WO2015104827A1 - 集塵装置浄化用ノズルおよび集塵装置 - Google Patents

集塵装置浄化用ノズルおよび集塵装置 Download PDF

Info

Publication number
WO2015104827A1
WO2015104827A1 PCT/JP2014/050292 JP2014050292W WO2015104827A1 WO 2015104827 A1 WO2015104827 A1 WO 2015104827A1 JP 2014050292 W JP2014050292 W JP 2014050292W WO 2015104827 A1 WO2015104827 A1 WO 2015104827A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
dust collector
jet
compressed air
flow path
Prior art date
Application number
PCT/JP2014/050292
Other languages
English (en)
French (fr)
Inventor
小嶋 勝久
小松 由尚
一明 三宅
Original Assignee
三菱重工メカトロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工メカトロシステムズ株式会社 filed Critical 三菱重工メカトロシステムズ株式会社
Priority to JP2015556684A priority Critical patent/JP6189458B2/ja
Priority to PCT/JP2014/050292 priority patent/WO2015104827A1/ja
Publication of WO2015104827A1 publication Critical patent/WO2015104827A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • B01D46/04Cleaning filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/70Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter
    • B01D46/71Regeneration of the filtering material or filter elements inside the filter by acting counter-currently on the filtering surface, e.g. by flushing on the non-cake side of the filter with pressurised gas, e.g. pulsed air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/005Nozzles or other outlets specially adapted for discharging one or more gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/40Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths
    • B05B14/43Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths by filtering the air charged with excess material
    • B05B14/435Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths by filtering the air charged with excess material with means for cleaning the filters by gas flow, e.g. blasts of air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/40Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths
    • B05B14/48Arrangements for collecting, re-using or eliminating excess spraying material for use in spray booths specially adapted for particulate material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/20Arrangements of several outlets along elongated bodies, e.g. perforated pipes or troughs, e.g. spray booms; Outlet elements therefor

