JP6655805B2 - Energy management device and energy management method - Google Patents

Energy management device and energy management method Download PDF

Info

Publication number
JP6655805B2
JP6655805B2 JP2014022402A JP2014022402A JP6655805B2 JP 6655805 B2 JP6655805 B2 JP 6655805B2 JP 2014022402 A JP2014022402 A JP 2014022402A JP 2014022402 A JP2014022402 A JP 2014022402A JP 6655805 B2 JP6655805 B2 JP 6655805B2
Authority
JP
Japan
Prior art keywords
power
load
generated
solar cell
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014022402A
Other languages
Japanese (ja)
Other versions
JP2015149861A (en
Inventor
新平 日比谷
新平 日比谷
義隆 手塚
義隆 手塚
賢二 中北
賢二 中北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014022402A priority Critical patent/JP6655805B2/en
Priority to PCT/JP2015/000419 priority patent/WO2015118844A1/en
Publication of JP2015149861A publication Critical patent/JP2015149861A/en
Application granted granted Critical
Publication of JP6655805B2 publication Critical patent/JP6655805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/40Fuel cell technologies in production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Fuel Cell (AREA)

Description

本発明は、一般にエネルギー管理装置、およびエネルギー管理方法、より詳細には太陽電池と蓄電池とコージェネレーション装置とを組み合わせて管理するエネルギー管理装置、およびエネルギー管理方法に関するものである。   The present invention generally relates to an energy management device and an energy management method, and more particularly to an energy management device and an energy management method for managing a combination of a solar cell, a storage battery, and a cogeneration device.

従来、太陽電池、燃料電池等のコージェネレーション装置、蓄電池を用いて、需要家内の電力供給を行う発電システムがある。この種のシステムでは、太陽電池の発電電力、コージェネレーション装置の発電電力、蓄電池の放電電力を組み合わせて、負荷へ電力を供給する。例えば、太陽電池の発電電力が負荷電力を下回っている場合、太陽電池の発電電力と燃料電池の発電電力とを併用して負荷へ電力供給し、燃料電池の発電電力の余剰分は蓄電池の充電に用いられる(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, there is a power generation system that supplies power in a customer using a cogeneration device such as a solar cell or a fuel cell, or a storage battery. In this type of system, power is supplied to a load by combining the generated power of a solar cell, the generated power of a cogeneration device, and the discharged power of a storage battery. For example, when the power generated by the solar cell is lower than the load power, the power generated by the solar cell and the power generated by the fuel cell are used together to supply power to the load, and the surplus of the power generated by the fuel cell is charged to the storage battery. (For example, see Patent Document 1).

また、コージェネレーション装置は、発電時に生じる排熱を利用して湯を生成し、この生成した湯を貯湯タンクに貯める。ユーザは、この貯湯タンク内の湯を使用することができる。   The cogeneration device generates hot water using waste heat generated at the time of power generation, and stores the generated hot water in a hot water storage tank. The user can use the hot water in the hot water storage tank.

特開2010−259303号公報JP 2010-259303 A

従来の発電システムでは、燃料電池等のコージェネレーション装置の発電電力を蓄電池に充電することが不可能なシステムがある。また、太陽電池は、夜間等では発電不能になり、蓄電池への充電を行うことができない。   In a conventional power generation system, there is a system that cannot charge a storage battery with power generated by a cogeneration device such as a fuel cell. Further, the solar cell cannot generate power at night or the like, and cannot charge the storage battery.

このような発電システムにおいて、太陽電池およびコージェネレーション装置の各発電電力を用いて、蓄電池への充電を含むシステム全体の電力効率を向上させることが求められている。   In such a power generation system, it is required to improve the power efficiency of the entire system including the charging of the storage battery by using the generated power of the solar cell and the cogeneration device.

本発明は、上記事由に鑑みてなされたものであり、その目的は、太陽電池およびコージェネレーション装置の各発電電力を用いて、蓄電池への充電を含むシステム全体の電力効率を向上させることができるエネルギー管理装置、およびエネルギー管理方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to improve the power efficiency of the entire system including charging of a storage battery by using each generated power of a solar cell and a cogeneration device. An object of the present invention is to provide an energy management device and an energy management method.

本発明のエネルギー管理装置は、太陽電池と、蓄電池と、コージェネレーション装置とを用いた負荷への電力供給を制御する電力制御部を備え、前記電力制御部は、商用電力を供給する系統電源の停電時において、前記太陽電池の発電電力が前記負荷の消費電力以下である場合、前記コージェネレーション装置の発電電力を前記負荷へ供給させ、前記コージェネレーション装置の発電電力が前記負荷の消費電力未満であれば、前記負荷の消費電力と前記コージェネレーション装置の発電電力との差分を前記太陽電池の発電電力で補い、前記太陽電池の発電電力のうち前記負荷で消費されない余剰電力を用いて前記蓄電池を充電させ、前記太陽電池の発電電力が前記負荷の消費電力以下である場合、前記蓄電池が満充電状態になれば、前記負荷の消費電力のうち前記太陽電池の発電電力の割合を増加させ、前記負荷の消費電力のうち前記コージェネレーション装置の発電電力の割合を減少させることを特徴とする。 The energy management device of the present invention includes a power control unit that controls power supply to a load using a solar cell, a storage battery, and a cogeneration device, and the power control unit includes a system power supply that supplies commercial power. At the time of a power outage, when the generated power of the solar cell is equal to or less than the power consumption of the load, the generated power of the cogeneration device is supplied to the load, and the generated power of the cogeneration device is less than the power consumption of the load. If there is, the difference between the power consumption of the load and the power generated by the cogeneration device is supplemented by the power generated by the solar cell, and the storage battery is generated using surplus power not consumed by the load among the power generated by the solar cell. it is charged, if the generated power of the solar cell is less than the power consumption of the load, if the battery is fully charged, the load Increasing the proportion of power generated of the solar cell of the power consumption, characterized in that to reduce the rate of generated power of the cogeneration apparatus of the power consumption of the load.

この発明において、前記電力制御部は、前記太陽電池の発電電力が前記負荷の消費電力を上回っている場合、前記太陽電池の発電電力のみを前記負荷へ供給させ、前記太陽電池の発電電力のうち前記負荷で消費されない余剰電力を用いて前記蓄電池を充電させることが好ましい。   In the present invention, when the generated power of the solar cell exceeds the power consumption of the load, the power control unit supplies only the generated power of the solar cell to the load, and among the generated power of the solar cell, It is preferable that the storage battery is charged using surplus power not consumed by the load.

この発明において、前記コージェネレーション装置は、発電時に湯を生成して、この生成した湯を貯める貯湯タンクの蓄熱量が所定量以上になれば発電を停止することが好ましい。   In the present invention, it is preferable that the cogeneration device generates hot water at the time of power generation, and stops power generation when a heat storage amount of a hot water storage tank for storing the generated hot water becomes equal to or more than a predetermined amount.

この発明において、前記貯湯タンクの前記蓄熱量が閾値を上回った場合に、前記貯湯タンクの湯を使用することを要求する報知信号を出力する報知信号出力部を備えることが好ましい。   In the present invention, it is preferable that a notification signal output unit that outputs a notification signal requesting use of hot water in the hot water storage tank when the amount of heat stored in the hot water storage tank exceeds a threshold value is provided.

この発明において、前記電力制御部は、前記太陽電池の発電電力と前記蓄電池の発電電力とを交流電力に変換して前記負荷へ供給する電力変換装置の出力が上限値未満となるように、前記コージェネレーション装置の発電を制御することが好ましい。   In the present invention, the power control unit converts the power generated by the solar cell and the power generated by the storage battery into AC power and supplies the load to an output of a power conversion device that is less than an upper limit value. It is preferable to control the power generation of the cogeneration device.

この発明において、前記電力制御部は、前記負荷の消費電力が、前記電力変換装置の出力の前記上限値以上となる場合、前記負荷の消費電力から前記コージェネレーション装置の発電電力を引いた差分が、前記電力変換装置の出力の前記上限値未満となるのであれば、前記コージェネレーション装置の発電を開始することが好ましい。   In the present invention, when the power consumption of the load is equal to or more than the upper limit of the output of the power conversion device, the power control unit calculates a difference obtained by subtracting the power generation of the cogeneration device from the power consumption of the load. If the output of the power conversion device is less than the upper limit, it is preferable to start power generation of the cogeneration device.

本発明のエネルギー管理方法は、太陽電池と、蓄電池と、コージェネレーション装置とを用いた負荷への電力供給を制御する電力管理方法であって、商用電力を供給する系統電源の停電時において、前記太陽電池の発電電力が前記負荷の消費電力以下である場合、前記コージェネレーション装置の発電電力を前記負荷へ供給させ、前記コージェネレーション装置の発電電力が前記負荷の消費電力未満であれば、前記負荷の消費電力と前記コージェネレーション装置の発電電力との差分を前記太陽電池の発電電力で補い、前記太陽電池の発電電力のうち前記負荷で消費されない余剰電力を用いて前記蓄電池を充電させ、前記太陽電池の発電電力が前記負荷の消費電力以下である場合、前記蓄電池が満充電状態になれば、前記負荷の消費電力のうち前記太陽電池の発電電力の割合を増加させ、前記負荷の消費電力のうち前記コージェネレーション装置の発電電力の割合を減少させることを特徴とする。
The energy management method of the present invention is a power management method for controlling power supply to a load using a solar cell, a storage battery, and a cogeneration device, and the method includes the steps of: When the generated power of the solar cell is equal to or less than the power consumption of the load, the generated power of the cogeneration device is supplied to the load, and when the generated power of the cogeneration device is less than the power consumption of the load, the load is reduced. compensate the difference between the generated power of the power consumption of the cogeneration system at the generated power of the solar cell, to charge the battery using surplus power that is not consumed by the load of the power generation of the solar cell, the solar When the power generated by the battery is equal to or less than the power consumption of the load, the power consumption of the load is reduced when the storage battery is fully charged. Increasing the proportion of power generated of the solar cell, and wherein the reducing the rate of generated power of the cogeneration apparatus of the power consumption of the load.

以上説明したように、太陽電池の発電電力が負荷の消費電力以下である場合、コージェネレーション装置で負荷の消費電力をできるだけ賄い、太陽電池の余剰電力を蓄電池に充電することで、システム全体として電力を効率的に使用することが可能となる。また、夜間などのように太陽電池が発電できないときには、コージェネレーション装置で負荷の消費電力を賄うことができる。   As described above, when the generated power of the solar cell is equal to or less than the power consumption of the load, the cogeneration device can cover the power consumption of the load as much as possible, and the surplus power of the solar cell is charged to the storage battery. Can be used efficiently. Also, when the solar cell cannot generate power, such as at night, the cogeneration device can cover the power consumption of the load.

したがって、本発明のエネルギー管理装置、エネルギー管理方法は、太陽電池およびコージェネレーション装置の各発電電力を用いて、蓄電池への充電を含むシステム全体の電力効率を向上させることができるという効果がある。   Therefore, the energy management device and the energy management method of the present invention have an effect that the power efficiency of the entire system including the charging of the storage battery can be improved using the generated power of the solar cell and the cogeneration device.

