WO2015102287A1 - 식기 세척기 및 그 제어방법 - Google Patents

식기 세척기 및 그 제어방법 Download PDF

Info

Publication number
WO2015102287A1
WO2015102287A1 PCT/KR2014/012706 KR2014012706W WO2015102287A1 WO 2015102287 A1 WO2015102287 A1 WO 2015102287A1 KR 2014012706 W KR2014012706 W KR 2014012706W WO 2015102287 A1 WO2015102287 A1 WO 2015102287A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
washing water
filter
nozzle
vane
Prior art date
Application number
PCT/KR2014/012706
Other languages
English (en)
French (fr)
Inventor
류중찬
신우진
유수형
김소정
이준호
주재만
최상수
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140151608A external-priority patent/KR102379020B1/ko
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to CN201480076652.1A priority Critical patent/CN106061348B/zh
Priority to CA2934870A priority patent/CA2934870C/en
Priority to EP14876375.8A priority patent/EP3090673B1/en
Priority to AU2014374695A priority patent/AU2014374695B2/en
Priority to US15/108,695 priority patent/US9986884B2/en
Publication of WO2015102287A1 publication Critical patent/WO2015102287A1/ko
Priority to US15/976,996 priority patent/US10244918B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4278Nozzles
    • A47L15/4282Arrangements to change or modify spray pattern or direction
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/14Washing or rinsing machines for crockery or tableware with stationary crockery baskets and spraying devices within the cleaning chamber
    • A47L15/16Washing or rinsing machines for crockery or tableware with stationary crockery baskets and spraying devices within the cleaning chamber with rigidly-mounted spraying devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/4202Water filter means or strainers
    • A47L15/4208Arrangements to prevent clogging of the filters, e.g. self-cleaning
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/08Drain or recirculation pump parameters, e.g. pump rotational speed or current absorbed by the motor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/34Other automatic detections
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2501/00Output in controlling method of washing or rinsing machines for crockery or tableware, i.e. quantities or components controlled, or actions performed by the controlling device executing the controlling method
    • A47L2501/05Drain or recirculation pump, e.g. regulation of the pump rotational speed or flow direction
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2501/00Output in controlling method of washing or rinsing machines for crockery or tableware, i.e. quantities or components controlled, or actions performed by the controlling device executing the controlling method
    • A47L2501/20Spray nozzles or spray arms

Definitions

  • the present invention relates to a dish washer capable of removing dirt remaining on the bottom of the washing tank and the filter and a control method thereof.
  • the dishwasher includes a main body having a washing tank provided therein, a basket for storing dishes, a sump for storing the washing water, a nozzle for spraying the washing water, and a pump for supplying the washing water of the sump to the nozzle. It is a home appliance that washes dishes by spraying washing water.
  • the dishwasher is equipped with a filter at the bottom of the wash basin in which the wash water is collected to filter dirt such as food waste from the wash water circulated for washing.
  • the reliability of the dish washing may be degraded when the user takes out the dish, and may cause discomfort to the user.
  • the present invention proposes a dish washer capable of effectively removing dirt remaining in the bottom of the washing tank and the filter and a control method thereof.
  • the dishwasher includes a washing tank; door; A nozzle installed inside the washing tank and spraying the washing water; A vane moving between a first position positioned near the door and a second position positioned adjacent to the nozzle, the vane changing the spraying direction of the washing water sprayed from the nozzle; It is installed on the bottom of the washing tank, and includes a filter for filtering dirt from the washing water, the vane is rotated in the direction of the nozzle so that the washing water sprayed from the nozzle toward the rear wall of the washing tank when the second position is reached, the vane By removing the dirt remaining in the filter.
  • the motor for moving the vane;
  • a position detecting unit detecting whether the vane moving according to the driving of the motor has reached the second position;
  • the vane further includes a control unit for stopping the vane movement and controlling the spraying of the washing water from the nozzle when the vane reaches the second position.
  • the dishwasher is installed to extend from the front of the washing tank to the rear, further comprises a rail for guiding the movement of the vanes, the nozzle is installed to extend in the left and right directions of the washing tank, It is fixedly installed at the rear.
  • the position detection unit detects that the vanes are positioned at the second position when the vanes move in the nozzle direction and are positioned at the rearmost side of the rail.
  • the position detection unit includes a permanent magnet installed in the vane, and a position sensor positioned at the second position to detect the permanent magnet.
  • the dishwasher is installed on one side of the bottom plate of the washing tank, and further includes a bottom plate cover coupled to the rail, the position detection unit, a permanent magnet installed on the vane; It is installed on the bottom plate cover, and includes a position sensor for detecting the permanent magnet in a second position.
  • the dishwasher is installed in the lower portion of the washing tank, the sump for storing the washing water;
  • the pump further includes a pump for pumping the washing water stored in the sump to the nozzle, and the controller controls the rotation speed of the pump to adjust the amount of the washing water sprayed from the nozzle.
  • the dishwasher is installed in the lower portion of the washing tank, the sump for storing the washing water;
  • the pump further includes a pump for pumping the washing water stored in the sump to the nozzle, and the controller controls the driving time of the pump to adjust the amount of the washing water sprayed from the nozzle.
  • the controller determines whether the stroke of the dishwasher is a drain stroke; If it is a drain stroke, the vane stops moving, and the washing water is sprayed from the nozzle to control the washing water reflected by the vane's rotation toward the filter after hitting the rear wall of the washing tank.
  • the dishwasher according to another aspect of the present invention, the washing tank; door; A sump installed at a lower portion of the washing tank and storing the washing water; A pump for pumping the wash water stored in the sump; A nozzle for spraying the washing water pumped by the pump into the washing tank; A vane moving between a first position positioned near the door and a second position positioned adjacent to the nozzle, the vane changing the spraying direction of the washing water sprayed from the nozzle; A filter installed to cover the top of the sump and filtering the dirt from the washing water and then introducing the filter into the sump; When the vane reaches the second position, the vane stops the movement and includes a control unit for driving the pump to remove the dirt remaining in the filter.
  • the dishwasher according to another aspect of the present invention, the main body; A washing tank installed inside the main body and having a drain hole formed at a bottom thereof; A door for opening and closing the washing tank; A nozzle installed inside the washing tank and spraying the washing water; A vane moving between a first position positioned near the door and a second position positioned adjacent to the nozzle, the vane changing the spraying direction of the washing water sprayed from the nozzle; It is installed to cover the top of the drain, and includes a filter for filtering dirt from the wash water, the vane is rotated in the direction of the nozzle so that the washing water sprayed from the nozzle toward the rear wall of the washing tank when the second position is reached, It is characterized by removing dirt remaining in the filter by the rotation of the vane.
  • One aspect of the present invention provides a washing tank, a nozzle for spraying the washing water into the washing tank, a pump for supplying the washing water to the nozzle, a vane for changing the spraying direction of the washing water sprayed from the nozzle, and a motor for moving the vane.
