JP2010259303A - Distributed power generation system - Google Patents

Distributed power generation system Download PDF

Info

Publication number
JP2010259303A
JP2010259303A JP2009110121A JP2009110121A JP2010259303A JP 2010259303 A JP2010259303 A JP 2010259303A JP 2009110121 A JP2009110121 A JP 2009110121A JP 2009110121 A JP2009110121 A JP 2009110121A JP 2010259303 A JP2010259303 A JP 2010259303A
Authority
JP
Japan
Prior art keywords
power
power generation
load
generated
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009110121A
Other languages
Japanese (ja)
Inventor
Takeshi Hayashida
岳 林田
Shigeaki Matsubayashi
成彰 松林
Fumitoshi Nishiwaki
文俊 西脇
Taeko Aoe
多恵子 青江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009110121A priority Critical patent/JP2010259303A/en
Publication of JP2010259303A publication Critical patent/JP2010259303A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

<P>PROBLEM TO BE SOLVED: To provide a distributed power generation system with high energy-saving properties and small environmental burden. <P>SOLUTION: The distributed power generation system 100 includes a power distribution apparatus 101 to acquire power from each power station, a storage battery (SB), and a commercial power supply, and to distribute the power in accordance with a command; a charge and discharge decision means 102 for calculating a discharging quantity from the SB or a charging quantity to the SB and giving a command; a fuel cell (FC) operation decision means 103 for calculating the operation and the generation quantity of the FC and giving a command in consideration of the conditions of users' power load, a photo-voltaic (PV) generating power, a power storage in the SB, and a hot-water tank of the FC; the PV 104 to convert a photo-voltaic energy to the electric power; the SB 105 to perform charge and discharge of the power in accordance with the command; the FC 106 to generate the power by a generating capacity according to the command, and to collect waste heat generated during the power generation; and a hot-water tank 107 to store the waste heat of the FC in the form of hot water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、太陽光発電装置、燃料電池コージェネレーション装置、蓄電池などの発電・蓄電に関する装置を設ける分散発電システムに関するものである。   The present invention relates to a distributed power generation system provided with a device related to power generation / storage such as a solar power generation device, a fuel cell cogeneration device, and a storage battery.

分散発電システムは、例えば太陽光発電装置(Photo Voltaic、以下PV)、燃料電池コージェネレーション装置(Fuel Cell、以下FC)、蓄電池(Storage Battery、以下SB)などを備えた創エネルギー・省エネルギーを目的としたシステムである。   The distributed power generation system is aimed at energy creation and energy saving with, for example, a photovoltaic power generation device (Photo Voltaic, hereinafter referred to as PV), a fuel cell cogeneration device (hereinafter referred to as FC), and a storage battery (hereinafter referred to as SB). System.

PVは、太陽光のエネルギーを電力に変換し家庭に供給する自然エネルギー発電であり、天候や気象条件の変化のため、常に発電電力が変動する。   PV is natural energy power generation that converts solar energy into electric power and supplies it to the home. The generated power constantly fluctuates due to changes in the weather and weather conditions.

FCは、ガスなどから水素を取り出し、水素を燃料として発電を行い、さらにその際の廃熱を回収して貯湯タンクに蓄熱することで需要家の給湯負荷を賄う。FCは運転制御が可能であり、PVとは異なり任意の時間・発電力で運転することが可能であるが、需要家の電力負荷を超えた電力量は蓄電を行う必要があり、また貯湯タンクの容量を超えないよう蓄熱する必要があるという制限がある。また、一般的にFCは発電力が大きいほど省エネルギー性が高いという特性を持っている。   FC takes out hydrogen from gas, etc., generates electricity using hydrogen as fuel, collects waste heat at that time, and stores it in a hot water storage tank to cover the hot water supply load of consumers. FC is capable of operation control, and unlike PV, it can be operated at any time and power generation. However, it is necessary to store electricity for the amount of power that exceeds the power load of the customer. There is a restriction that it is necessary to store heat so as not to exceed the capacity. In general, FC has the characteristic that the greater the generated power, the higher the energy saving.

SBは、商用電源やFC・PVの発電を利用して蓄電し、蓄電した電力を放電することで需要家の電力負荷を賄うことができる。蓄電・放電は制御可能であるが、蓄電可能な電力量には上限があるという制限がある。   SB can use commercial power sources and FC / PV power generation to store electricity and discharge the stored power to cover the power load of consumers. Power storage / discharge can be controlled, but there is a limitation that there is an upper limit to the amount of power that can be stored.

分散発電システムは、これらのうち1つもしくは複数の組み合わせで構成され、需要家にエネルギーを供給する。   The distributed power generation system is configured by one or a combination of these, and supplies energy to consumers.

従来の分散発電システムとして例えば特許文献1に示すものがある。   For example, Patent Document 1 discloses a conventional distributed power generation system.

特許文献1の発明では、自然エネルギー発電装置と、SBと、FCを備えており、SBの蓄電状態により、SBの蓄放電制御、FCの運転制御を行うことで、インバータ・コンバータを介することによる効率減少を少なくし省エネ性を向上させている。   The invention of Patent Document 1 includes a natural energy power generation device, SB, and FC. By performing storage / discharge control of SB and operation control of FC according to the storage state of SB, it is through an inverter / converter. Energy efficiency is improved by reducing efficiency reduction.

特開2006−254694号公報JP 2006-254694 A

しかしながら、前記従来技術によれば、制御可能なFC・SBをSBの蓄電状態を主として制御しており、不安定で制御不可能なPVの発電量や変動する需要家の電力負荷を考慮していない。このため、FCの発電力を効率が高く発電することができず省エネルギー性が向上しない。また、PV発電とFCの発電が重複し、逆潮する電力が増加する。逆潮した電力は、現在の日本の配電環境では高圧に変換され、変換される過程で大きな変換ロスが生じ、また別の需要家に送電する過程での送電ロスも生じるため、環境負荷が大きくなる。   However, according to the prior art, the controllable FC / SB mainly controls the storage state of the SB, taking into consideration the unstable and uncontrollable PV power generation amount and the changing power load of the customer. Absent. For this reason, the power generation of FC cannot be generated with high efficiency and energy saving performance is not improved. In addition, PV power generation and FC power generation overlap, and the amount of reverse power increases. The reversed power is converted to high voltage in the current Japanese power distribution environment, causing a large conversion loss in the process of conversion, and a transmission loss in the process of transmitting to another customer, resulting in a large environmental load. Become.

そこで、本発明は上記の課題を解決するためになされたもので、不安定な自然エネルギー発電と、変動する需要家の負荷に合わせて、効率の良いSBの蓄放電制御とFCの運転制御により、SBとFCの機器特性の制限の中で、システム全体の省エネルギー性を高めることのできる分散発電システムを提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and is based on unstable natural energy power generation and efficient storage and discharge control of SB and FC operation control in accordance with the fluctuating consumer load. The aim is to provide a distributed power generation system that can improve the energy saving of the entire system within the limits of the device characteristics of SB and FC.