Definitions

  • the present invention relates to a dust collector purifier nozzle and a dust collector, and more particularly to a dust collector purifier nozzle and a dust collector that are used when purifying a dust collector that removes dust from exhaust gas.
  • Dust collectors that remove dust from exhaust gas are known.
  • dust collectors There are many types of dust collectors, and typical examples include filters and electrostatic dust collectors.
  • the bag filter includes a plurality of filter cloths formed in a bag shape, and dust is removed from the exhaust gas by filtering the exhaust gas (see Patent Documents 1 to 6). Bag filters prevent pulse pressure increase due to dust accumulation by spraying pulse jet-like air onto the filter cloth, and removing dust accumulated on the surface of the filter cloth and backwashing (Patent Literature). See 2-6.)
  • JP 2002-58948 A Japanese Patent No. 3078772 Japanese Patent Laid-Open No. 04-90817 JP 2007-90222 A Japanese Patent Publication No.59-9206 JP 2013-116466 A
  • the bag filter can reduce the installation space and cost by lengthening the filter cloth. When a long filter cloth is backwashed, a lot of backwashing air needs to be injected.
  • the bag filter is desired to appropriately backwash a long filter cloth, and it is desired to increase the flow rate of backwash air for backwashing the filter cloth at low cost with high efficiency.
  • dust removed from the exhaust gas accumulates on dust collection mechanisms such as wire mesh, filters, plates, etc., resulting in an increase in pressure loss over time or a decrease in dust removal efficiency. Therefore, it is desired that the purification can be performed at low cost and high efficiency.
  • the subject of this invention is providing the nozzle for dust collector purification
  • Another object of the present invention is to provide a dust collector including the nozzle that appropriately purifies a dust collecting mechanism such as a filter cloth, a wire net, a filter, and a plate that removes dust from exhaust gas.
  • the dust collector purification nozzle includes an inner nozzle and an outer nozzle that are disposed so as to penetrate a mother pipe that forms a compressed air passage through which compressed air flows.
  • the inner nozzle is formed with an entrained flow channel through which a clean gas disposed outside the mother pipe flows and an entrained flow outlet connected to the entrained flow channel.
  • a jet flow channel connected to the compressed air flow channel and an injection port arranged so as to surround the entrained flow outlet are formed.
  • Such a dust collecting device purification nozzle has a cleaning jet whose flow rate is larger than the flow rate of the jet flow ejected from the ejection port when the jet flow ejected from the ejection port takes in the clean gas ejected from the entrainment outlet. Can be generated. For this reason, such a dust collector purification nozzle can increase the flow rate of the generated cleaning jet flow at a low cost without increasing the flow rate of the compressed air flowing through the mother pipe.
  • the inner nozzle is formed with a curved surface that gently connects the inner surface of the inner nozzle and the outer surface of the mother pipe to the entrained flow intake port for taking the clean gas into the entrained flow channel.
  • the entrained flow intake port is formed in a so-called bell mouth shape, thereby reducing energy loss when the clean gas flows into the inner pipe through the entrained flow intake port.
  • the clean gas can be discharged from the entrained outlet with high efficiency.
  • Such a dust collector cleaning nozzle can efficiently generate a cleaning jet having a flow rate larger than the flow rate of the jet injected from the injection port by discharging the cleaning gas from the entrained outlet with high efficiency. it can.
  • the dust collector purification nozzle according to the present invention further includes another inner nozzle arranged to penetrate the compressed air flow path.
  • the other inner nozzle is formed with another entrained flow channel through which the clean gas flows and another entrained flow outlet connected to the other entrained flow channel.
  • the jet flow channel and the injection port are formed in a region surrounded by the outer nozzle, the inner nozzle, and the other inner nozzle.
  • Such a dust collecting device purification nozzle includes a plurality of inner nozzles, so that the jet flow injected from the injection port can take in the clean gas discharged from the plurality of entrained outlets with high efficiency, and A cleaning jet having a flow rate larger than the flow rate of the jet jetted from the mouth can be generated with high efficiency.
  • the dust collector according to the present invention includes the dust collector purification nozzle according to the present invention and a dust collecting mechanism such as a plurality of filter cloths, wire meshes, and plates.
  • the nozzle for purifying the dust collector is arranged so that the jet is jetted to a dust collecting mechanism such as the plurality of filter cloths, wire nets, and plates.
  • the dust collector purifying nozzle can inject a cleaning jet at a large flow rate, so that the dust collecting mechanism such as a filter cloth, a filter, a wire net, and a plate is lengthened or large-sized.
  • the dust collecting mechanism can be appropriately purified without increasing the flow rate of the air flowing through the mother pipe, and dust can be appropriately removed from the exhaust gas.
  • the effect of purifying the dust collecting mechanism can be increased without increasing the flow rate of the air flowing through the mother pipe.
  • the jet injected from the injection port is generated without increasing the flow rate of the compressed air flowing through the mother pipe by taking in the clean gas discharged from the entrained outlet.
  • the flow rate of the jet can be increased at low cost.
  • the bag filter 10 to which the dust collector cleaning nozzle is applied includes a housing 1, a separation plate 2, and a plurality of filter cloths 3.
  • the housing 1 is formed in a container.
  • the separation plate 2 is formed in a flat plate shape.
  • the separation plate 2 is disposed in the internal space of the housing 1 along the horizontal plane, and separates the internal space of the housing 1 into an exhaust gas region 5 and a clean gas region 6. At this time, the clean gas region 6 is disposed above the exhaust gas region 5.
  • the housing 1 further has an exhaust gas inlet 7 and an exhaust gas outlet 8 formed therein.
  • the exhaust gas inlet 7 connects the exhaust gas region 5 to the outside of the housing 1.
  • the exhaust gas outlet 8 connects the clean gas region 6 to the outside of the housing 1.
  • Each of the plurality of filter cloths 3 is composed of a filter cloth formed in a bag shape.
  • Each of the plurality of filter cloths 3 is disposed in the exhaust gas region 5.
  • the separation plate 2 further includes a plurality of through holes corresponding to the plurality of filter cloths 3.
  • the filter cloth corresponding to a certain through-hole among the plurality of filter cloths 3 is joined to the separation plate 2 so that the mouth of the bag of the filter cloth closes the through-hole. That is, the exhaust gas region 5 and the clean gas region 6 are isolated by the separation plate 2 and the plurality of filter cloths 3.
  • the bag filter 10 further includes a dust collector cleaning nozzle 11, a mother pipe 12, and a rotation motor 13 as shown in FIG. 1.
  • the mother pipe 12 is formed in a rod shape.
  • the mother pipe 12 is arranged on the upper side of the separation plate 2, that is, in the clean gas region 6 so as to follow a straight line perpendicular to the vertical direction.
  • the mother pipe 12 is further supported by the housing 1 so as to be rotatable around a rotation shaft 14 that is parallel to the vertical direction.
  • the rotation motor 13 rotates the mother pipe 12 around the rotation shaft 14.
  • the bag filter 10 further includes a backwash air source 15, a backwash air pipe 16, and a diaphragm valve 17.
  • the backwash air source 15 generates compressed air by compressing air.
  • the backwash air pipe 16 forms a flow path connecting the backwash air source 15 and the mother pipe 12, and supplies compressed air generated by the backwash air source 15 to the mother pipe 12.