実施形態のエネルギー管理装置を用いたエネルギー管理システムの概略を示すブロック図である。It is a block diagram showing an outline of an energy management system using an energy management device of an embodiment. 同上のエネルギー管理システムの全体構成を示す構成図である。It is a block diagram which shows the whole structure of an energy management system same as the above. 同上の計測装置が生成した情報テーブルの一例を示すテーブル図である。It is a table figure showing an example of the information table which the measuring device same as the above generated. 同上のエネルギー管理装置が生成した情報テーブルの一例を示すテーブル図である。It is a table figure showing an example of the information table which the energy management system same as the above generated. 同上の通電期間における交流電力の給電路の一例を示すブロック図である。It is a block diagram which shows an example of the power supply path of AC power in the same energization period. 同上の停電期間における交流電力の給電路の一例を示すブロック図である。It is a block diagram which shows an example of the power supply path of AC electric power during a power outage period same as the above. 同上の停電時の電力制御を示すフローチャートである。It is a flowchart which shows the power control at the time of a power failure same as the above.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態)
エネルギー管理システム(電力管理システム)の全体構成を、図2に示す。エネルギー管理システムは、分電盤10、自立分電盤20、電源切替器30、計測装置40、電力変換装置50、蓄電池62、燃料電池63、エネルギー管理装置81、表示端末82を主構成として備える。
(Embodiment)
FIG. 2 shows the overall configuration of the energy management system (power management system). The energy management system mainly includes a distribution board 10, an independent distribution board 20, a power switch 30, a measuring device 40, a power conversion device 50, a storage battery 62, a fuel cell 63, an energy management device 81, and a display terminal 82. .

さらに、図1は、エネルギー管理システムの構成の概略を示すブロック図であり、図2の構成の一部を省略している。図1において、破線は交流電路を示し、一点鎖線は直流電路を示し、実線は情報の伝達経路を示す。   FIG. 1 is a block diagram schematically showing the configuration of the energy management system, and a part of the configuration in FIG. 2 is omitted. In FIG. 1, a broken line indicates an AC circuit, a dashed line indicates a DC circuit, and a solid line indicates an information transmission path.

まず、電力供給システムは、負荷に電力を供給する電源として、系統電源61と、蓄電池62と、燃料電池63と、太陽電池64との4種類を備える。   First, the power supply system includes four types of power supplies for supplying power to the load: a system power supply 61, a storage battery 62, a fuel cell 63, and a solar cell 64.

系統電源61は、電力会社のような電力供給事業者が配電網を通して商用電力を供給する商用電源である。   The system power supply 61 is a commercial power supply to which a power supply company such as a power company supplies commercial power through a power distribution network.

蓄電池62は、リチウムイオン電池等で構成される。   The storage battery 62 is composed of a lithium ion battery or the like.

燃料電池63は、メタンあるいはプロパンを含む燃料ガスの改質により生成した水素ガスを用いるコージェネレーション装置であって、発電ユニット631に貯湯タンク632が付設されている。発電ユニット631は、燃料電池ユニットを用いた発電を行い、さらには発電動作時に生じる排熱を利用して湯を生成する。貯湯タンク632は、発電ユニット631の発電動作時に生成された湯を貯める。さらに、発電ユニット631は、貯湯タンク632内で湯に代えて蓄えている熱量が不足する場合、発電動作時に生じる排熱を利用して、貯湯タンク632内の湯を加熱する。すなわち、「発電動作時に生じる排熱を利用して湯を生成する」とは、「発電動作時に生じる排熱を利用して貯湯タンク632内の湯量を増やす」こと、「発電動作時に生じる排熱を利用して貯湯タンク632内の湯を加熱する」ことの両方の概念を含む。   The fuel cell 63 is a cogeneration device using hydrogen gas generated by reforming a fuel gas containing methane or propane. The fuel cell 63 has a power generation unit 631 and a hot water storage tank 632 attached thereto. The power generation unit 631 performs power generation using the fuel cell unit, and further generates hot water using waste heat generated during the power generation operation. Hot water storage tank 632 stores hot water generated during power generation operation of power generation unit 631. Further, when the amount of heat stored in place of hot water in hot water storage tank 632 is insufficient, power generation unit 631 heats the hot water in hot water storage tank 632 using waste heat generated during the power generation operation. That is, “to generate hot water using the exhaust heat generated during the power generation operation” means “to increase the amount of hot water in the hot water storage tank 632 using the exhaust heat generated during the power generation operation”, and “to generate the hot water during the power generation operation”. To heat the hot water in the hot water storage tank 632 ".

上述のように、燃料電池63は、発電と湯沸かしとの両方の機能を有している。そして、燃料電池63は、貯湯タンク632の貯湯量が満量状態になれば、発電ユニット631による発電を停止する。ここで、貯湯タンク632の貯湯量が満量になった状態を、貯湯タンク632の蓄熱量が上限(第1の所定量)に達した満蓄状態とする。   As described above, the fuel cell 63 has both functions of power generation and water heater. Then, when the amount of hot water stored in hot water storage tank 632 becomes full, fuel cell 63 stops power generation by power generation unit 631. Here, the state in which the amount of hot water stored in hot water storage tank 632 is full is referred to as a full storage state in which the amount of heat stored in hot water storage tank 632 has reached the upper limit (first predetermined amount).

また、燃料電池63は、燃料電池63の動作状態の管理に用いるリモコン63aと通信可能である。   Further, the fuel cell 63 can communicate with a remote controller 63a used for managing the operation state of the fuel cell 63.

太陽電池64は、太陽光による発電を行う。   The solar cell 64 generates power using sunlight.

本実施形態では、系統電源61への電力の逆潮流が可能な電源として、太陽電池64を例示しているが、太陽電池64は、風力、水力、地熱などの自然エネルギーを用いて発電する電源に代えることが可能である。また、本実施形態では、蓄電池62と燃料電池63とは、系統電源61への電力の逆潮流を行わない電源として例示している。また、燃料電池63に代えて、ガスエンジン(ガスマイクロタービン)を用いて発電するコージェネレーション装置を用いることも可能である。   In the present embodiment, the solar cell 64 is exemplified as a power supply capable of reverse power flow to the system power supply 61. However, the solar cell 64 is a power supply that generates power using natural energy such as wind power, hydraulic power, and geothermal power. It is possible to substitute Further, in the present embodiment, the storage battery 62 and the fuel cell 63 are illustrated as power supplies that do not cause reverse flow of power to the system power supply 61. Further, instead of the fuel cell 63, it is also possible to use a cogeneration device that generates power using a gas engine (gas microturbine).

系統電源61に接続された配電線L1は分電盤10に接続される。   The distribution line L1 connected to the system power supply 61 is connected to the distribution board 10.

分電盤10は、配電線L1に1次側を接続した主幹ブレーカ11と、主幹ブレーカ11の2次側において電力を分岐させる複数個の分岐ブレーカ12とを筐体(図示せず)に内蔵している。それぞれの分岐ブレーカ12は、分岐線L2を通して負荷70に電力を供給する。図2では複数個の負荷70に一括して符号を付しているが、符号70は個々の負荷を意味する。   The distribution board 10 includes, in a housing (not shown), a main breaker 11 having a primary side connected to a distribution line L1 and a plurality of branch breakers 12 for branching power at a secondary side of the main breaker 11. are doing. Each branch breaker 12 supplies power to the load 70 through the branch line L2. In FIG. 2, a plurality of loads 70 are collectively denoted by a reference numeral, but the reference numeral 70 indicates an individual load.

さらに分電盤10は、連系ブレーカ13と、電流センサX3とを内蔵する。連系ブレーカ13は、主幹ブレーカ11の1次側の電路(配電線L1)に接続され、電力変換装置50と配電線L1との間に挿入される。連系ブレーカ13は、太陽電池64の発電電力を主幹ブレーカ11の1次側の電路に供給する経路を形成し、また、系統電源61から受電した電力を蓄電池62の充電に用いる経路を形成する。連系ブレーカ13は、いわゆるリモコンブレーカであって、電力変換装置50からの指示によりオン/オフを切り替える。   Further, the distribution board 10 incorporates an interconnection breaker 13 and a current sensor X3. The interconnection breaker 13 is connected to an electric line (distribution line L1) on the primary side of the main breaker 11, and is inserted between the power converter 50 and the distribution line L1. The interconnection breaker 13 forms a path for supplying the power generated by the solar cell 64 to the primary circuit of the main breaker 11, and forms a path for using the power received from the system power supply 61 to charge the storage battery 62. . The interconnection breaker 13 is a so-called remote control breaker, and switches on / off according to an instruction from the power converter 50.

電流センサX3は、主幹ブレーカ11を通過する電流を検出するように配置される。図示例では、配電線L1において、連系ブレーカ13との接続点と、主幹ブレーカ11との間の電路を通過する電流を計測するように電流センサX3が配置されている。電流センサX3は、単相3線の2本の電圧線(U相とW相)の電流を個別に検出するように配置される。   The current sensor X3 is arranged to detect a current passing through the main breaker 11. In the illustrated example, a current sensor X3 is arranged on the distribution line L1 so as to measure a current passing through an electric path between a connection point with the interconnection breaker 13 and the main breaker 11. The current sensor X3 is arranged so as to individually detect the current of two single-phase three-wire voltage lines (U-phase and W-phase).

電流センサX3は、具体的な構成としてコアを備える電流トランスを想定しているが、コアレスコイル(いわゆるロゴスキーコイル)あるいは磁気センサを用いる構成であってもよい。以下に説明する電流センサX1,X2,X4〜X7も同様であり、それぞれの電流センサX1,X2,X4〜X7の具体的な構成は電流センサX3の構成に準じる。   The current sensor X3 is assumed to be a current transformer having a core as a specific configuration, but may be a configuration using a coreless coil (a so-called Rogowski coil) or a magnetic sensor. The same applies to the current sensors X1, X2, X4 to X7 described below, and the specific configuration of each of the current sensors X1, X2, X4 to X7 conforms to the configuration of the current sensor X3.

分電盤10に内蔵された分岐ブレーカ12のうちの1個は、単相3線に対応した分岐線L3を通して自立分電盤20に接続される。分岐線L3には、分電盤10の分岐ブレーカ12から供給される電力と、電力変換装置50から供給される電力との一方を選択して自立分電盤20に供給する電源切替器30が挿入されている。電源切替器30は、分岐ブレーカ12から供給される電力、電力変換装置50から供給される電力のそれぞれを導通・遮断する電磁継電器を備える。   One of the branch breakers 12 built in the distribution board 10 is connected to the independent distribution board 20 through a branch line L3 corresponding to a single-phase three-wire. A power switch 30 that selects one of the power supplied from the branch breaker 12 of the distribution board 10 and the power supplied from the power conversion device 50 and supplies the selected power to the independent distribution board 20 is provided on the branch line L3. Has been inserted. The power switch 30 includes an electromagnetic relay that conducts / cuts off the power supplied from the branch breaker 12 and the power supplied from the power converter 50.