前記従来の課題を解決するために、本発明の分散発電システムは、
自然エネルギー発電装置と、
自家発電装置と、
蓄電池を備えた需要家で、
自然エネルギー発電の発電力と、需要家の電力負荷と、蓄電池の蓄電状態との関係が、需要家の電力負荷から自然エネルギー発電の発電力を減算した値が第一の所定の値以上である場合に自家発電装置を発電させ、
自然エネルギー発電の発電力が需要家の電力負荷を超過する場合に、蓄電量が第二の所定の値以下の場合には、超過分の電力を蓄電池へ蓄電し、それ以外の場合には超過分の電力を商用電源への逆潮を行い、
自然エネルギー発電の発電力が需要家の電力負荷に不足する場合かつ、自家発電装置の発電力と自然エネルギー発電の発電力の合計が需要家の電力負荷を超過する場合に、超過分の電力を蓄電池へ蓄電し、
自然エネルギー発電の発電力が需要家の電力負荷に不足する場合かつ、自家発電装置の発電力と自然エネルギー発電の発電力の合計が需要家の電力負荷に不足する場合に、蓄電池の充電状態が空でなければ不足分の電力を蓄電池からの放電で、蓄電池の充電状態が空であれば商用電源からの電力の取得で不足分の電力を補うよう選択し、
選択に従い電力を分配する電力分配装置
を備える。
In order to solve the conventional problem, the distributed power generation system of the present invention is:
A natural energy generator,
A private power generator,
A customer with a storage battery,
The value obtained by subtracting the power generated by the natural energy power generation from the power load of the consumer is greater than or equal to the first predetermined value for the relationship between the power generated by the natural energy power generation, the power load of the consumer, and the storage state of the storage battery. If you have your own power generator
When the amount of electricity generated by renewable energy exceeds the customer's power load, if the amount of electricity stored is less than or equal to the second predetermined value, the excess power is stored in the storage battery, otherwise it is exceeded. Reverse power to the commercial power supply,
If the power generated by renewable energy is insufficient for the customer's power load, and if the sum of the power generated by the private power generator and the power generated by the renewable energy exceeds the customer's power load, the excess power Store electricity in a storage battery,
When the power generated by renewable energy is insufficient for the customer's power load, and when the sum of the power generated by the private power generator and the power generated by the natural energy power is insufficient for the customer's power load, the state of charge of the storage battery is If it is not empty, select the amount of power that is insufficient by discharging from the storage battery, and if the state of charge of the storage battery is empty, select to supplement the amount of power that is insufficient by acquiring power from the commercial power source,
A power distribution device that distributes power according to the selection is provided.

本構成によれば、省エネルギー性が高く、環境負荷が小さい分散発電システムを提供することができる。   According to this configuration, it is possible to provide a distributed power generation system with high energy saving and low environmental load.

本発明は、省エネルギー性が高く、環境負荷が小さい分散発電システムを提供することができる。   The present invention can provide a distributed power generation system with high energy saving and low environmental load.

本発明の実施の形態における分散発電システムの構成図Configuration diagram of a distributed power generation system according to an embodiment of the present invention 負荷電力とPV発電量を減算した値と、蓄電状態情報との関係によるFC運転指令情報FC operation command information based on the relationship between the value obtained by subtracting the load power and PV power generation amount, and the storage status information 負荷電力とPV発電量を減算した値と、蓄電状態情報との関係による蓄放電指令情報Storage / discharge command information based on the relationship between the value obtained by subtracting the load power and PV power generation amount and the storage status information FCが発電しない場合の電力分配と各電力値との関係Relationship between power distribution and power values when FC does not generate electricity FCが発電する場合の電力分配と各電力値との関係Relationship between power distribution and each power value when FC generates electricity 電力負荷、PV発電力の一例Example of power load and PV power generation 本実施の形態でのFCの発電力とSBの蓄電状態情報各電力の推移の一例Example of transition of power generated by FC and power storage status information of SB in this embodiment PV発電力を考慮しなかった場合のFCの発電力とSBの蓄電状態情報の推移の一例Example of transition of FC power generation and SB power storage status information without considering PV power generation

以下本発明の実施の形態について、図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本実施の形態の分散発電システムの図である。   FIG. 1 is a diagram of a distributed power generation system according to the present embodiment.

同図の分散発電システム100は、各発電装置、SB、商用電源から電力を取得し、指令に応じて電力を分配する電力分配装置101と、SBからの放電量、もしくはSBへの蓄電量を算出して指令する蓄放電判定手段102と、需要家の電力負荷、PVの発電力、SBの蓄電力の状態、FCの貯湯タンクの状態からFCの運転と発電量を算出して指令するFC運転判定手段103と、太陽光のエネルギーを電力に変換するPV104と、指令に合わせた電力の蓄放電を行うSB105と、指令に合わせた発電力で発電し、発電時の廃熱を回収するFC106と、FCの廃熱をお湯として蓄熱する貯湯タンク107とを備える。   The distributed power generation system 100 in the figure acquires power from each power generation device, SB, and commercial power supply, and distributes power according to a command, and the amount of discharge from the SB or the amount of power stored in the SB. The storage / discharge determination means 102 that calculates and commands the FC, and calculates and commands the FC operation and the amount of power generation based on the customer's power load, PV power generation, SB power storage status, and FC hot water storage tank status. Operation determination means 103, PV 104 that converts sunlight energy into electric power, SB 105 that stores and discharges electric power according to the command, and FC 106 that generates power with the generated electric power according to the command and recovers waste heat during power generation And a hot water storage tank 107 for storing FC waste heat as hot water.

電力分配装置101は、蓄放電指令情報に従い、各装置からの電力と商用電源108から購入する電力である買電力とを、需要家電力負荷110で要求されている電力である負荷電力と、商用電源108への逆潮電力である売電力とに分配する装置である。   In accordance with the storage / discharge command information, the power distribution device 101 uses the power from each device and the purchased power that is purchased from the commercial power supply 108, the load power that is required by the consumer power load 110, and the commercial power. It is a device that distributes the power to the selling power that is the reverse power to the power source 108.

本実施の形態では、電力分配装置101は、PV104からPV104で発電された電力であるPV発電力を、SB105から現在のSBに蓄電されている蓄電力である蓄電状態情報を、FC106からFC106で発電された電力であるFC発電力を取得する。取得した各電力から、負荷電力と、PV発電力と、SB蓄電状態情報と、FC発電力との各値を示す電力状態情報として算出する。   In the present embodiment, power distribution apparatus 101 uses PV generation power that is generated from PV 104 to PV 104, storage state information that is stored power stored in SB 105 from SB 105, and FC 106 to FC 106. Obtain FC generated power that is generated. From each acquired electric power, it calculates as electric power state information which shows each value of load electric power, PV electric power generation, SB electrical storage state information, and FC electric power generation.

また、本実施の形態では、PV発電力を逆潮により売電力とすることは出来るが、FC発電力を逆潮することはできない。   In the present embodiment, the PV generated power can be sold by reverse tide, but the FC generated power cannot be reversed.

また、電力分配装置101は、蓄放電判定手段102から、どれだけの電力をSB106に蓄電するか、もしくはSB106からどれだけの電力を放電させ取得するかを示す蓄放電指令情報を取得する。電力分配装置101は、取得した蓄放電指令情報に従い、各発電装置から取得した電力から蓄電する電力である蓄電力をSB105へ出力するか、もしくは蓄電されている電力の放電である放電力をSB105から取得するかを行う。   In addition, the power distribution apparatus 101 acquires storage / discharge command information indicating how much power is stored in the SB 106 or how much power is discharged and acquired from the SB 106 from the storage / discharge determination unit 102. In accordance with the acquired storage / discharge command information, the power distribution device 101 outputs the stored power, which is the power stored from the power acquired from each power generation device, to the SB105, or outputs the discharge power, which is the discharge of the stored power, to the SB105. Do what to get from.