  • the diaphragm valve 17 is provided in the middle of the backwash air pipe 16. The diaphragm valve 17 opens and closes the flow path formed by the backwash air pipe 16 so that the compressed air generated by the backwash air source 15 is intermittently supplied to the mother pipe 12.
  • cleaning is provided with the nozzle part 21 in the mother pipe 12, as FIG. 3 shows.
  • the mother pipe 12 is formed in a tubular shape, and a compressed air flow path 24 is formed therein.
  • the mother pipe 12 is supplied with compressed air from the backwash air pipe 16 to the compressed air flow path 24 through a port formed in the vicinity of the rotating shaft 14.
  • the optional nozzle portion 21 of the plurality of nozzle portions provided in the dust collector cleaning nozzle 11 includes an outer nozzle 22 and an inner nozzle 23.
  • the outer nozzle 22 is formed in a tubular shape.
  • the outer nozzle 22 is disposed along the vertical line and joined to the vertical lower side of the mother pipe 12.
  • the inner nozzle 23 is formed in a tubular shape. As shown in FIG. 4, the inner nozzle 23 is disposed so as to be along the vertical line, penetrate the compressed air flow path 24, and have the lower end disposed inside the outer nozzle 22. Has been.
  • the inner nozzle 23 is further fixed to the mother pipe 12 by joining its upper end to the mother pipe 12.
  • the inner nozzle 23 is further arranged so that the lower end is aligned with the lower end of the outer nozzle 22. That is, the position of the point where the lower end of the inner nozzle 23 is orthogonally projected onto a certain vertical line is approximately equal to the position of the point where the lower end of the outer nozzle 22 is orthogonally projected onto the vertical line.
  • the nozzle section 21 is formed with a jet flow path 25 and an entrainment flow path 26.
  • the jet flow path 25 is formed between the outer nozzle 22 and the inner nozzle 23.
  • the upper end of the jet flow channel 25 is connected to the compressed air flow channel 24 of the mother pipe 12.
  • the entraining flow channel 26 is formed inside the inner nozzle 23.
  • the nozzle portion 21 further includes an entrained flow intake port 27, an entrained flow port 28, and an injection port 29.
  • the entrained flow inlet 27 is formed at the upper end of the entrained flow channel 26 and is formed at the upper end of the inner nozzle 23 as shown in FIG.
  • the entrainment outlet 28 is formed at the lower end of the entrainment flow passage 26 and is formed at the lower end of the inner nozzle 23.
  • the injection port 29 is formed at the lower end of the compressed air passage 24 and is formed between the lower end of the outer nozzle 22 and the lower end of the inner nozzle 23.
  • the injection port 29 is formed so as to surround the entrainment outlet 28 as shown in FIG. 6.
  • the plurality of nozzle portions are further arranged such that the area of the entrainment outlet 28 and the area of the injection port 29 become larger as the nozzle portion is farther from the mouth to which the compressed air is supplied from the backwash air pipe 16 in the mother pipe 12. That is, it is formed so that the area of the entrainment outlet 28 and the area of the injection port 29 become larger as the nozzle portion is farther from the rotating shaft 14.
  • the mother pipe 12 is further thinned so that the portion of the compressed air passage 24 farther from the port to which the compressed air is supplied, that is, the portion farther from the rotating shaft 14 of the compressed air passage 24. So that it is formed.
  • the structure of the bag filter is an example, and the dust collector cleaning nozzle and the mother pipe may be fixed and may have the same size, and is not limited to the structure of the bag filter.
  • the bag filter 10 is used for removing dust from exhaust gas exhausted from external equipment.
  • the exhaust gas exhausted from the external equipment is supplied to the exhaust gas region 5 through the exhaust gas inlet 7.
  • the exhaust gas supplied to the exhaust gas region 5 is filtered by passing through the plurality of filter cloths 3, and dust is removed.
  • the clean exhaust gas that has passed through the plurality of filter cloths 3 is supplied to the clean gas region 6 and supplied to the external equipment of the next process via the exhaust gas outlet 8.
  • Rotating motor 13 rotates mother tube 12 at a predetermined angular velocity about rotating shaft 14 while bag filter 10 is removing dust from exhaust gas.
  • the backwash air source 15 generates compressed air by compressing air.
  • Diaphragm valve 17 intermittently supplies compressed air to mother pipe 12 by opening and closing the flow path of backwash air pipe 16.
  • the dust collecting device purifying nozzle 11 injects compressed air from the injection ports 29 of the plurality of nozzle portions when the compressed air is supplied to the mother pipe 12.
  • the jet flow injected from the injection port 29 takes in the air arranged outside the injection port 29 and the air arranged in the entraining flow channel 26 to generate a cleaning jet flow.
  • the flow rate of the cleaning jet is generated by the jet jetted from the jet nozzle 29 taking in the air arranged outside the jet nozzle 29 and the air arranged in the entraining flow channel 26, thereby generating the jet nozzle 29. It is larger than the flow rate of the jet injected from.
  • the dust collector purification nozzle 11 injects a plurality of cleaning jets respectively generated by the plurality of nozzle portions toward the plurality of filter cloths 3.
  • Each of the plurality of filter cloths 3 is sprayed with a cleaning jet, whereby the cleaning jet is supplied into the bag, and the cleaning jet passes from the inside of the bag to the exhaust gas region 5 through the filter cloth.
  • the plurality of filter cloths 3 are backwashed when the cleaning jet passes through the filter cloth into the exhaust gas region 5 and the filter cloth is deformed, and dust accumulated on the surface exposed to the exhaust gas region 5 is removed.
  • the plurality of nozzles intermittently generate a cleaning jet so that the cleaning jet is jetted to all of the plurality of filter cloths 3 when the dust collector cleaning nozzle 11 is rotating.
  • the diaphragm valve 17 opens and closes the flow path of the backwash air pipe 16 so that the cleaning jet is injected to all of the plurality of filter cloths 3 when the dust collector cleaning nozzle 11 is rotating.
  • Examples of the interval at which the flow path of the backwash air pipe 16 is opened and closed so that the cleaning jet is jetted on all of the plurality of filter cloths 3 include a randomly changing interval.
  • the plurality of filter cloths 3 can be backwashed to reduce clogging and appropriately filter the exhaust gas.
  • the bag filter 10 can appropriately remove dust from the exhaust gas when the plurality of filter cloths 3 appropriately filter the exhaust gas.
  • the nozzle unit 21 can generate a cleaning jet having a flow rate larger than the flow rate of the jet jetted from the jet port 29 by forming the entrained flow channel 26 and the entrained flow outlet 28. For this reason, the dust collector cleaning nozzle 11 is compared with other dust collector cleaning nozzles that inject a cleaning jet formed only from compressed air supplied from the backwash air source 15 onto the plurality of filter cloths 3. Then, a larger flow rate of the cleaning jet can be sprayed onto the plurality of filter cloths 3.
  • the bag filter 10 includes the dust collector cleaning nozzle 11 to increase the flow rate of the cleaning jet for backwashing the plurality of filter cloths 3 without increasing the capacity of the backwash air source 15 at a low cost. be able to. For this reason, the bag filter 10 increases the flow rate of the washing jet for backwashing the plurality of filter cloths 3, so that even when the plurality of filter cloths 3 are elongated, A jet can be supplied to the back, and the plurality of filter cloths 3 can be backwashed appropriately.
  • the bag filter 10 can further improve the flow rate of the exhaust gas filtered by the plurality of filter cloths 3 by elongating the plurality of filter cloths 3, and can efficiently remove dust from the exhaust gas with low pressure loss. Can be removed.
  • the number of the plurality of filter cloths 3 to be backwashed is larger as the nozzle part is farther from the rotating shaft 14.