  • a control method of a dishwasher having a filter for filtering dirt from washing water comprising: judging whether it is a drain stroke; if it is a drain stroke, detecting whether the vane has reached a second position proximate to the nozzle; When the vanes reach the second position, the driving of the motor is stopped to stop the movement of the vanes; Spraying the washing water at the nozzle as the pump is driven to flow the washing water reflected by the rotation of the vanes towards the filter after hitting the rear wall of the washing tank; Removing dirt remaining in the filter according to the flow of the washing water.
  • control method of the dish washing machine further comprises moving the vane to the second position by driving the motor if the vane does not reach the second position.
  • Driving the pump controls the rotational speed of the pump to regulate the amount of wash water sprayed from the nozzle.
  • Driving the pump controls the driving time of the pump to adjust the amount of washing water sprayed from the nozzle.
  • another aspect of the present invention is a sump for storing the washing water, a pump for pumping the washing water stored in the sump, a nozzle for spraying the washing water pumped by the pump into the interior of the washing tank, and the spraying direction of the washing water sprayed from the nozzle
  • a control method of a dish washing machine having a vane to be changed and a filter for filtering dirt into the sump after filtering dirt from the washing water comprising: judging whether a drain stroke is performed; If it is a drain stroke, driving the pump at a position which minimizes the gap between the vane and the nozzle to inject the washing water from the nozzle; Sprayed washing water is reflected by the rotation of the vanes and directed to the filter after striking the rear wall of the washing tank to remove dirt remaining in the filter; Counting the drive time of the pump to determine whether the reference time has elapsed; When the reference time elapses, the driving of the pump is stopped to stop the injection of the washing water; Draining the filtered dirt in
  • the dishwasher according to another aspect of the present invention, the washing tank; A nozzle installed inside the washing tank and spraying the washing water; A circulation pump for supplying washing water to the nozzle; A filter installed at the bottom of the washing tank to filter dirt from the washing water; A blockage detecting unit detecting a blockage of the filter; And a controller for supplying the first water supply amount of washing water and driving the circulation pump to perform a washing stroke when the washing instruction is input, and stopping the washing stroke and performing the washing of the filter when clogging of the filter is detected.
  • the control unit supplies a second water supply amount of the wash water than the first water supply amount so that the washing water sprayed from the nozzle is injected toward the filter, and controls the circulation pump to control the circulation pump at a lower rotation speed than the rotation speed of the circulation pump driven at the washing stroke. It is characterized by.
  • the clogging detection unit detects a change in power consumption of the circulation pump during operation of the circulation pump for the washing stroke and detects a blockage of the filter when the power consumption decreases.
  • the dishwasher is installed in the lower portion of the washing tank, the sump for storing the washing water; Further comprising a water supply valve for supplying the washing water to the sump, the second water supply amount is preferably a small amount of washing water to fill the inside of the sump.
  • the dishwasher for opening and closing the washing tank; A vane moving between a first position located close to the door and a second position located close to the nozzle, the vane changing the spraying direction of the washing water sprayed from the nozzle, and when the vane reaches the first position,
  • the control unit stops the movement of the vanes and controls the washing water sprayed from the nozzles toward the filter.
  • the dishwasher according to another aspect of the present invention further includes a motor for moving the vane, and the control unit counts the time the vane moving in accordance with the driving of the motor from the second position to pass a predetermined time It is determined that the vane has reached the first position.
  • the dishwasher according to another aspect of the present invention further includes a drain pump for draining the washing water, and when a predetermined time elapses by counting the driving time of the circulation pump, the control unit stops the driving of the circulation pump and the drain pump Drain the wash water by driving it.
  • the nozzle further comprises a plurality of injection holes
  • the control unit sprays the washing water in the plurality of injection holes at the same time or injecting the washing water in some of the plurality of injection holes To control.
  • the dishwasher according to another aspect of the present invention, the washing tank; door; A nozzle installed inside the washing tank and spraying the washing water; A vane moving between a first position positioned near the door and a second position positioned adjacent to the nozzle, the vane changing the spraying direction of the washing water sprayed from the nozzle; A circulation pump for supplying washing water to the nozzle; A filter installed at the bottom of the washing tank to filter dirt from the washing water; A blockage detecting unit detecting a blockage of the filter; If the blockage of the filter is detected, and includes a control unit for stopping the washing stroke and proceeding to wash the filter, the control unit moves the vane to the first position so that the washing water sprayed from the nozzle toward the filter, and It is characterized by washing the filter by controlling the rotational speed of the circulation pump.
  • the dishwasher which is installed in the lower portion of the washing tank, and further comprises a drain pump for draining the washing water, if the blockage of the filter is detected, the control unit stops the operation of the circulation pump and the drain pump Drive to control to drain the wash water.
  • the dishwasher according to another aspect of the present invention further includes a water supply valve for supplying the washing water, and when the drainage of the washing water is completed, the controller stops the driving of the drain pump and drives the water supply valve to supply the washing water to the second. Control the water supply up to the water supply.
  • the dishwasher according to another aspect of the present invention further includes a motor for moving the vane, and when the vane moving in accordance with the driving of the motor reaches the first position, the control unit stops the movement of the vane and at the nozzle The sprayed washing water is controlled to face the filter.
  • Another aspect of the present invention provides a method of controlling a dishwasher including a washing tank, a nozzle for spraying washing water into the washing tank, a circulation pump for supplying washing water to the nozzle, and a filter for filtering dirt from the washing water.
  • a washing stroke is performed by spraying the washing water from the nozzle into the washing tank according to the driving of the circulation pump; Detecting a clogging of the filter by detecting a change in power consumption of the circulation pump while the circulation pump is in operation; If clogging of the filter is detected, it includes stopping the cleaning stroke and cleaning the filter by spraying the wash water towards the filter at the nozzle.
  • Detecting the blockage of the filter is to detect the blockage of the filter if the power consumption of the circulation pump decreases during the operation of the circulation pump for the cleaning stroke.
  • the amount of washing water and the rotational speed of the circulation pump are controlled to remove dirt blocking the filter.
  • Controlling the water supply amount of the washing water is to supply the water supply amount for washing the filter less than the water supply amount for the washing stroke.
  • To control the rotational speed of the circulation pump is to control the rotational speed of the circulation pump driven for cleaning of the filter to be lower than the rotational speed of the circulation pump driven for the cleaning stroke.
  • Cleaning the filter may include moving vanes that change the spray direction of the wash water; When the vane reaches a first position spaced from the nozzle, the vane further includes stopping the movement of the vane and causing washing water to be sprayed from the nozzle.
  • the washing of the filter is to stop the driving of the circulation pump and drain the washing water to remove the dirt blocking the filter when the driving time of the circulation pump is counted and a certain time elapses.
