WO2015104787A1 - Energy management device and energy management system - Google Patents

Energy management device and energy management system Download PDF

Info

Publication number
WO2015104787A1
WO2015104787A1 PCT/JP2014/006492 JP2014006492W WO2015104787A1 WO 2015104787 A1 WO2015104787 A1 WO 2015104787A1 JP 2014006492 W JP2014006492 W JP 2014006492W WO 2015104787 A1 WO2015104787 A1 WO 2015104787A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
hot water
information
power supply
energy management
Prior art date
Application number
PCT/JP2014/006492
Other languages
French (fr)
Japanese (ja)
Inventor
義隆 手塚
賢二 中北
新平 日比谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015104787A1 publication Critical patent/WO2015104787A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/02Photovoltaic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/26Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/405Cogeneration of heat or hot water
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention generally relates to an energy management device and an energy management system, and more particularly to an energy management device and an energy management system that manage a combination of a storage battery and a cogeneration device.
  • a power supply system having a backup function for supplying power during a power failure using a storage battery and a distributed power source (solar cell, fuel cell, etc.) has been provided.
  • a distributed power source solar cell, fuel cell, etc.
  • reports the dischargeable time of a storage battery is proposed based on the electrical storage power of a storage battery, the generated power of a distributed power supply, and the power consumption of a load (for example, international publication number 2011/142330). reference).
  • the cogeneration apparatus As a distributed power source used by a power supply system, there is a cogeneration device that generates hot water from water using exhaust heat generated during power generation operation.
  • the cogeneration apparatus stores hot water generated during a power generation operation in a hot water storage tank, and a user can use the hot water in the hot water storage tank.
  • the load is supplied using the stored power of the storage battery and the generated power of the cogeneration system.
  • the energy management apparatus which manages the electric power supply to load produced
  • the cogeneration system stops power generation when the amount of hot water storage is full.
  • the conventional energy management device does not consider the power generation capability of the cogeneration device depending on the amount of stored hot water. Therefore, the accuracy of information regarding power supply at the time of a power failure is low, and it is difficult for the user to properly adjust the operation of the load during the power failure period, for example, at a timing when power supply to the load during the power failure period is not intended. There was a situation of stopping.
  • the present invention has been made in view of the above reasons, and its purpose is to consider the power generation capability of the cogeneration device depending on the amount of stored hot water, and an energy management device capable of accurately reporting information on the power that can be supplied to the load, And to provide an energy management system.
  • the energy management device of the present invention is a load using a storage battery and a cogeneration device that generates hot water from water during power generation and stops the power generation when the amount of hot water stored in the hot water storage tank that stores the generated hot water exceeds a predetermined amount.
  • An energy management device for managing power supply to the information acquisition unit for acquiring information on power consumption of the load, stored power of the storage battery, and hot water storage amount of the hot water storage tank, and hot water storage amount of the hot water storage tank A time calculation unit for deriving a power generation possible time during which the cogeneration device can continue power generation, and the storage battery based on the stored power of the storage battery, the power generation possible time of the cogeneration device, and the power consumption of the load.
  • the cogeneration apparatus power supply information relating to power that can be supplied to the load is generated, and the power supply information is output to the notification unit Characterized in that it comprises a feeding information generating unit that.
  • the energy management system of the present invention includes a storage battery, a cogeneration device that generates hot water from water during power generation and stores the generated hot water when a hot water storage amount of the hot water storage tank exceeds a predetermined amount, and the storage battery.
  • An energy management device that manages power supply to a load using the cogeneration device and generates power supply information related to power that can be supplied to the load, and a notification unit that notifies the power supply information generated by the energy management device
  • the energy management device includes an information acquisition unit that acquires information on power consumption of the load, stored power of the storage battery, and hot water storage amount of the hot water storage tank, and the code based on the hot water storage amount of the hot water storage tank.
  • a time calculation unit for deriving a power generation possible time during which the generation device can continue power generation, the stored power of the storage battery, and the cogeneration system The power generation time of the Deployment apparatus, generates the feed information based on the power consumption of the load, characterized in that it comprises a feeding information generating unit that outputs the power supply information to the notifying unit.
  • the present invention has an effect of accurately reporting information on the power that can be supplied to the load in consideration of the power generation capability of the cogeneration device depending on the amount of hot water stored in the hot water storage tank.
  • the energy management system includes a distribution board 10, a self-supporting distribution board 20, a power switch 30, a measuring device 40, a power conversion device 50, a storage battery 62, a fuel cell 63, an energy management device 81, and a display terminal 82 as main components. .
  • the power supply system includes four types of power sources 61, storage batteries 62, fuel cells 63, and solar cells 64 as power sources for supplying power to the load.
  • the system power supply 61 is a commercial power supply supplied from a power supply company such as an electric power company through a distribution network.
  • the storage battery 62 is composed of a lithium ion battery or the like.
  • the fuel cell 63 is a cogeneration apparatus that uses hydrogen gas generated by reforming a fuel gas containing methane or propane, and a hot water storage tank 632 is attached to the power generation unit 631 (see FIG. 2).
  • the power generation unit 631 generates power using the fuel cell unit, and further generates hot water from water using exhaust heat generated during the power generation operation.
  • the hot water storage tank 632 stores hot water generated from water during the power generation operation of the power generation unit 631. Then, the fuel cell 63 stops the power generation by the power generation unit 631 when the amount of hot water stored in the hot water storage tank 632 exceeds a predetermined amount.
  • the fuel cell 63 has both functions of power generation and water heating. Further, the fuel cell 63 includes an auxiliary heat source that performs additional heating when the amount of heat stored as hot water in the hot water storage tank 632 is insufficient. Further, the fuel cell 63 may include an auxiliary heat source that is used when the hot water stored in the hot water storage tank 632 is replenished.
  • the fuel cell 63 can communicate with a remote controller 63 a used for managing the operating state of the fuel cell 63.
  • the solar cell 64 generates power by sunlight.
  • the solar cell 64 is illustrated as a power source capable of reverse power flow to the system power source 61.
  • the solar cell 64 is a power source that generates power using natural energy such as wind power, hydropower, and geothermal heat. Can be substituted.
  • the storage battery 62 and the fuel cell 63 are illustrated as power supplies that do not perform reverse power flow to the system power supply 61.
  • the fuel cell 63 it is also possible to use a cogeneration device that generates power using a gas engine (gas micro turbine).
  • Distribution line L1 connected to system power supply 61 is connected to distribution board 10 (see FIG. 2).
  • the distribution board 10 has a main body breaker 11 having a primary side connected to the distribution line L1 and a plurality of branch breakers 12 for branching power on the secondary side of the main circuit breaker 11 incorporated in the casing.
  • Each branch breaker 12 supplies power to the load 70 through the branch line L2.
  • a plurality of loads 70 are collectively denoted by reference numerals, but the reference numerals 70 indicate individual loads.
  • the distribution board 10 incorporates an interconnection breaker 13 and a current sensor X3.
  • the interconnection breaker 13 is connected to the primary circuit (distribution line L1) of the main breaker 11, and is inserted between the power converter 50 and the distribution line L1.
  • the interconnection breaker 13 forms a path for supplying the power generated by the solar battery 64 to the primary circuit of the main breaker 11 and forms a path for using the power received from the system power supply 61 for charging the storage battery 62.
  • the interconnection breaker 13 is a so-called remote control breaker, and is switched on / off according to an instruction from the power conversion device 50.
  • the current sensor X3 is arranged so as to detect a current passing through the main breaker 11.
  • the current sensor X ⁇ b> 3 is arranged in the distribution line L ⁇ b> 1 so as to measure the current passing through the electrical path between the connection point with the interconnection breaker 13 and the main breaker 11.
  • the current sensor X3 is arranged so as to individually detect currents of two voltage lines (U phase and W phase) of the single phase three wires.
  • the current sensor X3 assumes a current transformer having a core as a specific configuration, but may be configured to use a coreless coil (so-called Rogowski coil) or a magnetic sensor. The same applies to the current sensors X1, X2, X4 to X7 described below, and the specific configuration of each of the current sensors X1, X2, X4 to X7 conforms to the configuration of the current sensor X3.
  • One of the plurality of branch breakers 12 built in the distribution board 10 is connected to the independent distribution board 20 through a branch line L3 corresponding to a single-phase three-wire.
  • a power source switch for selecting one of the power supplied from the branch breaker 12 connected to the branch line L3 and the power supplied from the power converter 50 and supplying it to the independent distribution board 20
  • a container 30 is inserted.
  • the power switch 30 includes an electromagnetic relay that conducts and cuts off the power supplied from the branch breaker 12 connected to the branch line L3 and the power supplied from the power converter 50.
  • the independent distribution board 20 supplies power to a load 80, a measuring device 40, a measuring point switching device (to be referred to as a switching device hereinafter) 90, which will be described later, and the like that require power supply even during a power failure period when power is not supplied from the system power supply 61.
  • a switching device to be referred to as a switching device hereinafter
  • FIG. 2 a plurality of loads 80 are collectively indicated by a reference numeral 80, but the reference numeral 80 indicates an individual load.
  • the load 81 is an energy management device
  • the load 82 is a display terminal (notification unit), which are hereinafter referred to as an energy management device 81 and a display terminal 82.
  • the load 70 is referred to as a “general load”, and the load 80 is referred to as a “specific load”.
  • the specific load 80 includes an energy management device 81 and a display terminal 82.
  • the energy management device 81 has a memory (recording medium) that can be read by a processor or a computer, and the function of the energy management device 81 is realized by the processor executing a program stored in the memory. .
  • the program may be provided through a telecommunication line such as the Internet.
  • the self-supporting distribution board 20 includes a main body breaker 21 and a plurality of branch breakers 22 that branch power on the secondary side of the main circuit breaker 21 in a casing.
  • the primary side of the main breaker 21 is connected to the power switch 30 and either one of the power supplied from the branch breaker 12 connected to the branch line L3 and the power supplied from the power converter 50 is used. Is supplied.
  • Each branch breaker 22 supplies power to the specific load 80, the measuring device 40, and the switching device 90 through the branch line L4.
  • the specific load 80, the measuring device 40, and the switching device 90 can be operated by the power supplied from the distribution board 10 during the energization period in which the power is supplied from the system power supply 61.
  • the specific load 80, the measuring device 40, and the switching device 90 can be operated by the power supplied from the power conversion device 50 during a power failure period in which power is not supplied from the system power supply 61.
  • one branch breaker 22 among the plurality of branch breakers 22 is connected to the fuel cell 63 through the connection line L5.
  • the power generated by the fuel cell 63 can be supplied to the specific load 80, the measuring device 40, and the switching device 90 via the connection line L5 and the independent distribution board 20.
  • the electric power generated by the fuel cell 63 can be supplied to the distribution board 10 through the main breaker 21, the electric power can also be supplied from the fuel cell 63 to the general load 70.
  • the power converter 50 includes a storage battery 62 and a solar battery 64 connected to each other, and has a function of transferring power to and from the distribution board 10 and a function of supplying power to the independent distribution board 20. 51 (see FIG. 2). Furthermore, the power conversion device 50 includes a transformer 52 that converts the power output from the power converter 51 in two lines into three lines (see FIG. 2).
  • the power converter 51 converts the DC power generated by the solar battery 64 into AC power that can be connected to the system power supply 61. Further, the power converter 51 monitors and controls the charging current and discharging current of the storage battery 62, and converts the DC power discharged by the storage battery 62 into AC power.
  • the power converter 51 includes an interconnection terminal 55 connected to the interconnection breaker 13 and an independent output unit 56 that supplies electric power to the transformer 52. Then, the power converter 51 determines whether the system power supply 61 is energized or out of power (whether or not power can be received from the system power supply 61) using the voltage between the terminals of the interconnection terminal 55.
  • the interconnection terminal 55 is connected to the distribution line L ⁇ b> 1 via the interconnection breaker 13, and can be connected to the grid during the energization period of the grid power supply 61.
  • the interconnection terminal 55 is a single-phase three-wire system, is connected to the interconnection breaker 13 through the connection line L6, and the interconnection breaker 13 is connected to the distribution line L1 that is the primary side of the main breaker 11. Connected through.
  • connection line L6 is a path for supplying AC power obtained from the generated power of the solar battery 64 or the stored power of the storage battery 62 to the main breaker 11 of the distribution board 10, or the generated power of the solar battery 64 is reversed to the distribution line L1. Used as a tidal path. Further, the connection line L6 is also used as a path for charging the storage battery 62 using electric power supplied from the system power supply 61 through the distribution line L1. The output voltage between the terminals of the interconnection terminal 55 is determined by the line voltage of the system power supply 61.
  • the power converter 51 also has a function of monitoring and controlling the power flowing backward.
  • the output of the current sensor X2 is input to the power converter 51.
  • the power converter 51 determines whether or not a reverse power flow from the consumer to the system power supply 61 is generated based on the output of the current sensor X2, and the power flow is reversed.
  • Current sensor X2 is arranged to individually detect currents passing through two voltage lines in a single-phase three-wire.
  • the power converter 51 uses the relationship between the phase of the current monitored by the current sensor X2 and the phase of the voltage between the terminals of the interconnection terminal 55 to determine whether a reverse power flow from the customer to the system power supply 61 has occurred. Judging.
  • the voltage between the terminals in the interconnection terminal 55 has the same voltage and the same phase as the line voltage of the distribution line L1 electrically connected to the interconnection terminal 55. Therefore, the power converter 51 uses the voltage waveform between the terminals of the interconnection terminal 55 and the current waveform monitored by the current sensor X2, and reverses the sign of an integrated value obtained by integrating the power for one period of the voltage waveform. Determine whether there is a tidal current.
  • the power converter 51 uses the output of the current sensor X2 in the same manner as described above in order to monitor whether or not the stored power of the storage battery 62 is flowing backward without being consumed by the consumer.
  • the self-supporting output unit 56 of the power converter 51 does not output power to the transformer 52 during the energization period of the system power supply 61 and outputs power to the transformer 52 during the power failure period of the system power supply 61.
  • the self-supporting output unit 56 is a single-phase two-wire system, and is connected to the primary side of the transformer 52 by two wires, and only supplies power to the transformer 52.
  • the voltage between the terminals of the self-supporting output unit 56 is kept at a constant voltage (for example, 200V).
  • a self-supporting terminal 57 is provided on the secondary side of the transformer 52, and the power output from the self-supporting terminal 57 is derived from at least one of the solar battery 64 and the storage battery 62.
  • the self-supporting terminal 57 is connected to the power switch 30 through a connection line L7 corresponding to a single-phase three-wire.
  • the power converter 51 determines whether the system power supply 61 is energized or is in a power failure using the voltage between the terminals of the interconnection terminal 55. Then, the power converter 51 controls the switching operation of the power switch 30 using the determination result of energization / power failure.
  • the power switch 30 connects the connection line L3 to the main breaker 21 of the independent distribution board 20 and connects the connection line L7 to the main breaker 21 of the independent distribution board 20 according to an instruction from the power converter 51. Switch between states. That is, the self-standing distribution board 20 is supplied with power through the distribution board 10 while power is being supplied from the system power supply 61, and the power conversion device 50 during a power outage when the power from the system power supply 61 is stopped. Is supplied without passing through the distribution board 10.
  • the switching operation of the power switch 30 is performed by the contact signal which the power converter 51 outputs, for example, the signal form is not limited.
  • the power converter 51 transmits the determination result (power failure information) of energization / power failure to the measuring device 40. Further, the power converter 51 transmits information on the storage battery 62 (accumulated power, discharge power, device information, error information, etc.) and information on the solar cell 64 (generated power, device information, error information, etc.) to the measuring device 40. To do.
  • the communication path between the power converter 51 and the measuring device 40 and the communication path between the power converter 51 and the storage battery 62 perform serial communication with specifications conforming to the RS485 standard, for example. It is not essential that the communication path conforms to the RS485 standard, and the communication path can also be realized by wireless communication or power line carrier communication using a wired communication path. Moreover, you may use combining these communication technologies.
  • the power conversion device 50 includes a switching instruction unit 53 that gives an instruction by a switching signal to the switching device 90.
  • the switching instruction unit 53 gives a switching signal indicating energization / power failure to the switching device 90, and this switching signal is also transmitted to the fuel cell 63 through the switching device 90.
  • this switching signal is a contact signal, for example, and the signal form is not limited.
  • the switching device 90 determines the current value monitored by the fuel cell 63 from either the current sensor X3 built in the distribution board 10 or the current sensor X5 that measures the current passing through the main breaker 21 of the independent distribution board 20. Select whether to get from. That is, the switching device 90 connects the current sensor X3 to the fuel cell 63 while the system power supply 61 is energized, and connects the current sensor X5 to the fuel cell 63 during the power failure period of the system power supply 61.
  • the fuel cell 63 determines whether or not reverse power flow has occurred based on the current monitored by the current sensors X3 and X5. That is, the fuel cell 63 uses each output of the current sensors X3 and X5 in order to monitor whether or not the generated power of the fuel cell 63 is flowing backward without being consumed by the consumer. Specifically, the fuel cell 63 uses the output of the current sensor X3 in order to detect a reverse power flow to the system power supply 61 when the system power supply 61 is energized. Further, the fuel cell 63 uses the output of the current sensor X5 in order to detect a reverse power flow to the connection line L7 at the time of a power failure of the system power supply 61.
  • the outputs of the current sensors X3 and X5 are input to the fuel cell 63 via the switching device 90, and the fuel cell 63 outputs all of the outputs from the fuel cell 63 based on the outputs of the current sensors X3 and X5. It is judged whether electric power is consumed by a consumer.
  • the electric power generated by the fuel cell 63 is monitored by the current sensor X4.
  • the current sensor X4 monitors the current passing through the connection line L5 that connects the fuel cell 63 and the branch breaker 22.
  • the output of the current sensor X4 is input to the measuring device 40, and the measuring device 40 monitors the power passing through the connection line L5.
  • the fuel cell 63 communicates with the power conversion device 50 through the switching device 90. That is, a switching signal indicating energization / power failure of the system power supply 61 is also notified from the power conversion device 50 to the fuel cell 63 through the switching device 90. Therefore, the fuel cell 63 can recognize which power is supplied from the interconnection terminal 55 or the self-supporting terminal 57 of the power conversion device 50.
  • the power conversion device 50 communicates with the remote controller 54 in order to allow the user to instruct and monitor the operation.
  • a current sensor X1 is arranged on the primary distribution line L1 of the main breaker 11 in order to measure the electric power received from the system power supply 61.
  • a current sensor X2 is disposed between the current sensor X1 and the main breaker 11 in order to detect a reverse power flow to the system power supply 61.
  • the current sensor X2 monitors the current at a position closer to the system power supply 61 than the connection point between the main breaker 11 and the interconnection breaker 13 in the distribution line L1.
  • the current sensor X3 is arranged so as to measure the current passing through the electric path between the connection point with the interconnection breaker 13 and the main breaker 11.
  • the current sensor X4 monitors the current passing through the connection line L5 connecting the fuel cell 63 and the branch breaker 22, and the current sensor X5 measures the current passing through the main breaker 21 of the self-supporting distribution board 20. .
  • the current sensor X6 is disposed on the branch line L2 and monitors the current supplied to the general load 70.
  • the current sensor X7 is disposed on the branch line L4 and monitors the current supplied to the specific load 80.
  • current sensor X1, X4, X6, X7 is connected to measuring device 40, and measuring device 40 acquires each current value which current sensor X1, X4, X6, X7 measured regularly.
  • the measuring device 40 measures the power received from the system power supply 61 based on the current value measured by the current sensor X1, and generates power purchase information (power purchase information, power sale information). Moreover, the measuring device 40 measures the power consumption of the general load 70 based on the current value measured by the current sensor X6, and generates power consumption information (general load). The measuring device 40 measures the power consumption of the specific load 80 based on the current value measured by the current sensor X7, and generates power consumption information (specific load).
  • the measurement device 40 communicates with the power conversion device 50 to thereby obtain information on the storage battery 62 (accumulated power, discharge power, device information, error information, etc.) and information on the solar cell 64 (generated power, device information, error information). Etc.), power outage information indicating the result of energization / power outage determination is acquired.
  • the measuring device 40 measures the generated power of the fuel cell 63 based on the current value measured by the current sensor X4, and generates power generation information (fuel cell).
  • the measuring device 40 uses the information on power trading, power consumption information (general load), power consumption information (specific load), storage battery 62 information, solar battery 64 information, power outage information, power generation information (fuel cell) as energy. Wireless transmission to the management device 81.
  • the energy management device 81 is a measuring device for buying and selling power information, power consumption information (general load), power consumption information (specific load), storage battery 62 information, solar cell 64 information, power failure information, and power generation information (fuel cell). 40.