自立分電盤20は、系統電源61から電力が供給されない停電期間でも給電が必要になる負荷80、計測装置40、後述する計測点切替装置90等に電力を供給する経路を形成する。図2では複数個の負荷80に一括して符号を付しているが符号80は個々の負荷を意味する。また、負荷80のうち、負荷81はエネルギー管理装置であり、負荷82は表示端末であり、以降、エネルギー管理装置81、表示端末82と称す。   The self-contained distribution board 20 forms a path for supplying power to the load 80, the measuring device 40, a measurement point switching device 90 described below, and the like, which require power supply even during a power outage period in which power is not supplied from the system power supply 61. In FIG. 2, a plurality of loads 80 are collectively denoted by reference numerals, but reference numeral 80 indicates individual loads. In addition, among the loads 80, the load 81 is an energy management device, and the load 82 is a display terminal. Hereinafter, the loads are referred to as the energy management device 81 and the display terminal 82.

また、負荷70と負荷80とを区別するために、負荷70を「一般負荷」と呼び、負荷80を「特定負荷」と称す。なお、特定負荷80には、エネルギー管理装置81、表示端末82が含まれる。   Further, in order to distinguish the load 70 from the load 80, the load 70 is referred to as a “general load” and the load 80 is referred to as a “specific load”. Note that the specific load 80 includes an energy management device 81 and a display terminal 82.

自立分電盤20は、主幹ブレーカ21と、主幹ブレーカ21の2次側において電力を分岐させる複数個の分岐ブレーカ22とを筐体(図示せず)に内蔵する。主幹ブレーカ21の1次側は、電源切替器30に接続しており、分電盤10の分岐ブレーカ12から供給される電力と、電力変換装置50から供給される電力とのいずれか一方が供給される。それぞれの分岐ブレーカ22は、分岐線L4を通して、特定負荷80、計測装置40、計測点切替装置90に電力を供給する。   The independent distribution board 20 has a main body breaker 21 and a plurality of branch breakers 22 for branching electric power on the secondary side of the main breaker 21 built in a housing (not shown). The primary side of the main breaker 21 is connected to the power switch 30 so that either one of the power supplied from the branch breaker 12 of the distribution board 10 and the power supplied from the power converter 50 is supplied. Is done. Each branch breaker 22 supplies electric power to the specific load 80, the measuring device 40, and the measuring point switching device 90 through the branch line L4.

特定負荷80、計測装置40、計測点切替装置90は、系統電源61から電力が供給されている通電期間に、分電盤10から供給される電力によって動作可能となる。また、特定負荷80、計測装置40、計測点切替装置90は、系統電源61から電力が供給されていない停電期間に、電力変換装置50から供給される電力によって動作可能となる。   The specific load 80, the measurement device 40, and the measurement point switching device 90 can be operated by the power supplied from the distribution board 10 during the power supply period in which the power is supplied from the system power supply 61. In addition, the specific load 80, the measurement device 40, and the measurement point switching device 90 can be operated by the power supplied from the power conversion device 50 during a power failure period in which power is not supplied from the system power supply 61.

また、分岐ブレーカ22のうちの1つは、接続線L5を通して燃料電池63に接続される。燃料電池63の発電電力は、接続線L5、自立分電盤20を経由して特定負荷80、計測装置40、計測点切替装置90に供給可能になる。また、燃料電池63が発電した電力は、主幹ブレーカ21を通して、分電盤10にも供給可能であるから、燃料電池63から一般負荷70にも電力が供給可能である。   Further, one of the branch breakers 22 is connected to the fuel cell 63 through the connection line L5. The generated power of the fuel cell 63 can be supplied to the specific load 80, the measuring device 40, and the measuring point switching device 90 via the connection line L5 and the independent distribution board 20. Further, the power generated by the fuel cell 63 can be supplied to the distribution board 10 through the main breaker 21, so that power can also be supplied from the fuel cell 63 to the general load 70.

電力変換装置50は、蓄電池62と太陽電池64とが接続され、分電盤10との間で電力の授受を行う機能と、自立分電盤20に電力を供給する機能とを有する電力変換器51を備える。さらに、電力変換装置50は、電力変換器51から2線で出力される電力を3線に変換するトランス52を備える。   The power conversion device 50 is a power converter in which the storage battery 62 and the solar cell 64 are connected and has a function of transmitting and receiving power to and from the power distribution panel 10 and a function of supplying power to the independent power distribution panel 20. 51 is provided. Further, the power conversion device 50 includes a transformer 52 that converts the power output from the power converter 51 via two lines into three lines.

電力変換器51は、太陽電池64が発電した直流電力を、系統電源61に連系可能な交流電力に変換する。また、電力変換器51は、蓄電池62の充電電流および放電電流を監視・制御し、蓄電池62が放電する直流電力を交流電力に変換する。   The power converter 51 converts the DC power generated by the solar cell 64 into AC power that can be connected to the system power supply 61. The power converter 51 monitors and controls the charging current and the discharging current of the storage battery 62, and converts DC power discharged from the storage battery 62 into AC power.

さらに電力変換器51は、連系ブレーカ13に接続される連系端子55と、トランス52に電力を供給する自立出力部56とを備える。そして、電力変換器51は、系統電源61の通電期間/停電期間(系統電源61から受電可能か否か)を、連系端子55における端子間の電圧を用いて判断する。   Further, the power converter 51 includes a connection terminal 55 connected to the connection breaker 13 and a self-contained output unit 56 for supplying power to the transformer 52. Then, power converter 51 determines the energizing period / power failure period of system power supply 61 (whether or not power can be received from system power supply 61) using the voltage between interconnection terminals 55.

連系端子55は、連系ブレーカ13を介して配電線L1に接続され、系統電源61の通電期間において系統連系が可能になっている。具体的には、連系端子55は、単相3線式であって、接続線L6を通して連系ブレーカ13と接続され、主幹ブレーカ11の1次側である配電線L1に連系ブレーカ13を介して接続される。   The interconnection terminal 55 is connected to the distribution line L <b> 1 via the interconnection breaker 13, so that the interconnection of the system can be performed during the power supply period of the system power supply 61. Specifically, the interconnection terminal 55 is a single-phase three-wire system, is connected to the interconnection breaker 13 through the connection line L6, and connects the interconnection breaker 13 to the distribution line L1, which is the primary side of the main breaker 11. Connected via.

接続線L6は、太陽電池64の発電電力あるいは蓄電池62の蓄電電力から得られた交流電力を分電盤10の主幹ブレーカ11に供給する経路、あるいは太陽電池64の発電電力を配電線L1に逆潮流させる経路として用いられる。また、接続線L6は、配電線L1を通して系統電源61から供給される電力を用いて蓄電池62を充電する経路としても用いられる。連系端子55の端子間の出力電圧は、系統電源61の線間電圧によって決められる。   The connection line L6 is a path for supplying the power generated by the solar battery 64 or the AC power obtained from the power stored in the storage battery 62 to the main breaker 11 of the distribution board 10, or the power generated by the solar cell 64 is supplied to the distribution line L1. It is used as a tidal path. The connection line L6 is also used as a path for charging the storage battery 62 using the power supplied from the system power supply 61 through the distribution line L1. The output voltage between the interconnection terminals 55 is determined by the line voltage of the system power supply 61.

太陽電池64の発電電力のうち、需要家で利用されない余剰電力は配電線L1側に逆潮流しており、電力変換器51は、逆潮流する電力を監視・制御する機能も有する。電流センサX2の出力は電力変換器51に入力され、電力変換器51は、電流センサX2の出力に基づいて需要家から系統電源61に対する逆潮流が生じているか否か、および逆潮流している電力を判断する。電流センサX2は、単相3線における2本の電圧線を通過する電流を個別に検出するように配置される。   Of the power generated by the solar cell 64, surplus power not used by the customer flows backward to the distribution line L1, and the power converter 51 also has a function of monitoring and controlling the power flowing backward. The output of the current sensor X2 is input to the power converter 51, and based on the output of the current sensor X2, the power converter 51 determines whether or not there is a reverse flow from the customer to the system power supply 61 and the reverse flow. Judge the power. The current sensor X2 is arranged so as to individually detect the current passing through the two voltage lines in the single-phase three-line.

電力変換器51は、電流センサX2が監視する電流の位相と、連系端子55における端子間の電圧の位相との関係を用いて、需要家から系統電源61に対する逆潮流が生じているか否かを判断する。連系端子55における端子間の電圧は、連系端子55に電気的に接続された配電線L1の線間電圧と同電圧かつ同位相になる。したがって、電力変換器51は、連系端子55における端子間の電圧波形と、電流センサX2が監視する電流波形とを用い、電圧波形の1周期分について電力を積分した積分値の符号によって、逆潮流が生じているか否かを判断する。   The power converter 51 uses the relationship between the phase of the current monitored by the current sensor X2 and the phase of the voltage between the terminals of the interconnection terminal 55 to determine whether or not a reverse power flow from the customer to the system power supply 61 has occurred. Judge. The voltage between the terminals of the interconnection terminal 55 has the same voltage and the same phase as the line voltage of the distribution line L1 electrically connected to the interconnection terminal 55. Therefore, the power converter 51 uses the voltage waveform between the terminals of the interconnection terminal 55 and the current waveform monitored by the current sensor X <b> 2, and calculates the inverse of the sign of the integral value obtained by integrating the power for one cycle of the voltage waveform. It is determined whether a tide is occurring.

また、蓄電池62は、系統電源61に対する電力の逆潮流を行わない。そこで、電力変換器51は、蓄電池62の蓄電電力が需要家で消費されずに逆潮流しているか否かを監視するためにも、電流センサX2の出力を上記同様に用いる。   In addition, the storage battery 62 does not perform reverse power flow to the system power supply 61. Therefore, the power converter 51 also uses the output of the current sensor X2 in the same manner as described above to monitor whether or not the stored power of the storage battery 62 is flowing backward without being consumed by the consumer.

一方、電力変換器51の自立出力部56は、系統電源61の通電期間にはトランス52に電力を出力せず、系統電源61の停電期間にはトランス52に電力を出力する。自立出力部56は単相2線式であって、トランス52の1次側と2線で接続され、トランス52への電力供給のみを行う。自立出力部56の端子間の電圧は定電圧(たとえば、200V)に保たれる。そして、トランス52の2次側には自立端子57が設けられており、この自立端子57が出力する電力は、太陽電池64と蓄電池62との少なくとも一方に由来する。自立端子57は、単相3線に対応した接続線L7を通して電源切替器30に接続される。また、電力変換装置50は、自立端子57から出力可能な最大電力(制約出力)が予め決められている。そして、自立端子57の出力が制約出力を上回ると、電力変換器51は、自立出力部56からの出力を停止して、自立端子57からの出力を停止させる。   On the other hand, the independent output unit 56 of the power converter 51 does not output power to the transformer 52 during the power supply period of the system power supply 61, and outputs power to the transformer 52 during the power failure period of the system power supply 61. The independent output unit 56 is a single-phase two-wire system, is connected to the primary side of the transformer 52 by two wires, and only supplies power to the transformer 52. The voltage between the terminals of the independent output unit 56 is maintained at a constant voltage (for example, 200 V). An independent terminal 57 is provided on the secondary side of the transformer 52, and the power output from the independent terminal 57 is derived from at least one of the solar cell 64 and the storage battery 62. The independent terminal 57 is connected to the power switch 30 through a connection line L7 corresponding to a single-phase three-wire. In the power converter 50, the maximum power (constrained output) that can be output from the independent terminal 57 is determined in advance. Then, when the output of the independent terminal 57 exceeds the restricted output, the power converter 51 stops the output from the independent output unit 56 and stops the output from the independent terminal 57.