  • another aspect of the present invention is a sump for storing the washing water, a circulation pump for pumping the washing water stored in the sump, a nozzle for spraying the washing water pumped by the circulation pump into the inside of the washing tank, and the washing water sprayed from the nozzle
  • a control method of a dishwasher having a vane for changing the spraying direction and a filter for filtering dirt from washing water and flowing it into the sump comprising: detecting a clogging of the filter by detecting a change in power consumption during driving of a circulation pump; If clogging of the filter is detected, supplying the minimum amount of wash water capable of filling the sump after draining the wash water completely; Driving the circulation pump at a first position where the gap between the vane and the nozzle is maximized to inject the washing water supplied from the nozzle; Washing the filter with the sprayed washing water directed to the filter by driving a circulation pump; Counting the driving time of the circulation pump to determine whether a predetermined time has elapsed;
  • the dishwasher according to another aspect of the present invention, the washing tank; A nozzle installed inside the washing tank and spraying the washing water; A circulation pump for supplying washing water to the nozzle; A filter installed at the bottom of the washing tank to filter dirt from the washing water; A power consumption detector which detects a change in power consumption while driving the circulation pump; If a change in power consumption is detected, the controller may include stopping and restarting the circulating pump to determine whether the change in power consumption is continued.
  • the control unit may detect clogging or foaming of the filter depending on whether the change in power consumption continues. It is characterized by detecting.
  • the control unit counts the stop time of the circulation pump, and when the predetermined time passes, slow-starts the circulation pump.
  • control unit counts the slow start time of the circulation pump, and when a predetermined time elapses, restarts the circulation pump and controls the washing water to be injected from the nozzle.
  • controller controls the washing water to be sprayed from the upper nozzle and the lower nozzle when the circulation pump is restarted.
  • the controller detects a change in power consumption of the circulation pump through the power consumption detector to determine whether the change in power consumption continues.
  • the controller detects the blockage of the filter, stops the washing stroke, and proceeds with the washing of the filter.
  • the controller determines that bubbles have occurred in the washing tank and continues the washing stroke.
  • Another aspect of the present invention provides a method of controlling a dishwasher including a washing tank, a nozzle for spraying washing water into the washing tank, a circulation pump for supplying washing water to the nozzle, and a filter for filtering dirt from the washing water.
  • a washing stroke is performed by spraying the washing water from the nozzle according to the driving of the circulation pump; Detect a change in power consumption of the circulation pump during operation of the circulation pump; If a change in power consumption is detected, the driving of the circulation pump is stopped for a certain time; When a certain time elapses, restarting the circulation pump to determine whether a change in power consumption of the circulation pump is continued; If the power consumption change persists, stop the washing stroke and proceed with the washing of the filter; If the change in power consumption does not persist, it includes proceeding with a washing stroke.
  • the washing water is sprayed strongly toward the rear wall of the washing tank while the vane reflection angle is flipped backward.
  • a fast and strong water stream forms along the bottom plate of the washing tank, and the fast and strong water stream flows through the bottom of the washing tank to remove dirt remaining in the bottom of the washing tank, in particular, the filter.
  • the filter should be cleaned by using a small amount of water. It is possible to eliminate the inconvenience.
  • FIG. 1 is a schematic cross-sectional view showing a dish washer according to one embodiment of the present invention.
  • FIG. 2 is a view showing a lower portion of the dishwasher according to one embodiment of the present invention.
  • FIG 3 is a view illustrating a flow path structure of the dish washing machine according to one embodiment of the present invention.
  • FIG. 4 is an exploded view illustrating the vane and the rail assembly, the spray nozzle assembly, and the bottom plate cover of the dishwasher according to the embodiment of the present invention.
  • FIG. 5 is an exploded view illustrating a washing tank bottom plate, a bottom plate cover, and a motor of the dish washing machine according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating a washing tank bottom plate and a bottom plate cover and a motor of a dish washing machine according to an embodiment of the present invention.
  • FIG. 7 is a view illustrating the vane and the vane holder of the dishwasher according to an embodiment of the present invention.
  • FIG. 8 is a perspective view of the vane of the dish washing machine according to an embodiment of the present invention.
  • FIGS. 9 to 11 are views illustrating an operation of rotating the vane of the dish washing machine according to one embodiment of the present invention.
  • FIG. 12 is a view illustrating an operation in which the vanes reflect the washing water in the vane moving section of the dish washing machine according to the embodiment of the present invention.
  • FIG. 13 is a view illustrating an operation in which vanes reflect washing water in a vane non-moving section of a dish washing machine according to an embodiment of the present invention.
  • FIG. 14 is a view illustrating a sump, a coarse filter, and a fine filter of the dish washing machine according to one embodiment of the present invention.
  • 15 is an exploded view illustrating a sump, a coarse filter, a fine filter, and a micro filter of the dish washing machine according to one embodiment of the present invention.
  • FIG. 16 is a cross-sectional view taken along line II of FIG. 14.
  • 17 is a plan view illustrating a lower portion of a washing tub of the dish washing machine according to one embodiment of the present invention.
  • FIG. 18 is a control block diagram of the dish washing machine according to one embodiment of the present invention.
  • FIG. 19 is a flowchart illustrating a first control algorithm for cleaning a filter in the dishwasher according to an embodiment of the present invention.
  • 20 is a flowchart illustrating a second control algorithm for filter cleaning in a dish washing machine according to an embodiment of the present invention.
  • 21A and 21B are flowcharts illustrating a first control algorithm for releasing filter clogging of a dish washing machine according to another embodiment of the present invention.
  • 22A to 22K are views illustrating a process of releasing filter clogging of the dish washing machine according to another embodiment of the present invention.
  • 23A and 23B are flowcharts illustrating a second control algorithm for releasing filter clogs of a dish washing machine according to another embodiment of the present invention.
  • 24A and 24B are flowcharts illustrating a third control algorithm for releasing filter clogs of a dish washing machine according to another embodiment of the present invention.
  • 25A and 25B are flowcharts illustrating a control algorithm for foam detection of a dish washing machine according to another embodiment of the present invention.
  • FIGS. 1 and 2 The overall structure of a dish washer according to an embodiment of the present invention will be described generally with reference to FIGS. 1 and 2.
  • FIG. 1 is a schematic cross-sectional view showing a dish washer according to an embodiment of the present invention
  • Figure 2 is a view showing a lower portion of the dish washer according to an embodiment of the present invention.
  • the dishwasher 1 is provided inside the main body 10 forming the exterior, the washing tank 30 provided inside the main body 10, and the washing tank 30 to store the dishes.
  • the baskets 12a and 12b, nozzles 311, 313, 330, and 340 for spraying the washing water, the sump 100 storing the washing water, and the washing water of the sump 100 are pumped to the nozzles 311.
  • It includes a vane 400 for moving and reflecting the washing water to the tableware side, and a driving device 420 for driving the vane 400.
