WO2015104802A1 - 無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法 - Google Patents

無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法 Download PDF

Info

Publication number
WO2015104802A1
WO2015104802A1 PCT/JP2014/050114 JP2014050114W WO2015104802A1 WO 2015104802 A1 WO2015104802 A1 WO 2015104802A1 JP 2014050114 W JP2014050114 W JP 2014050114W WO 2015104802 A1 WO2015104802 A1 WO 2015104802A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
data
terminal
wireless communication
unit
Prior art date
Application number
PCT/JP2014/050114
Other languages
English (en)
French (fr)
Inventor
清水政世
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2015556662A priority Critical patent/JPWO2015104802A1/ja
Priority to PCT/JP2014/050114 priority patent/WO2015104802A1/ja
Publication of WO2015104802A1 publication Critical patent/WO2015104802A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off

Definitions

  • the present invention relates to a radio communication system, a base station apparatus, and a data transfer method in a radio communication system.
  • wireless communication systems such as mobile phone systems and wireless local area networks (LANs) are widely used.
  • LANs wireless local area networks
  • a wireless communication system not only a voice call service but also various services such as access to the Internet and streaming audio and video distribution services are provided.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CA carrier aggregation
  • base station a base station device
  • terminal a terminal device
  • wireless communication is performed simultaneously using a plurality of frequency bands, for example, it is possible to increase the communication speed.
  • Intra-eNB CA a technology called Intra-eNB CA is being studied.
  • Intra-eNB CA is, for example, a technique in which one terminal receives different data simultaneously transmitted from one base station using a plurality of frequencies.
  • Inter-eNB CA is also being studied as a future extension.
  • Inter-eNB CA is, for example, a technology in which one terminal receives different data simultaneously transmitted by a plurality of base stations using a plurality of frequencies.
  • Data forwarding refers to, for example, data that has not been transmitted to the terminal device when the terminal performs handover, or data that has been transmitted to the terminal device but has not been acknowledged (hereinafter referred to as “undelivered data”).
  • the connection source base station transfers to the connection destination base station.
  • unacknowledged data can be reduced compared with the case where retransmission processing is performed between the base station and the host device, and the base station Can stabilize the wireless communication between the terminal and the terminal.
  • FIG. 25 is a diagram showing a sequence example of the data forwarding process.
  • terminal 600 performs handover from base station (# 1) 700-1 to base station (# 2) 700-2, and data forwarding is performed from base station 700-1 to base station 700-2. An example is shown. *
  • the terminal 600 establishes a wireless link connection with the base station 700-1 and performs data communication using the logical channel LCH # a (S200).
  • the logical channel is, for example, a channel that divides transmission information for each application.
  • a broadcast channel for broadcast information BCCH (Broadcast Control CHannel)
  • DCCH Dedicated Control Channel
  • DTCH Dedicated Traffic CHannel
  • the base station 700-1 determines which logical channel to use and notifies the terminal 600 so that the base station 700-1 and the terminal 100 can Data communication can be performed using the logical channel LCH # a.
  • the base station 700-1 receives data (Data # 1) addressed to the terminal 600 from the S-GW 800 (S201). *
  • the terminal 600 detects that the radio quality for the base station 700-1 is equal to or lower than the threshold, the terminal 600 sends a measurement report including the radio quality and the radio quality for the other base station 700-2 to the base station 700-1. (S202).
  • base station 700-1 determines to perform handover to base station 700-2 based on the radio quality received from terminal 600, and transmits a handover request to base station 700-2 (S203).
  • the base station 700-2 determines whether or not handover is possible and transmits a response to the base station 700-1 (S205). Further, when allowing the handover, the base station 700-2 newly opens the logical channel LCH # a (S204).
  • the base station 700-1 Upon receiving the response (S205) from the connection destination base station 700-2, the base station 700-1 transmits a data transfer path switching request to the S-GW 800 (S206). Upon receiving the data transfer path switching request, the S-GW 800 switches the data transfer path and transmits a response to the base station 700-1 (S207).
  • the base station 700-1 When receiving the response from the S-GW 800, the base station 700-1 transfers (or forwards) unacknowledged data to the base station 700-2 (S208).
  • the unconfirmed delivery data is Data # 1 in the example of FIG.
  • the base station 700-1 transmits a radio link state change request (Physical Channel Reconfiguration) to the terminal 600 (S209).
  • the terminal 600 receives the request and switches the connection destination base station to the base station 700-2.
  • the terminal 600 transmits a PDCP STATUS PDU to the base station 700-2 to be a new connection destination (S211), and a radio link state change request to the connection source base station 700-1 (S209). ) Is transmitted (S212).
  • the PDCP STATUS PDU includes, for example, a sequence number of data received by the terminal 600 from the base station 700-1.
  • the base station 700-2 When the base station 700-2 receives the PDCP STATUS PDU (S211), the non-delivery confirmation data (Data # 1) transferred from the base station 700-1 is already transmitted to the terminal 600 based on the sequence number. The received data is discarded (S213), and the remaining data is transmitted to the terminal 600. In the example of FIG. 25, the base station 700-2 transmits data # 1 to the terminal 600 without discarding it as data that has not been delivered (S214). Base station 700-2 also transmits Data # 2 received thereafter to terminal 600 (S215).
  • the following technologies are related to wireless communication.
  • mobile communication that separately specifies “Inter-Frequency Measurement” between macro cells and the performance required for “Inter-Frequency Handover” for cells that are not set as Scells in the coverage area.
  • Inter-Frequency Measurement between macro cells
  • Inter-Frequency Handover for cells that are not set as Scells in the coverage area.
  • processing delay may occur in data forwarding.
  • the terminal 600 before the terminal 600 transmits the PDCP STATUS PDU to the base station 700-2 (before S211, “##” in FIG. 25), the terminal 600 Processing for establishing a wireless link is performed.
  • the terminal 600 takes time from receiving the measurement report to receiving data from the connected base station 700-2 (for example, from S202 to S215), resulting in a processing delay. There is a case.
  • the terminal 600 when the terminal 600 performs processing for establishing such a radio link, there may be a case where the radio link cannot be established with the base station 700-2 to which the terminal 600 is connected. In such a case, even if the connection source base station 700-1 performs data forwarding to the connection destination base station 700-2, the connection destination base station 700-2 can transmit data to the terminal 600. Can not. Even in such a case, the terminal 600 cannot receive data from the base station 700-2, resulting in unstable communication.
  • the terminal when a terminal connects to a cell that is not newly set as a Scell, the terminal may perform connection processing of a radio link to the cell. is there. Due to this wireless link connection processing, it may take time for the terminal to receive data from the connection destination Scell. In addition, the terminal may not establish a wireless link with the connection destination Scell, which may cause communication instability.
  • one disclosure is to provide a radio communication system, a base station apparatus, and a data transfer method in the radio communication system that reduce processing delay.
  • another disclosure is to provide a radio communication system, a base station apparatus, and a data transfer method in the radio communication system that bring about stabilization of communication.
  • the first base station apparatus that performs radio communication with the terminal apparatus using the first frequency belonging to the first or second frequency band, the first or second, And a second base station device that performs wireless communication with the terminal device using a second frequency belonging to a frequency band of the first and second base station devices, wherein the first and second base station devices
  • the wireless communication quality between the first base station device and the terminal device is below a threshold value.
  • a first transmission unit that transfers unacknowledged data that has not been acknowledged to the terminal device to the second base station device that has established a wireless communication link with the terminal device
  • the second base station apparatus includes the first base station device. All or part of the delivery unconfirmed data received from a second transmission unit that transmits to the terminal device.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 3 is a diagram illustrating a configuration example of the terminal device.
  • FIG. 4 is a diagram illustrating a configuration example of the layer 1 processing unit.
  • FIG. 5 is a diagram illustrating a configuration example of the layer 2 processing unit.
  • FIG. 6 is a diagram illustrating a configuration example of a base station apparatus.
  • FIG. 7 is a diagram illustrating a configuration example of the layer 1 processing unit.
  • FIG. 8 is a diagram illustrating a configuration example of the layer 2 processing unit.
  • FIG. 9 is a diagram illustrating a configuration example of the MME / S-GW.
  • FIG. 10A and 10B are diagrams illustrating an example of data forwarding.
  • FIG. 11 is a diagram illustrating a sequence example of the data forwarding process.
  • FIG. 12 is a diagram illustrating a sequence example of data transfer path establishment processing.
  • FIG. 13 is a diagram illustrating a sequence example of data transfer path establishment processing.
  • FIG. 14 is a diagram illustrating a sequence example of data transfer path establishment processing.
  • FIG. 15 is a diagram illustrating an example of channel mapping.
  • FIG. 16 is a diagram illustrating an example of channel mapping.
  • FIG. 17A shows an example of MAC data
  • FIG. 17B shows an example of L1 data.
  • FIG. 18 is a diagram illustrating a sequence example of data forwarding processing.
  • FIG. 19 is a diagram illustrating an example of channel mapping.
  • FIG. 20 is a diagram illustrating a sequence example of the data forwarding process.
  • FIG. 21 is a diagram illustrating a sequence example of data forwarding processing.
  • FIG. 22 is a diagram illustrating a hardware configuration example of the terminal device.
  • FIG. 23 is a diagram illustrating a hardware configuration example of the base station apparatus.
  • FIG. 24 is a diagram illustrating a hardware configuration example of the MME / S-GW.
  • FIG. 25 is a diagram illustrating a sequence example of the data forwarding process.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 10 according to the first embodiment.
  • the radio communication system 10 includes first and second base station devices 200-1 and 200-2 and a terminal device 100.
  • the first and second base station apparatuses 200-1 and 200-2 can perform wireless communication with the terminal 100 within the communicable range of the local station.
  • the first and second base station apparatuses 200-1 and 200-2 can provide the terminal apparatus 100 with various services such as a call service and a video distribution service by performing wireless communication with the terminal apparatus 100.
  • the first base station apparatus 200-1 performs radio communication with the terminal apparatus 100 using the first frequency belonging to the first or second frequency band.
  • the second base station device 200-2 performs wireless communication with the terminal device 100 using the second frequency belonging to the first or second frequency band. Both the first and second frequencies may belong to the same first frequency band, or may belong to the first and second frequency bands, respectively.
  • the first and second base station apparatuses 200-1 and 200-2 simultaneously transmit first and second data to the terminal apparatus 100 using the first and second frequencies, respectively.
  • the first base station apparatus 200-1 includes a first transmission unit 295-1.
  • the first transmission unit 295-1 transmits unconfirmed delivery data that has not been acknowledged to the terminal device 100 to the wireless communication with the terminal device 100.
  • the data is transferred to the second base station apparatus 200-2 where the communication link is established.
  • the second base station apparatus 200-2 includes a second transmission unit 295-2.
  • Second transmission section 295-2 transmits all or part of undelivered data received from first base station apparatus 200-1 to terminal apparatus 100.
  • the first and second base station apparatuses 200-1 and 200-2 use the first and second frequencies, respectively, to store the first and second data. It transmits to the terminal device 100 simultaneously, respectively.
  • the first base station apparatus 200-1 performs data forwarding with respect to the second base station apparatus 200-2 in which a wireless communication link with the terminal apparatus 100 is established. I am doing so.
  • the terminal 100 when the first base station apparatus 200-1 performs data forwarding to a base station apparatus for which a radio communication link is not established, the terminal 100 performs processing for establishing a radio communication link with the base station apparatus There is a case. In this case, the terminal 100 may not be able to establish a wireless communication link, and all or part of the forwarded data may not be transmitted from the second base station apparatus 200-2 to the terminal 100.
  • the first base station apparatus 200-1 performs data forwarding to the second base station apparatus 200-2 with which the wireless communication link is established, for example, the terminal 100 and the second base station apparatus 200-2
  • the processing for establishing a wireless communication link with the base station apparatus 200-2 may not be performed. Therefore, the wireless communication system 10 can reduce processing delay.
  • the second base station device 200-2 that is the data forwarding destination since the second base station device 200-2 that is the data forwarding destination has established a wireless communication link with the terminal device 100, the forwarding from the second base station device 200-2.
  • the terminal device 100 can receive all or part of the received data. Therefore, the wireless communication system 100 can stabilize the communication.
  • FIG. 2 is a diagram illustrating a configuration example of the wireless communication system 10.
  • the radio communication system 10 includes terminal devices (hereinafter also referred to as “terminals”) 100-1 to 100-3, base station devices (hereinafter also referred to as “base stations”) 200-1 to 200-. 3. MME / S-GW (Mobility Management Entity / Serving Gateway) 300-1, 300-2 and network 500 are provided.
  • terminal devices hereinafter also referred to as “terminals”
  • base station devices hereinafter also referred to as “base stations”
  • MME / S-GW Mobility Management Entity / Serving Gateway
  • Terminals 100-1 to 100-3 are wireless communication devices such as feature phones, smartphones, tablets, and personal computers. Terminals 100-1 to 100-3 receive various services such as voice call service and content distribution service such as video and voice by performing wireless communication with base stations 200-1 to 200-3. Can do.
  • Base stations 200-1 to 200-3 are wireless communication devices that perform wireless communication with terminals 100-1 to 100-3. Each of the base stations 200-1 to 200-3 is capable of bidirectional communication with the terminals 100-1 to 100-3 in its own communicable area (for example, sometimes referred to as a cell or a cell range).
  • 3 is data transmission (or uplink communication) in the direction to 3.
  • Each base station 200-1 to 200-3 assigns radio resources (for example, time resource and frequency resource) to terminals 100-1 to 100-3 by scheduling or the like, and uses the assigned radio resources as control signals for terminals 100-1 to 100-3.
  • radio resources for example, time resource and frequency resource
  • each base station 200-1 to 200-3 uses (or bundles) a plurality of frequency bands to perform wireless communication with terminals 100-1 to 100-3. It may be referred to as aggregation (hereinafter sometimes referred to as “CA”).
  • CA aggregation
  • the base station 200-1 and the terminal 100-2 perform wireless communication by CA
  • the base stations 200-2 and 200-3 and the terminal 100-3 perform wireless communication by CA. It is shown.
  • the terminal 100-2 represents an example in which wireless communication is performed with the base station 200-1 using two frequencies f1 and f2.
  • Intra-eNB CA Intra-eNB CA
  • the base station 200-1 performs CA using a plurality of frequency bands, but the two frequencies f1 and f2 may be frequencies belonging to different frequency bands, or may be frequencies belonging to one frequency band. Good.
  • the terminal 100-3 performs radio communication with the base station 200-2 using the frequency f1, and the terminal 100-3 performs radio communication with the base station 200-3 using the frequency f2.
  • An example of what is being done is shown.
  • a plurality of base stations 200-2 and 200-3 simultaneously transmit different data to the terminal 100-3 using a plurality of frequencies f1 and f2, respectively, to perform wireless communication, for example, Inter-eNB Sometimes referred to as CA.
  • each of the base stations 200-2 and 200-3 performs CA using a plurality of frequency bands, but the two frequencies f1 and f2 may belong to different frequency bands, respectively. You may belong to.
  • the MME / S-GWs 300-1 and 300-2 are connected to one or a plurality of base stations 200-1 to 200-3 and also to the network 500.
  • the MME / S-GWs 300-1 and 300-2 for example, move control of the terminals 100-1 to 100-3, authentication management of the terminals 100-1 to 100-3, setting or changing user data paths (or paths), for example.
  • MME / S-GWs 300-1 and 300-2 transmit user data and the like transmitted from network 500 to base stations 200-1 to 200-3 according to the set path. Also, MME / S-GWs 300-1 and 300-2 transmit data transmitted from base stations 200-1 to 200-3 to network 500.
  • MME / S-GWs 300-1 and 300-2 may be provided in the wireless communication system 10 as separate devices for the MME and the S-GW.
  • terminals 100-1 to 100-3 may be collectively referred to as “terminal 100”.
  • base stations 200-1 to 200-3 may be collectively referred to as “base station 200”.
  • FIG. 3 is a diagram illustrating a configuration example of the terminal 100.
  • the terminal 100 includes a transmission antenna 101-1, a reception antenna 101-2, an RF (Radio Frequency) unit 110, a layer 1 processing unit 130, a layer 2 processing unit 150, a layer 3 processing unit 170, and an application layer processing unit 175. .
  • RF Radio Frequency
  • the transmission antenna 101-1 transmits the radio signal output from the RF unit 110 to the base station 200. Further, the receiving antenna 101-2 receives a radio signal transmitted from the base station 200 and outputs the received radio signal to the RF unit 110.
  • RF section 110 converts a radio signal received by receiving antenna 101-2 into a baseband signal in the baseband frequency band (down-conversion), and outputs the converted baseband signal to layer 1 processing section 130. Also, the RF unit 110 converts the baseband signal output from the layer 1 processing unit 130 into a radio signal in the radio frequency band (up-conversion), and outputs the converted radio signal to the transmission antenna 101-1.
  • the RF unit 110 may be internally provided with a frequency conversion circuit or the like so that such frequency conversion processing is performed.
  • FIG. 4 shows a configuration example of the layer 1 processing unit 130 shown in FIG.
  • the layer 1 processing unit 130 includes a DEM (Demodulation) unit (or demodulation processing unit) 131, a DEC (Decoder) unit (or decoding processing unit) 132, a COD (Encoder) unit (or encoding processing unit) 133, and MOD. (Modulation) section (or modulation processing section) 134 is provided.
  • DEM Demodulation
  • DEC Decoder
  • COD Encoder
  • MOD Modulation section
  • the DEM unit 131 performs demodulation processing on the baseband signal output from the RF unit 110.
  • the DEM unit 131 may perform a demodulation process by OFDMA (Orthogonal Frequency Multiple Access).
  • the DEM unit 131 includes a measurement unit 135, an FFT (Fast Fourier Transfer) unit 136, and a demodulation unit 137.
  • the measurement unit 135 performs cell search and baseband signal level measurement.
  • the FFT unit 136 performs fast Fourier transform on the baseband signal to restore subcarrier symbols.
  • Demodulation section 137 performs demodulation processing on the subcarrier symbols to restore the encoded data.
  • the DEC unit 132 performs error correction decoding processing on the restored encoded data.
  • the DEC unit 132 includes a derate matching unit 138, a HARQ synthesis unit 139, a decoding unit 140, and an error detection unit 141.
  • the derate matching unit 138 restores data that has been expanded or contracted according to the allocated physical channel resource.
  • the HARQ combining unit 139 combines retransmission data by retransmission processing such as HARQ (Hybrid Automatic Repeat Request).
  • the decoding unit 140 decodes the encoded data by, for example, turbo decoding processing.
  • the error detection unit 141 performs an error detection process on the decoded data.
  • the data after error detection is output to the layer 2 processing unit 150.
  • the COD unit 133 performs error correction coding processing on the transmission data output from the layer 2 processing unit 150.
  • the COD unit 133 includes an error detection code adding unit 142, an encoding unit 143, and a rate matching unit 144.
  • the error detection code adding unit 142 calculates an error detection code such as a CRC (Cyclic Redundancy Checking) code and adds it to the transmission data.
  • the encoding unit 143 encodes transmission data by, for example, turbo encoding processing.
  • the rate matching unit 144 expands / contracts the encoded data according to the allocated physical channel resource.
  • the MOD unit 134 performs modulation processing of encoded data.
  • the MOD unit 134 may perform modulation processing using an SC-FDMA (Single Carrier Frequency Multiple Access) method.
  • the MOD unit 134 includes a modulation unit 145, a DFT (Discrete Fourier Transfer) unit 146, a subcarrier mapping unit 147, and an IFFT (Inverse Fast Fourier Transfer) unit 148.
  • the modulation unit 145 performs primary modulation processing such as multi-level modulation on the encoded data.
  • the DFT unit 146 performs a discrete Fourier transform on the multi-level modulated symbol, thereby generating a relatively wide band single carrier frequency domain signal.
  • the subcarrier mapping unit 147 maps the frequency domain signal onto the subcarrier of the physical channel resource allocated from the base station 200.
  • IFFT section 148 performs inverse fast Fourier transform on the frequency domain signal allocated on the subcarrier to convert it to a time domain signal. An output signal from the IFFT unit 148 is output to the RF unit 110 as a baseband signal.
  • FIG. 5 is a diagram illustrating a configuration example of the layer 2 processing unit 150 illustrated in FIG.
  • the medium access control is “MAC (Media Access Control)”
  • the radio link control is “RLC (Radio Link Control)”
  • the packet data convergence protocol is “PDCP (Packet Data Control Protocol)”.
  • the layer 2 processing unit 150 includes a MAC reception unit 151, an RLC reception unit 152, a PDCP reception unit 153, a PDCP transmission unit 154, an RLC transmission unit 155, and a MAC transmission unit 156.
  • the MAC reception unit 151 includes an LCH (Logical CHannel) separation unit 157.
  • the LCH separation unit 157 separates the data output from the error detection unit 141 of the layer 1 processing unit 130 for each logical channel and outputs the separated data to the RLC reception unit 152.
  • the logical channel is, for example, a channel that divides transmission information for each use.
  • a broadcast channel for broadcast information BCCH (Broadcast Control Channel)
  • DCCH Dedicated Control Channel
  • DTCH Dedicated Traffic CHannel
  • the RLC reception unit 152 includes an order correction unit 158.
  • the order correction unit 158 rearranges the data received from the MAC reception unit 151 in the transmission order transmitted from the base station 200 and outputs the data to the PDCP reception unit 153.
  • the PDCP receiving unit 153 rearranges the data received from the RLC receiving unit 152 in the order of the sequence numbers added to the data, and outputs the data to the layer 3 processing unit 170 or the application layer processing unit 175.
  • PDCP receiving section 153 outputs control data to layer 3 processing section 170 and outputs user data to application layer processing section 175.
  • the PDCP transmission unit 154 receives the control data output from the layer 3 processing unit 170 and the user data output from the application layer processing unit 175, assigns sequence numbers to these data, and outputs them to the RLC transmission unit 155. To do.
  • the RLC transmission unit 155 includes a retransmission (ARQ) unit 159.
  • the retransmission unit 159 outputs the data received from the PDCP transmission unit 154 to the MAC transmission unit 156 by retransmission control processing.
  • the MAC transmission unit 156 includes an LCH combining unit 160 and an UL-HARQ unit 161.
  • the LCH combining unit 160 combines the data received from the RLC transmission unit 155 for each logical channel, and outputs the combined data to the error detection code adding unit 142 of the layer 1 processing unit 130.
  • the UL-HARQ unit 161 performs HARQ processing of transmission data.
  • the layer 3 processing unit 170 performs control of radio resources, control of the entire terminal 100, and the like.
  • the layer 3 processing unit 170 performs connection control related to RRC (Radio Resource Control) such as paging processing and call establishment and release. Further, the layer 3 processing unit 170 can measure the traffic amount handled in the terminal 100 and report it to the base station 200.
  • the layer 3 processing unit 170 also performs mobility control processing related to connection switching control such as handover.
  • the application layer processing unit 175 performs processing such as displaying characters and images on the screen of the terminal 100 by performing processing on user data.
  • FIG. 6 is a diagram illustrating a configuration example of base station 200.
  • the base station 200 includes a transmission antenna 201-2, a reception antenna 201-2, an RF unit 210, a layer 1 processing unit 220, layer 2 processing units 250-1 to 250-n, a layer 3 processing unit 270, and a control unit 280. Prepare.
  • the first transmission unit 295-1 in the first embodiment includes, for example, the transmission antenna 201-1, the RF unit 210, the layer 1 processing unit 220, the layer 2 processing units 250-1 to 250-n, the layer 3 corresponds to the processing unit 270.
  • the second transmission unit 295-2 in the second embodiment includes, for example, the transmission antenna 201-1, the RF unit 210, the layer 1 processing unit 220, the layer 2 processing units 250-1 to 250-n, the layer 3 corresponds to the processing unit 270.
  • the transmission antenna 201-1 transmits the radio signal output from the RF unit 210 to the terminal 100. Further, the receiving antenna 201-2 receives a radio signal transmitted from the terminal 100 and outputs it to the RF unit 210.
  • RF section 210 converts the radio signal received by reception antenna 201-2 into a baseband signal in the baseband band (down-conversion), and outputs the converted baseband signal to layer 1 processing section 220. Also, the RF unit 210 converts the baseband signal output from the layer 1 processing unit 220 into a radio signal in the radio band (up-conversion), and outputs the radio signal to the transmission antenna 201-1.
  • the RF unit 210 may be provided with a frequency conversion circuit or the like so that such frequency conversion processing is performed.
  • FIG. 7 shows a configuration example of the layer 1 processing unit 220 shown in FIG.
  • the layer 1 processing unit 220 includes a DEC unit 221, a DEC unit 222, a COD unit 223, and a MOD unit 224.
  • the DEM unit 221 performs demodulation processing on the baseband signal output from the RF unit 210.
  • the DEM unit 221 may perform demodulation processing using an SC-FDMA method.
  • the DEM unit 221 includes an FFT unit 225, a subcarrier demapping unit 226, an IDFT (Inverse Discrete Fourier Transfer) unit 227, and a demodulation unit 228.
  • the FFT unit 225 converts the received baseband signal of the time domain signal into a frequency domain signal, and restores the subcarrier symbol.
  • Subcarrier demapping section 226 divides the symbols mapped to each subcarrier into a plurality of symbols D11 to D1n for each user.
  • the IDFT unit 227 restores the primary modulation signal for each user by performing inverse Fourier transform on the subcarrier symbols D11 to D1n for each user, which is a single carrier frequency domain signal.
  • Demodulation section 228 performs demodulation processing on the primary modulation signal and restores encoded data D21 to D2n for each user.
  • the DEC unit 222 performs decoding processing of the encoded data D21 to D2n for each user, and restores the encoded data D31 to D3n for each user.
  • the DEC unit 222 includes a derate matching unit 229, a HARQ synthesis unit 230, a decoding unit 231, and an error detection unit 232.
  • the processes of the derate matching unit 229, the HARQ synthesis unit 230, the decoding unit 231, and the error detection unit 232 are performed by the derate matching unit 138, the HARQ synthesis unit 139, the decoding unit 140, and the error detection unit 141 in the terminal 100. This is the same as the processing.
  • the data D31 to D3n are output to the layer 2 processing units 250-1 to 250-n, respectively.
  • the COD unit 223 encodes the data D41 to D4n for each user output from the layer 2 processing units 250-1 to 250-n, and outputs the encoded data D51 to D5n for each user.
  • the COD unit 223 includes an error detection code adding unit 235, an encoding unit 236, and a rate matching unit 237.
  • the processes of the error detection code adding unit 235, the encoding unit 236, and the rate matching unit 237 are the same as the processes of the error detection code adding unit 142, the encoding unit 143, and the rate matching unit 144 in the terminal 100, respectively.
  • the MOD unit 224 performs modulation processing on the encoded data D51 to D5n for each user.
  • the MOD unit 224 can perform, for example, modulation processing by the OFDMA method.
  • the MOD unit 224 includes a modulation unit 238, a subcarrier mapping unit 239, and an IFFT unit 240.
  • Modulation section 238 performs primary modulation processing such as multilevel modulation on encoded data D51 to D5n for each user to generate subcarrier symbols D61 to D6n.
  • Subcarrier mapping section 239 maps subcarrier symbols D61 to D62 onto the subcarriers of the physical channel resource.
  • IFFT section 240 performs inverse fast Fourier transform on the subcarrier symbols to generate a time domain signal.
  • the baseband signal modulated by the MOD unit 224 is output to the RF unit 210.
  • FIG. 8 shows a configuration example of the layer 2 processing unit 250-1 shown in FIG.
  • the configuration of the layer 2 processing units 250-2 to 250-n is the same as the configuration of the layer 2 processing unit 250-1.
  • the layer 2 processing units 250-1 to 250-n perform processing related to layer 2 regarding the data D31 to D3n and D41 to D4n for each user.
  • the layer 2 processing unit 250-1 includes a MAC reception unit 251, an RLC reception unit 252, a PDCP reception unit 253, a PDCP transmission unit 254, an RLC transmission unit 255, and a MAC transmission unit 256.
  • the MAC receiving unit 251 includes an LCH separating unit 257.
  • the RLC reception unit 252 includes an order correction unit 258.
  • the RLC transmission unit 255 includes a retransmission (ARQ) unit 259.
  • the MAC transmission unit 256 includes an LCH combining unit 260 and a DL-HARQ unit 261.
  • the processes of the LCH separation unit 257, the order correction unit 258, the PDCP reception unit 253, the PDCP transmission unit 254, the retransmission unit 259, the LCH combination unit 260, and the DL-HARQ unit 261 are the same as the LCH separation unit 157 and the order correction unit in the terminal 100. 158, PDCP reception unit 153, PDCP transmission unit 154, retransmission unit 159, LCH combining unit 160, and UL-HARQ unit 161.
  • the PDCP transmission unit 254 performs processing for adding a sequence number to the packet data received from the MME / S-GW 300 in the PDCP layer.
  • the PDCP transmission unit 254 transfers data held in a memory or the like (or performs data forwarding) according to the transfer instruction output from the control unit 280. Therefore, the PDCP transmission unit 154 is connected to the PDCP transmission unit 254 of another base station and can transfer data to each other.