  • the energy management device 81 and the fuel cell 63 are configured to be capable of wireless communication with each other, and the energy management device 81 wirelessly communicates with the fuel cell 63 to thereby obtain information on the fuel cell 63 (hot water storage in the hot water storage tank 632). Quantity, device information, error information, etc.).
  • the energy management device 81 can communicate with the power converter 51 via the measurement device 40 by wirelessly communicating with the measurement device 40.
  • the energy management device 81 can also communicate with the fuel cell 63 wirelessly.
  • the energy management apparatus 81 controls each operation
  • the energy management device 81 supplies power to the general load 70 and the specific load 80 using the power of the system power supply 61, the storage battery 62, the fuel cell 63, and the solar battery 64. Do. Further, the energizing energy management device 81 charges the storage battery 62 using the power of the system power supply 61 and the solar battery 64. In addition, the energized energy management device 81 also controls the amount of power to be reversely flowed to the system power supply 61 using the generated power of the solar battery 64.
  • the energy management device 81 supplies power to the specific load 80 using each power of the storage battery 62, the fuel cell 63, and the solar cell 64 if the system power supply 61 is in a power failure. Further, the energy management device 81 during a power outage charges the storage battery 62 using the power of the solar battery 64.
  • the energy management device 81 and the display terminal 82 are configured to be capable of wireless communication with each other.
  • the energy management device 81 In response to a request from the display terminal 82, the energy management device 81 generates display information for causing the display terminal 82 to display the above information, the control states of the power converter 51 and the fuel cell 63, and the like. Transmit to the terminal 82.
  • the display terminal 82 displays the received display information on the screen, and also makes a voice notification if necessary.
  • a dedicated terminal having a monitor screen and a speaker, a mobile phone, a personal computer, or the like is used.
  • FIG. 1 is a block diagram showing an outline of the configuration of the energy management system, and a part of the configuration of FIG. 2 is omitted.
  • a broken line indicates an AC circuit
  • a one-dot chain line indicates a DC circuit
  • a solid line indicates an information transmission path.
  • the energy management device 81 performs power control using only the storage battery 62 and the fuel cell 63.
  • the energy management device 81 includes an information acquisition unit 81a, a power control unit 81b, a time calculation unit 81c, and a power supply information generation unit (hereinafter also referred to as an information generation unit) 81d.
  • the information acquisition unit 81a wirelessly communicates with the measurement device 40, thereby buying and selling power, power consumption information (general load), power consumption information (specific load), information on the storage battery 62, information on the solar battery 64, power failure information, Power generation information (fuel cell) is acquired from the measurement device 40. Further, the information acquisition unit 81 a acquires information on the fuel cell 63 by wirelessly communicating with the fuel cell 63. That is, the information acquisition unit 81a can acquire information such as the power consumption of the specific load 80, the stored power of the storage battery 62, the amount of hot water stored in the hot water storage tank 632, and the amount of power generated by the fuel cell 63 during the night outage. .
  • the power control unit 81b controls the power converter 51 and the fuel cell 63 based on the above information, controls the operations of the storage battery 62 and the fuel cell 63, and supplies power to the specific load 80.
  • the fuel cell 63 stops power generation by the power generation unit 631 when the amount of hot water stored in the hot water storage tank 632 exceeds a predetermined amount (full storage state). That is, the power generation possible time during which the fuel cell 63 can continue to generate power varies depending on the amount of hot water stored, so whether or not the fuel cell 63 can be used during a power failure period depends on the amount of hot water stored. Then, during the night power outage period, when power is supplied to the specific load 80 using the stored power of the storage battery 62 and the generated power of the fuel cell 63, the amount of hot water stored in the fuel cell 63 is fully stored, Electric power must be supplied using only the stored electric power of the storage battery 62. Note that the amount of stored hot water decreases as the user uses hot water.
  • the maximum power (constraint output) that can be output from the self-supporting terminal 57 is determined in advance, and when the fuel cell 63 stops power generation, the power consumption of the specific load 80 exceeds the constraint output.
  • the power converter 51 stops the output from the self-supporting output unit 56 and stops the output from the self-supporting terminal 57. Therefore, in the power failure period, there is a possibility that the power supply from the independent distribution board 20 to the specific load 80 stops at a timing not intended by the user.
  • the energy management device 81 creates power supply information in the power outage period in consideration of the power generation possible time of the fuel cell 63, and displays the power supply information on the display terminal 82, so that the power in the power outage period can be displayed to the user. Information on the prospects of continuous supply is reported.
  • the time calculation unit 81 c derives a power generation possible time during which the fuel cell 63 can continue power generation based on the amount of hot water stored in the hot water storage tank 632.
  • the time calculation unit 81c calculates the power generation possible time of the fuel cell 63 shorter as the amount of hot water stored is larger, and calculates the power generation possible time of the fuel cell 63 longer as the amount of hot water stored is smaller.
  • the power generation possible time is a time during which the rated operation in which the fuel cell 63 outputs the rated power is possible. Note that the output of the fuel cell 63 used for deriving the power generation possible time is not limited to the rated power, and may be, for example, 70% of the rated power.
  • the information generation unit 81d generates power supply information based on the stored power of the storage battery 62, the power generation possible time of the fuel cell 63, and the power consumption of the specific load 80, and outputs this power supply information to the display terminal 82.
  • the display terminal 82 corresponds to a notification unit, displays the power supply information received from the information generation unit 81d on the screen, and performs voice notification if necessary.
  • the power supply information generated by the information generation unit 81d will be described below.
  • power supply remaining time information information on the remaining time in which power can be continuously supplied to the specific load 80 "power supply remaining time information" and information on the remaining power that can be supplied from the storage battery 62 will be described.
  • the power supply remaining time information is the remaining time (power supply remaining time) in which the power consumption of the specific load 80 can be continuously supplied using the stored power of the storage battery 62 and the generated power of the fuel cell 63.
  • This remaining power supply time information is derived based on the stored power of the storage battery 62, the power generation possible time of the fuel cell 63, and the power consumption information of the specific load 80.
  • the remaining power supply time becomes longer as the stored power of the storage battery 62 is larger.
  • the remaining power supply time becomes longer as the amount of hot water stored in the fuel cell 63 is smaller and the power generation possible time of the fuel cell 63 is longer. Furthermore, the remaining power supply time becomes longer as the power consumption of the specific load 80 is smaller.
  • the remaining power supply time information is information in consideration of the power generation possible time of the fuel cell 63. That is, since the remaining power supply time information is highly accurate information considering the power generation possible time of the fuel cell 63, the user who viewed the remaining power supply time information appropriately adjusts the operation of the specific load 80 during the power failure period. Thus, electric power can be used effectively. Therefore, the user can appropriately use the stored power of the storage battery 62 and the generated power of the fuel cell 63, and the situation where the power supply to the specific load 80 stops at a timing not intended by the user during the power failure. Occurrence can be suppressed.
  • the information generation unit 81d is based on the stored power of the storage battery 62, the power generation possible time of the fuel cell 63, and the power consumption of the specific load 80 only when the power generation possible time is equal to or longer than a predetermined lower limit time (predetermined time). Thus, it is preferable to generate the remaining power supply time information. In this case, when the power generation possible time is less than the lower limit time, the information generation unit 81d supplies power based on the stored power of the storage battery 62 and the power consumption of the specific load 80 without considering the power generation possible time of the fuel cell 63. Generate remaining time information.
  • the tightness information is the tightness rate of the power supplied to the specific load 80 when the stored power of the storage battery 62 and the generated power of the fuel cell 63 are used.
  • the maximum power that can be supplied from the storage battery 62 to the specific load 80 is determined by the maximum power (constraint output) that can be output from the self-standing terminal 57 of the power converter 51.
  • the tightness rate ⁇ (power consumption of the specific load 80 ⁇ rated power of the fuel cell 63) / restricted output of the power converter 51 ⁇ . That is, the tightness rate is a value that takes into consideration the power generated by the fuel cell 63 (rated power).
  • this tightness information is created in consideration of the stored power of the storage battery 62 and the power generation possible time of the fuel cell 63.
  • the tightness rate is corrected in the decreasing direction
  • the tightness rate is corrected in the increasing direction.
  • the compression rate is corrected in the decreasing direction as the power generation possible time of the fuel cell 63 is long
  • the compression rate is corrected in the increasing direction as the power generation possible time of the fuel cell 63 is short.
  • the tightness information is information in consideration of the power generation possible time of the fuel cell 63.
  • this tightness information becomes highly accurate information considering the power generation possible time of the fuel cell 63
  • the user who sees the tightness information appropriately adjusts the operation of the specific load 80 during the power failure period, Can be used effectively. Therefore, the user can appropriately use the stored power of the storage battery 62 and the generated power of the fuel cell 63, and the situation where the power supply to the specific load 80 stops at a timing not intended by the user during the power failure. Occurrence can be suppressed.
  • the energy management system using the energy management device 81 accurately reports information on the power that can be supplied to the load in consideration of the power generation capability of the cogeneration device such as the fuel cell 63 depending on the amount of stored hot water. it can.
  • the information generation unit 81d uses the above-described tightness rate as tightness information, but is not limited thereto.
  • the information generation unit 81d may use other information regarding the remaining power that can be supplied from the storage battery 62 as the tightness information.
  • the information generation unit 81d converts the stored power of the storage battery 62, the power generation possible time of the fuel cell 63, and the power consumption of the specific load 80 only when the power generation possible time is equal to or longer than a predetermined lower limit time (predetermined time). Based on this, it is preferable to generate tightness information.
  • the information generation unit 81d When the power generation possible time is less than the lower limit time, the information generation unit 81d generates tightness information based on the stored power of the storage battery 62 and the power consumption of the specific load 80 without using the power generation possible time of the fuel cell 63. .
  • the information generation unit 81d preferably generates power supply information that causes the display terminal 82 to execute a notification method according to the content of the power supply information.
  • the information generation unit 81d sets the display screen color, layout, etc. to a highly urgent design, and further sounds such as a buzzer sound and a message. Include information. Accordingly, when displaying the remaining power supply time information, the display terminal 82 can strongly notify the user that the remaining power supply time is short using visual information and audio information.
  • the information generating unit 81d sets the display screen color, layout, etc. to a highly urgent design, and further includes sound information such as a buzzer sound and a message. . Accordingly, when displaying the tightness information, the display terminal 82 can strongly notify the user that the tightness rate is high using visual information and audio information.
  • the time calculation unit 81c derives the power generation possible time based on the amount of hot water stored in the hot water storage tank 632 and the temperature of the hot water in the hot water storage tank 632.
  • the power generation unit 631 of the fuel cell 63 can generate power when the amount of hot water stored in the hot water storage tank 632 is not fully stored or when the temperature of the hot water stored in the hot water storage tank 632 is equal to or lower than a predetermined temperature. Therefore, the time calculation unit 81c can set the power generation possible time of the fuel cell 63 to be longer, and the fuel cell 63 can increase the power generation amount at the time of power failure.
  • the solar cell 64 can generate power, and the energy management device 81 performs power control using the storage battery 62, the fuel cell 63, and the solar cell 64.
  • the information acquisition unit 81a of the energy management device 81 performs wireless communication with the measurement device 40, and buys and sells power, power consumption information (general load), power consumption information (specific load), storage battery 62 information, and solar cell 64 information.
  • the power failure information and the power generation information (fuel cell) are acquired from the measuring device 40.
  • the information acquisition unit 81 a acquires information on the fuel cell 63 by wirelessly communicating with the fuel cell 63.
  • the information acquisition unit 81a includes information on the power consumption of the specific load 80, the stored power of the storage battery 62, the hot water storage amount of the hot water storage tank 632, the power generation amount of the fuel cell 63, and the power generation amount of the solar cell 64 during the daytime power outage period. Can be obtained.
  • the power control unit 81b controls the power converter 51 and the fuel cell 63 based on each of the above information, controls each operation of the storage battery 62, the fuel cell 63, and the solar cell 64 to the specific load 80. Supply power.
  • the information generation unit 81d of the energy management device 81 supplies power based on the stored power of the storage battery 62, the power generation possible time of the fuel cell 63, the generated power of the solar battery 64, and the power consumption information of the specific load 80. Generate remaining time information.
  • the information generation unit 81d generates power supply information such as remaining power supply time information and tightness information, and the display terminal 82 notifies the user of the power supply information. Similar effects can be obtained.
  • the energy management device 81 manages power supply to the specific load 80 (load) using the storage battery 62 and the cogeneration device (fuel cell 63).
  • the cogeneration apparatus stops power generation when hot water is generated from water during power generation and the amount of hot water stored in the hot water storage tank 632 for storing the generated hot water becomes a predetermined amount or more.
  • the energy management device 81 includes an information acquisition unit 81 a that acquires information on the power consumption of the specific load 80, the stored power of the storage battery 62, and the amount of hot water stored in the hot water storage tank 632.
  • the energy management device 81 includes a time calculation unit 81 c that derives a power generation possible time during which the cogeneration device can continue power generation based on the amount of hot water stored in the hot water storage tank 632. Furthermore, the energy management device 81 includes a power supply information generation unit 81d.
  • the power supply information generation unit 81d relates to the power that can be supplied to the specific load 80 using the storage battery 62 and the cogeneration device based on the stored power of the storage battery 62, the power generation time of the cogeneration device, and the power consumption of the specific load 80. Power supply information is generated.
  • the power supply information generation unit 81d outputs this power supply information to the display terminal 82 (notification unit).
  • the energy management device 81 outputs highly accurate power supply information in consideration of the power generation possible time of the cogeneration device (fuel cell 63). Electricity can be used effectively by appropriately adjusting the operation. Therefore, the user can appropriately use the stored power of the storage battery 62 and the generated power of the cogeneration apparatus, and the occurrence of a situation where the power supply to the load stops at a timing unintended by the user during the power failure. Can be suppressed.
  • the energy management device 81 can accurately report information on the power that can be supplied to the load in consideration of the power generation capability of the cogeneration device (fuel cell 63) depending on the amount of hot water stored in the hot water storage tank 632.
  • the power supply information is the remaining power that can be continuously supplied to the specific load 80 based on the stored power of the storage battery 62, the power generation possible time of the cogeneration device (fuel cell 63), and the power consumption of the specific load 80 (load). Time information is preferred.
  • information on the remaining time during which power can be continuously supplied to the specific load 80 is highly accurate information in consideration of the power generation possible time of the cogeneration apparatus (fuel cell 63). Therefore, the user who has seen the remaining time information can appropriately use the power by appropriately adjusting the operation of the specific load 80 during the power failure. Therefore, the user can appropriately use the stored power of the storage battery 62 and the generated power of the cogeneration apparatus, and the situation where the power supply to the specific load 80 stops at a timing not intended by the user during the power outage period. Occurrence can be suppressed.
  • the power supply information is information on the remaining power that can be supplied from the storage battery 62 based on the stored power of the storage battery 62, the power generation possible time of the cogeneration device (fuel cell 63), and the power consumption of the specific load 80 (load). It is preferable.
  • the information on the remaining power that can be supplied from the storage battery 62 is highly accurate information in consideration of the power generation possible time of the cogeneration apparatus (fuel cell 63). Therefore, the user who has seen the information on the remaining power can appropriately use the power by appropriately adjusting the operation of the specific load 80 during the power failure. Therefore, the user can appropriately use the stored power of the storage battery 62 and the generated power of the cogeneration apparatus, and the situation where the power supply to the specific load 80 stops at a timing not intended by the user during the power outage period. Occurrence can be suppressed.
  • the power supply information generation unit 81d generates power supply information that causes the display terminal 82 (notification unit) to execute a notification method according to the content of the power supply information.
  • the energy management device 81 can inform the user of the content of the power supply information by a notification method according to the content of the power supply information.
  • the time calculation unit 81c derives the power generation possible time based on the amount of hot water stored in the hot water storage tank 632 and the temperature of the hot water in the hot water storage tank 632.
  • the energy management device 81 can derive the power generation possible time based on the amount of hot water stored in the hot water storage tank 632 and the temperature of the hot water in the hot water storage tank 632.
  • the power supply information generation unit 81d converts the stored power of the storage battery 62, the power generation possible time of the cogeneration device (fuel cell 63), and the power consumption of the specific load 80 (load). Based on this, it is preferable to generate power supply information.
  • the power supply information generation unit 81d uses the power generation information of the storage battery 62 and the power consumption of the specific load 80 without using the power generation possible time of the cogeneration apparatus. Is preferably generated.
  • the energy management device 81 can generate power supply information according to the power generation possible time of the cogeneration device (fuel cell 63).
  • the energy management system described above is a cogeneration system (fuel that stops power generation when the amount of hot water stored in the storage battery 62 and the hot water storage tank 632 that generates hot water from water during power generation and stores the generated hot water exceeds a predetermined amount.
  • Battery 63 the energy management system includes an energy management device 81 that manages power supply to the specific load 80 (load) using the storage battery 62 and the cogeneration device, and generates power supply information related to power that can be supplied to the specific load 80.
  • the energy management system includes a display terminal 82 (notification unit) that notifies the power supply information generated by the energy management device 81.
  • the energy management device 81 includes an information acquisition unit 81 a that acquires information on the power consumption of the specific load 80, the stored power of the storage battery 62, and the amount of hot water stored in the hot water storage tank 632. Furthermore, the energy management device 81 includes a time calculation unit 81 c that derives a power generation possible time during which the cogeneration device can continue power generation based on the amount of hot water stored in the hot water storage tank 632. Furthermore, the energy management device 81 generates power supply information based on the stored power of the storage battery 62, the power generation possible time of the cogeneration device, and the power consumption of the specific load 80, and outputs this power supply information to the display terminal 82. 81d.
  • the energy management system can accurately report information on the power that can be supplied to the load in consideration of the power generation capability of the cogeneration device (fuel cell 63) depending on the amount of hot water stored in the hot water storage tank 632.
  • the cogeneration apparatus is preferably a fuel cell 63.
  • the energy management system can report information on the power that can be supplied to the load in consideration of the power generation capability of the fuel cell 63.
  • the energy management method is a method of managing power supply to the specific load 80 (load) using the storage battery 62 and the cogeneration device (fuel cell 63).
  • the cogeneration apparatus stops power generation when hot water is generated from water during power generation and the amount of hot water stored in the hot water storage tank 632 for storing the generated hot water becomes a predetermined amount or more.
  • This energy management method includes information acquisition processing for acquiring information on the power consumption of the specific load 80, the stored power of the storage battery 62, and the amount of hot water stored in the hot water storage tank 632.
  • the energy management method includes time calculation processing for deriving a power generation possible time during which the cogeneration apparatus can continue power generation based on the amount of hot water stored in the hot water storage tank 632.
  • the energy management method includes power supply information generation processing.
  • the power supply information generation process is a power supply related to the power that can be supplied to the specific load 80 using the storage battery 62 and the cogeneration device based on the stored power of the storage battery 62, the power generation time of the cogeneration device, and the power consumption of the specific load 80. Generate information.
  • the power supply information generation process outputs this power supply information to the display terminal 82 (notification unit).
  • program of the present embodiment is a program that causes a computer to function as any of the energy management devices 81 described above.
  • the above-described program may be provided in a state stored in a computer-readable storage medium, or may be provided through an electric communication line such as the Internet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Fuel Cell (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The purpose of the present invention is to provide an energy management device capable of considering the power generation capability of a cogeneration device depending on the amount of stored hot-water and accurately notifying the user of information regarding the power that can be supplied to loads, and also provide an energy management system. The energy management device (81) comprises a time calculation unit (81c) and a power supply information generation unit (81d). The time calculation unit (81c) derives, based on the amount of stored hot-water of a fuel cell (63), power generation possible time during which the fuel cell (63) can continue to generate power. The power supply information generation unit (81d) generates, based on the stored power of a storage battery (62), the power generation possible time of the fuel cell (63), and the power consumption of specific loads (80), power supply information regarding the power that can be supplied to the specific loads (80) by using the storage battery (62) and the fuel cell (63), and outputs the power supply information to a display terminal (82).