  • the washing tank 30 has an approximately box shape with an open front to accommodate dishes, and has an upper wall 31, a rear wall 32, a left wall 33, a right wall 34, and a bottom plate. (35).
  • the front opening of the washing tank 30 is opened and closed by the door 11.
  • the baskets 12a and 12b may be configured as a wire rack made of wire to allow the washing water to pass through without accumulation.
  • the baskets 12a and 12b may be detachably provided inside the washing tank 30.
  • the baskets 12a and 12b include an upper basket 12a disposed above the washing tub 30 and a lower basket 12b disposed below the washing tub 30.
  • the circulation pump 51 is a universal motor composed of a field coil and an armature, or a brushless direct motor composed of a permanent magnet and an electric magnet. "," And the like can be used.
  • a circulation pump 51 using a BLDC motor capable of controlling the rotational speed will be described as an example.
  • the nozzles 311, 313, 330, and 340 spray the washing water at high pressure to wash the dishes.
  • the nozzles 311, 313, 330, and 340 may include an upper rotating nozzle 311 provided at an upper portion of the washing tank 30, an intermediate rotating nozzle 313 provided at the center of the washing tank 30, and a washing tank 30. It includes fixed nozzles (330, 340) provided at the bottom of the.
  • the upper rotating nozzle 311 is provided above the upper basket 12a and may spray the washing water downward while rotating by water pressure. To this end, injection holes 312 are provided at the lower end of the upper rotating nozzle 311. The upper rotating nozzle 311 may directly spray the washing water toward the dishes stored in the upper basket 12a.
  • the intermediate rotating nozzle 313 is provided between the upper basket 12a and the lower basket 12b and may spray the washing water in the vertical direction while rotating by the hydraulic pressure. To this end, injection holes 314 are provided at the top and bottom of the intermediate rotary nozzle 313. The intermediate rotary nozzle 313 may spray the washing water directly toward the dishes stored in the upper basket 12a and the lower basket 12b.
  • the fixed nozzles 330 and 340 are provided not to move unlike the rotating nozzles 311 and 313, and are fixed to one side of the washing tank 30.
  • the fixed nozzles 330 and 340 may be disposed to be adjacent to the rear wall 32 of the washing tank 30 to spray the washing water toward the front of the washing tank 30. Therefore, the washing water sprayed from the fixed nozzles 330 and 340 may not directly face the dishware.
  • the washing water sprayed from the fixed nozzles 330 and 340 is reflected by the vane 400 to the tableware side.
  • the fixed nozzles 330 and 340 are disposed under the lower basket 12b, and the vane 400 reflects the washing water sprayed from the fixed nozzles 330 and 340 upward. That is, the washing water sprayed from the fixed nozzles 330 and 340 is reflected by the vane 400 toward the dishes stored in the lower basket 12b.
  • the fixed nozzles 330 and 340 have a plurality of injection holes 331 and 341 arranged in the left and right directions of the washing tank 30, respectively.
  • the plurality of injection holes 331 and 341 spray the washing water toward the front.
  • the vane 400 is installed to extend in the left and right directions of the washing tub 30 so as to reflect all the washing water sprayed from the plurality of spray holes 331 and 341 provided in the fixed nozzles 330 and 340. That is, one end in the longitudinal direction of the vane 400 is adjacent to the left wall 33 of the washing tank 30, and the other end in the longitudinal direction of the vane 400 is provided adjacent to the right wall 34 of the washing tank 30. Can be.
  • the vane 400 may linearly reciprocate along the spray direction of the washing water sprayed from the fixed nozzles 330 and 340. That is, the vane 400 moves between a first position located close to the door 11 and a second position located close to the fixed nozzles 330 and 340, and at the fixed nozzles 330 and 340. By changing the spraying direction of the sprayed washing water, linear reciprocating motion is performed along the front and rear directions of the washing tank 30.
  • the second position is a reference position of the vane 400 in which the position sensor 701 detects the magnetic field of the permanent magnet 702 during the movement path of the vane 400, and the vane 400 is connected to the fixed nozzles 330 and 340. It is a position where the gap between the vanes 400 and the fixed nozzles 330 and 340 is minimized.
  • the first position is a position of the vane 400 that detects the vane 400 by using the time moved from the second position.
  • the vane 400 approaches the door 11 and the vane 400 and the fixed nozzle 330.
  • , 340 is a position where the distance between the two is maximized.
  • the linear type spray structure including the fixed nozzles 330 and 340 and the vane 400 may wash the dishes by spraying the washing water onto the entire area of the washing tank 30 without the blind spot. This is different from the rotor type spraying structure which can spray the washing water only within the range of the turning radius.
  • the fixed nozzles 330 and 340 include a left fixed nozzle 330 disposed on the left side of the washing tank 30 and a right fixed nozzle 340 disposed on the right side of the washing tank 30.
  • the rotating nozzles 311 and 313 and the fixed nozzles 330 and 340 may spray washing water independently of each other, and the left fixed nozzle 330 and the right fixed nozzle 340 may spray washing water independently of each other. Can be.
  • the washing water sprayed from the left fixed nozzle 330 is reflected only to the left region of the washing tank 30 by the vane 400, and the washing water sprayed from the right fixing nozzle 340 is washed by the vane 400. It can be reflected only in the right region of.
  • the dishwasher 1 may separate and wash the left and right sides of the washing tank 30 independently.
  • the present invention has been described taking the washing by dividing to the left and right of the washing tank 30 as an example, the present invention is not limited to this, of course, can be further divided and washed as necessary.
  • FIG 3 is a view illustrating a flow path structure of the dish washing machine according to one embodiment of the present invention.
  • the dishwasher 1 includes a water supply stroke, a washing stroke, a drainage stroke and a drying stroke.
  • the washing water supplied to the washing tank 30 is formed by the gradient of the bottom plate 35 of the washing tank 30. It flows to the sump 100 provided in the lower part, and is stored in the sump 100.
  • the circulation pump 51 is operated to pump the washing water stored in the sump 100.
  • the wash water pumped by the circulation pump 51 is distributed to the rotating nozzles 311 and 313, the left fixed nozzle 330, and the right fixed nozzle 340 through the distribution device 200.
  • the washing water may be injected at high pressure from the nozzles 311, 313, 330, and 340 to wash dishes.
  • the upper rotating nozzle 311 and the intermediate rotating nozzle 313 may receive the washing water from the distribution device 200 through the second hose 271b.
  • the left fixed nozzle 330 may receive the washing water from the distribution device 200 through the first hose 271a.
  • the right fixed nozzle 340 may receive the washing water from the distribution device 200 through the third hose 271c.
  • the dispensing device 200 is configured to have a total of four dispensing modes.
  • the distribution device 200 supplies the washing water to the rotating nozzles 311 and 313 through the second hose 271b.
  • the distribution device 200 supplies the washing water to the right fixed nozzle 340 through the third hose 271c.