  • a memory may be provided inside the PDCP transmission unit 154 or may be provided outside the PDCP transmission unit 154, for example.
  • the layer 3 processing unit 270 performs radio resource control and RRC connection control.
  • the control unit 280 determines a transfer destination base station when performing data forwarding.
  • the control unit 280 exchanges messages, data, and the like with other base stations. Therefore, the control unit 280 is connected to the control unit 280 of another base station. Further, the control unit 280 also instructs the layer 2 processing units 250-1 to 250-n to transfer data in data forwarding.
  • FIG. 9 is a diagram illustrating a configuration example of the MME / S-GW 300.
  • the MME / S-GW 300 includes a route state management unit 310 and a route selection unit 320.
  • the route state management unit 310 manages selectable route information for transferring data received from the network 500 to the terminal 100 for each terminal 100. That is, for example, the route state management unit 310 sets route information in accordance with a path setting request received from the base station 200, and controls the route selection unit 320 to transmit data on the set route. In addition, the route state management unit 310 changes the route information in accordance with the data transfer path switching request received from the base station 200, and controls the route selection unit 320 to transmit data through the changed route. Furthermore, the route state management unit 310 controls the route selection unit 320 to temporarily stop the route to the terminal 100, for example, according to the data transfer path suspension request received from the base station 200 via the route selection unit 320. .
  • path state management unit 310 may assign a sequence number to data to be transmitted to the terminal 100. Details thereof will be described in the fourth embodiment.
  • the route selection unit 320 transmits data received from the network 500 to the base station 200 or temporarily stops transmission in accordance with an instruction from the route state management unit 310. In addition, the route selection unit 320 transmits data received from the base station 200 to the network 500 in accordance with an instruction from the route state management unit 310.
  • FIG. 10A and FIG. 10B are diagrams illustrating an operation example of the entire data forwarding.
  • FIG. 10A shows a state in which communication is performed between the base station 200-1 and the terminal 100, and the base station 200-1 transmits data received from the S-GW 300 to the terminal 100. ing. In this case, base station 200-1 transmits data to terminal 100 using logical channel LCH # a.
  • FIG. 10B shows a state in which data forwarding is performed from the base station 200-1 to the base station 200-2.
  • data forwarding is performed, for example, when the handover process is performed because the communication status has changed due to deterioration in communication quality between the base station 200-1 and the terminal 100, for example.
  • the wireless communication between the base station 200-1 and the terminal 100 is stopped, the communication destination of the terminal 100 is switched to the base station 200-2, and the base station 200-2 Wireless communication is performed with the terminal 100.
  • base station 200-1 transfers unacknowledged data to base station 200-2.
  • the unacknowledged data is, for example, data that has not been transmitted from the base station 200-1 to the terminal 100, or data that has been transmitted from the base station 200-1 to the terminal 100 but has not been confirmed in the base station 200-1. It is data.
  • terminal 100 transmits PDCP STATUS PDU including the sequence number of the data received from base station 200-1 to base station 200-2.
  • the base station 200-2 receives the PDCP STATUS PDU using the logical channel LCH # a used for radio communication by the base station 200-1. Details of the logical channel LCH # a will be described later.
  • the base station 200-2 transmits data other than the data received by the terminal 100 to the terminal 100 based on the sequence number among the undelivered confirmation data.
  • FIG. 11 is a diagram illustrating a sequence example of data forwarding processing in the second embodiment.
  • FIG. 11 shows an example in which Inter-eNB CA is performed between the three base stations 200-1 to 200-3 and the terminal 100.
  • data transfer path establishment processing is performed between the terminal 100 and each of the base stations 200-1 to 200-3 (S10). Thereby, a data transfer path is established between the three base stations 200-1 to 200-3 and the terminal 100, and Inter-eNB CA can be performed.
  • the radio link establishment process may be referred to as a data transfer path establishment process.
  • FIG. 12 to FIG. 14 are diagrams showing an operation example of the data transfer path establishment process (S10).
  • 12 shows a sequence example of data transfer path establishment processing performed between the terminal 100 and the base station 200-1
  • FIGS. 13 and 14 show data transfer path establishment processing between the terminal 100 and the base station 200-1. Each sequence example is shown.
  • a data transfer path is established between the terminal 100 and the base station 200-1.
  • the processing shown in FIG. 13 or FIG. 14 is performed to add a data transfer path between the terminal 100 and the base station 200-2, and the terminal 100 and the two base stations 200-1 and 200-2 Two data transfer paths between are established.
  • the base station 200-1 with which the terminal 100 first establishes the data transfer path may be referred to as a master base station 200-1 below.
  • each message is transmitted and received between terminal 100 and base station 200-1.
  • Such a message is generated, for example, in the layer 3 processing unit 170 of the terminal 100 and the layer 3 processing unit 270 of the base station 200, and is transmitted and received between the two layer 3 processing units 170 and 270.
  • the terminal 100 transmits a location registration request to the base station 200-1 after turning on the power, for example (S100). Further, the base station 200-1 transmits location registration completion to the terminal 100 in response to the location registration request (S101).
  • the base station 200-1 can operate as a master base station for the terminal 100.
  • the base station 200-1 may notify other base stations that the own station is a master base station. This notification is performed, for example, when the control unit 280 of the base station 200-1 notifies the control unit 280 of another base station.
  • the terminal 100 transmits a connection request (rrcConnectionRequest) to the base station 200-1 through a transmission operation (S102). Then, base station 200-1 transmits a connection start (rrcConnectionSetup) to terminal 100 as a response to the connection request (S103). At this time, the base station 200-1 transmits information on the logical channel and physical channel used for transmission / reception in the subsequent processing (for example, S104 to S115) by including in the connection start.
  • FIG. 15 is a diagram illustrating a relationship example from a logical channel to a physical channel. Details of FIG. 15 will be described later.
  • the transport channel is a channel for associating a logical channel with a physical channel, for example.
  • Transport channels include, for example, shared channels (UL / DL SCH (Uplink / Downlink Shared CHannel), random access channels (RACH (Random Access Channel)), etc.
  • UL / DL SCH Uplink / Downlink Shared CHannel
  • RACH Random Access Channel
  • a dedicated communication channel DTCH which is a logical channel
  • a tonlas port channel for example, UL SCH
  • the base station 200-1 holds the correspondence relationship between the logical channel and the physical channel in a memory or the like, and can appropriately notify the terminal 100 of information on the logical channel to the physical channel used for wireless communication.
  • the notification at the connection start (S103) in FIG. 12 is information on the logical channel to the physical channel used in the subsequent communication (S104 to S115).
  • the terminal 100 When the terminal 100 receives the notification of connection start (S103), the terminal 100 performs processing related to the connection. Examples of the process related to connection include the following processes. That is, the terminal 100 sets each channel by holding the mapping information of the logical channel to the physical channel included in the notification in the memory. In addition, terminal 100 performs synchronization establishment processing on base station 200-1. Terminal 100 performs cell search processing if necessary to detect base station 200-1. When the terminal 100 completes the connection process, the terminal 100 transmits a connection completion (rrcConnectionSetupComplete) to the base station 200-1 (S104).
  • rrcConnectionSetupComplete connection completion
  • the terminal 100 transmits a service start request (initialDirectTransfer) to the base station 200-1 (S105).
  • the base station 200-1 that has received the service start request transmits a secrecy setting (security ModeCommand) to the terminal 100 (S106). Thereafter, the terminal 100 can perform encryption according to the confidential setting and transmit the encrypted message to the base station 200-1.
  • the terminal 100 that has received the confidential setting performs the setting by, for example, holding information related to encryption notified by the confidential setting in a memory or the like.
  • the terminal 100 transmits a secret setting completion response (securityModeComplete) to the base station 200-1 (S107).
  • the terminal 100 transmits a call connection request (uplinkDirectTransfer) to the base station 200-1 (S108).
  • a call connection request uplinkDirectTransfer
  • the terminal 100 transmits what kind of communication is used for connection, such as packet communication such as e-mail or Web browsing, or line communication such as a voice call or a TV phone.
  • the base station 200-1 When receiving the call connection request from the terminal 100 (S108), the base station 200-1 transmits a radio bearer setup request (radio Bearer Setup) to the terminal 100 (S109). For example, the base station 200-1 transmits information on physical channels to logical channels used when performing communication requested by the call connection request (S108) in the radio bearer setting request.
  • a radio bearer setup request radio Bearer Setup
  • the terminal 100 When receiving the radio bearer setting request (S109), the terminal 100 sets the terminal 100 in response to the radio bearer setting request. For example, the terminal 100 performs setting by, for example, holding information on physical channels to logical channels included in the radio bearer setting request in a memory. For the communication requested by the call connection request (S108), the terminal 100 performs radio communication with the base station 200-2 using the set physical channel to logical channel.
  • the terminal 100 transmits a completion response (radio Bearer Setup Complete) to the base station 200-1 (S110).
  • the base station 200-1 When receiving the completion response of the radio bearer setting request (S110), the base station 200-1 transmits a path setting request to the S-GW 300 (S111).
  • the path setting request includes, for example, terminal information and service information (S105).
  • S105 terminal information and service information
  • a path from the base station 200-1 to the terminal 100 is set in the S-GW 300.
  • the path setting in the S-GW 300 is performed as follows, for example. That is, when the path state management unit 310 of the S-GW 300 receives the path setting request from the base station 200-1, the path state management unit 310 extracts information on the path from the base station 200-1 to the terminal 100 included in the request, The route selection unit 320 is instructed to transmit data according to the above. Thereby, thereafter, the S-GW 300 can transmit data to the terminal 100 via the base station 200-1.
  • the base station 200-1 transmits a measurement setting request (measurementControl) to the terminal 100 (S112).
  • the measurement setting request includes, for example, neighboring cell information and measurement report reporting conditions.
  • the report condition of the measurement report includes, for example, a reception quality threshold value.
  • the terminal 100 transmits a Measurement Report to the base station 200-1 according to the measurement setting request.
  • the base station 200-1 is notified of the path setting in response to the path setting request (S111) from the S-GW 300 (S113), and sets the notified path.
  • the base station 200-1 performs path setting by storing route information from the S-GW 300 to the terminal 100 via the base station 200-1 in a memory.
  • the base station 200-1 holds, for example, a relationship between logical channels and physical channels (for example, FIG. 15) used for wireless communication with the terminal 100 in a memory or the like. Thereby, for example, as shown in FIG. 15, a logical channel and a physical channel used by the base station 200-1 for wireless communication with the terminal 100 are set.
  • the memory may be provided inside or outside the layer 3 processing unit 270 in the base station 200-1, for example.
  • the base station 200-1 When the base station 200-1 completes the path setting, the base station 200-1 transmits a path setting response to the S-GW 300 (S114).
  • the base station 200-1 transmits a service start consent (downlinkDirectTransfer) to the terminal 100 as a response to the service start request (S105) (S115).
  • 13 and 14 show a sequence example of data transfer path establishment processing for the base station 200-2.
  • 13 shows an example in which the added base station 200-2 makes a path setting request to the S-GW 300
  • FIG. 14 shows an example in which the master base station 200-1 makes a path setting request to the S-GW 300. Respectively.
  • FIG. 13 will be described.
  • the terminal 100 and the base station 200-1 that have established the data transfer path are in a communication state (S120).
  • the terminal 100 measures (or monitors) the data amount (or traffic amount) of transmitted / received data (S121). Then, when the data amount exceeds the threshold value, the terminal 100 transmits a Measurement Report including the measurement result to the base station 200-1 (S123).
  • the measurement unit 135 measures the traffic amount for each of the base stations 200-1 and 200-2, notifies the measurement result to the layer 3 processing unit 170, and the layer 3 processing unit 170 generates a measurement report including the measurement result. .
  • the generated Measurement report is transmitted from the layer 3 processing unit 170 to the terminal 100 via the layer 2 processing unit 150 and the like.
  • the base station 200-1 determines an additional base station (S124).
  • the base station 200-1 decides to perform Inter-eNB CA based on the traffic amount included in the Measurement Report, and the base station with the best reception quality or the traffic amount of the reception quality in other base stations. Select the least number of base stations as additional base stations. Such a determination is performed, for example, by the control unit 280 of the base station 200-1. In the example of FIG. 13, the base station 200-2 is an additional base station.
  • the base station 200-1 transmits a connection request to the additional base station 200-2 (S125).
  • the connection request includes, for example, terminal information and service information regarding the target terminal 100.
  • the control unit 280 After determining the additional base station, the control unit 280 generates a connection request for the additional base station, and transmits the connection request to the control unit 280 of the additional base station 200-2.
  • the base station 200-2 When receiving the connection request (S125), the base station 200-2 determines whether or not the terminal 100 can be connected, and transmits the result as a connection response to the base station 200-1 (S126).
  • the connection availability may be determined based on the amount of radio resources that can be allocated to the terminal 100 in the base station 200-2, for example.
  • the example of FIG. 13 represents an example in which connection to the base station 200-2 is permitted.
  • the base station 200-2 may notify information on the logical channel and the physical channel used for wireless communication with the terminal 100.
  • the control unit 280 of the base station 200-2 reads the information held in the memory or the like, and includes the generated connection response to notify the control unit 280 of the base station 200-1.
  • Such a memory may be provided inside or outside the control unit 280, for example.
  • the base station 200-1 Upon receiving the connection response (S126), the base station 200-1 transmits a connection instruction to the base station 200-2 to the terminal 100 (S127).
  • the control unit 280 when receiving the connection response transmitted from the base station 200-2, the control unit 280 extracts information on the logical channel and the physical channel from the connection response. Then, the control unit 280 generates a connection instruction including the extracted information and transmits the connection instruction to the terminal 100 via the layer 3 processing unit 270 or the like.
  • the terminal 100 Upon receiving the connection instruction (S127), the terminal 100 performs a connection process with respect to the base station 200-2 (S128).
  • connection process for example, there are the following processes. That is, the layer 3 processing unit 170 of the terminal 100 performs setting processing for each channel by holding information on the logical channel to the physical channel included in the connection instruction in the memory. Also, the terminal 100 performs a synchronization process for the base station 200-2.
  • the terminal 100 Upon completion of the connection process, the terminal 100 transmits a connection completion notification to the base station 200-2 (S129). For example, when completing the connection process, the layer 3 processing unit 170 generates a connection completion notification and transmits it to the base station 200-2.
  • the base station 200-1 receives the connection completion notification (S129), and transmits a path setting request for the terminal 100 to the S-GW 300 (S130).
  • the base station 200-2 receives the connection completion notification (S129), so that a radio link (or connection path) is established between the terminal 100 and the base station 200-2.
  • the layer 3 processing unit 270 of the base station 200-2 receives the connection completion notification
  • the layer 3 processing unit 270 generates a path setting request including a path setting request with the terminal 100 and transmits the path setting request to the S-GW 300.
  • the S-GW 300 When receiving the path setting request, the S-GW 300 sets a path according to the path setting request, and transmits the path setting to the base station 200-2 after setting (S131).
  • the path state management unit 310 of the S-GW 300 receives a path setting request from the base station 200-1, the path state management unit 310 extracts information on a path from the base station 200-2 to the terminal 100 included in the request, and The route selection unit 320 is instructed to transmit data according to the above. Thereby, a path is set from the S-GW 300 to the terminal 100 via the base station 200-2, and thereafter, the S-GW 300 transmits data according to the path setting. For example, after completing the path setting, the path state management unit 310 generates a path setting notification and transmits it to the base station 200-2.
  • the base station 200-2 When the base station 200-2 receives the path setting from the S-GW 300 (S131), the base station 200-2 sets the notified path setting, and when this is completed, transmits a path setting response to the S-GW 300 (S132).
  • the layer 3 processing unit 270 of the base station 200-2 performs the setting by storing information on the path in a memory or the like based on the notified path setting. Then, the layer 3 processing unit 270 holds, for example, a relationship between logical channels and physical channels (for example, FIG. 15) used for wireless communication with the terminal 100 in a memory or the like. Thereby, for example, as shown in FIG. 15, the logical channel to the physical channel used by the base station 200-2 for wireless communication with the terminal 100 are set. Then, the layer 3 processing unit 270 generates a path setting response and transmits it to the S-GW 300.
  • the base station 200-2 transmits a connection completion notification to the base station 200-1 (S133). For example, after transmitting the path setting response (S132), the layer 3 processing unit 270 of the base station 200-2 generates a connection completion notification and transmits it to the base station 200-1 via the control unit 280.
  • a data connection path is established between the two base stations 200-1 and 200-2 and the terminal 100, and wireless communication by the Inter-eNB CA is performed.
  • FIG. 14 represents an example of a sequence in which a data connection path between the terminal 100 and the base station 200-2 is established, but represents an example in which the master base station 200-1 sets a path to the S-GW 300. ing.
  • the processing from S120 to S129 is the same as the example of FIG. 14.
  • the base station 200-2 transmits a connection completion notification to the master base station 200-1 (S140).
  • the control unit 280 of each base station is connected to each other, and the control unit 280 of the master base station 200-1 notifies the control unit 280 of the other base station that the own station is the master base station. ing.
  • the control unit 280 of the base station 200-2 transmits a connection completion notification to the control unit 280 of the master base station 200-1.
  • the master base station 200-1 transmits a path setting request to the S-GW 300 (S141).
  • the path setting request includes, for example, a path setting request between the base station 200-2 and the terminal 100.
  • the master base station 200-1 collectively requests the S-GW 300 to set a path for the other base station 200-2 that has established a radio link with the terminal 100.
  • control unit 280 of the master base station 200-1 notifies the layer 3 processing unit 270 of the received connection completion notification (S140). Then, the layer 3 processing unit 270 extracts information related to the connection path between the terminal 100 and the base station 200-3 from the notification, generates a path setting request including the information, and transmits it to the S-GW 300.
  • the S-GW 300 When the S-GW 300 receives the path setting request (S141), the S-GW 300 sets the path according to the request and transmits the path setting to the base station 200-2 (S131).
  • the subsequent steps are the same as in the example of FIG.
  • connection path between the terminal 100 and the base station 200-2 is added, and the connection path between the terminal 100 and the two base stations 200-1 and 200-2 is established.
  • the terminal 100 when the terminal 100 is performing radio communication with the two base stations 200-1 and 200-2 using the Inter-eNB CA, if the traffic volume of the terminal 100 increases, the third base station 200-3 A connection path establishment process is performed for.
  • the base station 200-2 by replacing the base station 200-2 with the base station 200-3 in the process of FIG. 13 or FIG. 14, a connection path establishment process similar to the process described above between the terminal 100 and the base station 200-3. Is done.
  • the data transfer path is established between the terminal 100 and the three base stations 200-1 to 200-3.
  • FIG. 15 shows an example of channel mapping between the three base stations 200-1 to 200-3 and the terminal 100.
  • the base station 200-1 communicates with the terminal 100 using the physical channel Phy # 1 (frequency f1) for the logical channel LCH # a.
  • the base station 200-2 communicates with the terminal 100 using the physical channel Phy # 2 (frequency f2) for the logical channel LCH # b.
  • the base station 200-3 communicates with the terminal 100 using the physical channel Phy # 3 (frequency f3) for the logical channel LCH # c.
  • each of the base stations 200-1 to 200-3 and the terminal 100 holds information on physical channels to logical channels in a memory or the like, thereby holding each channel mapping as shown in FIG. 15, for example. Can do.
  • the logical channel may be set by a logical channel number, for example.
  • the logical channel number is different depending on the type of logical channel. For example, “0” to “10” are used as the logical channel numbers representing the dedicated communication channel DTCH for user data, and “11” to “20” are the logical channel numbers representing the dedicated control channel DCCH for the terminal dedicated control signal. Etc.
  • the number of the logical channel number may be other than the number as long as it is an identification code that can be distinguished from others.
  • each base station 200-1 to 200-3 sets a logical channel with a different logical channel number even if it is the same type of logical channel.
  • the logical channel number of the dedicated communication channel DTCH in the base station 200-1 is “1”
  • the logical channel number of the dedicated communication channel DTCH in the base station 200-2 is “2”, and the like.
  • the logical channel numbers that are different depending on the base stations 200-1 to 200-3 are received by the terminal 100 from the base stations 200-1 to 200-3, for example. This is because the sequence number of the data to be recorded can be identified.
  • the data sequence number is, for example, a predetermined packet unit (eg, PDCP PDU) for data received from the MME / S-GW 300 by the PDCP transmission unit 254 of each of the base stations 200-1 to 200-3. Allocate with. This allocation is performed independently by each of the base stations 200-1 to 200-3. Therefore, the data transmitted from the base station 200-1 and the data transmitted from the base station 200-2 may be received by the terminal 100 with the same sequence number regardless of different data. In such a case, the terminal 100 may discard either one as the same data and may lose data.
  • PDCP PDU a predetermined packet unit
  • the terminal 100 can be identified as different data.
  • control unit 280 of each of the base stations 200-1 to 200-3 adjusts so that the logical channel number is different even with the same type of logical channel with the control unit 280 of the other base station. . Then, the control unit 280 notifies the PDCP transmission unit 254 of the logical channel number, and the PDCP transmission unit 254 adds the logical channel number and the sequence number to the transmission data for each PDCP PDU.
  • the terminal 100 periodically measures radio quality such as received signal power and SIR (Signal to Interference Ratio), and monitors the radio state between the base stations 200-1 to 200-3.
  • radio quality such as received signal power and SIR (Signal to Interference Ratio)
  • the measurement report includes the radio quality for the base station 200-2 and the radio quality for the other base stations 200-1 and 200-3. Is transmitted to the base station 200-1 (S11).
  • S11 Signal to Interference Ratio
  • the terminal 100 transmits the Measurement Report to the master base station 200-1, but may transmit it to another base station 200-3.
  • the base station 200-3 transmits information included in the Measurement Report to the master base station 200-1.
  • the master base station 200-1 determines that wireless communication between the terminal 100 and the base station 200-2 is difficult based on the wireless quality, and between the terminal 100 and the base station 200-2. It determines the disconnection of wireless communication and the start of data forwarding processing. Then, master base station 200-1 selects a base station that is a transfer destination (or forwarding destination) of data held by base station 200-2 (S12).
  • the control unit 280 of the master base station 200-1 receives the reception quality of each of the radio base stations 200-1 to 200-3 included in the Measurement Report from the layer 3 processing unit 270. Then, the control unit 280 determines that wireless communication is difficult because the wireless quality of the base station 200-2 is less than or equal to the threshold, and determines the start of the data forwarding process. At this time, for example, the control unit 280 selects the base station with the best radio quality as the data forwarding destination base station. In the example of FIG. 11, the base station 200-3 is selected as the transfer destination base station.
  • the base station 200-1 transmits a Forwarding start preparation request to the base station 200-3 as a data transfer destination (S14).
  • This request includes information on the base station 200-2 as a data transfer source and information on the logical channel LCH # b used in the base station 200-2.
  • the control unit 280 of the base station 200-1 can acquire the logical channel number used in the base station 200-2 by a connection request (S125 in FIG. 13) or a connection response (S126) with the base station 200-2. . Therefore, the base station 200-1 can include the logical channel number of the logical channel LCH # b used in the base station 200-2 in the Forwarding start preparation request.
  • the base station 200-3 Upon receiving the Forwarding start preparation request, the base station 200-3 determines whether or not data forwarding can be accepted, and if possible, opens the new logical channel LCH # b designated by the Forwarding start preparation request (S15). In the example of FIG. 11, the base station 200-3 determines that data forwarding can be accepted.
  • the reason why the base station 200-3 opens the logical channel LCH # b of the base station 200-2 (S15) is, for example, for the following reason.
  • different logical channel numbers are assigned to the base stations 200-1 to 200-3 in predetermined units for data transmitted to the terminal 100.
  • the number of the logical channel LCH # b is also assigned to Data # 1 (for example, S13) transmitted from the S-GW 300 to the base station 200-2.
  • This Data # 1 is transferred from the base station 200-2 to the base station 200-3 by data forwarding. If the base station 200-3 can transmit the data forwarded Data # 1 to the terminal 100 using the number of the logical channel LCH # b assigned to the Data # 1, the base station 200-3 has trouble such as changing the logical channel number. Does not have to be processed. If terminal 100 can receive data using logical channel LCH # b, the process of changing the logical channel number may not be performed.
  • the base station 200-3 opens the logical channel LCH # b used by the base station 200-2 for reasons such as simplifying the processing. Therefore, this opened logical channel LCH # b is a logical channel temporarily opened in the base station 200-3.
  • the logical channel LCH # b becomes autonomous. To make it close. Details will be described later.
  • the base station 200-3 binds (binds) the opened logical channel LCH # b to the transport channel TrCH # 3 used for communication with the terminal 100. ).
  • An example of channel mapping after the two logical channels LCH # b and LCH # c are bound is shown in FIG.
  • the two logical channels LCH # b and LCH # c are mapped to the same transport channel TrCH # 3. That is, the base station 200-3 transmits the logical channel LCH # b to the terminal 100 using the physical channel Phy # 3, and also transmits the logical channel LCH # c using the physical channel Phy # 3.
  • the base station 200-3 wirelessly communicates with the terminal 100 using the physical channel Phy # 3 that is already used without newly using the physical channel for the newly opened logical channel (S15). Communication is possible. Therefore, the physical channel can be effectively used.
  • the layer 3 processing unit 270 holds in the memory so that the two logical channels LCH # b and LCH # c correspond to the same transport channel TrCH # 3, thereby performing processing related to binding.
  • the layer 3 processing unit 270 performs processing such as securing a predetermined memory area for the logical channel LCH # b or initializing parameters, thereby opening the logical channel LCH # b. .
  • processing such as securing a predetermined memory area for the logical channel LCH # b or initializing parameters, thereby opening the logical channel LCH # b.
  • a memory is provided, for example, inside or outside the layer 3 processing unit 270.
  • This response includes, for example, information after the status change of the logical channel.
  • the information includes, for example, information indicating that the newly opened logical channel LCH # b is bound to the transport channel TrCH # 3 and uses the physical channel Phy # c.
  • the layer 3 processing unit 270 finishes processing related to binding to the memory
  • the layer 3 processing unit 270 notifies the control unit 280 of information related to binding.
  • the control unit 280 generates a response including the channel information of the base station 200-3 based on the information related to the binding, and notifies the control unit 280 of the base station 200-1 of the response.
  • the master base station 200-1 transmits a data transfer path switching request (or data transfer path switching request) to the S-GW 300 (S17).
  • the data transfer path switching request includes, for example, a request to change the data transfer path from the base station 200-2 to the base station 200-3.