また、電力分配装置101は、各発電装置から取得した発電力と蓄放電指令に従って取得した放電力を負荷電力へ出力する。各発電装置から取得した発電力と蓄放電指令に従って取得した放電力の合計が、負荷電力に不足している場合は、電力の不足分を商用電源108から買電力を取得し、負荷電力へ出力する。   In addition, the power distribution device 101 outputs the generated power acquired from each power generation device and the discharge power acquired according to the storage / discharge command to the load power. If the total of the generated power obtained from each power generator and the discharge power acquired according to the storage / discharge command is insufficient in the load power, the power shortage is acquired from the commercial power supply 108 and output to the load power To do.

また、各発電装置から取得した発電力から蓄放電指令に従って出力した蓄電力を減算した電力が、負荷電力を上回っている場合には、電力の余剰分を商用電源108へ売電力を出力する。   Further, when the power obtained by subtracting the stored power output in accordance with the storage / discharge command from the generated power obtained from each power generator exceeds the load power, the surplus power is sold to the commercial power supply 108.

上記の電力の分配により、電力分配装置101へ出力された電力は全て負荷電力、売電力、蓄電力へ分配して出力され収支を取り、常に需要家電力負荷110へ負荷電力を出力する。   Through the above power distribution, all the power output to the power distribution device 101 is distributed and output to load power, sold power, and stored power, and a balance is obtained. The load power is always output to the consumer power load 110.

また、電力分配装置101は、コンバータ・インバータを備え、上記の通り取得した電力を出力する場合に、取得した電力を出力する電力の形式に合わせてDC-AC変換、AC-DC変換を行う。   In addition, the power distribution apparatus 101 includes a converter / inverter, and performs DC-AC conversion and AC-DC conversion according to the format of power to output the acquired power when outputting the acquired power as described above.

FC運転判定手段103は、需要家の電力負荷、PVの発電力、SBの蓄電力の状態、FCの貯湯タンクの状態からFCの運転と発電量を算出して指令する処理部である。   The FC operation determination means 103 is a processing unit that calculates and instructs FC operation and power generation amount from the customer's power load, PV power generation, SB power storage status, and FC hot water storage tank status.

本実施の形態では、FC運転判定手段103は、電力分配装置101から電力状態情報を、貯湯タンク107から貯湯タンク内に蓄熱されているお湯の総熱量を示すタンク内熱量情報を取得する。次に、取得した電力状態情報のうち、負荷電力とPV発電量を減算した値と、蓄電状態情報との関係により、図2のように、FC106が発電を行う発電量を示す指令値であるFC運転指令情報を出力する。   In the present embodiment, the FC operation determination unit 103 acquires the power state information from the power distribution device 101 and the in-tank heat amount information indicating the total amount of hot water stored in the hot water storage tank 107 from the hot water storage tank 107. Next, the command value indicating the power generation amount that the FC 106 generates power as shown in FIG. 2 based on the relationship between the obtained power state information and the value obtained by subtracting the load power and the PV power generation amount and the power storage state information. Outputs FC operation command information.

負荷電力からPV発電量を減算した値がFC106の最低の発電力である300w以上の場合、つまり負荷電力がPV発電量より300w以上大きい場合、かつ蓄電状態情報が満充電の場合には、FC運転指令情報に「負荷電力からPV発電量を減算した値」を出力する。つまり、PV発電力とFC発電力の合計が負荷電力と等しくなるようなFC発電力を指令する。   When the value obtained by subtracting the PV power generation amount from the load power is 300 w or more, which is the lowest generation power of the FC 106, that is, when the load power is 300 w or more larger than the PV power generation amount and the storage state information is fully charged, FC Outputs the value obtained by subtracting the PV power generation amount from the load power to the operation command information. That is, the FC generation power is commanded so that the sum of the PV generation power and the FC generation power becomes equal to the load power.

また、負荷電力からPV発電量を減算した値が300w以上の場合、かつ蓄電状態情報が満充電ではない場合には、FC運転指令情報にFC106の定格の発電力である「1000w」を出力する。   Further, when the value obtained by subtracting the PV power generation amount from the load power is 300 w or more and the storage state information is not fully charged, “1000 w” that is the rated power generation of the FC 106 is output to the FC operation command information. .

また、負荷電力からPV発電量を減算した値が300w未満の場合には、FC運転指令情報に停止を示す「0」を出力する。   When the value obtained by subtracting the PV power generation amount from the load power is less than 300 w, “0” indicating stop is output to the FC operation command information.

また、タンク内熱量情報が貯湯タンク107に蓄熱可能な上限熱量に等しくなった場合には、常にFC運転指令情報に停止を示す「0」を出力する。これは、FC106が発電を行った場合に発生する熱量を貯湯タンクに蓄熱できなくなるためである。   When the heat quantity information in the tank becomes equal to the upper limit heat quantity that can be stored in the hot water storage tank 107, “0” indicating a stop is always output to the FC operation command information. This is because the amount of heat generated when the FC 106 generates power cannot be stored in the hot water storage tank.

また、FC運転判定手段103は、PV発電力がピークとなる時刻である毎日12時に、貯湯タンク107に蓄熱可能な上限熱量からタンク内熱量情報を減算し、貯湯タンク107に蓄熱可能な残熱量を算出する。この蓄熱可能な残熱量を、FC106が定格である1000wの発電力で発電を行った場合のFC106の発熱量あたりの発電力で除算した値である予測FC発電力を算出する。これは、蓄熱可能な残熱量を蓄熱しきった場合のFC106の発電力の合計に相当する。   Further, the FC operation determining means 103 subtracts the heat amount information in the tank from the upper limit heat amount that can be stored in the hot water storage tank 107 at 12:00 every day, which is the time when the PV generated power reaches a peak, and the remaining heat amount that can be stored in the hot water storage tank 107. Is calculated. A predicted FC power generation is calculated, which is a value obtained by dividing the amount of residual heat that can be stored by the power generation per calorific value of the FC 106 when the power generation is performed with the power generation of 1000 w, which is the rated value of the FC 106. This corresponds to the total amount of power generated by the FC 106 when the amount of residual heat that can be stored is fully stored.

FC106は、指令に合わせた発電力で発電し、発電時の廃熱を回収する装置である。   The FC 106 is a device that generates power with power generated in accordance with a command and recovers waste heat during power generation.

本実施の形態では、FC106は、FC運転判定手段103からFC運転指令情報を取得する。取得した値の発電量で発電を行うよう、商用ガス109から購入するガスである買ガスを取得し、水素を発生させて発電を行い、発電した電力量であるFC発電力を出力する。また、発電の際に発生した廃熱の回収量であるFC発熱量を貯湯タンク107にお湯として蓄熱する。   In the present embodiment, the FC 106 acquires FC operation command information from the FC operation determination unit 103. In order to generate power with the acquired power generation amount, a purchased gas that is a gas purchased from the commercial gas 109 is acquired, hydrogen is generated to generate power, and FC generated power that is the generated power amount is output. Further, the FC heat generation amount, which is the recovery amount of waste heat generated during power generation, is stored in the hot water storage tank 107 as hot water.

本実施の形態では、FC106の発電力の定格値は1000wで、最低値は300wであり、定格値に近い発電力ほどエネルギー効率が高く、省エネ性が高い。   In the present embodiment, the rated value of the generated power of the FC 106 is 1000 w, and the minimum value is 300 w. The generated power closer to the rated value has higher energy efficiency and higher energy saving performance.

貯湯タンク107は、FCの廃熱をお湯として蓄熱する装置である。   The hot water storage tank 107 is a device that stores waste heat of FC as hot water.