  • the dispensing apparatus 200 supplies the washing water to the left fixed nozzle 330 and the right fixed nozzle 340 through the first hose 271a and the third hose 271c.
  • the distribution device 200 supplies the washing water to the left fixed nozzle 330 through the first hose 271a.
  • the distribution device 200 may be provided to have a more diverse distribution mode.
  • the washing water sprayed from the nozzles 311, 313, 330, and 3 40 may blow the dish, remove the dirt on the dish, and fall with the dirt to be stored in the sump 100 again.
  • the circulation pump 51 pumps and circulates the wash water stored in the sump 100 again.
  • the circulation pump 51 can repeat the operation and stop several times during the washing stroke. In this process, the dirt dropped into the sump 100 together with the washing water is collected by the filter installed in the sump 100 and remains in the sump 100 without being circulated to the nozzles 311, 313, 330, and 340.
  • the drain pump 52 is operated to discharge dirt and washing water remaining in the sump 100 to the outside of the main body 10 together.
  • a heater (not shown) mounted on the washing tank 30 is operated to dry the dishes.
  • FIG. 4 is an exploded view illustrating the vane and the rail assembly, the spray nozzle assembly, and the bottom plate cover of the dish washing machine according to an embodiment of the present invention
  • FIG. 5 is a bottom of the washing tank of the dish washing machine according to an embodiment of the present invention
  • 6 is an exploded view illustrating the plate, the bottom plate cover, and the motor
  • FIG. 6 is a cross-sectional view illustrating the washing tank bottom plate, the bottom plate cover, and the motor of the dish washing machine according to an embodiment of the present invention.
  • the dishwasher 1 according to the exemplary embodiment of the present invention includes a bottom plate cover 600 coupled to a rear side of the bottom plate 35 of the washing tub 30.
  • the bottom plate cover 600 seals the motor passage holes 37 and the passage passage holes 38 formed in the bottom plate 35, supports the motor 530 for driving the vanes 400, and the dishwasher. Fix the rail assembly (430) and the nozzle assembly (300) of (1).
  • the nozzle assembly 300 includes an upper rotating nozzle 311, an intermediate rotating nozzle 313, a left fixed nozzle 330, and a right fixed nozzle 340.
  • Rail assembly 430 is to guide the movement of the vanes 400, a detailed configuration will be described later.
  • the bottom plate protrusion 36 includes a motor passage hole 37 through which the motor 530 for driving the vanes 400 passes, and a flow path connecting the nozzle assembly 300 and the distribution device 200 (see FIG. 3). Passing passage passing holes 38 are formed.
  • the motor 530 is mounted on the bottom of the bottom plate cover 600, and when the bottom plate cover 600 is removed from the bottom plate 35, the motor 530 is attached to the bottom plate cover (the motor through hole 37). 600).
  • the hose connecting portions 652 of the bottom plate cover 600 may pass through the passage passage holes 38.
  • the bottom plate cover 600 is disposed downward so that the shaft passage hole 640 through which the drive shaft 531 of the motor 530 passes, and the hoses 271a, 271b, and 271c extending from the dispensing device 200 are coupled.
  • Nozzle inlets protruding upward to engage the hose connections 652 protruding and inserted into the passage passage holes 38 of the bottom plate protrusion 36 and the inlets 315, 333, 343 of the nozzle assembly 300.
  • the bottom plate cover 600 is tightly coupled to the top surface of the bottom plate protrusion 36.
  • Fixing caps 680 may be coupled to the hose connecting portions 652 of the bottom plate cover 600 such that the bottom plate cover 600 may be fixed to the bottom plate protrusion 36.
  • the first sealing member 660 may be provided so as not to exit.
  • the first sealing member 660 may be formed of a rubber material.
  • the bottom surface of the bottom cover 600 may be provided with a motor mounting portion 630 is mounted a motor 530 for driving the vanes (400).
  • the drive shaft 531 of the motor 530 may protrude into the cleaning tub 30 through the shaft passage hole 640 of the bottom plate cover 600.
  • a drive pulley (not shown), which will be described later, may be coupled to the drive shaft 531 of the motor 530 to rotate together with the drive shaft 531.
  • the shaft through-hole 640 may be provided with a second sealing member 670 so that the washing water in the washing tank 30 does not count out through the shaft through-hole 640.
  • the second sealing member 670 may be a mechanical sealing device that enables sealing with smooth rotation of the drive shaft 531.
  • a position sensor 701 is provided on the bottom surface of the bottom plate cover 600, and a sensor mounting portion 703 on which the position sensor 701 is mounted is provided on the top surface of the bottom plate cover 600.
  • the position sensor 701 is used to detect a reference position for starting or terminating the movement of the vane 400 when the dishwasher 1 operates, and may use a hall sensor.
  • the position sensor 701 is installed corresponding to the position of the permanent magnet 702 (see FIG. 7) installed in the vane 400.
  • the position sensor 701 may be installed anywhere that can detect the magnetic field of the permanent magnet 702 during the movement of the vanes 400. That is, the vane 400 may be provided at any position where the reference position of the vane 400 can be detected in the moving path of the vane 400.
  • An upper surface of the bottom plate cover 600 may be provided to be inclined at a predetermined angle ⁇ (see FIG. 6) with respect to the reference horizontal plane H (see FIG. 6).
  • the inclination angle ⁇ between the top surface of the bottom plate cover 600 and the reference horizontal surface H is about 3 ° or more.
  • an end portion of the bottom plate cover 600 may be provided to be spaced apart from the bottom plate 35 by a predetermined interval S (see FIG. 6). It is difficult to completely adhere the bottom plate cover 600 to the bottom plate 35 due to manufacturing and assembly errors, but rather a minute gap formed between the end of the bottom plate cover 600 and the bottom plate 35. This is to prevent dirt from getting caught. It may be preferable that the distance S between the end of the bottom plate cover 600 and the bottom plate 35 is about 5 mm or more.
  • the rail assembly 430 and the nozzle assembly 300 may be coupled to the bottom plate cover 600.
  • the bottom plate cover 600, the rail assembly 430, and the nozzle assembly 300 may be firmly fixed by the fastening member 690.
  • fastening holes 620, 453, and 347 may be formed at corresponding positions on the bottom plate cover 600, the nozzle assembly 300, and the rail assembly 430, respectively.
  • the rail assembly 430 and the nozzle assembly 300 can be fixed to each other and aligned with each other.
  • the washing water sprayed from the fixed nozzles 330 and 340 of the nozzle assembly 300 does not directly face the dish, but is coupled to the vane assembly 430. Reflected by the toward the dishes, the exact position alignment of the fixed nozzles 330, 340 and the rail assembly 430 is required, such a coupling structure can meet this requirement.
  • reference numerals 337 and 347 denote coupling holes formed in the left fixed nozzle 330 and the right fixed nozzle 340, respectively.