Description

エネルギー管理装置、およびエネルギー管理システムEnergy management device and energy management system
 本発明は、一般にエネルギー管理装置、およびエネルギー管理システム、より詳細には蓄電池とコージェネレーション装置とを組み合わせて管理するエネルギー管理装置、およびエネルギー管理システムに関する。 The present invention generally relates to an energy management device and an energy management system, and more particularly to an energy management device and an energy management system that manage a combination of a storage battery and a cogeneration device.
 従来、蓄電池、分散電源(太陽電池、燃料電池等)を用いて停電時の電力供給を行うバックアップ機能を有する電力供給システムが提供されている。そして、この種のシステムにおいて、蓄電池の蓄電電力、分散電源の発電電力、負荷の消費電力に基づいて、蓄電池の放電可能時間を報知する構成が提案されている(例えば、国際公開番号2011/142330参照)。 Conventionally, a power supply system having a backup function for supplying power during a power failure using a storage battery and a distributed power source (solar cell, fuel cell, etc.) has been provided. And in this kind of system, the structure which alert | reports the dischargeable time of a storage battery is proposed based on the electrical storage power of a storage battery, the generated power of a distributed power supply, and the power consumption of a load (for example, international publication number 2011/142330). reference).
 電力供給システムが用いる分散電源として、発電動作時に生じる排熱を利用して水から湯を生成するコージェネレーション装置がある。コージェネレーション装置は、発電動作時に生成された湯を貯湯タンクに貯めており、ユーザは、この貯湯タンク内の湯を使用することができる。 As a distributed power source used by a power supply system, there is a cogeneration device that generates hot water from water using exhaust heat generated during power generation operation. The cogeneration apparatus stores hot water generated during a power generation operation in a hot water storage tank, and a user can use the hot water in the hot water storage tank.
 停電期間中の負荷は、蓄電池の蓄電電力、コージェネレーション装置の発電電力を用いた電力供給がなされる。そして、負荷への電力供給を管理しているエネルギー管理装置は、停電時における電力供給に関する情報を生成してユーザへ報知していた。 During the power outage, the load is supplied using the stored power of the storage battery and the generated power of the cogeneration system. And the energy management apparatus which manages the electric power supply to load produced | generated the information regarding the electric power supply at the time of a power failure, and alert | reported to the user.
 一般に、コージェネレーション装置は、貯湯量が満量になると、発電が停止する。しかしながら、従来のエネルギー管理装置は、この貯湯量に依存したコージェネレーション装置の発電能力を考慮していなかった。したがって、停電時における電力供給に関する情報の精度が低く、ユーザは、停電期間中の負荷の運転を適切に調整することが困難であり、例えば、停電期間中の負荷への給電が意図しないタイミングで停止する事態が発生していた。 Generally, the cogeneration system stops power generation when the amount of hot water storage is full. However, the conventional energy management device does not consider the power generation capability of the cogeneration device depending on the amount of stored hot water. Therefore, the accuracy of information regarding power supply at the time of a power failure is low, and it is difficult for the user to properly adjust the operation of the load during the power failure period, for example, at a timing when power supply to the load during the power failure period is not intended. There was a situation of stopping.
 本発明は、上記事由に鑑みてなされており、その目的は、貯湯量に依存したコージェネレーション装置の発電能力を考慮して、負荷に供給可能な電力に関する情報を精度よく報知できるエネルギー管理装置、およびエネルギー管理システムを提供することにある。 The present invention has been made in view of the above reasons, and its purpose is to consider the power generation capability of the cogeneration device depending on the amount of stored hot water, and an energy management device capable of accurately reporting information on the power that can be supplied to the load, And to provide an energy management system.
 本発明のエネルギー管理装置は、蓄電池と、発電時に水から湯を生成してこの生成した湯を貯める貯湯タンクの貯湯量が所定量以上になれば発電を停止するコージェネレーション装置とを用いた負荷への電力供給を管理するエネルギー管理装置であって、前記負荷の消費電力、前記蓄電池の蓄電電力、前記貯湯タンクの貯湯量の各情報を取得する情報取得部と、前記貯湯タンクの貯湯量に基づいて前記コージェネレーション装置が発電を継続できる発電可能時間を導出する時間演算部と、前記蓄電池の蓄電電力、前記コージェネレーション装置の前記発電可能時間、前記負荷の消費電力に基づいて、前記蓄電池と前記コージェネレーション装置とを用いて前記負荷に供給可能な電力に関する給電情報を生成し、この給電情報を報知部へ出力する給電情報生成部とを備えることを特徴とする。 The energy management device of the present invention is a load using a storage battery and a cogeneration device that generates hot water from water during power generation and stops the power generation when the amount of hot water stored in the hot water storage tank that stores the generated hot water exceeds a predetermined amount. An energy management device for managing power supply to the information acquisition unit for acquiring information on power consumption of the load, stored power of the storage battery, and hot water storage amount of the hot water storage tank, and hot water storage amount of the hot water storage tank A time calculation unit for deriving a power generation possible time during which the cogeneration device can continue power generation, and the storage battery based on the stored power of the storage battery, the power generation possible time of the cogeneration device, and the power consumption of the load. Using the cogeneration apparatus, power supply information relating to power that can be supplied to the load is generated, and the power supply information is output to the notification unit Characterized in that it comprises a feeding information generating unit that.
 本発明のエネルギー管理システムは、蓄電池と、発電時に水から湯を生成してこの生成した湯を貯める貯湯タンクの貯湯量が所定量以上になれば発電を停止するコージェネレーション装置と、前記蓄電池と前記コージェネレーション装置とを用いた負荷への電力供給を管理し、前記負荷に供給可能な電力に関する給電情報を生成するエネルギー管理装置と、前記エネルギー管理装置が生成した前記給電情報を報知する報知部とを備え、前記エネルギー管理装置は、前記負荷の消費電力、前記蓄電池の蓄電電力、前記貯湯タンクの貯湯量の各情報を取得する情報取得部と、前記貯湯タンクの貯湯量に基づいて前記コージェネレーション装置が発電を継続できる発電可能時間を導出する時間演算部と、前記蓄電池の蓄電電力、前記コージェネレーション装置の前記発電可能時間、前記負荷の消費電力に基づいて前記給電情報を生成し、この給電情報を報知部へ出力する給電情報生成部とを備えることを特徴とする。 The energy management system of the present invention includes a storage battery, a cogeneration device that generates hot water from water during power generation and stores the generated hot water when a hot water storage amount of the hot water storage tank exceeds a predetermined amount, and the storage battery. An energy management device that manages power supply to a load using the cogeneration device and generates power supply information related to power that can be supplied to the load, and a notification unit that notifies the power supply information generated by the energy management device The energy management device includes an information acquisition unit that acquires information on power consumption of the load, stored power of the storage battery, and hot water storage amount of the hot water storage tank, and the code based on the hot water storage amount of the hot water storage tank. A time calculation unit for deriving a power generation possible time during which the generation device can continue power generation, the stored power of the storage battery, and the cogeneration system The power generation time of the Deployment apparatus, generates the feed information based on the power consumption of the load, characterized in that it comprises a feeding information generating unit that outputs the power supply information to the notifying unit.
 本発明は、貯湯タンクの貯湯量に依存したコージェネレーション装置の発電能力を考慮して、負荷に供給可能な電力に関する情報を精度よく報知できるという効果を有する。 The present invention has an effect of accurately reporting information on the power that can be supplied to the load in consideration of the power generation capability of the cogeneration device depending on the amount of hot water stored in the hot water storage tank.
実施形態のエネルギー管理装置を用いたエネルギー管理システムの概略を示すブロック図である。It is a block diagram which shows the outline of the energy management system using the energy management apparatus of embodiment. 実施形態のエネルギー管理システムの全体構成を示す構成図である。It is a lineblock diagram showing the whole energy management system composition of an embodiment.
 以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
  (実施形態)
 エネルギー管理システム(電力管理システム)の全体構成を、図2に示す。エネルギー管理システムは、分電盤10、自立分電盤20、電源切替器30、計測装置40、電力変換装置50、蓄電池62、燃料電池63、エネルギー管理装置81、表示端末82を主構成として備える。
(Embodiment)
The overall configuration of the energy management system (power management system) is shown in FIG. The energy management system includes a distribution board 10, a self-supporting distribution board 20, a power switch 30, a measuring device 40, a power conversion device 50, a storage battery 62, a fuel cell 63, an energy management device 81, and a display terminal 82 as main components. .
 まず、電力供給システムは、負荷に電力を供給する電源として、系統電源61と、蓄電池62と、燃料電池63と、太陽電池64との4種類を備える。 First, the power supply system includes four types of power sources 61, storage batteries 62, fuel cells 63, and solar cells 64 as power sources for supplying power to the load.
 系統電源61は、電力会社のような電力供給事業者から配電網を通して供給される商用電源である。 The system power supply 61 is a commercial power supply supplied from a power supply company such as an electric power company through a distribution network.
 蓄電池62は、リチウムイオン電池等で構成される。 The storage battery 62 is composed of a lithium ion battery or the like.
 燃料電池63は、メタンあるいはプロパンを含む燃料ガスの改質により生成した水素ガスを用いるコージェネレーション装置であって、発電ユニット631に貯湯タンク632が付設されている(図2参照)。発電ユニット631は、燃料電池ユニットを用いた発電を行い、さらには発電動作時に生じる排熱を利用して水から湯を生成する。貯湯タンク632は、発電ユニット631の発電動作時に水から生成された湯を貯める。そして、燃料電池63は、貯湯タンク632の貯湯量が所定量以上になれば、発電ユニット631による発電を停止する。 The fuel cell 63 is a cogeneration apparatus that uses hydrogen gas generated by reforming a fuel gas containing methane or propane, and a hot water storage tank 632 is attached to the power generation unit 631 (see FIG. 2). The power generation unit 631 generates power using the fuel cell unit, and further generates hot water from water using exhaust heat generated during the power generation operation. The hot water storage tank 632 stores hot water generated from water during the power generation operation of the power generation unit 631. Then, the fuel cell 63 stops the power generation by the power generation unit 631 when the amount of hot water stored in the hot water storage tank 632 exceeds a predetermined amount.
 すなわち、燃料電池63は、発電と湯沸かしとの両方の機能を有している。さらに、燃料電池63は、貯湯タンク632内で湯として蓄えている熱量が不足する場合に追加して加熱を行う補助熱源を備える。また、燃料電池63は、貯湯タンク632に貯めた湯を追い焚きする場合に用いる補助熱源を備える場合がある。燃料電池63は、燃料電池63の動作状態の管理に用いるリモコン63aと通信可能である。 That is, the fuel cell 63 has both functions of power generation and water heating. Further, the fuel cell 63 includes an auxiliary heat source that performs additional heating when the amount of heat stored as hot water in the hot water storage tank 632 is insufficient. Further, the fuel cell 63 may include an auxiliary heat source that is used when the hot water stored in the hot water storage tank 632 is replenished. The fuel cell 63 can communicate with a remote controller 63 a used for managing the operating state of the fuel cell 63.
 太陽電池64は、太陽光による発電を行う。 The solar cell 64 generates power by sunlight.
 本実施形態では、系統電源61への電力の逆潮流が可能な電源として、太陽電池64を例示しているが、太陽電池64は、風力、水力、地熱などの自然エネルギーを用いて発電する電源に代えることが可能である。また、本実施形態では、蓄電池62と燃料電池63とは、系統電源61への電力の逆潮流を行わない電源として例示している。また、燃料電池63に代えて、ガスエンジン(ガスマイクロタービン)を用いて発電するコージェネレーション装置を用いることも可能である。 In the present embodiment, the solar cell 64 is illustrated as a power source capable of reverse power flow to the system power source 61. However, the solar cell 64 is a power source that generates power using natural energy such as wind power, hydropower, and geothermal heat. Can be substituted. In the present embodiment, the storage battery 62 and the fuel cell 63 are illustrated as power supplies that do not perform reverse power flow to the system power supply 61. Further, instead of the fuel cell 63, it is also possible to use a cogeneration device that generates power using a gas engine (gas micro turbine).
 系統電源61に接続された配電線L1は分電盤10に接続される(図2参照)。 Distribution line L1 connected to system power supply 61 is connected to distribution board 10 (see FIG. 2).
 分電盤10は、配電線L1に1次側を接続した主幹ブレーカ11と、主幹ブレーカ11の2次側において電力を分岐させる複数個の分岐ブレーカ12とを筐体に内蔵している。それぞれの分岐ブレーカ12は、分岐線L2を通して負荷70に電力を供給する。図2では複数個の負荷70に一括して符号を付しているが、符号70は個々の負荷を意味する。 The distribution board 10 has a main body breaker 11 having a primary side connected to the distribution line L1 and a plurality of branch breakers 12 for branching power on the secondary side of the main circuit breaker 11 incorporated in the casing. Each branch breaker 12 supplies power to the load 70 through the branch line L2. In FIG. 2, a plurality of loads 70 are collectively denoted by reference numerals, but the reference numerals 70 indicate individual loads.
 さらに分電盤10は、連系ブレーカ13と、電流センサX3とを内蔵する。連系ブレーカ13は、主幹ブレーカ11の1次側の電路(配電線L1)に接続され、電力変換装置50と配電線L1との間に挿入される。連系ブレーカ13は、太陽電池64の発電電力を主幹ブレーカ11の1次側の電路に供給する経路を形成し、また、系統電源61から受電した電力を蓄電池62の充電に用いる経路を形成する。連系ブレーカ13は、いわゆるリモコンブレーカであって、電力変換装置50からの指示によりオン/オフを切り替える。 Furthermore, the distribution board 10 incorporates an interconnection breaker 13 and a current sensor X3. The interconnection breaker 13 is connected to the primary circuit (distribution line L1) of the main breaker 11, and is inserted between the power converter 50 and the distribution line L1. The interconnection breaker 13 forms a path for supplying the power generated by the solar battery 64 to the primary circuit of the main breaker 11 and forms a path for using the power received from the system power supply 61 for charging the storage battery 62. . The interconnection breaker 13 is a so-called remote control breaker, and is switched on / off according to an instruction from the power conversion device 50.
 電流センサX3は、主幹ブレーカ11を通過する電流を検出するように配置される。図2の例では、配電線L1において、連系ブレーカ13との接続点と、主幹ブレーカ11との間の電路を通過する電流を計測するように電流センサX3が配置されている。電流センサX3は、単相3線の2本の電圧線(U相とW相)の電流を個別に検出するように配置される。 The current sensor X3 is arranged so as to detect a current passing through the main breaker 11. In the example of FIG. 2, the current sensor X <b> 3 is arranged in the distribution line L <b> 1 so as to measure the current passing through the electrical path between the connection point with the interconnection breaker 13 and the main breaker 11. The current sensor X3 is arranged so as to individually detect currents of two voltage lines (U phase and W phase) of the single phase three wires.
 電流センサX3は、具体的な構成としてコアを備える電流トランスを想定しているが、コアレスコイル(いわゆるロゴスキーコイル)あるいは磁気センサを用いる構成であってもよい。以下に説明する電流センサX1,X2,X4~X7も同様であり、それぞれの電流センサX1,X2,X4~X7の具体的な構成は電流センサX3の構成に準じる。 The current sensor X3 assumes a current transformer having a core as a specific configuration, but may be configured to use a coreless coil (so-called Rogowski coil) or a magnetic sensor. The same applies to the current sensors X1, X2, X4 to X7 described below, and the specific configuration of each of the current sensors X1, X2, X4 to X7 conforms to the configuration of the current sensor X3.
 分電盤10に内蔵された複数個の分岐ブレーカ12のうちの1個は、単相3線に対応した分岐線L3を通して自立分電盤20に接続される。分岐線L3には、当該分岐線L3と接続された分岐ブレーカ12から供給される電力と、電力変換装置50から供給される電力との一方を選択して自立分電盤20に供給する電源切替器30が挿入されている。電源切替器30は、分岐線L3と接続された分岐ブレーカ12から供給される電力、電力変換装置50から供給される電力のそれぞれを導通・遮断する電磁継電器を備える。 One of the plurality of branch breakers 12 built in the distribution board 10 is connected to the independent distribution board 20 through a branch line L3 corresponding to a single-phase three-wire. For the branch line L3, a power source switch for selecting one of the power supplied from the branch breaker 12 connected to the branch line L3 and the power supplied from the power converter 50 and supplying it to the independent distribution board 20 A container 30 is inserted. The power switch 30 includes an electromagnetic relay that conducts and cuts off the power supplied from the branch breaker 12 connected to the branch line L3 and the power supplied from the power converter 50.
 自立分電盤20は、系統電源61から電力が供給されない停電期間でも給電が必要になる負荷80、計測装置40、後述する計測点切替装置(以下、切替装置という)90等に電力を供給する経路を形成する。図2では複数個の負荷80に一括して符号を付しているが符号80は個々の負荷を意味する。また、負荷80のうち、負荷81はエネルギー管理装置であり、負荷82は表示端末(報知部)であり、以降、エネルギー管理装置81、表示端末82と称す。また、負荷70と負荷80とを区別するために、負荷70を「一般負荷」と呼び、負荷80を「特定負荷」と称す。なお、特定負荷80には、エネルギー管理装置81、表示端末82が含まれる。エネルギー管理装置81は、プロセッサやコンピュータで読み取りが可能なメモリ(記録媒体)を有しており、エネルギー管理装置81の機能は、メモリに記憶されているプログラムをプロセッサが実行することにより実現される。なお、プログラムは、インターネットのような電気通信回線を通して提供されてもよい。 The independent distribution board 20 supplies power to a load 80, a measuring device 40, a measuring point switching device (to be referred to as a switching device hereinafter) 90, which will be described later, and the like that require power supply even during a power failure period when power is not supplied from the system power supply 61. Form a pathway. In FIG. 2, a plurality of loads 80 are collectively indicated by a reference numeral 80, but the reference numeral 80 indicates an individual load. In addition, among the loads 80, the load 81 is an energy management device, and the load 82 is a display terminal (notification unit), which are hereinafter referred to as an energy management device 81 and a display terminal 82. In order to distinguish between the load 70 and the load 80, the load 70 is referred to as a “general load”, and the load 80 is referred to as a “specific load”. The specific load 80 includes an energy management device 81 and a display terminal 82. The energy management device 81 has a memory (recording medium) that can be read by a processor or a computer, and the function of the energy management device 81 is realized by the processor executing a program stored in the memory. . The program may be provided through a telecommunication line such as the Internet.
 自立分電盤20は、主幹ブレーカ21と、主幹ブレーカ21の2次側において電力を分岐させる複数個の分岐ブレーカ22とを筐体に内蔵する。主幹ブレーカ21の1次側は、電源切替器30に接続しており、分岐線L3と接続された分岐ブレーカ12から供給される電力と、電力変換装置50から供給される電力とのいずれか一方が供給される。それぞれの分岐ブレーカ22は、分岐線L4を通して、特定負荷80、計測装置40、切替装置90に電力を供給する。 The self-supporting distribution board 20 includes a main body breaker 21 and a plurality of branch breakers 22 that branch power on the secondary side of the main circuit breaker 21 in a casing. The primary side of the main breaker 21 is connected to the power switch 30 and either one of the power supplied from the branch breaker 12 connected to the branch line L3 and the power supplied from the power converter 50 is used. Is supplied. Each branch breaker 22 supplies power to the specific load 80, the measuring device 40, and the switching device 90 through the branch line L4.
 特定負荷80、計測装置40、切替装置90は、系統電源61から電力が供給されている通電期間に、分電盤10から供給される電力によって動作可能となる。また、特定負荷80、計測装置40、切替装置90は、系統電源61から電力が供給されていない停電期間に、電力変換装置50から供給される電力によって動作可能となる。 The specific load 80, the measuring device 40, and the switching device 90 can be operated by the power supplied from the distribution board 10 during the energization period in which the power is supplied from the system power supply 61. In addition, the specific load 80, the measuring device 40, and the switching device 90 can be operated by the power supplied from the power conversion device 50 during a power failure period in which power is not supplied from the system power supply 61.
 また、複数個の分岐ブレーカ22のうちの1個の分岐ブレーカ22は、接続線L5を通して燃料電池63に接続される。燃料電池63の発電電力は、接続線L5、自立分電盤20を経由して特定負荷80、計測装置40、切替装置90に供給可能になる。また、燃料電池63が発電した電力は、主幹ブレーカ21を通して、分電盤10にも供給可能であるから、燃料電池63から一般負荷70にも電力が供給可能である。 Further, one branch breaker 22 among the plurality of branch breakers 22 is connected to the fuel cell 63 through the connection line L5. The power generated by the fuel cell 63 can be supplied to the specific load 80, the measuring device 40, and the switching device 90 via the connection line L5 and the independent distribution board 20. Moreover, since the electric power generated by the fuel cell 63 can be supplied to the distribution board 10 through the main breaker 21, the electric power can also be supplied from the fuel cell 63 to the general load 70.
