaft SS, and when “right” or “left” is referred to, along the axial direction of the secondary shaft SS in the state shown in FIG. Point to the right and to the left.
  • the synchromesh mechanism 82 is a mechanism for synchronously coupling the second speed drive gear 42 on the secondary shaft SS to the secondary shaft SS.
  • the second speed drive gear 42 is relatively rotatably supported on the outer periphery of the secondary shaft SS via a needle bearing 91.
  • An annular synchro hub 92 splined to the secondary shaft SS is disposed on one side of the second speed drive gear 42 in the axial direction, and is slid along the axial direction on the outer peripheral side of the synchro hub 92.
  • a freely splined sleeve (synchro sleeve) 191 is installed.
  • Spline teeth 92 a are formed on the outer peripheral surface of the synchro hub 92, and spline teeth 191 a that mesh with the spline teeth 92 a of the synchro hub 92 are formed on the inner peripheral surface of the synchro sleeve 191.
  • the sleeve 191 is configured to move leftward and rightward from the neutral position shown in FIG. 2 by means of a shift fork 131 engaged with the recess 191b on the outer periphery.
  • a blocking ring 93 is installed in an annular recess 92 b formed in one side surface (a side surface on the second gear drive gear 42 side) of the synchro hub 92.
  • the blocking ring 93 includes an outer ring 93a disposed radially outward, an inner ring 93b disposed radially inward, and a synchro cone sandwiched between the outer ring 93a and the inner ring 93b in the radial direction. And 93c.
  • a gear dog 94 integrally formed with the 2-speed drive gear 42 is provided at an end of the 2-speed drive gear 42 on the blocking ring 93 side, and a dog tooth 94 b is formed on the outer periphery of the gear dog 94 .
  • Dog teeth 93 d are formed on the outer periphery of the outer ring 93 a.
  • the dog teeth 94 b and the dog teeth 93 d are arranged at positions adjacent to each other in the axial direction.
  • an annular synchro spring 95 is installed on the outer periphery of the blocking ring 93.
  • the synchro spring 95 is a component in which a wire made of an elastic metal is formed in a circular ring shape, and is installed adjacent to the dog tooth 93 d on the side of the synchro hub 92 on the outer periphery of the outer ring 93 a.
  • the synchro spring 95 has the dog teeth 93d of the outer ring 93a, the end face in the axial direction of the synchro hub 92, and the tip of the spline teeth 191a of the sleeve 191 And the tip of the).
  • the synchro cone 93 c is integrated with the sleeve 191 by the frictional force, and the rotation of the second speed drive gear 42 engaged with the synchro cone 93 c is synchronized with the rotation of the sleeve 191.
  • FIG. 3 is a partially enlarged perspective view showing a part of the gear operating mechanism 100
  • FIG. 4 is a side view showing a part of the gear operating mechanism 100.
  • the shift shaft 120 and the actuator unit 110 which will be described later, are not shown.
  • FIG. 4 is a cross-sectional view in a state in which only a part (only the protrusions 131a to 135a) of shift forks 131 to 135 described later are partially cut.
  • the gear operating mechanism 100 includes a shift shaft 120 movably supported in the rotational direction and the axial direction, and an actuator unit 110 for moving the shift shaft 120 in the rotational and axial directions.
  • the plurality of shift forks 131 to 135 include a 2-4 shift fork 131 for operating the sleeve of the 2-4 speed synchromesh mechanism 82 on the secondary shaft SS, and an inner main shaft IMS.
  • 9-7 shift fork 134 for operating the sleeve of 9-7 synchromesh mechanism 87 on inner main shaft IMS and RP shift fork for operating the sleeve of reverse synchromesh mechanism 85 on reverse shaft RVS 135 and included.
  • the shift forks 131 to 135 are provided with protrusions (engaging portions) 131a to 135a formed by inserting the shift shaft 120.
  • the projecting pieces 131a to 135a are formed in a substantially rectangular flat plate shape, and provided with cutout holes 131b to 135b through which the shift shaft 120 is inserted.
  • the projecting pieces 131a to 135a and the notch holes 131b to 135b of the shift forks 131 to 135 are arranged at positions where they overlap with each other along the axial direction of the shift shaft 120.
  • the plurality of off-gear engagement pieces 122 to 125 provided on the shift shaft 120 are axially offset from the in-gear engagement piece 121.
  • the in-gear engagement pieces 121 and the off-gear engagement pieces 122-125 are provided at positions corresponding to every other shift fork 131-135 in the axial direction of the shift shaft 120.
  • the off-gear engagement pieces 122 to 125 are formed to have smaller projecting dimensions than the in-gear engagement piece 121.
  • the plurality of off gear engaging pieces 122 to 125 are formed in the same shape. Then, when the shift shaft 120 is rotated with the in-gear engagement piece 121 positioned in the notch holes 131b to 135b of any of the shift forks 131 to 135 in the off gear position, the in-gear engagement piece 121 is notched.
  • the shift forks 131 to 135 are moved to the in-gear position by abutting on the inner peripheral edge of the holes 131 b to 135 b.
  • the off gear engagement is engaged.
  • the shift forks 131 to 135 are moved to the off gear position by bringing the pieces 122 to 125 into contact with and pressing the inner peripheral edge of the notch holes 131b to 135b.
  • FIG. 5 is a view for explaining the operation of the shift shaft 120 (the in-gear engagement piece 121 and the off-gear engagement pieces 122 to 125) and the shift forks 131 to 135 in the gear operation mechanism 100.
  • the positions of the protrusion 131 a of the 2-4 shift fork 131 and the protrusion 133 a of the 8-6 shift fork 133 are illustrated.
  • the actuator unit 110 is configured to rotate (shift) the shift shaft 120 in the rotational direction and to move (select) the shift shaft 120 in the axial direction.
  • the in-gear engagement piece 121 abuts on and presses the inner peripheral edge of any one of the notch holes 131b to 135b, whereby the sleeve of the corresponding synchromesh mechanism in the shift direction via the shift forks 131 to 135 is shifted. And the corresponding gear and shaft are connected.
  • the 2-4 shift fork 131 is in the off gear position (neutral position), and the 8-6 shift fork 133 is in the sixth speed in-gear position.
  • the in-gear engagement piece 121 rotates from its neutral position and abuts on the inner peripheral edge of the notch hole 131b of the 2-4 shift fork 131 to move it in the shift direction
  • the off-gear engagement piece It is configured to contact the inner peripheral edge of the notch hole 133b of the 8-6 shift fork 133 at the corresponding in-gear position 124 to return the coupled shift fork 133 to the neutral position (FIG. 5 (b And FIG. 5 (c)).
  • FIG. 5 (b And FIG. 5 (c) As a result, as shown in FIG.
  • the 2-4 shift fork 131 is in the fourth gear in-gear position
  • the 8-6 shift fork 133 is in the off gear position.
  • the gear operation mechanism 100 drives one synchromesh mechanism belonging to one of the first transmission mechanism GR1 and the second transmission mechanism GR2 to the engagement position (in gear position) in the shift operation. Thereby, the engagement of the synchromesh mechanism is maintained by the detent means. At the same time, all synchromesh mechanisms other than the synchromesh mechanism belonging to the transmission mechanism are driven to the neutral position (off gear position).
  • FIG. 6 is a perspective view of the shift fork 131
  • FIG. 7 is a cross-sectional view of the shift fork 131
  • FIGS. 8 (a), 8 (b) and 8 (c) are the side views which looked at the shift fork 131 from the X direction, the Y direction, and the Z direction which each show in FIG.
  • the shift fork 131 has a bifurcated fork portion (fork portion) 141 engaged with a recess 191 b (see FIG. 2) formed on the outer periphery of the sleeve 191, and the fork shaft 151 (151-1, And a tubular base portion (fitting portion) 161 to which the portion 151-2) is attached.
  • the fork shaft 151 (151-1, 151-2) extends in a direction perpendicular to the surface of the fork portion 141 in the axial direction, and supports the shift fork 131 so as to be movable forward and backward along the axial direction. There is.
  • the base portion 161 of the shift fork 131 is provided with an arm portion 171 which protrudes in the direction different from that of the fork portion 141 from the side surface thereof.
  • a projection (engagement portion) 131a that can engage with the in-gear engagement piece (drive member) 121 and the off-gear engagement piece (drive member) 122 to 125 (see FIG. 4) It is provided.
  • the fork shafts 151-1 and 151-2 have hollow cylindrical shapes extending in the axial direction, and fitting holes (fitting parts) 161-1 and 161 provided at both ends of the base portion 161. -2 and the other end supported slidably in the axial direction with respect to one end 151-1a, 151-2a fitted in -2 and a case (fixed side member) (not shown) of the transmission 4 151-1b, 151-2b, and intermediate portions 151-1c, 151-2c between one end 151-1a, 151-2a and the other end 151-1b, 151-2b.
  • the diameter dimensions of one end 151-1a, 151-2a and the other end 151-1b, 151-2b are the diameter dimensions of the middle portions 151-1c, 151-2c (in the minor axis direction of the elliptical shape described later) The diameter is larger than the diameter).
  • cross-sectional A1 of one edge part 151-1a, 151-2a and cross-sectional A2 of the other edge part 151-1b, 151-2b are both circular shape
  • the cross section A3 of the middle portions 151-1c and 151-2c has an elliptical shape.
  • the fork shafts 151-1 and 151-2 are formed in a hollow thin cylindrical shape, and are slidably attached to one end 151-1a, 151-2a fitted to the base portion 161 with respect to the case
  • the cross section A3 of the middle portions 151-1c and 151-2c, which is a portion other than the other end portions 151-1b and 151-2b, has an elliptical shape.
  • the mounting holes 161-1 and 161-2 for inserting the fork shafts 151-1 and 151-2 at the respective end portions on both sides in the axial direction of the base portion 161 are provided.
  • the end portions 151-1a and 151-2a of the fork shafts 151-1 and 151-2 are fitted in the fitting holes 161-1 and 161-2 respectively.
  • a pin (regulating member) 181- for regulating the relative rotation of the end portions 151-1a and 151-2a of the fork shafts 151-1 and 151-2 fitted in the fitting holes 161-1 and 161-2. 1,181-2 are provided.
  • the pins 181-1 and 181-2 are inserted from the outer periphery of the base portion 161 in a direction (radial direction) orthogonal to the axial direction, and the end portions 151-1a and 151 of the fork shafts 151-1 and 151-2. -2a penetrates in the same direction.
  • FIG. 9A and 9B are diagrams for explaining the load applied to the shift fork 131.
  • FIG. 9A is a side view of the shift fork 131 as viewed from the axial direction of the fork shaft 151
  • FIG. It is a top view which shows 131a.
  • the cross section A3 of the middle portions 151-1c and 151-2c of the fork shafts 151-1 and 151-2 is a plane H orthogonal to the axis of the fork shafts 151-1 and 151-2 (see FIG. 7).
  • the second direction S2 in which the rigidity is lower in the plane H than in the first direction.
  • the first direction S1 coincides with the major axis direction of the elliptical shape in the cross section A3 of the middle portions 151-1c and 151-2c, and the second direction S2 coincides with the minor axis direction of the elliptical shape. Therefore, the first direction S1 is the direction in which the rigidity of the fork shafts 151-1 and 151-2 (the bending rigidity of the intermediate portions 151-1c and 151-2c) in the plane H is the highest.
  • a first load action point P1 relating to a load F1 generated by engagement of the in-gear engagement piece 121 with the notch groove 131b of the protrusion 131a, and a sleeve
  • the fork portion 141 engaged with the recess 191 b of the arm 191 has a second load action point P2 related to a load (reaction force) F2 received from the sleeve 191.
  • the second load action point P2 is a point on which the combined force F2 of the load F21 and the load F22 applied to two contact points P21 and P22 at which the fork portion 141 and the concave portion 191b of the sleeve 191 contact each other.
  • the second load action point P2 coincides with the radial center point of the fork portion 141 and the sleeve 191 (the axial center of the secondary shaft SS).
  • the first direction S1 is set in a direction (a direction parallel to the straight line L3) along a straight line L3 connecting the first load action point P1 and the second load action point P2. That is, the major axis direction (first direction S1) of the elliptical shape in the cross section A3 of the middle portions 151-1c and 151-2c of the fork shaft 151 is a direction parallel to the straight line L3 and the minor axis of the elliptical shape
  • the direction (second direction S2) is a direction intersecting with the straight line L3.
  • the cross section A3 of the fork shaft 151 has rigidity of the fork shaft 151 in the plane H orthogonal to the axis of the fork shaft 151 It is configured to have a high first direction S1 and a second direction S2 which is lower in rigidity than the first direction S1 in the plane H.
  • the shift fork 131 is disposed such that the first direction with high rigidity and the direction along the straight line L3 connecting the first load action point P1 and the second load action point P2 coincide with each other.
  • the direction of the load at the time of in-gear driving the sleeve 191 by the shift fork 131 can be made to coincide with the direction in which the rigidity of the fork shaft 151 is high. Therefore, it is possible to reduce the deformation due to the load of the fork shaft 151 while securing the weight reduction of the shift fork 131, and it is possible to promptly complete the switching of the shift position accompanied by the in-gear operation by the shift fork 131. Therefore, it is possible to improve the response of switching of the shift position.
  • the first direction S1 is a direction in which the rigidity of the fork shaft 151 is the highest in the plane H. According to this configuration, since the direction in which the rigidity of the fork shaft 151 is strongest can be made to coincide with the load direction applied to the fork shaft 151, the deformation of the fork shaft 151 due to the load can be suppressed to the maximum.
  • the cross section A3 of the middle portions 151-1c and 151-2c of the fork shaft 151 has an elliptical shape in which the axial direction of the major axis coincides with the first direction S1. According to this configuration, rigidity anisotropy can be obtained only by compressively deforming a part of the fork shaft having a circular cross section in the radial direction to make it elliptical. Therefore, it can contribute to simplification of the manufacturing process of fork shaft 151, and cost reduction.
  • the fork shaft 151 has a circular cross section A2, and this cross section A2 is a portion (end) fitted to the fitting portions 161-1 and 161-2 in the fork shaft 151.
  • 6 is a cross section of the portions 151-1a and 151-2a).
  • the cross section A1 of the portions (ends 151-1a and 151-2a) of the fork shafts 151-1 and 151-2 to be fitted to the fitting portions 161-1 and 161-2 has a circular shape.
  • the fork shaft 151 having the cross-section can be maintained in the same shape (original shape) without deformation, so that by deforming only a part of the fork shaft 151, rigidity anisotropy can be obtained.
  • the fork shaft 151 of the present invention can be configured by deforming a part (intermediate portion) of the conventional configuration of the fork shaft having a circular cross section as a whole, the conventional fork shaft 151 can be diverted. Therefore, the manufacturing costs of the fork shaft 151 and the shift fork 131 can be reduced.
  • the fork shaft 151 in a hollow cylindrical shape, weight reduction can be achieved while securing rigidity against a load.
  • fitting portions 161-1 and 161-2 are provided at respective axial end portions of the base portion 161, and the fork shaft 151 is fitted to each of the fitting portions 161-1 and 161-2. It is divided into two mounted fork shafts 151-1 and 151-2. According to this configuration, a part of the fork shaft 151 passing through the base portion 161 is omitted, so that the weight of the shift fork 131 can be reduced.
  • the fork shaft 151-divided into fork shafts 151- is provided with the fitting portions 161-1 and 161-2 to which the fork shaft 151 is fitted at each of both ends of the base portion 161.
  • the pins 181-1 and 181-2 for restricting relative rotation of the fork shafts 151-1 and 151-2 fitted in the fitting portions 161-1 and 161-2 Since the relative rotation of the fork shaft 151 fitted to the fitting portions 161-1 and 161-2 is restricted by the pins 181-1 and 181-2, the fork shaft 151 is fitted to the fitting portion 161. No need for the process of press-fitting to 1, 161-2. Further, the relative rotation of the fork shaft 151 is restricted by the pins 181-1 and 181-2, whereby the positioning (the positioning in the circumferential direction) of the elliptical cross section A3 is performed. High rigidity can always be secured.
  • the in-gear engagement piece (drive member) 121 for driving the shift fork 131-135 and the off-gear engagement piece (drive member) 122-125 are driven by the actuator mechanism 110.
  • the synchronization device according to the present invention is also a so-called manual transmission in which the drive member for driving the shift fork is operated by the driver's operation of the shift lever or the like. Is also applicable.
  • the transmission mounted on the hybrid vehicle provided with the engine and the motor as the drive source has been described as the transmission provided with the synchronization device according to the present invention.
  • the transmission provided with the synchronization device according to the present invention may be a transmission mounted on a vehicle having only the engine as a drive source.