  • FIG 7 is a view illustrating the vane and the vane holder of the dishwasher according to an embodiment of the present invention
  • Figure 8 is a perspective view showing the vane of the dishwasher according to an embodiment of the present invention.
  • the vane 400 is provided to extend in a direction perpendicular to the rail 440.
  • the vane 400 includes a reflector 401 reflecting the washing water sprayed from the fixed nozzles 330 and 340, an upper support 410 bent at the reflector 401, and a bent at the upper support 410.
  • the rear support part 411, the cap part 404 provided in the longitudinal center part of the reflecting part 401, and the rotation stop part provided so that it may interfere with the rotation guide 610 (refer FIG. 12) of the bottom plate cover 600 ( 409, reinforcing ribs 414 provided for strength reinforcement of the reflector 401, the upper support 410, and the rear support 411, and the horizontal support 412 supported on the upper surface of the vane holder 490.
  • the reflector 401 includes reflective surfaces 402a and 402b that are inclined to reflect the washing water.
  • the reflective surfaces 402a and 402b may include a reflective surface 402a and a reflective surface 402b that are alternately arranged in the longitudinal direction with different inclinations so as to change the reflection angle of the washing water.
  • the cap part 404 is a coupling groove 405 for coupling with the vane holder 490 and the rotation range of the vane 400 when the vane 400 rotates by the rotation guide 610 of the bottom plate cover 600. It may include a rotary stopper portion 408 to limit.
  • a coupling protrusion 493 of the vane holder 490 may be coupled to the coupling groove 405 of the vane 400.
  • the coupling shaft 494 of the coupling protrusion 493 may be inserted into the coupling groove 405 of the vane 400.
  • Coupling shaft portion 494 may rotatably support vanes 400.
  • a permanent magnet 702 is provided on the lower surface of the vane holder 490.
  • the permanent magnet 702 is a position identifying member that moves with the vane 400 to generate a magnetic field when the vane 400 moves.
  • the permanent magnet 702 moves together with the vane 400 to detect a magnetic field in the position sensor 701.
  • FIG. 9 to 11 are views illustrating an operation of rotating the vane of the dishwasher according to an embodiment of the present invention
  • Figure 12 is a vane washing water in the vane movement section of the dishwasher according to an embodiment of the present invention
  • FIG. 13 is a view illustrating an operation of reflecting
  • FIG. 13 is a view illustrating an operation of reflecting the washing water by the vane in a vane non-moving section of the dish washing machine according to an embodiment of the present invention.
  • the dish washing machine 1 reflects the washing water sprayed from the fixed nozzles 330 and 340 to the side of the dish. Since the fixed nozzles 330 and 340 spray the washing water in a substantially horizontal direction, the fixed nozzles 330 and 340 and the vane 400 are positioned substantially horizontal to each other. Therefore, the vane 400 may not move in the region where the fixed nozzles 330 and 340 are disposed.
  • the dishwasher 1 has a vane moving section I1 to which the vanes 400 can move and a vane non-moving section I2 to which the vanes 400 can not move.
  • the vane 400 of the dish washing machine 1 may be rotatably provided to wash the dishes stored in the vane non-moving section I2.
  • the bottom plate cover 600 is formed with a rotary guide 610 protruding to guide the movement of the vanes 400, the vane 400 is rotated engaging portion 409 so as to interfere with the rotary guide 610 ) Is formed.
  • the rotation engaging portion 409 is formed above the coupling protrusion 493 of the vane holder 490 that forms a rotational shaft of the vane 400 and simultaneously transmits a driving force to the vane 400.
  • the rotation guide 610 includes a guide surface 611 that is formed in a curved surface so that the rotation engaging portion 409 contacts and the vanes 400 rotate smoothly.
  • the rotation engaging portion 409 of the vane 400 guides the rotation guide 610 of the bottom plate cover 600. If it interferes with the 611, the vane 400 is rotated about the engaging projection 493 of the vane holder 490. Therefore, the washing water may be reflected toward the dishes in the non-moving section I2.
  • FIG. 14 is a view illustrating a sump, a coarse filter, and a fine filter of a dish washing machine according to an embodiment of the present invention
  • FIG. 15 is a sump, coarse filter, a fine filter, and a micro filter of a dishwasher according to an embodiment of the present invention
  • FIG. 16 is a cross-sectional view taken along line II of FIG. 14, and
  • FIG. 17 is a plan view illustrating a lower part of a washing tank of the dish washing machine according to an embodiment of the present invention.
  • the dishwasher 1 sprays the sump 100 to store the washing water and the washing water of the sump 100 to the spray nozzles 311, 313, 330, and 340.
  • Circulation pump 51 for circulating to the water
  • Drainage pump 52 for discharging the washing water of the sump 100 to the outside of the main body 10 together with the dirt
  • Filters for filtering the dirt contained in the washing water (120, 130) , 140).
  • a drain plate 50 for draining the washing water to the sump 100 is formed in the bottom plate 35 of the washing tank 30, and the bottom plate 35 of the washing tank 30 drains the washing water by its own weight. It may have an inclination toward the drain port 50 side to be guided to the (50) side.
  • the sump 100 may have a hemispherical shape having an approximately upper surface opened.
  • the sump 100 includes a bottom portion 101, a side wall portion 103, a water storage chamber 110 formed at the bottom portion 101 and the side wall portion 103 and storing washing water, and a circulation pump 51.
  • the filters 120, 130, and 140 are fine filters 120 mounted on the drain 50 of the bottom plate 35, coarse filter 140, and micro filters mounted on the sump 100. And a filter 130 (micro filter).
  • the coarse filter 140 may have a substantially cylindrical shape.
  • the coarse filter 140 may be mounted on the inner side of the side wall portion 103 of the sump 100 to filter dirt of a relatively large size.
  • the coarse filter 140 is mounted to the sump 100 through the through hole 139 of the micro filter 130 and the through hole 122 of the fine filter.
  • the upper portion of the coarse filter 140 protrudes into the washing tank 30 and the lower portion protrudes into the waste collection chamber 111 of the sump 100.
  • the dirt collection chamber 111 will be described later.
  • the fine filter 120 may have a filter unit 121 for filtering dirt of a medium size or more, and a passage hole 122 through which the coarse filter 140 passes.
  • the fine filter 120 may be mounted approximately horizontally on the drain hole 50 of the bottom plate 35 of the washing tank 30.
  • the fine filter 120 may have an inclination such that the washing water is guided to the passage hole 122 by its own weight.
  • the washing water of the washing tank 30 may flow toward the coarse filter 140 along the slope of the fine filter 120. However, some of the washing water and the dirt may flow directly through the filter unit 121 of the fine filter 120 to the reservoir chamber 110 of the sump 100.
  • the micro filter 130 filters the dirt having a relatively small size or more, and has a filter unit 131 having a flat shape, frames 132, 133, and 135 supporting the filter unit 131, and a coarse filter 140. It may have a through hole 139 to pass through.