電力変換器51は、系統電源61の通電期間/停電期間を、連系端子55における端子間の電圧を用いて判断する。そして、電力変換器51は、通電期間/停電期間の判断結果を用いて、電源切替器30の切替動作を制御する。電源切替器30は、電力変換器51からの指示により、自立分電盤20の主幹ブレーカ21に分岐線L3を接続する状態と、自立分電盤20の主幹ブレーカ21に接続線L7を接続する状態とを切り替える。つまり、自立分電盤20は、系統電源61から電力が供給されている通電期間に分電盤10を通して電力が供給され、系統電源61からの電力が停止する停電期間に電力変換装置50から分電盤10を通さずに電力が供給される。なお、電源切替器30の切替動作は、電力変換器51が出力する例えば接点信号によって行われるが、その信号形態は限定されない。 The power converter 51 determines the power supply period / power failure period of the system power supply 61 using the voltage between the interconnection terminals 55. Then, the power converter 51 controls the switching operation of the power supply switch 30 using the determination result of the energization period / power failure period. The power switch 30 connects the branch line L3 to the main breaker 21 of the stand-alone distribution board 20 and connects the connection line L7 to the main breaker 21 of the stand-alone distribution board 20 according to an instruction from the power converter 51. Switch between states. That is, the independent power distribution panel 20 is supplied with power from the power conversion device 50 during the power outage period in which the power is supplied through the power distribution panel 10 during the power supply period when the power is supplied from the system power supply 61 and the power from the system power supply 61 is stopped. Electric power is supplied without passing through the power board 10. The switching operation of the power supply switch 30 is performed by, for example, a contact signal output from the power converter 51, but the signal form is not limited.

また、電力変換器51は、通電期間/停電期間の判断結果(停電情報)を、計測装置40へ送信する。さらに、電力変換器51は、蓄電池62の情報(蓄電電力、放電電力、機器情報、エラー情報等)、太陽電池64の情報(発電電力、機器情報、エラー情報等)を、計測装置40へ送信する。   In addition, the power converter 51 transmits the determination result (power failure information) of the power supply period / power failure period to the measuring device 40. Further, the power converter 51 transmits information of the storage battery 62 (storage power, discharge power, device information, error information, and the like) and information of the solar cell 64 (power generation, device information, error information, and the like) to the measurement device 40. I do.

なお、電力変換器51−計測装置40間の通信経路、電力変換器51−蓄電池62間の通信経路、電力変換器51−太陽電池64間の通信経路は、例えば、RS485規格に準じた仕様のシリアル通信を行う。なお、この通信路は、RS485規格に準じた仕様であることは必須ではなく、無線通信、または有線通信路を用いた電力線搬送通信によっても実現可能である。また、これらの通信技術を組み合わせて用いてもよい。   The communication path between the power converter 51 and the measuring device 40, the communication path between the power converter 51 and the storage battery 62, and the communication path between the power converter 51 and the solar cell 64 are, for example, of specifications conforming to the RS485 standard. Perform serial communication. The communication path does not necessarily have to conform to the RS485 standard, but can be realized by wireless communication or power line carrier communication using a wired communication path. Further, these communication technologies may be used in combination.

さらに、電力変換装置50は、計測点切替装置90に切替信号による指示を与える切替指示部53を備える。切替指示部53は、通電期間/停電期間を示す切替信号を計測点切替装置90に与え、この切替信号は計測点切替装置90を通して燃料電池63にも伝送される。なお、この切替信号は、例えば接点信号であり、その信号形態は限定されない。   Further, the power conversion device 50 includes a switching instruction unit 53 that gives an instruction by a switching signal to the measurement point switching device 90. The switching instruction unit 53 supplies a switching signal indicating the power supply period / power failure period to the measurement point switching device 90, and this switching signal is also transmitted to the fuel cell 63 through the measurement point switching device 90. This switching signal is, for example, a contact signal, and the signal form is not limited.

計測点切替装置90は、燃料電池63が監視する電流値を、分電盤10に内蔵された電流センサX3と、自立分電盤20の主幹ブレーカ21を通過する電流を計測する電流センサX5とのどちらから取得するかを選択する。すなわち、計測点切替装置90は、系統電源61の通電期間には電流センサX3を燃料電池63に接続し、系統電源61の停電期間には電流センサX5を燃料電池63に接続する。   The measurement point switching device 90 includes a current sensor X3 built in the distribution board 10 for monitoring a current value monitored by the fuel cell 63, and a current sensor X5 for measuring a current passing through the main breaker 21 of the independent distribution board 20. Choose from which to get. That is, the measurement point switching device 90 connects the current sensor X3 to the fuel cell 63 during the power supply period of the system power supply 61, and connects the current sensor X5 to the fuel cell 63 during the power failure period of the system power supply 61.

燃料電池63は、本実施形態においては電力の逆潮流を行わないから、電流センサX3,X5が監視する電流に基づいて、逆潮流の発生の有無を判断する。すなわち、燃料電池63は、燃料電池63の発電電力が、需要家で消費されずに逆潮流しているか否かを監視するために、電流センサX3,X5の各出力を用いる。具体的に、燃料電池63は、系統電源61の通電時において系統電源61に対する電力の逆潮流を検出するために、電流センサX3の出力を用いる。また、燃料電池63は、系統電源61の停電時において接続線L7側への電力の逆潮流を検出するために、電流センサX5の出力を用いる。   Since the fuel cell 63 does not perform reverse power flow in the present embodiment, it determines whether or not reverse power flow has occurred based on the current monitored by the current sensors X3 and X5. That is, the fuel cell 63 uses the outputs of the current sensors X3 and X5 to monitor whether the power generated by the fuel cell 63 is flowing backward without being consumed by the consumer. Specifically, the fuel cell 63 uses the output of the current sensor X3 to detect a reverse flow of power to the system power supply 61 when the system power supply 61 is energized. Further, the fuel cell 63 uses the output of the current sensor X5 to detect a reverse power flow of the power to the connection line L7 when the system power supply 61 fails.

すなわち、電流センサX3,X5の各出力は、計測点切替装置90を介して燃料電池63に入力され、燃料電池63は、電流センサX3,X5の各出力に基づいて、燃料電池63から出力された全電力が需要家で消費されているか否かを判断する。   That is, the outputs of the current sensors X3 and X5 are input to the fuel cell 63 via the measurement point switching device 90, and the fuel cell 63 is output from the fuel cell 63 based on the outputs of the current sensors X3 and X5. It is determined whether or not all the power consumed is consumed by the consumer.

また、燃料電池63が発電した電力は、電流センサX4によって監視される。電流センサX4は、燃料電池63と分岐ブレーカ22とを接続する接続線L5を通過する電流を監視する。そして、電流センサX4の出力は計測装置40に入力され、計測装置40は接続線L5を通過する電力を監視する。   The electric power generated by the fuel cell 63 is monitored by the current sensor X4. The current sensor X4 monitors a current passing through a connection line L5 connecting the fuel cell 63 and the branch breaker 22. Then, the output of the current sensor X4 is input to the measuring device 40, and the measuring device 40 monitors the power passing through the connection line L5.

また、燃料電池63は、電力変換装置50との間で計測点切替装置90を通して通信する。つまり、系統電源61の通電期間/停電期間を示す切替信号が、電力変換装置50から計測点切替装置90を通して燃料電池63にも通知される。したがって、燃料電池63は、電力変換装置50の連系端子55と自立端子57とのどちらから電力供給がなされているかを認識することができる。   Further, the fuel cell 63 communicates with the power converter 50 through the measurement point switching device 90. That is, a switching signal indicating the power supply period / power failure period of the system power supply 61 is also notified from the power conversion device 50 to the fuel cell 63 through the measurement point switching device 90. Therefore, the fuel cell 63 can recognize which power is supplied from the interconnection terminal 55 or the independent terminal 57 of the power converter 50.

また、電力変換装置50は、利用者による動作の指示および監視を可能にするために、リモコン54と通信する。   The power converter 50 also communicates with the remote controller 54 to enable the user to instruct and monitor the operation.

需要家において主幹ブレーカ11の1次側の配電線L1には、系統電源61から受電した電力を計量するために電流センサX1が配置される。   In the consumer, a current sensor X1 is arranged on the distribution line L1 on the primary side of the main breaker 11 to measure the power received from the system power supply 61.

また、配電線L1において、電流センサX1と主幹ブレーカ11との間には、系統電源61への逆潮流を検出するために、電流センサX2が配置される。電流センサX2は、配電線L1において主幹ブレーカ11と連系ブレーカ13との接続点より系統電源61に近い位置で電流を監視する。   In the distribution line L1, a current sensor X2 is arranged between the current sensor X1 and the main breaker 11 to detect a reverse power flow to the system power supply 61. The current sensor X2 monitors the current at a position closer to the system power supply 61 than the connection point between the main breaker 11 and the interconnection breaker 13 in the distribution line L1.

また、配電線L1において、連系ブレーカ13との接続点と、主幹ブレーカ11との間の電路を通過する電流を計測するように、電流センサX3が配置されている。また、電流センサX4は、燃料電池63と分岐ブレーカ22とを接続する接続線L5を通過する電流を監視し、電流センサX5は、自立分電盤20の主幹ブレーカ21を通過する電流を計測する
また、電流センサX6は、分岐線L2に配置されて、一般負荷70に供給される電流を監視する。電流センサX7は、分岐線L4に配置されて、特定負荷80に供給される電流を監視する。
In the distribution line L1, a current sensor X3 is arranged so as to measure a current passing through an electric path between a connection point with the interconnection breaker 13 and the main breaker 11. The current sensor X4 monitors a current passing through a connection line L5 connecting the fuel cell 63 and the branch breaker 22, and the current sensor X5 measures a current passing through the main breaker 21 of the self-contained distribution board 20. Further, the current sensor X6 is arranged on the branch line L2 and monitors the current supplied to the general load 70. The current sensor X7 is arranged on the branch line L4 and monitors a current supplied to the specific load 80.

そして、計測装置40には、電流センサX1,X4,X6,X7が接続されており、計測装置40は、電流センサX1,X4,X6,X7が計測した各電流値を定期的に取得する。   The current sensors X1, X4, X6, and X7 are connected to the measuring device 40, and the measuring device 40 periodically acquires the current values measured by the current sensors X1, X4, X6, and X7.

計測装置40は、電流センサX1が計測した電流値に基づいて系統電源61から受電した電力を計測し、売買電情報(買電情報、売電情報)を生成する。また、計測装置40は、電流センサX4が計測した電流値に基づいて燃料電池63の発電電力を計測し、発電情報(燃料電池)を生成する。また、計測装置40は、電流センサX6が計測した電流値に基づいて一般負荷70の消費電力を計測し、消費電力情報(一般負荷)を生成する。また、計測装置40は、電流センサX7が計測した電流値に基づいて特定負荷80の消費電力を計測し、消費電力情報(特定負荷)を生成する。   The measuring device 40 measures the power received from the system power supply 61 based on the current value measured by the current sensor X1, and generates power buying and selling information (power buying information, power selling information). The measuring device 40 measures the power generated by the fuel cell 63 based on the current value measured by the current sensor X4, and generates power generation information (fuel cell). The measuring device 40 measures the power consumption of the general load 70 based on the current value measured by the current sensor X6, and generates power consumption information (general load). The measuring device 40 measures the power consumption of the specific load 80 based on the current value measured by the current sensor X7, and generates power consumption information (specific load).