  • a data transfer path switching request is generated in the layer 3 processing unit 270 and transmitted to the S-GW 300 via the layer 2 processing units 250-1 to 250-n.
  • the S-GW 300 When receiving the data transfer path switching request, the S-GW 300 switches the data transfer path. As a result, data is no longer transferred from the S-GW 300 to the base station 200-2, and data that is no longer transferred to the base station 200-2 is transferred to the base station 200-3.
  • the S-GW 300 transmits a response to the base station 200-1 (S18).
  • the master base station 200-1 transmits a Forwarding start request to the base station 200-2 (S19).
  • the base station 200-2 starts transferring (or forwarding) undelivered data to the base station 200-3 (S20).
  • the transferred data is Data # 1 (S13) received by the base station 200-2.
  • data forwarding is performed as follows. That is, when the layer 3 processing unit 270 of the master base station 200-1 receives the response (S18), it notifies the control unit 280 of that fact. Upon receiving the notification, the control unit 280 generates a Forwarding start request and notifies the control unit 280 of the base station 200-2 (S19). When receiving the request, the control unit 280 of the base station 200-2 instructs the PDCP transmission unit 254 to transmit unacknowledged data (for example, Data # 1) to the base station 200-3. Upon receiving this instruction, the PDCP transmission unit 254 transmits unconfirmed delivery data to the PDCP transmission unit 254 of the base station 200-3, whereby data forwarding is performed.
  • unacknowledged data for example, Data # 1
  • the base station 200-1 transmits a radio link state change request to the terminal 100 (S21).
  • the radio link state change request for example, information on closing of the physical channel (for example, physical channel Phy # 2 (frequency f2)) used by the base station 200-2, the logical channel LCH used by the base station 200-2
  • the state change information of #b and a timer value indicating the time until the logical channel LCH # b used in the base station 200-2 is closed are included.
  • the state change information of the logical channel LCH # b includes, for example, information indicating that the binding destination of the logical channel LCH # b is changed to the transport channel TrCH # 3.
  • the master base station 200-1 transmits information related to binding in the base station 200-3 to the terminal 100. For example, when the base station 200-3 transmits information relating to binding in the response (S16), the master base station 200-1 can acquire information relating to binding.
  • the logical channel LCH # b is automatically closed in the terminal 100 by the timer value.
  • the logical channel LCH # b is, for example, a logical channel that is used in the data forwarding base station 200-2, and is a logical channel that is no longer used when data forwarding ends. Since the terminal 100 can automatically close the logical channel LCH # b depending on the timer value, for example, the base station 200-3 is autonomous or automatic without transmitting a notification other than the radio link state change request. Can be closed.
  • This timer value may be a fixed value or a fluctuating value corresponding to the amount of undelivered confirmation data to be forwarded.
  • the base station 200-1 receives information on the amount of data to be forwarded from the base station 200-2 or the base station 200-3, and the fluctuation value is set based on the information.
  • the radio link state change request is transmitted to the terminal 100 as an L1 signal or an L2 signal.
  • FIG. 17A illustrates an example in which a wireless link state change request is included in the MAC data
  • FIG. 17B illustrates an example in which a wireless link state change request is included in the L1 data.
  • the header area of the MAC data includes flag information indicating whether or not a radio link state change request is included in the payload area of the MAC data.
  • the MAC reception unit 151 of the terminal 100 can confirm whether or not a wireless link state change request is included by confirming the header area of the MAC data, and if it can be confirmed, the wireless link state change request can be extracted.
  • the radio link state change request may be transmitted to the terminal 100 as an L3 signal, for example.
  • the terminal 100 receives the radio link state change request by the layer 3 processing unit 170.
  • the terminal 100 can confirm the radio link state change request in the layer 2 processing unit 150 instead of the layer 3 processing unit 170, For example, the processing can be speeded up and simplified.
  • FIG. 17B shows an example in which a radio link state change request is included in the L1 data, and information on whether or not the radio link state change request is included in the L1 data is transmitted by the control channel.
  • the terminal 100 can confirm the presence / absence of the radio link state change request by confirming the control channel in the layer 1 processing unit 130. Therefore, compared to the case where the radio link state change request is transmitted as an L3 signal, the layer 1 processing unit 130 can extract the radio link state change request from the L1 data, thereby speeding up and simplifying the processing. Can be planned.
  • flag information and a radio link state change request may be included in the control channel as in the MAC data of FIG.
  • the terminal 100 upon receiving the received radio link state change request (S21), performs processing such as closing the physical channel of the base station 200-2, changing the state of the logical channel LCH # b, and starting a timer. .
  • the terminal 100 by changing the state of the logical channel LCH # b, for example, as shown in FIG. 16, the physical channel Phy # 2 (frequency f2) of the base station 200-2 is closed, and the two logical channels LCH # b, # c is mapped to the transport channel TrCH # 3.
  • the layer 3 processing unit 170 of the terminal 100 deletes information related to the physical channel Phy # 2 held in the memory and maps the two logical channels LCH # b and #c to the transport channel TrCH # 3. Processing is performed by storing information in a memory.
  • activation and counting of the timer are performed in the layer 3 processing unit 170 of the terminal 100, for example.
  • the terminal 100 transmits data delivery confirmation information (eg, PDCP STATUS PDU) to the base station 200-3 (S22).
  • data delivery confirmation information eg, PDCP STATUS PDU
  • the terminal 100 when the terminal 100 has successfully received the data transmitted from the base station 200-2 before receiving the radio link state change request (S21), the terminal 100 has the latest data out of the normally received data.
  • the sequence number is transmitted to the base station 200-3.
  • the terminal 100 transmits a PDCP STATUS PDU using the logical channel LCH # b.
  • the base station 200-3 when it receives the forwarded unconfirmed data (S20), it starts a timer.
  • the base station 200-3 counts the time for closing the temporarily opened logical channel LCH # b.
  • the activation and counting of the timer is performed by, for example, the control unit 280 of the base station 200-3.
  • the control unit 280 may measure the data amount of the forwarded unacknowledged data, and the control unit 280 may set the timer value according to the data amount.
  • the base station 200-3 discards the data that has been acknowledged based on the PDCP STATUS PDU among the forwarded unconfirmed data (S23), and the remaining data Is transmitted to the terminal 100 (S24).
  • the layer 3 processing unit 270 extracts a sequence number included in the PDCP STATUS PDU, and instructs the PDCP transmission unit 254 to transmit data having a sequence number subsequent to the sequence number.
  • the PDCP transmission unit 254 can discard the data whose delivery confirmation has been completed among the delivery unconfirmed data, and can transmit the remaining data to the terminal 100.
  • the base station 200-3 transmits all of Data # 1 to the terminal 100 without discarding the forwarded Data # 1.
  • the base station 200-3 transmits the remaining data to the terminal 100 using the opened logical channel LCH # b (for example, S15).
  • the terminal 100 transmits an acknowledgment (for example, an ACK (Acknowledge) signal) to the base station 200-3 (S25).
  • an acknowledgment for example, an ACK (Acknowledge) signal
  • the base station 200-3 When receiving the delivery confirmation from the terminal 100, the base station 200-3 transmits a delivery confirmation of the forwarded data to the terminal 100 to the S-GW 300 (S26).
  • the base station 200-3 In the base station 200-3, transmission using the logical channel LCH # b ends, and then the timer expires. After the timer expires, the base station 200-3 transmits a data transfer path disconnection request (or data transfer path disconnection request) to the S-GW 300 (S27).
  • the data transfer path disconnection request includes, for example, information requesting disconnection of the data transfer path related to the opened logical channel LCH # b (S15) or the data transfer path between the S-GW 300 and the base station 200-2. Is included. For example, when the control unit 280 counts the expiration of the timer, the control unit 280 notifies the layer 3 processing unit 270 to that effect, and the layer 3 processing unit 270 requests the data transfer path disconnection including information regarding the logical channel LCH # b to be disconnected. Is transmitted to the S-GW 300.
  • the base station 200-3 closes the logical channel LCH # b (S28), and the terminal 100 also closes the logical channel LCH # b after the timer expires (S29).
  • Such closing of the logical channel is performed, for example, by deleting information on the logical channel LCH # b held in the memory or the like by the layer 3 processing unit 270 of the base station 200-3 and the layer 3 processing unit 170 of the terminal 100, etc. Processing is performed.
  • the timer value may be set so that the data transfer path disconnection (S27) and the logical channel LCH # b in the base station 200-3 are performed without waiting for the data delivery confirmation (S25). .
  • the start timing of the timer may be, for example, when reception of data forwarded from the base station 200-2 is started (S20) or when the logical channel LCH # b is opened (S15).
  • the timer value may be included in the Forwarding start preparation request (S14) and set by the control unit 280, for example.
  • data forwarding is performed in a state where the data transfer path is established between the terminal 100 and the three base stations 200-1 to 200-3 (S10) ( S20).
  • the base station 200-1 selects the base station 200-3 that has established a data transfer path with the terminal 100 (eg, S11 in FIG. 11), and the base station 200-1 selects the MME /
  • the data transfer path state change is notified to the S-GW 300 (for example, S17), the unconfirmed delivery data held by the base station 200-2 is transferred to the base station 200-3 (for example, S20), and wireless
  • the process until the terminal 100 is notified of the change of the link state (for example, S21) and the unconfirmed delivery data is transmitted from the base station 200-3 to the terminal 100 (S24) can be performed within a certain time.
  • FIG. 18 is a sequence diagram illustrating an operation example in the third embodiment.
  • the third embodiment is an example in which a path to the data forwarding source base station 200-2 is temporarily stopped.
  • a data transfer path is established between the terminal 100 and the three base stations 200-1 to 200-3 (S10). Then, data forwarding is performed from the base station 200-2 to the base station 200-3 (S20).
  • the master base station 200-1 When the master base station 200-1 receives a response to the Forwarding preparation start request (S14) (S16), the master base station 200-1 transmits a data transfer path suspend request (or a data transfer path suspension request) to the S-GW 300 (S40).
  • the data transfer path suspend request is, for example, a request to suspend the data transfer path to the data forwarding source base station 200-2.
  • the control unit 280 of the master base station 200-1 when receiving the response (S16) from the base station 200-3, the control unit 280 of the master base station 200-1 generates a data transfer path suspend request for the base station 200-2 that is the data forwarding source. Then, the control unit 280 transmits the generated data transfer path suspend request to the S-GW 300 via the layer 2 processing units 250-1 to 250-n.
  • the S-GW 300 When the S-GW 300 receives the data transfer path suspend request, the S-GW 300 temporarily stops the route of the data transfer path specified in the request, and transmits a response to the base station 200-1 (S41).
  • the route state management unit 310 of the S-GW 300 receives a data transfer path suspend request from the master base station 200-1
  • the route selection unit suspends the route to the base station 200-2 instructed in the request. 320 is instructed.
  • data transmission from the S-GW 300 to the base station 200-2 is temporarily stopped.
  • the route state management unit 310 after instructing the route selection unit 320 to pause, the route state management unit 310 generates a response to the data transfer path suspend request and transmits the response to the master base station 200-1.
  • the base station 200-3 transmits all or part of the forwarded unacknowledged data to the terminal 100 (S23, S24), and receives a delivery confirmation (ACK signal) from the terminal 100 (S25). Is transmitted to the base station 200-2 (S42).
  • the base station 200-3 is not the S-GW 300, but transmits an acknowledgment to the base station 200-2 because the S-GW 300 has not established a data transfer path with the base station 200-3, This is because it is connected to the original base station 200-2.
  • the control unit 280 of the base station 200-3 receives a notification indicating that the delivery confirmation from the terminal 100 has been received from the layer 3 processing unit 270, it generates a delivery confirmation and generates the control unit 280 of the base station 200-2. Send to.
  • the base station 200-2 When receiving the delivery confirmation from the base station 200-3, the base station 200-2 transmits the received delivery confirmation to the S-GW 300 (S42). For example, when the control unit 280 of the base station 200-2 receives the delivery confirmation from the base station 200-3, it transmits it to the S-GW 300 via the layer 2 processing units 250-1 to 250-n.
  • the base station 200-3 After transmitting the delivery confirmation to the base station 200-2 (S42), the base station 200-3 transmits a data transfer path disconnection request for the logical channel LCH # b to the base station 200-2 (S43).
  • the data transfer path disconnection request is transmitted to the base station 200-2 because the S-GW 300 has not established a data transfer path with the base station 200-3, and the forwarding source base station 200-2 This is because they are connected. This is also for closing the logical channel LCH # b for the base station 200-2.
  • the control unit 280 of the base station 200-3 generates a data transfer path disconnection request for the logical channel LCH # b after transmitting the delivery confirmation to the base station 200-2, and sends the request to the base station 200-2. To the unit 280.
  • the base station 200-2 Upon receiving the data transfer path disconnection request, the base station 200-2 transmits the request to the S-GW 300 (S43). For example, when the control unit 280 of the base station 200-2 receives the data transfer path disconnection request from the base station 200-3, the control unit 280 transmits the request to the S-GW 300 via the layer 2 processing units 250-1 to 250-n. To do.
  • the S-GW 300 performs processing for disconnecting the data transfer path to the base station 200-2 in accordance with the data transfer path disconnection request.
  • the route state management unit 310 performs processing by instructing the route selection unit 320 not to transmit data to the base station 200-2.
  • the base stations 200-2 and 200-3 then close the logical channel LCH # b after transmitting a data transfer path disconnection request to the logical channel LCH # b (S44).
  • FIG. 19 is a diagram showing an example of channel mapping in the third embodiment.
  • the logical channel LCH # b is bound to the transport channel # 3 as in the second embodiment.
  • the S-GW 300 suspends data transmission to the base station 200-2 according to the data transfer path suspend request.
  • data forwarding is performed with the data transfer path established between the terminal 100 and the three base stations 200-1 to 200-3 (S10) (S20). Therefore, a process for separately establishing a data transfer path is not performed between the data forwarding destination base station 200-3 and the terminal 100, and the processing delay can be reduced.
  • FIG. 20 is a sequence diagram showing an operation example in the fourth embodiment.
  • each base station 200-1 to 200-3 independently assigns sequence numbers to data has been described.
  • the S-GW 300 assigns a sequence number to data will be described.
  • the PDCP transmission unit 254 of each of the base stations 200-1 to 200-3 does not assign a sequence number, and the processing at each of the base stations 200-1 to 200-3 can be simplified and speeded up. .
  • the master base station 200-1 determines a transfer destination base station for data forwarding (S12)
  • the master base station 200-1 transmits a data transfer path disconnection request (or a data transfer path disconnection request) to the S-GW 300 (S50).
  • control unit 280 of the master base station 200-1 determines the transfer destination base station, it generates a data transfer path disconnection request including information on the transfer source base station of the data forwarding, and the layer 2 processing unit 250- Send to S-GW 300 via 1-250-n.
  • the S-GW 300 When the S-GW 300 receives the data transfer path disconnection request (S50), it disconnects the path according to the request.
  • the route state management unit 310 of the S-GW 300 receives a data transfer path disconnection request from the master base station 200-1
  • the route selection unit 310 does not transmit data to the base station 200-2 according to the request. 320 is instructed.
  • the path from the S-GW 300 to the base station 200-2 is disconnected, and data is not transmitted to the base station 200-2.
  • the path state management unit 310 generates a response after completing the path disconnection and transmits the response to the master base station 200-1.
  • the master base station 200-1 When the master base station 200-1 receives a response to the data transfer path disconnection request from the S-GW 300 (S51), the master base station 200-1 transmits a Forwarding start preparation request to the base station 200-3 (S14).
  • the base station 200-3 When receiving the unconfirmed delivery data by data forwarding, the base station 200-3 converts (or changes) the number of the logical channel LCH # b into the number of the logical channel LCH # c (S53).
  • the memory can be used more effectively than when a new logical channel is opened.
  • the base station 200-3 when a logical channel is newly opened, the base station 200-3 newly secures a predetermined area in the memory and uses the area to make a terminal Wireless communication with 100 is performed.
  • the logical channel is converted without newly opening the logical channel. For example, processing such as securing a predetermined area in the memory is performed. It is not necessary to perform.
  • the base station 200-3 can perform processing on the data of the logical channel LCH # b using the memory area already used as the logical channel LCH # c.
  • the conversion of the logical channel number is performed as follows, for example. That is, when the control unit 280 of the base station 200-2 receives the forwarding start request (S19), the PDPC so as to assign the number of the logical channel LCH # b to the unconfirmed delivery data (Data # 1) to be forwarded Instructs the transmission unit 254. In response to an instruction from the control unit 280, the PDCP transmission unit 254 transmits unacknowledged data to which the logical channel LCH # b number is assigned to the PDCP transmission unit 254 of the base station 200-3. When receiving the data from the base station 200-3, the PDCP transmission unit 254 of the base station 200-3 extracts the number of the logical channel LCH # b given to the data.
  • the PDCP transmission unit 254 notifies the control unit 280 of the number of the extracted logical channel LCH # b. Then, control section 280 converts the number of logical channel LCH # b to the number of logical channel LCH # c used in its own station, and outputs the converted number of logical channel LCH # c to PDCP transmission section 254. The PDCP transmission unit 254 assigns the number of the converted logical channel LCH # c to the data that has been subjected to data forwarding, and transmits all or part of the data to the terminal 100.
  • the radio link state change request includes, for example, a physical channel to be closed, a logical channel number to be closed, and a logical channel number after conversion.
  • the logical channel number to be closed is, for example, the logical channel number used in the base station that is the data forwarding source, and is the number of the logical channel LCH # b in the example of FIG.
  • the control unit 280 of the master base station 200-1 can acquire the number of the logical channel to be closed based on the information regarding the logical channel LCH # b included in the forwarding start preparation request (S14).
  • the converted logical channel number is, for example, the logical channel number used in the data forwarding destination base station, and in the example of FIG. 20, is the number of the logical channel LCH # c.
  • the control unit 280 of the master base station 200-1 can acquire the number of the logical channel LCH # c used in the base station 200-3 by the response (S16) or the data transfer path establishment process (S10).
  • the control unit 280 can transmit the closed and converted logical channel number acquired in this way by including it in the radio link state change request.
  • the terminal 100 that has received the radio link state change request closes the logical channel LCH # b (S55). Further, the terminal 100 transmits a PDCP STATUS PDU to the base station 200-3 (S22). The closing of the logical channel LCH # b and the transmission of the PDCP STATUS PDU are performed by the layer 3 processing unit 170 of the terminal 100, for example.
  • the base station 200-3 does not open a logical channel, and the terminal 100 or the base station 200-3 does not perform a logical channel closing process using a timer.
  • the terminal 100 transmits a response to the radio link state change request to the base station 200-1 (S56).
  • the layer 3 processing unit 170 of the terminal 100 deletes information related to the logical channel LCH # b from the memory, and then generates a response and transmits it to the base station 200-1.
  • data forwarding is performed with the data transfer path established between the terminal 100 and the three base stations 200-1 to 200-3 (S10). Performed (S20). Accordingly, a process for establishing a data transfer path is not separately performed between the data forwarding destination base station 200-3 and the terminal 100, and therefore, a processing delay can be reduced.
  • a sequence number may be assigned to a host device other than the S-GW 300.
  • the S-GW 300 transmits the received data to each of the base stations 200-1 to 200-3 according to the set path without particularly performing processing for the sequence number.
  • FIG. 21 is a sequence diagram showing an operation example in the fifth embodiment.
  • the master base station 200-1 is a data forwarding base station
  • the base station 200-2 is a transmission destination base station. *
  • the Forwarding start request (S19) described in the second embodiment is not transmitted.
  • the master base station 200-1 itself is a data forwarding source base station, data forwarding can be performed without making such a start request.
  • the Forwarding start request may be processed internally without being output to the outside although issued by the control unit 280 of the base station 200-1.
  • data forwarding is performed (S20) in a state where a data transfer path is established between the terminal 100 and the two base stations 200-1 and 200-2 (S10). Accordingly, a process for establishing a data transfer path is not separately performed between the data forwarding destination base station 200-2 and the terminal 100, and therefore, a processing delay can be reduced.
  • the base station 200-2 since the data transfer path is established between the terminal 100 and the base station 200-2 (S10), even if the base station 200-1 forwards the data to the base station 200-2, the base station 200- The data forwarded from 2 to the terminal 100 is transmitted. Therefore, communication can be stabilized.
  • the processing related to the temporary stop of the data transfer path described in the third embodiment and the processing such as the logical channel conversion described in the fourth embodiment are performed. It can also be done.
  • the example in which the data forwarding process is performed between the two base stations 200-1 and 200-2 has been described.
  • the example in which the data forwarding process is performed between the three base stations 200-1 to 200-3 has been described. Even when data forwarding is performed between four or more base stations, it can be performed by performing the same process as in the second embodiment.
  • FIG. 22 is a diagram illustrating a hardware configuration example of the terminal 100.
  • the terminal 100 includes a BB (baseband) circuit 180 and an application processing circuit 190.
  • BB baseband
  • the BB circuit 180 includes a radio circuit 181, a modulation circuit 182, a codec circuit 183, a DSP (Digital Signal Processor) 184, a data buffer 185, and a processor 186.
  • a radio circuit 181 a radio circuit 181
  • a modulation circuit 182 a codec circuit 183
  • a DSP (Digital Signal Processor) 184 a data buffer 185
  • a processor 186 a processor 186.
  • the application processing circuit 190 includes an image input / output device 191, an image codec circuit 192, an audio input / output device 193, an audio codec circuit 194, and a processor 195.
  • connection lines indicated by dotted lines indicate transmission / reception of control information
  • connection lines indicated by solid lines indicate transmission / reception of data. The same applies to the dotted lines and the solid lines in FIGS.
  • the radio circuit 181 performs conversion between a digital baseband signal and an analog radio frequency signal.
  • Modulation circuit 182 performs modulation processing and demodulation processing in layer 1 processing of signals transmitted and received between terminal 100 and base station 200.
  • the codec circuit 183 performs encoding processing and decoding processing in layer 1 processing.
  • the DSP 184 controls the modulation circuit 182 and the codec circuit 183.
  • the processor 186 performs layer 3 processing and layer 2 processing.
  • the processor 186 performs call connection status management and the like.
  • the data buffer 185 stores transmission / reception data, and relays transmission / reception data between the BB circuit 180 and the application processing circuit 190.
  • the data buffer 185 stores information on the relationship between logical channels and physical channels, and may also store information on transport channels. In addition, the data buffer 185 also stores logical channel numbers.
  • Image input / output device 191 inputs and outputs image signals.
  • the image codec circuit 192 performs signal processing on image signals transmitted and received between the terminal 100 and the base station 200.
  • the voice input / output device 193 inputs and outputs voice signals.
  • the audio codec circuit 194 performs signal processing of audio signals transmitted and received between the terminal 100 and the base station 200.
  • the processor 195 controls the image codec circuit 192 and the audio codec circuit 194.
  • the RF unit 110 in the second embodiment corresponds to the wireless circuit 181, for example.
  • the layer 1 processing unit 130 in the second embodiment corresponds to, for example, the modulation circuit 182, the codec circuit 183, and the DSP 184.
  • the layer 2 processing unit 150 and the layer 3 processing unit 170 in the second embodiment correspond to the processor 186, for example.
  • the application layer processing unit 175 in the second embodiment corresponds to the application processing circuit 190, for example.
  • FIG. 23 is a diagram illustrating a hardware configuration example of the base station 200.
  • the base station 200 includes a radio circuit 285, a modulation circuit 286, a codec circuit 287, a data buffer 288, a memory 289, a processor 290, a layer 2 processing auxiliary circuit 291 and a management information buffer 292.
  • the radio circuit 285 performs conversion between a digital baseband signal and an analog radio frequency signal.
  • Modulation circuit 286 performs modulation processing and demodulation processing in layer 1 processing of signals transmitted and received between terminal 100 and base station 200.
  • the codec circuit 287 performs encoding processing and decoding processing in layer 1 processing.
  • the data buffer 288 and the management information buffer 292 store transmission / reception data and relay data transmitted / received between the base station 200 and the MME / S-GW 300.
  • the memory 289 stores logical channel numbers and sequence numbers assigned to data.
  • the memory 289 stores information on the relationship between the logical channel and the physical channel, and may further store information on the transport channel. Further, a predetermined area is secured in the memory 289 when the logical channel LCH is opened in the base station 200, and transmission data is read or written using the area.
  • the processor 290 executes control of the modulation circuit 286 and codec circuit 287, layer 2 processing and layer 3 processing, management of user connection status, scheduling processing, and the like.
  • the auxiliary circuit for layer 2 processing 291 executes part of the layer 2 processing.
  • the RF unit 210 in the second embodiment corresponds to the radio circuit 285, for example.
  • the layer 1 processing unit 220 in the second embodiment corresponds to, for example, the modulation circuit 286, the codec circuit 287, and the processor 290.
  • the layer 2 processing units 250-1 to 250-n in the second embodiment correspond to, for example, the processor 290, the layer 2 processing auxiliary circuit 291, the data buffer 288, and the management information buffer.
  • the layer 3 processing unit 270 and the control unit 280 in the second embodiment correspond to the processor 290 and the data buffer 288, for example.
  • FIG. 24 is a diagram illustrating a hardware configuration example of the MME / S-GW 300.
  • the MME / S-GW 300 includes a management information buffer 330, a data transfer processing auxiliary circuit 331, a data buffer 332, and a processor 333.
  • the management information buffer 330 stores route information.
  • the management information buffer 330 and the data buffer 332 store transmission / reception data, and relay transmission / reception data between the base station 200 and the MME / S-GW 300.
  • the data transfer processing auxiliary circuit 331 assists data transfer between the base station 200 and the MME / S-GW 300.
  • the processor 333 executes a user mobility process for managing, for each terminal 100, route information regarding routes that can be selected for data transmission to the terminal 100.
  • the processor 333 executes a transfer path determination process for determining to which base station 200 the data for the terminal 100 is transferred. Further, the processor 333 monitors a notification regarding a predetermined state reported from the base station 200. Further, the processor 333 determines a transfer path according to a predetermined state of the base station 200. Further, the processor 333 executes processing for managing a sequence number added to the data.
  • the path state management unit 310 in the second embodiment corresponds to, for example, the management information buffer 330, the data transfer auxiliary circuit 331, and the processor 333. Further, the path selection unit 320 in the second embodiment corresponds to, for example, the data transfer processing auxiliary circuit 331, the data buffer 332, and the processor 333.
  • processors 186 and 195 of the terminal 100, the processor 290 of the base station 200, and the processor 333 of the MME / S-GW300 such as a CPU (Central Processing Unit), FPGA (Filed Programmable Gate Array), and MPU (Micro Processing Unit). It is good.
  • Wireless communication system 100 (100-1 to 100-3): terminal device 110: RF unit 130: layer 1 processing unit 135: measurement unit 150: layer 2 processing unit 170: layer 3 processing unit 175: Application layer processing unit 200 (200-1 to 200-3): base station apparatus 210: RF unit 220: layer 1 processing unit 250-1 to 250-n: layer 2 processing unit 254: PDCP transmission unit 270: layer 3 processing unit 280: control unit 289: memory 290: processor 2955-1: first transmission unit 295-2: second transmission unit 300: MME / S-GW 310: Route state management unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 端末装置と、第1又は第2の周波数帯域に属する第1の周波数を利用して前記端末装置と無線通信を行う第1の基地局装置と、前記第1又は第2の周波数帯域に属する第2の周波数を利用して前記端末装置と無線通信を行う第2の基地局装置とを備え、前記第1及び第2の基地局装置は前記第1及び第2の周波数を夫々利用して第1及び第2のデータを前記端末装置へ同時に夫々送信する無線通信システムにおいて、前記第1の基地局装置は、前記端末装置との間の無線通信品質が閾値以下となったとき、前記端末装置に対して送達確認のとれていない送達未確認データを、前記端末装置と無線通信リンクが確立された前記第2の基地局装置へ転送する第1の送信部を備え、前記第2の基地局装置は、前記第1の基地局装置から受信した前記送達未確認データの全部又は一部を前記端末装置へ送信する第2の送信部を備える。