本実施の形態では、FC106の発電時におけるFC発熱量を取得し、蓄熱する。需要家給湯負荷111で要求されている給湯熱量である負荷熱量に応じて、貯湯タンク107から出湯する。   In the present embodiment, the FC calorific value at the time of power generation of the FC 106 is acquired and stored. Hot water is discharged from the hot water storage tank 107 in accordance with the amount of load heat, which is the amount of hot water supply required by the customer hot water supply load 111.

また、貯湯タンク107は、毎日12時に、タンク内熱量情報を算出する。   Further, the hot water storage tank 107 calculates heat amount information in the tank at 12:00 every day.

蓄放電判定手段102は、SBからの放電量、もしくはSBへの蓄電量を算出して指令する処理部である。   The storage / discharge determination unit 102 is a processing unit that calculates and commands the amount of discharge from the SB or the amount of power stored in the SB.

本実施の形態では、蓄放電判定手段102は、毎日12時に、FC運転判定手段103からFC予測発電力を取得する。蓄放電判定手段102は、過去24時間の負荷電力の総和を記憶しており、その値を翌24時間の負荷電力の総和の予測値とする。翌24時間の負荷電力の総和の予測値から、FC予測発電力を減算した値をPV蓄電力として算出する。PV蓄電力は、予測される1日の電力量のうち、FCの発電力では賄いきれない電力を示している。   In the present embodiment, the storage / discharge determination unit 102 acquires FC predicted power generation from the FC operation determination unit 103 at 12:00 every day. The storage / discharge determination means 102 stores the total load power for the past 24 hours, and sets that value as the predicted value of the total load power for the next 24 hours. The value obtained by subtracting the FC predicted generated power from the predicted value of the total load power for the next 24 hours is calculated as PV storage power. PV power storage indicates the amount of power that cannot be covered by the power generated by FC, out of the estimated daily power consumption.

また、蓄放電判定手段102は、電力分配装置101から電力状態情報を取得する。電力状態情報のうち、負荷電力とPV発電量を減算した値と、蓄電状態情報との関係により、図3のように、蓄放電指令情報を出力する。   Further, the storage / discharge determination unit 102 acquires power state information from the power distribution apparatus 101. The storage / discharge command information is output as shown in FIG. 3 according to the relationship between the value obtained by subtracting the load power and the PV power generation amount from the power state information and the storage state information.

負荷電力がPV発電力未満の場合かつ、蓄電状態情報がPV蓄電力未満の場合には「PV発電力から負荷電力を減算した値を蓄電」する蓄放電指令を算出する。これは、PV発電力から負荷電力を賄い、余剰の電力をSB105に蓄電することを示している。   When the load power is less than the PV generation power and the storage state information is less than the PV storage power, a storage / discharge command for “accumulating the value obtained by subtracting the load power from the PV generation power” is calculated. This indicates that the load power is covered from the PV generated power and the surplus power is stored in the SB 105.

また、負荷電力がPV発電力以上の場合には、前述の通りFC106が発電する場合があり、PV発電力とFC発電力の合計が負荷電力以上の場合には、「PV発電力とFC発電力の合計から負荷電力を減算した値を蓄電」する蓄放電指令を算出する。これは、PV発電力とFC発電力の合計から負荷電力を賄い、余剰の電力をSB105に蓄電することを示している。   In addition, when the load power is greater than or equal to the PV generation power, the FC 106 may generate power as described above. When the sum of the PV generation power and the FC generation power is greater than or equal to the load power, “PV generation and FC power generation” may occur. A storage / discharge command for storing the value obtained by subtracting the load power from the total force is calculated. This indicates that the load power is covered from the sum of the PV power generation and the FC power generation, and surplus power is stored in the SB105.

また、同じく負荷電力がPV発電力以上の場合かつ、PV発電力とFC発電力の合計が負荷電力未満の場合かつ、蓄電状態情報が空でない場合には、「負荷電力からPV発電力とFC発電力の合計を減算した値を放電」する蓄放電指令を算出する。これは、PV発電力とFC発電力の合計から負荷電力を賄うのに不足している電力をSB105から取得し、負荷電力を賄うことを示している。   Similarly, if the load power is equal to or greater than the PV power generation, and the sum of the PV power generation and the FC power generation is less than the load power, and the storage status information is not empty, “load power to PV power generation and FC A storage / discharge command for discharging the value obtained by subtracting the total generated power is calculated. This indicates that power that is insufficient to cover the load power from the sum of the PV power generation and the FC power generation is acquired from the SB 105 to cover the load power.

それ以外の場合については、蓄放電指令は算出されない。   In other cases, the storage / discharge command is not calculated.

SB105は、蓄放電指令に合わせた電力の蓄放電を行う装置である。   The SB 105 is a device that stores and discharges electric power in accordance with a storage and discharge command.

本実施の形態では、SB105は、電力分配装置101から蓄電力を取得し蓄電する。また、電力分配装置101からの要求に応じて放電力を出力する。また、蓄電状態情報を算出する。   In the present embodiment, the SB 105 acquires stored power from the power distribution apparatus 101 and stores it. In addition, discharge power is output in response to a request from the power distribution apparatus 101. Further, the storage state information is calculated.

また、SB105は満充電時で4,000whを蓄電可能とする。   The SB105 can store 4,000 wh when fully charged.

PV104は、太陽光のエネルギーを電力に変換する装置である。   The PV 104 is a device that converts sunlight energy into electric power.

本実施の形態では、PV104は、太陽光のエネルギーを電力に変換し、PV発電力を出力する。   In the present embodiment, PV 104 converts solar energy into electric power and outputs PV generated power.

以下、分散発電システム100の本実施の形態における動作の一例について説明する。   Hereinafter, an example of the operation of the distributed power generation system 100 in the present embodiment will be described.

前提として、現在時刻を12時とし、分散発電システム100は、24時間以上運転を行っており、蓄放電判定手段102は、過去24時間の負荷電力の総和を10,000whと記憶しているとする。   As a premise, it is assumed that the current time is 12:00, the distributed power generation system 100 has been operated for 24 hours or more, and the storage / discharge determination means 102 stores the total load power of the past 24 hours as 10,000 wh. To do.

また、現在、貯湯タンク107のタンク内熱量は6,000whとし、貯湯タンク107に蓄熱可能な上限熱量は20,000whとする。また、FC106が定格である1000wの発電力で発電を行った場合のFC106の発熱量あたりの発電力は、発熱量1whあたり0.5whとする。   At present, the amount of heat in the hot water storage tank 107 is 6,000 wh, and the upper limit heat amount that can be stored in the hot water storage tank 107 is 20,000 wh. In addition, the power generation per calorific value of the FC 106 when the power generation is performed with the rated power of 1000 w of the FC 106 is 0.5 wh per calorific value 1 wh.

まず、現在時刻が12時のため、PV蓄電力を算出する一連の処理を行う。FC運転判定手段103は、貯湯タンク107からタンク内熱量情報として6,000whを取得する。   First, since the current time is 12:00, a series of processes for calculating PV power storage are performed. The FC operation determination means 103 acquires 6,000 wh from the hot water storage tank 107 as in-tank heat quantity information.