 電力変換装置50は、蓄電池62と太陽電池64とが接続され、分電盤10との間で電力の授受を行う機能と、自立分電盤20に電力を供給する機能とを有する電力変換器51を備える(図2参照)。さらに、電力変換装置50は、電力変換器51から2線で出力される電力を3線に変換するトランス52を備える(図2参照)。 The power converter 50 includes a storage battery 62 and a solar battery 64 connected to each other, and has a function of transferring power to and from the distribution board 10 and a function of supplying power to the independent distribution board 20. 51 (see FIG. 2). Furthermore, the power conversion device 50 includes a transformer 52 that converts the power output from the power converter 51 in two lines into three lines (see FIG. 2).
 電力変換器51は、太陽電池64が発電した直流電力を、系統電源61に連系可能な交流電力に変換する。また、電力変換器51は、蓄電池62の充電電流および放電電流を監視・制御し、蓄電池62が放電する直流電力を交流電力に変換する。 The power converter 51 converts the DC power generated by the solar battery 64 into AC power that can be connected to the system power supply 61. Further, the power converter 51 monitors and controls the charging current and discharging current of the storage battery 62, and converts the DC power discharged by the storage battery 62 into AC power.
 さらに電力変換器51は、連系ブレーカ13に接続される連系端子55と、トランス52に電力を供給する自立出力部56とを備える。そして、電力変換器51は、系統電源61が通電中であるか停電中であるか(系統電源61から受電可能か否か)を、連系端子55における端子間の電圧を用いて判断する。 Furthermore, the power converter 51 includes an interconnection terminal 55 connected to the interconnection breaker 13 and an independent output unit 56 that supplies electric power to the transformer 52. Then, the power converter 51 determines whether the system power supply 61 is energized or out of power (whether or not power can be received from the system power supply 61) using the voltage between the terminals of the interconnection terminal 55.
 連系端子55は、連系ブレーカ13を介して配電線L1に接続され、系統電源61の通電期間において系統連系が可能になっている。具体的には、連系端子55は、単相3線式であって、接続線L6を通して連系ブレーカ13と接続され、主幹ブレーカ11の1次側である配電線L1に連系ブレーカ13を介して接続される。 The interconnection terminal 55 is connected to the distribution line L <b> 1 via the interconnection breaker 13, and can be connected to the grid during the energization period of the grid power supply 61. Specifically, the interconnection terminal 55 is a single-phase three-wire system, is connected to the interconnection breaker 13 through the connection line L6, and the interconnection breaker 13 is connected to the distribution line L1 that is the primary side of the main breaker 11. Connected through.
 接続線L6は、太陽電池64の発電電力あるいは蓄電池62の蓄電電力から得られた交流電力を分電盤10の主幹ブレーカ11に供給する経路、あるいは太陽電池64の発電電力を配電線L1に逆潮流させる経路として用いられる。また、接続線L6は、配電線L1を通して系統電源61から供給される電力を用いて蓄電池62を充電する経路としても用いられる。連系端子55の端子間の出力電圧は、系統電源61の線間電圧によって決められる。 The connection line L6 is a path for supplying AC power obtained from the generated power of the solar battery 64 or the stored power of the storage battery 62 to the main breaker 11 of the distribution board 10, or the generated power of the solar battery 64 is reversed to the distribution line L1. Used as a tidal path. Further, the connection line L6 is also used as a path for charging the storage battery 62 using electric power supplied from the system power supply 61 through the distribution line L1. The output voltage between the terminals of the interconnection terminal 55 is determined by the line voltage of the system power supply 61.
 太陽電池64の発電電力のうち、需要家(facility)で利用されない余剰電力は配電線L1側に逆潮流しており、電力変換器51は、逆潮流する電力を監視・制御する機能も有する。電流センサX2の出力は電力変換器51に入力され、電力変換器51は、電流センサX2の出力に基づいて需要家から系統電源61に対する逆潮流が生じているか否か、および逆潮流している電力を判断する。電流センサX2は、単相3線における2本の電圧線を通過する電流を個別に検出するように配置される。 Of the power generated by the solar cell 64, surplus power that is not used by the customer is flowing backward to the distribution line L1, and the power converter 51 also has a function of monitoring and controlling the power flowing backward. The output of the current sensor X2 is input to the power converter 51. The power converter 51 determines whether or not a reverse power flow from the consumer to the system power supply 61 is generated based on the output of the current sensor X2, and the power flow is reversed. Judge power. Current sensor X2 is arranged to individually detect currents passing through two voltage lines in a single-phase three-wire.
 電力変換器51は、電流センサX2が監視する電流の位相と、連系端子55における端子間の電圧の位相との関係を用いて、需要家から系統電源61に対する逆潮流が生じているか否かを判断する。連系端子55における端子間の電圧は、連系端子55に電気的に接続された配電線L1の線間電圧と同電圧かつ同位相になる。したがって、電力変換器51は、連系端子55における端子間の電圧波形と、電流センサX2が監視する電流波形とを用い、電圧波形の1周期分について電力を積分した積分値の符号によって、逆潮流が生じているか否かを判断する。 The power converter 51 uses the relationship between the phase of the current monitored by the current sensor X2 and the phase of the voltage between the terminals of the interconnection terminal 55 to determine whether a reverse power flow from the customer to the system power supply 61 has occurred. Judging. The voltage between the terminals in the interconnection terminal 55 has the same voltage and the same phase as the line voltage of the distribution line L1 electrically connected to the interconnection terminal 55. Therefore, the power converter 51 uses the voltage waveform between the terminals of the interconnection terminal 55 and the current waveform monitored by the current sensor X2, and reverses the sign of an integrated value obtained by integrating the power for one period of the voltage waveform. Determine whether there is a tidal current.
 また、蓄電池62は、系統電源61に対する電力の逆潮流を行わない。そこで、電力変換器51は、蓄電池62の蓄電電力が需要家で消費されずに逆潮流しているか否かを監視するためにも、電流センサX2の出力を上記同様に用いる。 In addition, the storage battery 62 does not perform reverse power flow to the system power supply 61. Therefore, the power converter 51 uses the output of the current sensor X2 in the same manner as described above in order to monitor whether or not the stored power of the storage battery 62 is flowing backward without being consumed by the consumer.
 一方、電力変換器51の自立出力部56は、系統電源61の通電期間にはトランス52に電力を出力せず、系統電源61の停電期間にはトランス52に電力を出力する。自立出力部56は単相2線式であって、トランス52の1次側と2線で接続され、トランス52への電力供給のみを行う。自立出力部56の端子間の電圧は定電圧(たとえば、200V)に保たれる。そして、トランス52の2次側には自立端子57が設けられており、この自立端子57が出力する電力は、太陽電池64と蓄電池62との少なくとも一方に由来する。自立端子57は、単相3線に対応した接続線L7を通して電源切替器30に接続される。 On the other hand, the self-supporting output unit 56 of the power converter 51 does not output power to the transformer 52 during the energization period of the system power supply 61 and outputs power to the transformer 52 during the power failure period of the system power supply 61. The self-supporting output unit 56 is a single-phase two-wire system, and is connected to the primary side of the transformer 52 by two wires, and only supplies power to the transformer 52. The voltage between the terminals of the self-supporting output unit 56 is kept at a constant voltage (for example, 200V). A self-supporting terminal 57 is provided on the secondary side of the transformer 52, and the power output from the self-supporting terminal 57 is derived from at least one of the solar battery 64 and the storage battery 62. The self-supporting terminal 57 is connected to the power switch 30 through a connection line L7 corresponding to a single-phase three-wire.
 電力変換器51は、系統電源61が通電中であるか、停電中であるかを、連系端子55における端子間の電圧を用いて判断する。そして、電力変換器51は、通電/停電の判断結果を用いて、電源切替器30の切替動作を制御する。電源切替器30は、電力変換器51からの指示により、自立分電盤20の主幹ブレーカ21に接続線L3を接続する状態と、自立分電盤20の主幹ブレーカ21に接続線L7を接続する状態とを切り替える。つまり、自立分電盤20は、系統電源61から電力が供給されている通電中には分電盤10を通して電力が供給され、系統電源61からの電力が停止する停電中には電力変換装置50から分電盤10を通さずに電力が供給される。なお、電源切替器30の切替動作は、電力変換器51が出力する例えば接点信号によって行われるが、その信号形態は限定されない。 The power converter 51 determines whether the system power supply 61 is energized or is in a power failure using the voltage between the terminals of the interconnection terminal 55. Then, the power converter 51 controls the switching operation of the power switch 30 using the determination result of energization / power failure. The power switch 30 connects the connection line L3 to the main breaker 21 of the independent distribution board 20 and connects the connection line L7 to the main breaker 21 of the independent distribution board 20 according to an instruction from the power converter 51. Switch between states. That is, the self-standing distribution board 20 is supplied with power through the distribution board 10 while power is being supplied from the system power supply 61, and the power conversion device 50 during a power outage when the power from the system power supply 61 is stopped. Is supplied without passing through the distribution board 10. In addition, although the switching operation of the power switch 30 is performed by the contact signal which the power converter 51 outputs, for example, the signal form is not limited.
 また、電力変換器51は、通電/停電の判断結果(停電情報)を、計測装置40へ送信する。さらに、電力変換器51は、蓄電池62の情報(蓄電電力、放電電力、機器情報、エラー情報等)、太陽電池64の情報(発電電力、機器情報、エラー情報等)を、計測装置40へ送信する。 Further, the power converter 51 transmits the determination result (power failure information) of energization / power failure to the measuring device 40. Further, the power converter 51 transmits information on the storage battery 62 (accumulated power, discharge power, device information, error information, etc.) and information on the solar cell 64 (generated power, device information, error information, etc.) to the measuring device 40. To do.
 なお、図2において、電力変換器51-計測装置40間の通信経路、電力変換器51-蓄電池62間の通信経路は、例えば、RS485規格に準じた仕様のシリアル通信を行う。なお、この通信路は、RS485規格に準じた仕様であることは必須ではなく、無線通信、または有線通信路を用いた電力線搬送通信によっても実現可能である。また、これらの通信技術を組み合わせて用いてもよい。 In FIG. 2, the communication path between the power converter 51 and the measuring device 40 and the communication path between the power converter 51 and the storage battery 62 perform serial communication with specifications conforming to the RS485 standard, for example. It is not essential that the communication path conforms to the RS485 standard, and the communication path can also be realized by wireless communication or power line carrier communication using a wired communication path. Moreover, you may use combining these communication technologies.
 さらに、電力変換装置50は、切替装置90に切替信号による指示を与える切替指示部53を備える。切替指示部53は、通電/停電を示す切替信号を切替装置90に与え、この切替信号は切替装置90を通して燃料電池63にも伝送される。なお、この切替信号は、例えば接点信号であり、その信号形態は限定されない。 Furthermore, the power conversion device 50 includes a switching instruction unit 53 that gives an instruction by a switching signal to the switching device 90. The switching instruction unit 53 gives a switching signal indicating energization / power failure to the switching device 90, and this switching signal is also transmitted to the fuel cell 63 through the switching device 90. In addition, this switching signal is a contact signal, for example, and the signal form is not limited.
 切替装置90は、燃料電池63が監視する電流値を、分電盤10に内蔵された電流センサX3と、自立分電盤20の主幹ブレーカ21を通過する電流を計測する電流センサX5とのどちらから取得するかを選択する。すなわち、切替装置90は、系統電源61が通電中には電流センサX3を燃料電池63に接続し、系統電源61の停電期間には電流センサX5を燃料電池63に接続する。 The switching device 90 determines the current value monitored by the fuel cell 63 from either the current sensor X3 built in the distribution board 10 or the current sensor X5 that measures the current passing through the main breaker 21 of the independent distribution board 20. Select whether to get from. That is, the switching device 90 connects the current sensor X3 to the fuel cell 63 while the system power supply 61 is energized, and connects the current sensor X5 to the fuel cell 63 during the power failure period of the system power supply 61.
 燃料電池63は、本実施形態においては電力の逆潮流を行わないから、電流センサX3,X5が監視する電流に基づいて、逆潮流の発生の有無を判断する。すなわち、燃料電池63は、燃料電池63の発電電力が、需要家で消費されずに逆潮流しているか否かを監視するために、電流センサX3,X5の各出力を用いる。具体的に、燃料電池63は、系統電源61の通電時において系統電源61に対する電力の逆潮流を検出するために、電流センサX3の出力を用いる。また、燃料電池63は、系統電源61の停電時において接続線L7側への電力の逆潮流を検出するために、電流センサX5の出力を用いる。 Since the fuel cell 63 does not perform reverse power flow in this embodiment, the fuel cell 63 determines whether or not reverse power flow has occurred based on the current monitored by the current sensors X3 and X5. That is, the fuel cell 63 uses each output of the current sensors X3 and X5 in order to monitor whether or not the generated power of the fuel cell 63 is flowing backward without being consumed by the consumer. Specifically, the fuel cell 63 uses the output of the current sensor X3 in order to detect a reverse power flow to the system power supply 61 when the system power supply 61 is energized. Further, the fuel cell 63 uses the output of the current sensor X5 in order to detect a reverse power flow to the connection line L7 at the time of a power failure of the system power supply 61.
 すなわち、電流センサX3,X5の各出力は、切替装置90を介して燃料電池63に入力され、燃料電池63は、電流センサX3,X5の各出力に基づいて、燃料電池63から出力された全電力が需要家で消費されているか否かを判断する。 In other words, the outputs of the current sensors X3 and X5 are input to the fuel cell 63 via the switching device 90, and the fuel cell 63 outputs all of the outputs from the fuel cell 63 based on the outputs of the current sensors X3 and X5. It is judged whether electric power is consumed by a consumer.
 また、燃料電池63が発電した電力は、電流センサX4によって監視される。電流センサX4は、燃料電池63と分岐ブレーカ22とを接続する接続線L5を通過する電流を監視する。そして、電流センサX4の出力は計測装置40に入力され、計測装置40は接続線L5を通過する電力を監視する。 Further, the electric power generated by the fuel cell 63 is monitored by the current sensor X4. The current sensor X4 monitors the current passing through the connection line L5 that connects the fuel cell 63 and the branch breaker 22. The output of the current sensor X4 is input to the measuring device 40, and the measuring device 40 monitors the power passing through the connection line L5.
 また、燃料電池63は、電力変換装置50との間で切替装置90を通して通信する。つまり、系統電源61の通電/停電を示す切替信号が、電力変換装置50から切替装置90を通して燃料電池63にも通知される。したがって、燃料電池63は、電力変換装置50の連系端子55と自立端子57とのどちらから電力供給がなされているかを認識することができる。 Further, the fuel cell 63 communicates with the power conversion device 50 through the switching device 90. That is, a switching signal indicating energization / power failure of the system power supply 61 is also notified from the power conversion device 50 to the fuel cell 63 through the switching device 90. Therefore, the fuel cell 63 can recognize which power is supplied from the interconnection terminal 55 or the self-supporting terminal 57 of the power conversion device 50.
 また、電力変換装置50は、利用者による動作の指示および監視を可能にするために、リモコン54と通信する。 Also, the power conversion device 50 communicates with the remote controller 54 in order to allow the user to instruct and monitor the operation.
 需要家において主幹ブレーカ11の1次側の配電線L1には、系統電源61から受電した電力を計量するために電流センサX1が配置される。 In the customer, a current sensor X1 is arranged on the primary distribution line L1 of the main breaker 11 in order to measure the electric power received from the system power supply 61.
 また、配電線L1において、電流センサX1と主幹ブレーカ11との間には、系統電源61への逆潮流を検出するために、電流センサX2が配置される。電流センサX2は、配電線L1において主幹ブレーカ11と連系ブレーカ13との接続点より系統電源61に近い位置で電流を監視する。 In the distribution line L1, a current sensor X2 is disposed between the current sensor X1 and the main breaker 11 in order to detect a reverse power flow to the system power supply 61. The current sensor X2 monitors the current at a position closer to the system power supply 61 than the connection point between the main breaker 11 and the interconnection breaker 13 in the distribution line L1.
 また、配電線L1において、連系ブレーカ13との接続点と、主幹ブレーカ11との間の電路を通過する電流を計測するように、電流センサX3が配置されている。また、電流センサX4は、燃料電池63と分岐ブレーカ22とを接続する接続線L5を通過する電流を監視し、電流センサX5は、自立分電盤20の主幹ブレーカ21を通過する電流を計測する。 Further, in the distribution line L1, the current sensor X3 is arranged so as to measure the current passing through the electric path between the connection point with the interconnection breaker 13 and the main breaker 11. The current sensor X4 monitors the current passing through the connection line L5 connecting the fuel cell 63 and the branch breaker 22, and the current sensor X5 measures the current passing through the main breaker 21 of the self-supporting distribution board 20. .
 また、電流センサX6は、分岐線L2に配置されて、一般負荷70に供給される電流を監視する。電流センサX7は、分岐線L4に配置されて、特定負荷80に供給される電流を監視する。 Also, the current sensor X6 is disposed on the branch line L2 and monitors the current supplied to the general load 70. The current sensor X7 is disposed on the branch line L4 and monitors the current supplied to the specific load 80.
 そして、計測装置40には、電流センサX1,X4,X6,X7が接続されており、計測装置40は、電流センサX1,X4,X6,X7が計測した各電流値を定期的に取得する。 And current sensor X1, X4, X6, X7 is connected to measuring device 40, and measuring device 40 acquires each current value which current sensor X1, X4, X6, X7 measured regularly.
 計測装置40は、電流センサX1が計測した電流値に基づいて系統電源61から受電した電力を計測し、売買電情報(買電情報、売電情報)を生成する。また、計測装置40は、電流センサX6が計測した電流値に基づいて一般負荷70の消費電力を計測し、消費電力情報(一般負荷)を生成する。また、計測装置40は、電流センサX7が計測した電流値に基づいて特定負荷80の消費電力を計測し、消費電力情報(特定負荷)を生成する。 The measuring device 40 measures the power received from the system power supply 61 based on the current value measured by the current sensor X1, and generates power purchase information (power purchase information, power sale information). Moreover, the measuring device 40 measures the power consumption of the general load 70 based on the current value measured by the current sensor X6, and generates power consumption information (general load). The measuring device 40 measures the power consumption of the specific load 80 based on the current value measured by the current sensor X7, and generates power consumption information (specific load).
 また、計測装置40は、電力変換装置50と通信することによって、蓄電池62の情報(蓄電電力、放電電力、機器情報、エラー情報等)、太陽電池64の情報(発電電力、機器情報、エラー情報等)、通電/停電の判断結果を示す停電情報を取得する。 In addition, the measurement device 40 communicates with the power conversion device 50 to thereby obtain information on the storage battery 62 (accumulated power, discharge power, device information, error information, etc.) and information on the solar cell 64 (generated power, device information, error information). Etc.), power outage information indicating the result of energization / power outage determination is acquired.
 また、計測装置40は、電流センサX4が計測した電流値に基づいて燃料電池63の発電電力を計測し、発電情報(燃料電池)を生成する。 Also, the measuring device 40 measures the generated power of the fuel cell 63 based on the current value measured by the current sensor X4, and generates power generation information (fuel cell).
 そして、計測装置40は、売買電情報、消費電力情報(一般負荷)、消費電力情報(特定負荷)、蓄電池62の情報、太陽電池64の情報、停電情報、発電情報(燃料電池)を、エネルギー管理装置81へ無線送信する。 Then, the measuring device 40 uses the information on power trading, power consumption information (general load), power consumption information (specific load), storage battery 62 information, solar battery 64 information, power outage information, power generation information (fuel cell) as energy. Wireless transmission to the management device 81.
 エネルギー管理装置81は、売買電情報、消費電力情報(一般負荷)、消費電力情報(特定負荷)、蓄電池62の情報、太陽電池64の情報、停電情報、発電情報(燃料電池)を、計測装置40から受信する。 The energy management device 81 is a measuring device for buying and selling power information, power consumption information (general load), power consumption information (specific load), storage battery 62 information, solar cell 64 information, power failure information, and power generation information (fuel cell). 40.
 さらに、エネルギー管理装置81と燃料電池63とは、互いに無線通信可能に構成されており、エネルギー管理装置81は、燃料電池63と無線通信することによって、燃料電池63の情報(貯湯タンク632の貯湯量、機器情報、エラー情報等)を取得する。 Further, the energy management device 81 and the fuel cell 63 are configured to be capable of wireless communication with each other, and the energy management device 81 wirelessly communicates with the fuel cell 63 to thereby obtain information on the fuel cell 63 (hot water storage in the hot water storage tank 632). Quantity, device information, error information, etc.).
 そして、エネルギー管理装置81は、計測装置40と無線通信することによって、計測装置40経由で電力変換器51と通信可能である。また、エネルギー管理装置81は、燃料電池63とも無線通信可能である。そして、エネルギー管理装置81は、上記各情報に基づいて、電力変換器51および燃料電池63を制御して、蓄電池62、燃料電池63、太陽電池64の各動作を制御する。 The energy management device 81 can communicate with the power converter 51 via the measurement device 40 by wirelessly communicating with the measurement device 40. The energy management device 81 can also communicate with the fuel cell 63 wirelessly. And the energy management apparatus 81 controls each operation | movement of the storage battery 62, the fuel cell 63, and the solar cell 64 by controlling the power converter 51 and the fuel cell 63 based on said each information.