Description

無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法
 本発明は、無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法に関する。
 現在、携帯電話システムや無線LAN(Local Area Network)などの無線通信システムが広く利用されている。無線通信システムでは、音声通話サービスだけでなく、インターネットへのアクセス、ストリーミングによる音声や映像の配信サービスなど様々なサービスが提供されている。
 そのため、無線通信の分野では次世代の通信技術について継続的な議論が行われている。例えば、標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)と呼ばれる通信規格や、LTEをベースとしたLTE-A(LTE-Advanced)と呼ばれる通信規格の標準化が完了若しくは検討されている。
 このような無線通信に関する技術として、キャリアアグリゲーション(Carrier Aggregation:以下では「CA」と称する場合がある)と呼ばれる技術がある。CAは、例えば、基地局装置(以下では、「基地局」と称する場合がある)が複数の周波数帯域を用いて同時に端末装置(以下では、「端末」と称する場合がある)と無線通信を行う技術である。複数の周波数帯域を用いて同時に無線通信が行われるため、例えば、通信速度の高速化を実現することが可能となる。
 CAについては、Intra-eNB CAと呼ばれる技術が検討されている。Intra-eNB CAとは、例えば、1つの基地局が複数の周波数を用いて同時に送信した異なるデータを1つの端末が受信するようにした技術である。また、今後の拡張として、Inter-eNB CAも検討されている。Inter-eNB CAとは、例えば、複数の基地局が複数の周波数を夫々用いて同時送信した異なるデータを1つの端末が受信するようにした技術である。
 また、無線通信に関する技術として、データフォワーディング(Data Forwarding)と呼ばれる技術もある。データフォワーディングとは、例えば、端末がハンドオーバを行うとき、端末装置に送信されなかったデータや、端末装置に送信したものの送達確認のとれていないデータ(以下、これらのデータを「送達未確認データ」と称する場合がある)を接続元基地局が接続先基地局へ転送する処理のことである。接続元基地局から接続先基地局へ送達未確認データが転送されることで、例えば、基地局と上位装置との間で再送処理が行われる場合と比較して、処理遅延を少なくでき、基地局と端末との間の無線通信の安定化を図ることができる。
 図25はデータフォワーディング処理のシーケンス例を表わす図である。図25の例では、端末600が基地局(#1)700-1から基地局(#2)700-2へハンドオーバを行い、基地局700-1から基地局700-2へデータフォワーディングが行われる例を表わしている。 
 端末600は基地局700-1と無線リンクの接続を確立し、論理チャネルLCH#aを用いてデータ通信を行っている(S200)。
 論理チャネルとは、例えば、伝送情報を用途ごとに区分するチャネルであり、例えば、報知情報用の報知チャネル(BCCH(Broadcast Control CHannel))、端末個別制御信号用の個別制御チャネル(DCCH(Dedicated Control CHannel))、又はユーザデータ用の個別通信チャネル(DTCH(Dedicated Traffic CHannel))などがある。
 基地局700-1は、端末600との間で無線リンクを確立する際に、どのような論理チャネルを用いるかを決定し端末600へ通知することで、基地局700-1と端末100との間では論理チャネルLCH#aを用いてデータ通信を行うことができる。
 次に、基地局700-1はS-GW800から端末600宛てのデータ(Data#1)を受信する(S201)。 
 次に、端末600は、基地局700-1に対する無線品質が閾値以下であることを検出すると、当該無線品質と他の基地局700-2に対する無線品質とを含むMeasurement Reportを基地局700-1へ送信する(S202)。
 次に、基地局700-1は、端末600から受信した無線品質に基づいて基地局700-2に対してハンドオーバすることを決定し、ハンドオーバ要求を基地局700-2へ送信する(S203)。
 基地局700-2は、ハンドオーバ要求を受信すると、ハンドオーバの可否を判定し、基地局700-1へ応答を送信する(S205)。また、基地局700-2はハンドオーバを許可する場合は、論理チャネルLCH#aを新規にオープンする(S204)。
 基地局700-1は、接続先の基地局700-2から応答(S205)を受信すると、データ転送パスの切り替え要求をS-GW800へ送信する(S206)。S-GW800は、データ転送パスの切り替え要求を受信すると、データ転送パスを切り替え、応答を基地局700-1へ送信する(S207)。
 基地局700-1は、応答をS-GW800から受信すると、基地局700-2に対して送達未確認データの転送(又はフォワーディング)を行う(S208)。送達未確認データは、図25の例ではData#1となっている。
 次に、基地局700-1は、無線リンク状態変更要求(Physical Channel Reconfiguration)を端末600へ送信する(S209)。端末600は、当該要求を受信することで、接続先の基地局を基地局700-2へ切り替える。
 次に、端末600は、新たな接続先となる基地局700-2に対して、PDCP STATUS PDUを送信し(S211)、接続元の基地局700-1に対して無線リンク状態変更要求(S209)に対する応答を送信する(S212)。PDCP STATUS PDUには、例えば、端末600が基地局700-1から受信したデータのシーケンス番号が含まれる。
 基地局700-2は、PDCP STATUS PDUを受信すると(S211)、シーケンス番号に基づいて、基地局700-1から転送された未送達確認データ(Data#1)のうち、既に端末600に送信されたデータを破棄し(S213)、残りのデータを端末600へ送信する。図25の例では、基地局700-2は、データ#1を送達済みではないものとして破棄せずに、端末600へ送信している(S214)。基地局700-2は、その後に受信したData#2も端末600へ送信する(S215)。
 なお、無線通信に関する技術として、例えば、以下のような技術がある。すなわち、マクロセル間の「Inter-Frequency Measurement」と、マクロセルがカバレッジエリア内でScellとして設定されていないセルに対する「Inter-Frequency Handover」に対して要求する性能とを別々に規定するようにした移動通信システムがある。
 この技術によれば、「Inter-Frequency Measurement」としての測定対象セルの状態に応じて、「Inter-Frequency Measurement」に対して適切な性能を要求することができる、とされる。
特開2013-157830号公報
3GPP TS 36.300 V11.7.0(2013-09)
 しかしながら、データフォワーディングにおいては処理遅延が発生する場合がある。例えば、図25において、端末600は基地局700-2に対してPDCP STATUS PDUを送信する前に(S211の前、図25で「##」)、接続先の基地局700-2に対して無線リンクを確立するための処理を行う。この無線リンクを確立するための処理によって、端末600は、Measurement Report送信後、接続先の基地局700-2からデータを受信するまで(例えばS202からS215まで)に時間がかかり、処理遅延が発生する場合がある。
 また、端末600がこのような無線リンクを確立するための処理を行うとき、接続先の基地局700-2と無線リンクを確立できない場合もある。このような場合、接続元の基地局700-1は接続先の基地局700-2に対してデータフォワーディングを行っても、接続先の基地局700-2はデータを端末600に送信することができない。このような場合も、端末600は基地局700-2からデータを受信することができず、通信の不安定化をもたらす。
 さらに、上述した「Inter-Frequency Measurement」に関する技術においても、新たにScellとして設定されていないセルに対して端末が接続する際に、端末は当該セルに対して無線リンクの接続処理を行う場合がある。この無線リンクの接続処理によって、端末が接続先のScellからデータを受信するまでに時間がかかる場合がある。また、端末は接続先のScellと無線リンクを確立できず、通信の不安定化をもたらす場合もある。
 従って、上述したInter-Frequency Measurement」に関する技術においても、処理遅延が発生し、通信が不安定になる場合がある。
 そこで、一開示は、処理遅延を低減させるようにした無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法を提供することにある。
 また、他の開示は、通信の安定化をもたらすようにした無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法を提供することにある。
 一態様によれば、端末装置と、第1又は第2の周波数帯域に属する第1の周波数を利用して前記端末装置と無線通信を行う第1の基地局装置と、前記第1又は第2の周波数帯域に属する第2の周波数を利用して前記端末装置と無線通信を行う第2の基地局装置とを備え、前記第1及び第2の基地局装置は前記第1及び第2の周波数を夫々利用して第1及び第2のデータを前記端末装置へ同時に夫々送信する無線通信システムにおいて、前記第1の基地局装置は、前記端末装置との間の無線通信品質が閾値以下となったとき、前記端末装置に対して送達確認のとれていない送達未確認データを、前記端末装置と無線通信リンクが確立された前記第2の基地局装置へ転送する第1の送信部を備え、前記第2の基地局装置は、前記第1の基地局装置から受信した前記送達未確認データの全部又は一部を前記端末装置へ送信する第2の送信部を備える。
 処理遅延を低減させるようにした無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法を提供することができる。通信の安定化をもたらすようにした無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法を提供することができる。
図1は無線通信システムの構成例を表わす図である。 図2は無線通信システムの構成例を表わす図である。 図3は端末装置の構成例を表わす図である。 図4はレイヤ1処理部の構成例を表わす図である。 図5はレイヤ2処理部の構成例を表わす図である。 図6は基地局装置の構成例を表わす図である。 図7はレイヤ1処理部の構成例を表わす図である。 図8はレイヤ2処理部の構成例を表わす図である。 図9はMME/S-GWの構成例を表わす図である。 図10(A)及び図10(B)はデータフォワーディングの例を表わす図である。 図11はデータフォワーディング処理のシーケンス例を表わす図である。 図12はデータ転送パス確立処理のシーケンス例を表わす図である。 図13はデータ転送パス確立処理のシーケンス例を表わす図である。 図14はデータ転送パス確立処理のシーケンス例を表わす図である。 図15はチャネルマッピングの例を表わす図である。 図16はチャネルマッピングの例を表わす図である。 図17(A)はMACデータ、図17(B)はL1データの例を夫々表わす図である。 図18はデータフォワーディング処理のシーケンス例を表わす図である。 図19はチャネルマッピングの例を表わす図である。 図20はデータフォワーディング処理のシーケンス例を表わす図である。 図21はデータフォワーディング処理のシーケンス例を表わす図である。 図22は端末装置のハードウェア構成例を表わす図である。 図23は基地局装置のハードウェア構成例を表わす図である。 図24はMME/S-GWのハードウェア構成例を表わす図である。 図25はデータフォワーディング処理のシーケンス例を表わす図である。
 以下、本実施の形態について図面を参照して詳細に説明する。
 [第1の実施の形態]
 図1は第1の実施の形態における無線通信システム10の構成例を表わす図である。無線通信システム10は、第1及び第2の基地局装置200-1,200-2と端末装置100とを備える。
 第1及び第2の基地局装置200-1,200-2は、自局の通信可能範囲において端末100と無線通信を行うことが可能である。第1及び第2の基地局装置200-1,200-2は、端末装置100と無線通信を行うことで、通話サービスや映像配信サービスなど種々のサービスを端末装置100に提供できる。
 第1の基地局装置200-1は、第1又は第2の周波数帯域に属する第1の周波数を利用して端末装置100と無線通信を行う。また、第2の基地局装置200-2は、第1又は第2の周波数帯域に属する第2の周波数を利用して端末装置100と無線通信を行う。第1及び第2の周波数は、ともに同一の第1の周波数帯域に属してもよいし、第1及び第2の周波数帯域に夫々属していてもよい。第1及び第2の基地局装置200-1,200-2は、第1及び第2の周波数を夫々利用して第1及び第2のデータを端末装置100へ同時に夫々送信する。
 第1の基地局装置200-1は、第1の送信部295-1を備える。第1の送信部295-1は、端末装置100との間の無線通信品質が閾値以下となったとき、端末装置100に対して送達確認のとれていない送達未確認データを、端末装置100と無線通信リンクが確立された第2の基地局装置200-2へ転送する。
 また、第2の基地局装置200-2は、第2の送信部295-2を備える。第2の送信部295-2は、第1の基地局装置200-1から受信した送達未確認データの全部又は一部を端末装置100へ送信する。
 このように、本第1の実施の形態では、第1及び第2の基地局装置200-1,200-2は第1及び第2の周波数を夫々利用して第1及び第2のデータを端末装置100へ同時に夫々送信する。そして、このような無線通信システムにおいて、第1の基地局装置200-1は、端末装置100との無線通信リンクが確立された第2の基地局装置200-2に対して、データフォワーディングを行うようにしている。
 例えば、第1の基地局装置200-1が無線通信リンクの確立されていない基地局装置へデータフォワーディングを行うと、端末100は基地局装置に対して無線通信リンクを確立するための処理を行う場合がある。また、この場合、端末100は無線通信リンクを確立することができず、フォワーディングされたデータの全部又は一部が第2の基地局装置200-2から端末100へ送信されない場合もある。
 本第1の実施の形態では、第1の基地局装置200-1は無線通信リンクが確立された第2の基地局装置200-2へデータフォワーディングを行うことで、例えば、端末100と第2の基地局装置200-2との間で無線通信リンクを確立するための処理が行われなくてもよい。従って、本無線通信システム10は処理遅延の軽減を図ることができる。
 また、本第1の実施の形態では、データフォワーディング先の第2の基地局装置200-2は端末装置100と無線通信リンクが確立されているため、第2の基地局装置200-2からフォワーディングされたデータの全部又は一部を端末装置100が受信できる。よって、本無線通信システム100は、通信の安定化を図ることができる。
 [第2の実施の形態]
 次に第2の実施の形態について説明する。第2の実施の形態においては、以下の順番で説明する。
 <1.無線通信システムの構成例>
 <2.端末装置の構成例>
 <3.基地局装置の構成例>
 <4.MME/S-GWの構成例>
 <5.動作例>
 <5.1 データ転送パス確立処理の動作例>
 <5.2 データフォワーディング処理の動作例>
 <1.無線通信システムの構成例>
 無線通信システムの構成例について説明する。図2は無線通信システム10の構成例を表わす図である。
 無線通信システム10は、端末装置(以下、「端末」と称する場合がある)100-1~100-3、基地局装置(以下、「基地局」と称する場合がある)200-1~200-3、MME/S-GW(Mobility Management Entity/Serving Gateway)300-1,300-2、及びネットワーク500を備える。
 端末100-1~100-3は、フィーチャーフォン、スマートフォン、タブレット、パーソナルコンピュータなどの無線通信装置である。端末100-1~100-3は、基地局200-1~200-3と無線通信を行うことで、音声通話サービスや、映像や音声などのコンテンツ配信サービスなど、種々のサービスの提供を受けることができる。
 基地局200-1~200-3は、端末100-1~100-3と無線通信を行う無線通信装置である。各基地局200-1~200-3は、自局の通信可能領域(例えば、セル又はセル範囲と称する場合がある)において端末100-1~100-3と双方向通信が可能である。
 すなわち、基地局200-1~200-3から端末100-1~100-3への方向のデータ送信(又は下り通信)と、端末100-1~100-3から基地局200-1~200-3への方向のデータ送信(又は上り通信)である。各基地局200-1~200-3は、スケジューリングなどにより無線リソース(例えば時間リソースと周波数リソース)を端末100-1~100-3に割り当て、割り当てた無線リソースを制御信号として端末100-1~100-3へ送信する。各基地局200-1~200-3と端末100-1~100-3は無線リソースを用いて下り通信や上り通信を行う。
 このような無線通信に関して、各基地局200-1~200-3が複数の周波数帯域を用いて(又は束ねて)、端末100-1~100-3と無線通信を行うことを、例えば、キャリアアグリゲーション(以下では、「CA」と称する場合がある)と称する場合がある。
 図2の例では、基地局200-1と端末100-2とがCAにより無線通信を行い、基地局200-2,200-3と端末100-3とがCAにより無線通信を行っている様子が示されている。
 このうち端末100-2は、2つの周波数f1,f2を用いて基地局200-1と無線通信を行っている例を表わしている。
 このように、1つの基地局200-1が複数の周波数f1,f2を用いて異なるデータを端末100-2へ同時に送信して無線通信を行うことを、例えば、Intra-eNB CAと称する場合がある。この場合、基地局200-1は複数の周波数帯域を用いてCAを行うが、2つの周波数f1,f2は異なる周波数帯域に夫々属する周波数でもよいし、1つの周波数帯域に属する周波数であってもよい。
 また、図2の例では、端末100-3は基地局200-2と周波数f1を用いて無線通信を行い、さらに、端末100-3は基地局200-3と周波数f2を用いて無線通信を行っている例を表わしている。
 このように、複数の基地局200-2,200-3が複数の周波数f1,f2を夫々用いて異なるデータを端末100-3へ同時に送信して無線通信を行うことを、例えば、Inter-eNB CAと称する場合がある。この場合も、各基地局200-2,200-3は、複数の周波数帯域を用いてCAを行うが、2つの周波数f1,f2は異なる周波数帯域に夫々属してもよいし、1つの周波数帯域に属しても良い。
 MME/S-GW300-1,300-2は、1又は複数の基地局200-1~200-3と接続されるとともに、ネットワーク500とも接続される。MME/S-GW300-1,300-2は、例えば、端末100-1~100-3の移動制御、端末100-1~100-3の認証管理、ユーザデータの経路(又はパス)設定や変更指示などを行う。MME/S-GW300-1,300-2は、ネットワーク500から送信されたユーザデータなどを、設定したパスに従って各基地局200-1~200-3へ送信する。また、MME/S-GW300-1,300-2は、各基地局200-1~200-3から送信されたデータをネットワーク500へ送信する。
 なお、MME/S-GW300-1,300-2は、MMEとS-GWが別個の装置として無線通信システム10に設けられても良い。
 <2.端末装置の構成例>
 次に、端末100-1~100-3の構成例について説明する。なお、以下の説明において端末100-1~100-3を総称して「端末100」と表記することがある。また、以下の説明において、基地局200-1~200-3を総称して「基地局200」と表記することもある。
 図3は端末100の構成例を表わす図である。端末100は、送信アンテナ101-1、受信アンテナ101-2、RF(Radio Frequency)部110、レイヤ1処理部130、レイヤ2処理部150、レイヤ3処理部170、及びアプリケーションレイヤ処理部175を備える。
 送信アンテナ101-1は、RF部110から出力された無線信号を基地局200へ送信する。また、受信アンテナ101-2は、基地局200から送信された無線信号を受信し、受信した無線信号をRF部110に出力する。
 RF部110は、受信アンテナ101-2で受信した無線信号をベースバンド周波数帯域のベースバンド信号へ変換し(ダウンコンバート)、変換後のベースバンド信号をレイヤ1処理部130へ出力する。また、RF部110は、レイヤ1処理部130から出力されたベースバンド信号を無線周波数帯域の無線信号へ変換し(アップコンバート)、変換後の無線信号を送信アンテナ101-1へ出力する。このような周波数変換処理が行われるよう、RF部110には内部に周波数変換回路などを備えるようにしてもよい。
 図4は、図3に示すレイヤ1処理部130の構成例を示す。レイヤ1処理部130は、DEM(Demodulation)部(又は復調処理部)131、DEC(Decoder)部(又は復号化処理部)132、COD(Encoder)部(又は符号化処理部)133、及びMOD(Modulation)部(又は変調処理部)134を備える。
 DEM部131は、RF部110から出力されたベースバンド信号に対する復調処理を行う。例えば、DEM部131は、OFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多重アクセス)による復調処理を行ってもよい。
 DEM部131は、測定部135、FFT(Fast Fourier Transfer:高速フーリエ変換)部136、及び復調部137を備える。測定部135は、セルサーチやベースバンド信号のレベル測定を行う。FFT部136は、ベースバンド信号に対して高速フーリエ変換を施してサブキャリアシンボルを復元する。復調部137は、サブキャリアシンボルに対して復調処理を施して符号化データを復元する。
 DEC部132は、復元された符号化データに対して誤り訂正復号化処理を行う。DEC部132は、デレートマッチング部138、HARQ合成部139、復号化部140、誤り検出部141を備える。
 デレートマッチング部138は、割り当てられた物理チャネルリソースに応じて伸縮されているデータを復元する。HARQ合成部139は、HARQ(Hybrid Automatic Repeat Request:ハイブリッド型自動再送要求)などの再送処理により再送データを合成する。復号化部140は、例えば、ターボ復号処理などによって符号化データを復号する。誤り検出部141は、復号化されたデータの誤り検出処理を行う。誤り検出後のデータは、レイヤ2処理部150へ出力される。
 COD部133は、レイヤ2処理部150から出力された送信データに対して誤り訂正符号化処理を行う。COD部133は、誤り検出符号付与部142、符号化部143、レートマッチング部144を備える。
 誤り検出符号付与部142は、CRC(Cyclic Redundancy Checking)符号などの誤り検出符号を算出して送信データに付加する。符号化部143は、例えばターボ符号化処理により送信データを符号化する。レートマッチング部144は、割り当てられた物理チャネルリソースに応じて符号化データを伸縮する。
 MOD部134は、符号化データの変調処理を行う。例えば、MOD部134は、SC-FDMA(Single Carrier Frequency Multiple Access:単一キャリア周波数分割多重アクセス)方式による変調処理を行ってもよい。MOD部134は、変調部145、DFT(Discrete Fourier Transfer:離散フーリエ変換)部146、サブキャリアマッピング部147、及びIFFT(Inverse Fast Fourier Transfer:逆フーリエ変換)部148を備える。
 変調部145は、符号化データに多値変調などの一次変調処理を施す。DFT部146は、多値変調されたシンボルに離散フーリエ変換を施すことで、比較的広帯域の単一キャリアの周波数領域信号を生成する。サブキャリアマッピング部147は、基地局200から割り当てられた物理チャネルのリソースのサブキャリア上に周波数領域信号をマッピングする。IFFT部148は、サブキャリア上に割り当てられた周波数領域信号に対して逆高速フーリエ変換を施すことで時間領域信号に変換する。IFFT部148からの出力信号はベースバンド信号としてRF部110に出力される。
 図5は、図3に示すレイヤ2処理部150の構成例を表わす図である。なお、添付する図面及び以下の説明において、媒体アクセス制御を「MAC(Media Access Control)」、無線リンク制御を「RLC(Radio Link Control)」、パケットデータ収斂プロトコルを「PDCP(Packet Data Control Protocol)」と夫々表記する。レイヤ2処理部150は、MAC受信部151、RLC受信部152、PDCP受信部153、PDCP送信部154、RLC送信部155、及びMAC送信部156を備える。