  • the nozzle 11 for purifying the dust collector has a larger area between the entrainment outlet and the injection port 29 as the nozzle part is farther from the rotary shaft 14, and thus the cleaning jet is jetted onto a large amount of filter cloth as the nozzle part is farther from the rotary shaft 14.
  • the cleaning jet can be appropriately jetted onto the plurality of filter cloths 3.
  • the bag filter 10 can appropriately back-wash the plurality of filter cloths 3 and appropriately remove dust from the exhaust gas by appropriately jetting the cleaning jets onto the plurality of filter cloths 3.
  • the nozzle 11 for purifying the dust collector flows through the compressed air channel 24 by forming the mother pipe 12 so that the portion farther from the compressed air channel 24 to which the compressed air is supplied becomes thinner.
  • the static pressure of the compressed air can be made uniform.
  • the dust collecting device purification nozzle 11 can uniformly supply the compressed air to the jet flow passages 25 of the plurality of nozzle portions by making the static pressure of the compressed air flowing through the compressed air passage 24 uniform.
  • the plurality of nozzle portions can generate a cleaning jet in the same manner as the compressed air is uniformly supplied to the jet flow passage 25, and the cleaning jet can be appropriately applied to all of the plurality of filter cloths 3.
  • the bag filter 10 can appropriately backwash all of the plurality of filter cloths 3 by appropriately jetting the cleaning jets onto all of the plurality of filter cloths 3 and appropriately remove dust from the exhaust gas. be able to.
  • the other embodiment of the dust collector cleaning nozzle is different in the shape of the entrained flow intake port 27 of the nozzle portion 21 in the above-described embodiment. That is, as shown in FIG. 7, the inner nozzle 23 has a curved surface 42 at the upper end.
  • the curved surface 42 is formed in a so-called bell mouth shape, is formed from a gently bent surface, and is gently connected to the inner surface of the inner nozzle 23 and gently to the outer surface of the mother tube 12. So that it is formed.
  • the nozzle part 41 in which the curved surface 42 is formed is the same as the nozzle part 21 in the above-described embodiment, and is used for cleaning that is sprayed onto the plurality of filter cloths 3 without increasing the capacity of the backwash air source 15.
  • the flow rate of the jet can be easily increased.
  • the bag filter provided with such a nozzle portion is suitable for the plurality of filter cloths 3 even when the plurality of filter cloths 3 are elongated in the same manner as the bag filter 10 in the above-described embodiment.
  • the dust can be back-washed and the dust can be removed from the exhaust gas with high efficiency.
  • the curved surface 42 surrounding the entrained flow intake port 27 is formed in a bell mouth shape, so that clean exhaust gas flows from the clean exhaust gas region 6 to the entrained flow channel 26 via the entrained flow intake port 27. It is easy to be taken in, and more air arranged in the entraining flow channel 26 can be taken into the cleaning jet. For this reason, the dust collector purification nozzle provided with such a nozzle portion injects a cleaning flow having a larger flow rate onto the plurality of filter cloths 3 as compared with the dust collector purification nozzle 11 described above. The plurality of filter cloths 3 can be backwashed appropriately.
  • the inner nozzle 23 of the nozzle portion 21 in the above-described embodiment is replaced with a plurality of inner nozzles 51.
  • Each of the plurality of inner nozzles 51 is formed in a tubular shape.
  • the plurality of inner nozzles 51 are arranged so as to be along the vertical line, penetrate the compressed air flow path 24, and have the lower ends arranged inside the outer nozzle 22.
  • the plurality of inner nozzles 51 are further fixed to the mother pipe 12 by joining their upper ends to the mother pipe 12.
  • the plurality of inner nozzles 51 are further arranged so that the lower ends thereof are aligned with the lower ends of the outer nozzles 22.
  • the nozzle portion 52 having a plurality of inner nozzles 51 is formed with a jet flow channel 55 and a plurality of entrained flow channels 56.
  • the jet flow channel 55 is formed outside the plurality of inner nozzles 51 inside the outer nozzle 22.
  • the upper end of the jet flow channel 55 is connected to the compressed air flow channel 24 of the mother pipe 12.
  • the plurality of entraining flow channels 56 are respectively formed inside the plurality of inner nozzles 51.
  • the nozzle portion 52 further includes a plurality of entrained flow intake ports 57, a plurality of entrained flow outlets 58, and an injection port 59.
  • the plurality of entrained flow intake ports 57 are formed at the upper ends of the plurality of entrained flow channels 56 and are formed at the upper ends of the plurality of inner nozzles 51, respectively.
  • the plurality of entraining outlets 58 are formed at the lower ends of the plurality of entraining flow channels 56 and are formed at the lower ends of the plurality of inner nozzles 51.
  • the injection port 59 is formed at the lower end of the compressed air passage 24 and is formed between the lower end of the outer nozzle 22 and the lower ends of the plurality of inner nozzles 51. As shown in FIG. 9, the plurality of entrained outlets 58 are formed so as to be surrounded by the injection ports 59.
  • the nozzle unit 52 captures the clean exhaust gas in which the jets injected from the injection ports 59 are arranged in the plurality of entrained flow channels 56, thereby backwashing air. Without increasing the capacity of the source 15, it is possible to easily increase the flow rate of the cleaning jet sprayed onto the plurality of filter cloths 3. For this reason, the bag filter provided with the nozzle part 52 is appropriately reversed with the plurality of filter cloths 3 even when the plurality of filter cloths 3 are elongated in the same manner as the bag filter 10 in the embodiment described above. It can be washed and dust can be removed from the exhaust gas with high efficiency.
  • the nozzle portion 52 is formed with a plurality of entrained flow channels 56, so that clean exhaust gas can be easily taken into the cleaning jet through the plurality of entrained flow channels 56, and more clean exhaust gas is converted into the cleaning jet. Can be captured.
  • the dust collector purifying nozzle provided with the nozzle portion 52 can inject a cleaning flow having a larger flow rate onto the plurality of filter cloths 3 than the dust collector purifying nozzle 11 described above.
  • the plurality of filter cloths 3 can be backwashed appropriately.
  • the outer nozzle 22 can also be formed in a cross-sectional shape different from the rectangle.
  • the entrainment outlet 28 and the plurality of entrainment outlets 58 can be formed in a cross-sectional shape different from a rectangle.
  • the cross-sectional shape is exemplified by a circle.
  • the dust collector cleaning nozzle can inject a larger flow rate of the cleaning jet into the plurality of filter cloths 3, and the bag filter including the dust collector cleaning nozzle has the plurality of filter cloths 3 Even when the length is increased, the plurality of filter cloths 3 can be appropriately backwashed without increasing the capacity of the backwash air source 15, and dust can be appropriately removed from the exhaust gas.
  • the outer nozzle 22 can be replaced with another outer nozzle formed in a shape whose cross-sectional area changes as it approaches the plurality of filter cloths 3.
  • the nozzle for purifying the dust collector is designed based on the flow velocity of the compressed air flowing through the jet flow passage 25, so that the jet can be appropriately jetted from the jet port 29, and a plurality of filter cloths 3 can be Can be backwashed properly.
  • the nozzle for purifying the dust collector is not limited to being used for backwashing the plurality of filter cloths 3, but can also be used for purifying other filters and electric dust collectors that remove dust from the exhaust gas. it can.
  • filters include a wire mesh, an air cleaning filter, and a ceramic filter.
  • filters and electrostatic precipitators can also be appropriately purified by the precipitator purification nozzle in the same manner as the plurality of filter cloths 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Cleaning In General (AREA)
  • Electrostatic Separation (AREA)
  • Nozzles (AREA)