さらに、計測装置40は、電力変換装置50と通信することによって、蓄電池62の情報(蓄電電力、放電電力、機器情報、エラー情報等)、太陽電池64の情報(発電電力、機器情報、エラー情報等)、通電期間/停電期間の判断結果を示す停電情報を取得する。   Further, the measuring device 40 communicates with the power conversion device 50 to thereby provide information on the storage battery 62 (storage power, discharge power, device information, error information, and the like) and information on the solar cell 64 (power generation, device information, error information, and the like). Etc.), and obtains power outage information indicating the determination result of the energization period / power outage period.

計測装置40は、上記各情報を情報テーブル401に格納する。図3は、計測装置40が生成した情報テーブル401の一例である。   The measuring device 40 stores the above information in the information table 401. FIG. 3 is an example of the information table 401 generated by the measuring device 40.

そして、計測装置40は、売買電情報、消費電力情報(一般負荷)、消費電力情報(特定負荷)、蓄電池62の情報、太陽電池64の情報、停電情報、発電情報(燃料電池)を、エネルギー管理装置81へ無線送信する。   Then, the measuring device 40 converts the power trading information, the power consumption information (general load), the power consumption information (specific load), the information of the storage battery 62, the information of the solar battery 64, the power outage information, and the power generation information (fuel cell) into energy. Wireless transmission to the management device 81 is performed.

エネルギー管理装置81は、情報取得部81aと、電力制御部81bと、表示データ生成部81cと、機器制御部81dとを備える(図1参照)。   The energy management device 81 includes an information acquisition unit 81a, a power control unit 81b, a display data generation unit 81c, and a device control unit 81d (see FIG. 1).

エネルギー管理装置81は、計測装置40と無線通信可能に構成されている。そして、情報取得部81aは、売買電情報、消費電力情報(一般負荷)、消費電力情報(特定負荷)、蓄電池62の情報、太陽電池64の情報、停電情報、発電情報(燃料電池)を、計測装置40から取得する。さらに、エネルギー管理装置81は、燃料電池63と無線通信可能に構成されており、情報取得部81aは、燃料電池63の情報(貯湯タンク632の貯湯量および湯温、機器情報、エラー情報等)も取得する。エネルギー管理装置81は、上記各情報を情報テーブル811に格納する。図4は、エネルギー管理装置81が生成した情報テーブル811の一例である。さらに、エネルギー管理装置81は、計測装置40と無線通信することによって、計測装置40経由で電力変換器51と通信可能である。   The energy management device 81 is configured to be able to wirelessly communicate with the measurement device 40. Then, the information acquisition unit 81a stores the power sale information, the power consumption information (general load), the power consumption information (specific load), the information of the storage battery 62, the information of the solar cell 64, the power outage information, and the power generation information (fuel cell). Obtained from the measuring device 40. Further, the energy management device 81 is configured to be able to wirelessly communicate with the fuel cell 63, and the information acquisition unit 81a provides information on the fuel cell 63 (the amount and temperature of hot water stored in the hot water storage tank 632, device information, error information, and the like). Also get. The energy management device 81 stores the above information in the information table 811. FIG. 4 is an example of the information table 811 generated by the energy management device 81. Further, the energy management device 81 can communicate with the power converter 51 via the measuring device 40 by wirelessly communicating with the measuring device 40.

そして、電力制御部81bは、上記各情報に基づいて、電力変換器51および燃料電池63を制御して、蓄電池62、燃料電池63、太陽電池64による各電力供給を制御する。   Then, the power control unit 81b controls the power converter 51 and the fuel cell 63 based on each of the information to control the power supply by the storage battery 62, the fuel cell 63, and the solar cell 64.

例えば、電力制御部81bは、系統電源61の通電期間であれば、系統電源61、蓄電池62、燃料電池63、太陽電池64の各電力を用いて、一般負荷70、特定負荷80へ電力供給を行う。また、電力制御部81bは、通電期間であれば、系統電源61、太陽電池64の各電力を用いて、蓄電池62を充電する。また、電力制御部81bは、通電期間であれば、太陽電池64の発電電力を用いて系統電源61へ逆潮流させる電力量も制御する。図5は、系統電源61の通電期間における交流電力の給電路の一例を示す。   For example, during the power supply period of the system power supply 61, the power control unit 81b supplies power to the general load 70 and the specific load 80 using the power of the system power supply 61, the storage battery 62, the fuel cell 63, and the solar cell 64. Do. Further, during the power supply period, the power control unit 81b charges the storage battery 62 using the power of the system power supply 61 and the solar battery 64. The power control unit 81b also controls the amount of power to flow backward to the system power supply 61 using the power generated by the solar cell 64 during the power supply period. FIG. 5 shows an example of a power supply path of AC power during a power supply period of the system power supply 61.

また、電力制御部81bは、系統電源61の停電期間であれば、蓄電池62、燃料電池63、太陽電池64の各電力を用いて、特定負荷80へ電力供給を行う。また、電力制御部81bは、停電期間であれば、太陽電池64の電力を用いて蓄電池62を充電する。図6は、系統電源61の停電期間における交流電力の給電路の一例を示す。   The power control unit 81b supplies power to the specific load 80 by using the power of the storage battery 62, the fuel cell 63, and the solar cell 64 during the power outage period of the system power supply 61. In addition, during the power outage period, the power control unit 81b charges the storage battery 62 using the power of the solar cell 64. FIG. 6 shows an example of an AC power supply path during a power outage period of the system power supply 61.

そして、エネルギー管理装置81および表示端末82は、互いに無線通信可能に構成されている。表示データ生成部81cは、表示端末82からの要求に応じて、上記の各情報、電力変換器51および燃料電池63の各制御状態等を表示端末82に表示させるための表示情報を生成し、表示端末82へ送信する。表示端末82は、受信した表示情報を画面に表示し、必要であれば音声通知も行う。表示端末82は、モニタ画面およびスピーカ等を備えた専用端末、携帯電話、パーソナルコンピュータ等を用いる。   The energy management device 81 and the display terminal 82 are configured to be able to wirelessly communicate with each other. The display data generation unit 81c generates display information for causing the display terminal 82 to display each of the above information, each control state of the power converter 51 and the fuel cell 63, etc., in response to a request from the display terminal 82, It is transmitted to the display terminal 82. The display terminal 82 displays the received display information on the screen, and also performs voice notification if necessary. As the display terminal 82, a dedicated terminal having a monitor screen, a speaker, and the like, a mobile phone, a personal computer, and the like are used.

次に、本発明の要旨である、エネルギー管理装置81による停電時の電力制御について、図7のフローチャートを用いて説明する。なお、停電時における特定負荷80の消費電力を負荷電力P0、蓄電池62の放電電力をP2、燃料電池63の発電電力をP3、太陽電池64の発電電力をP4、電力変換装置50の制約出力をPsとする。   Next, power control at the time of a power failure by the energy management apparatus 81, which is the gist of the present invention, will be described with reference to the flowchart in FIG. In addition, the power consumption of the specific load 80 at the time of power failure is load power P0, discharge power of the storage battery 62 is P2, power generation of the fuel cell 63 is P3, power generation of the solar cell 64 is P4, and the constraint output of the power conversion device 50 is P4. Ps.

エネルギー管理装置81の電力制御部81bは、情報取得部81aが取得した停電情報に基づいて停電を検出すると、太陽電池64の発電電力P4を用いた特定負荷80への電力供給を開始する。そして、電力制御部81bは、停電時の負荷電力P0と電力変換装置50の制約出力Psとを比較する(S1)。負荷電力P0が制約出力Ps未満である場合、電力制御部81bは、太陽電池64の発電電力P4と負荷電力P0とを比較する(S2)。太陽電池64の発電電力P4が負荷電力P0を上回る場合、電力制御部81bは、燃料電池63が発電中か否かを判定する(S3)。燃料電池63が発電中であれば、電力制御部81bは燃料電池63へ発電停止指令を送信して、燃料電池63の発電を停止させる(S4)。このとき、太陽電池64の発電電力P4のみを用いて特定負荷80へ電力供給される。すなわち、電力制御部81bは、停電中に太陽電池64の発電電力P4のみを用いて特定負荷80へ電力供給可能である場合、燃料電池63の発電を停止させ、太陽電池64の発電電力P4のみを用いて特定負荷80へ電力を供給する。   When detecting a power failure based on the power failure information acquired by the information acquisition unit 81a, the power control unit 81b of the energy management device 81 starts supplying power to the specific load 80 using the generated power P4 of the solar cell 64. Then, the power control unit 81b compares the load power P0 at the time of the power failure with the restricted output Ps of the power conversion device 50 (S1). When the load power P0 is less than the restricted output Ps, the power control unit 81b compares the generated power P4 of the solar cell 64 with the load power P0 (S2). When the generated power P4 of the solar cell 64 exceeds the load power P0, the power control unit 81b determines whether the fuel cell 63 is generating power (S3). If the fuel cell 63 is generating power, the power control unit 81b transmits a power generation stop command to the fuel cell 63 to stop the power generation of the fuel cell 63 (S4). At this time, power is supplied to the specific load 80 using only the generated power P4 of the solar cell 64. That is, when the power control unit 81b can supply power to the specific load 80 using only the generated power P4 of the solar cell 64 during the power outage, the power control unit 81b stops the power generation of the fuel cell 63 and only generates the power P4 of the solar cell 64. Is used to supply power to the specific load 80.

次に電力制御部81bは、太陽電池64の発電電力P4を用いて蓄電池62を充電している充電中であるか否かを判定する(S5)。太陽電池64の余剰電力(太陽電池64の発電電力P4のうち特定負荷80で消費されない余剰電力)があれば、蓄電池62はこの余剰電力を用いて充電可能となる。電力制御部81bは、太陽電池64の余剰電力を用いた蓄電池62の充電が既に実行されていれば、この蓄電池62の充電を継続させる。電力制御部81bは、蓄電池62が充電中でない場合、電力変換装置50へ充電開始指令を送信し、太陽電池64の余剰電力を用いた蓄電池62の充電を開始させる(S6)。   Next, the power control unit 81b determines whether or not the storage battery 62 is being charged using the generated power P4 of the solar battery 64 (S5). If there is surplus power of the solar cell 64 (surplus power that is not consumed by the specific load 80 out of the generated power P4 of the solar cell 64), the storage battery 62 can be charged using this surplus power. The power control unit 81b continues to charge the storage battery 62 if the storage battery 62 has already been charged using the surplus power of the solar battery 64. When the storage battery 62 is not being charged, the power control unit 81b transmits a charge start command to the power conversion device 50 to start charging the storage battery 62 using the surplus power of the solar battery 64 (S6).