 MAC受信部151はLCH(Logical CHannel)分離部157を備える。LCH分離部157は、レイヤ1処理部130の誤り検出部141から出力されたデータを論理チャネル毎に分離してRLC受信部152へ出力する。
 論理チャネルとは、例えば、伝送情報を用途ごとに区分するチャネルである。論理チャネルとしては、例えば、報知情報用の報知チャネル(BCCH(Broadcast Control CHannel))、端末個別制御信号用の個別制御チャネル(DCCH(Dedicated Control CHannel))、又はユーザデータ用の個別通信チャネル(DTCH(Dedicated Traffic CHannel))などがある。
 RLC受信部152は順序補正部158を備える。順序補正部158は、MAC受信部151から受け取ったデータを基地局200から送信された送信順に並べ替えてPDCP受信部153へ出力する。
 PDCP受信部153は、RLC受信部152から受け取ったデータを、当該データに付加されたシーケンス番号の順序に並び替えて、レイヤ3処理部170又はアプリケーションレイヤ処理部175へ出力する。なお、PDCP受信部153は、制御データをレイヤ3処理部170へ出力し、ユーザデータをアプリケーションレイヤ処理部175へ出力する。
 PDCP送信部154は、レイヤ3処理部170から出力された制御データと、アプリケーションレイヤ処理部175から出力されたユーザデータとを受け取り、これらのデータにシーケンス番号を割り当てて、RLC送信部155へ出力する。
 RLC送信部155は再送(ARQ)部159を備える。再送部159は、PDCP送信部154から受け取ったデータを再送制御処理によってMAC送信部156へ出力する。
 MAC送信部156は、LCH結合部160とUL-HARQ部161を備える。LCH結合部160は、RLC送信部155から論理チャネル毎に受け取ったデータを結合して、結合したデータをレイヤ1処理部130の誤り検出符号付与部142へ出力する。UL-HARQ部161は、送信データのHARQ処理を行う。
 図3に戻り、レイヤ3処理部170は、無線リソースの制御や端末100全体の制御などを行う。また、レイヤ3処理部170は、ページング処理、呼の確立と解放などのRRC(Radio Resource Control:無線リソース制御)に関する接続制御を行う。さらに、レイヤ3処理部170は、端末100において取り扱うトラヒック量を測定し、基地局200へ報告することもできる。また、レイヤ3処理部170は、ハンドオーバなどの接続切り替え制御に関するモビリティ制御処理なども行う。
 アプリケーションレイヤ処理部175は、ユーザデータに対する処理を行うことで端末100の画面に文字や画像などの表示させるなどの処理を行う。
 <3.基地局の構成例>
 次に基地局200の構成例について説明する。図6は基地局200の構成例を表わす図である。基地局200は、送信アンテナ201-2、受信アンテナ201-2、RF部210、レイヤ1処理部220、レイヤ2処理部250-1~250-n、レイヤ3処理部270、及び制御部280を備える。 
 なお、第1の実施の形態における第1の送信部295-1は、例えば、送信アンテナ201-1、RF部210、レイヤ1処理部220、レイヤ2処理部250-1~250-n、レイヤ3処理部270に対応する。
 また、第2の実施の形態における第2の送信部295-2は、例えば、送信アンテナ201-1、RF部210、レイヤ1処理部220、レイヤ2処理部250-1~250-n、レイヤ3処理部270に対応する。
 送信アンテナ201-1は、RF部210から出力された無線信号を端末100へ送信する。また、受信アンテナ201-2は、端末100から送信された無線信号を受信してRF部210へ出力する。
 RF部210は、受信アンテナ201-2で受信した無線信号をベースバンド帯域のベースバンド信号へ変換し(ダウンコンバート)、変換後のベースバンド信号をレイヤ1処理部220へ出力する。また、RF部210は、レイヤ1処理部220から出力されたベースバンド信号を無線帯域の無線信号へ変換し(アップコンバート)、無線信号を送信アンテナ201-1へ出力する。このような周波数変換処理が行われるように、RF部210には周波数変換回路などを備えるようにしてもよい。
 図7は、図3に示すレイヤ1処理部220の構成例を示す。レイヤ1処理部220は、DEM部221、DEC部222、COD部223、MOD部224を備える。
 DEM部221は、RF部210から出力されたベースバンド信号に対して復調処理を施す。DEM部221は、例えば、SC-FDMA方式による復調処理を行ってもよい。DEM部221は、FFT部225、サブキャリアデマッピング部226、IDFT(Inverse Discrete Fourier Transfer:逆離散フーリエ変換)部227、復調部228を備える。
 FFT部225は、受信した時間領域信号のベースバンド信号を周波数領域信号に変換し、サブキャリアシンボルを復元する。サブキャリアデマッピング部226は、各サブキャリアにマッピングされたシンボルを複数のユーザ毎のシンボルD11~D1nに分割する。IDFT部227は、単一キャリアの周波数領域信号であるユーザ毎のサブキャリアシンボルD11~D1nをそれぞれ逆フーリエ変換することにより、ユーザ毎の一次変調信号を復元する。復調部228は、一次変調信号に対して復調処理を施しユーザ毎の符号化データD21~D2nを復元する。
 DEC部222は、ユーザ毎の符号化データD21~D2nの復号処理を行い、符号化されたユーザ毎のデータD31~D3nを復元する。DEC部222は、デレートマッチング部229、HARQ合成部230、復号化部231、誤り検出部232を備える。
 デレートマッチング部229、HARQ合成部230、復号化部231、及び誤り検出部232の処理は、端末100におけるデレートマッチング部138、HARQ合成部139、復号化部140、及び誤り検出部141の処理と夫々同様である。データD31~D3nは、レイヤ2処理部250-1~250-nへ夫々出力される。
 COD部223は、レイヤ2処理部250-1~250-nから出力されたユーザ毎のデータD41~D4nを符号化し、ユーザ毎の符号化データD51~D5nを出力する。COD部223は、誤り検出符号付与部235、符号化部236、レートマッチング部237を備える。誤り検出符号付与部235、符号化部236、レートマッチング部237の処理は、端末100における誤り検出符号付与部142、符号化部143、レートマッチング部144の処理と夫々同様である。
 MOD部224は、ユーザ毎の符号化データD51~D5nに対して変調処理を施す。MOD部224は、例えば、OFDMA方式による変調処理を行うことができる。MOD部224は、変調部238、サブキャリアマッピング部239、IFFT部240を備える。
 変調部238は、ユーザ毎の符号化データD51~D5nに対して、多値変調などの一次変調処理を施してサブキャリアシンボルD61~D6nを生成する。サブキャリアマッピング部239は、サブキャリアシンボルD61~D62を物理チャネルリソースのサブキャリア上にマッピングする。IFFT部240は、サブキャリアシンボルに逆高速フーリエ変換を施して時間領域信号を生成する。MOD部224により変調されたベースバンド信号はRF部210へ出力される。
 図8は、図6に示すレイヤ2処理部250-1の構成例を示す。レイヤ2処理部250-2~250-nの構成は、レイヤ2処理部250-1の構成と同様である。レイヤ2処理部250-1~250-nは、ユーザ毎のデータD31~D3n及びD41~D4nに関するレイヤ2に関する処理を行う。
 レイヤ2処理部250-1は、MAC受信部251、RLC受信部252、PDCP受信部253、PDCP送信部254、RLC送信部255、MAC送信部256を備える。
 また、MAC受信部251は、LCH分離部257を備える。RLC受信部252は、順序補正部258を備える。RLC送信部255は再送(ARQ)部259を備える。MAC送信部256は、LCH結合部260とDL-HARQ部261を備える。
 LCH分離部257、順序補正部258、PDCP受信部253、PDCP送信部254、再送部259、LCH結合部260、及びDL-HARQ部261の処理は、端末100におけるLCH分離部157、順序補正部158、PDCP受信部153、PDCP送信部154、再送部159、LCH結合部160、及びUL-HARQ部161の処理と夫々同様である。
 なお、PDCP送信部254は、PDCPレイヤにおいて、MME/S-GW300から受信したパケットデータに対してシーケンス番号を付加する処理を行う。また、PDCP送信部254は、制御部280から出力された転送指示に従って、メモリなどに保持したデータを転送する(又はデータフォワーディングを行う)。そのため、PDCP送信部154は、他の基地局のPDCP送信部254と接続され、互いにデータを転送することができる。このようなメモリは、例えば、PDCP送信部154の内部に備えるようにしてもよいし、PDCP送信部154の外部に備えるようにしてもよい。
 図6に戻り、レイヤ3処理部270は、無線リソースの制御及びRRC接続制御を行う。制御部280は、例えば、データフォワーディングする際に転送先の基地局を決定する。また、制御部280は、他の基地局との間でメッセージやデータなどを交換する。そのため、制御部280は、他の基地局の制御部280と接続される。さらに、制御部280は、データフォワーディングにおいてレイヤ2処理部250-1~250-nに対してデータの転送指示なども行う。
 <4.MME/S-GWの構成例>
 次に、MME/S-GW300の構成例について説明する。図9はMME/S-GW300の構成例を表わす図である。
 MME/S-GW300は、経路状態管理部310と経路選択部320を備える。
 経路状態管理部310は、ネットワーク500から受信したデータを端末100へ転送するための選択可能な経路情報を端末100毎に管理する。すなわち、経路状態管理部310は、例えば、基地局200から受信したパス設定要求に従って経路情報を設定し、設定した経路でデータを送信するよう経路選択部320を制御する。また、経路状態管理部310は、例えば、基地局200から受信したデータ転送パス切り替え要求に従って経路情報を変更し、変更後の経路によりデータを送信するよう経路選択部320を制御する。さらに、経路状態管理部310は、例えば、経路選択部320を介して基地局200から受信したデータ転送パスsuspend要求に従って、端末100への経路を一時的に停止するよう経路選択部320を制御する。
 なお、経路状態管理部310は、端末100へ送信するデータに対してシーケンス番号を割り振ってもよい。その詳細は第4の実施の形態において説明する。
 経路選択部320は、経路状態管理部310からの指示に従って、ネットワーク500から受信したデータを基地局200へ送信したり、送信の一時停止を行う。また、経路選択部320は、経路状態管理部310の指示により、基地局200から受信したデータをネットワーク500へ送信する。
 <5.動作例>
 次に動作例について説明する。最初にデータフォワーディング全体の動作について説明する。図10(A)及び図10(B)はデータフォワーディング全体の動作例を表わす図である。
 図10(A)では、基地局200-1と端末100との間で通信が行われていて、基地局200-1がS-GW300から受信したデータを端末100に送信している様子を表わしている。この場合、基地局200-1は、論理チャネルLCH#aを用いて端末100にデータを送信している。
 図10(B)は、基地局200-1から基地局200-2へデータフォワーディングが行われる様子を表わしている。このようなデータフォワーディングが行われるのは、例えば、基地局200-1と端末100との間で通信品質が劣化するなどにより通信状況が変化したため、ハンドオーバ処理が実施されたときである。このような場合、基地局200-1と端末100との間で無線通信が行われていた通信を停止して、端末100の通信先を基地局200-2へ切り替え、基地局200-2と端末100との間で無線通信が行われる。この場合、基地局200-1は、送達未確認データを基地局200-2へ転送する。
 なお、送達未確認データとは、例えば、基地局200-1から端末100へ送信されなかったデータや、基地局200-1から端末100へ送信したものの基地局200-1において送達確認のとれていないデータのことである。
 一方、端末100は、基地局200-1から受信したデータのシーケンス番号を含むPDCP STATUS PDUを基地局200-2に送信する。このとき、基地局200-2は、基地局200-1が無線通信に用いた論理チャネルLCH#aを用いて、PDCP STATUS PDUを受信する。論理チャネルLCH#aの詳細については後述する。
 そして、基地局200-2は、未送達確認データのうち、シーケンス番号に基づいて、端末100が受信したデータ以外のデータを端末100へ送信する。
 次に、Inter-eNB CA時のデータフォワーディング処理の詳細について説明する。図11は本第2の実施の形態におけるデータフォワーディング処理のシーケンス例を表わす図である。
 図11の例では、3つの基地局200-1~200-3と端末100との間でInter-eNB CAが行われる例を表わしている。
 最初に、端末100と各基地局200-1~200-3との間でデータ転送パスの確立処理が行われる(S10)。これにより、3つの基地局200-1~200-3と端末100との間でデータ転送パスが確立されて、Inter-eNB CAを行うことができる。
 以下、データ転送パス確立処理の動作例(S10)について説明し、次に、データ転送パス確立後のデータフォワーディング処理の動作例(S11~S29)について説明する。なお、以下においては無線リンク確立処理のことをデータ転送パス確立処理と称する場合がある。
 <5.1 データ転送パス確立処理の動作例>
 図12から図14はデータ転送パス確立処理(S10)の動作例を表わす図である。このうち、図12は端末100と基地局200-1との間で行われるデータ転送パス確立処理のシーケンス例、図13及び図14は基地局200-2との間におけるデータ転送パス確立処理のシーケンス例をそれぞれ表わしている。図12に示す処理により、端末100と基地局200-1との間でデータ転送パスが確立される。その後、図13又は図14に示す処理が行われることで、端末100と基地局200-2との間のデータ転送パスが追加され、端末100と2つの基地局200-1,200-2との間の2つのデータ転送パスが確立される。
 なお、端末100が最初にデータ転送パスを確立した基地局200-1を、以下では、マスター基地局200-1と称する場合がある。
 図12について説明する。なお、図12において、各メッセージが端末100と基地局200-1との間で送受信されている。このようなメッセージは、例えば、端末100のレイヤ3処理部170と基地局200のレイヤ3処理部270において生成され、2つのレイヤ3処理部170,270の間で送受信される。
 端末100は、例えば電源をオンにした後、位置登録要求を基地局200-1へ送信する(S100)。また、基地局200-1は位置登録要求に対して位置登録完了を端末100へ送信する(S101)。
 これにより、例えば、端末100は基地局200-1配下への位置登録が完了し、また、基地局200-1は端末100に対してマスター基地局として動作することが可能となる。この場合、基地局200-1は他の基地局に対して自局がマスター基地局であることを通知してもよい。この通知は、例えば、基地局200-1の制御部280が他の基地局の制御部280へ通知することで行われる。
 次に、端末100は、発信動作により、基地局200-1に対して接続要求(rrcConnectionRequest)を送信する(S102)。そして、基地局200-1は、接続要求に対する応答として、接続開始(rrcConnectionSetup)を端末100へ送信する(S103)。このとき、基地局200-1は、以降の処理(例えばS104からS115)において送受信に用いられる論理チャネルと物理チャネルに関する情報を接続開始に含めて送信する。
 ここで、論理チャネルと物理チャネルについて説明する。図15は論理チャネルから物理チャネルまでの関係例を表わす図である。図15の詳細については後述する。また、トランスポートチャネルとは、例えば、論理チャネルを物理チャネルへ対応付けるためのチャネルである。トランスポートチャネルとしては、例えば、共有チャネル(UL/DL SCH(Uplink/Downlink Shared CHannel)やランダムアクセスチャネル(RACH(Random Access Channel))などがある。論理チャネルに対してどの物理チャネルを用いるかについてトンラスポートチャネルを介してマッピングされる。例えば、論理チャネルである個別通信チャネルDTCHは、どの物理チャネルを用いて通信するかについて、トンラスポートチャネル(例えばUL SCHなど)を介してマッピングされる。
 基地局200-1は、論理チャネル~物理チャネルの対応関係をメモリなどに保持し、無線通信に用いる論理チャネル~物理チャネルに関する情報を端末100へ適宜通知することができる。
 ただし、図12における接続開始(S103)における通知は、以降の通信(S104からS115)において用いられる論理チャネル~物理チャネルに関する情報となっている。
 端末100は、接続開始(S103)の通知を受信すると、接続に関する処理を行う。接続に関する処理としては、例えば、以下のような処理がある。すなわち、端末100は、当該通知に含まれる論理チャネル~物理チャネルのマッピング情報をメモリに保持するなどすることで各チャネルの設定を行う。また、端末100は、基地局200-1に対して同期確立処理を行う。なお、端末100は必要ならばセルサーチ処理を行って基地局200-1を検出する。そして、端末100は、接続に関する処理を完了すると接続完了(rrcConnectionSetupComplete)を基地局200-1へ送信する(S104)。
 次に、端末100は、サービス開始要求(initialDirectTransfer)を基地局200-1へ送信する(S105)。
 サービス開始要求を受信した基地局200-1は、秘匿設定(securityModeCommand)を端末100へ送信する(S106)。以後、端末100は秘匿設定に従って暗号化を行い、暗号化されたメッセージを基地局200-1へ送信できる。秘匿設定を受信した端末100は、例えば、秘匿設定で通知された暗号化に関する情報をメモリなどに保持することで設定を行う。
 端末100は、秘匿設定に関する設定が完了すると、秘匿設定の完了応答(securityModeComplete)を基地局200-1へ送信する(S107)。
 また、端末100は、呼接続要求(uplinkDirectTransfer)を基地局200-1へ送信する(S108)。例えば、端末100は、電子メールやWeb閲覧などのパケット通信か、音声電話やTV電話などの回線通信かなど、どのような通信による接続を行うかについて送信する。 
 基地局200-1は、呼接続要求を端末100から受信すると(S108)、無線ベアラ設定要求(radioBearerSetup)を端末100へ送信する(S109)。例えば、基地局200-1は、呼接続要求(S108)により要求された通信を行うときに用いる物理チャネル~論理チャネルに関する情報を無線ベアラ設定要求に含めて送信する。
 端末100は、無線ベアラ設定要求を受信すると(S109)、無線ベアラ設定要求に対する端末100の設定を行う。例えば、端末100は、無線ベアラ設定要求に含まれる物理チャネル~論理チャネルに関する情報をメモリに保持するなどして設定を行う。端末100は、呼接続要求(S108)で要求した通信については、設定した物理チャネル~論理チャネルを用いて基地局200-2と無線通信を行う。
 端末100は、無線ベアラ設定要求に対する設定が完了すると、完了応答(radioBearerSetupComplete)を基地局200-1へ送信する(S110)。
 基地局200-1は、無線ベアラ設定要求の完了応答を受信すると(S110)、S-GW300に対してパス設定要求を送信する(S111)。パス設定要求には、例えば、端末情報やサービス情報(S105)などが含まれる。パス設定要求により、例えば、基地局200-1から端末100へ至るパスの設定がS-GW300において行われる。
 S-GW300におけるパスの設定は、例えば、以下のようにして行われる。すなわち、S-GW300の経路状態管理部310は、基地局200-1からパス設定要求を受信すると、当該要求に含まれる基地局200-1から端末100へ至るパスの情報を抽出し、当該情報に従ってデータを送信するよう経路選択部320へ指示する。これにより、以後、S-GW300は基地局200-1を介して端末100へデータを送信できる。
 また、基地局200-1は、メジャーメント設定要求(measurementControl)を端末100へ送信する(S112)。
 メジャーメント設定要求には、例えば、周辺セル情報やMeasurement Reportの報告条件などが含まれる。Measurement Reportの報告条件としては、例えば、受信品質の閾値などがある。端末100はメジャーメント設定要求に従って、Measurement Reportを基地局200-1へ送信する。
 次に、基地局200-1は、S-GW300からパス設定要求(S111)に応じたパス設定が通知され(S113)、通知されたパスの設定を行う。
 例えば、基地局200-1は、S-GW300から基地局200-1を介して端末100へ至る経路情報をメモリに記憶することでパスの設定を行う。また、基地局200-1は、例えば、端末100との無線通信で用いる論理チャネル~物理チャネルの関係(例えば図15)をメモリなどに保持する。これにより、例えば、図15に示すように基地局200-1が端末100との無線通信に用いる論理チャネルと物理チャネルが設定される。なお、メモリは、例えば、基地局200-1におけるレイヤ3処理部270の内部や外部に備えるようにしてもよい。
 基地局200-1は、パスの設定を完了すると、パス設定応答をS-GW300へ送信する(S114)。
 そして、基地局200-1は、サービス開始要求(S105)に対する応答として、サービス開始承諾(downlinkDirectTransfer)を端末100へ送信する(S115)。
 以上により、端末100と基地局200-1との間でデータ転送パスが確立される。
 次に、端末100と基地局200-2との間でデータ転送パス確立処理が行われる。これにより、端末100と2つの基地局200-1,200-2との間でデータ転送パスが確立される。
 図13と図14は、基地局200-2に対するデータ転送パス確立処理のシーケンス例を表わしている。このうち、図13は追加された基地局200-2がS-GW300に対してパス設定要求を行う例、図14はマスター基地局200-1がS-GW300に対してパス設定要求を行う例を夫々表わしている。
 図13について説明する。データ転送パスが確立された端末100と基地局200-1は、通信状態となっている(S120)。
 端末100は、送受信されるデータのデータ量(又はトラヒック量)を測定(又は監視)する(S121)。そして、端末100は、データ量が閾値を超えたとき、測定結果を含むMeasurement Reportを基地局200-1へ送信する(S123)。
 例えば、測定部135は各基地局200-1,200-2に対するトラヒック量を測定し、測定結果をレイヤ3処理部170に通知し、レイヤ3処理部170は測定結果を含むMeasurement Reportを生成する。生成されたMeasuremet Reportは、レイヤ3処理部170からレイヤ2処理部150などを介して端末100へ送信される。 
 基地局200-1は、Measurement Reportを受信すると追加基地局を判定する(S124)。
 例えば、基地局200-1は、Measurement Reportに含まれるトラヒック量に基づいてInter-eNB CAを行うことを決定し、他の基地局における受信品質のうち最も受信品質の良い基地局やトラヒック量の最も少ない基地局を追加基地局に選択する。このような判定は、例えば、基地局200-1の制御部280で行われる。図13の例では、基地局200-2が追加基地局となる。
 次に、基地局200-1は、追加基地局200-2へ接続要求を送信する(S125)。接続要求には、例えば、対象となる端末100に関する端末情報やサービス情報などが含まれる。例えば、制御部280が追加基地局を判定後、追加基地局に対する接続要求を生成し、追加基地局200-2の制御部280へ送信する。
 基地局200-2は、接続要求(S125)を受信すると端末100の接続可否を判定し、その結果を接続応答として基地局200-1へ送信する(S126)。
 接続可否としては、例えば、基地局200-2において端末100に割り当て可能な無線リソース量に基づいて判定してもよい。図13の例では基地局200-2への接続が許可された例を表わしている。なお、接続応答には、基地局200-2が端末100との無線通信に用いる論理チャネルと物理チャネルに関する情報を通知してもよい。例えば、基地局200-2の制御部280はメモリなどに保持した当該情報を読み出して、生成した接続応答に含めて基地局200-1の制御部280で通知する。このようなメモリは、例えば、制御部280の内部や外部に備えられてもよい。