Abstract

A cross section (A3) of an intermediate section (151-1c, 151-2c) of a fork shaft (151-1, 151-2) is formed into an ellipse, and the major axis of the ellipse is a first direction (S1) of high rigidity and the minor axis of the elliptical shape is a second direction (S2) of low rigidity. In addition, the first direction (S1) is arranged so as to be along a straight line (L3) connecting a first load acting point (P1) on which a load (F1) generated by a drive member (121) engaging with an engaging section (131a) acts, and a second load acting point (P2) on which a load (F2) by way of a fork section (141) driving a sleeve (191) acts.

Description

変速機の同期装置Transmission synchronizer
 本発明は、回転軸とギヤとの回転を同期させるスリーブと、該スリーブを摺動させるシフトフォークとを備える変速機の同期装置に関する。 The present invention relates to a synchronizer for a transmission including a sleeve for synchronizing rotation of a rotating shaft and a gear, and a shift fork for sliding the sleeve.
 従来、例えば特許文献1に示すように、マニュアルトランスミッション(MT)のほか、AMT(Automatic Manual Transmission)、デュアルクラッチトランスミッションなど各種の変速機は、複数段の変速ギヤ列を有しており、運転者によるシフトレバーの操作又はアクチュエータ機構の駆動によって変速段を切り換えて各段のギヤを噛合させる。これにより、走行条件に応じてエンジンの動力を変換して出力することで、車輪を駆動するように構成されている。このような変速機においては、ギヤの噛み合い状態の切り換えを伴う変速の際に、シンクロ荷重(シフト操作荷重)を低減して変速操作を迅速且つ容易に行うための機構として、同期装置(シンクロメッシュ機構)を備えている。 Conventionally, for example, as shown in Patent Document 1, in addition to manual transmission (MT), various transmissions such as AMT (Automatic Manual Transmission) and dual clutch transmission have a plurality of transmission gear trains, and the driver The gear shift is changed by the operation of the shift lever or the drive of the actuator mechanism, and the gears of each gear are engaged. Thus, the wheels are driven by converting and outputting the power of the engine according to the traveling conditions. In such a transmission, a synchronization device (synchromesh) is provided as a mechanism for performing a shift operation quickly and easily by reducing a synchro load (shift operation load) at the time of a shift that involves switching of the meshing state of gears. Mechanism).
 上記のような同期装置は、回転軸に固設されているハブと、回転軸に相対回転自在に配置されているギヤと、回転軸の軸方向において摺動可能であり、ハブおよびギヤに係合することで回転軸とギヤとの回転を同期させるスリーブ(シンクロスリーブ)と、スリーブを軸方向に摺動させるためのシフトフォークと、シフトフォークが取り付けられたシフトフォークシャフトと備える。そして、シフトフォークシャフトの軸方向への移動に応じて、シフトフォークでスリーブを軸方向に摺動させることで、所定の変速段を形成するように構成されている。 The synchronous device as described above is slidable in the axial direction of the rotation shaft, and is engaged with the hub and the gear, which are fixed relative to the rotation shaft, and a hub fixed to the rotation shaft. A sleeve (synchro sleeve) that synchronizes the rotation of the rotating shaft and the gear by mating, a shift fork for axially sliding the sleeve, and a shift fork shaft to which the shift fork is attached. Then, according to the movement of the shift fork shaft in the axial direction, the sleeve is slid in the axial direction by the shift fork to form a predetermined gear.
 ところで、上記のような同期装置のシフトフォークでは、フォークシャフトの剛性(荷重に対する曲げ剛性)が低いと、荷重によるフォークシャフトの変形が大きくなるこことで、変速段の切り替えに遅れが生じて応答性の低下を招くおそれがある。特に、高性能なスポーツカーには加速性能などの高い駆動性能が要求されるため、迅速な変速段の切り替えが求められる。そのため、車両側の機能的な要求からフォークシャフトに高い剛性が必要となる。 By the way, in the shift fork of the synchronous device as described above, when the rigidity of the fork shaft (bending rigidity with respect to load) is low, the deformation of the fork shaft due to the load becomes large. There is a risk of deterioration of sex. In particular, high-performance sports cars are required to have high driving performance such as acceleration performance, so that quick gear shifting is required. Therefore, the fork shaft needs to have high rigidity because of functional requirements on the vehicle side.
 しかしながら、フォークシャフトに高い剛性を持たせるための方策として、フォークシャフトを厚肉化すると、フォークシャフト及びシフトフォークの重量の増加につながる。フォークシャフト及びシフトフォークの重量が増加すると、フォークシャフト及びシフトフォークのスムーズな動作が阻害されて変速段の切り替えの応答性が悪化する。このような理由から、フォークシャフト及びシフトフォークは、高剛性化と軽量化の両立が課題である。 However, thickening the fork shaft as a measure to increase the rigidity of the fork shaft leads to an increase in the weight of the fork shaft and the shift fork. As the weight of the fork shaft and the shift fork increases, the smooth operation of the fork shaft and the shift fork is impeded and the responsiveness of gear shift is deteriorated. For these reasons, it is an object of the fork shaft and the shift fork to simultaneously achieve high rigidity and light weight.
 なお、特許文献2に記載の従来技術では、シフトフォークの左右のアンバランスによる偏力およびそれに起因する摩耗を低減するために、フォークシャフトの断面に異方性を持たせている。すなわち、シフトフォークの腕部の長さが左右で異なる場合、フォークシャフトの断面の剛性に異方性を持たせて、最も剛性が強い方向に延びる中心線と長腕部の爪との距離が、短腕部の爪との距離よりも短くなるようにして、剛性のバランスを改善するようにしている。 In the prior art described in Patent Document 2, the cross section of the fork shaft has anisotropy in order to reduce the offset force due to the left and right unbalance of the shift fork and the wear resulting therefrom. That is, when the length of the arm of the shift fork differs from side to side, the rigidity of the cross section of the fork shaft is anisotropic, and the distance between the center line extending in the direction of the strongest rigidity and the claw of the long arm is The balance of stiffness is improved by making the distance between the short arm portion and the claws shorter.
 しかしながら、特許文献2に記載の技術は、シフトフォークのバランスの調整を目的とするものであり、フォークシャフト自体の剛性の向上及び軽量化を考慮したものではない。特許文献2の技術によってシフトフォークに偏摩耗等が生じないとしても、フォークシャフト自体の剛性が低いと、荷重によるフォークシャフトの変形が大きいことで、変速段の切り替えに遅れが生じて応答性の低下を招くおそれは依然として残る。 However, the technique described in Patent Document 2 aims to adjust the balance of the shift fork, and does not consider improvement in the rigidity and weight reduction of the fork shaft itself. Even if uneven wear or the like does not occur in the shift fork according to the technique of Patent Document 2, if the rigidity of the fork shaft itself is low, the deformation of the fork shaft due to the load is large, which causes a delay in switching gear stages and responds There is still the risk of causing a decline.
特開2013-181612号公報JP, 2013-181612, A 国際公開WO2012/153541号公報International Publication WO 2012/153541
 本発明は上述の点に鑑みてなされたものであり、その目的は、簡単かつ安価な構成で、フォークシャフト及びシフトフォークの軽量化と高剛性化の両立が可能な変速機の同期装置を提供することにある。 The present invention has been made in view of the above-described point, and an object thereof is to provide a synchronizer of a transmission capable of achieving both weight reduction and high rigidity of a fork shaft and a shift fork with a simple and inexpensive configuration. It is to do.
 上記課題を解決するための本発明は、回転軸(SS)と、回転軸(SS)に固設されているハブ(92)と、回転軸(SS)に相対回転自在に配置されているギヤ(42)と、回転軸(SS)の軸方向において摺動可能であり、ハブ(92)およびギヤ(42)に係合することで回転軸(SS)とギヤ(42)との回転を同期させるスリーブ(191)と、スリーブ(191)を摺動させるシフトフォーク(131)と、を備える変速機の同期装置において、シフトフォーク(131)は、該シフトフォーク(131)を駆動するための駆動部材(121)が係合する係合部(131a)と、スリーブ(191)の外周に係合するフォーク部(141)と、フォークシャフト(151)を嵌装する嵌装部(161-1,161-2)を有する基部(161)と、を備え、フォークシャフト(151)の少なくとも一部の断面(A3)は、フォークシャフト(151)の軸線と直交する平面(H)内でフォークシャフト(151)の剛性が高い第1方向(S1)と、平面(H)内で第1方向(S1)よりも剛性の低い第2方向(S2)とを有し、第1方向(S1)が、駆動部材(121)が係合部(131a)に係合することで発生する荷重(F1)が作用する第1荷重作用点(P1)と、フォーク部(141)がスリーブ(191)を駆動する荷重(F2)が作用する第2荷重作用点(P2)とを結んだ直線(L3)に沿う方向となるようにフォークシャフト(151)が配置されることを特徴とする。 The present invention for solving the above-mentioned problems comprises a rotation shaft (SS), a hub (92) fixed to the rotation shaft (SS), and a gear relatively rotatably arranged on the rotation shaft (SS) (42) and slidable in the axial direction of the rotating shaft (SS), and by engaging the hub (92) and the gear (42), the rotation of the rotating shaft (SS) and the gear (42) is synchronized And a shift fork (131) for sliding the sleeve (191), wherein the shift fork (131) is a drive for driving the shift fork (131). An engaging portion (131a) with which the member (121) engages, a fork portion (141) engaged with the outer periphery of the sleeve (191), and a fitting portion (161-1) for fitting the fork shaft (151) 161-2) A base (161), and at least a part of the cross section (A3) of the fork shaft (151) has high rigidity of the fork shaft (151) in a plane (H) orthogonal to the axis of the fork shaft (151) The driving member (121) has a first direction (S1) and a second direction (S2) in the plane (H) which is lower in rigidity than the first direction (S1), and the first direction (S1) The first load action point (P1) on which the load (F1) generated by engaging the engaging portion (131a) acts, and the load (F2) on which the fork portion (141) drives the sleeve (191) The fork shaft (151) is disposed in a direction along a straight line (L3) connecting the second load application point (P2).
 本発明にかかる変速機の同期装置によれば、フォークシャフトの少なくとも一部の断面は、フォークシャフトの軸線と直交する平面内で該フォークシャフトの剛性が高い第1方向と、当該平面内で第1方向よりも剛性の低い第2方向とを有するように構成している。そのうえで、剛性が高い第1方向と上記の第1荷重作用点と第2荷重作用点とを結んだ直線に沿う方向とが一致するようにシフトフォークが配置されていることで、シフトフォークでスリーブを駆動するインギヤ時の荷重の方向とフォークシャフトの剛性が高い方向とを一致させることができる。これにより、シフトフォークの軽量化を確保しつつフォークシャフトの荷重による変形を低減することができる。したがって、シフトフォークによるインギヤ動作を伴う変速段の切り替えを速やかに完了できるようになり、変速段の切り替えの応答性(レスポンス)の向上を図ることができる。 According to the synchronizer of the transmission according to the present invention, the cross section of at least a part of the fork shaft is a first direction in which the fork shaft has high rigidity in a plane perpendicular to the axis of the fork shaft; It is configured to have a second direction lower in rigidity than one direction. In addition, the shift fork is disposed so that the first direction in which the rigidity is high coincides with the direction along the straight line connecting the first load application point and the second load application point. Can be made to coincide with the direction in which the fork shaft stiffness is high. Thereby, it is possible to reduce the deformation of the fork shaft due to the load while securing the weight reduction of the shift fork. Therefore, it is possible to promptly complete the switching of the shift position accompanied by the in-gear operation by the shift fork, and to improve the response of the shift position switching.
 また、上記の変速機の同期装置では、第1方向(S1)は、上記の平面(H)内でフォークシャフト(151)の剛性が最も高い方向であってよい。この構成によれば、フォークシャフトの剛性が最も高い方向をフォークシャフトにかかる荷重の方向に対応させることができるので、荷重によるフォークシャフトの変形をより効果的に抑制することができる。 Further, in the above-described transmission synchronization device, the first direction (S1) may be the direction in which the rigidity of the fork shaft (151) is the highest in the above-described plane (H). According to this configuration, since the direction in which the rigidity of the fork shaft is the highest can be made to correspond to the direction of the load applied to the fork shaft, the deformation of the fork shaft due to the load can be more effectively suppressed.
 また、上記の変速機の同期装置では、フォークシャフト(151)の断面(A3)は、長軸の軸方向が第1方向(S1)と一致する楕円形状であってよい。これによれば、簡単かつ安価な構成でフォークシャフトの剛性を確保することができる。また、円形状の断面を有するフォークシャフトの一部を径方向に圧縮変形させて楕円形状とするだけで剛性の異方性が得られる。したがって、フォークシャフトの製造工程の簡素化および低コスト化に寄与することができる。 Further, in the above-described transmission synchronization device, the cross section (A3) of the fork shaft (151) may have an elliptical shape in which the axial direction of the long axis coincides with the first direction (S1). According to this, it is possible to secure the rigidity of the fork shaft with a simple and inexpensive configuration. Further, rigidity anisotropy can be obtained only by compressively deforming a part of the fork shaft having a circular cross section in the radial direction to make it elliptical. Therefore, it can contribute to simplification and cost reduction of the manufacturing process of a fork shaft.
 また、上記の変速機の同期装置では、フォークシャフト(151-1,151-2)は、円形状の他の断面(A1)を備え、当該他の断面(A1)は、フォークシャフト(151)における嵌装部(161-1,161-2)に嵌装される部分(151-1a,151-2a)の断面であってよい。 Further, in the above-described transmission synchronization device, the fork shaft (151-1, 151-2) has another circular cross section (A1), and the other cross section (A1) is the fork shaft (151). It may be a cross section of a portion (151-1a, 151-2a) to be fitted to the fitting portion (161-1, 161-2) in
 また、上記の変速機の同期装置では、フォークシャフト(151-1,151-2)は、嵌装部(161-1,161-2)に嵌装される一方の端部(151-1a,151-2a)と、軸方向に摺動可能に支持される他方の端部(151-1b,151-2b)と、一方の端部(151-1a,151-2a)と他方の端部(151-1b,151-2b)との間の中間部(151-1c,151-2c)と、を備え、中間部(151-1c,151-2c)の断面(A3)は、楕円形状の断面であり、一方の端部(151-1a,151-2a)の断面(A1)は、円形状の断面であってよい。 Further, in the above-described transmission synchronization device, the fork shafts (151-1 and 151-2) are one end (151-1a, 1) fitted into the fitting portion (161-1 and 161-2). 151-2a), the other end (151-1b, 151-2b) slidably supported in the axial direction, one end (151-1a, 151-2a), and the other end ( 151-1 b and 151-2 b) and an intermediate portion (151-1 c, 151-2 c) between them, and the cross section (A3) of the intermediate portion (151-1 c, 151-2 c) is an elliptical cross section The cross section (A1) of one end (151-1a, 151-2a) may be a circular cross section.
 この構成によれば、フォークシャフトにおける嵌装部に嵌装される部分の断面は、円形状の断面を有するフォークシャフトを変形させることなくそのままの形状(本来の形状)を保つことができるので、フォークシャフトの一部のみを変形させることで剛性の異方性が得られる。また、全体の断面が円形状である従来構成のフォークシャフトの一部を変形させることで本願のフォークシャフトを構成できるため、従来のフォークシャフトの流用が可能となる。したがって、フォークシャフト及びシフトフォークの製造コストを低く抑えることができる。 According to this configuration, the cross section of the portion fitted to the fitting portion in the fork shaft can maintain its shape (original shape) as it is without deforming the fork shaft having a circular cross section. By deforming only part of the fork shaft, rigidity anisotropy can be obtained. In addition, since the fork shaft of the present invention can be configured by deforming a part of the conventional configuration of the fork shaft having a circular cross section as a whole, the conventional fork shaft can be diverted. Therefore, the manufacturing cost of the fork shaft and the shift fork can be kept low.
 また、上記の同期装置では、フォークシャフト(151-1,151-2)は、中空の筒状に形成されていてよい。この構成によれば、フォークシャフトを中空の筒状に形成したことで、荷重に対する剛性を確保しながら軽量化を図ることができる。 Further, in the above-mentioned synchronization device, the fork shafts (151-1, 151-2) may be formed in a hollow cylindrical shape. According to this configuration, by forming the fork shaft in a hollow cylindrical shape, weight reduction can be achieved while securing rigidity against a load.
 また、上記の同期装置では、嵌装部(161-1,161-2)は、基部(161)における軸方向の両側の端部それぞれに設けられており、フォークシャフト(151)は、各々の嵌装部(161-1,161-2)に嵌装されている二本のフォークシャフト(151-1,151-2)に分割されていてよい。 Further, in the above-mentioned synchronous device, the fitting portions (161-1 and 161-2) are provided at respective end portions on both sides in the axial direction in the base portion (161), and the fork shaft (151) It may be divided into two fork shafts (151-1, 151-2) fitted in the fitting portions (161-1, 161-2).
 この構成によれば、フォークシャフトは、基部の両側の嵌装部それぞれに嵌装されている二本のフォークシャフトに分割されていることで、基部を貫通するフォークシャフトの一部が省略された構成となるため、その分、シフトフォークの軽量化を図ることができる。 According to this configuration, the fork shaft is divided into two fork shafts which are respectively fitted to the fitting portions on both sides of the base, so that a part of the fork shaft passing through the base is omitted. Since it becomes a structure, weight reduction of a shift fork can be achieved by that much.