次に、蓄熱可能な上限熱量である20,000whから、タンク内熱量情報6,000whを減算し、蓄熱可能な残熱量として14,000whを算出する。この値に、FC106が定格である1000wの発電力で発電を行った場合のFC106の発熱量あたりの発電力である、発熱量1whあたり0.5whを乗算し、予測FC発電力として7,000whを算出する。これは、FCが7,000wh発電すると貯湯タンク107に蓄熱出来なくなり、FCが停止することを意味している。   Next, 16,000 wh is calculated as the amount of residual heat that can be stored by subtracting 6,000 wh of heat information in the tank from 20,000 wh that is the upper limit heat amount that can store heat. Multiply this value by 0.5 wh per 1 wh of heat generation, which is the power generation per FC 106 when the power is generated with the power generation of 1000 w which is the rated value of FC 106, and 7,000 wh is predicted FC power generation calculate. This means that when FC generates 7,000 wh, heat cannot be stored in the hot water storage tank 107 and the FC stops.

次に、蓄放電判定手段102は、FC運転判定手段103から予測FC発電力7,000whを取得する。蓄放電判定手段102は、過去24時間の負荷電力の総和として10,000whを記憶しており、その値を翌24時間の負荷電力の総和の予測値とする。翌24時間の負荷電力の総和の予測値10,000whから、FC予測発電力7,000whを減算した値の3,000whをPV蓄電力として算出する。   Next, the storage / discharge determination unit 102 acquires the predicted FC power generation 7,000 wh from the FC operation determination unit 103. The storage / discharge determination means 102 stores 10,000 wh as the total sum of load power for the past 24 hours, and sets that value as the predicted value of the sum of load power for the next 24 hours. 3,000wh which is a value obtained by subtracting FC predicted generation power 7,000wh from the predicted value 10,000wh of total load power for the next 24 hours is calculated as PV storage power.

以降、翌日の12時になるまで、算出したPV蓄電力を利用して、分散発電システム100は運転を行う。前述の通り、FC運転判定手段103は、PV発電力と、負荷電力と、蓄電状態情報と、タンク内熱量情報とによりFC106の運転を判定し、蓄放電判定手段102は、算出したPV蓄電力と、PV発電力と、負荷電力と、蓄電状態情報とでSB105の蓄放電を判定する。   Thereafter, the distributed power generation system 100 operates using the calculated PV power storage until 12:00 on the next day. As described above, the FC operation determination unit 103 determines the operation of the FC 106 based on the PV generation power, the load power, the storage state information, and the heat quantity information in the tank, and the storage / discharge determination unit 102 calculates the calculated PV storage power. Then, the storage / discharge of the SB 105 is determined based on the PV generation power, the load power, and the storage state information.

この判定により、電力分配装置101で行われる電力分配と各値との関係をFC106が発電しない場合を図4に、FC106が発電する場合を図5に示す。図4に示すように、PV発電力のみで電力負荷を賄える場合には、FC106は発電せず、PV蓄電量まで蓄電し、余剰分を蓄電する。   FIG. 4 shows a case where the FC 106 does not generate power and FIG. 5 shows a case where the FC 106 generates power, based on this determination, regarding the relationship between the power distribution performed by the power distribution apparatus 101 and each value. As shown in FIG. 4, when the power load can be covered only by the PV power generation, the FC 106 does not generate power, stores the amount of PV stored, and stores the surplus.

また、同じく図4に示すように、PV発電力のみで電力負荷を賄えないが、FC106が発電するほど電力が不足していない場合には、SB105に蓄電があれば放電で賄い、蓄電がなければ買電力で補う。   Similarly, as shown in FIG. 4, the PV load alone cannot cover the power load. However, if the power is not short enough for the FC 106 to generate power, the SB 105 can be charged by the discharge if the power is stored. If not, supplement with electricity purchase.

また、図5に示すように、PV発電力のみで電力負荷を賄えず、FC106が発電する場合には、蓄電状態情報が満充電であれば、FC106はPV発電力の負荷電力への不足分のみ発電する。これは、FC106がこの値以上で発電すると電力が余剰となるが、蓄電できないためである。蓄電状態情報が満充電でなければ、FC106は定格で発電し、余剰となる電力はSB105へ蓄電する。FCが定格で発電しても負荷電力を賄いきれない場合には、蓄電状態情報が空でなければSB105からの放電力で補い、空であれば買電力で補って負荷電力を賄う。   In addition, as shown in FIG. 5, when the power generation cannot be covered only by the PV generation power and the FC 106 generates power, if the storage state information is fully charged, the FC 106 is short of the PV generation power to the load power. Power is generated only for the minutes. This is because if the FC 106 generates power at or above this value, the power becomes surplus but cannot be stored. If the storage state information is not fully charged, the FC 106 generates power at the rated value, and the surplus power is stored in the SB 105. If the load power cannot be covered even when the FC is rated and generated, if the storage state information is not empty, the discharge power from the SB 105 is supplemented. If it is empty, the load power is covered by the purchased power.

一例として、電力負荷、PV発電力が図6のような日の場合の、各時刻における本実施の形態でのFC106の発電とSB105の蓄電状態情報各電力の推移について説明する。12時の時点で、SB105の蓄電状態情報は1,000whとし、算出されたPV発電量は前述の通り3,000whとする。   As an example, the transition of the power generation of the FC 106 and the storage state information of the SB 105 in the present embodiment at each time when the power load and the PV generated power are as shown in FIG. 6 will be described. At 12 o'clock, the storage state information of the SB 105 is 1,000 wh, and the calculated PV power generation amount is 3,000 wh as described above.

この日におけるFC発電力と蓄電状態情報の推移を図7に示す。12時から17時までは、PV発電力が負荷電力を上回っており、余剰分をPV蓄電力である3,000whとなるまで蓄電し、それを越えた分については逆潮により売電する。PV発電力がゼロに近くなる18時から24時はPV発電力より負荷電力が300w以上上回るため、FC106が定格で発電を行い、電力負荷を賄い、余剰分が蓄電される。定格発電でも負荷電力に不足する分に関しては、SB105からの放電で賄う。1時から6時までは、負荷電力が小さいため、FCが発電せず、SB105からの放電で全て賄う。再度PV104の発電が始まる8時から9時までは、負荷電力がPV発電力を上回っており、不足分をSB105からの放電で賄う。10時から11時は、PV発電力が負荷電力を上回っており、余剰分をPV蓄電力である3,000whとなるまで蓄電し、それを越えた分については逆潮により売電する。   The transition of FC power generation and storage state information on this day is shown in FIG. From 12 o'clock to 17 o'clock, the PV power generation exceeds the load power, and the surplus is stored until it reaches 3,000 wh, which is the PV storage power, and the excess power is sold by reverse tide. From 18:00 to 24:00 when the PV power generation is close to zero, the load power exceeds 300 w or more than the PV power generation. Therefore, the FC 106 generates power at the rated value, covers the power load, and stores the surplus. The portion of the rated power generation that is insufficient for the load power will be covered by the discharge from the SB 105. From 1 o'clock to 6 o'clock, the load power is small, so FC does not generate electricity, and it is all covered by the discharge from SB105. From 8 o'clock to 9 o'clock when power generation of the PV 104 starts again, the load power exceeds the PV generation power, and the shortage is covered by the discharge from the SB 105. From 10 o'clock to 11 o'clock, the PV generated power exceeds the load power, and the surplus is stored until it reaches 3,000 wh which is the PV stored power, and the excess power is sold by reverse tide.

以下、分散発電システム100の本実施の形態における効果について説明する。   Hereinafter, effects of the distributed power generation system 100 in the present embodiment will be described.