Abstract

 集塵装置浄化洗浄用ノズル(11)は、圧縮空気流路(24)を貫通するように配置される内側ノズル(23)と、外側ノズル(22)とを備えている。内側ノズル(23)は、母管(12)の外側の清浄ガスが流れる連行流流路(26)と、連行流流路(26)に接続される連行流出口(28)とが形成されている。外側ノズル(22)と内側ノズル(23)との間には、圧縮空気流路(24)に接続される噴流流路(25)と、連行流出口(28)を囲むように配置される噴射口(29)とが形成されている。このような集塵装置浄化用ノズル(11)は、噴射口(29)から噴射される噴流が、連行流出口(28)から吐出される清浄ガスを取り込むことにより、噴射口(29)から噴射される噴流の流量より大きい流量の噴流を生成することができる。

Description

集塵装置浄化用ノズルおよび集塵装置
 本発明は、集塵装置浄化用ノズルおよび集塵装置に関し、特に、排ガスからダストを除去する集塵装置を浄化するときに利用される集塵装置浄化用ノズルおよび集塵装置に関する。
 排ガスからダストを除去する集塵装置が知られている。集塵装置には多数の方式があり、代表的なものとしてフィルタ、電気集塵装置等が挙げられる。フィルタの内、バグフィルタは袋状に形成されたろ布を複数備え、ろ布が排ガスをろ過することにより、排ガスからダストを除去している(特許文献1~6参照。)。バグフィルタは、パルスジェット状の空気をろ布に噴射し、ろ布の表面に堆積したダストを払い落として逆洗をすることにより、ダストの堆積による圧力損失上昇を防止している(特許文献2~6参照。)。
特開2002-58948号公報 特許第3078772号公報 特開平04-90817号公報 特開2007-90222号公報 特公昭59-9206号公報 特開2013-116466号公報
 バグフィルタは、ろ布を長尺化することにより、設置スペースを低減し、コストを低減することができる。長尺のろ布は、逆洗されるときに、多くの逆洗用空気が噴射される必要がある。バグフィルタは、長尺のろ布を適切に逆洗することが望まれ、ろ布を逆洗する逆洗用空気の流量を低コストで高効率に増加させることが望まれている。
 また、他のフィルタ及び電気集塵装置においても、金網、フィルタ、板等のダスト捕集機構部に排ガスから除去したダストが堆積して、経時的な圧力損失の上昇またはダスト除去効率の低下が生じるため、低コストで高効率に浄化できることが望まれる。
 本発明の課題は、噴流の流量を低コストで高効率に増加させる集塵装置浄化用ノズルを提供することにある。
 本発明の他の課題は、排ガスからダストを除去するろ布、金網、フィルタ,板等のダスト捕集機構部を適切に浄化する上記ノズルを備えた集塵装置を提供することにある。
 本発明による集塵装置浄化用ノズルは、圧縮空気が流れる圧縮空気流路を形成する母管を貫通するように配置される内側ノズルと、外側ノズルとを備えている。前記内側ノズルは、前記母管の外側に配置される清浄ガスが流れる連行流流路と、前記連行流流路に接続される連行流出口とが形成されている。前記外側ノズルと前記内側ノズルとの間には、前記圧縮空気流路に接続される噴流流路と、前記連行流出口を囲むように配置される噴射口とが形成されている。
 このような集塵装置浄化用ノズルは、噴射口から噴射される噴流が、連行流出口から吐出される清浄ガスを取り込むことにより、噴射口から噴射される噴流の流量より大きい流量の洗浄用噴流を生成することができる。このため、このような集塵装置浄化用ノズルは、母管を流れる圧縮空気の流量を増加させることなく、生成される洗浄用噴流の流量を低コストに増加させることができる。
 前記内側ノズルは、前記清浄ガスを前記連行流流路に取り込む連行流取り込み口に前記内側ノズルの内側の面と前記母管の外側の面とを緩やかに繋げる曲面が形成されている。
 このような集塵装置浄化用ノズルは、連行流取り込み口が所謂ベルマウス形状に形成されることにより、連行流取り込み口を介して清浄ガスが内側管に流入するときのエネルギー損失を低減することができ、連行流出口から清浄ガスを高効率に吐出すことができる。このような集塵装置浄化用ノズルは、連行流出口から清浄ガスを高効率に吐出すことにより、噴射口から噴射される噴流の流量より大きい流量の洗浄用噴流を高効率に生成することができる。
 本発明による集塵装置浄化用ノズルは、前記圧縮空気流路を貫通するように配置される他の内側ノズルをさらに備えている。前記他の内側ノズルは、前記清浄ガスが流れる他の連行流流路と、前記他の連行流流路に接続される他の連行流出口とが形成されている。前記噴流流路と前記噴射口とは、前記外側ノズルと前記内側ノズルと前記他の内側ノズルとに囲まれる領域に形成されている。
 このような集塵装置浄化用ノズルは、複数の内側ノズルを備えることにより、噴射口から噴射される噴流が、複数の連行流出口から吐出される清浄ガスを高効率に取り込むことができ、噴射口から噴射される噴流の流量より大きい流量の洗浄用噴流を高効率に生成することができる。
 本発明による集塵装置は、本発明による集塵装置浄化用ノズルと、複数のろ布、金網、板等のダスト捕集機構部とを備えている。前記集塵装置浄化用ノズルは、前記噴流が前記複数のろ布、金網、板等のダスト捕集機構部に噴射されるように配置されている。
 このような集塵装置は、集塵装置浄化用ノズルが洗浄用噴流を大きい流量で噴射することができることにより、ろ布、フィルタ、金網、板等のダスト捕集機構部を長尺化または大型化した場合でも、母管を流れる空気の流量を増加させることなく、ダスト捕集機構部を適切に浄化することができ、排ガスからダストを適切に除去することができる。あるいは、母管を流れる空気の流量を増加させることなく、ダスト捕集機構部を浄化する効果を上昇することができる。
 本発明による集塵装置浄化用ノズルは、噴射口から噴射される噴流が、連行流出口から吐出される清浄ガスを取り込むことにより、母管を流れる圧縮空気の流量を増加させることなく、生成される噴流の流量を低コストに増加させることができる。
バグフィルタを示す横断面図である。 バグフィルタを示す縦断面図である。 集塵装置浄化用ノズルの一部を示す斜視図である。 集塵装置浄化用ノズルの一部を示す斜視断面図である。 集塵装置浄化用ノズルの一部を示す断面図である。 集塵装置浄化用ノズルの一部を示す底面図である。 他の集塵装置浄化用ノズルの一部を示す断面図である。 さらに他の集塵装置浄化用ノズルの一部を示す断面図である。 さらに他の集塵装置浄化用ノズルの一部を示す底面図である。
 排ガスからダストを除去する集塵装置の内、代表的なものとしてバルフィルタを例に以下に説明を実施する。バグフィルタの図面を参照して、集塵装置浄化用ノズルの実施の形態が以下に記載される。その集塵装置浄化用ノズルが適用されるバグフィルタ10は、図1に示されているように、ハウジング1と分離板2と複数のろ布3とを備えている。ハウジング1は、容器に形成されている。分離板2は、平坦な板状に形成されている。分離板2は、水平面に沿うように、ハウジング1の内部空間に配置され、ハウジング1の内部空間を排ガス領域5と清浄ガス領域6とに分離している。このとき、清浄ガス領域6は、排ガス領域5の上方に配置されている。
 ハウジング1は、さらに、排ガス入口7と排ガス出口8とが形成されている。排ガス入口7は、排ガス領域5をハウジング1の外部に接続している。排ガス出口8は、清浄ガス領域6をハウジング1の外部に接続している。複数のろ布3は、それぞれ、袋状に形成されたろ布から構成されている。複数のろ布3は、それぞれ、排ガス領域5に配置されている。
 分離板2は、図2に示されるように、さらに、複数のろ布3に対応する複数の貫通孔が形成されている。複数のろ布3のうちのある貫通孔に対応するろ布は、ろ布の袋の口がその貫通孔を塞ぐように、分離板2に接合されている。すなわち、排ガス領域5と清浄ガス領域6とは、分離板2と複数のろ布3とにより、隔離されている。