 また、フォークシャフトにおける楕円形状の断面部分は、その長軸方向の径寸法が拡径するため、従来構造のように1本のフォークシャフトを基部に貫通させてシフトフォークを組み立てることができない。そこで、上記の構成のように、基部の両端の各々にフォークシャフトを嵌装する嵌装部を設け、分割したフォークシャフトにおける嵌装部に嵌装する部分の断面を円形状とすることで、上記のような不都合を解消することができる。 In addition, since the diameter of the oval cross section of the fork shaft is increased in diameter in the long axis direction, it is impossible to assemble a shift fork by penetrating one fork shaft to the base as in the conventional structure. Therefore, as in the configuration described above, by providing fitting portions for fitting the fork shaft to each of both ends of the base and making the cross section of the portion fitted to the fitting portion in the divided fork shaft circular, The disadvantages as described above can be eliminated.
 また、上記の同期装置では、嵌装部(161-1,161-2)に嵌装されたフォークシャフト(151-1,151-2)の相対回転を規制するための規制部材(181-1,181-2)を備えていてよい。 Further, in the above-mentioned synchronization device, a regulating member (181-1) for regulating relative rotation of fork shafts (151-1, 151-2) fitted in the fitting portions (161-1, 161-2). , 181-2).
 この構成によれば、規制部材によって嵌装部に嵌装したフォークシャフトの相対回転が規制されるので、フォークシャフトを嵌装部に圧入する工程が不要となる。また、規制部材でフォークシャフトの相対回転が規制されることで、楕円形状の断面の位置決め(周方向の位置決め)がなされるので、荷重に対するフォークシャフトの高い剛性を常に確保できる。
 なお、上記の括弧内の符号は、後述する実施形態における構成要素の符号を本発明の一例として示したものである。
According to this configuration, since the relative rotation of the fork shaft fitted in the fitting portion is restricted by the regulating member, the step of press-fitting the fork shaft into the fitting portion becomes unnecessary. In addition, since the relative rotation of the fork shaft is restricted by the restriction member, positioning of the elliptical cross section (positioning in the circumferential direction) is performed, so that high rigidity of the fork shaft with respect to the load can always be ensured.
The reference numerals in the parentheses above indicate the reference numerals of the constituent elements in the embodiments described later as an example of the present invention.
 本発明にかかる変速機の同期装置によれば、簡単かつ安価な構成で、フォークシャフト及びシフトフォークの軽量化と高剛性化の両立が可能となる。 ADVANTAGE OF THE INVENTION According to the synchronizer of the transmission concerning this invention, coexistence of weight reduction and high-rigidity-ization of a fork shaft and a shift fork is attained by easy and cheap structure.
本発明の一実施形態にかかる同期装置を備えた変速機のスケルトン図である。FIG. 1 is a skeleton view of a transmission provided with a synchronization device according to an embodiment of the present invention. 同期装置を示す側断面図である。It is a sectional side view which shows a synchronizer. ギヤ操作機構の一部を示す部分拡大斜視図である。It is a partial expansion perspective view which shows a part of gear operation mechanism. ギヤ操作機構の一部を示す部分拡大斜視図である。It is a partial expansion perspective view which shows a part of gear operation mechanism. ギヤ操作機構のシフトシャフト(インギヤ用係合片及びオフギヤ用係合片)とシフトフォーク(突片)の動作を説明するための図である。It is a figure for demonstrating the operation | movement of the shift shaft (engagement piece for in-gear, engagement piece for off gear) of a gear operation mechanism, and a shift fork (protrusion). シフトフォークの斜視図である。It is a perspective view of a shift fork. シフトフォークの断面図である。It is sectional drawing of a shift fork. シフトフォークを示す図で、(a)は、図6のX方向から見た図、(b)は、Y方向から見た図、(c)は、Z方向から見た図である。FIG. 7A is a view seen from the X direction of FIG. 6, FIG. 6B is a view seen from the Y direction, and FIG. 6C is a view seen from the Z direction. シフトフォークにかかる荷重について説明するための図で、(a)は、シフトフォークをフォークシャフトの軸方向から見た側面図、(b)は、シフトフォークの突片を示す平面図である。It is a figure for demonstrating the load concerning a shift fork, (a) is the side view which looked at the shift fork from the axial direction of a fork shaft, (b) is a top view showing the projection piece of a shift fork.
 以下、添付図面を参照して本発明の実施形態を詳細に説明する。図1は、本発明の一実施形態にかかる同期装置を備えた変速機のスケルトン図である。本実施形態の変速機は、駆動源としてのエンジン(内燃機関)2及びモータ(電動機)3を備えたハイブリッド自動車の車両に搭載された変速機である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a skeleton diagram of a transmission provided with a synchronization device according to an embodiment of the present invention. The transmission according to the present embodiment is a transmission mounted on a hybrid vehicle equipped with an engine (internal combustion engine) 2 and a motor (electric motor) 3 as drive sources.
 エンジン2は、燃料を空気と混合して燃焼することにより車両を走行させるための駆動力を発生する内燃機関である。モータ3は、エンジン2とモータ3との協働走行やモータ3のみの単独走行の際には、バッテリ(図示せず)の電気エネルギーを利用して車両を走行させるための駆動力を発生するモータとして機能するとともに、車両の減速時には、モータ3の回生により電力を発電する発電機として機能する。モータ3の回生時には、バッテリは、モータ3により発電された電力(回生エネルギー)により充電される。 The engine 2 is an internal combustion engine that generates driving power for causing a vehicle to travel by mixing fuel with air and burning it. Motor 3 generates a driving force for causing the vehicle to travel using electric energy of a battery (not shown) during cooperative traveling of engine 2 and motor 3 or traveling alone of motor 3 alone. While functioning as a motor, when decelerating the vehicle, it functions as a generator that generates electric power by regeneration of the motor 3. At the time of regeneration of the motor 3, the battery is charged by the electric power (regenerated energy) generated by the motor 3.
 変速機4は、前進9速・後進1速の平行軸式トランスミッションであり、ツインクラッチ式変速機である。変速機4には、エンジン2及びモータ3の機関出力軸2aに接続される内側メインシャフト(第1入力軸)IMSと、この内側メインシャフトIMSの外筒をなす外側メインシャフト(第2入力軸)OMSと、内側メインシャフトIMSにそれぞれ平行なセカンダリシャフト(第2入力軸)SS、リバースシャフトRVSと、これらのシャフトに平行なカウンタシャフト(出力軸)CSと、ディファレンシャル機構5に繋がるアウトプットシャフトOPSとが設けられる。 The transmission 4 is a parallel-shaft transmission with nine forward gears and one reverse gear, and is a twin clutch transmission. In the transmission 4, an inner main shaft (first input shaft) IMS connected to the engine output shaft 2a of the engine 2 and the motor 3, and an outer main shaft (second input shaft) forming an outer cylinder of the inner main shaft IMS ) OMS, secondary shaft (second input shaft) SS parallel to inner main shaft IMS, reverse shaft RVS, counter shaft (output shaft) CS parallel to these shafts, and output shaft OPS connected to differential mechanism 5 And are provided.
 これらのシャフトのうち、外側メインシャフトOMSがリバースシャフトRVSおよびセカンダリシャフトSSに常時係合し、カウンタシャフトCSがさらにアウトプットシャフトOPSを介してディファレンシャル機構5に常時係合するように配置される。 Of these shafts, the outer main shaft OMS is always engaged with the reverse shaft RVS and the secondary shaft SS, and the countershaft CS is further arranged to be always engaged with the differential mechanism 5 via the output shaft OPS.
 また、変速機4は、奇数段用の第1クラッチC1と、偶数段用の第2クラッチC2とを備える。第1クラッチC1は内側メインシャフトIMSに結合される。第2クラッチC2は、外側メインシャフトOMS(第2入力軸の一部)に結合され、外側メインシャフトOMS上に固定されたギヤ42を介してリバースシャフトRVSおよびセカンダリシャフトSS(第2入力軸の一部)に連結される。 The transmission 4 further includes a first clutch C1 for the odd gear and a second clutch C2 for the even gear. The first clutch C1 is coupled to the inner main shaft IMS. The second clutch C2 is coupled to the outer main shaft OMS (a part of the second input shaft), and through the gear 42 fixed on the outer main shaft OMS, the reverse shaft RVS and the secondary shaft SS (of the second input shaft Partially linked to
 内側メインシャフトIMSの外周には、図2において右側(第1クラッチC1側)から順に、3速駆動ギヤ43と、5速駆動ギヤ45と、7速駆動ギヤ47と、9速駆動ギヤ49と、1速駆動ギヤ41とが配置される。3速駆動ギヤ43、5速駆動ギヤ45、7速駆動ギヤ47、9速駆動ギヤ49はそれぞれ内側メインシャフトIMSに対して相対的に回転可能であり、1速駆動ギヤ41は、内側メインシャフトIMSに固定されている。更に、内側メインシャフトIMS上には、3速駆動ギヤ43と5速駆動ギヤ45との間に3-5速シンクロメッシュ機構(同期係合装置)83が軸方向にスライド可能に設けられ、かつ、7速駆動ギヤ47と9速駆動ギヤ49との間に9-7速シンクロメッシュ機構(同期係合装置)87が軸方向にスライド可能に設けられる。所望のギヤ段に対応するシンクロメッシュ機構(同期係合装置)をスライドさせて該ギヤ段のシンクロを入れることにより、該ギヤ段が内側メインシャフトIMSに連結される。内側メインシャフトIMSに関連して設けられたこれらのギヤ及びシンクロメッシュ機構によって、奇数段の変速を行うための第1変速機構GR1が構成される。第1変速機構GR1の各駆動ギヤは、カウンタシャフトCS上に設けられた対応する従動ギヤに噛み合い、カウンタシャフトCSを回転駆動する。 On the outer periphery of the inner main shaft IMS, the third gear drive gear 43, the fifth gear drive gear 45, the seventh gear drive gear 47, and the ninth gear drive gear 49 are sequentially from the right side (first clutch C1 side) in FIG. The first speed drive gear 41 is disposed. The third speed drive gear 43, the fifth speed drive gear 45, the seventh speed drive gear 47, and the ninth speed drive gear 49 are rotatable relative to the inner main shaft IMS, and the first speed drive gear 41 is the inner main shaft It is fixed to IMS. Furthermore, on the inner main shaft IMS, a 3-5-speed synchromesh mechanism (synchronization engagement device) 83 is provided axially slidably between the 3-speed drive gear 43 and the 5-speed drive gear 45, and Between the seventh speed drive gear 47 and the ninth speed drive gear 49, a 9-7 speed synchromesh mechanism (synchronization engagement device) 87 is provided slidably in the axial direction. The gear stages are coupled to the inner main shaft IMS by sliding a synchromesh mechanism (synchronous engagement device) corresponding to the desired gear stage to synchronize the gear stages. The gears and the synchromesh mechanism provided in association with the inner main shaft IMS constitute a first transmission mechanism GR1 for performing odd-numbered shifting. Each drive gear of the first transmission mechanism GR1 meshes with a corresponding driven gear provided on the counter shaft CS to rotationally drive the counter shaft CS.
 セカンダリシャフトSS(第2入力軸)の外周には、図1において右側から順に、2速駆動ギヤ42と、4速駆動ギヤ44と、6速駆動ギヤ46と、8速駆動ギヤ48とが相対的に回転可能に配置される。更に、セカンダリシャフトSS上には、2速駆動ギヤ42と4速駆動ギヤ44との間に2-4速シンクロメッシュ機構(同期係合装置)82が軸方向にスライド可能に設けられ、かつ、6速駆動ギヤ46と8速駆動ギヤ48との間に8-6速シンクロメッシュ機構(同期係合装置)86が軸方向にスライド可能に設けられる。この場合も、所望のギヤ段に対応するシンクロメッシュ機構(同期係合装置)をスライドさせて該ギヤ段のシンクロを入れることにより、該ギヤ段がセカンダリシャフトSS(第2入力軸)に連結される。セカンダリシャフトSS(第2入力軸)に関連して設けられたこれらのギヤ及びシンクロメッシュ機構によって、偶数段の変速を行うための第2変速機構GR2が構成される。第2変速機構GR2の各駆動ギヤも、カウンタシャフトCS上に設けられた対応する従動ギヤに噛み合い、カウンタシャフトCSを回転駆動する。なお、セカンダリシャフトSSに固定されたギヤ57は外側メインシャフトOMS上のギヤ42に結合しており、外側メインシャフトOMSを介して第2クラッチC2に結合される。 On the outer periphery of the secondary shaft SS (second input shaft), the second speed drive gear 42, the fourth speed drive gear 44, the sixth speed drive gear 46, and the eighth speed drive gear 48 are relative to each other in order from the right in FIG. Are arranged rotatably. Furthermore, on secondary shaft SS, a 2-4 speed synchromesh mechanism (synchronous engagement device) 82 is provided slidably in the axial direction between second speed drive gear 42 and fourth speed drive gear 44, and Between the sixth speed drive gear 46 and the eighth speed drive gear 48, an 8-6 half synchromesh mechanism (synchronization engagement device) 86 is provided slidably in the axial direction. In this case as well, the gear stage is connected to the secondary shaft SS (second input shaft) by sliding the synchromesh mechanism (synchronous engagement device) corresponding to the desired gear stage to synchronize the gear stage. Ru. The gear and the synchromesh mechanism provided in association with the secondary shaft SS (second input shaft) constitute a second transmission mechanism GR2 for performing an even-numbered shift. Each drive gear of the second transmission mechanism GR2 also meshes with a corresponding driven gear provided on the counter shaft CS to rotationally drive the counter shaft CS. The gear 57 fixed to the secondary shaft SS is coupled to the gear 42 on the outer main shaft OMS, and is coupled to the second clutch C2 via the outer main shaft OMS.
 リバースシャフトRVSの外周には、リバース駆動ギヤ60が相対的に回転可能に配置される。また、リバースシャフトRVS上には、リバース駆動ギヤ60に対応してリバースシンクロメッシュ機構(同期係合装置)85が軸方向にスライド可能に設けられ、また、外側メインシャフトOMS上のギヤ42に係合するアイドルギヤ50が固定されている。リバース走行する場合は、シンクロメッシュ機構85のシンクロを入れて、第2クラッチC2を係合することにより、第2クラッチC2の回転が外側メインシャフトOMS及びアイドルギヤ50を介してリバースシャフトRVSに伝達され、リバース駆動ギヤ60が回転される。リバース駆動ギヤ60はカウンタシャフトCS上のギヤ53に噛み合っており、リバース駆動ギヤ60が回転するときカウンタシャフトCSは前進時とは逆方向に回転する。カウンタシャフトCSの逆方向の回転はアウトプットシャフトOPS上のギヤ59を介してディファレンシャル機構5に伝達される。 A reverse drive gear 60 is relatively rotatably disposed on the outer periphery of the reverse shaft RVS. Further, on the reverse shaft RVS, a reverse synchromesh mechanism (synchronization engagement device) 85 is provided slidably in the axial direction corresponding to the reverse drive gear 60, and engaged with the gear 42 on the outer main shaft OMS. The mating idle gear 50 is fixed. When the vehicle travels in reverse, the synchromesh mechanism 85 is synchronized and the second clutch C2 is engaged, whereby the rotation of the second clutch C2 is transmitted to the reverse shaft RVS via the outer main shaft OMS and the idle gear 50. And the reverse drive gear 60 is rotated. The reverse drive gear 60 meshes with the gear 53 on the counter shaft CS, and when the reverse drive gear 60 rotates, the counter shaft CS rotates in the opposite direction to that at the time of forward movement. The reverse rotation of the countershaft CS is transmitted to the differential mechanism 5 via the gear 59 on the output shaft OPS.
 カウンタシャフトCS上には、図1において右側から順に、2速駆動ギヤ42に噛み合う2速従動ギヤ52と、3速駆動ギヤ43に噛み合う3速従動ギヤ53と、4速駆動ギヤ44及び5速駆動ギヤ45に噛み合う4-5速従動ギヤ54と、6速駆動ギヤ46及び7速駆動ギヤ47に噛み合う6-7速従動ギヤ56と、8速駆動ギヤ48及び9速駆動ギヤ49に噛み合う8-9速従動ギヤ58が固定的に配置される。また、カウンタシャフトCS上には、1速駆動ギヤ41に噛み合う1速従動ギヤ51が1速ワンウェイクラッチ機構81を介して相対回転可能に設けられている。1速ワンウェイクラッチ機構81は、1速従動ギヤ51(内側メインシャフトIMS)とカウンタシャフトCSの相対回転速度に応じてその係合・非係合が切り替わるようになっている。また、3速従動ギヤ53は、アウトプットシャフトOPS上のギヤ59と噛み合っており、これにより、カウンタシャフトCSの回転がアウトプットシャフトOPSを介してディファレンシャル機構5に伝達される。 On the counter shaft CS, in order from the right side in FIG. 1, the 2-speed driven gear 52 meshing with the 2-speed driving gear 42, the 3-speed driven gear 53 meshing with the 3-speed driving gear 43, the 4-speed driving gear 44 and the 5-speed A 4-5 speed driven gear 54 engaged with the drive gear 45, a 6-7 speed driven gear 56 engaged with the 6 speed drive gear 46 and the 7 speed drive gear 47, 8 engaged with the 8 speed drive gear 48 and the 9 speed drive gear 49 The -9th driven gear 58 is fixedly arranged. Further, on the counter shaft CS, a first speed driven gear 51 meshing with the first speed driving gear 41 is provided so as to be relatively rotatable via a first speed one-way clutch mechanism 81. The engagement / non-engagement of the first speed one-way clutch mechanism 81 is switched according to the relative rotational speed of the first speed driven gear 51 (inner main shaft IMS) and the counter shaft CS. Further, the third speed driven gear 53 meshes with the gear 59 on the output shaft OPS, whereby the rotation of the countershaft CS is transmitted to the differential mechanism 5 via the output shaft OPS.
 上記構成の変速機4では、2-4速シンクロメッシュ機構82のスリーブ(シンクロスリーブ)を右方向にスライドすると、2速駆動ギヤ42がセカンダリシャフトSSに結合され(2速インギヤ)、左方向にスライドすると、4速駆動ギヤ44がセカンダリシャフトSSに結合される(4速インギヤ)。また、8-6速シンクロメッシュ機構86のスリーブを右方向にスライドすると、6速駆動ギヤ46がセカンダリシャフトSSに結合され(6速インギヤ)、左方向にスライドすると、8速駆動ギヤ48がセカンダリシャフトSSに結合される(8速インギヤ)。このように偶数の駆動ギヤ段を選択した状態で、第2クラッチC2を係合することにより、変速機4は偶数の変速段(2速、4速、6速、又は8速)に設定される。 In the transmission 4 of the above configuration, when the sleeve (synchro sleeve) of the 2-4 speed synchromesh mechanism 82 is slid rightward, the 2-speed drive gear 42 is coupled to the secondary shaft SS (2-speed in gear), and leftward When sliding, the fourth speed drive gear 44 is coupled to the secondary shaft SS (fourth speed in gear). When the sleeve of the 8-6 speed synchromesh mechanism 86 is slid rightward, the 6th speed drive gear 46 is coupled to the secondary shaft SS (sixth speed in gear), and when slid leftward, the 8th speed drive gear 48 is secondary It is coupled to the shaft SS (eight-speed in-gear). By thus engaging the second clutch C2 while selecting an even number of drive gears, the transmission 4 is set to an even number of gears (2-, 4-, 6-, or 8-speed). Ru.