本実施の形態では、SB105を備えているため、負荷電力以上の発電量で発電し、効率を向上させることが可能であり、前述の運転では、蓄電量が満充電である4,000whに達しないため、FC発電時には効率の高い定格での発電を常に行うことができている。   In this embodiment, since the SB 105 is provided, it is possible to generate power with a power generation amount that is greater than or equal to the load power and improve the efficiency. In the above-described operation, the power storage amount does not reach the fully charged 4,000 wh. For this reason, it is possible to always generate power at a highly efficient rating during FC power generation.

仮に、FC運転判定手段103が、不安定な自然エネルギー発電装置であるPV104のPV発電力を考慮せず、負荷電力が300w以上の場合にFCを発電させ、本実施の形態と同発電量を発電した場合のFC106の発電とSB105の蓄電状態情報の推移について図8に示す。   Temporarily, the FC operation determination means 103 does not consider the PV generation power of the unstable natural energy power generation device PV104 and generates FC when the load power is 300 w or more. FIG. 8 shows the transition of the power generation state of the FC 106 and the storage state information of the SB 105 when power is generated.

本実施の形態では、12時から17時にPV発電力があるためFC106の発電が行われないが、この場合には発電が行われる。PV発電力だけでも負荷電力を賄えている時間に、さらにFCが発電するために、蓄電量の増加が著しく、満充電である4,000whとなってしまい、それ以降はPV発電力を全て逆潮し、FCの発電力は余剰とならないよう電力負荷と同じ値に低下させなければならないため効率が低下している。   In the present embodiment, since there is PV power generation from 12:00 to 17:00, power generation of the FC 106 is not performed, but in this case, power generation is performed. Since FC generates electricity further when PV power generation alone can cover the load power, the amount of power storage increases significantly, reaching 4,000 wh, which is fully charged. However, since the generated power of the FC must be reduced to the same value as the power load so as not to be excessive, the efficiency is lowered.

このため、不安定で制御不可能なPV発電力に合わせて、PV発電力が負荷電力を賄えている時間にはFC106を発電させないよう、制御可能なFC106を発電させることで効率を向上させることができる。   For this reason, the efficiency can be improved by generating the controllable FC 106 so that the FC 106 is not generated during the time when the PV generation power covers the load power in accordance with the unstable and uncontrollable PV power generation. Can do.

また、後述するように、発電した電力のうち逆潮する量が増加し、買電力の量が増加するため、環境負荷も大きくなる。   In addition, as will be described later, the amount of reverse tide out of the generated power increases, and the amount of purchased power increases, so the environmental load also increases.

よって、本実施の形態では、FC運転判定手段103で、負荷電力とPV発電量を減算した値と、蓄電状態情報との関係により、図2のように、FC106が発電を行う発電量を示す指令値であるFC運転指令情報を出力しているため、FC106の発電の効率を向上させシステム全体の省エネルギー性を高め、環境負荷が小さい。   Therefore, in the present embodiment, the FC operation determination means 103 indicates the amount of power generated by the FC 106 as shown in FIG. 2 based on the relationship between the value obtained by subtracting the load power and the PV power generation amount and the storage state information. Since FC operation command information which is a command value is output, the power generation efficiency of the FC 106 is improved, the energy saving performance of the entire system is improved, and the environmental load is small.

また、本実施の形態では、PVが発電している昼間に、PV発電量の一部を事前に算出したPV蓄電量まで蓄電を行い、残りを逆潮により売電しており、夜間の定格でのFC発電でも不足する負荷電力や、FC106停止後の負荷電力も全て、SB105に蓄電したPV発電力もしくはFC発電力の余剰電力分で賄えている。   Also, in this embodiment, during the daytime when PV is generating electricity, part of the PV power generation amount is stored up to the pre-calculated PV storage amount, and the rest is sold by reverse tide, and the rating at night All of the load power that is insufficient even with FC power generation at the time and the load power after the FC 106 is stopped are covered by the PV generated power stored in the SB 105 or the surplus power of the FC generated power.

仮に、昼間のPV発電力を全て逆潮により売電した場合には、夜間の定格でのFC発電力でも不足する負荷電力や、FC106停止後の負荷電力は全て買電することになる。逆潮により売電した電力は、現在の日本の配電環境では高圧に変換され、変換される過程で大きな変換ロスが生じ、また別の需要家に送電する過程での送電ロスも生じる。この場合、逆潮した電力の全てが別の需要家に送電されず、また逆潮した分の電力は後の電力不足時に買電しているため、CO2排出量などの環境負荷が大きくなっている。   If all the daytime PV generated power is sold by reverse tide, all the load power that is insufficient even with the FC generated power at the nighttime rating and the load power after stopping the FC 106 will be purchased. Electricity sold due to reverse tide is converted to high voltage in the current Japanese distribution environment, causing a large conversion loss in the process of conversion, and a transmission loss in the process of transmitting to another customer. In this case, all of the reverse tide power is not transmitted to another customer, and the reverse tide power is purchased when there is a subsequent power shortage, which increases the environmental load such as CO2 emissions. Yes.

本実施の形態では、SB105を備えているため、CO2排出量など環境負荷の観点では、発電した電力で自家消費可能な分はSB105に蓄電し、その上での余剰分のみ逆潮を行った方が、環境負荷が小さい。   In this embodiment, since SB105 is provided, from the viewpoint of environmental load such as CO2 emissions, the amount of power that can be self-consumed by the generated power is stored in SB105, and only the surplus on that is reversed. The environmental load is smaller.

よって、本実施の形態では、蓄放電判定手段102で、昼間のPV発電量のうち、予測される1日の電力量のうち、FC106の発電力では賄いきれない電力の予測値を示しているPV蓄電力分を蓄電し、残りを売電しているため、発電した電力を全て自家消費し、その上での余剰分のみ逆潮を行っているため、環境負荷が小さい運転となっている。   Therefore, in the present embodiment, the storage / discharge determination means 102 indicates the predicted value of power that cannot be covered by the generated power of the FC 106 out of the predicted daily power amount of the PV power generation amount during the daytime. Because it stores the amount of PV stored electricity and sells the rest, it consumes all the generated power on its own and reverses only the surplus on it. .

以上から、本発明のかかる構成によれば、分散発電システム100の省エネルギー性を高め、環境負荷が小さくすることができる。   As described above, according to the configuration of the present invention, the energy saving property of the distributed power generation system 100 can be improved and the environmental load can be reduced.

以上、本発明の分散発電システムについて、実施の形態について説明したが、本発明はこの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。   As mentioned above, although embodiment was described about the distributed power generation system of this invention, this invention is not limited to this embodiment. Unless it deviates from the meaning of this invention, the form which carried out the various deformation | transformation which those skilled in the art can think to this embodiment, and the structure constructed | assembled combining the component in different embodiment is also contained in the scope of the present invention. .

例えば、本実施の形態の構成においては、FC運転判定手段103で、FC106が発電する条件として、負荷電力からPV発電力を減算した値がFC103の最低発電力に設定しているが、ゼロでも良いし、最低以上の発電力でも良いし、定格の発電力でも良い。また、現在の時刻の負荷電力とPV発電力との関係だけでなく、2時間連続で条件を満たした場合に発電するなど、期間で判定しても良い。また、負荷電力からPV発電力を減算した値でなく、負荷電力とPV発電力の割合でも良い。また、探索手法などで運転を計画し、その運転時間の範囲内かつ、負荷電力からPV発電力が上記のような一定の条件を満たした場合などでも良い。   For example, in the configuration of the present embodiment, the FC operation determination means 103 sets the value obtained by subtracting the PV generated power from the load power as the condition for generating power by the FC 106, but is set to the minimum generated power of the FC 103. It may be good, or the generated power may be more than the minimum, or rated power. Further, not only the relationship between the load power at the current time and the PV generation power, but also determination may be made by a period such as power generation when the condition is satisfied for 2 hours continuously. Further, the ratio of the load power and the PV power generation may be used instead of the value obtained by subtracting the PV power generation from the load power. Alternatively, the operation may be planned by a search method or the like, and the PV generation power from the load power may satisfy a certain condition as described above within the operation time range.