 バグフィルタ10は、さらに、図1に示されているように、集塵装置浄化用ノズル11と母管12と回転用モータ13を備えている。母管12は、棒状に形成されている。母管12は、鉛直方向に垂直である直線に沿うように、分離板2の上側に、すなわち、清浄ガス領域6に配置されている。母管12は、さらに、鉛直方向に平行である回転軸14を中心に回転可能にハウジング1に支持されている。回転用モータ13は、回転軸14を中心に母管12を回転させる。
 バグフィルタ10は、さらに、逆洗空気源15と逆洗空気配管16とダイヤフラム弁17とを備えている。逆洗空気源15は、空気を圧縮することにより、圧縮空気を生成する。逆洗空気配管16は、逆洗空気源15と母管12とを接続する流路を形成し、逆洗空気源15により生成された圧縮空気を母管12に供給する。ダイヤフラム弁17は、逆洗空気配管16の途中に設けられている。ダイヤフラム弁17は、逆洗空気源15により生成された圧縮空気が母管12に間欠的に供給されるように、逆洗空気配管16が形成する流路を開閉する。
 集塵装置浄化用ノズル11は、図3に示されるように、母管12にノズル部21が設けられている。母管12は、管状に形成され、内部に圧縮空気流路24が形成されている。母管12は、回転軸14の近傍に形成される口を介して、逆洗空気配管16から圧縮空気流路24に圧縮空気が供給される。
 集塵装置浄化用ノズル11に設けられている複数のノズル部の任意のノズル部21は、外側ノズル22と内側ノズル23とを備えている。外側ノズル22は、管状に形成されている。外側ノズル22は、鉛直線に沿うように配置され、母管12の鉛直下側に接合されている。
 内側ノズル23は、管状に形成されている。内側ノズル23は、図4に示されるように、鉛直線に沿うように、かつ、圧縮空気流路24を貫通するように、かつ、下端が外側ノズル22の内側に配置されるように、配置されている。内側ノズル23は、さらに、上端が母管12に接合されることにより、母管12に固定されている。内側ノズル23は、さらに、下端が外側ノズル22の下端に揃うように、配置されている。すなわち、内側ノズル23の下端をある鉛直線に正射影した点の位置は、外側ノズル22の下端をその鉛直線に正射影した点の位置に概ね等しい。
 ノズル部21は、噴流流路25と連行流流路26とが形成されている。噴流流路25は、外側ノズル22と内側ノズル23との間に形成されている。噴流流路25は、上端が母管12の圧縮空気流路24に接続されている。連行流流路26は、内側ノズル23の内側に形成されている。
 ノズル部21は、さらに、連行流取り込み口27と連行流出口28と噴射口29とが形成されている。連行流取り込み口27は、図5に示されるように、連行流流路26の上端に形成され、内側ノズル23の上端に形成されている。連行流出口28は、連行流流路26の下端に形成され、内側ノズル23の下端に形成されている。噴射口29は、圧縮空気流路24の下端に形成され、外側ノズル22の下端と内側ノズル23の下端との間に形成されている。噴射口29は、図6に示されるように、連行流出口28を囲むように形成されている。
 複数のノズル部は、さらに、母管12のうちの逆洗空気配管16から圧縮空気が供給される口から遠いノズル部ほど連行流出口28の面積と噴射口29の面積とが大きくなるように、すなわち、回転軸14から遠いノズル部ほど連行流出口28の面積と噴射口29の面積とが大きくなるように、形成されている。
 母管12は、さらに、圧縮空気流路24のうちの圧縮空気が供給される口から遠い部分ほど細くなるように、すなわち、圧縮空気流路24のうちの回転軸14から遠い部分ほど細くなるように、形成されている。
 本バグフィルタの構造は一例を示すものであり、集塵装置浄化用ノズルおよび母管が固定され、同一の大きさのものでも構わず、バグフィルタの構造に限定されるものではない。
 バグフィルタ10は、外部設備から排気された排ガスからダストを除去することに利用される。バグフィルタ10は、排ガス入口7を介して、外部設備から排気された排ガスが排ガス領域5に供給される。排ガス領域5に供給された排ガスは、複数のろ布3を通過することにより、ろ過され、ダストが除去される。複数のろ布3を通過した清浄排ガスは、清浄ガス領域6に供給され、排ガス出口8を介して次工程の外部設備に供給される。
 複数のろ布3は、排ガスをろ過することにより、排ガス領域5に露出された面にダストが堆積する。複数のろ布3は、ダストが堆積することにより、圧力損失が上昇する。
 回転用モータ13は、バグフィルタ10が排ガスからダストを除去している最中に、回転軸14を中心に母管12を所定の角速度で回転させる。逆洗空気源15は、空気を圧縮することにより、圧縮空気を生成する。ダイヤフラム弁17は、逆洗空気配管16の流路を開閉することにより、母管12に圧縮空気を間欠的に供給する。
 集塵装置浄化用ノズル11は、圧縮空気が母管12に供給されることにより、複数のノズル部の噴射口29から圧縮空気を噴射する。噴射口29から噴射された噴流は、噴射口29の外側に配置された空気と連行流流路26に配置された空気とを取り込み、洗浄用噴流を生成する。洗浄用噴流の流量は、噴射口29から噴射された噴流が噴射口29の外側に配置された空気と連行流流路26に配置された空気とを取り込んで生成されることにより、噴射口29から噴射された噴流の流量より大きい。
 集塵装置浄化用ノズル11は、複数のノズル部によりそれぞれ生成された複数の洗浄用噴流を複数のろ布3に向けて噴射する。複数のろ布3の各々は、洗浄用噴流が噴射されることにより、洗浄用噴流が袋の内部に供給され、洗浄用噴流が袋の内部から排ガス領域5へろ布を通過していく。複数のろ布3は、洗浄用噴流がろ布を排ガス領域5に通過する際にろ布が変形し、排ガス領域5に露出された面に堆積したダストが払い落とされて逆洗される。
 このとき、複数のノズルは、集塵装置浄化用ノズル11が回転しているときに、複数のろ布3の全部に洗浄用噴流が噴射されるように、洗浄用噴流を間欠的に生成する。すなわち、ダイヤフラム弁17は、集塵装置浄化用ノズル11が回転しているときに、複数のろ布3の全部に洗浄用噴流が噴射されるように、逆洗空気配管16の流路を開閉する。複数のろ布3の全部に洗浄用噴流が噴射されるように逆洗空気配管16の流路を開閉する間隔としては、ランダムに変化する間隔が例示される。
 複数のろ布3は、逆洗されることにより、目詰まりが低減し、排ガスを適切にろ過することができる。バグフィルタ10は、複数のろ布3が排ガスを適切にろ過することにより、排ガスからダストを適切に除去することができる。
 ノズル部21は、連行流流路26と連行流出口28とが形成されていることにより、噴射口29から噴射される噴流の流量より大きい流量の洗浄用噴流を生成することができる。このため、集塵装置浄化用ノズル11は、逆洗空気源15から供給される圧縮空気のみから形成される洗浄用噴流を複数のろ布3に噴射する他の集塵装置浄化用ノズルに比較して、より大きい流量の洗浄用噴流を複数のろ布3に噴射することができる。
 バグフィルタ10は、集塵装置浄化用ノズル11を備えることにより、逆洗空気源15の能力を増加させることなく、複数のろ布3を逆洗する洗浄用噴流の流量を低コストで増加させることができる。このため、バグフィルタ10は、複数のろ布3を逆洗する洗浄用噴流の流量を増加させることにより、複数のろ布3が長尺化された場合でも、複数のろ布3の袋の奥まで噴流を供給することができ、複数のろ布3を適切に逆洗することができる。バグフィルタ10は、さらに、複数のろ布3を長尺化することにより、複数のろ布3によりろ過される排ガスの流量を向上させることができ、排ガスからダストを低圧力損失で高効率に除去することができる。