 例えば、エネルギー管理装置81は、系統電源61が通電中であれば、系統電源61、蓄電池62、燃料電池63、太陽電池64の各電力を用いて、一般負荷70、特定負荷80へ電力供給を行う。また、通電中のエネルギー管理装置81は、系統電源61、太陽電池64の各電力を用いて、蓄電池62を充電する。また、通電中のエネルギー管理装置81は、太陽電池64の発電電力を用いて系統電源61へ逆潮流させる電力量も制御する。 For example, if the system power supply 61 is energized, the energy management device 81 supplies power to the general load 70 and the specific load 80 using the power of the system power supply 61, the storage battery 62, the fuel cell 63, and the solar battery 64. Do. Further, the energizing energy management device 81 charges the storage battery 62 using the power of the system power supply 61 and the solar battery 64. In addition, the energized energy management device 81 also controls the amount of power to be reversely flowed to the system power supply 61 using the generated power of the solar battery 64.
 また、エネルギー管理装置81は、系統電源61が停電中であれば、蓄電池62、燃料電池63、太陽電池64の各電力を用いて、特定負荷80へ電力供給を行う。また、停電中のエネルギー管理装置81は、太陽電池64の電力を用いて蓄電池62を充電する。 In addition, the energy management device 81 supplies power to the specific load 80 using each power of the storage battery 62, the fuel cell 63, and the solar cell 64 if the system power supply 61 is in a power failure. Further, the energy management device 81 during a power outage charges the storage battery 62 using the power of the solar battery 64.
 そして、エネルギー管理装置81および表示端末82は、互いに無線通信可能に構成されている。エネルギー管理装置81は、表示端末82からの要求に応じて、上記の各情報、電力変換器51および燃料電池63の各制御状態等を表示端末82に表示させるための表示情報を生成し、表示端末82へ送信する。表示端末82は、受信した表示情報を画面に表示し、必要であれば音声通知も行う。表示端末82は、モニタ画面およびスピーカ等を備えた専用端末、携帯電話、パーソナルコンピュータ等を用いる。 The energy management device 81 and the display terminal 82 are configured to be capable of wireless communication with each other. In response to a request from the display terminal 82, the energy management device 81 generates display information for causing the display terminal 82 to display the above information, the control states of the power converter 51 and the fuel cell 63, and the like. Transmit to the terminal 82. The display terminal 82 displays the received display information on the screen, and also makes a voice notification if necessary. As the display terminal 82, a dedicated terminal having a monitor screen and a speaker, a mobile phone, a personal computer, or the like is used.
 次に、本発明の要旨である、停電中における燃料電池63の貯湯量に応じた報知処理について、図1を用いて説明する。なお、図1は、エネルギー管理システムの構成の概略を示すブロック図であり、図2の構成の一部を省略している。図1において、破線は交流電路を示し、一点鎖線は直流電路を示し、実線は情報の伝達経路を示す。 Next, the notification process according to the hot water storage amount of the fuel cell 63 during a power failure, which is the gist of the present invention, will be described with reference to FIG. FIG. 1 is a block diagram showing an outline of the configuration of the energy management system, and a part of the configuration of FIG. 2 is omitted. In FIG. 1, a broken line indicates an AC circuit, a one-dot chain line indicates a DC circuit, and a solid line indicates an information transmission path.
 まず、夜間の停電中において、太陽電池64は発電不能となるので、エネルギー管理装置81は、蓄電池62、燃料電池63のみを用いて電力制御を行う。 First, since the solar cell 64 cannot generate power during a power outage at night, the energy management device 81 performs power control using only the storage battery 62 and the fuel cell 63.
 エネルギー管理装置81は、情報取得部81aと、電力制御部81bと、時間演算部81cと、給電情報生成部(以下、情報生成部ともいう)81dとを備える。 The energy management device 81 includes an information acquisition unit 81a, a power control unit 81b, a time calculation unit 81c, and a power supply information generation unit (hereinafter also referred to as an information generation unit) 81d.
 情報取得部81aは、計測装置40と無線通信することによって、売買電情報、消費電力情報(一般負荷)、消費電力情報(特定負荷)、蓄電池62の情報、太陽電池64の情報、停電情報、発電情報(燃料電池)を、計測装置40から取得する。さらに、情報取得部81aは、燃料電池63と無線通信することによって、燃料電池63の情報を取得する。すなわち、情報取得部81aは、夜間の停電期間において、特定負荷80の消費電力、蓄電池62の蓄電電力、貯湯タンク632の貯湯量、燃料電池63の発電量等の各情報を取得することができる。 The information acquisition unit 81a wirelessly communicates with the measurement device 40, thereby buying and selling power, power consumption information (general load), power consumption information (specific load), information on the storage battery 62, information on the solar battery 64, power failure information, Power generation information (fuel cell) is acquired from the measurement device 40. Further, the information acquisition unit 81 a acquires information on the fuel cell 63 by wirelessly communicating with the fuel cell 63. That is, the information acquisition unit 81a can acquire information such as the power consumption of the specific load 80, the stored power of the storage battery 62, the amount of hot water stored in the hot water storage tank 632, and the amount of power generated by the fuel cell 63 during the night outage. .
 そして、電力制御部81bは、上記各情報に基づいて、電力変換器51および燃料電池63を制御し、蓄電池62、燃料電池63の各動作を制御して、特定負荷80へ電力を供給する。 Then, the power control unit 81b controls the power converter 51 and the fuel cell 63 based on the above information, controls the operations of the storage battery 62 and the fuel cell 63, and supplies power to the specific load 80.
 しかし、燃料電池63は、貯湯タンク632の貯湯量が所定量以上になれば(満蓄状態)、発電ユニット631による発電を停止する。すなわち、燃料電池63が発電を継続できる発電可能時間は、貯湯量に応じて変化するため、停電期間において燃料電池63を利用できるか否かは、貯湯量に依存している。そして、夜間の停電期間において、蓄電池62の蓄電電力、燃料電池63の発電電力を利用して特定負荷80へ電力を供給しているときに、燃料電池63の貯湯量が満蓄状態になると、蓄電池62の蓄電電力のみを利用して電力を供給しなければならない。なお、ユーザが湯を使用することによって、貯湯量は減少する。 However, the fuel cell 63 stops power generation by the power generation unit 631 when the amount of hot water stored in the hot water storage tank 632 exceeds a predetermined amount (full storage state). That is, the power generation possible time during which the fuel cell 63 can continue to generate power varies depending on the amount of hot water stored, so whether or not the fuel cell 63 can be used during a power failure period depends on the amount of hot water stored. Then, during the night power outage period, when power is supplied to the specific load 80 using the stored power of the storage battery 62 and the generated power of the fuel cell 63, the amount of hot water stored in the fuel cell 63 is fully stored, Electric power must be supplied using only the stored electric power of the storage battery 62. Note that the amount of stored hot water decreases as the user uses hot water.
 ここで、電力変換装置50は、自立端子57から出力可能な最大電力(制約出力)が予め決められており、燃料電池63が発電を停止した場合、特定負荷80の消費電力が制約出力を上回ることがある。自立端子57の出力が制約出力を上回ると、電力変換器51は、自立出力部56からの出力を停止して、自立端子57からの出力を停止させる。したがって、停電期間において、自立分電盤20から特定負荷80への電力供給がユーザの意図しないタイミングで停止してしまう可能性がある。 Here, in the power conversion device 50, the maximum power (constraint output) that can be output from the self-supporting terminal 57 is determined in advance, and when the fuel cell 63 stops power generation, the power consumption of the specific load 80 exceeds the constraint output. Sometimes. When the output of the self-supporting terminal 57 exceeds the constraint output, the power converter 51 stops the output from the self-supporting output unit 56 and stops the output from the self-supporting terminal 57. Therefore, in the power failure period, there is a possibility that the power supply from the independent distribution board 20 to the specific load 80 stops at a timing not intended by the user.
 そこで、エネルギー管理装置81は、燃料電池63の発電可能時間を考慮して停電期間における給電情報を作成し、この給電情報を表示端末82に表示させることによって、ユーザに対して、停電期間における電力の継続供給の見通しに関する情報を報知する。 Therefore, the energy management device 81 creates power supply information in the power outage period in consideration of the power generation possible time of the fuel cell 63, and displays the power supply information on the display terminal 82, so that the power in the power outage period can be displayed to the user. Information on the prospects of continuous supply is reported.
 まず、時間演算部81cは、貯湯タンク632の貯湯量に基づいて、燃料電池63が発電を継続できる発電可能時間を導出する。時間演算部81cは、貯湯量が多いほど燃料電池63の発電可能時間を短く算出し、貯湯量が少ないほど燃料電池63の発電可能時間を長く算出する。なお、この発電可能時間は、燃料電池63が定格電力を出力する定格運転が可能な時間である。なお、発電可能時間の導出に用いられる燃料電池63の出力は、定格電力に限定されず、例えば定格電力の70%等であってもよい。 First, the time calculation unit 81 c derives a power generation possible time during which the fuel cell 63 can continue power generation based on the amount of hot water stored in the hot water storage tank 632. The time calculation unit 81c calculates the power generation possible time of the fuel cell 63 shorter as the amount of hot water stored is larger, and calculates the power generation possible time of the fuel cell 63 longer as the amount of hot water stored is smaller. The power generation possible time is a time during which the rated operation in which the fuel cell 63 outputs the rated power is possible. Note that the output of the fuel cell 63 used for deriving the power generation possible time is not limited to the rated power, and may be, for example, 70% of the rated power.
 情報生成部81dは、蓄電池62の蓄電電力、燃料電池63の発電可能時間、特定負荷80の消費電力に基づいて給電情報を生成し、この給電情報を表示端末82へ出力する。 The information generation unit 81d generates power supply information based on the stored power of the storage battery 62, the power generation possible time of the fuel cell 63, and the power consumption of the specific load 80, and outputs this power supply information to the display terminal 82.
 表示端末82は、報知部に相当し、情報生成部81dから受信した給電情報を画面に表示し、必要であれば音声通知も行う。 The display terminal 82 corresponds to a notification unit, displays the power supply information received from the information generation unit 81d on the screen, and performs voice notification if necessary.
 情報生成部81dが生成する給電情報について、以下に説明する。 The power supply information generated by the information generation unit 81d will be described below.
 給電情報の一例として、特定負荷80に電力を継続して供給できる残時間の情報「給電残時間情報」、および蓄電池62から供給可能な残電力に関する情報「逼迫情報」について説明する。 As an example of the power supply information, information on the remaining time in which power can be continuously supplied to the specific load 80 "power supply remaining time information" and information on the remaining power that can be supplied from the storage battery 62 will be described.
 給電残時間情報は、蓄電池62の蓄電電力および燃料電池63の発電電力を用いて、特定負荷80の消費電力を継続して供給可能な残時間(給電残時間)である。この給電残時間情報は、蓄電池62の蓄電電力と、燃料電池63の発電可能時間と、特定負荷80の消費電力情報とに基づいて導出される。給電残時間は、蓄電池62の蓄電電力が大きいほど長くなる。また、給電残時間は、燃料電池63の貯湯量が少なく、燃料電池63の発電可能時間が長いほど長くなる。さらに、給電残時間は、特定負荷80の消費電力が少ないほど長くなる。 The power supply remaining time information is the remaining time (power supply remaining time) in which the power consumption of the specific load 80 can be continuously supplied using the stored power of the storage battery 62 and the generated power of the fuel cell 63. This remaining power supply time information is derived based on the stored power of the storage battery 62, the power generation possible time of the fuel cell 63, and the power consumption information of the specific load 80. The remaining power supply time becomes longer as the stored power of the storage battery 62 is larger. The remaining power supply time becomes longer as the amount of hot water stored in the fuel cell 63 is smaller and the power generation possible time of the fuel cell 63 is longer. Furthermore, the remaining power supply time becomes longer as the power consumption of the specific load 80 is smaller.
 この給電残時間情報は、燃料電池63の発電可能時間を考慮した情報となる。すなわち、給電残時間情報は、燃料電池63の発電可能時間を考慮した精度の高い情報となるので、給電残時間情報を見たユーザは、停電期間中の特定負荷80の運転を適切に調整して、電力を有効に用いることができる。したがって、ユーザは、蓄電池62の蓄電電力および燃料電池63の発電電力を適切に用いることができ、停電期間中に特定負荷80への電力供給がユーザの意図しないタイミングで停止してしまうという事態の発生を抑制することができる。 The remaining power supply time information is information in consideration of the power generation possible time of the fuel cell 63. That is, since the remaining power supply time information is highly accurate information considering the power generation possible time of the fuel cell 63, the user who viewed the remaining power supply time information appropriately adjusts the operation of the specific load 80 during the power failure period. Thus, electric power can be used effectively. Therefore, the user can appropriately use the stored power of the storage battery 62 and the generated power of the fuel cell 63, and the situation where the power supply to the specific load 80 stops at a timing not intended by the user during the power failure. Occurrence can be suppressed.
 また、情報生成部81dは、発電可能時間が予め決められた下限時間(所定時間)以上である場合のみ、蓄電池62の蓄電電力、燃料電池63の発電可能時間、特定負荷80の消費電力に基づいて、給電残時間情報を生成することが好ましい。この場合、情報生成部81dは、発電可能時間が下限時間未満である場合、燃料電池63の発電可能時間を考慮せずに、蓄電池62の蓄電電力、特定負荷80の消費電力に基づいて、給電残時間情報を生成する。 The information generation unit 81d is based on the stored power of the storage battery 62, the power generation possible time of the fuel cell 63, and the power consumption of the specific load 80 only when the power generation possible time is equal to or longer than a predetermined lower limit time (predetermined time). Thus, it is preferable to generate the remaining power supply time information. In this case, when the power generation possible time is less than the lower limit time, the information generation unit 81d supplies power based on the stored power of the storage battery 62 and the power consumption of the specific load 80 without considering the power generation possible time of the fuel cell 63. Generate remaining time information.
 次に逼迫情報は、蓄電池62の蓄電電力および燃料電池63の発電電力を用いた場合に、特定負荷80へ給電する電力の逼迫率である。蓄電池62から特定負荷80へ供給可能な最大電力は、電力変換器51の自立端子57から出力可能な最大電力(制約出力)によって決まる。そして、逼迫率={(特定負荷80の消費電力-燃料電池63の定格電力)/電力変換器51の制約出力}で求められる。すなわち、逼迫率は、燃料電池63の発電電力(定格電力)を考慮した値となる。 Next, the tightness information is the tightness rate of the power supplied to the specific load 80 when the stored power of the storage battery 62 and the generated power of the fuel cell 63 are used. The maximum power that can be supplied from the storage battery 62 to the specific load 80 is determined by the maximum power (constraint output) that can be output from the self-standing terminal 57 of the power converter 51. Then, the tightness rate = {(power consumption of the specific load 80−rated power of the fuel cell 63) / restricted output of the power converter 51}. That is, the tightness rate is a value that takes into consideration the power generated by the fuel cell 63 (rated power).
 また、この逼迫情報は、蓄電池62の蓄電電力、燃料電池63の発電可能時間を考慮して作成されることが好ましい。例えば、蓄電池62の蓄電電力が大きいほど、逼迫率を減少方向に補正し、蓄電池62の蓄電電力が小さいほど、逼迫率を増加方向に補正する。さらに、燃料電池63の発電可能時間が長いほど、逼迫率を減少方向に補正し、燃料電池63の発電可能時間が短いほど、逼迫率を増加方向に補正する。この場合、逼迫情報は、燃料電池63の発電可能時間を考慮した情報となる。すなわち、この逼迫情報は、燃料電池63の発電可能時間を考慮した精度の高い情報となるので、逼迫情報を見たユーザは、停電期間中の特定負荷80の運転を適切に調整して、電力を有効に用いることができる。したがって、ユーザは、蓄電池62の蓄電電力および燃料電池63の発電電力を適切に用いることができ、停電期間中に特定負荷80への電力供給がユーザの意図しないタイミングで停止してしまうという事態の発生を抑制することができる。 Further, it is preferable that this tightness information is created in consideration of the stored power of the storage battery 62 and the power generation possible time of the fuel cell 63. For example, as the stored power of the storage battery 62 is larger, the tightness rate is corrected in the decreasing direction, and as the stored power of the storage battery 62 is smaller, the tightness rate is corrected in the increasing direction. Furthermore, the compression rate is corrected in the decreasing direction as the power generation possible time of the fuel cell 63 is long, and the compression rate is corrected in the increasing direction as the power generation possible time of the fuel cell 63 is short. In this case, the tightness information is information in consideration of the power generation possible time of the fuel cell 63. That is, since this tightness information becomes highly accurate information considering the power generation possible time of the fuel cell 63, the user who sees the tightness information appropriately adjusts the operation of the specific load 80 during the power failure period, Can be used effectively. Therefore, the user can appropriately use the stored power of the storage battery 62 and the generated power of the fuel cell 63, and the situation where the power supply to the specific load 80 stops at a timing not intended by the user during the power failure. Occurrence can be suppressed.
 上述のように、エネルギー管理装置81を用いたエネルギー管理システムは、貯湯量に依存した燃料電池63等のコージェネレーション装置の発電能力を考慮して、負荷に供給可能な電力に関する情報を精度よく報知できる。 As described above, the energy management system using the energy management device 81 accurately reports information on the power that can be supplied to the load in consideration of the power generation capability of the cogeneration device such as the fuel cell 63 depending on the amount of stored hot water. it can.
 また、情報生成部81dは、逼迫情報として上述の逼迫率を用いたが、これに限定されない。情報生成部81dは、蓄電池62から供給可能な残電力に関する別の情報を逼迫情報として用いてもよい。この場合、情報生成部81dは、発電可能時間が予め決められた下限時間(所定時間)以上である場合のみ、蓄電池62の蓄電電力、燃料電池63の発電可能時間、特定負荷80の消費電力に基づいて、逼迫情報を生成することが好ましい。情報生成部81dは、発電可能時間が下限時間未満である場合、燃料電池63の発電可能時間を用いずに、蓄電池62の蓄電電力、特定負荷80の消費電力に基づいて、逼迫情報を生成する。 In addition, the information generation unit 81d uses the above-described tightness rate as tightness information, but is not limited thereto. The information generation unit 81d may use other information regarding the remaining power that can be supplied from the storage battery 62 as the tightness information. In this case, the information generation unit 81d converts the stored power of the storage battery 62, the power generation possible time of the fuel cell 63, and the power consumption of the specific load 80 only when the power generation possible time is equal to or longer than a predetermined lower limit time (predetermined time). Based on this, it is preferable to generate tightness information. When the power generation possible time is less than the lower limit time, the information generation unit 81d generates tightness information based on the stored power of the storage battery 62 and the power consumption of the specific load 80 without using the power generation possible time of the fuel cell 63. .
 また、情報生成部81dは、給電情報の内容に応じた報知方法を表示端末82に実行させる給電情報を生成することが好ましい。 In addition, the information generation unit 81d preferably generates power supply information that causes the display terminal 82 to execute a notification method according to the content of the power supply information.
 例えば、情報生成部81dは、給電残時間情報を生成する場合、給電残時間が所定時間より短ければ、表示画面の色、配置等を緊急性の高いデザインとし、さらにブザー音、メッセージ等の音声情報を含める。したがって、表示端末82は、給電残時間情報を表示する場合に、給電残時間が短いことを視覚情報および音声情報を用いてユーザに対して強く報知できる。 For example, when generating the remaining power supply time information, if the remaining power supply time is shorter than a predetermined time, the information generation unit 81d sets the display screen color, layout, etc. to a highly urgent design, and further sounds such as a buzzer sound and a message. Include information. Accordingly, when displaying the remaining power supply time information, the display terminal 82 can strongly notify the user that the remaining power supply time is short using visual information and audio information.
 また、情報生成部81dは、逼迫情報を生成する場合、逼迫率が所定値より高ければ、表示画面の色、配置等を緊急性の高いデザインとし、さらにブザー音、メッセージ等の音声情報を含める。したがって、表示端末82は、逼迫情報を表示する場合に、逼迫率が高いことを視覚情報および音声情報を用いてユーザに対して強く報知できる。 Further, when generating the tightness information, if the tightness rate is higher than a predetermined value, the information generating unit 81d sets the display screen color, layout, etc. to a highly urgent design, and further includes sound information such as a buzzer sound and a message. . Accordingly, when displaying the tightness information, the display terminal 82 can strongly notify the user that the tightness rate is high using visual information and audio information.