  • the frames 132, 133, 135 include an upper frame 132, a lower frame 133, and side frames 135.
  • the micro filter 130 includes the sump 100 such that the lower frame 133 is in close contact with the bottom 101 of the sump 100, and the side frames 135 are in close contact with the side wall 103 of the sump 100. Is mounted on.
  • the micro filter 130 may divide the water storage chamber 110 of the sump 100 into a waste collection chamber 111 and a circulation chamber 112.
  • a drain pump 52 is connected to the waste collection chamber 111, and a circulation pump 51 is connected to the circulation chamber 112.
  • the washing water and the dirt included in the washing water passing through the coarse filter 140 flow into the waste collecting chamber 110. do.
  • the washing water introduced into the waste collection chamber 111 may flow through the micro filter 130 to the circulation chamber 112. However, since the dirt contained in the washing water introduced into the waste collection chamber 111 does not pass through the micro filter 130, it does not flow into the circulation chamber 112 and remains in the waste collection chamber 111 as it is.
  • the dirt collected in the dirt collection chamber 110 may be discharged to the outside of the main body 10 together with the wash water when the drain pump 52 is driven.
  • the micro filter 130 is a bottom portion of the sump (100) to prevent dirt from the dirt collection chamber 110 flows to the circulation chamber 112 through the gap between the micro filter 130 and the sump (100). 101) and the side wall 103.
  • the lower sealing groove 134 may be formed in the lower frame 133 of the micro filter 130, and the side sealing protrusion 136 may be formed in the side frame 135.
  • the bottom sealing protrusion 102 is inserted into the bottom sealing groove 134 in the bottom portion 101 of the sump 100, and the side sealing protrusion 136 is formed in the side wall portion 103 of the sump 100.
  • Side sealing groove 104 may be formed.
  • the sealing of the micro filter 130 and the sump 100 may be strengthened.
  • the coarse filter 140 is inserted into the sump 100 vertically downward and then rotated from the release position to the locked position can be mounted on the sump 100.
  • the coarse filter 140 may be disposed to be biased to one sidewall among both sidewalls 33 and 34 of the washing tub 30. That is, the coarse filter 140 may be disposed closer to the left wall 33 than the right wall 34. When the coarse filter 140 is separated through the arrangement of the coarse filter 140, the coarse filter 140 may be easily separated without interfering with the rail 440.
  • FIG. 18 is a control block diagram of the dish washing machine according to one embodiment of the present invention.
  • the dishwasher 1 may include a position detector 700, a flow meter 705, an input unit 710, a controller 720, a memory 730, a driver 740, and a display.
  • the unit 750 and the power consumption detector 760 are further included.
  • the position detector 700 includes a permanent magnet 702 installed in the vane holder 490 and a position sensor 701 for detecting the permanent magnet 702.
  • the flow meter 705 detects the flow rate of the washing water supplied to the washing tank 30 and transmits the flow rate to the controller 720.
  • the permanent magnet 702 may be installed on the lower surface or the upper surface of the vane holder 490. That is, if it is installed in the vane holder 490 and can move with the vane 400, it can be located anywhere.
  • the position sensor 701 is provided corresponding to the position of the permanent magnet 702. However, unlike the permanent magnet 702, the position sensor 701 is installed at a position that does not move together with the vane 400, that is, the bottom plate cover 600.
  • the position sensor 701 may be located anywhere to detect the magnetic field of the permanent magnet 702 during the movement of the vane 400. In other words, the position sensor 701 may be located anywhere in the moving path of the vane 400.
  • the position of the vane 400 in which the position sensor 701 detects the magnetic field of the permanent magnet 702 in the moving path of the vane 400 becomes a reference position.
  • the position detecting unit 700 is composed of the permanent magnet 702 and the position sensor 701.
  • the present invention is not limited thereto.
  • the position detector 700 may include a protrusion and a micro switch, a permanent magnet and a reed switch, an infrared sensor module, a capacitive proximity sensor, It may be configured as an ultrasonic sensor module.
  • the protrusion when the position detecting unit 700 is composed of a protrusion and a micro switch, the protrusion may be installed on the bottom surface of the vane holder 490, and the micro switch may be installed on the bottom surface of the bottom plate cover 600.
  • the protrusion detects the micro switch so that the position detecting unit 700 has the vane 400 at the reference position. Can be detected.
  • the infrared sensor module may be installed on the bottom plate cover 600.
  • the infrared light emitted from the infrared sensor module is Reflected by the vane 400, the infrared sensor module may receive the reflected reflected light.
  • the position detector 700 may detect that the vanes 400 are positioned at the reference position.
  • the position detection unit 700 may be configured as a capacitive proximity sensor for detecting a change in capacitance caused by the vane 400, an ultrasonic sensor module for transmitting ultrasonic waves and detecting reflected waves reflected by the vane 400. have.
  • the permanent magnet 702 and the position sensor 701 are installed to define the reference position for the stable movement of the vane 400. Specifically, the dishwasher 1 detects the position of the vane 400 and moves the vane 400 based on the detected position of the vane 400.
  • the dishwasher 1 does not detect the position of the vane 400 and thus transmits a command to the motor 530 to move the vane 400. Can't.
  • the vane 400 may not be moved to the correct position.
  • the dishwasher 1 may detect the position of the vane 400, and the vane 400 may determine a predetermined movement path.
  • the vane 400 may be positioned at a predetermined position.
  • the reference position may be a reference point of the movement of the vane 400.
  • the dishwasher 1 may calculate the position of the vane 400 by moving the vane 400 based on the reference position. For example, when the vane 400 is to be positioned at a specific position, the dishwasher 1 may move the vane 400 to a desired position by moving the vane 400 based on the reference position.
  • the dishwasher 1 positions the vanes 400 at the reference position. That is, the reference position may be a position where the vanes 400 start the movement and a position where the vanes 400 end the movement.
  • the vane 400 is provided with the position detecting unit 700 installed to detect the reference position as an example, but the present invention is not limited thereto.
  • 400 is moved to the rear of the rail assembly 430, and while the motor 530 is driven, the drive current supplied to the drive motor 530 is detected, and the vane is detected if the magnitude of the detected drive current is greater than or equal to a predetermined reference current. It may be determined that the 400 is located at the rearmost (reference position) of the rail assembly 430.
  • the input unit 710 inputs a command for performing a water supply stroke, a washing stroke, a drainage stroke and a drying stroke of the dishwasher 1 by a user's operation.
  • the input unit 710 inputs driving information such as a washing course selected by a user, washing water temperature, rinsing addition, etc. to the controller 720, and may include various buttons arranged on the control panel.
  • the cleaning course consists of a water stroke for supplying the washing water, a washing stroke for spraying the washing water afterwards to the dishes, a heating stroke for heating the washing water to an appropriate temperature for washing and rinsing before spraying the washing water onto the dishes, and draining the washing water to the outside after washing. It includes a standard course for sequentially operating the processes of each stroke leading to a drainage stroke, a drying stroke for drying the washed dishes after washing, and a manual course for the user to arbitrarily select each stroke according to the situation.