 また、1速ワンウェイクラッチ機構81が係合状態の場合、1速従動ギヤ51がカウンタシャフトCSに結合されて(1速インギヤ)、1速の変速段が選択される。一方、1速ワンウェイクラッチ機構81が非係合状態で、3-5速シンクロメッシュ機構83のスリーブを右方向にスライドすると、3速駆動ギヤ43が内側メインシャフトIMSに結合されて3速の変速段が選択され(3速インギヤ)、左方向にスライドすると、5速駆動ギヤ45が内側メインシャフトIMSに結合されて5速の変速段が選択される(5速インギヤ)。また、9-7速シンクロメッシュ機構87のスリーブを右方向にスライドすると、7速駆動ギヤ47が内側メインシャフトIMSに結合されて7速の変速段が選択され(7速インギヤ)、左方向にスライドすると、9速駆動ギヤ49が内側メインシャフトIMSに結合されて9速の変速段が選択される(9速インギヤ)。このように奇数の駆動ギヤ段を選択した状態で、第1クラッチC1を係合することにより、変速機4は奇数の変速段(1速、3速、5速、7速、又は9速)に設定される。 Further, when the first speed one-way clutch mechanism 81 is in the engaged state, the first speed driven gear 51 is coupled to the counter shaft CS (first speed in gear), and the first speed is selected. On the other hand, when the sleeve of the 3-5th synchromesh mechanism 83 is slid to the right while the 1-speed one-way clutch mechanism 81 is not engaged, the 3-speed drive gear 43 is coupled to the inner main shaft IMS to shift the 3-speed When the gear is selected (third gear in gear) and slid leftward, the fifth gear gear 45 is coupled to the inner main shaft IMS to select the fifth gear (five gear in gear). In addition, when the sleeve of the 9-7th synchromesh mechanism 87 is slid rightward, the 7th drive gear 47 is coupled to the inner main shaft IMS, and the 7th gear is selected (7th in gear), and leftward When sliding, the ninth speed drive gear 49 is coupled to the inner main shaft IMS, and the ninth speed is selected (9th in gear). By engaging the first clutch C1 with the odd drive gear selected in this way, the transmission 4 is an odd gear (1st gear, 3rd gear, 5th gear, 7th gear or 9th gear) Set to
 上記の第1クラッチC1と、内側メインシャフトIMS上に設けた1,3,5,7,9速駆動ギヤ41,43,45,47,49と、1速ワンウェイクラッチ機構81、3-5速シンクロメッシュ機構83、9-7速シンクロメッシュ機構87とで、奇数段の変速段を設定するための第1変速機構GR1が構成される。また、上記の第2クラッチC2と、セカンダリシャフトSS上に設けた2,4,6,8速駆動ギヤ42,44,46,48と、2-4速シンクロメッシュ機構82及び8-6速シンクロメッシュ機構86とで、偶数段の変速段を設定するための第2変速機構GR2が構成される。 The first clutch C1 described above, the 1, 3, 5, 7, 9-speed drive gears 41, 43, 45, 47, 49 provided on the inner main shaft IMS, the 1-speed one-way clutch mechanism 81, 3-5 speeds The synchromesh mechanism 83 and the 9-7th synchro mesh mechanism 87 constitute a first transmission mechanism GR1 for setting an odd gear. Further, the second clutch C2 described above, the 2, 4, 6, 8 speed drive gears 42, 44, 46, 48 provided on the secondary shaft SS, the 2-4 speed synchromesh mechanism 82 and the 8-6 speed synchro The mesh mechanism 86 and the second transmission mechanism GR2 for setting the even gear stage are configured.
 この変速機4では、第1クラッチC1を係合すると、エンジン2及びモータ3の駆動力が第1クラッチC1から内側メインシャフトIMSを介して第1変速機構GR1に伝達される。一方、第2クラッチC2を係合すると、エンジン2及びモータ3の駆動力が第2クラッチC2から外側メインシャフトOMSを介してセカンダリシャフトSS上の第2変速機構GR2に伝達される。 In the transmission 4, when the first clutch C1 is engaged, the driving forces of the engine 2 and the motor 3 are transmitted from the first clutch C1 to the first transmission mechanism GR1 via the inner main shaft IMS. On the other hand, when the second clutch C2 is engaged, the driving forces of the engine 2 and the motor 3 are transmitted from the second clutch C2 to the second transmission mechanism GR2 on the secondary shaft SS via the outer main shaft OMS.
 よって、1速ワンウェイクラッチ機構81が係合した状態で第1クラッチC1を係合すると1速変速段が確立し、2-4速シンクロメッシュ機構82を右動して2速駆動ギヤ42をセカンダリシャフトSSに結合した状態で第2クラッチC2を係合すると2速変速段が確立し、3-5速シンクロメッシュ機構83を右動して3速駆動ギヤ43を内側メインシャフトIMSに結合した状態で第1クラッチC1を係合すると3速変速段が確立し、3-5速シンクロメッシュ機構83を左動して5速駆動ギヤ45を内側メインシャフトIMSに結合した状態で第2クラッチC2を係合すると5速段が確立する。以降も同様に各シンクロメッシュ機構82,83,86,87と第1、第2クラッチC1,C2の係合を切り換えることで、9速段までの各変速段を設定することができる。 Therefore, when the first clutch C1 is engaged with the first speed one-way clutch mechanism 81 engaged, the first speed is established, the 2-4 speed synchromesh mechanism 82 is moved to the right to set the second speed drive gear 42 to the secondary When the second clutch C2 is engaged in the state of being coupled to the shaft SS, the second gear is established, and the 3-5 gear synchromesh mechanism 83 is moved to the right to couple the third gear 43 to the inner main shaft IMS The third clutch is established when the first clutch C1 is engaged, and the second clutch C2 is engaged with the 3-5th synchromesh mechanism 83 moved left to couple the fifth drive gear 45 to the inner main shaft IMS. When engaged, the fifth gear is established. Similarly, by switching the engagement of the synchromesh mechanisms 82, 83, 86, 87 and the first and second clutches C1, C2, each shift speed up to the ninth gear can be set.
 そして、1速段側から9速段側へのシフトアップ時には、第1クラッチC1が係合して1速段が確立している間に2速段をプレシフトしておき、第1クラッチC1を係合解除して第2クラッチC2を係合することで2速段を確立し、第2クラッチC2が係合して2速段を確立している間に3速段をプレシフトしておき、第2クラッチC2を係合解除して第1クラッチC1を係合することで3速段を確立する。これを順に繰り返してシフトアップを行う。 When shifting up from the 1st gear side to the 9th gear side, the 2nd gear is preshifted while the 1st clutch C1 is engaged and the 1st gear is established, and the 1st clutch C1 is By releasing the engagement and engaging the second clutch C2, the second gear is established, and while the second clutch C2 is engaged and the second gear is established, the third gear is preshifted, The third clutch is established by disengaging the second clutch C2 and engaging the first clutch C1. Repeat this to repeat the shift up.
 一方、9速段側から1速段側へのシフトダウン時には、第1クラッチC1が係合して9速段が確立している間に8速段をプレシフトしておき、第1クラッチC1を係合解除して第2クラッチC2を係合することで8速段を確立し、第2クラッチC2が係合して8速段を確立している間に7速段をプレシフトしておき、第2クラッチC2を係合解除して第1クラッチC1を係合することで8速段を確立し、これを繰り返してシフトダウンを行う。これらにより、駆動力の途切れのないシフトアップ及びシフトダウンが可能になる。 On the other hand, when downshifting from the 9th gear side to the 1st gear side, while the 9th gear is established by engaging the first clutch C1, the 8th gear is preshifted, and the 1st clutch C1 is By releasing the engagement and engaging the second clutch C2, the eighth gear is established, and while the second clutch C2 is engaged and the eighth gear is established, the seventh gear is preshifted, By releasing the second clutch C2 and engaging the first clutch C1, an eighth gear is established, and this is repeated to shift down. As a result, uninterrupted ups and downs of the driving force become possible.
 なお、変速機4で実現すべき変速段の決定及び該変速段を実現するための制御(第1変速機構GR1及び第2変速機構GR2における変速段の選択(シンクロの切り替え制御)と、第1クラッチC1及び第2クラッチC2の係合及び係合解除の制御等)は、電子制御ユニット(制御手段)10によって、予め設定した車速及びアクセル開度と変速段との関係を示すシフトマップ(変速マップ)に応じて定められた目標変速段に基いて行われる。すなわち、現在の車速と運転者の意思などを含む運転状況に従って目標変速段への変速が行われる。 Note that the determination of the gear position to be realized by the transmission 4 and the control for realizing the gear position (selection of the gear position in the first transmission mechanism GR1 and the second transmission mechanism GR2 (control to switch synchro), and The electronic control unit (control means) 10 controls the engagement of the clutch C1 and the second clutch C2, etc. This is performed based on the target shift speed determined in accordance with the map). That is, the shift to the target gear is performed according to the driving situation including the current vehicle speed and the driver's intention.
 次に、変速機4が備えるシンクロメッシュ機構の構成について説明する。なお、以下の説明では、2-4速シンクロメッシュ機構(同期装置)82について説明するが、他のシンクロメッシュ機構も同様の構成である。図2は、シンクロメッシュ機構82を示す断面図である。同図に示すシンクロメッシュ機構82は、変速機4が備える2速段と4速段用の同期装置であって、軸方向の両側それぞれに配置された2速駆動ギヤ42用の同期結合機構と4速駆動ギヤ44用の同期結合機構とを備えている。ここで、上記の2速駆動ギヤ42用の同期結合機構と4速駆動ギヤ44用の同期結合機構は、軸方向で対称なほぼ同一の構成であるため、以下では2速駆動ギヤ42用の同期結合機構の構成及び動作を中心に説明する。また、以下の説明で軸方向、径方向ということきは、セカンダリシャフトSSの軸方向及び径方向を指し、右、左というときは、図2に示す状態でのセカンダリシャフトSSの軸方向に沿った右方向、左方向を指すものとする。 Next, the configuration of the synchromesh mechanism provided in the transmission 4 will be described. In the following description, the 2-4 speed synchromesh mechanism (synchronization device) 82 will be described, but the other synchromesh mechanisms have the same configuration. FIG. 2 is a cross-sectional view showing the synchromesh mechanism 82. As shown in FIG. The synchromesh mechanism 82 shown in the same figure is a synchronization device for the 2nd gear and the 4th gear included in the transmission 4 and is a synchronization coupling mechanism for the 2nd speed drive gear 42 disposed on both sides in the axial direction. A synchronous coupling mechanism for the fourth speed drive gear 44 is provided. Here, since the synchronous coupling mechanism for the 2-speed drive gear 42 and the synchronous coupling mechanism for the 4-speed drive gear 44 described above have substantially the same configuration in the axial direction, they will be described below for the 2-speed drive gear 42. The configuration and operation of the synchronous coupling mechanism will be mainly described. Moreover, in the following description, the term “axial direction” or “radial direction” refers to the axial direction and radial direction of the secondary shaft SS, and when “right” or “left” is referred to, along the axial direction of the secondary shaft SS in the state shown in FIG. Point to the right and to the left.
 シンクロメッシュ機構82は、セカンダリシャフトSS上の2速駆動ギヤ42をセカンダリシャフトSSに対して同期結合させるための機構である。2速駆動ギヤ42は、ニードルベアリング91を介してセカンダリシャフトSSの外周に相対回転自在に支持されている。軸方向における2速駆動ギヤ42の一方の側部には、セカンダリシャフトSSにスプライン結合された環状のシンクロハブ92が設置されており、シンクロハブ92の外周側には、軸方向に沿って摺動自在にスプライン結合されたスリーブ(シンクロスリーブ)191が設置されている。シンクロハブ92の外周面には、スプライン歯92aが形成されており、シンクロスリーブ191の内周面には、シンクロハブ92のスプライン歯92aに噛み合うスプライン歯191aが形成されている。スリーブ191は、外周の凹部191bに係合するシフトフォーク131によって、図2に示すニュートラル位置から左右それぞれに移動するようになっている。 The synchromesh mechanism 82 is a mechanism for synchronously coupling the second speed drive gear 42 on the secondary shaft SS to the secondary shaft SS. The second speed drive gear 42 is relatively rotatably supported on the outer periphery of the secondary shaft SS via a needle bearing 91. An annular synchro hub 92 splined to the secondary shaft SS is disposed on one side of the second speed drive gear 42 in the axial direction, and is slid along the axial direction on the outer peripheral side of the synchro hub 92. A freely splined sleeve (synchro sleeve) 191 is installed. Spline teeth 92 a are formed on the outer peripheral surface of the synchro hub 92, and spline teeth 191 a that mesh with the spline teeth 92 a of the synchro hub 92 are formed on the inner peripheral surface of the synchro sleeve 191. The sleeve 191 is configured to move leftward and rightward from the neutral position shown in FIG. 2 by means of a shift fork 131 engaged with the recess 191b on the outer periphery.
 シンクロハブ92の一方の側面(2速駆動ギヤ42側の側面)に形成された環状の凹部92bには、ブロッキングリング93が設置されている。ブロッキングリング93は、径方向の外側に配置されたアウターリング93aと、径方向の内側に配置されたインナーリング93bと、径方向におけるアウターリング93aとインナーリング93bとの間に挟まれたシンクロコーン93cとで構成されている。 A blocking ring 93 is installed in an annular recess 92 b formed in one side surface (a side surface on the second gear drive gear 42 side) of the synchro hub 92. The blocking ring 93 includes an outer ring 93a disposed radially outward, an inner ring 93b disposed radially inward, and a synchro cone sandwiched between the outer ring 93a and the inner ring 93b in the radial direction. And 93c.
 2速駆動ギヤ42におけるブロッキングリング93側の端部には、2速駆動ギヤ42と一体に形成されたギヤドグ94が設けられており、ギヤドグ94の外周には、ドグ歯94bが形成されている。アウターリング93aの外周には、ドグ歯93dが形成されている。これらドグ歯94b及びドグ歯93dは、軸方向で互いに隣接する位置に配列されている。 A gear dog 94 integrally formed with the 2-speed drive gear 42 is provided at an end of the 2-speed drive gear 42 on the blocking ring 93 side, and a dog tooth 94 b is formed on the outer periphery of the gear dog 94 . Dog teeth 93 d are formed on the outer periphery of the outer ring 93 a. The dog teeth 94 b and the dog teeth 93 d are arranged at positions adjacent to each other in the axial direction.
 また、ブロッキングリング93の外周には、環状のシンクロスプリング95が設置されている。シンクロスプリング95は、弾性金属製の線材を円形環状に形成した部品であって、アウターリング93aの外周において、ドグ歯93dに対してシンクロハブ92側に隣接して設置されている。このシンクロスプリング95は、スリーブ191がニュートラル位置にあるとき、アウターリング93aのドグ歯93dと、シンクロハブ92の軸方向の端面と、スリーブ191のスプライン歯191aの先端部(2速駆動ギヤ42側の先端部)とに囲まれた位置にある。そして、スリーブ191が2速駆動ギヤ42側に摺動すると、スプライン歯191aの先端部の下端で押圧されることで、ドグ歯93d側に向かって斜め下方へ押し出されることで、アウターリング93aに押圧力を付与する。 Further, an annular synchro spring 95 is installed on the outer periphery of the blocking ring 93. The synchro spring 95 is a component in which a wire made of an elastic metal is formed in a circular ring shape, and is installed adjacent to the dog tooth 93 d on the side of the synchro hub 92 on the outer periphery of the outer ring 93 a. When the sleeve 191 is in the neutral position, the synchro spring 95 has the dog teeth 93d of the outer ring 93a, the end face in the axial direction of the synchro hub 92, and the tip of the spline teeth 191a of the sleeve 191 And the tip of the). Then, when the sleeve 191 slides toward the second speed drive gear 42, the sleeve 191 is pressed by the lower end of the tip end of the spline tooth 191a and is pushed diagonally downward toward the dog tooth 93d, whereby the outer ring 93a is Apply pressure.
 次に、上記構成のシンクロメッシュ機構82におけるシフト操作時の同期結合動作について説明する。図2に示すように、スリーブ191がニュートラル位置にあるときは、ブロッキングリング93には荷重が作用しない。したがって、アウターリング93a及びインナーリング93bとシンクロコーン93cとの間には摩擦力が発生しておらず、シンクロコーン93cは、アウターリング93a及びインナーリング93bに対して相対回転可能な状態にある。そのため、アウターリング93a及びインナーリング93bはシンクロハブ92と一体的に回転し、シンクロコーン93cは2速駆動ギヤ42と一体的に回転する。したがって、スリーブ191と2速駆動ギヤ42との間には、同期作用が発生しない。 Next, the synchronous coupling operation at the time of shift operation in the synchromesh mechanism 82 configured as described above will be described. As shown in FIG. 2, when the sleeve 191 is in the neutral position, no load acts on the blocking ring 93. Therefore, no frictional force is generated between the outer ring 93a and the inner ring 93b and the synchro cone 93c, and the synchro cone 93c is in a state of being relatively rotatable with respect to the outer ring 93a and the inner ring 93b. Therefore, the outer ring 93 a and the inner ring 93 b rotate integrally with the synchro hub 92, and the synchro cone 93 c rotates integrally with the second speed drive gear 42. Therefore, no synchronous action occurs between the sleeve 191 and the second speed drive gear 42.
 この状態で、スリーブ191をシンクロハブ92に対して右方向に移動させると、スリーブ191とアウターリング93aとがシンクロスプリング95を介して摺動する。その後、スリーブ191のスプライン歯191aの先端に設けたチャンファ(図示せず)がアウターリング93aのドグ歯93dに設けたチャンファ(図示せず)に接触する。これによって、アウターリング93aが軸方向に押されることで、シンクロコーン93cとアウターリング93a及びインナーリング93bとの間に同期のための摩擦力が発生する。その結果、当該摩擦力でシンクロコーン93cがスリーブ191と一体化し、シンクロコーン93cに係合している2速駆動ギヤ42の回転がスリーブ191の回転に同期する。 In this state, when the sleeve 191 is moved to the right with respect to the synchro hub 92, the sleeve 191 and the outer ring 93a slide via the synchro spring 95. Thereafter, a chamfer (not shown) provided at the tip of the spline tooth 191a of the sleeve 191 contacts a chamfer (not shown) provided at the dog tooth 93d of the outer ring 93a. As a result, when the outer ring 93a is pushed in the axial direction, a frictional force for synchronization is generated between the synchro cone 93c and the outer ring 93a and the inner ring 93b. As a result, the synchro cone 93 c is integrated with the sleeve 191 by the frictional force, and the rotation of the second speed drive gear 42 engaged with the synchro cone 93 c is synchronized with the rotation of the sleeve 191.