すなわち、電力制御部81bは、停電中に太陽電池64の発電電力P4のみを用いて特定負荷80へ電力している場合、この太陽電池64の余剰電力を用いて蓄電池62を充電する。   That is, when power is being supplied to the specific load 80 using only the generated power P4 of the solar cell 64 during the power outage, the power control unit 81b charges the storage battery 62 using the surplus power of the solar cell 64.

そして、電力制御部81bは、情報取得部81aが取得した停電情報に基づいて復電(通電状態)を検出したか否かを判断する(S7)。電力制御部81bは、復電を検出しなければ、ステップS1に戻り、復電を検出すれば、停電時の電力制御を終了する。   Then, the power control unit 81b determines whether or not a power recovery (energized state) has been detected based on the power failure information acquired by the information acquisition unit 81a (S7). If power recovery is not detected, the power control unit 81b returns to step S1, and if power recovery is detected, ends power control at the time of power failure.

上述のように、電力制御部81bは、停電中に太陽電池64の発電電力P4のみを用いて特定負荷80へ電力供給可能である場合、燃料電池63の発電を停止させ、太陽電池64の発電電力P4のみを用いて特定負荷80へ電力を供給する。さらに電力制御部81bは、太陽電池64の余剰電力を用いて蓄電池62を充電する。したがって、停電中における太陽電池64の発電電力P4を有効に使用できる。さらに燃料電池63の発電を停止させることによって、貯湯タンク632の蓄熱量(貯湯量、湯温)を抑えることができるので、太陽電池64が発電できなくなる夜間等に燃料電池63が発電可能な電力を十分に確保することができる。すなわち、停電中に太陽電池64の発電電力のみを用いて特定負荷80へ電力供給可能である場合に、燃料電池63、太陽電池64の各発電電力を有効に用いて、システム全体としての発電能力を効率的に利用することができる。また一般に、燃料電池63を用いずに太陽電池64を用いることで、発電コストを下げることができる。   As described above, when the power can be supplied to the specific load 80 using only the generated power P4 of the solar cell 64 during the power outage, the power control unit 81b stops the power generation of the fuel cell 63 and generates the power of the solar cell 64. The power is supplied to the specific load 80 using only the power P4. Further, the power control unit 81b charges the storage battery 62 using the surplus power of the solar battery 64. Therefore, the generated power P4 of the solar cell 64 during the power outage can be used effectively. Further, by stopping the power generation of the fuel cell 63, the heat storage amount (hot water storage amount, hot water temperature) of the hot water storage tank 632 can be suppressed. Can be sufficiently secured. That is, when power can be supplied to the specific load 80 using only the power generated by the solar cell 64 during a power failure, the power generation capacity of the entire system is effectively used by effectively using the power generated by the fuel cell 63 and the solar cell 64. Can be used efficiently. Further, in general, by using the solar cell 64 without using the fuel cell 63, the power generation cost can be reduced.

また、ステップS2において、太陽電池64の発電電力P4が負荷電力P0以下である場合、電力制御部81bは、燃料電池63の発電を実行させる(S8)。燃料電池63が発電停止状態であれば、電力制御部81bは、燃料電池63へ発電開始指令を送信し、燃料電池63の発電を開始させる。燃料電池63が発電中であれば、電力制御部81bは燃料電池63の発電を継続させる。   If the generated power P4 of the solar cell 64 is equal to or less than the load power P0 in step S2, the power control unit 81b causes the fuel cell 63 to generate power (S8). When the fuel cell 63 is in the power generation stop state, the power control unit 81b transmits a power generation start command to the fuel cell 63, and causes the fuel cell 63 to start power generation. If the fuel cell 63 is generating power, the power control unit 81b continues the power generation of the fuel cell 63.

そして、電力制御部81bは、燃料電池63の発電電力P3が負荷電力P0以上であれば、燃料電池63の発電電力P3のみを用いて特定負荷80へ電力供給する。また、電力制御部81bは、燃料電池63の発電電力P3が負荷電力P0未満であれば、燃料電池63の発電電力P3と、太陽電池64の発電電力P4の少なくとも一部とを用いて、特定負荷80へ電力供給する。このときの燃料電池63の発電電力P3は、燃料電池63が供給可能な全発電電力となる。   Then, if the generated power P3 of the fuel cell 63 is equal to or greater than the load power P0, the power control unit 81b supplies power to the specific load 80 using only the generated power P3 of the fuel cell 63. In addition, if the generated power P3 of the fuel cell 63 is less than the load power P0, the power control unit 81b specifies the generated power P3 of the fuel cell 63 and at least a part of the generated power P4 of the solar cell 64 by using the specified power. Power is supplied to the load 80. The generated power P3 of the fuel cell 63 at this time is the total generated power that the fuel cell 63 can supply.

上述のように、太陽電池64の発電電力P4が負荷電力P0以下である場合、電力制御部81bは、燃料電池63の発電電力P3を、太陽電池64の発電電力P4より優先させて特定負荷80へ供給する。すなわち、負荷電力P0は、燃料電池63の発電電力P3で可能な限り賄われ、燃料電池63の発電電力P3による不足電力(負荷電力P0と燃料電池63の発電電力P3との差分[P0−P3])を太陽電池64の発電電力P4で補う。   As described above, when the generated power P4 of the solar cell 64 is equal to or less than the load power P0, the power control unit 81b gives priority to the generated power P3 of the fuel cell 63 over the generated power P4 of the solar cell 64 and specifies the specific load 80. Supply to That is, the load power P0 is covered by the power P3 generated by the fuel cell 63 as much as possible, and the power shortage due to the power P3 generated by the fuel cell 63 (the difference [P0−P3 between the load power P0 and the power P3 generated by the fuel cell 63). ] Is supplemented by the generated power P4 of the solar cell 64.

次に、電力制御部81bは、負荷電力P0を、燃料電池63の発電電力P3と太陽電池64の発電電力P4との和(総発電電力[P3+P4]と称す)と比較する(S9)。負荷電力P0が総発電電力[P3+P4]以下であれば、電力制御部81bは、上述のステップS5以降の処理を行う。すなわち、電力制御部81bは、太陽電池64の余剰電力があれば、この太陽電池64の余剰電力を用いて蓄電池62を充電する。したがって、太陽電池64の発電電力P4が負荷電力P0以下である場合も、太陽電池64の余剰電力を用いて蓄電池62を充電するので、太陽電池64の発電電力P4を有効に用いることができる。すなわち、太陽電池64および燃料電池63の各発電電力を用いて、蓄電池62への充電を含むシステム全体の電力効率を向上させることができる。   Next, the power control unit 81b compares the load power P0 with the sum of the generated power P3 of the fuel cell 63 and the generated power P4 of the solar cell 64 (referred to as total generated power [P3 + P4]) (S9). If the load power P0 is equal to or less than the total generated power [P3 + P4], the power control unit 81b performs the processing from step S5 described above. That is, if there is surplus power of the solar cell 64, the power control unit 81b charges the storage battery 62 using the surplus power of the solar cell 64. Therefore, even when the generated power P4 of the solar cell 64 is equal to or less than the load power P0, the storage battery 62 is charged using the surplus power of the solar cell 64, so that the generated power P4 of the solar cell 64 can be used effectively. That is, the power efficiency of the entire system including the charging of the storage battery 62 can be improved by using the respective generated powers of the solar cell 64 and the fuel cell 63.

例えば、システム構成上、燃料電池63から蓄電池62に充電することができない場合がある。そこで、太陽電池64の発電電力P4が負荷電力P0以下である場合、燃料電池63で特定負荷80の消費電力をできるだけ賄い、太陽電池64の余剰電力を蓄電池62に充電することで、システム全体として電力を効率的に使用することが可能となる。また、夜間などのように太陽電池64が発電できないときには、燃料電池63で特定負荷80の消費電力を賄うことができる。さらに貯湯タンク632の蓄熱量が満蓄状態になった場合でも、燃料電池63は、貯湯タンク632に貯まったお湯を減らせば再度発電することが可能になる。   For example, there is a case where the storage battery 62 cannot be charged from the fuel cell 63 due to the system configuration. Therefore, when the generated power P4 of the solar cell 64 is equal to or less than the load power P0, the fuel cell 63 covers the power consumption of the specific load 80 as much as possible, and the surplus power of the solar cell 64 is charged in the storage battery 62, so that the entire system is Power can be used efficiently. When the solar cell 64 cannot generate power, such as at night, the fuel cell 63 can cover the power consumption of the specific load 80. Further, even when the amount of heat stored in the hot water storage tank 632 becomes full, the fuel cell 63 can generate power again by reducing the amount of hot water stored in the hot water storage tank 632.

また、ステップS9において、負荷電力P0が総発電電力[P3+P4]を上回っている場合、電力制御部81bは、電力変換装置50へ放電開始指令を送信し、蓄電池62の放電制御を開始させる(S10)。そして、電力制御部81bは、負荷電力P0を、燃料電池63および太陽電池64による総発電電力[P3+P4]と蓄電池62の放電電力P2との和[P2+P3+P4](最大供給電力[P2+P3+P4]と称す)と比較する(S11)。   When the load power P0 exceeds the total generated power [P3 + P4] in step S9, the power control unit 81b transmits a discharge start command to the power conversion device 50 to start the discharge control of the storage battery 62 (S10). ). Then, the power control unit 81b sets the load power P0 to the sum [P2 + P3 + P4] of the total generated power [P3 + P4] of the fuel cell 63 and the solar cell 64 and the discharge power P2 of the storage battery 62 (referred to as the maximum supply power [P2 + P3 + P4]). And (S11).

負荷電力P0が、最大供給電力[P2+P3+P4]以下である場合、特定負荷80の消費電力は、蓄電池62の放電電力P2、燃料電池63の発電電力P3、太陽電池64の発電電力P4で賄われる。そして、電力制御部81bは、情報取得部81aが取得した停電情報に基づいて復電(通電状態)を検出したか否かを判断する(S7)。電力制御部81bは、復電を検出しなければ、ステップS1に戻り、復電を検出すれば、停電時の電力制御を終了する。   When the load power P0 is equal to or less than the maximum supply power [P2 + P3 + P4], the power consumption of the specific load 80 is covered by the discharge power P2 of the storage battery 62, the power P3 of the fuel cell 63, and the power P4 of the solar cell 64. Then, the power control unit 81b determines whether or not a power recovery (energized state) has been detected based on the power failure information acquired by the information acquisition unit 81a (S7). If power recovery is not detected, the power control unit 81b returns to step S1, and if power recovery is detected, ends power control at the time of power failure.