また、蓄放電判定手段102で、予測される1日の電力量のうち、FC106の発電力では賄いきれない電力の予測値を示しているPV蓄電力を、翌24時間の負荷電力の総和の予測値と、FC予測発電力とから算出しているが、翌24時間の負荷電力の総和の予測値は、過去数日間の1日あたりの電力の総和の平均や、同曜日の1日あたり電力の総和の平均や、過去数日間の1日あたりの総和からニューラルネットなどで予測を行って算出しても良い。また、FC予測発電力は、探索手法などで運転を計画し、その計画におけるFCの発電力などでも良い。   In addition, the storage / discharge determination means 102 calculates the PV storage power indicating the predicted value of power that cannot be covered by the power generated by the FC 106 from the predicted daily power consumption, as the sum of the load power for the next 24 hours. It is calculated from the predicted value and FC predicted generated power, but the predicted value of the total load power for the next 24 hours is the average of the total power per day for the past several days, or the same day per day. The calculation may be performed by making a prediction using a neural network or the like from the average sum of power or the sum per day for the past several days. Further, the FC predicted power generation may be an operation planned by a search method or the like, and the FC power generation in the plan may be used.

また、PV104は、風力発電や水力発電など他の自然エネルギー発電でも良い。   The PV 104 may be other natural energy power generation such as wind power generation or hydroelectric power generation.

また、FC106は、ガスエンジンコージェネレーション装置などの他の自家発電装置でも良い。   Further, the FC 106 may be another private power generation device such as a gas engine cogeneration device.

また、12時にPV蓄電量を計算しているが、何時に行っても良い。   Moreover, although the amount of PV storage is calculated at 12:00, it may be performed at any time.

また、本発明の処理を行う手段は装置として実現できるだけでなく、その装置を構成する処理手段をステップとする方法として実現したり、それらステップをコンピュータに実行させるプログラムとして実現したり、そのプログラムを記録したコンピュータ読み取り可能なCD−ROMなどの記録媒体として実現したり、そのプログラムを示す情報、データ又は信号として実現したりすることもできる。そして、それらプログラム、情報、データ及び信号は、インターネット等の通信ネットワークを介して配信してもよい。   The means for performing the processing of the present invention can be realized not only as a device, but also as a method using the processing means constituting the device as a step, as a program for causing a computer to execute the steps, It can also be realized as a recorded computer-readable recording medium such as a CD-ROM, or as information, data or a signal indicating the program. These programs, information, data, and signals may be distributed via a communication network such as the Internet.

本発明は、1つもしくは複数の発電装置と蓄電装置を備えた分散発電システムにも応用できる。   The present invention can also be applied to a distributed power generation system including one or a plurality of power generation devices and a power storage device.

100 分散発電システム
101 電力分配装置
102 蓄放電判定手段
103 FC運転判定手段
104 太陽光発電装置
105 蓄電池
106 燃料電池コージェネレーション
107 貯湯タンク
108 商用電源
109 商用ガス
110 需要家電力負荷
111 需要家給湯負荷
DESCRIPTION OF SYMBOLS 100 Distributed power generation system 101 Power distribution apparatus 102 Storage discharge determination means 103 FC operation determination means 104 Solar power generation apparatus 105 Storage battery 106 Fuel cell cogeneration 107 Hot water storage tank 108 Commercial power supply 109 Commercial gas 110 Customer power load 111 Customer hot water load

Claims (10)

自然エネルギー発電装置と、
自家発電装置と、
蓄電池を備えた需要家で、
自然エネルギー発電の発電力と、需要家の電力負荷と、蓄電池の蓄電状態との関係が、需要家の電力負荷から自然エネルギー発電の発電力を減算した値が第一の所定の値以上である場合に自家発電装置を発電させ、
自然エネルギー発電の発電力が需要家の電力負荷を超過する場合に、蓄電量が第二の所定の値以下の場合には、超過分の電力を蓄電池へ蓄電し、それ以外の場合には超過分の電力を商用電源への逆潮を行い、
自然エネルギー発電の発電力が需要家の電力負荷に不足する場合かつ、自家発電装置の発電力と自然エネルギー発電の発電力の合計が需要家の電力負荷を超過する場合に、超過分の電力を蓄電池へ蓄電し、
自然エネルギー発電の発電力が需要家の電力負荷に不足する場合かつ、自家発電装置の発電力と自然エネルギー発電の発電力の合計が需要家の電力負荷に不足する場合に、蓄電池の充電状態が空でなければ不足分の電力を蓄電池からの放電で、蓄電池の充電状態が空であれば商用電源からの電力の取得で不足分の電力を補うよう選択し、
選択に従い電力を分配する電力分配装置
を備える分散発電システム。
A natural energy generator,
A private power generator,
A customer with a storage battery,
The value obtained by subtracting the generated power of the natural energy power generation from the power load of the consumer is greater than or equal to the first predetermined value for the relationship between the generated power of the natural energy power generation, the power load of the consumer, and the storage state of the storage battery. If you have your own power generator
When the amount of electricity generated by renewable energy exceeds the customer's power load, if the amount of electricity stored is less than or equal to the second specified value, the excess power is stored in the storage battery, otherwise it is exceeded. Reverse power to the commercial power supply,
If the power generated by renewable energy is insufficient for the customer's power load, and if the sum of the power generated by the private power generator and the power generated by the renewable energy exceeds the customer's power load, the excess power Store electricity in a storage battery,
When the power generated by renewable energy is insufficient for the customer's power load, and when the sum of the power generated by the private power generator and the power generated by the natural energy power is insufficient for the customer's power load, the state of charge of the storage battery is If it is not empty, select the shortage of power to discharge from the storage battery, and if the storage battery is empty, select to supplement the shortage of power by acquiring power from the commercial power supply,
A distributed power generation system including a power distribution device that distributes power according to selection.
前記第一の所定の値が、自家発電装置の最低発電量であることを特徴とする請求項1に記載の分散発電システム。 The distributed power generation system according to claim 1, wherein the first predetermined value is a minimum power generation amount of the private power generation device. 前記第一の所定の値が、ゼロであることを特徴とする請求項1に記載の分散発電システム。 The distributed power generation system according to claim 1, wherein the first predetermined value is zero. 自家発電装置の発電力が、蓄電状態が満充電の場合には、需要家の電力負荷から自然エネルギー発電の発電力を減算した値であることを特徴とする請求項1に記載の分散発電システム。 2. The distributed power generation system according to claim 1, wherein the generated power of the private power generation device is a value obtained by subtracting the generated power of the natural energy power generation from the power load of the consumer when the storage state is fully charged. . 自家発電装置の発電力が、蓄電状態が満充電でない場合には、需要家の電力負荷から自然エネルギー発電の発電力を減算した値以上であることを特徴とする請求項1に記載の分散発電システム。 2. The distributed power generation according to claim 1, wherein the generated power of the private power generator is equal to or greater than a value obtained by subtracting the generated power of the natural energy power generation from the power load of the consumer when the storage state is not fully charged. system. 第二の所定の値が、24時間における需要家の電力負荷の予測値に対する自家発電装置の予測発電量の不足分であることを特徴とする請求項1に記載の分散発電システム。 2. The distributed power generation system according to claim 1, wherein the second predetermined value is an insufficiency of a predicted power generation amount of the private power generation apparatus with respect to a predicted value of a consumer's power load in 24 hours. 自然エネルギー発電装置が、太陽光発電装置もしくは風力発電装置であることを特徴とする請求項1に記載の分散発電システム。 The distributed power generation system according to claim 1, wherein the natural energy power generation device is a solar power generation device or a wind power generation device. 自家発電装置が、燃料電池コージェネレーション装置もしくはガスエンジンコージェネレーション装置であることを特徴とする請求項1に記載の分散発電システム。 The distributed power generation system according to claim 1, wherein the private power generation device is a fuel cell cogeneration device or a gas engine cogeneration device. 蓄電池が、リチウムイオン電池もしくはNAS電池であることを特徴とする請求項1に記載の分散発電システム。 The distributed power generation system according to claim 1, wherein the storage battery is a lithium ion battery or a NAS battery. 商用電源への逆潮が可能であるのが自然エネルギー発電装置からの発電力のみであることを特徴とする請求項1に記載の分散発電システム。 2. The distributed power generation system according to claim 1, wherein only the power generated by the natural energy power generation device can be reversed to the commercial power source. 3.
JP2009110121A 2009-04-28 2009-04-28 Distributed power generation system Pending JP2010259303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110121A JP2010259303A (en) 2009-04-28 2009-04-28 Distributed power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110121A JP2010259303A (en) 2009-04-28 2009-04-28 Distributed power generation system