 スリーブ191がさらに左方向に移動すると、スプライン歯191aのチャンファとアウターリング93aのドグ歯93dのチャンファとの係合が外れ、スプライン歯191aとドグ歯93dが完全に噛み合う。これにより、チャンファ同士の係合による軸方向の荷重が消滅するため、シンクロコーン93cに作用する摩擦力は減少する。 When the sleeve 191 further moves in the left direction, the chamfers of the spline teeth 191a and the chamfers of the dog teeth 93d of the outer ring 93a are disengaged, and the spline teeth 191a and the dog teeth 93d completely mesh. As a result, the load in the axial direction due to the engagement between the chamfers disappears, so the frictional force acting on the synchro cone 93c decreases.
 スリーブ191がさらに左方向に移動すると、スプライン歯191aのチャンファと2速駆動ギヤ42側のドグ歯94bのチャンファとが係合し、その楔作用でスリーブ191及び2速駆動ギヤ42が僅かに相対回転することにより、スリーブ191のスプライン歯191aが2速駆動ギヤ42のドグ歯94b側に噛み合って2速段(2速インギヤ状態)が確立する。 When the sleeve 191 moves further to the left, the chamfers of the spline teeth 191a and the chamfers of the dog teeth 94b on the second speed drive gear 42 engage with each other, so that the sleeve 191 and the second speed drive gear 42 are slightly relative to each other. By rotation, the spline teeth 191a of the sleeve 191 mesh with the dog teeth 94b side of the second speed drive gear 42, and a second speed (second speed in gear state) is established.
 次に、シンクロメッシュ機構82,83,86,87を操作するためのギヤ操作機構について説明する。図3は、ギヤ操作機構100の一部を示す部分拡大斜視図、図4は、ギヤ操作機構100の一部を示す側面図である。なお、図3では、後述するシフトシャフト120及びアクチュエータ部110の図示を省略している。また、図4では、後述するシフトフォーク131~135は、その一部のみ(突片131a~135aのみ)を部分的に切断した状態での断面図で示している。 Next, a gear operating mechanism for operating the synchromesh mechanisms 82, 83, 86 and 87 will be described. FIG. 3 is a partially enlarged perspective view showing a part of the gear operating mechanism 100, and FIG. 4 is a side view showing a part of the gear operating mechanism 100. As shown in FIG. In FIG. 3, the shift shaft 120 and the actuator unit 110, which will be described later, are not shown. Further, FIG. 4 is a cross-sectional view in a state in which only a part (only the protrusions 131a to 135a) of shift forks 131 to 135 described later are partially cut.
 図3及び図4に示すように、ギヤ操作機構100は、回転方向及び軸方向に移動自在に支持されたシフトシャフト120と、シフトシャフト120を回転及び軸方向に移動させるためのアクチュエータ部110と、シフトシャフト120上に設けた1個のインギヤ用係合片(駆動部材)121及び4個のオフギヤ用係合片(駆動部材)122~125と、これらインギヤ用係合片121及びオフギヤ用係合片122~125に係合してシフト方向に移動するシフトフォーク131~135と、シフトフォーク131~135に設けられたフォーク部141~145と、シフトフォーク131~135を軸方向に移動可能にガイドするフォークシャフト(シフトフォークシャフト)151~155とを備える。また、図示は省略するが、シフトフォーク131~135がシフト方向(フォークシャフト151~155の軸方向)に移動したときに、該シフトフォーク131~135をインギヤ位置で保持するためのディテント荷重を発生するディテント機構が設けられている。 As shown in FIGS. 3 and 4, the gear operating mechanism 100 includes a shift shaft 120 movably supported in the rotational direction and the axial direction, and an actuator unit 110 for moving the shift shaft 120 in the rotational and axial directions. An in-gear engagement piece (drive member) 121 and four off-gear engagement pieces (drive members) 122 to 125 provided on the shift shaft 120, and the in-gear engagement piece 121 and the off gear engagement piece Shift forks 131 to 135 engaged in the coupling pieces 122 to 125 and moved in the shift direction, fork portions 141 to 145 provided on the shift forks 131 to 135, and shift forks 131 to 135 axially movable And a fork shaft (shift fork shaft) 151-155 for guiding. Although not shown, when the shift forks 131 to 135 move in the shift direction (axial direction of the fork shafts 151 to 155), a detent load is generated to hold the shift forks 131 to 135 in the in-gear position. Detent mechanism is provided.
 複数のシフトフォーク131~135には、図3に示すように、セカンダリシャフトSS上の2-4速シンクロメッシュ機構82のスリーブを操作するための2-4シフトフォーク131と、内側メインシャフトIMS上の3-5シンクロメッシュ機構83のスリーブを操作するための3-5シフトフォーク132と、セカンダリシャフトSS上の8-6シンクロメッシュ機構86のスリーブを操作するための8-6シフトフォーク133と、内側メインシャフトIMS上の9-7シンクロメッシュ機構87のスリーブを操作するための9-7シフトフォーク134と、リバースシャフトRVS上のリバースシンクロメッシュ機構85のスリーブを操作するためのR-Pシフトフォーク135とが含まれている。 As shown in FIG. 3, the plurality of shift forks 131 to 135 include a 2-4 shift fork 131 for operating the sleeve of the 2-4 speed synchromesh mechanism 82 on the secondary shaft SS, and an inner main shaft IMS. 3-5 shift fork 132 for operating the sleeve of the 3-5 synchromesh mechanism 83, and 8-6 shift fork 133 for operating the sleeve of the 8-6 synchromesh mechanism 86 on the secondary shaft SS, 9-7 shift fork 134 for operating the sleeve of 9-7 synchromesh mechanism 87 on inner main shaft IMS and RP shift fork for operating the sleeve of reverse synchromesh mechanism 85 on reverse shaft RVS 135 and included.
 各シフトフォーク131~135には、シフトシャフト120を挿通させてなる突片(係合部)131a~135aが設けられている。突片131a~135aは、略矩形の平板状に形成されており、シフトシャフト120が挿通される切欠孔131b~135bが設けられている。 The shift forks 131 to 135 are provided with protrusions (engaging portions) 131a to 135a formed by inserting the shift shaft 120. The projecting pieces 131a to 135a are formed in a substantially rectangular flat plate shape, and provided with cutout holes 131b to 135b through which the shift shaft 120 is inserted.
 各シフトフォーク131~135の突片131a~135a及び切欠孔131b~135bは、シフトシャフト120の軸方向に沿って互いが重なる位置に配置されている。そして、シフトシャフト120に設けた複数のオフギヤ用係合片122~125は、インギヤ用係合片121に対して軸方向に位置をずらして設けられている。インギヤ用係合片121及びオフギヤ用係合片122~125は、シフトシャフト120の軸方向において一つおきのシフトフォーク131~135に対応する位置に設けられている。これにより、インギヤ用係合片121が第1変速機構GR1のシンクロメッシュ機構83,87(奇数変速段用のシンクロメッシュ機構)のシフトフォーク131,133のいずれかに対応するセレクト位置にあるとき、オフギヤ用係合片122~125のいずれかが、第1変速機構GR1の他のシンクロメッシュ機構83,87のシフトフォーク132,134に対応するセレクト位置に配置されるようになっている。同様に、インギヤ用係合片121が第2変速機構GR2のシンクロメッシュ機構82,86(偶数変速段用のシンクロメッシュ機構)のシフトフォーク131,133のいずれかに対応するセレクト位置にあるとき、オフギヤ用係合片122~125のいずれかが、第2変速機構GR2の他のシンクロメッシュ機構82,86のシフトフォーク131,133に対応するセレクト位置に配置されるようになっている。 The projecting pieces 131a to 135a and the notch holes 131b to 135b of the shift forks 131 to 135 are arranged at positions where they overlap with each other along the axial direction of the shift shaft 120. The plurality of off-gear engagement pieces 122 to 125 provided on the shift shaft 120 are axially offset from the in-gear engagement piece 121. The in-gear engagement pieces 121 and the off-gear engagement pieces 122-125 are provided at positions corresponding to every other shift fork 131-135 in the axial direction of the shift shaft 120. Thus, when the in-gear engagement piece 121 is at the select position corresponding to one of the shift forks 131 and 133 of the synchromesh mechanisms 83 and 87 (synchromesh mechanisms for odd gears) of the first transmission mechanism GR1, One of the off gear engaging pieces 122 to 125 is arranged at the select position corresponding to the shift forks 132 and 134 of the other synchromesh mechanisms 83 and 87 of the first transmission mechanism GR1. Similarly, when the in-gear engagement piece 121 is in the select position corresponding to one of the shift forks 131 and 133 of the synchromesh mechanisms 82 and 86 (synchromesh mechanisms for even gear) of the second transmission mechanism GR2, One of the off gear engaging pieces 122 to 125 is arranged at the select position corresponding to the shift forks 131 and 133 of the other synchromesh mechanisms 82 and 86 of the second transmission mechanism GR2.
 また、オフギヤ用係合片122~125は、インギヤ用係合片121よりもその突出寸法が小さな寸法に形成されている。複数のオフギヤ用係合片122~125は、互いに同形状に形成されている。そして、オフギヤ位置にあるいずれかのシフトフォーク131~135の切欠孔131b~135b内にインギヤ用係合片121を位置させた状態でシフトシャフト120を回転させると、インギヤ用係合片121が切欠孔131b~135bの内周縁に当接することで、当該シフトフォーク131~135をインギヤ位置に移動させるように構成されている。また、インギヤ位置にあるいずれかのシフトフォーク131~135の切欠孔131b~135b内にオフギヤ用係合片122~125を位置させた状態でシフトシャフト120を回転させたときに、オフギヤ用係合片122~125が切欠孔131b~135bの内周縁に当接してこれを押圧することで、当該シフトフォーク131~135をオフギヤ位置に移動させるように構成されている。 Further, the off-gear engagement pieces 122 to 125 are formed to have smaller projecting dimensions than the in-gear engagement piece 121. The plurality of off gear engaging pieces 122 to 125 are formed in the same shape. Then, when the shift shaft 120 is rotated with the in-gear engagement piece 121 positioned in the notch holes 131b to 135b of any of the shift forks 131 to 135 in the off gear position, the in-gear engagement piece 121 is notched. The shift forks 131 to 135 are moved to the in-gear position by abutting on the inner peripheral edge of the holes 131 b to 135 b. When the shift shaft 120 is rotated with the off gear engagement pieces 122 to 125 positioned in the notch holes 131 b to 135 b of any of the shift forks 131 to 135 in the in gear position, the off gear engagement is engaged. The shift forks 131 to 135 are moved to the off gear position by bringing the pieces 122 to 125 into contact with and pressing the inner peripheral edge of the notch holes 131b to 135b.
 図5は、ギヤ操作機構100におけるシフトシャフト120(インギヤ用係合片121及びオフギヤ用係合片122~125)とシフトフォーク131~135の動作を説明するための図である。同図では、2-4シフトフォーク131の突片131aと8-6シフトフォーク133の突片133aの位置を図示している。上記構成のギヤ操作機構100では、アクチュエータ部110がシフトシャフト120を回転方向へ回動(シフト)し、且つ軸方向へ移動(セレクト)するように構成している。これにより、インギヤ用係合片121が切欠孔131b~135bのいずれかの内周縁に当接してこれを押圧することにより、シフトフォーク131~135を介して対応するシンクロメッシュ機構のスリーブがシフト方向に移動し、対応するギヤとシャフトが連結される。 FIG. 5 is a view for explaining the operation of the shift shaft 120 (the in-gear engagement piece 121 and the off-gear engagement pieces 122 to 125) and the shift forks 131 to 135 in the gear operation mechanism 100. In the drawing, the positions of the protrusion 131 a of the 2-4 shift fork 131 and the protrusion 133 a of the 8-6 shift fork 133 are illustrated. In the gear operation mechanism 100 configured as described above, the actuator unit 110 is configured to rotate (shift) the shift shaft 120 in the rotational direction and to move (select) the shift shaft 120 in the axial direction. Thereby, the in-gear engagement piece 121 abuts on and presses the inner peripheral edge of any one of the notch holes 131b to 135b, whereby the sleeve of the corresponding synchromesh mechanism in the shift direction via the shift forks 131 to 135 is shifted. And the corresponding gear and shaft are connected.
 すなわち、図5(a)に示す状態では、2-4シフトフォーク131がオフギヤ位置(中立位置)にあり、8-6シフトフォーク133が6速インギヤ位置にある。この状態から、インギヤ用係合片121がその中立位置から回転して2-4シフトフォーク131の切欠孔131bの内周縁に当接してこれをシフト方向に移動させるときに、オフギヤ用係合片124が対応するインギヤ位置にある8-6シフトフォーク133の切欠孔133bの内周縁に当接して、この連結されていたシフトフォーク133を中立位置に戻すように構成されている(図5(b)及び図5(c))。これにより、図5(d)に示すように、2-4シフトフォーク131が4速インギヤ位置になり、8-6シフトフォーク133がオフギヤ位置になる。このように構成することにより、オフギヤ位置(中立位置)にある一のシフトフォークをインギヤ用係合片121で押圧してインギヤ位置に移動させると同時に、インギヤ位置にある他のシフトフォークをオフギヤ用係合片122~125のいずれかによってオフギヤ位置(中立位置)に戻すことができる。 That is, in the state shown in FIG. 5A, the 2-4 shift fork 131 is in the off gear position (neutral position), and the 8-6 shift fork 133 is in the sixth speed in-gear position. From this state, when the in-gear engagement piece 121 rotates from its neutral position and abuts on the inner peripheral edge of the notch hole 131b of the 2-4 shift fork 131 to move it in the shift direction, the off-gear engagement piece It is configured to contact the inner peripheral edge of the notch hole 133b of the 8-6 shift fork 133 at the corresponding in-gear position 124 to return the coupled shift fork 133 to the neutral position (FIG. 5 (b And FIG. 5 (c)). As a result, as shown in FIG. 5D, the 2-4 shift fork 131 is in the fourth gear in-gear position, and the 8-6 shift fork 133 is in the off gear position. With this configuration, one shift fork in the off gear position (neutral position) is pressed by the in-gear engagement piece 121 and moved to the in-gear position, and another shift fork in the in-gear position is for off gear The gear can be returned to the off gear position (neutral position) by any of the engagement pieces 122 to 125.
 すなわち、ギヤ操作機構100は、シフト操作において、第1変速機構GR1と第2変速機構GR2のいずれか一方に属する一のシンクロメッシュ機構を係合位置(インギヤ位置)へ駆動する。これにより、当該シンクロメッシュ機構の係合がディテント手段により維持される。それと同時に、当該変速機構に属する当該シンクロメッシュ機構以外の全てのシンクロメッシュ機構を中立位置(オフギヤ位置)へ駆動するように構成されている。 That is, the gear operation mechanism 100 drives one synchromesh mechanism belonging to one of the first transmission mechanism GR1 and the second transmission mechanism GR2 to the engagement position (in gear position) in the shift operation. Thereby, the engagement of the synchromesh mechanism is maintained by the detent means. At the same time, all synchromesh mechanisms other than the synchromesh mechanism belonging to the transmission mechanism are driven to the neutral position (off gear position).
 次に、シフトフォーク131~135の構成について説明する。なお、以下の説明では、変速機4が備えるシフトフォーク131~135のうち2-4シフトフォーク131について説明するが、他のシフトフォークも同様の構成である。図6乃至図8は、シフトフォーク131を示す図で、図6は、シフトフォーク131の斜視図、図7は、シフトフォーク131の断面図、図8(a)、(b)、(c)はそれぞれ、シフトフォーク131を図6に示すX方向、Y方向、Z方向から見た側面図である。シフトフォーク131は、スリーブ191の外周に形成した凹部191b(図2参照)に係合する二股状のフォーク部(フォーク部)141と、フォーク部141の根元部分においてフォークシャフト151(151-1,151-2)が取り付けられた筒状の基部(嵌装部)161とを備えている。フォークシャフト151(151-1,151-2)は、その軸方向がフォーク部141の面に対して直交する方向に延びており、軸方向に沿ってシフトフォーク131を進退移動可能に支持している。また、シフトフォーク131の基部161には、その側面からフォーク部141とは異なる方向に突出するアーム部171が設けられている。アーム部171の先端には、インギヤ用係合片(駆動部材)121及びオフギヤ用係合片(駆動部材)122~125(図4参照)に係合可能な突片(係合部)131aが設けられている。 Next, the configuration of the shift forks 131 to 135 will be described. In the following description, the 2-4 shift fork 131 among the shift forks 131 to 135 included in the transmission 4 will be described, but the other shift forks have the same configuration. 6 to 8 show the shift fork 131. FIG. 6 is a perspective view of the shift fork 131, FIG. 7 is a cross-sectional view of the shift fork 131, and FIGS. 8 (a), 8 (b) and 8 (c). These are the side views which looked at the shift fork 131 from the X direction, the Y direction, and the Z direction which each show in FIG. The shift fork 131 has a bifurcated fork portion (fork portion) 141 engaged with a recess 191 b (see FIG. 2) formed on the outer periphery of the sleeve 191, and the fork shaft 151 (151-1, And a tubular base portion (fitting portion) 161 to which the portion 151-2) is attached. The fork shaft 151 (151-1, 151-2) extends in a direction perpendicular to the surface of the fork portion 141 in the axial direction, and supports the shift fork 131 so as to be movable forward and backward along the axial direction. There is. Further, the base portion 161 of the shift fork 131 is provided with an arm portion 171 which protrudes in the direction different from that of the fork portion 141 from the side surface thereof. At the tip of the arm portion 171, a projection (engagement portion) 131a that can engage with the in-gear engagement piece (drive member) 121 and the off-gear engagement piece (drive member) 122 to 125 (see FIG. 4) It is provided.