 また、時間演算部81cは、貯湯タンク632の貯湯量と貯湯タンク632内の湯の温度とに基づいて、発電可能時間を導出することが好ましい。この場合、燃料電池63の発電ユニット631は、貯湯タンク632の貯湯量が満蓄状態でない場合、または貯湯タンク632の湯の温度が所定温度以下である場合に、発電可能となる。したがって、時間演算部81cは、燃料電池63の発電可能時間をより長く設定することができ、燃料電池63は、停電時の発電量を増やすことができる。 Further, it is preferable that the time calculation unit 81c derives the power generation possible time based on the amount of hot water stored in the hot water storage tank 632 and the temperature of the hot water in the hot water storage tank 632. In this case, the power generation unit 631 of the fuel cell 63 can generate power when the amount of hot water stored in the hot water storage tank 632 is not fully stored or when the temperature of the hot water stored in the hot water storage tank 632 is equal to or lower than a predetermined temperature. Therefore, the time calculation unit 81c can set the power generation possible time of the fuel cell 63 to be longer, and the fuel cell 63 can increase the power generation amount at the time of power failure.
 次に、昼間の停電期間における燃料電池63の貯湯量に応じた報知処理について説明する。 Next, notification processing according to the amount of hot water stored in the fuel cell 63 during the daytime blackout period will be described.
 まず、昼間の停電期間において、太陽電池64は発電可能であり、エネルギー管理装置81は、蓄電池62、燃料電池63、太陽電池64を用いて電力制御を行う。 First, in the daytime power outage period, the solar cell 64 can generate power, and the energy management device 81 performs power control using the storage battery 62, the fuel cell 63, and the solar cell 64.
 エネルギー管理装置81の情報取得部81aは、計測装置40と無線通信を行い、売買電情報、消費電力情報(一般負荷)、消費電力情報(特定負荷)、蓄電池62の情報、太陽電池64の情報、停電情報、発電情報(燃料電池)を、計測装置40から取得する。さらに、情報取得部81aは、燃料電池63と無線通信することによって、燃料電池63の情報を取得する。すなわち、情報取得部81aは、昼間の停電期間において、特定負荷80の消費電力、蓄電池62の蓄電電力、貯湯タンク632の貯湯量、燃料電池63の発電量、太陽電池64の発電量の各情報を取得することができる。 The information acquisition unit 81a of the energy management device 81 performs wireless communication with the measurement device 40, and buys and sells power, power consumption information (general load), power consumption information (specific load), storage battery 62 information, and solar cell 64 information. The power failure information and the power generation information (fuel cell) are acquired from the measuring device 40. Further, the information acquisition unit 81 a acquires information on the fuel cell 63 by wirelessly communicating with the fuel cell 63. In other words, the information acquisition unit 81a includes information on the power consumption of the specific load 80, the stored power of the storage battery 62, the hot water storage amount of the hot water storage tank 632, the power generation amount of the fuel cell 63, and the power generation amount of the solar cell 64 during the daytime power outage period. Can be obtained.
 そして、電力制御部81bは、上記各情報に基づいて、電力変換器51および燃料電池63を制御して、蓄電池62、燃料電池63、太陽電池64の各動作を制御して、特定負荷80へ電力を供給する。 Then, the power control unit 81b controls the power converter 51 and the fuel cell 63 based on each of the above information, controls each operation of the storage battery 62, the fuel cell 63, and the solar cell 64 to the specific load 80. Supply power.
 この場合、エネルギー管理装置81の情報生成部81dは、蓄電池62の蓄電電力と、燃料電池63の発電可能時間と、太陽電池64の発電電力、特定負荷80の消費電力情報とに基づいて、給電残時間情報を生成する。 In this case, the information generation unit 81d of the energy management device 81 supplies power based on the stored power of the storage battery 62, the power generation possible time of the fuel cell 63, the generated power of the solar battery 64, and the power consumption information of the specific load 80. Generate remaining time information.
 また、情報生成部81dは、逼迫率={(特定負荷80の消費電力-燃料電池63の定格電力)/電力変換器51の制約出力}で求めて、この逼迫率に基づく逼迫情報を生成する。 Further, the information generation unit 81d obtains the compression rate = {(power consumption of the specific load 80−rated power of the fuel cell 63) / restricted output of the power converter 51}, and generates the compression information based on this compression rate. .
 すなわち、昼間の停電期間においても、情報生成部81dが給電残時間情報、逼迫情報等の給電情報を生成し、表示端末82が給電情報をユーザへ報知することによって、上述の夜間の停電期間と同様の効果を得ることができる。 That is, during the daytime power outage period, the information generation unit 81d generates power supply information such as remaining power supply time information and tightness information, and the display terminal 82 notifies the user of the power supply information. Similar effects can be obtained.
 (まとめ)
 以上説明したように、エネルギー管理装置81は、蓄電池62と、コージェネレーション装置(燃料電池63)とを用いた特定負荷80(負荷)への電力供給を管理する。コージェネレーション装置は、発電時に水から湯を生成してこの生成した湯を貯める貯湯タンク632の貯湯量が所定量以上になれば発電を停止する。このエネルギー管理装置81は、特定負荷80の消費電力、蓄電池62の蓄電電力、貯湯タンク632の貯湯量の各情報を取得する情報取得部81aを備える。さらにエネルギー管理装置81は、貯湯タンク632の貯湯量に基づいてコージェネレーション装置が発電を継続できる発電可能時間を導出する時間演算部81cを備える。さらにエネルギー管理装置81は、給電情報生成部81dを備える。給電情報生成部81dは、蓄電池62の蓄電電力、コージェネレーション装置の発電可能時間、特定負荷80の消費電力に基づいて、蓄電池62とコージェネレーション装置とを用いて特定負荷80に供給可能な電力に関する給電情報を生成する。給電情報生成部81dは、この給電情報を表示端末82(報知部)へ出力する。
(Summary)
As described above, the energy management device 81 manages power supply to the specific load 80 (load) using the storage battery 62 and the cogeneration device (fuel cell 63). The cogeneration apparatus stops power generation when hot water is generated from water during power generation and the amount of hot water stored in the hot water storage tank 632 for storing the generated hot water becomes a predetermined amount or more. The energy management device 81 includes an information acquisition unit 81 a that acquires information on the power consumption of the specific load 80, the stored power of the storage battery 62, and the amount of hot water stored in the hot water storage tank 632. Furthermore, the energy management device 81 includes a time calculation unit 81 c that derives a power generation possible time during which the cogeneration device can continue power generation based on the amount of hot water stored in the hot water storage tank 632. Furthermore, the energy management device 81 includes a power supply information generation unit 81d. The power supply information generation unit 81d relates to the power that can be supplied to the specific load 80 using the storage battery 62 and the cogeneration device based on the stored power of the storage battery 62, the power generation time of the cogeneration device, and the power consumption of the specific load 80. Power supply information is generated. The power supply information generation unit 81d outputs this power supply information to the display terminal 82 (notification unit).
 この構成によると、エネルギー管理装置81は、コージェネレーション装置(燃料電池63)の発電可能時間を考慮した精度の高い給電情報を出力するので、給電情報を見たユーザは、停電期間中の負荷の運転を適切に調整して、電力を有効に用いることができる。したがって、ユーザは、蓄電池62の蓄電電力およびコージェネレーション装置の発電電力を適切に用いることができ、停電期間中に負荷への電力供給がユーザの意図しないタイミングで停止してしまうという事態の発生を抑制することができる。 According to this configuration, the energy management device 81 outputs highly accurate power supply information in consideration of the power generation possible time of the cogeneration device (fuel cell 63). Electricity can be used effectively by appropriately adjusting the operation. Therefore, the user can appropriately use the stored power of the storage battery 62 and the generated power of the cogeneration apparatus, and the occurrence of a situation where the power supply to the load stops at a timing unintended by the user during the power failure. Can be suppressed.
 したがって、エネルギー管理装置81では、貯湯タンク632の貯湯量に依存したコージェネレーション装置(燃料電池63)の発電能力を考慮して、負荷に供給可能な電力に関する情報を精度よく報知できる。 Therefore, the energy management device 81 can accurately report information on the power that can be supplied to the load in consideration of the power generation capability of the cogeneration device (fuel cell 63) depending on the amount of hot water stored in the hot water storage tank 632.
 ここで、給電情報は、蓄電池62の蓄電電力、コージェネレーション装置(燃料電池63)の発電可能時間、特定負荷80(負荷)の消費電力に基づく、特定負荷80に電力を継続して供給できる残時間の情報であることが好ましい。 Here, the power supply information is the remaining power that can be continuously supplied to the specific load 80 based on the stored power of the storage battery 62, the power generation possible time of the cogeneration device (fuel cell 63), and the power consumption of the specific load 80 (load). Time information is preferred.
 この構成によると、特定負荷80に電力を継続して供給できる残時間の情報は、コージェネレーション装置(燃料電池63)の発電可能時間を考慮した精度の高い情報となる。そのため、残時間の情報を見たユーザは、停電期間中の特定負荷80の運転を適切に調整して、電力を有効に用いることができる。したがって、ユーザは、蓄電池62の蓄電電力およびコージェネレーション装置の発電電力を適切に用いることができ、停電期間中に特定負荷80への電力供給がユーザの意図しないタイミングで停止してしまうという事態の発生を抑制することができる。 According to this configuration, information on the remaining time during which power can be continuously supplied to the specific load 80 is highly accurate information in consideration of the power generation possible time of the cogeneration apparatus (fuel cell 63). Therefore, the user who has seen the remaining time information can appropriately use the power by appropriately adjusting the operation of the specific load 80 during the power failure. Therefore, the user can appropriately use the stored power of the storage battery 62 and the generated power of the cogeneration apparatus, and the situation where the power supply to the specific load 80 stops at a timing not intended by the user during the power outage period. Occurrence can be suppressed.
 ここで、給電情報は、蓄電池62の蓄電電力、コージェネレーション装置(燃料電池63)の発電可能時間、特定負荷80(負荷)の消費電力に基づく、蓄電池62から供給可能な残電力の情報であることが好ましい。 Here, the power supply information is information on the remaining power that can be supplied from the storage battery 62 based on the stored power of the storage battery 62, the power generation possible time of the cogeneration device (fuel cell 63), and the power consumption of the specific load 80 (load). It is preferable.
 この構成によると、蓄電池62から供給可能な残電力の情報は、コージェネレーション装置(燃料電池63)の発電可能時間を考慮した精度の高い情報となる。そのため、残電力の情報を見たユーザは、停電期間中の特定負荷80の運転を適切に調整して、電力を有効に用いることができる。したがって、ユーザは、蓄電池62の蓄電電力およびコージェネレーション装置の発電電力を適切に用いることができ、停電期間中に特定負荷80への電力供給がユーザの意図しないタイミングで停止してしまうという事態の発生を抑制することができる。 According to this configuration, the information on the remaining power that can be supplied from the storage battery 62 is highly accurate information in consideration of the power generation possible time of the cogeneration apparatus (fuel cell 63). Therefore, the user who has seen the information on the remaining power can appropriately use the power by appropriately adjusting the operation of the specific load 80 during the power failure. Therefore, the user can appropriately use the stored power of the storage battery 62 and the generated power of the cogeneration apparatus, and the situation where the power supply to the specific load 80 stops at a timing not intended by the user during the power outage period. Occurrence can be suppressed.
 ここで、給電情報生成部81dは、給電情報の内容に応じた報知方法を表示端末82(報知部)に実行させる給電情報を生成することが好ましい。 Here, it is preferable that the power supply information generation unit 81d generates power supply information that causes the display terminal 82 (notification unit) to execute a notification method according to the content of the power supply information.
 この構成によると、エネルギー管理装置81は、給電情報の内容に応じた報知方法により、給電情報の内容をユーザに知らせることができる。 According to this configuration, the energy management device 81 can inform the user of the content of the power supply information by a notification method according to the content of the power supply information.
 ここで、時間演算部81cは、貯湯タンク632の貯湯量と貯湯タンク632内の湯の温度とに基づいて、発電可能時間を導出することが好ましい。 Here, it is preferable that the time calculation unit 81c derives the power generation possible time based on the amount of hot water stored in the hot water storage tank 632 and the temperature of the hot water in the hot water storage tank 632.
 この構成によると、エネルギー管理装置81は、貯湯タンク632の貯湯量と貯湯タンク632内の湯の温度とに基づいて、発電可能時間を導出することができる。 According to this configuration, the energy management device 81 can derive the power generation possible time based on the amount of hot water stored in the hot water storage tank 632 and the temperature of the hot water in the hot water storage tank 632.
 ここで、給電情報生成部81dは、発電可能時間が所定時間以上である場合、蓄電池62の蓄電電力、コージェネレーション装置(燃料電池63)の発電可能時間、特定負荷80(負荷)の消費電力に基づいて、給電情報を生成することが好ましい。また、給電情報生成部81dは、発電可能時間が所定時間未満である場合、コージェネレーション装置の発電可能時間を用いずに、蓄電池62の蓄電電力、特定負荷80の消費電力に基づいて、給電情報を生成することが好ましい。 Here, when the power generation possible time is equal to or longer than the predetermined time, the power supply information generation unit 81d converts the stored power of the storage battery 62, the power generation possible time of the cogeneration device (fuel cell 63), and the power consumption of the specific load 80 (load). Based on this, it is preferable to generate power supply information. In addition, when the power generation possible time is less than the predetermined time, the power supply information generation unit 81d uses the power generation information of the storage battery 62 and the power consumption of the specific load 80 without using the power generation possible time of the cogeneration apparatus. Is preferably generated.
 この構成によると、エネルギー管理装置81は、コージェネレーション装置(燃料電池63)の発電可能時間に応じて、給電情報を生成することができる。 According to this configuration, the energy management device 81 can generate power supply information according to the power generation possible time of the cogeneration device (fuel cell 63).
 また、上述のエネルギー管理システムは、蓄電池62と、発電時に水から湯を生成してこの生成した湯を貯める貯湯タンク632の貯湯量が所定量以上になれば発電を停止するコージェネレーション装置(燃料電池63)とを備える。さらにエネルギー管理システムは、蓄電池62とコージェネレーション装置とを用いた特定負荷80(負荷)への電力供給を管理し、特定負荷80に供給可能な電力に関する給電情報を生成するエネルギー管理装置81を備える。さらにエネルギー管理システムは、エネルギー管理装置81が生成した給電情報を報知する表示端末82(報知部)を備える。そして、エネルギー管理装置81は、特定負荷80の消費電力、蓄電池62の蓄電電力、貯湯タンク632の貯湯量の各情報を取得する情報取得部81aを備える。さらにエネルギー管理装置81は、貯湯タンク632の貯湯量に基づいてコージェネレーション装置が発電を継続できる発電可能時間を導出する時間演算部81cを備える。さらにエネルギー管理装置81は、蓄電池62の蓄電電力、コージェネレーション装置の発電可能時間、特定負荷80の消費電力に基づいて給電情報を生成し、この給電情報を表示端末82へ出力する給電情報生成部81dを備える。 In addition, the energy management system described above is a cogeneration system (fuel that stops power generation when the amount of hot water stored in the storage battery 62 and the hot water storage tank 632 that generates hot water from water during power generation and stores the generated hot water exceeds a predetermined amount. Battery 63). Furthermore, the energy management system includes an energy management device 81 that manages power supply to the specific load 80 (load) using the storage battery 62 and the cogeneration device, and generates power supply information related to power that can be supplied to the specific load 80. . Furthermore, the energy management system includes a display terminal 82 (notification unit) that notifies the power supply information generated by the energy management device 81. The energy management device 81 includes an information acquisition unit 81 a that acquires information on the power consumption of the specific load 80, the stored power of the storage battery 62, and the amount of hot water stored in the hot water storage tank 632. Furthermore, the energy management device 81 includes a time calculation unit 81 c that derives a power generation possible time during which the cogeneration device can continue power generation based on the amount of hot water stored in the hot water storage tank 632. Furthermore, the energy management device 81 generates power supply information based on the stored power of the storage battery 62, the power generation possible time of the cogeneration device, and the power consumption of the specific load 80, and outputs this power supply information to the display terminal 82. 81d.
 この構成によると、エネルギー管理システムは、貯湯タンク632の貯湯量に依存したコージェネレーション装置(燃料電池63)の発電能力を考慮して、負荷に供給可能な電力に関する情報を精度よく報知できる。 According to this configuration, the energy management system can accurately report information on the power that can be supplied to the load in consideration of the power generation capability of the cogeneration device (fuel cell 63) depending on the amount of hot water stored in the hot water storage tank 632.
 ここで、コージェネレーション装置は、燃料電池63であることが好ましい。 Here, the cogeneration apparatus is preferably a fuel cell 63.
 この構成によると、エネルギー管理システムは、燃料電池63の発電能力を考慮して、負荷に供給可能な電力に関する情報を報知できる。 According to this configuration, the energy management system can report information on the power that can be supplied to the load in consideration of the power generation capability of the fuel cell 63.
 また、エネルギー管理方法は、蓄電池62と、コージェネレーション装置(燃料電池63)とを用いた特定負荷80(負荷)への電力供給を管理する方法である。コージェネレーション装置は、発電時に水から湯を生成してこの生成した湯を貯める貯湯タンク632の貯湯量が所定量以上になれば発電を停止する。このエネルギー管理方法は、特定負荷80の消費電力、蓄電池62の蓄電電力、貯湯タンク632の貯湯量の各情報を取得する情報取得処理を含む。さらにエネルギー管理方法は、貯湯タンク632の貯湯量に基づいてコージェネレーション装置が発電を継続できる発電可能時間を導出する時間演算処理を含む。さらにエネルギー管理方法は、給電情報生成処理を含む。給電情報生成処理は、蓄電池62の蓄電電力、コージェネレーション装置の発電可能時間、特定負荷80の消費電力に基づいて、蓄電池62とコージェネレーション装置とを用いて特定負荷80に供給可能な電力に関する給電情報を生成する。給電情報生成処理は、この給電情報を表示端末82(報知部)へ出力する。 Further, the energy management method is a method of managing power supply to the specific load 80 (load) using the storage battery 62 and the cogeneration device (fuel cell 63). The cogeneration apparatus stops power generation when hot water is generated from water during power generation and the amount of hot water stored in the hot water storage tank 632 for storing the generated hot water becomes a predetermined amount or more. This energy management method includes information acquisition processing for acquiring information on the power consumption of the specific load 80, the stored power of the storage battery 62, and the amount of hot water stored in the hot water storage tank 632. Further, the energy management method includes time calculation processing for deriving a power generation possible time during which the cogeneration apparatus can continue power generation based on the amount of hot water stored in the hot water storage tank 632. Furthermore, the energy management method includes power supply information generation processing. The power supply information generation process is a power supply related to the power that can be supplied to the specific load 80 using the storage battery 62 and the cogeneration device based on the stored power of the storage battery 62, the power generation time of the cogeneration device, and the power consumption of the specific load 80. Generate information. The power supply information generation process outputs this power supply information to the display terminal 82 (notification unit).
 このエネルギー管理方法によると、貯湯タンク632の貯湯量に依存したコージェネレーション装置(燃料電池63)の発電能力を考慮して、負荷に供給可能な電力に関する情報を精度よく報知できる。 According to this energy management method, information on the power that can be supplied to the load can be accurately reported in consideration of the power generation capability of the cogeneration device (fuel cell 63) depending on the amount of hot water stored in the hot water storage tank 632.
 また、本実施形態のプログラムは、コンピュータを、上述したいずれかのエネルギー管理装置81として機能させるプログラムである。 Further, the program of the present embodiment is a program that causes a computer to function as any of the energy management devices 81 described above.
 このプログラムによると、貯湯タンク632の貯湯量に依存したコージェネレーション装置(燃料電池63)の発電能力を考慮して、負荷に供給可能な電力に関する情報を精度よく報知できる。 According to this program, information on the power that can be supplied to the load can be accurately reported in consideration of the power generation capability of the cogeneration device (fuel cell 63) depending on the amount of hot water stored in the hot water storage tank 632.
 また、上述したプログラムは、コンピュータで読み取りが可能な記憶媒体に記憶された状態で提供されてもよいし、インターネットのような電気通信回線を通して提供されてもよい。 Further, the above-described program may be provided in a state stored in a computer-readable storage medium, or may be provided through an electric communication line such as the Internet.