負荷電力P0が、最大供給電力[P2+P3+P4]を上回っている場合、機器制御部81dは、特定負荷80の停止制御を行う(S12)。この停止制御は、全ての特定負荷80のうち、予め設定された優先順位が低い1乃至複数の特定負荷80を停止させることによって、負荷電力P0を最大供給電力[P2+P3+P4]以下にまで低減させる。停止させる特定負荷80の台数は、負荷電力P0の低減量に応じて決定される。すなわち、負荷電力P0が最大供給電力[P2+P3+P4]を上回る場合、機器制御部81dが特定負荷80の停止制御を行うことによって、負荷電力P0を最大供給電力[P2+P3+P4]以下に低減させる。なお、機器制御部81dは、特定負荷80との間で有線通信または無線通信が可能であり、特定負荷80の動作(電源オン・オフ、運転開始・停止等)を制御することができる。また、機器制御部81dは、特定負荷80だけでなく、一般負荷70の動作も制御してもよい。   When the load power P0 exceeds the maximum supply power [P2 + P3 + P4], the device control unit 81d performs stop control of the specific load 80 (S12). This stop control reduces the load power P0 to the maximum supply power [P2 + P3 + P4] or less by stopping one or more specific loads 80 having a low priority set in advance among all the specific loads 80. The number of the specific loads 80 to be stopped is determined according to the reduction amount of the load power P0. That is, when the load power P0 exceeds the maximum supply power [P2 + P3 + P4], the device control unit 81d performs stop control of the specific load 80, thereby reducing the load power P0 to the maximum supply power [P2 + P3 + P4] or less. Note that the device control unit 81d can perform wired communication or wireless communication with the specific load 80, and can control operations (power on / off, operation start / stop, and the like) of the specific load 80. Further, the device control unit 81d may control not only the operation of the specific load 80 but also the operation of the general load 70.

また、ステップS1において、負荷電力P0が制約出力Ps以上である場合、電力制御部81bは、負荷電力P0から燃料電池3の発電電力P3を引いた差分[P0−P3]を、制約出力Psと比較する(S13)。
Further, in step S1, when the load power P0 is constrained output Ps or more, the power control unit 81b includes a differential [P0-P3] obtained by subtracting the generated power P3 of the fuel cell 6 3 from the load power P0, constraint output Ps And (S13).

差分[P0−P3]が制約出力Ps未満である場合、ステップS8に移行して、電力制御部81bは燃料電池63の発電を実行させる。すなわち、電力制御部81bは、電力変換装置50の自立端子57の出力(自立出力)が制約出力Ps未満となるように、燃料電池63を発電させる。つまり、電力制御部81bは、電力変換装置50の自立出力が制約出力Ps(上限値)に達する場合、制約出力Psと燃料電池63の発電電力P3との和[Ps+P3]が負荷電力P0を上回るのであれば、燃料電池63を発電させる。したがって、負荷電力P0が制約出力Ps以上である場合、燃料電池63の発電電力を用いることによって、特定負荷80への電力供給を安定させることができる。   If the difference [P0-P3] is smaller than the restricted output Ps, the process proceeds to step S8, and the power control unit 81b causes the fuel cell 63 to execute power generation. That is, the power control unit 81b causes the fuel cell 63 to generate power so that the output of the independent terminal 57 of the power converter 50 (independent output) is less than the restricted output Ps. That is, when the independent output of the power converter 50 reaches the restricted output Ps (upper limit), the power control unit 81b determines that the sum [Ps + P3] of the restricted output Ps and the generated power P3 of the fuel cell 63 exceeds the load power P0. , The fuel cell 63 is caused to generate power. Therefore, when the load power P0 is equal to or more than the restricted output Ps, the power supply to the specific load 80 can be stabilized by using the power generated by the fuel cell 63.

また、差分[P0−P3]が制約出力Ps以上である場合、ステップS12に移行して、機器制御部81dが特定負荷80の停止制御を行う。すなわち、電力変換装置50の自立出力が制約出力Psに達する場合、機器制御部81dが特定負荷80の停止制御を行うことによって、電力変換装置50の自立出力を制約出力Ps未満に低減させる。   If the difference [P0-P3] is equal to or greater than the constraint output Ps, the process proceeds to step S12, and the device control unit 81d performs stop control of the specific load 80. That is, when the independent output of the power conversion device 50 reaches the restricted output Ps, the device control unit 81d performs the stop control of the specific load 80 to reduce the independent output of the power conversion device 50 to less than the restricted output Ps.

また、上述のステップS8において、負荷電力P0は、燃料電池63の発電電力P3で可能な限り賄われ、燃料電池63の発電電力P3による不足電力を太陽電池64の発電電力P4で補っている。そしてステップS8からステップS9を経たステップS5では、蓄電池62が太陽電池64の余剰電力を用いて充電される。そして、電力制御部81bは、蓄電池62が満充電状態になれば、以降のステップS8においては、負荷電力P0のうち太陽電池64の発電電力P4の割合を増加させ、負荷電力P0のうち燃料電池63の発電電力P3の割合を減少させることが好ましい。   In step S8 described above, the load power P0 is covered by the generated power P3 of the fuel cell 63 as much as possible, and the insufficient power generated by the generated power P3 of the fuel cell 63 is supplemented by the generated power P4 of the solar cell 64. Then, in step S5 after step S8 to step S9, the storage battery 62 is charged using the surplus power of the solar cell 64. When the storage battery 62 is fully charged, the power control unit 81b increases the ratio of the generated power P4 of the solar cell 64 to the load power P0 in the subsequent step S8, and the fuel cell It is preferable to reduce the ratio of the generated power P3 of the power generator 63.

この場合、停電中における太陽電池64の発電電力P4を有効に使用できる。さらに燃料電池63の発電電力P3を低減させることによって、貯湯タンク632の蓄熱量(貯湯量、湯温)を抑えることができるので、太陽電池64が発電できなくなる夜間等に燃料電池63が発電可能な電力を確保することができる。   In this case, the generated power P4 of the solar cell 64 during the power outage can be used effectively. Further, by reducing the generated power P3 of the fuel cell 63, the amount of heat stored in the hot water storage tank 632 (the amount of hot water and the temperature of the hot water) can be suppressed, so that the fuel cell 63 can generate power at night or the like when the solar cell 64 cannot generate power. Power can be secured.

また、燃料電池63が発電することで貯湯タンク632の貯湯量が上限値(貯湯量閾値)を上回った場合、表示データ生成部81cは、報知信号を生成して表示端末82へ送信する。報知信号は、貯湯タンク632の湯を使用することを需要家に対して要求する画像情報、音声情報からなる。この場合、表示データ生成部81cが、報知信号出力部に相当する。   When the amount of hot water stored in hot water storage tank 632 exceeds the upper limit value (threshold value of hot water storage amount) due to power generation by fuel cell 63, display data generation unit 81c generates a notification signal and transmits it to display terminal 82. The notification signal includes image information and audio information requesting the consumer to use the hot water in the hot water storage tank 632. In this case, the display data generation unit 81c corresponds to a notification signal output unit.

表示端末82は、報知信号の画像情報を画面に表示し、音声情報を通知することで、需要家に対して湯の積極使用を促す。この場合、表示端末82によって、使用すべき湯量が報知されることが好ましい。そして、床暖房、融雪、風呂等に貯湯タンク632内の湯が使用されることによって、貯湯タンク632の貯湯量が減少する。   The display terminal 82 displays the image information of the notification signal on the screen and notifies the voice information to urge the customer to actively use the hot water. In this case, the display terminal 82 preferably notifies the amount of hot water to be used. Then, the amount of hot water stored in the hot water storage tank 632 is reduced by using the hot water in the hot water storage tank 632 for floor heating, snow melting, bathing, and the like.

したがって、貯湯タンク632内の湯を排出することによって、以降に燃料電池63が発電可能な電力量が増大し、燃料電池63の発電電力を十分に確保することができる。   Therefore, by discharging the hot water from the hot water storage tank 632, the amount of power that can be generated by the fuel cell 63 in the future increases, and the power generated by the fuel cell 63 can be sufficiently ensured.

また、燃料電池63は、貯湯タンク632の貯湯量と貯湯タンク632内の湯の温度とに基づいて、貯湯タンク632の蓄熱量を判断することが好ましい。この場合、貯湯タンク632の蓄熱量は貯湯量と湯温との両方を用いて導出され、この貯湯量と湯温との両方から決まる蓄熱量が満蓄状態になった場合に、発電ユニット631による発電が停止する。すなわち、燃料電池63の発電ユニット631は、貯湯タンク632の貯湯量が満量でない場合、または貯湯タンク632の湯の温度が所定温度以下である場合に、発電可能となる。   Preferably, fuel cell 63 determines the amount of heat stored in hot water storage tank 632 based on the amount of hot water stored in hot water storage tank 632 and the temperature of hot water in hot water storage tank 632. In this case, the heat storage amount of the hot water storage tank 632 is derived using both the hot water storage amount and the hot water temperature, and when the heat storage amount determined from both the hot water storage amount and the hot water temperature becomes full, the power generation unit 631 Power generation stops. That is, the power generation unit 631 of the fuel cell 63 can generate power when the amount of hot water stored in the hot water storage tank 632 is not full or when the temperature of hot water in the hot water storage tank 632 is equal to or lower than the predetermined temperature.

上述のエネルギー管理装置81は、太陽電池64と、蓄電池62と、燃料電池63(コージェネレーション装置)とを用いた特定負荷80(負荷)への電力供給を制御する電力制御部81bを備える。   The above-described energy management device 81 includes a power control unit 81b that controls power supply to a specific load 80 (load) using the solar cell 64, the storage battery 62, and the fuel cell 63 (cogeneration device).

電力制御部81bは、太陽電池64の発電電力が特定負荷80の消費電力以下である場合、燃料電池63の発電電力を特定負荷80へ供給させる。そして、電力制御部81bは、燃料電池63の発電電力が特定負荷80の消費電力未満であれば、特定負荷80の消費電力と燃料電池63の発電電力との差分を太陽電池64の発電電力で補う。さらに電力制御部81bは、太陽電池64の発電電力のうち特定負荷80で消費されない余剰電力を用いて蓄電池62を充電させる。   When the generated power of the solar cell 64 is equal to or less than the power consumption of the specific load 80, the power control unit 81b supplies the generated power of the fuel cell 63 to the specific load 80. If the power generated by the fuel cell 63 is less than the power consumption of the specific load 80, the power control unit 81b calculates the difference between the power consumption of the specific load 80 and the power generated by the fuel cell 63 by the power generated by the solar cell 64. compensate. Further, the power control unit 81b charges the storage battery 62 using surplus power not consumed by the specific load 80 among the power generated by the solar cell 64.

また、上述のエネルギー管理方法は、太陽電池64と、蓄電池62と、燃料電池63(コージェネレーション装置)とを用いた特定負荷80(負荷)への電力供給を制御する電力管理方法である。太陽電池64の発電電力が特定負荷80の消費電力以下である場合、燃料電池63の発電電力を特定負荷80へ供給させる。そして、電力制御部81bは、燃料電池63の発電電力が特定負荷80の消費電力未満であれば、特定負荷80の消費電力と燃料電池63の発電電力との差分を太陽電池64の発電電力で補う。さらに電力制御部81bは、太陽電池64の発電電力のうち特定負荷80で消費されない余剰電力を用いて蓄電池62を充電させる。   The above-described energy management method is a power management method for controlling power supply to a specific load 80 (load) using the solar cell 64, the storage battery 62, and the fuel cell 63 (cogeneration device). When the power generated by the solar cell 64 is equal to or less than the power consumption of the specific load 80, the power generated by the fuel cell 63 is supplied to the specific load 80. If the power generated by the fuel cell 63 is less than the power consumption of the specific load 80, the power control unit 81b calculates the difference between the power consumption of the specific load 80 and the power generated by the fuel cell 63 by the power generated by the solar cell 64. compensate. Further, the power control unit 81b charges the storage battery 62 using surplus power that is not consumed by the specific load 80 among the power generated by the solar cell 64.