 図7に示すように、フォークシャフト151-1,151-2は、軸方向に延びる中空の筒状であって、基部161の両端に設けた嵌装穴(嵌装部)161-1,161-2に嵌装される一方の端部151-1a,151-2aと、変速機4の図示しないケース(固定側の部材)に対して軸方向に摺動可能に支持される他方の端部151-1b,151-2bと、一方の端部151-1a,151-2aと他方の端部151-1b,151-2bとの間の中間部151-1c,151-2cとを備える。一方の端部151-1a,151-2aと他方の端部151-1b,151-2bの径寸法は、中間部151-1c,151-2cにおける径寸法(後述する楕円形状の短軸方向の径寸法)よりも大きな寸法に形成されている。そして、図7(b),(d)に示すように、一方の端部151-1a,151-2aの断面A1と他方の端部151-1b,151-2bの断面A2はいずれも円形状であり、図7(c)に示すように、中間部151-1c,151-2cの断面A3は楕円形状である。すなわち、フォークシャフト151-1,151-2を中空の薄肉の円筒形状に形成し、基部161に嵌装される一方の端部151-1a,151-2aとケースに対して摺動自在に取り付けられる他方の端部151-1b,151-2b以外の部分である中間部151-1c,151-2cの断面A3を楕円形状としている。 As shown in FIG. 7, the fork shafts 151-1 and 151-2 have hollow cylindrical shapes extending in the axial direction, and fitting holes (fitting parts) 161-1 and 161 provided at both ends of the base portion 161. -2 and the other end supported slidably in the axial direction with respect to one end 151-1a, 151-2a fitted in -2 and a case (fixed side member) (not shown) of the transmission 4 151-1b, 151-2b, and intermediate portions 151-1c, 151-2c between one end 151-1a, 151-2a and the other end 151-1b, 151-2b. The diameter dimensions of one end 151-1a, 151-2a and the other end 151-1b, 151-2b are the diameter dimensions of the middle portions 151-1c, 151-2c (in the minor axis direction of the elliptical shape described later) The diameter is larger than the diameter). And as shown in FIG.7 (b), (d), cross-sectional A1 of one edge part 151-1a, 151-2a and cross-sectional A2 of the other edge part 151-1b, 151-2b are both circular shape As shown in FIG. 7C, the cross section A3 of the middle portions 151-1c and 151-2c has an elliptical shape. That is, the fork shafts 151-1 and 151-2 are formed in a hollow thin cylindrical shape, and are slidably attached to one end 151-1a, 151-2a fitted to the base portion 161 with respect to the case The cross section A3 of the middle portions 151-1c and 151-2c, which is a portion other than the other end portions 151-1b and 151-2b, has an elliptical shape.
 基部161の軸方向における両側の端部それぞれにフォークシャフト151-1,151-2を嵌装するための嵌装穴161-1,161-2が設けられている。そして、各嵌装穴161-1,161-2にフォークシャフト151-1,151-2の端部151-1a,151-2aが嵌装されている。また、嵌装穴161-1,161-2に嵌装したフォークシャフト151-1,151-2の端部151-1a,151-2aの相対回転を規制するためのピン(規制部材)181-1,181-2が設けられている。ピン181-1,181-2は、基部161の外周から軸方向に対して直交する方向(径方向)に差し込まれており、フォークシャフト151-1,151-2の端部151-1a,151-2aを同方向に貫通している。 The mounting holes 161-1 and 161-2 for inserting the fork shafts 151-1 and 151-2 at the respective end portions on both sides in the axial direction of the base portion 161 are provided. The end portions 151-1a and 151-2a of the fork shafts 151-1 and 151-2 are fitted in the fitting holes 161-1 and 161-2 respectively. Also, a pin (regulating member) 181- for regulating the relative rotation of the end portions 151-1a and 151-2a of the fork shafts 151-1 and 151-2 fitted in the fitting holes 161-1 and 161-2. 1,181-2 are provided. The pins 181-1 and 181-2 are inserted from the outer periphery of the base portion 161 in a direction (radial direction) orthogonal to the axial direction, and the end portions 151-1a and 151 of the fork shafts 151-1 and 151-2. -2a penetrates in the same direction.
 図9は、シフトフォーク131にかかる荷重について説明するための図で、(a)は、シフトフォーク131をフォークシャフト151の軸方向から見た側面図、(b)は、シフトフォーク131の突片131aを示す平面図である。既述のように、フォークシャフト151-1,151-2の中間部151-1c,151-2cの断面A3は、フォークシャフト151-1,151-2の軸線と直交する平面H(図7参照)内で剛性が高い第1方向S1と、当該平面H内で第1方向よりも剛性が低い第2方向S2とを有している。第1方向S1は、中間部151-1c,151-2cの断面A3における楕円形状の長軸方向と一致し、第2方向S2は、当該楕円形状の短軸方向と一致している。したがって、第1方向S1は、上記の平面H内においてフォークシャフト151-1,151-2の剛性(中間部151-1c,151-2cの曲げ剛性)が最も高くなる方向である。 9A and 9B are diagrams for explaining the load applied to the shift fork 131. FIG. 9A is a side view of the shift fork 131 as viewed from the axial direction of the fork shaft 151, and FIG. It is a top view which shows 131a. As described above, the cross section A3 of the middle portions 151-1c and 151-2c of the fork shafts 151-1 and 151-2 is a plane H orthogonal to the axis of the fork shafts 151-1 and 151-2 (see FIG. 7). And the second direction S2 in which the rigidity is lower in the plane H than in the first direction. The first direction S1 coincides with the major axis direction of the elliptical shape in the cross section A3 of the middle portions 151-1c and 151-2c, and the second direction S2 coincides with the minor axis direction of the elliptical shape. Therefore, the first direction S1 is the direction in which the rigidity of the fork shafts 151-1 and 151-2 (the bending rigidity of the intermediate portions 151-1c and 151-2c) in the plane H is the highest.
 また、図9に示すように、シフトフォーク131には、インギヤ用係合片121が突片131aの切欠溝131bに係合することで発生する荷重F1に係る第1荷重作用点P1と、スリーブ191の凹部191bに係合しているフォーク部141がスリーブ191から受ける荷重(反力)F2に係る第2荷重作用点P2とを有している。ここで、第2荷重作用点P2は、フォーク部141とスリーブ191の凹部191bとが当接する2箇所の当接点P21及びP22それぞれにかかる荷重F21及び荷重F22の合力F2が作用する点であり、この第2荷重作用点P2は、フォーク部141及びスリーブ191の径方向の中心点(セカンダリシャフトSSの軸心)に一致している。 Further, as shown in FIG. 9, in the shift fork 131, a first load action point P1 relating to a load F1 generated by engagement of the in-gear engagement piece 121 with the notch groove 131b of the protrusion 131a, and a sleeve The fork portion 141 engaged with the recess 191 b of the arm 191 has a second load action point P2 related to a load (reaction force) F2 received from the sleeve 191. Here, the second load action point P2 is a point on which the combined force F2 of the load F21 and the load F22 applied to two contact points P21 and P22 at which the fork portion 141 and the concave portion 191b of the sleeve 191 contact each other. The second load action point P2 coincides with the radial center point of the fork portion 141 and the sleeve 191 (the axial center of the secondary shaft SS).
 そして、第1方向S1は、上記の第1荷重作用点P1と第2荷重作用点P2とを結んだ直線L3に沿う方向(直線L3と平行な方向)に設定されている。すなわち、フォークシャフト151の中間部151-1c,151-2cの断面A3における楕円形状の長軸方向(第1方向S1)は、上記の直線L3と平行な方向であり、当該楕円形状の短軸方向(第2方向S2)は、上記の直線L3に対して直交する方向である。 The first direction S1 is set in a direction (a direction parallel to the straight line L3) along a straight line L3 connecting the first load action point P1 and the second load action point P2. That is, the major axis direction (first direction S1) of the elliptical shape in the cross section A3 of the middle portions 151-1c and 151-2c of the fork shaft 151 is a direction parallel to the straight line L3 and the minor axis of the elliptical shape The direction (second direction S2) is a direction intersecting with the straight line L3.
 以上説明したように、本実施形態の変速機の同期装置によれば、フォークシャフト151の少なくとも一部の断面A3は、フォークシャフト151の軸線と直交する平面H内で該フォークシャフト151の剛性が高い第1方向S1と、当該平面H内で第1方向S1よりも剛性の低い第2方向S2とを有するように構成している。そのうえで、剛性が高い第1方向と、上記の第1荷重作用点P1と第2荷重作用点P2とを結んだ直線L3に沿う方向とが一致するようにシフトフォーク131が配置されていることで、シフトフォーク131でスリーブ191を駆動するインギヤ時の荷重の方向と、フォークシャフト151の剛性が高い方向とを一致させることができる。したがって、シフトフォーク131の軽量化を確保しつつフォークシャフト151の荷重による変形を低減することができ、シフトフォーク131によるインギヤ動作を伴う変速段の切り替えを速やかに完了できるようになる。したがって、変速段の切り替えの応答性(レスポンス)の向上を図ることができる。 As described above, according to the synchronizer of the transmission of this embodiment, at least a part of the cross section A3 of the fork shaft 151 has rigidity of the fork shaft 151 in the plane H orthogonal to the axis of the fork shaft 151 It is configured to have a high first direction S1 and a second direction S2 which is lower in rigidity than the first direction S1 in the plane H. In addition, the shift fork 131 is disposed such that the first direction with high rigidity and the direction along the straight line L3 connecting the first load action point P1 and the second load action point P2 coincide with each other. The direction of the load at the time of in-gear driving the sleeve 191 by the shift fork 131 can be made to coincide with the direction in which the rigidity of the fork shaft 151 is high. Therefore, it is possible to reduce the deformation due to the load of the fork shaft 151 while securing the weight reduction of the shift fork 131, and it is possible to promptly complete the switching of the shift position accompanied by the in-gear operation by the shift fork 131. Therefore, it is possible to improve the response of switching of the shift position.
 また、本実施形態の同期装置では、上記の第1方向S1は、平面H内でフォークシャフト151の剛性が最も高い方向である。この構成によれば、フォークシャフト151の剛性が最も強い方向をフォークシャフト151にかかる荷重方向と一致させることができるので、荷重によるフォークシャフト151の変形を最大限に抑制することができる。 Further, in the synchronous device of the present embodiment, the first direction S1 is a direction in which the rigidity of the fork shaft 151 is the highest in the plane H. According to this configuration, since the direction in which the rigidity of the fork shaft 151 is strongest can be made to coincide with the load direction applied to the fork shaft 151, the deformation of the fork shaft 151 due to the load can be suppressed to the maximum.
 また、本実施形態の同期装置では、フォークシャフト151の中間部151-1c,151-2cの断面A3は、長軸の軸方向が上記の第1方向S1と一致する楕円形状である。この構成によれば、円形状の断面を有するフォークシャフトの一部を径方向に圧縮変形させて楕円形状とするだけで、剛性の異方性が得られる。したがって、フォークシャフト151の製造工程の簡素化および低コスト化に寄与することができる。 Further, in the synchronization device of the present embodiment, the cross section A3 of the middle portions 151-1c and 151-2c of the fork shaft 151 has an elliptical shape in which the axial direction of the major axis coincides with the first direction S1. According to this configuration, rigidity anisotropy can be obtained only by compressively deforming a part of the fork shaft having a circular cross section in the radial direction to make it elliptical. Therefore, it can contribute to simplification of the manufacturing process of fork shaft 151, and cost reduction.
 また、本実施形態の同期装置では、フォークシャフト151は、円形状の断面A2を備え、この断面A2は、フォークシャフト151における嵌装部161-1,161-2に嵌装される部分(端部151-1a,151-2a)の断面である。 Further, in the synchronization device of the present embodiment, the fork shaft 151 has a circular cross section A2, and this cross section A2 is a portion (end) fitted to the fitting portions 161-1 and 161-2 in the fork shaft 151. 6 is a cross section of the portions 151-1a and 151-2a).
 この構成によれば、フォークシャフト151-1,151-2における嵌装部161-1,161-2に嵌装される部分(端部151-1a,151-2a)の断面A1は、円形状の断面を有するフォークシャフト151を変形させることなくそのままの形状(本来の形状)を保つことができるので、フォークシャフト151の一部のみを変形させることで剛性の異方性が得られる。また、全体の断面が円形状である従来構成のフォークシャフトの一部(中間部)を変形させることで本願のフォークシャフト151を構成できるため、従来のフォークシャフト151の流用が可能となる。したがって、フォークシャフト151及びシフトフォーク131の製造コストを低く抑えることができる。 According to this configuration, the cross section A1 of the portions (ends 151-1a and 151-2a) of the fork shafts 151-1 and 151-2 to be fitted to the fitting portions 161-1 and 161-2 has a circular shape. The fork shaft 151 having the cross-section can be maintained in the same shape (original shape) without deformation, so that by deforming only a part of the fork shaft 151, rigidity anisotropy can be obtained. Further, since the fork shaft 151 of the present invention can be configured by deforming a part (intermediate portion) of the conventional configuration of the fork shaft having a circular cross section as a whole, the conventional fork shaft 151 can be diverted. Therefore, the manufacturing costs of the fork shaft 151 and the shift fork 131 can be reduced.
 また、本実施形態の同期装置では、フォークシャフト151を中空の筒状に形成したことで、荷重に対する剛性を確保しながら軽量化を図ることができる。 Further, in the synchronous device of the present embodiment, by forming the fork shaft 151 in a hollow cylindrical shape, weight reduction can be achieved while securing rigidity against a load.
 また、嵌装部161-1,161-2は、基部161における軸方向の両側の端部それぞれに設けられており、フォークシャフト151は、各々の嵌装部161-1,161-2に嵌装されている二本のフォークシャフト151-1,151-2に分割されている。この構成によれば、基部161を貫通するフォークシャフト151の一部が省略された構成となるため、その分、シフトフォーク131の軽量化を図ることができる。 Further, the fitting portions 161-1 and 161-2 are provided at respective axial end portions of the base portion 161, and the fork shaft 151 is fitted to each of the fitting portions 161-1 and 161-2. It is divided into two mounted fork shafts 151-1 and 151-2. According to this configuration, a part of the fork shaft 151 passing through the base portion 161 is omitted, so that the weight of the shift fork 131 can be reduced.
 また、フォークシャフト151における楕円形状の断面A3の部分は、その長軸方向の径寸法が拡径するため、従来構造のように1本のフォークシャフト151を基部161に貫通させてシフトフォーク131を組み立てることができない。そこで、本実施形態の同期装置では、上記の構成のように、基部161の両端の各々にフォークシャフト151を嵌装する嵌装部161-1,161-2を設け、分割したフォークシャフト151-1,151-2における嵌装部161-1,161-2に嵌装する部分(端部151-1a,151-2a)の断面A1を円形状とすることで、上記のような不都合を解消している。 Further, since the diameter of the oval cross section A3 of the fork shaft 151 is expanded in diameter in the major axis direction, the fork shaft 151 is made to penetrate the base portion 161 to shift the fork 131 as in the conventional structure. I can not assemble. Therefore, in the synchronization device according to the present embodiment, as in the above-described configuration, the fork shaft 151-divided into fork shafts 151-is provided with the fitting portions 161-1 and 161-2 to which the fork shaft 151 is fitted at each of both ends of the base portion 161. By making the cross section A1 of the portions (ends 151-1a and 151-2a) to be fitted to the fitting portions 161-1 and 161-2 in 1, 151-2 have a circular shape, the above problems are eliminated. doing.
 また、本実施形態の同期装置では、嵌装部161-1,161-2に嵌装されたフォークシャフト151-1,151-2の相対回転を規制するためのピン181-1,181-2を備えたことで、当該ピン181-1,181-2によって嵌装部161-1,161-2に嵌装したフォークシャフト151の相対回転が規制されるので、フォークシャフト151を嵌装部161-1,161-2に圧入する工程が不要となる。また、ピン181-1,181-2でフォークシャフト151の相対回転が規制されることで、楕円形状の断面A3の位置決め(周方向の位置決め)がなされるので、荷重F1,F2に対するフォークシャフト151の高い剛性を常に確保できるようになる。 Further, in the synchronization device of the present embodiment, the pins 181-1 and 181-2 for restricting relative rotation of the fork shafts 151-1 and 151-2 fitted in the fitting portions 161-1 and 161-2. Since the relative rotation of the fork shaft 151 fitted to the fitting portions 161-1 and 161-2 is restricted by the pins 181-1 and 181-2, the fork shaft 151 is fitted to the fitting portion 161. No need for the process of press-fitting to 1, 161-2. Further, the relative rotation of the fork shaft 151 is restricted by the pins 181-1 and 181-2, whereby the positioning (the positioning in the circumferential direction) of the elliptical cross section A3 is performed. High rigidity can always be secured.
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。たとえば、上記の実施形態では、シフトフォーク131-135を駆動するためのインギヤ用係合片(駆動部材)121及びオフギヤ用係合片(駆動部材)122-125がアクチュエータ機構110で駆動される構成の変速機を示したが、本発明にかかる同期装置は、これ以外にも、シフトフォークを駆動するための駆動部材が運転者によるシフトレバーなどの操作によって動作するように構成したいわゆる手動変速機にも適用が可能である。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, It is within the range of the claim, and the technical idea described in the specification and drawing. Variations are possible. For example, in the above embodiment, the in-gear engagement piece (drive member) 121 for driving the shift fork 131-135 and the off-gear engagement piece (drive member) 122-125 are driven by the actuator mechanism 110. However, the synchronization device according to the present invention is also a so-called manual transmission in which the drive member for driving the shift fork is operated by the driver's operation of the shift lever or the like. Is also applicable.
 また、上記実施形態では、本発明に係る同期装置を備えた変速機として、駆動源としてのエンジン及びモータを備えたハイブリッド車両に搭載される変速機を示したが、これ以外にも、本発明に係る同期装置を備えた変速機は、エンジンのみを駆動源とする車両に搭載される変速機であってもよい。 In the above embodiment, the transmission mounted on the hybrid vehicle provided with the engine and the motor as the drive source has been described as the transmission provided with the synchronization device according to the present invention. The transmission provided with the synchronization device according to the present invention may be a transmission mounted on a vehicle having only the engine as a drive source.