 複数のノズル部は、回転軸14から遠いノズル部ほど逆洗する複数のろ布3の個数が多い。集塵装置浄化用ノズル11は、回転軸14から遠いノズル部ほど連行流出口と噴射口29との面積が大きいことにより、回転軸14から遠いノズル部ほど多量のろ布に洗浄用噴流を噴射することができ、複数のろ布3に適切に洗浄用噴流を噴射することができる。バグフィルタ10は、複数のろ布3に適切に洗浄用噴流が噴射されることにより、複数のろ布3を適切に逆洗することができ、排ガスからダストを適切に除去することができる。
 集塵装置浄化用ノズル11は、圧縮空気流路24のうちの圧縮空気が供給される口から遠い部分ほど細くなるように母管12が形成されていることにより、圧縮空気流路24を流れる圧縮空気の静圧を一様にすることができる。集塵装置浄化用ノズル11は、圧縮空気流路24を流れる圧縮空気の静圧を一様にすることにより、複数のノズル部の噴流流路25に一様に圧縮空気を供給することができる。複数のノズル部は、噴流流路25に均一に圧縮空気が供給されることにより、互いに同様に、洗浄用噴流を生成することができ、複数のろ布3の全部に適切に洗浄用噴流を噴射することができる。バグフィルタ10は、複数のろ布3の全部に適切に洗浄用噴流が噴射されることにより、複数のろ布3の全部を適切に逆洗することができ、排ガスからダストを適切に除去することができる。
 集塵装置浄化用ノズルの実施の他の形態は、既述の実施の形態におけるノズル部21の連行流取り込み口27の形状が異なっている。すなわち、内側ノズル23は、図7に示されるように、上端に曲面42が形成されている。曲面42は、いわゆるベルマウス形状に形成され、緩やかに屈曲する面から形成され、さらに、内側ノズル23の内側の面になだらかに繋がるように、かつ、母管12の外側の面になだらかに繋がるように、形成されている。
 曲面42が形成されたノズル部41は、既述の実施の形態におけるノズル部21と同様にして、逆洗空気源15の能力を増加させることなく、複数のろ布3に噴射される洗浄用噴流の流量を容易に増加させることができる。このため、このようなノズル部を備えるバグフィルタは、既述の実施の形態におけるバグフィルタ10と同様にして、複数のろ布3を長尺化された場合でも、複数のろ布3を適切に逆洗することができ、排ガスからダストを高効率に除去することができる。
 このようなノズル部は、連行流取り込み口27を囲む曲面42がベルマウス形状に形成されていることにより、連行流取り込み口27を介して清浄排ガスが清浄排ガス領域6から連行流流路26に取り込まれやすく、連行流流路26に配置された空気をより多く洗浄用噴流に取り込むことができる。このため、このようなノズル部を備える集塵装置浄化用ノズルは、既述の集塵装置浄化用ノズル11に比較して、より大きい流量の洗浄用噴流を複数のろ布3に噴射することができ、複数のろ布3を適切に逆洗することができる。
 集塵装置浄化用ノズルの実施のさらに他の形態は、図8に示されるように、既述の実施の形態におけるノズル部21の内側ノズル23が複数の内側ノズル51に置換されている。複数の内側ノズル51は、それぞれ、管状に形成されている。複数の内側ノズル51は、それぞれ、鉛直線に沿うように、かつ、圧縮空気流路24を貫通するように、かつ、下端が外側ノズル22の内側に配置されるように、配置されている。複数の内側ノズル51は、さらに、それぞれ、上端が母管12に接合されることにより、母管12に固定されている。複数の内側ノズル51は、さらに、下端が外側ノズル22の下端に揃うように、配置されている。
 複数の内側ノズル51を備えたノズル部52は、噴流流路55と複数の連行流流路56とが形成されている。噴流流路55は、外側ノズル22の内側のうちの複数の内側ノズル51の外側に形成されている。噴流流路55は、上端が母管12の圧縮空気流路24に接続されている。複数の連行流流路56は、複数の内側ノズル51の内側にそれぞれ形成されている。
 ノズル部52は、さらに、複数の連行流取り込み口57と複数の連行流出口58と噴射口59とが形成されている。複数の連行流取り込み口57は、複数の連行流流路56の上端に形成され、複数の内側ノズル51の上端にそれぞれ形成されている。複数の連行流出口58は、複数の連行流流路56の下端に形成され、複数の内側ノズル51の下端に形成されている。噴射口59は、圧縮空気流路24の下端に形成され、外側ノズル22の下端と複数の内側ノズル51の下端との間に形成されている。複数の連行流出口58は、図9に示されるように、噴射口59に囲まれるように、形成されている。
 ノズル部52は、既述の実施の形態におけるノズル部21と同様にして、噴射口59から噴射される噴流が複数の連行流流路56に配置される清浄排ガスを取り込むことにより、逆洗空気源15の能力を増加させることなく、複数のろ布3に噴射される洗浄用噴流の流量を容易に増加させることができる。このため、ノズル部52を備えるバグフィルタは、既述の実施の形態におけるバグフィルタ10と同様にして、複数のろ布3を長尺化された場合でも、複数のろ布3を適切に逆洗することができ、排ガスからダストを高効率に除去することができる。
 ノズル部52は、複数の連行流流路56が形成されていることにより、複数の連行流流路56を介して清浄排ガスが洗浄用噴流に取り込まれやすく、清浄排ガスをより多く洗浄用噴流に取り込むことができる。このため、ノズル部52を備える集塵装置浄化用ノズルは、既述の集塵装置浄化用ノズル11に比較して、より大きい流量の洗浄用噴流を複数のろ布3に噴射することができ、複数のろ布3を適切に逆洗することができる。
 なお、外側ノズル22は、長方形と異なる断面形状に形成されることもできる。さらに、連行流出口28と複数の連行流出口58とも、長方形と異なる断面形状に形成されることができる。その断面形状としては、円が例示される。この場合も、集塵装置浄化用ノズルは、より大きい流量の洗浄用噴流を複数のろ布3に噴射することができ、集塵装置浄化用ノズルを備えるバグフィルタは、複数のろ布3が長尺化された場合でも、逆洗空気源15の能力を増加させることなく、複数のろ布3を適切に逆洗することができ、排ガスからダストを適切に除去することができる。
 外側ノズル22は、複数のろ布3に近づくにつれ断面積が変化する形状に形成される他の外側ノズルに置換されることができる。集塵装置浄化用ノズルは、噴流流路25を流れる圧縮空気の流速に基づいてその形状が設計されることにより、噴射口29から噴流を適切に噴射することができ、複数のろ布3を適切に逆洗することができる。
 集塵装置浄化用ノズルは、複数のろ布3を逆洗することに利用されることに限らず、排ガスからダストを除去する他のフィルタや電気集塵装置を浄化することに利用することもできる。他のフィルタとしては、金網、空気清浄用フィルタ、セラミックフィルタが例示される。このようなフィルタや電気集塵装置に対しても、複数のろ布3と同様にして、集塵装置浄化用ノズルにより適切に浄化されることができる。
 1 :ハウジング
 2 :分離板
 3 :複数のろ布
 5 :排ガス領域
 6 :ガス領域
 7 :排ガス入口
 8 :排ガス出口
 10:バグフィルタ
 11:集塵装置浄化用ノズル
 12:母管
 13:回転用モータ
 14:回転軸
 15:逆洗空気源
 16:逆洗空気配管
 17:ダイヤフラム弁
 21:ノズル部
 22:外側ノズル
 23:内側ノズル
 24:圧縮空気流路
 25:噴流流路
 26:連行流流路
 27:連行流取り込み口
 28:連行流出口
 29:噴射口
 41:ノズル部
 42:曲面
 51:複数の内側ノズル
 52:ノズル部
 55:噴流流路
 56:複数の連行流流路
 57:複数の連行流取り込み口
 58:複数の連行流出口
 59:噴射口