 基地局200-1は、接続応答(S126)を受信すると、端末100に対して基地局200-2への接続指示を送信する(S127)。
 例えば、制御部280は、基地局200-2から送信された接続応答を受信すると、接続応答から論理チャネルと物理チャネルに関する情報を抽出する。そして、制御部280は、抽出した当該情報を含む接続指示を生成し、レイヤ3処理部270などを介して端末100へ送信する。
 端末100は、接続指示(S127)を受信すると、基地局200-2に対する接続処理を行う(S128)。
 接続処理としては、例えば、以下のような処理がある。すなわち、端末100のレイヤ3処理部170は、接続指示に含まれる論理チャネル~物理チャネルに関する情報をメモリに保持することで、各チャネルの設定処理を行う。また、端末100は基地局200-2に対する同期処理を行う。
 端末100は、接続処理を完了すると、接続完了通知を基地局200-2へ送信する(S129)。例えば、レイヤ3処理部170は接続処理を完了すると、接続完了通知を生成して基地局200-2へ向けて送信する。
 基地局200-1は接続完了通知を受信し(S129)、端末100に対するパス設定要求をS-GW300へ送信する(S130)。なお、基地局200-2が接続完了通知(S129)を受信することで、端末100と基地局200-2との間で無線リンク(又は接続パス)が確立される。例えば、基地局200-2のレイヤ3処理部270は接続完了通知を受信すると、端末100との間のパスの設定要求を含むパス設定要求を生成して、S-GW300へ向けて送信する。
 S-GW300は、パス設定要求を受信すると、パス設定要求に応じたパスの設定を行い、設定後、パス設定を基地局200-2へ送信する(S131)。
 例えば、S-GW300の経路状態管理部310は、基地局200-1からパス設定要求を受信すると、当該要求に含まれる基地局200-2から端末100へ至るパスの情報を抽出し、当該情報に従ってデータを送信するよう経路選択部320へ指示する。これにより、S-GW300から基地局200-2を介して端末100へのパス設定が行われ、以後、S-GW300はパス設定に従ってデータを送信する。例えば、経路状態管理部310は、パス設定を完了後、パス設定通知を生成して基地局200-2へ送信する。
 基地局200-2は、パス設定をS-GW300から受信すると(S131)、通知されたパス設定の設定を行い、これを完了すると、パス設定応答をS-GW300へ送信する(S132)。
 例えば、基地局200-2のレイヤ3処理部270は、通知されたパス設定に基づいてメモリなどにパスに関する情報を記憶するなどにより設定を行う。そして、レイヤ3処理部270は、例えば、端末100との無線通信で用いる論理チャネル~物理チャネルの関係(例えば図15)をメモリなどに保持する。これにより、例えば、図15に示すように基地局200-2が端末100との無線通信に用いる論理チャネル~物理チャネルが設定される。そして、レイヤ3処理部270は、パス設定応答を生成し、S-GW300へ向けて送信する。
 次に、基地局200-2は接続完了通知を基地局200-1へ送信する(S133)。例えば、基地局200-2のレイヤ3処理部270は、パス設定応答を送信(S132)後、接続完了通知を生成して制御部280を介して基地局200-1へ送信する。
 そして、S-GW300からのデータ送信が開始される(S134)。
 以上により、2つの基地局200-1,200-2と端末100との間でデータ接続パスが確立され、Inter-eNB CAによる無線通信が行われる。
 図14は、端末100と基地局200-2との間のデータ接続パスが確立されるシーケンス例を表わしているが、マスター基地局200-1がS-GW300へのパス設定を行う例を表わしている。
 図14においてS120からS129までの処理は、図13の例と同様である。基地局200-2は、端末100から接続完了通知(S129)を受信すると、接続完了通知をマスター基地局200-1へ送信する(S140)。上述したように、各基地局の制御部280は互いに接続されて、自局がマスター基地局である旨をマスター基地局200-1の制御部280が他の基地局の制御部280に通知している。基地局200-2の制御部280は、この通知に基づいて、マスター基地局200-1の制御部280へ接続完了通知を送信する。
 次に、マスター基地局200-1は、パス設定要求をS-GW300へ送信する(S141)。パス設定要求には、例えば、基地局200-2と端末100との間のパス設定要求が含まれる。このように、端末100と無線リンクを確立した他の基地局200-2に対するパス設定を、マスター基地局200-1が一括してS-GW300に要求している。
 例えば、マスター基地局200-1の制御部280は受信した接続完了通知(S140)をレイヤ3処理部270へ通知する。そして、レイヤ3処理部270は当該通知から端末100と基地局200-3との間の接続パスに関する情報を抽出し、当該情報を含むパス設定要求を生成してS-GW300へ送信する。
 S-GW300は、パス設定要求を受信すると(S141)、当該要求に応じたパスの設定を行い、パス設定を基地局200-2へ送信する(S131)。以後は、図13の例と同様である。
 以上により、端末100と基地局200-2の接続パスが追加されて、端末100と2つの基地局200-1,200-2との間の接続パスが確立される。
 その後、端末100が2つの基地局200-1,200-2とInter-eNB CAにより無線通信を行っているとき、端末100のトラヒック量が増加すると、さらに、3つ目の基地局200-3に対する接続パス確立処理が行われる。この場合、図13又は図14の処理において、基地局200-2を基地局200-3に代えることで、端末100と基地局200-3との間で上述した処理と同様の接続パス確立処理が行われる。
 以上により、端末100と3つの基地局200-1~200-3との間でデータ転送パスが確立される。
 図15は、3つの基地局200-1~200-3と端末100との間のチャネルマッピングの例を示している。図15に示す例では、基地局200-1は、論理チャネルLCH#aについては物理チャネルPhy#1(周波数f1)を用いて端末100と通信する。また、基地局200-2は論理チャネルLCH#bについては物理チャネルPhy#2(周波数f2)を用いて端末100と通信する。さらに、基地局200-3は、論理チャネルLCH#cについては物理チャネルPhy#3(周波数f3)を用いて端末100と通信する。
 各基地局200-1~200-3と端末100は、上述したように、物理チャネル~論理チャネルに関する情報をメモリなどに保持することで、例えば図15に示すようなチャネルマッピングを各々保持することができる。
 ここで、論理チャネルについては、例えば、論理チャネル番号により設定されてもよい。例えば、論理チャネル番号は論理チャネルの種類により異なる番号となっている。例えば、ユーザデータ用の個別通信チャネルDTCHを表わす論理チャネル番号は「0」から「10」が用いられ、端末個別制御信号用の個別制御チャネルDCCHを表わす論理チャネル番号は「11」から「20」などである。論理チャネル番号の番号については、他と識別可能な識別符号であれば、番号以外のものであってもよい。
 そして、本第2の実施の形態においては、各基地局200-1~200-3では同一種類の論理チャネルであっても、異なる論理チャネル番号により論理チャネルが設定される。例えば、基地局200-1における個別通信チャネルDTCHの論理チャネル番号は「1」、基地局200-2における個別通信チャネルDTCHの論理チャネル番号は「2」などである。
 このように同一種類の論理チャネルであっても、基地局200-1~200-3により異なる論理チャネル番号となっているのは、例えば、端末100において基地局200-1~200-3から受信されるデータのシーケンス番号を識別できるようにするためである。
 上述したように、データのシーケンス番号は、例えば、各基地局200-1~200-3のPDCP送信部254がMME/S-GW300から受信したデータに対して所定のパケット単位(例えばPDCP PDU)で割り振る。この割り振りは、各基地局200-1~200-3が独立して行っている。従って、基地局200-1から送信されるデータと、基地局200-2から送信されるデータは、異なるデータにも拘わらず同一のシーケンス番号となって端末100が受信する場合もある。このような場合、端末100は同一のデータとしていずれか一方を破棄してしまい、データを損失する場合もある。
 このようなデータの損失を防止するために、例えば、論理チャネル番号を同一種類の論理チャネルであっても各基地局200-1~200-3で異なる番号にし、同一のシーケンス番号が割り振られても端末100において異なるデータであると識別できるようにしている。
 例えば、各基地局200-1~200-3の制御部280は、他の基地局の制御部280との間で同一種類の論理チャネルであっても異なる論理チャネル番号となるように調整を行う。そして、制御部280は、PDCP送信部254に対して論理チャネル番号を通知し、PDCP送信部254においてPDCP PDU毎に論理チャネル番号とシーケンス番号が送信データに付加される。
 <5.2 データフォワーディング処理の動作例>
 次に、端末100と3つの基地局200-1~200-3との間でデータ転送パスが確立された後、データフォワーディングが行われる動作例について説明する。
 図11に戻り、端末100と3つ基地局200-1~200-3との間でデータ転送パスが確立された後(S10)、Inter-eNB CAによる無線通信が行われる。
 端末100は、周期的に受信信号電力やSIR(Signal to Interference Ratio)などの無線品質を測定し、各基地局200-1~200-3との間の無線状態を監視している。端末100は、基地局200-2に対する無線品質が閾値より低下したことを検出すると、基地局200-2に対する無線品質と、他の基地局200-1,200-3に対する無線品質を含むMeasurement Reportを基地局200-1へ送信する(S11)。このMeasurement Reportの送信により、例えば、基地局200-1に対して無線接続状態の変更に関するトリガを与えている。
 なお、図11の例では、端末100はマスター基地局200-1にMeasurement Reportを送信しているが、他の基地局200-3へ送信してもよい。この場合、基地局200-3はMeasurement Reportに含まれる情報をマスター基地局200-1へ送信する。
 次に、マスター基地局200-1は、無線品質に基づいて端末100と基地局200-2との間の無線通信は困難であると判断し、端末100と基地局200-2との間の無線通信の切断と、データフォワーディング処理の開始を決定する。そして、マスター基地局200-1は、基地局200-2の保持するデータの転送先(又はフォワーディング先)となる基地局を選択する(S12)。
 例えば、マスター基地局200-1の制御部280はMeasurement Reportに含まれる各無線基地局200-1~200-3の受信品質をレイヤ3処理部270から受け取る。そして、制御部280は、基地局200-2の無線品質が閾値以下であるため無線通信は困難であると判断し、データフォワーディング処理の開始を決定する。このとき、制御部280は、例えば、最も無線品質の良い基地局をデータフォワーディングの転送先の基地局として選択する。図11の例では、基地局200-3が転送先の基地局として選択されている。
 次に、基地局200-1は、データの転送先となる基地局200-3に対してForwarding開始準備要求を送信する(S14)。この要求には、データ転送元となる基地局200-2の情報と、基地局200-2において使用された論理チャネルLCH#bに関する情報が含まれる。
 例えば、基地局200-1の制御部280は、基地局200-2との接続要求(図13のS125)や接続応答(S126)により、基地局200-2で使用する論理チャネル番号を取得できる。従って、基地局200-1は、基地局200-2において使用された論理チャネルLCH#bの論理チャネル番号をForwarding開始準備要求に含めることができる。
 Forwarding開始準備要求を受信した基地局200-3は、データフォワーディングの受け入れ可否を判断し、可能な場合はForwarding開始準備要求により指定された新規論理チャネルLCH#bをオープンする(S15)。図11の例では、基地局200-3はデータフォワーディング受け入れ可能と判断している。
 ここで、基地局200-3が基地局200-2の論理チャネルLCH#bをオープンする(S15)のは、例えば、以下の理由からである。
 すなわち、上述したように端末100へ送信されるデータについては所定単位で基地局200-1~200-3毎に異なる論理チャネル番号が付与される。S-GW300から基地局200-2へ送信されたData#1(例えばS13)にも論理チャネルLCH#bの番号が付与される。このData#1は、データフォワーディングにより基地局200-2から基地局200-3へ転送される。基地局200-3は、Data#1に対して付与された論理チャネルLCH#bの番号を用いて、データフォワーディングされたData#1を端末100へ送信できれば、論理チャネルの番号の変更などの煩雑は処理をしなくてもよい。また、端末100においても論理チャネルLCH#bを用いてデータを受信できれば、論理チャネルの番号の変更といった処理を行わなくても良い。
 このように処理を簡素化するなどの理由により、基地局200-3は、基地局200-2が使用した論理チャネルLCH#bをオープンしている。従って、このオープンした論理チャネルLCH#bは、基地局200-3において一時的にオープンした論理チャネルであって、本第2の実施の形態においてはデータフォワーディングが終了すると論理チャネルLCH#bを自律的にクローズさせるようにしている。詳細は後述する。
 そして、本第2の実施の形態では、基地局200-3は、端末100との通信に使用するトランスポートチャネルTrCH#3に対して、オープンした論理チャネルLCH#bを結び付けている(バインドする)。2つの論理チャネルLCH#b,LCH#cがバインドされた後のチャネルマッピングの例を図16に示す。
 図16に示すように、基地局200-3では、2つの論理チャネルLCH#b,LCH#cを同一のトランスポートチャネルTrCH#3にマッピングしている。すなわち、基地局200-3は、論理チャネルLCH#bの送信は物理チャネルPhy#3を用いて端末100に送信し、論理チャネルLCH#cの送信も物理チャネルPhy#3を用いて送信する。
 これにより、例えば、基地局200-3は新規にオープンした論理チャネル(S15)に対して、新たに物理チャネルを用いることなく、既に利用している物理チャネルPhy#3を用いて端末100と無線通信することが可能となる。従って、物理チャネルの有効活用化を図ることもできる。
 例えば、レイヤ3処理部270が2つの論理チャネルLCH#b,LCH#cが同一のトランスポートチャネルTrCH#3と対応するようにメモリに保持することで、バインドに関する処理が行われる。
 また、例えば、レイヤ3処理部270が論理チャネルLCH#bに対するメモリの所定領域を確保したり、パラメータを初期化するなどの処理を行うことで、論理チャネルLCH#bをオープンする処理が行われる。このようなメモリは、例えば、レイヤ3処理部270の内部や外部に備えられている。
 図11に戻り、基地局200-3は新規論理チャネルLCH#bをオープンすると(S15)、Forwarding開始準備要求に対する応答をマスター基地局200-1へ送信する(S16)。
 この応答には、例えば、論理チャネルの状態変更後の情報が含まれる。当該情報としては、例えば、新規にオープンした論理チャネルLCH#bがトランスポートチャネルTrCH#3とバインドされて、物理チャネルPhy#cを用いることを示す情報などである。
 例えば、レイヤ3処理部270はメモリに対してバインドに関する処理を終了すると、バインドに関する情報を制御部280へ通知する。そして、制御部280は、バインドに関する情報に基づいて、基地局200-3のチャネル情報を含む応答を生成し、基地局200-1の制御部280へ通知する。
 次に、マスター基地局200-1は、データ転送パス切り替え要求(又はデータ転送経路切り替え要求)をS-GW300へ送信する(S17)。
 データ転送パス切り替え要求には、例えば、基地局200-2から基地局200-3へデータ転送パスを変更する旨の要求が含まれる。例えば、レイヤ3処理部270においてデータ転送パス切り替え要求が生成されて、レイヤ2処理部250-1~250-nを介してS-GW300に送信される。
 S-GW300は、データ転送パス切り替え要求を受信すると、データ転送パスの切り替えを行う。これにより、S-GW300から基地局200-2へはデータが転送されなくなり、基地局200-2へ転送されなくなったデータは、基地局200-3へ転送される。
 S-GW300は、データ転送パスの切り替えを行うと応答を基地局200-1へ送信する(S18)。
 次に、マスター基地局200-1は、基地局200-2に対してFowarding開始要求を送信する(S19)。この要求を受けた基地局200-2は、基地局200-3に対して送達未確認データの転送(又はフォワーディング)を開始する(S20)。転送されるデータは、図11の例では、基地局200-2が受信したData#1(S13)である。
 例えば、以下のようにしてデータフォワーディング(S20)が行われる。すなわち、マスター基地局200-1のレイヤ3処理部270が応答を受信すると(S18)、その旨を制御部280へ通知する。制御部280では、当該通知を受け取ると、Fowarding開始要求を生成し、基地局200-2の制御部280へ通知する(S19)。基地局200-2の制御部280は、当該要求を受信すると、送達未確認データ(例えばData#1)を基地局200-3へ送信するようPDCP送信部254に対して指示する。この指示を受けたPDCP送信部254が基地局200-3のPDCP送信部254へ送達未確認データを送信することで、データフォワーディングが行われる。
 また、基地局200-1は、端末100に対して、無線リンク状態変更要求を送信する(S21)。
 無線リンク状態変更要求には、例えば、基地局200-2で使用された物理チャネル(例えば物理チャネルPhy#2(周波数f2))のクローズに関する情報、基地局200-2で使用された論理チャネルLCH#bの状態変更情報、基地局200-2で使用された論理チャネルLCH#bをクローズするまでの時間を示すタイマー値が含まれる。
 論理チャネルLCH#bの状態変更情報は、例えば、論理チャネルLCH#bのバインド先をトランスポートチャネルTrCH#3へ変更することを示す情報などが含まれる。この場合、基地局200-3におけるバインドに関する情報をマスター基地局200-1が端末100に送信している。例えば、基地局200-3がバインドに関する情報を応答(S16)に含めて送信することでマスター基地局200-1がバインドに関する情報を取得できる。
 また、論理チャネルLCH#bは、端末100においてタイマー値により自動的にクローズされる。論理チャネルLCH#bは、例えば、データフォワーディング元の基地局200-2で用いられる論理チャネルであり、データフォワーディングが終了すると使用することがなくなる論理チャネルである。タイマー値によって、端末100においては自動的に論理チャネルLCH#bをクローズすることができるため、例えば、基地局200-3は無線リンク状態変更要求以外の通知を送信することなく自律的又は自動的にクローズさせることができる。
 このタイマー値は固定値でもよいし、フォワーディングする未送達確認データのデータ量に応じた変動値であってもよい。変動値の場合は、基地局200-1は基地局200-2又は基地局200-3からフォワーディングするデータのデータ量の情報を受信して、当該情報に基づいて変動値が設定される。
 なお、無線リンク状態変更要求は、L1信号又はL2信号として端末100へ送信される。
 図17(A)はMACデータに無線リンク状態変更要求が含まれる例、図17(B)はL1データに無線リンク状態変更要求が含まれる例を夫々表わしている。
 図17(A)に示すように、MACデータのヘッダ領域には、MACデータのペイロード領域に無線リンク状態変更要求が含まれるか否かのフラグ情報が含まれる。端末100のMAC受信部151は、MACデータのヘッダ領域を確認することで、無線リンク状態変更要求が含まれるか否かを確認でき、確認できれば無線リンク状態変更要求を抽出できる。
 無線リンク状態変更要求は、例えば、L3信号として端末100に送信される場合もある。このような場合、端末100ではレイヤ3処理部170によって無線リンク状態変更要求を受信する。
 従って、無線リンク状態変更要求がL3信号ではなくL2信号として送信されることで、端末100では、レイヤ3処理部170ではなくレイヤ2処理部150において無線リンク状態変更要求を確認することができ、例えば、処理の高速化や簡素化を図ることができる。
 図17(B)はL1データに無線リンク状態変更要求が含まれ、無線リンク状態変更要求がL1データに含まれるか否かの情報が制御チャネルにより送信される例を表わしている。この場合でも、端末100ではレイヤ1処理部130において制御チャネルを確認することで無線リンク状態変更要求の有無を確認できる。従って、無線リンク状態変更要求がL3信号として送信される場合と比較して、レイヤ1処理部130においてL1データから無線リンク状態変更要求を抽出することができるため、処理の高速化や簡素化を図ることができる。
 また、制御チャネルの中に図17(A)のMACデータのように、フラグ情報と無線リンク状態変更要求を含めても良い。
 図11に戻り、端末100は、受信した無線リンク状態変更要求を受信すると(S21)、基地局200-2の物理チャネルのクローズ、論理チャネルLCH#bの状態変更、タイマー起動などの処理を行う。
 端末100では、論理チャネルLCH#bの状態変更により、例えば図16に示すように、基地局200-2の物理チャネルPhy#2(周波数f2)がクローズされ、2つの論理チャネルLCH#b,#cはトランスポートチャネルTrCH#3にマッピングされる。
 例えば、端末100のレイヤ3処理部170は、メモリに保持された物理チャネルPhy#2に関する情報を削除し、2つの論理チャネルLCH#b,#cをトランスポートチャネルTrCH#3にマッピングするように情報をメモリに保持することで処理が行われる。
 また、タイマーの起動とカウントは、例えば、端末100のレイヤ3処理部170において行われる。
 図11に戻り、端末100は、データの送達確認情報(例えばPDCP STATUS PDU)を基地局200-3へ送信する(S22)。
 例えば、端末100は、無線リンク状態変更要求(S21)を受信するまでに基地局200-2から送信されたデータを正常に受信できたとき、正常に受信できたデータのうち、最新のデータのシーケンス番号を基地局200-3へ送信する。例えば、端末100は論理チャネルLCH#bを用いてPDCP STATUS PDUを送信する。
 一方、基地局200-3では、フォワーディングされた送達未確認データを受信すると(S20)、タイマーを起動させる。基地局200-3は、一時的にオープンした論理チャネルLCH#bをクローズするための時間をカウントする。タイマーの起動とカウントは、例えば、基地局200-3の制御部280で行われる。また、タイマー値が変動値の場合、フォワーディングされた送達未確認データのデータ量を例えば制御部280が測定し、制御部280がデータ量に応じたタイマー値を設定してもよい。
 また、基地局200-3は、PDCP STATUS PDUを受信すると(S22)、フォワーディングされた送達未確認データのうち、PDCP STATUS PDUに基づいて送達確認完了済みのデータを破棄し(S23)、残りのデータを端末100へ送信する(S24)。
 例えば、レイヤ3処理部270は、PDCP STATUS PDUに含まれるシーケンス番号を抽出し、当該シーケンス番号の次以降のシーケンス番号を有するデータを送信するようPDCP送信部254へ指示する。これにより、PDCP送信部254は、送達未確認データのうち送達確認完了済みのデータを破棄し、残りのデータを端末100へ送信することができる。
 なお、図11の例では、フォワーディングされたData#1を破棄しないで、Data#1の全てを基地局200-3が端末100へ送信している。基地局200-3は、オープンした論理チャネルLCH#b(例えばS15)を用いて残りのデータを端末100へ送信する。
 次に、端末100は、データを正常に受信すると送達確認(例えばACK(Acknowledge)信号)を基地局200-3へ送信する(S25)。
 基地局200-3は、送達確認を端末100から受信すると、フォワーディングされたデータの端末100への送達確認をS-GW300へ送信する(S26)。
 基地局200-3では、論理チャネルLCH#bを用いた送信が終了し、その後、タイマーが満了する。基地局200-3は、タイマー満了後、データ転送パス切断要求(又はデータ転送経路切断要求)をS-GW300へ送信する(S27)。