Claims (8)

  1.  回転軸と、
     前記回転軸に固設されているハブと、
     前記回転軸に相対回転自在に配置されているギヤと、
     前記回転軸の軸方向において摺動可能であり、前記ハブおよび前記ギヤに係合することで前記回転軸と前記ギヤとの回転を同期させるスリーブと、
     前記スリーブを摺動させるシフトフォークと、を備える変速機の同期装置において、
     前記シフトフォークは、
     該シフトフォークを駆動するための駆動部材が係合する係合部と、
     前記スリーブの外周に係合するフォーク部と、
     フォークシャフトを嵌装する嵌装部を有する基部と、を備え、
     前記フォークシャフトの少なくとも一部の断面は、前記フォークシャフトの軸線と直交する平面内で前記フォークシャフトの剛性が高い第1方向と、前記平面内で前記第1方向よりも剛性の低い第2方向とを有し、
     前記第1方向が、前記駆動部材が前記係合部に係合することで発生する荷重が作用する第1荷重作用点と、前記フォーク部が前記スリーブを駆動する荷重が作用する第2荷重作用点とを結んだ直線に沿う方向となるように前記フォークシャフトが配置される
    ことを特徴とする変速機の同期装置。
    With the rotation axis,
    A hub fixed to the rotating shaft;
    A gear which is arranged to be rotatable relative to the rotation shaft;
    A sleeve which is slidable in the axial direction of the rotating shaft and which synchronizes rotation of the rotating shaft and the gear by engaging the hub and the gear;
    And a shift fork for sliding the sleeve.
    The shift fork is
    An engagement portion engaged with a drive member for driving the shift fork;
    A fork portion engaged with the outer periphery of the sleeve;
    A base having a fitting portion for fitting the fork shaft,
    The cross section of at least a part of the fork shaft is a first direction in which the rigidity of the fork shaft is high in a plane orthogonal to the axis of the fork shaft, and a second direction in which the rigidity is lower than the first direction in the plane. Have and
    The first load acting point on which the load generated by the drive member engaging with the engaging portion acts in the first direction, and the second load action on which the load by which the fork portion drives the sleeve acts A transmission synchronizer characterized in that the fork shaft is disposed in a direction along a straight line connecting points.
  2.  前記第1方向は、前記平面内で前記フォークシャフトの剛性が最も高い方向である
    ことを特徴とする請求項1に記載の変速機の同期装置。
    The transmission synchronization apparatus according to claim 1, wherein the first direction is a direction in which the rigidity of the fork shaft is the highest in the plane.
  3.  前記フォークシャフトの前記断面は、長軸の軸方向が前記第1方向と一致する楕円形状である
    ことを特徴とする請求項1又は2に記載の変速機の同期装置。
    The transmission synchronizer according to claim 1 or 2, wherein the cross section of the fork shaft has an elliptical shape in which the axial direction of the long axis coincides with the first direction.
  4.  前記フォークシャフトは、円形状の他の断面を備え、
     前記他の断面は、前記フォークシャフトにおける前記嵌装部に嵌装される部分の断面である
    ことを特徴とする請求項3に記載の変速機の同期装置。
    The fork shaft has another circular cross section,
    The transmission synchronizer according to claim 3, wherein the other cross section is a cross section of a portion of the fork shaft fitted to the fitting portion.
  5.  前記フォークシャフトは、前記嵌装部に嵌装される一方の端部と、軸方向に摺動可能に支持される他方の端部と、前記一方の端部と前記他方の端部との間の中間部と、を備え、
     前記中間部の断面は、前記楕円形状の断面であり、前記一方の端部の断面は、前記円形状の断面である
    ことを特徴とする請求項3又は4に記載の変速機の同期装置。
    The fork shaft is disposed between one end fitted to the fitting portion, the other end axially slidably supported, and the one end and the other end. And the middle part of the
    The transmission synchronizer according to claim 3 or 4, wherein a cross section of the middle part is a cross section of the elliptical shape, and a cross section of the one end is a circular cross section.
  6.  前記フォークシャフトは、中空の筒状に形成されている
    ことを特徴とする請求項1乃至5のいずれか1項に記載の変速機の同期装置。
    The transmission synchronization device according to any one of claims 1 to 5, wherein the fork shaft is formed in a hollow cylindrical shape.
  7.  前記嵌装部は、前記基部における軸方向の両側の端部それぞれに設けられており、
     前記フォークシャフトは、各々の嵌装部に嵌装されている2本のフォークシャフトに分割されている
    ことを特徴とする請求項1乃至6のいずれか1項に記載の変速機の同期装置。
    The fitting portion is provided at each of both ends of the base in the axial direction,
    The transmission synchronization device according to any one of claims 1 to 6, wherein the fork shaft is divided into two fork shafts fitted in respective fitting portions.
  8.  前記嵌装部に嵌装された前記フォークシャフトの相対回転を規制するための規制部材を備える
    ことを特徴とする請求項1乃至7のいずれか1項に記載の変速機の同期装置。
    The transmission synchronizing device according to any one of claims 1 to 7, further comprising: a restricting member for restricting relative rotation of the fork shaft fitted in the fitting portion.
PCT/JP2014/084046 2014-01-09 2014-12-24 Transmission synchronizing device WO2015104995A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480070578.2A CN105849442B (en) 2014-01-09 2014-12-24 The sychronisation of speed changer
JP2015556764A JP6351631B2 (en) 2014-01-09 2014-12-24 Gearbox synchronizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014002790 2014-01-09
JP2014-002790 2014-01-09