Claims (8)

  1.  蓄電池と、発電時に水から湯を生成してこの生成した湯を貯める貯湯タンクの貯湯量が所定量以上になれば発電を停止するコージェネレーション装置とを用いた負荷への電力供給を管理するエネルギー管理装置であって、
     前記負荷の消費電力、前記蓄電池の蓄電電力、前記貯湯タンクの貯湯量の各情報を取得する情報取得部と、
     前記貯湯タンクの貯湯量に基づいて前記コージェネレーション装置が発電を継続できる発電可能時間を導出する時間演算部と、
     前記蓄電池の蓄電電力、前記コージェネレーション装置の前記発電可能時間、前記負荷の消費電力に基づいて、前記蓄電池と前記コージェネレーション装置とを用いて前記負荷に供給可能な電力に関する給電情報を生成し、この給電情報を報知部へ出力する給電情報生成部と
     を備えることを特徴とするエネルギー管理装置。
    Energy that manages the supply of power to the load using a storage battery and a cogeneration system that generates hot water from water during power generation and stores the generated hot water when the amount of hot water stored exceeds a predetermined level. A management device,
    An information acquisition unit for acquiring each information of power consumption of the load, stored power of the storage battery, and hot water storage amount of the hot water storage tank;
    A time calculation unit for deriving a power generation possible time during which the cogeneration apparatus can continue power generation based on the amount of hot water stored in the hot water storage tank;
    Based on the storage power of the storage battery, the power generation possible time of the cogeneration device, and the power consumption of the load, power supply information relating to the power that can be supplied to the load using the storage battery and the cogeneration device is generated, An energy management apparatus comprising: a power supply information generation unit that outputs the power supply information to a notification unit.
  2.  前記給電情報は、前記蓄電池の蓄電電力、前記コージェネレーション装置の前記発電可能時間、前記負荷の消費電力に基づく、前記負荷に電力を継続して供給できる残時間の情報であることを特徴とする請求項1記載のエネルギー管理装置。 The power supply information is information on remaining time in which power can be continuously supplied to the load based on the stored power of the storage battery, the power generation possible time of the cogeneration apparatus, and the power consumption of the load. The energy management apparatus according to claim 1.
  3.  前記給電情報は、前記蓄電池の蓄電電力、前記コージェネレーション装置の前記発電可能時間、前記負荷の消費電力に基づく、前記蓄電池から供給可能な残電力の情報であることを特徴とする請求項1記載のエネルギー管理装置。 The power supply information is information on remaining power that can be supplied from the storage battery based on the stored power of the storage battery, the power generation possible time of the cogeneration device, and the power consumption of the load. Energy management equipment.
  4.  前記給電情報生成部は、前記給電情報の内容に応じた報知方法を前記報知部に実行させる前記給電情報を生成することを特徴とする請求項1乃至3いずれか記載のエネルギー管理装置。 4. The energy management apparatus according to claim 1, wherein the power supply information generation unit generates the power supply information that causes the notification unit to execute a notification method according to a content of the power supply information.
  5.  前記時間演算部は、前記貯湯タンクの貯湯量と前記貯湯タンク内の湯の温度とに基づいて、前記発電可能時間を導出することを特徴とする請求項1乃至4いずれか記載のエネルギー管理装置。 5. The energy management device according to claim 1, wherein the time calculation unit derives the power generation possible time based on a hot water storage amount of the hot water storage tank and a temperature of hot water in the hot water storage tank. .
  6.  前記給電情報生成部は、
     前記発電可能時間が所定時間以上である場合、前記蓄電池の蓄電電力、前記コージェネレーション装置の前記発電可能時間、前記負荷の消費電力に基づいて、前記給電情報を生成し、
     前記発電可能時間が所定時間未満である場合、前記コージェネレーション装置の前記発電可能時間を用いずに、前記蓄電池の蓄電電力、前記負荷の消費電力に基づいて、前記給電情報を生成する
     ことを特徴とする請求項1乃至5いずれか記載のエネルギー管理装置。
    The power supply information generation unit
    When the power generation possible time is a predetermined time or more, based on the stored power of the storage battery, the power generation possible time of the cogeneration device, the power consumption of the load, to generate the power supply information,
    When the power generation possible time is less than a predetermined time, the power supply information is generated based on the stored power of the storage battery and the power consumption of the load without using the power generation possible time of the cogeneration apparatus. The energy management device according to any one of claims 1 to 5.
  7.  蓄電池と、
     発電時に水から湯を生成してこの生成した湯を貯める貯湯タンクの貯湯量が所定量以上になれば発電を停止するコージェネレーション装置と、
     前記蓄電池と前記コージェネレーション装置とを用いた負荷への電力供給を管理し、前記負荷に供給可能な電力に関する給電情報を生成するエネルギー管理装置と、
     前記エネルギー管理装置が生成した前記給電情報を報知する報知部とを備え、
     前記エネルギー管理装置は、
     前記負荷の消費電力、前記蓄電池の蓄電電力、前記貯湯タンクの貯湯量の各情報を取得する情報取得部と、
     前記貯湯タンクの貯湯量に基づいて前記コージェネレーション装置が発電を継続できる発電可能時間を導出する時間演算部と、
     前記蓄電池の蓄電電力、前記コージェネレーション装置の前記発電可能時間、前記負荷の消費電力に基づいて前記給電情報を生成し、この給電情報を報知部へ出力する給電情報生成部と
     を備えることを特徴とするエネルギー管理システム。
    A storage battery,
    A cogeneration system that generates hot water from water during power generation and stops power generation when the amount of hot water stored in the hot water storage tank that stores the generated hot water exceeds a predetermined amount;
    An energy management device that manages power supply to a load using the storage battery and the cogeneration device, and generates power supply information related to power that can be supplied to the load;
    A notification unit that notifies the power supply information generated by the energy management device;
    The energy management device includes:
    An information acquisition unit for acquiring each information of power consumption of the load, stored power of the storage battery, and hot water storage amount of the hot water storage tank;
    A time calculation unit for deriving a power generation possible time during which the cogeneration apparatus can continue power generation based on the amount of hot water stored in the hot water storage tank;
    A power supply information generation unit configured to generate the power supply information based on the stored power of the storage battery, the power generation possible time of the cogeneration apparatus, and the power consumption of the load, and to output the power supply information to a notification unit. And energy management system.
  8.  前記コージェネレーション装置は、燃料電池であることを特徴とする請求項7記載のエネルギー管理システム。 The energy management system according to claim 7, wherein the cogeneration device is a fuel cell.
PCT/JP2014/006492 2014-01-08 2014-12-26 Energy management device and energy management system WO2015104787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-001877 2014-01-08
JP2014001877A JP2015130768A (en) 2014-01-08 2014-01-08 Energy management apparatus and energy management system