 データ転送パス切断要求には、例えば、オープンした論理チャネルLCH#b(S15)に関するデータ転送パス、或いはS-GW300と基地局200-2との間のデータ転送パスの切断を要求する旨の情報が含まれる。例えば、制御部280はタイマー満了をカウントすると、その旨をレイヤ3処理部270へ通知し、レイヤ3処理部270が、切断対象となる論理チャネルLCH#bに関する情報などを含むデータ転送パス切断要求を生成してS-GW300へ送信する。
 そして、基地局200-3は、論理チャネルLCH#bをクローズし(S28)、端末100においてもタイマー満了後論理チャネルLCH#bをクローズする(S29)。このような論理チャネルのクローズは、例えば、基地局200-3のレイヤ3処理部270と端末100のレイヤ3処理部170などでメモリなどに保持した論理チャネルLCH#bに関する情報を削除するなどにより処理が行われる。
 なお、基地局200-3におけるデータ転送パスの切断(S27)、及び論理チャネルLCH#bのクローズは、データの送達確認(S25)を待たずに行われるようにタイマー値が設定されてもよい。タイマーの起動タイミングとしては、例えば、基地局200-2からフォワーディングされたデータの受信開始時(S20)や論理チャネルLCH#bをオープンした時(S15)であってもよい。タイマー値は、Forwarding開始準備要求(S14)に含まれて、例えば、制御部280において設定されてもよい。
 このように本第2の実施の形態においては、端末100と3つの基地局200-1~200-3との間でデータ転送パスが確立された状態(S10)で、データフォワーディングが行われる(S20)。
 従って、データフォワーディング先の基地局200-3と端末100との間で別途データ転送パス(又は無線リンク)を確立するための処理が行われず、そのため処理遅延を低減させることができる。
 より具体的には、端末100との間でデータ転送パスが確立されている基地局200-3を基地局200-1が選択し(例えば図11のS11)、基地局200-1がMME/S-GW300へデータ転送パス状態の変更を通知し(例えばS17)、基地局200-2が保持する送達未確認データを基地局200-2が基地局200-3へ転送し(例えばS20)、無線リンク状態の変更を端末100へ通知し(例えばS21)、そして、送達未確認データを基地局200-3から端末100へ送信(S24)するまでの処理を、一定時間内に行うことができる。
 また、端末100と基地局200-3との間でデータ転送パスが確立されているため(S10)、基地局200-2はデータを基地局200-3へフォワーディングしても、基地局200-3から端末100へフォワーディングされたデータを送信できない事態を回避できる。この場合、基地局200-3から端末100へフォワーディングされたデータが送信されるため、通信の安定化を図ることができる。 
 [第3の実施の形態]
 次に第3の実施の形態について説明する。図18は第3の実施の形態における動作例を表わすシーケンス図である。本第3の実施の形態は、データフォワーディング元の基地局200-2に対するパスを一時停止する例である。
 第2の実施の形態における動作例と同様に、本第3の実施の形態においても、端末100と3つの基地局200-1~200-3との間においてデータ転送パスが確立され(S10)、基地局200-2から基地局200-3へデータフォワーディングが行われる(S20)。
 マスター基地局200-1は、Fowarding準備開始要求(S14)に対する応答を受信すると(S16)、データ転送パスsuspend要求(又はデータ転送経路一時停止要求)をS-GW300へ送信する(S40)。
 データ転送パスsuspend要求は、例えば、データフォワーディング元の基地局200-2へのデータ転送パスの一時停止を要求するものである。
 例えば、マスター基地局200-1の制御部280は、応答(S16)を基地局200-3から受信すると、データフォワーディング元の基地局200-2に対するデータ転送パスsuspend要求を生成する。そして、制御部280は、生成したデータ転送パスsuspend要求をレイヤ2処理部250-1~250-nを介してS-GW300へ送信する。
 S-GW300は、データ転送パスsuspend要求を受信すると、当該要求において指示されたデータ転送パスの経路を一時停止し、応答を基地局200-1へ送信する(S41)。
 例えば、S-GW300の経路状態管理部310はマスター基地局200-1からデータ転送パスsuspend要求を受信すると、当該要求において指示された基地局200-2への経路を一時停止させるよう経路選択部320に指示する。これにより、S-GW300から基地局200-2へのデータの送信が一時停止される。なお、経路状態管理部310は、例えば、経路選択部320への一時停止を指示した後、データ転送パスsuspend要求に対する応答を生成し、マスター基地局200-1へ送信する。
 その後、基地局200-2から基地局200-3へのデータフォワーディングが行われ(S20)、無線リンク状態変更要求がマスター基地局200-1から端末100へ通知される(S21)。
 その後、基地局200-3は、フォワーディングされた送達未確認データの全部又は一部を端末100へ送信し(S23,S24)、端末100から送達確認(ACK信号)を受信すると(S25)、送達確認を基地局200-2へ送信する(S42)。
 基地局200-3はS-GW300ではなく、基地局200-2へ送達確認を送信するのは、S-GW300は基地局200-3との間にデータ転送パスを確立しておらず、フォワーディング元の基地局200-2と接続しているためである。例えば、基地局200-3の制御部280がレイヤ3処理部270から端末100からの送達確認を受信したことを示す通知を受け取ると、送達確認を生成して基地局200-2の制御部280へ送信する。
 基地局200-2は、送達確認を基地局200-3から受信すると、受信した送達確認をS-GW300へ送信する(S42)。例えば、基地局200-2の制御部280が基地局200-3から送達確認を受信すると、レイヤ2処理部250-1~250-nを介してS-GW300へ送信する。
 基地局200-3は、送達確認を基地局200-2へ送信後(S42)、論理チャネルLCH#bに対するデータ転送パス切断要求を基地局200-2へ送信する(S43)。
 データ転送パス切断要求が基地局200-2に送信されるのは、S-GW300は基地局200-3との間にデータ転送パスを確立しておらず、フォワーディング元の基地局200-2と接続しているためである。また、基地局200-2に対して論理チャネルLCH#bをクローズさせるためである。例えば、基地局200-3の制御部280は、送達確認を基地局200-2へ送信後、論理チャネルLCH#bに対するデータ転送パス切断要求を生成し、当該要求を基地局200-2の制御部280へ送信する。
 基地局200-2は、データ転送パス切断要求を受信すると、当該要求をS-GW300へ送信する(S43)。例えば、基地局200-2の制御部280は基地局200-3からデータ転送パス切断要求を受信すると、レイヤ2処理部250-1~250-nを経由して当該要求をS-GW300へ送信する。
 S-GW300では、データ転送パス切断要求に従って、基地局200-2へのデータ転送パスを切断する処理を行う。例えば、経路状態管理部310は、基地局200-2へデータを送信しないように経路選択部320へ指示することで処理が行われる。
 そして、基地局200-2,200-3では、論理チャネルLCH#bに対するデータ転送パス切断要求を送信後、論理チャネルLCH#bをクローズさせる(S44)。
 図19は第3の実施の形態におけるチャネルマッピングの例を表わす図である。基地局200-3においては、第2の実施の形態と同様に論理チャネルLCH#bがトランスポートチャネル#3とバインドされている。また、S-GW300はデータ転送パスsuspend要求に従って、基地局200-2へのデータ送信を一時停止している。
 本第3の実施の形態においても、端末100と3つの基地局200-1~200-3との間でデータ転送パスが確立された状態(S10)で、データフォワーディングが行われる(S20)。従って、データフォワーディング先の基地局200-3と端末100との間で別途データ転送パスを確立するための処理が行われず、処理遅延を低減させることができる。
 また、端末100と基地局200-3との間でデータ転送パスが確立されているため(S10)、基地局200-2はデータを基地局200-3へフォワーディングしても、基地局200-3から端末100へフォワーディングされたデータが送信される。従って、通信の安定化を図ることができる。
 [第4の実施の形態]
 次に第4の実施の形態について説明する。図20は本第4の実施の形態における動作例を表わすシーケンス図である。
 上述した第2及び第3の実施の形態では、各基地局200-1~200-3がデータに対してシーケンス番号を独立に割り振る例について説明した。本第4の実施の形態では、S-GW300がデータに対してシーケンス番号を割り振る例について説明する。この場合、各基地局200-1~200-3のPDCP送信部254ではシーケンス番号を割り振ることはなく、各基地局200-1~200-3における処理の簡素化や高速化を図ることができる。
 図20について説明する。マスター基地局200-1は、データフォワーディングする転送先の基地局を決定する(S12)と、データ転送パス切断要求(又はデータ転送経路切断要求)をS-GW300へ送信する(S50)。
 例えば、マスター基地局200-1の制御部280が転送先の基地局を決定すると、データフォワーディングの転送元の基地局に関する情報を含むデータ転送パス切断要求を生成して、レイヤ2処理部250-1~250-nを介してS-GW300へ送信する。
 S-GW300は、データ転送パス切断要求を受信すると(S50)、当該要求に従ってパスを切断する。
 例えば、S-GW300の経路状態管理部310は、データ転送パス切断要求をマスター基地局200-1から受信すると、当該要求に従って、基地局200-2に対してデータを送信しないように経路選択部320に指示する。これにより、S-GW300から基地局200-2へのパスが切断されて、データが基地局200-2へ送信されなくなる。経路状態管理部310は、パスを切断完了後に応答を生成し、マスター基地局200-1へ送信する。
 マスター基地局200-1は、S-GW300からデータ転送パス切断要求に対する応答をS-GW300から受信すると(S51)、Fowarding開始準備要求を基地局200-3へ送信する(S14)。
 その後、基地局200-2から基地局200-3へデータフォワーディングが行われる(S16,S19~S20)。
 基地局200-3は、データフォワーディングにより送達未確認データを受信すると、論理チャネルLCH#bの番号を論理チャネルLCH#cの番号へ変換(又は変更)する(S53)。
 本第4の実施の形態では、論理チャネル番号を変換することで、新規に論理チャネルをオープンする場合と比較して、例えば、メモリの有効活用化を図ることができる。
 例えば、第2及び第3の実施の形態で説明したように、新規に論理チャネルをオープンする場合、基地局200-3はメモリの所定領域を新たに確保して、当該領域を利用して端末100との無線通信などを行う。
 これに対して、本第4の実施の形態では、新規に論理チャネルをオープンすることはしないで、論理チャネルを変換するようにしているため、例えば、メモリに対して所定領域確保するなどの処理を行わなくてもよい。この場合、基地局200-3は、論理チャネルLCH#cとして既に利用しているメモリ領域を利用して、論理チャネルLCH#bのデータに対する処理を行うことができる。
 論理チャネルの番号の変換は、例えば、以下のようにして行われる。すなわち、基地局200-2の制御部280は、フォワーディング開始要求を受信すると(S19)、フォワーディングする送達未確認データ(Data#1)に対して、論理チャネルLCH#bの番号を付与するようにPDPC送信部254へ指示する。PDCP送信部254は、制御部280からの指示により、論理チャネルLCH#bの番号を付与した送達未確認データを、基地局200-3のPDCP送信部254へ送信する。基地局200-3のPDCP送信部254は、基地局200-3からデータを受信すると、データに付与された論理チャネルLCH#bの番号を抽出する。PDCP送信部254は、抽出した論理チャネルLCH#bの番号を制御部280へ通知する。そして、制御部280は、論理チャネルLCH#bの番号を自局で用いる論理チャネルLCH#cの番号に変換し、変換後の論理チャネルLCH#cの番号をPDCP送信部254へ出力する。PDCP送信部254は、変換後の論理チャネルLCH#cの番号をデータフォワーディングを受けたデータに付与して、当該データの全部又は一部を端末100へ向けて送信する。
 他方、マスター基地局200-1は、無線リンク状態変更要求を端末100へ送信する(S54)。無線リンク状態変更要求には、例えば、クローズする物理チャネル、クローズする論理チャネル番号と変換後の論理チャネル番号が含まれる。
 クローズする論理チャネル番号は、例えば、データフォワーディング元の基地局で用いられる論理チャネル番号であり、図20の例では、論理チャネルLCH#bの番号である。例えば、マスター基地局200-1の制御部280はフォワーディング開始準備要求(S14)に含めた論理チャネルLCH#bに関する情報に基づいてクローズする論理チャネルの番号を取得できる。
 また、変換後の論理チャネル番号は、例えば、データフォワーディング先の基地局で用いられる論理チャネル番号であり、図20の例では、論理チャネルLCH#cの番号である。例えば、マスター基地局200-1の制御部280は応答(S16)又はデータ転送パス確立処理(S10)により基地局200-3で用いる論理チャネルLCH#cの番号を取得できる。制御部280はこのように取得したクローズ及び変換後の論理チャネルの番号を無線リンク状態変更要求に含めて送信することができる。
 無線リンク状態変更要求を受信した端末100は、論理チャネルLCH#bをクローズする(S55)。また、端末100は、PDCP STATUS PDUを基地局200-3へ送信する(S22)。論理チャネルLCH#bのクローズと、PDCP STATUS PDUの送信は、例えば、端末100のレイヤ3処理部170で行われる。
 なお、本第4の実施の形態では、基地局200-3においては論理チャネルをオープンする処理はなく、端末100や基地局200-3はタイマーにより論理チャネルをクローズする処理は行われない。
 端末100は、無線リンク状態変更要求に対する設定が終了すると、無線リンク状態変更要求に対する応答を基地局200-1へ送信する(S56)。例えば、端末100のレイヤ3処理部170は論理チャネルLCH#bに関する情報をメモリから削除し、その後、応答を生成して基地局200-1へ向けて送信する。
 以上説明したように、本第4の実施の形態においても、端末100と3つの基地局200-1~200-3との間でデータ転送パスが確立された状態(S10)で、データフォワーディングが行われる(S20)。従って、データフォワーディング先の基地局200-3と端末100との間で別途データ転送パスを確立するための処理が行われず、そのため処理遅延を低減させることができる。
 また、端末100と基地局200-3との間でデータ転送パスが確立されているため(S10)、基地局200-2は基地局200-3へデータをフォワーディングしても、基地局200-3から端末100へフォワーディングされたデータが送信される。従って、通信の安定化を図ることができる。
 本第4の実施の形態においては、S-GW300においてシーケンス番号を割り振る例について説明した。例えば、S-GW300以外の上位装置においてもシーケンス番号を割り振るようにしてもよい。この場合、S-GW300はとくにシーケンス番号に対する処理を行うことなく、受信したデータを設定されたパスに従って各基地局200-1~200-3へ送信する。
 [第5の実施の形態]
 次に第5の実施の形態について説明する。第2から第4の実施の形態では、3つの基地局200-1~200-3と端末100との間でInter-eNB CAが行われる例について説明した。本第5の実施の形態では、2つの基地局200-1,200-2と端末100との間でInter-eNB CAが行われる例について説明する。
 図21は本第5の実施の形態における動作例を表わすシーケンス図である。図21の例では、マスター基地局200-1がデータフォワーディングの送信元の基地局、基地局200-2が送信先の基地局となっている。 
 また、本第5の実施の形態においては、第2の実施の形態で説明したForwarding開始要求(S19)は送信されない。本第5の実施の形態では、マスター基地局200-1自身がデータフォワーディング元の基地局となっているため、このような開始要求を行うことなく、データフォワーディングを行うことができる。或いは、Forwarding開始要求は、例えば、基地局200-1の制御部280において発行されるものの外部へ出力されずに内部的に処理が行われてもよい。
 本第5の実施の形態においても、端末100と2つの基地局200-1,200-2との間でデータ転送パスが確立された状態(S10)で、データフォワーディングが行われる(S20)。従って、データフォワーディング先の基地局200-2と端末100との間で別途データ転送パスを確立するための処理が行われず、そのため処理遅延を低減させることができる。
 また、端末100と基地局200-2との間でデータ転送パスが確立されているため(S10)、基地局200-1はデータを基地局200-2へフォワーディングしても、基地局200-2から端末100へフォワーディングされたデータが送信される。従って、通信の安定化を図ることができる。
 なお、本第5の実施の形態においても、上述した第3の実施の形態で説明したデータ転送パスの一時停止に関する処理や、第4の実施の形態で説明した論理チャネルの変換などの処理を行うこともできる。
 [その他の実施の形態]
 次にその他の実施の形態について説明する。
 第5の実施の形態では、2つの基地局200-1,200-2間でデータフォワーディング処理が行われる例について説明した。また、第2の実施の形態では、3つの基地局200-1~200-3間でデータフォワーディング処理が行われる例を説明した。4つ以上の基地局間でデータフォワーディングが行われる場合も、第2の実施の形態などと同様に処理を行うことで実施可能である。 
 図22は端末100のハードウェア構成例を表わす図である。端末100は、BB(ベースバンド)回路180とアプリケーション用処理回路190を備える。
 BB回路180は、無線回路181、変調回路182、コーデック回路183、DSP(Digital Signal Processor)184、データバッファ185、及びプロセッサ186を備える。
 また、アプリケーション用処理回路190は、画像入出力デバイス191、画像コーデック回路192、音声入出力デバイス193、音声コーデック回路194、及びプロセッサ195を備える。図22において点線で示された接続線は制御情報の授受を示し、実線で示された接続線はデータの授受を示す。点線と実線については図23と図24についても同様である。
 無線回路181は、デジタルベースバンド信号とアナログ無線周波数信号との変換などを行う。変調回路182は端末100と基地局200との間で送受信される信号のレイヤ1処理における変調処理及び復調処理を行う。コーデック回路183はレイヤ1処理における符号化処理及び復号化処理を行う。DSP184は変調回路182とコーデック回路183を制御する。
 プロセッサ186は、レイヤ3処理とレイヤ2処理を実行する。また、プロセッサ186は、呼接続の状態管理などを行う。
 データバッファ185は送受信データを格納し、BB回路180とアプリケーション用処理回路190との間において送受信データを中継する。また、データバッファ185には、論理チャネルと物理チャネルの関係に関する情報が格納され、さらに、トランスポートチャネルに関する情報も格納される場合がある。さらに、データバッファ185には、論理チャネルの番号も格納される。
 画像入出力デバイス191は画像信号の入出力を行う。画像コーデック回路192は、端末100と基地局200との間で送受信される画像信号の信号処理を実行する。音声入出力デバイス193は音声信号を入出力する。音声コーデック回路194は、端末100と基地局200との間で送受信される音声信号の信号処理を実行する。プロセッサ195は、画像コーデック回路192と音声コーデック回路194を制御する。
 第2の実施の形態におけるRF部110は、例えば、無線回路181に対応する。また、第2の実施の形態におけるレイヤ1処理部130は、例えば、変調回路182、コーデック回路183、及びDSP184に対応する。さらに、第2の実施の形態におけるレイヤ2処理部150とレイヤ3処理部170は、例えば、プロセッサ186に対応する。さらに、第2の実施の形態におけるアプリケーションレイヤ処理部175は、例えば、アプリケーション用処理回路190に対応する。
 図23は基地局200のハードウェア構成例を表わす図である。基地局200は、無線回路285、変調回路286、コーデック回路287、データバッファ288、メモリ289、プロセッサ290、レイヤ2処理用補助回路291、及び管理情報バッファ292を備える。
 無線回路285は、デジタルベースバンド信号とアナログ無線周波数信号との間の変換を行う。変調回路286は、端末100と基地局200との間で送受信される信号のレイヤ1処理における変調処理及び復調処理を行う。コーデック回路287は、レイヤ1処理における符号化処理及び復号化処理を行う。データバッファ288と管理情報バッファ292は、送受信データを格納し、基地局200とMME/S-GW300との間で送受信されるデータを中継する。
 メモリ289は、データに付与される論理チャネル番号やシーケンス番号が格納される。また、メモリ289は、論理チャネルと物理チャネルの関係に関する情報が格納され、さらに、トランスポートチャネルに関する情報も格納される場合がある。さらに、メモリ289には、基地局200において論理チャネルLCHをオープンしたときに所定領域が確保されて、当該領域を利用して送信データの読み出しや書き込みが行われる。
 プロセッサ290は、変調回路286とコーデック回路287の制御、レイヤ2処理及びレイヤ3処理、ユーザの接続状態の管理、スケジューリング処理などを実行する。レイヤ2処理用補助回路291は、レイヤ2処理の一部を実行する。
 第2の実施の形態におけるRF部210は、例えば、無線回路285に対応する。また、第2の実施の形態におけるレイヤ1処理部220は、例えば、変調回路286、コーデック回路287、及びプロセッサ290に対応する。さらに、第2の実施の形態におけるレイヤ2処理部250-1~250-nは、例えば、プロセッサ290、レイヤ2処理用補助回路291、データバッファ288、及び管理情報バッファに対応する。さらに、第2の実施の形態におけるレイヤ3処理部270と制御部280は、例えば、プロセッサ290とデータバッファ288に対応する。
 図24はMME/S-GW300のハードウェア構成例を表わす図である。MME/S-GW300は、管理情報バッファ330、データ転送処理補助回路331、データバッファ332、及びプロセッサ333を備える。
 管理情報バッファ330は経路情報を格納する。管理情報バッファ330とデータバッファ332は、送受信データを格納し、基地局200とMME/S-GW300との間において送受信データを中継する。データ転送処理補助回路331は、基地局200とMME/S-GW300との間のデータ転送を補助する。
 プロセッサ333は、端末100へのデータ送信のために選択可能な経路に関する経路情報を、端末100毎に管理するユーザモビリティ処理を実行する。また、プロセッサ333は、端末100へのデータをどの基地局200に転送するかを判断する転送経路判断処理を実行する。さらに、プロセッサ333は、基地局200から報告される所定の状態に関する通知を監視する。また、プロセッサ333は、基地局200の所定の状態に応じて転送経路を判断する。さらに、プロセッサ333は、データに付加されるシーケンス番号を管理する処理を実行する。
 第2の実施の形態における経路状態管理部310は、例えば、管理情報バッファ330、データ転送補助回路331、及びプロセッサ333に対応する。また、第2の実施の形態における経路選択部320は、例えば、データ転送処理補助回路331、データバッファ332、及びプロセッサ333に対応する。
 なお、端末100のプロセッサ186,195、基地局200のプロセッサ290、及びMME/S-GW300のプロセッサ333、例えば、CPU(Central Processing Unit)やFPGA(Filed Programmable Gate Array)、MPU(Micro Processing Unit)としてもよい。
10:無線通信システム        
100(100-1~100-3):端末装置
110:RF部            130:レイヤ1処理部
135:測定部            150:レイヤ2処理部
170:レイヤ3処理部        
175:アプリケーションレイヤ処理部
200(200-1~200-3):基地局装置
210:RF部            220:レイヤ1処理部
250-1~250-n:レイヤ2処理部
254:PDCP送信部        270:レイヤ3処理部
280:制御部            289:メモリ
290:プロセッサ          295-1:第1の送信部
295-2:第2の送信部       300:MME/S-GW
310:経路状態管理部