Publications (1)

Publication Number Publication Date
WO2015104995A1 true WO2015104995A1 (en) 2015-07-16

Family

ID=53523832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084046 WO2015104995A1 (en) 2014-01-09 2014-12-24 Transmission synchronizing device

Country Status (3)

Country Link
JP (1) JP6351631B2 (en)
CN (1) CN105849442B (en)
WO (1) WO2015104995A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107435689A (en) * 2016-05-27 2017-12-05 本田技研工业株式会社 Speed changer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018054017A (en) * 2016-09-29 2018-04-05 アイシン・エーアイ株式会社 transmission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273004A (en) * 1978-07-25 1981-06-16 Morrison William M Gear selector mechanism
DE19944323A1 (en) * 1999-09-15 2000-11-02 Daimler Chrysler Ag Bicycle derailleur gear shifter comprizes fork with formed part central between fork ends riding sleeve groove with play before contact.
JP2010196880A (en) * 2009-02-27 2010-09-09 Toyota Motor Corp Transmission
JP2012041959A (en) * 2010-08-17 2012-03-01 Aisin Ai Co Ltd Support structure for fork shaft of transmission
JP2013124685A (en) * 2011-12-13 2013-06-24 Aisin Ai Co Ltd Shift device of transmission

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4309861C1 (en) * 1993-03-26 1994-10-20 Daimler Benz Ag Operating device for a change-speed gearbox
JP3024709U (en) * 1995-11-16 1996-05-31 株式会社久保田鉄工所 Gear shift fork
JP4232072B2 (en) * 2001-09-07 2009-03-04 スズキ株式会社 Shift device for transmission and method for manufacturing shift device
JP4179479B2 (en) * 2006-04-14 2008-11-12 本田技研工業株式会社 Shift change device for transmission
JP5313722B2 (en) * 2009-02-26 2013-10-09 オリンパスイメージング株式会社 Lens assembly
WO2010100987A1 (en) * 2009-03-04 2010-09-10 本田技研工業株式会社 Park lock apparatus for a transmission
JP5738979B2 (en) * 2010-04-06 2015-06-24 コングスバーグ オートモーティブ アーべー Shift fork assembly
JP5723209B2 (en) * 2011-05-11 2015-05-27 アイシン・エーアイ株式会社 Shift operation member of transmission
CN202531818U (en) * 2012-01-31 2012-11-14 湖北中航精机科技股份有限公司 Fork and gear shifting shaft combined mechanism of speed changer
JP5553849B2 (en) * 2012-03-02 2014-07-16 本田技研工業株式会社 Gearbox synchronizer
JP5400916B2 (en) * 2012-03-19 2014-01-29 本田技研工業株式会社 Transmission synchronizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273004A (en) * 1978-07-25 1981-06-16 Morrison William M Gear selector mechanism
DE19944323A1 (en) * 1999-09-15 2000-11-02 Daimler Chrysler Ag Bicycle derailleur gear shifter comprizes fork with formed part central between fork ends riding sleeve groove with play before contact.
JP2010196880A (en) * 2009-02-27 2010-09-09 Toyota Motor Corp Transmission
JP2012041959A (en) * 2010-08-17 2012-03-01 Aisin Ai Co Ltd Support structure for fork shaft of transmission
JP2013124685A (en) * 2011-12-13 2013-06-24 Aisin Ai Co Ltd Shift device of transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107435689A (en) * 2016-05-27 2017-12-05 本田技研工业株式会社 Speed changer
CN107435689B (en) * 2016-05-27 2019-06-21 本田技研工业株式会社 Speed changer

Also Published As

Publication number Publication date
JP6351631B2 (en) 2018-07-04
CN105849442B (en) 2018-02-13
CN105849442A (en) 2016-08-10
JPWO2015104995A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP4782188B2 (en) Twin-clutch transmission for pneumatic vehicles
JP4809629B2 (en) Shifting operation device
JP5734287B2 (en) Twin clutch transmission
JP2013521449A (en) Dual clutch transmission shift device
JP4501986B2 (en) Manual transmission gear noise prevention device
JP2015175463A (en) transmission
JP2008069832A (en) Driving device for vehicle
JP2015081634A (en) Drum type transmission
JP2013019424A (en) Transmission for vehicle
JP5276272B2 (en) Industrial vehicle transmission
WO2015104995A1 (en) Transmission synchronizing device
JP4596015B2 (en) Manual transmission gear noise prevention device
US10507717B2 (en) Gear operating mechanism in transmission
JP2010223415A (en) Double clutch transmission
WO2015020201A1 (en) Twin-clutch-type transmission
CN107401584B (en) Speed variator
JP5092993B2 (en) Manual transmission
JP4411308B2 (en) Vehicle transmission
JP6457837B2 (en) Vehicle power transmission control device
CN109654176B (en) Vehicle transmission device
WO2016067656A1 (en) Apparatus for controlling motive power transmission in vehicle
JP6068866B2 (en) transmission
JP5658069B2 (en) Transmission
JP2009281438A (en) Manual transmission
JP6304322B2 (en) Transmission operating mechanism of transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556764

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878207

Country of ref document: EP

Kind code of ref document: A1