Claims (4)

  1.  圧縮空気が流れる圧縮空気流路を形成する母管と、
     前記圧縮空気流路を貫通するように配置される内側ノズルと、
     外側ノズルとを備え、
     前記内側ノズルは、
     前記母管の外側に配置される清浄ガスが流れる連行流流路と、
     前記連行流流路に接続される連行流出口とが形成され、
     前記外側ノズルと前記内側ノズルとの間には、
     前記圧縮空気流路に接続される噴流流路と、
     前記連行流出口を囲むように配置される噴射口とが形成される集塵装置浄化用ノズル。
  2.  前記内側ノズルは、前記清浄ガスを前記連行流流路に取り込む連行流取り込み口に前記内側ノズルの内側の面と前記母管の外側の面とを緩やかに繋げる曲面が形成される請求項1に記載される集塵装置浄化用ノズル。
  3.  前記圧縮空気流路を貫通するように配置される他の内側ノズルをさらに備え、
     前記他の内側ノズルは、
     前記清浄ガスが流れる他の連行流流路と、
     前記他の連行流流路に接続される他の連行流出口とが形成され、
     前記噴流流路と前記噴射口とは、前記外側ノズルと前記内側ノズルと前記他の内側ノズルとに囲まれる領域に形成される請求項1に記載される集塵装置浄化用ノズル。
  4.  請求項1~請求項3のうちのいずれか一項に記載される集塵装置浄化用ノズル 複数のろ布、金網、フィルタ、板等のダスト捕集機構部とを備え、
     前記集塵装置浄化用ノズルは、前記噴流が前記複数のろ布、金網、フィルタ、板等のダスト捕集機構部に噴射されるように配置される集塵装置。
PCT/JP2014/050292 2014-01-10 2014-01-10 集塵装置浄化用ノズルおよび集塵装置 WO2015104827A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015556684A JP6189458B2 (ja) 2014-01-10 2014-01-10 集塵装置浄化用ノズルおよび集塵装置
PCT/JP2014/050292 WO2015104827A1 (ja) 2014-01-10 2014-01-10 集塵装置浄化用ノズルおよび集塵装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050292 WO2015104827A1 (ja) 2014-01-10 2014-01-10 集塵装置浄化用ノズルおよび集塵装置

Publications (1)

Publication Number Publication Date
WO2015104827A1 true WO2015104827A1 (ja) 2015-07-16

Family

ID=53523675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050292 WO2015104827A1 (ja) 2014-01-10 2014-01-10 集塵装置浄化用ノズルおよび集塵装置

Country Status (2)

Country Link
JP (1) JP6189458B2 (ja)
WO (1) WO2015104827A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101737269B1 (ko) 2015-08-18 2017-05-18 이충중 구조를 개선한 블로우 파이프 및 이를 포함하는 집진기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3216653A (en) * 1962-07-09 1965-11-09 Bertin & Cie Ejectors and piping systems operating with a divergent fluid wall
JPS5037067A (ja) * 1973-06-23 1975-04-07
JPS63120139A (ja) * 1986-11-05 1988-05-24 津田駒工業株式会社 空気噴射式織機の補助ノズル
JP2008115847A (ja) * 2006-11-01 2008-05-22 Kwang Sup Cho 空気増幅器を利用した圧縮空気噴射装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4989961A (ja) * 1972-12-30 1974-08-28
DE3004453A1 (de) * 1980-02-07 1981-08-13 Intensiv-Filter Gmbh & Co Kg, 5620 Velbert Zwei-stufen-injektor zur abgasreinigung von staubfiltern
JPS59186625A (ja) * 1983-04-05 1984-10-23 Jgc Corp 自動逆洗機構付粉塵分離装置および逆洗用ノズル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3216653A (en) * 1962-07-09 1965-11-09 Bertin & Cie Ejectors and piping systems operating with a divergent fluid wall
JPS5037067A (ja) * 1973-06-23 1975-04-07
JPS63120139A (ja) * 1986-11-05 1988-05-24 津田駒工業株式会社 空気噴射式織機の補助ノズル
JP2008115847A (ja) * 2006-11-01 2008-05-22 Kwang Sup Cho 空気増幅器を利用した圧縮空気噴射装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101737269B1 (ko) 2015-08-18 2017-05-18 이충중 구조를 개선한 블로우 파이프 및 이를 포함하는 집진기

Also Published As

Publication number Publication date
JPWO2015104827A1 (ja) 2017-03-23
JP6189458B2 (ja) 2017-08-30

Similar Documents

Publication Publication Date Title
CN100574849C (zh) 囊式滤尘器用喷射器
KR101309025B1 (ko) 집진기용 벤츄리
JPS599206B2 (ja) 塵埃含有ガスフイルタの逆流洗浄装置
EP2091631B1 (en) System configuration of pulsed cleaned panel-style filter elements and methods
KR101388639B1 (ko) 공기정화 장치 및 시스템
JP2010511496A (ja) パネル型フィルタをパルス洗浄するためのフィルタ装置構成物およびその方法
JP2019214049A (ja) 粉塵堆積を防止するバグフィルター濾過集塵装置
JP6702650B2 (ja) 繊維性フィルターシステム、及び当該繊維性フィルターシステムを清浄する方法
JP2011011109A (ja) オイルミストコレクタ
KR200400487Y1 (ko) 집진기
CA2518382A1 (en) Wet scrubbing apparatus and method
KR100559371B1 (ko) 집진기
KR100957030B1 (ko) 충격기류방식 여과집진기의 탈진공기 분사장치
JP6189458B2 (ja) 集塵装置浄化用ノズルおよび集塵装置
KR200321528Y1 (ko) 집진기 백필터용 이젝터
KR101643574B1 (ko) 백필터 탈진용 분사노즐
JP2017522183A (ja) 互いに分離された二つの制御バルブと圧縮空気管を有する集塵機バグフィルター脱塵システム
JP4091400B2 (ja) ろ過式集塵装置
KR101102453B1 (ko) 필터백 청소용 노즐
JP2003001037A (ja) 気体浄化方法及び気体浄化装置
KR200442816Y1 (ko) 집진장치
KR20150015194A (ko) 디퓨져가 내장된 백필터
JPH08192019A (ja) 逆洗機構付濾過装置
JPH09234324A (ja) 除塵装置
KR101765159B1 (ko) 탄소 분진 제거 기능을 갖는 촉매 필터 및 이를 포함하는 필터링 유닛 및 이를 포함하는 집진 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556684

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878009

Country of ref document: EP

Kind code of ref document: A1