10 分電盤
20 自立分電盤
30 電源切替器
40 計測装置
50 電力変換装置
61 系統電源
62 蓄電池
63 燃料電池(コージェネレーション装置)
64 太陽電池
81 エネルギー管理装置
81a 情報取得部
81b 電力制御部
81c 表示データ生成部(報知信号出力部)
81d 機器制御部
82 表示端末
DESCRIPTION OF SYMBOLS 10 Distribution board 20 Independent distribution board 30 Power switch 40 Measurement device 50 Power conversion device 61 System power supply 62 Storage battery 63 Fuel cell (cogeneration device)
64 solar cell 81 energy management device 81a information acquisition unit 81b power control unit 81c display data generation unit (report signal output unit)
81d Device control unit 82 Display terminal

Claims (7)

太陽電池と、蓄電池と、コージェネレーション装置とを用いた負荷への電力供給を制御する電力制御部を備え、
前記電力制御部は、
商用電力を供給する系統電源の停電時において、前記太陽電池の発電電力が前記負荷の消費電力以下である場合、前記コージェネレーション装置の発電電力を前記負荷へ供給させ、前記コージェネレーション装置の発電電力が前記負荷の消費電力未満であれば、前記負荷の消費電力と前記コージェネレーション装置の発電電力との差分を前記太陽電池の発電電力で補い、
前記太陽電池の発電電力のうち前記負荷で消費されない余剰電力を用いて前記蓄電池を充電させ
前記太陽電池の発電電力が前記負荷の消費電力以下である場合、前記蓄電池が満充電状態になれば、前記負荷の消費電力のうち前記太陽電池の発電電力の割合を増加させ、前記負荷の消費電力のうち前記コージェネレーション装置の発電電力の割合を減少させる
ことを特徴とするエネルギー管理装置。
A power control unit that controls power supply to a load using a solar cell, a storage battery, and a cogeneration device,
The power control unit,
When the power generated by the solar cell is equal to or less than the power consumption of the load during a power outage of a system power supply that supplies commercial power, the power generated by the cogeneration device is supplied to the load, and the power generated by the cogeneration device is generated. Is less than the power consumption of the load, the difference between the power consumption of the load and the power generated by the cogeneration device is supplemented by the power generated by the solar cell,
The storage battery is charged using surplus power not consumed by the load among the generated power of the solar cell ,
When the power generated by the solar cell is equal to or less than the power consumption of the load, when the storage battery is fully charged, the ratio of the power generated by the solar cell to the power consumed by the load is increased, and the power consumption of the load is increased. An energy management device, wherein a ratio of generated power of the cogeneration device to power is reduced .
前記電力制御部は、前記太陽電池の発電電力が前記負荷の消費電力を上回っている場合、前記太陽電池の発電電力のみを前記負荷へ供給させ、前記太陽電池の発電電力のうち前記負荷で消費されない余剰電力を用いて前記蓄電池を充電させることを特徴とする請求項1記載のエネルギー管理装置。   When the power generated by the solar cell exceeds the power consumption of the load, the power control unit supplies only the power generated by the solar cell to the load, and the power generated by the solar cell is consumed by the load. The energy management device according to claim 1, wherein the storage battery is charged using surplus power that is not used. 前記コージェネレーション装置は、発電時に湯を生成して、この生成した湯を貯める貯湯タンクの蓄熱量が所定量以上になれば発電を停止することを特徴とする請求項1または2記載のエネルギー管理装置。 The energy management according to claim 1 or 2 , wherein the cogeneration device generates hot water at the time of power generation, and stops power generation when a heat storage amount of a hot water storage tank that stores the generated hot water becomes equal to or more than a predetermined amount. apparatus. 前記貯湯タンクの前記蓄熱量が閾値を上回った場合に、前記貯湯タンクの湯を使用することを要求する報知信号を出力する報知信号出力部を備えることを特徴とする請求項3記載のエネルギー管理装置。 The energy management according to claim 3, further comprising: a notification signal output unit that outputs a notification signal requesting use of hot water in the hot water storage tank when the heat storage amount of the hot water storage tank exceeds a threshold. apparatus. 前記電力制御部は、前記太陽電池の発電電力と前記蓄電池の発電電力とを交流電力に変換して前記負荷へ供給する電力変換装置の出力が上限値未満となるように、前記コージェネレーション装置の発電を制御することを特徴とする請求項1乃至4いずれか記載のエネルギー管理装置。 The power control unit is configured to convert the generated power of the solar cell and the generated power of the storage battery into AC power and supply an output of a power conversion device that supplies the load to the load is less than an upper limit value. The energy management device according to any one of claims 1 to 4, wherein power generation is controlled . 前記電力制御部は、前記負荷の消費電力が、前記電力変換装置の出力の前記上限値以上となる場合、前記負荷の消費電力から前記コージェネレーション装置の発電電力を引いた差分が、前記電力変換装置の出力の前記上限値未満となるのであれば、前記コージェネレーション装置の発電を開始することを特徴とする請求項5記載のエネルギー管理装置。 When the power consumption of the load is equal to or greater than the upper limit of the output of the power conversion device, the power control unit calculates a difference obtained by subtracting the power generation of the cogeneration device from the power consumption of the load. The energy management device according to claim 5, wherein the power generation of the cogeneration device is started when the output of the device becomes less than the upper limit value . 太陽電池と、蓄電池と、コージェネレーション装置とを用いた負荷への電力供給を制御する電力管理方法であって、A power management method for controlling power supply to a load using a solar cell, a storage battery, and a cogeneration device,
商用電力を供給する系統電源の停電時において、前記太陽電池の発電電力が前記負荷の消費電力以下である場合、前記コージェネレーション装置の発電電力を前記負荷へ供給させ、前記コージェネレーション装置の発電電力が前記負荷の消費電力未満であれば、前記負荷の消費電力と前記コージェネレーション装置の発電電力との差分を前記太陽電池の発電電力で補い、  When the power generated by the solar cell is equal to or less than the power consumption of the load during a power outage of a system power supply that supplies commercial power, the power generated by the cogeneration device is supplied to the load, and the power generated by the cogeneration device is generated. If less than the power consumption of the load, the difference between the power consumption of the load and the power generated by the cogeneration device is supplemented by the power generated by the solar cell,
前記太陽電池の発電電力のうち前記負荷で消費されない余剰電力を用いて前記蓄電池を充電させ、  The storage battery is charged using surplus power not consumed by the load among the power generated by the solar cell,
前記太陽電池の発電電力が前記負荷の消費電力以下である場合、前記蓄電池が満充電状態になれば、前記負荷の消費電力のうち前記太陽電池の発電電力の割合を増加させ、前記負荷の消費電力のうち前記コージェネレーション装置の発電電力の割合を減少させる  When the power generated by the solar cell is equal to or less than the power consumption of the load, when the storage battery is fully charged, the ratio of the power generated by the solar cell to the power consumed by the load is increased, and the power consumption of the load is increased. Decrease the ratio of the power generated by the cogeneration device in the power
ことを特徴とするエネルギー管理方法。  An energy management method characterized in that:
JP2014022402A 2014-02-07 2014-02-07 Energy management device and energy management method Active JP6655805B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014022402A JP6655805B2 (en) 2014-02-07 2014-02-07 Energy management device and energy management method
PCT/JP2015/000419 WO2015118844A1 (en) 2014-02-07 2015-01-30 Energy management device and energy management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014022402A JP6655805B2 (en) 2014-02-07 2014-02-07 Energy management device and energy management method

Publications (2)

Publication Number Publication Date
JP2015149861A JP2015149861A (en) 2015-08-20
JP6655805B2 true JP6655805B2 (en) 2020-02-26

Family

ID=53777659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014022402A Active JP6655805B2 (en) 2014-02-07 2014-02-07 Energy management device and energy management method

Country Status (2)

Country Link
JP (1) JP6655805B2 (en)
WO (1) WO2015118844A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6971313B2 (en) * 2017-06-09 2021-11-24 シャープ株式会社 Information processing equipment and control system
CN108736498B (en) * 2018-05-24 2020-12-29 上海交通大学 Energy control method for smart home light storage power generation system
CN109066745B (en) * 2018-08-09 2022-03-15 蔚来(安徽)控股有限公司 Electric energy storage system and operation control method, device and system thereof
JP7165045B2 (en) * 2018-12-18 2022-11-02 トヨタホーム株式会社 building power supply system
JP7438700B2 (en) 2019-09-17 2024-02-27 河村電器産業株式会社 Solar power system
JP7427557B2 (en) 2020-07-29 2024-02-05 株式会社東芝 Charging control device, charging control method, and charging control program

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259303A (en) * 2009-04-28 2010-11-11 Panasonic Corp Distributed power generation system
JP2011015501A (en) * 2009-06-30 2011-01-20 Panasonic Electric Works Co Ltd Power distribution system
JP2011174626A (en) * 2010-02-23 2011-09-08 Panasonic Corp Fuel cell system
JP2011182503A (en) * 2010-02-26 2011-09-15 Sanyo Electric Co Ltd Energy storage system
JP5914821B2 (en) * 2011-12-15 2016-05-11 パナソニックIpマネジメント株式会社 Power supply system
US9590422B2 (en) * 2012-11-26 2017-03-07 Panasonic Intellectual Property Management Co., Ltd. Power supply system, power conversion apparatus, and measurement point switching apparatus

Also Published As

Publication number Publication date
WO2015118844A1 (en) 2015-08-13
JP2015149861A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
EP2924840B1 (en) Power supply system, power conversion apparatus, and measurement point switching apparatus
JP6655805B2 (en) Energy management device and energy management method
JP6358530B2 (en) COGENERATION DEVICE CONTROL DEVICE AND COGENERATION DEVICE CONTROL METHOD
JP6047490B2 (en) Power supply system, power distribution device, and power control method
JP5655167B2 (en) Power management apparatus and program
US10511173B2 (en) Power controller, power control method, and power control system
JP2015106962A (en) Charge discharge controller and charge discharge system
JP5165042B2 (en) System power stabilization system, system power stabilization method, and charger / discharger
JP2012147621A (en) Blackout relief system
JP2013106483A (en) Power supply system
JP5929308B2 (en) Power generation system and power conditioner for power generation system
EP3032682B1 (en) Power supply system, power conversion device, and distribution board
JP5886138B2 (en) Power control system, fuel cell, and control method
JP2015073367A (en) Distributed power source system
WO2015104787A1 (en) Energy management device and energy management system
JP6475945B2 (en) Power supply device, power supply method, and power supply system
JP5507946B2 (en) Battery control unit
JP2013243794A (en) Power supply system and power supply method
JP2015076966A (en) Controller for power supply system using fuel cell, and power supply system using fuel cell and control method thereof
JP2016046872A (en) Battery system and control method therefor
WO2017082215A1 (en) Equipment control device, equipment control system and equipment control method
JP5904850B2 (en) Electricity meter
JP2013247844A (en) Electric power control system, control device, and control method
JP2013247845A (en) Electric power control system, fuel cell, and electric power control method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141002

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180821

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200117

R151 Written notification of patent or utility model registration

Ref document number: 6655805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151