Claims (15)

  1.  端末装置と、
     第1又は第2の周波数帯域に属する第1の周波数を利用して前記端末装置と無線通信を行う第1の基地局装置と、
     前記第1又は第2の周波数帯域に属する第2の周波数を利用して前記端末装置と無線通信を行う第2の基地局装置とを備え、前記第1及び第2の基地局装置は前記第1及び第2の周波数を夫々利用して第1及び第2のデータを前記端末装置へ同時に夫々送信する無線通信システムにおいて、
     前記第1の基地局装置は、前記端末装置との間の無線通信品質が閾値以下となったとき、前記端末装置に対して送達確認のとれていない送達未確認データを、前記端末装置と無線通信リンクが確立された前記第2の基地局装置へ転送する第1の送信部を備え、
     前記第2の基地局装置は、前記第1の基地局装置から受信した前記送達未確認データの全部又は一部を前記端末装置へ送信する第2の送信部を備えることを特徴とする無線通信システム。
  2.  前記第2の送信部は、前記第1の基地局装置において前記送達未確認データを送信するために用いる第1の論理チャネルをオープンし、当該第1の論理チャネルを用いて前記送達未確認データの全部又は一部を送信し、
     前記第2の基地局装置は、前記送達未確認データを前記第1の基地局装置から受信後、所定時間経過後に前記第1の論理チャネルをクローズする制御部を備えることを特徴とする請求項1記載の無線通信システム。
  3.  前記第1の送信部は、前記第1の基地局装置において前記送達未確認データを送信するために用いる第1の論理チャネルをクローズする時間を示すタイマー値を前記端末装置へ送信し、
     前記端末装置は前記タイマー値を受信後、前記タイマー値により表わされた時間経過後に前記第1の論理チャネルをクローズすることを特徴とする請求項1記載の無線通信システム。
  4.  前記第2の送信部は、第2の論理チャネルに対応する前記第2の周波数を用いて前記第2のデータを前記端末装置へ送信し、前記第1の論理チャネルと前記第2の論理チャネルについては前記第2の周波数を用いて前記端末装置と無線通信を行うことを特徴とする請求項2記載の無線通信システム。
  5.  前記第1の送信部は、前記第1の論理チャネルと前記第2の論理チャネルについては前記第2の周波数を用いて前記第2の基地局装置が前記端末装置と無線通信を行うことに関する状態変更情報を前記端末装置へ送信し、
     前記端末装置は、前記第1の論理チャネルと前記第2の論理チャネルについては前記第2の周波数を用いて前記第2の基地局装置と無線通信を行うことを特徴とする請求項4記載の無線通信システム。
  6.  前記第2の基地局装置は、前記第1の基地局装置が前記送達未確認データを前記端末装置へ送信するときに用いる第1の論理チャネルに関する番号を、前記第2の基地局装置が前記第2のデータを前記端末装置へ送信するときに用いる第2の論理チャネルに関する番号に変換する制御部を備え、
     前記第2の送信部は、前記第2の論理チャネルを用いて前記送達未確認データの全部又は一部を前記端末装置へ送信することを特徴とする請求項1記載の無線通信システム。
  7.  前記第1の送信部は、前記第1及び第2の論理チャネルに関する番号を前記端末装置へ送信し、
     前記端末装置は前記第1の論理チャネルをクローズすることを特徴とする請求項6記載の無線通信システム。
  8.  更に、前記第1又は第2の基地局装置を介して前記端末装置へ至る経路を設定し、設定された経路に従って前記第1又は前記第2のデータを前記第1又は第2の基地局装置へ夫々送信するゲートウェイ装置を備え、
     前記第2の送信部は、前記所定時間経過後、前記第1の基地局装置へ至る経路の切断を要求するデータ転送経路切断要求を前記ゲートウェイ装置へ送信することを特徴とする請求項2記載の無線通信システム。
  9.  更に、前記第1又は第2の基地局装置を介して前記端末装置へ至る経路を設定し、設定された経路に従って前記第1又は前記第2のデータを前記第1又は第2の基地局装置へ夫々送信するゲートウェイ装置を備え、
     前記第1の送信部は、前記ゲートウェイ装置が前記第1の基地局装置へ前記第1のデータを送信することを一時停止することを要求するデータ転送経路一時停止要求を前記ゲートウェイ装置へ送信することを特徴とする請求項1記載の無線通信システム。
  10.  更に、前記第1又は第2の基地局装置を介して前記端末装置へ至る経路を設定し、設定された経路に従って前記第1又は前記第2のデータを前記第1又は第2の基地局装置へ夫々送信するゲートウェイ装置を備え、
     前記第1の送信部は、前記第1の基地局装置へ至る経路の切断を要求するデータ転送経路切断要求を前記ゲートウェイ装置へ送信することを特徴とする請求項6記載の無線通信システム。
  11.  前記第1の送信部は、前記状態変更情報の送信有無を制御チャネル又はレイヤ2パケットデータに含めて前記端末装置へ送信することを特徴とする請求項5記載の無線通信システム。
  12.  前記第1の送信部は、前記第1及び第2の論理チャネルに関する番号の送信有無を制御チャネル又はレイヤ2パケットデータに含めて前記端末装置へ送信することを特徴とする請求項7記載の無線通信システム。
  13.  前記第1の基地局装置は、前記無線通信品質に基づいて前記送達未確認データの送信先を前記第2の基地局装置に決定する制御部を備え、
     前記第1の送信部は、前記決定に従って前記第2の基地局装置へ前記送達未確認データを送信することを特徴とする請求項1記載の無線通信システム。
  14.  第1又は第2の周波数帯域に属する第1の周波数を利用して第1のデータを端末装置へ送信する際に、他の基地局装置が前記第1又は第2の周波数帯域に属する第2の周波数を利用して第2のデータを前記端末装置へ送信する時と同時に、前記第1のデータを前記第1の周波数を利用して前記端末装置へ送信する基地局装置において、
     前記端末装置との間の無線通信品質が閾値以下となったとき、前記端末装置に対して送達確認のとれていない送達未確認データを、前記端末装置と無線通信リンクが確立された前記他の基地局装置へ転送する送信部
     を備えることを特徴とする基地局装置。
  15.  端末装置と、第1又は第2の周波数帯域に属する第1の周波数を利用して前記端末装置と無線通信を行う第1の基地局装置と、前記第1又は第2の周波数帯域に属する第2の周波数を利用して前記端末装置と無線通信を行う第2の基地局装置とを備え、前記第1及び第2の基地局装置は前記第1及び第2の周波数を夫々利用して第1及び第2のデータを前記端末装置へ同時に夫々送信する無線通信システムにおけるデータ転送方法であって、
     前記第1の基地局装置は、前記端末装置との間の無線通信品質が閾値以下となったとき、前記端末装置に対して送達確認のとれていない送達未確認データを、前記端末装置と無線通信リンクが確立された前記第2の基地局装置へ転送し、
     前記第2の基地局装置は、前記第1の基地局装置から受信した前記送達未確認データの全部又は一部を前記端末装置へ送信する
     ことを特徴とするデータ転送方法。
PCT/JP2014/050114 2014-01-08 2014-01-08 無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法 WO2015104802A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015556662A JPWO2015104802A1 (ja) 2014-01-08 2014-01-08 無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法
PCT/JP2014/050114 WO2015104802A1 (ja) 2014-01-08 2014-01-08 無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/050114 WO2015104802A1 (ja) 2014-01-08 2014-01-08 無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法

Publications (1)

Publication Number Publication Date
WO2015104802A1 true WO2015104802A1 (ja) 2015-07-16

Family

ID=53523654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050114 WO2015104802A1 (ja) 2014-01-08 2014-01-08 無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法

Country Status (2)

Country Link
JP (1) JPWO2015104802A1 (ja)
WO (1) WO2015104802A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022514844A (ja) * 2018-12-21 2022-02-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 通信ネットワークにおける無線アクセスに関連した方法、装置、および機械可読媒体
US11929780B2 (en) 2019-06-24 2024-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus and machine-readable mediums related to wireless communication in communication networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519910A (ja) * 2001-02-27 2004-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信システム
JP2013223074A (ja) * 2012-04-16 2013-10-28 Ntt Docomo Inc 移動局及び移動通信方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9225449B2 (en) * 2012-05-11 2015-12-29 Intel Corporation Performing a handover in a heterogeneous wireless network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519910A (ja) * 2001-02-27 2004-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信システム
JP2013223074A (ja) * 2012-04-16 2013-10-28 Ntt Docomo Inc 移動局及び移動通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG, RESEARCH IN MOTION LTD., FUJITSU,: "Unique logical channel identity per UE", 3GPP TSG-RAN WG2#70 R2-102993, 10 May 2010 (2010-05-10) - 14 October 2010 (2010-10-14), MONTREAL, CANADA, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_70/Docs/R2-102993.zip> *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022514844A (ja) * 2018-12-21 2022-02-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 通信ネットワークにおける無線アクセスに関連した方法、装置、および機械可読媒体
JP7357058B2 (ja) 2018-12-21 2023-10-05 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 通信ネットワークにおける無線アクセスに関連した方法、装置、および機械可読媒体
US11929780B2 (en) 2019-06-24 2024-03-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus and machine-readable mediums related to wireless communication in communication networks

Also Published As

Publication number Publication date
JPWO2015104802A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
US20230179533A1 (en) Efficient discard mechanism in small cell deployment
CN110463270B (zh) 用于动态数据中继的系统和方法
US11743796B2 (en) Communications device, infrastructure equipment, wireless communications network and methods
US9973322B2 (en) Data split between multiple sites
JP5355788B2 (ja) 中継ノードとのハンドオーバを実施するための方法および装置
JP4991939B2 (ja) 基地局内ハンドオーバ最適化のための方法
US20120250601A1 (en) Communication terminal, method for exchanging data, communication device and method for establishing a communication connection
US9832799B2 (en) Mobile communication system, user terminal, and base station
KR20100076866A (ko) 무선통신 시스템에서 무선 베어러 해제 방법 및 수신기
US20190380066A1 (en) Handover of terminal between nodes supporting two rats
CN111373837A (zh) 用于在无线通信系统中发送和接收数据的方法和装置
JP2017535202A (ja) 信頼できない送信モードのための発展型データ圧縮方式
WO2015104802A1 (ja) 無線通信システム、基地局装置、及び無線通信システムにおけるデータ転送方法
CN112753243A (zh) 无线通信系统中的无线节点通信方法和装置
WO2015125698A1 (ja) ネットワーク選択制御方法、基地局、及びユーザ端末
EP4154594A1 (en) Method of wtru to network relay handover
CN113767671A (zh) 下一代移动通信系统中用于无数据发送和接收中断的切换的方法和设备
US11641580B2 (en) Method and device used for wireless communication
US20240114399A1 (en) Handover with an active multi-cast broadcast session
US20240163673A1 (en) Method and device for applying integrity protection or verification procedure to enhance security in wireless communication system
WO2023154413A1 (en) Methods and apparatus for packet data convergence protocol (pdcp) transmit buffer handling
WO2024097885A1 (en) Performing an indirect to direct/indirect lossless handover

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14878135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015556662

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14878135

Country of ref document: EP

Kind code of ref document: A1