Publications (1)

Publication Number Publication Date
JP2010259303A true JP2010259303A (en) 2010-11-11

Family

ID=43319557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110121A Pending JP2010259303A (en) 2009-04-28 2009-04-28 Distributed power generation system

Country Status (1)

Country Link
JP (1) JP2010259303A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047169A1 (en) * 2011-09-28 2013-04-04 京セラ株式会社 Power generation system, control device, and power control method
WO2013088611A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Distributed power generation system and method for controlling distributed power generation system
CN103904768A (en) * 2014-03-21 2014-07-02 广东美的厨房电器制造有限公司 Power supply control method and power supply control device
WO2015001800A1 (en) 2013-07-03 2015-01-08 川崎重工業株式会社 Microgrid control device and control method therefor
WO2015118844A1 (en) * 2014-02-07 2015-08-13 パナソニックIpマネジメント株式会社 Energy management device and energy management method
WO2015170626A1 (en) * 2014-05-08 2015-11-12 株式会社村田製作所 Independent power supply system
JP2016036253A (en) * 2015-11-05 2016-03-17 パナソニックIpマネジメント株式会社 Power control device, power supply system using the same and power control method
CN108964100A (en) * 2018-06-26 2018-12-07 江门云天电力设计咨询有限公司 A kind of photovoltaic circuit control method and its device based on circuital current
JP2020099130A (en) * 2018-12-18 2020-06-25 トヨタホーム株式会社 Power supply system for building

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136681A (en) * 1999-11-09 2001-05-18 Nissin Electric Co Ltd Power generation facility
JP2005086984A (en) * 2003-09-11 2005-03-31 Osaka Gas Co Ltd Power supply system and facility
JP2005278338A (en) * 2004-03-25 2005-10-06 Osaka Gas Co Ltd Power supply system
JP2006163576A (en) * 2004-12-03 2006-06-22 Sharp Corp Electric storage facility management system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001136681A (en) * 1999-11-09 2001-05-18 Nissin Electric Co Ltd Power generation facility
JP2005086984A (en) * 2003-09-11 2005-03-31 Osaka Gas Co Ltd Power supply system and facility
JP2005278338A (en) * 2004-03-25 2005-10-06 Osaka Gas Co Ltd Power supply system
JP2006163576A (en) * 2004-12-03 2006-06-22 Sharp Corp Electric storage facility management system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047169A1 (en) * 2011-09-28 2013-04-04 京セラ株式会社 Power generation system, control device, and power control method
WO2013088611A1 (en) * 2011-12-14 2013-06-20 パナソニック株式会社 Distributed power generation system and method for controlling distributed power generation system
JP5254500B1 (en) * 2011-12-14 2013-08-07 パナソニック株式会社 Distributed power generation system and control method of distributed power generation system
WO2015001800A1 (en) 2013-07-03 2015-01-08 川崎重工業株式会社 Microgrid control device and control method therefor
JP2015149861A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Energy management apparatus, and energy management method
WO2015118844A1 (en) * 2014-02-07 2015-08-13 パナソニックIpマネジメント株式会社 Energy management device and energy management method
CN103904768A (en) * 2014-03-21 2014-07-02 广东美的厨房电器制造有限公司 Power supply control method and power supply control device
CN103904768B (en) * 2014-03-21 2016-01-20 广东美的厨房电器制造有限公司 Method for controlling power supply and power supply control apparatus
WO2015170626A1 (en) * 2014-05-08 2015-11-12 株式会社村田製作所 Independent power supply system
JP2016036253A (en) * 2015-11-05 2016-03-17 パナソニックIpマネジメント株式会社 Power control device, power supply system using the same and power control method
CN108964100A (en) * 2018-06-26 2018-12-07 江门云天电力设计咨询有限公司 A kind of photovoltaic circuit control method and its device based on circuital current
JP2020099130A (en) * 2018-12-18 2020-06-25 トヨタホーム株式会社 Power supply system for building
JP7165045B2 (en) 2018-12-18 2022-11-02 トヨタホーム株式会社 building power supply system

Similar Documents

Publication Publication Date Title
CN100380774C (en) Electric power control apparatus, power generation system and power grid system
USRE46156E1 (en) Hybrid energy storage system, renewable energy system including the storage system, and method of using same
JP2010259303A (en) Distributed power generation system
WO2013015256A1 (en) Power management system and management method
JP2003079054A (en) Solar power generation system having storage battery
JP6190185B2 (en) Microgrid control apparatus and control method thereof
CN102110987A (en) System and method for providing power grid energy from a battery
CN107425534B (en) Micro-grid scheduling method based on optimization of storage battery charging and discharging strategy
CN108695871B (en) Configuration method for reducing energy storage capacity requirement of island micro-grid containing power spring
WO2015133136A1 (en) Power source system
JP2015192566A (en) Power system and dc power transmission method
JP2022548533A (en) Backup generators and associated power systems
Vega-Garita et al. Review of residential PV-storage architectures
CN110165715B (en) Method for connecting electric vehicle energy storage type charging station into virtual power plant
KR102503382B1 (en) Method for power management of Energy Storage System connected renewable energy
Ananda-Rao et al. Battery energy storage system assessment in a designed battery controller for load leveling and peak shaving applications
JP6146624B1 (en) Energy management system
WO2014021359A1 (en) Control device, fuel cell system, and control method
JP7386028B2 (en) power supply system
CN114725964A (en) Household micro-grid scheduling method, management system and household micro-grid
JP7252116B2 (en) Renewable energy power generation system
JP2021057181A (en) Power supply system
Mindra et al. Combined peak shaving/time shifting strategy for microgrid controlled renewable energy efficiency optimization
CN113256009B (en) Two-stage multi-standby configuration method, system and device based on aerothermal inertia
Sukumar Energy Management System for Optimal Operation of microgrid consisting of PV, fuel cell and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203