Publications (1)

Publication Number Publication Date
WO2015104787A1 true WO2015104787A1 (en) 2015-07-16

Family

ID=53523642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006492 WO2015104787A1 (en) 2014-01-08 2014-12-26 Energy management device and energy management system

Country Status (2)

Country Link
JP (1) JP2015130768A (en)
WO (1) WO2015104787A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6618788B2 (en) * 2015-11-26 2019-12-11 京セラ株式会社 Fuel cell device and control method thereof
JP7123586B2 (en) * 2018-03-16 2022-08-23 株式会社東芝 Power monitoring system
JP7206126B2 (en) * 2019-02-15 2023-01-17 大阪瓦斯株式会社 Distributed power system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153741A (en) * 2010-01-26 2011-08-11 Osaka Gas Co Ltd Cogeneration system
WO2013069174A1 (en) * 2011-11-09 2013-05-16 パナソニック株式会社 Cogeneration system and method for controlling same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006230147A (en) * 2005-02-18 2006-08-31 Sansha Electric Mfg Co Ltd Electric power storing and reduced electric power receiving system
JP5813544B2 (en) * 2012-03-22 2015-11-17 株式会社東芝 ENERGY MANAGEMENT DEVICE, ITS MANAGEMENT METHOD, AND ENERGY MANAGEMENT PROGRAM
JP6277537B2 (en) * 2012-04-09 2018-02-14 パナソニックIpマネジメント株式会社 Energy management apparatus, energy management system, energy management method, and program
JP5886138B2 (en) * 2012-05-29 2016-03-16 京セラ株式会社 Power control system, fuel cell, and control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153741A (en) * 2010-01-26 2011-08-11 Osaka Gas Co Ltd Cogeneration system
WO2013069174A1 (en) * 2011-11-09 2013-05-16 パナソニック株式会社 Cogeneration system and method for controlling same

Also Published As

Publication number Publication date
JP2015130768A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
JP6195206B2 (en) Power supply system, power converter, measuring point switching device
JP6655805B2 (en) Energy management device and energy management method
JP5520574B2 (en) Power interchange system
JP6358530B2 (en) COGENERATION DEVICE CONTROL DEVICE AND COGENERATION DEVICE CONTROL METHOD
WO2012066915A1 (en) Control device for electrical storage device, electrical storage device, and method for charging/discharging electrical storage device
WO2011055208A1 (en) Electric power interchange system
CN102804540A (en) Power distribution system
KR20120070903A (en) Smart grid power controller and power control method for the same
JP5306314B2 (en) Indoor power transmission system
JPWO2013061826A1 (en) Power supply system, distributed power supply system, management device, and power supply control method
JP2012147621A (en) Blackout relief system
WO2015104787A1 (en) Energy management device and energy management system
US20150025702A1 (en) Energy management system
JP6115000B2 (en) Distribution board, distribution board system, stand-alone distribution board
JP2013255394A (en) Energy management control system
JP6179855B2 (en) Power supply system, distribution board
WO2014167782A1 (en) Linkage adapter, distribution board, distribution board system
JP5929308B2 (en) Power generation system and power conditioner for power generation system
JP2011120460A (en) Apparatus for measuring power quantity and load quantity in power generation system
JP2013243794A (en) Power supply system and power supply method
JP2016126983A (en) Fuel cell controller, fuel cell control system, fuel cell control method and computer program
JP2015220821A (en) Power supply system and power supply control device
JP2009219226A (en) Power supply device
JP5904850B2 (en) Electricity meter
JP2015076966A (en) Controller for power supply system using fuel cell, and power supply system using fuel cell and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14877576

Country of ref document: EP

Kind code of ref document: A1