  • the input unit 710 may include a jog dial and the like to select a washing state in addition to the above buttons, and may include a change button for adjusting an operation rate and a washing time of the selected washing course.
  • the input unit 710 may include a key, a switch, a touch pad, and the like, and includes all devices that generate predetermined input data by manipulation such as pressing, contacting, pressure, and rotation.
  • the controller 720 is a microcomputer that controls the overall operation of the dishwasher 1 such as a water supply stroke, a washing stroke, a drainage stroke, and a drying stroke according to the operation information input from the input unit 710, and is detected by the position detector 700.
  • the movement of the vanes 400 is controlled according to the initial position of the vanes 400.
  • controller 720 controls to drive the motor 530 to move the vane 400 to the initial position before the drain stroke.
  • control unit 720 is a circulating pump to remove the dirt remaining in the bottom of the washing tank 30, in particular, the fine filter 120 by strongly spraying the washing water in the state in which the vane 400 is moved to the initial position before the drain stroke.
  • the controller 720 counts the driving time of the circulation pump 51 for removing the dirt remaining in the fine filter 120 in the built-in timer 721 to remove the reference time (dirt remaining in the bottom of the washing tank). In order to control the circulating pump 51 to drive for a time for spraying the washing water;
  • control unit 720 is a motor (if the reference position to minimize the distance between the vane 400 and the nozzle assembly 300 when the vane 400 moves to approach the bottom plate cover 600, the motor ( 530 is stopped, and the circulating pump 51 is driven at a constant speed (about 2600 RPM) for a reference time (about 3 seconds or less) so that the washing water reflected by the vane 400 is the rear wall 32 of the washing tank 30. ) Can be hit (see FIG. 13).
  • the washing water striking the rear wall 32 of the washing tank 30 forms a fast and strong water flow along the bottom plate 35 of the washing tank 30, and the fast and strongly formed water is a fine filter mounted on the bottom of the washing tank 30 ( By flowing to 120 it is possible to remove the dirt remaining in the fine filter (120).
  • the controller 720 detects a blockage of the filters 120, 130, and 140 by using a change amount of power consumption while the circulation pump 51 is driven, and washes when the blockage of the filters 120, 130, and 140 is detected. Regardless of the stroke, the filter unblocking algorithm proceeds to unblock the filters 120, 130, and 140.
  • the filter clogging release algorithm uses a small amount of water (approximately 700 to 900 cc) to filter 120, 130, Remove any dirt that is blocking 140.
  • the circulating pump 51 After supplying a small amount (about 700 to 900 cc) of water, the circulating pump 51 is driven at a third rotational speed (about 1200 to 1400 RPM) so that the washing water flows strongly along the bottom plate 35 of the washing tank 30. And, the clogging of the filter (120, 130, 140) by the water flowing along the bottom plate (35). This will be described in detail with reference to FIGS. 21A to 27B.
  • 700 ⁇ 900cc is a small amount of washing water to fill the inside of the sump (100), water less than 1/4 of the amount of water to be supplied in the normal stroke.
  • the reason for this is that when the filter 120, 130, 140 is clogged and the washing water is supplied above the capacity of the sump 100, the washing water sprayed from the nozzles 330, 340 directly strikes the filter 120, 130, 140. It is difficult to remove the dirt blocking the filters 120, 130, and 140 because it hits the water surface, so that the amount of water supplied to release the clogs of the filters 120, 130, and 140 is applied to the sump 100. Adjust the amount to fill.
  • the third rotational speed (about 1200 to 1400 RPM) is a speed for directing the washing water sprayed from the nozzles 330 and 340 toward the filters 120, 130 and 140 located in the center of the bottom surface of the washing tank 30.
  • the washing water sprayed from the nozzles 330 and 340 during the normal stroke is less than half the rotation speed (about 2600 RPM or more) that can go to the end of the door 11.
  • the circulation pump 51 is driven at a first rotational speed (about 2600 RPM) or more in a situation where the filters 120, 130, and 140 are blocked, the washing water sprayed from the nozzles 330 and 340 may cause the filters 120 and 140 to operate. This is because it is difficult to remove the dirt blocking the filter (120, 130, 140) by hitting the door 11, rather than hitting directly.
  • the memory 730 includes control data for controlling the operation of the dishwasher 1, reference data used during the operation control of the dishwasher 1, and operation data generated while the dishwasher 1 performs a predetermined operation. , Setting information such as setting data input by the input unit 710 so that the dishwasher 1 performs a predetermined operation, the number of times the dishwasher 1 performs a specific operation, and model information of the dishwasher 1. The usage information included and the failure information including the cause of the malfunction or the malfunction location when the dishwasher 1 malfunctions may be stored.
  • the memory 730 is generated in the process of controlling the operation of the dishwasher 1 as well as a nonvolatile memory (not shown) such as a magnetic disk or a solid state disk that permanently stores data. It may include a volatile memory (not shown), such as D-RAM, S-RAM for temporarily storing the temporary data.
  • a nonvolatile memory such as a magnetic disk or a solid state disk that permanently stores data. It may include a volatile memory (not shown), such as D-RAM, S-RAM for temporarily storing the temporary data.
  • the driving unit 740 is a water supply valve 49, a circulation pump 51, a drain pump 52, a distribution device 200, and a motor related to the operation of the dishwasher 1 according to a driving control signal of the controller 720. 530) and the like.
  • the water supply valve 49 controls the water supply of water (wash water) supplied into the washing tank 30 through a water supply pipe (not shown) in the water supply stroke.
  • the display unit 750 displays the operation state of the dishwasher 1 according to the display control signal of the controller 720, and recognizes the touch information input through the user interface to display the operation state of the user.
  • the display unit 750 may be configured to display the operation state of the dishwasher 1 in text so that the user can take appropriate measures.
  • the display unit 750 may be configured to allow the user to recognize the abnormal state of the dishwasher 1 by using a difference in lighting or blinking and duration.
  • the power consumption detector 760 detects a change amount of the power consumption of the circulation pump 51 changing while the circulation pump 51 is driven, and transmits the detected power consumption change amount to the controller 720 to determine the fine filter 120. Detect blockages.
  • the fine filter 120 When a larger amount of dirt is separated from the dishes than can be filtered by the fine filter 120, the fine filter 120 is temporarily clogged. In particular, when dirt, such as large spaghetti, spinach, grains, etc., gathers toward the fine filter 120 at once, the fine filter 120 may temporarily blockage. The blockage of the fine filter 120 occurs mainly in the preliminary washing or the washing stroke of the main washing, and is likely to occur in the preliminary washing.
  • the power consumption detector 760 may detect the clogging of the fine filter 120 by detecting an amount of change in power consumption of the circulation pump 51.
  • FIG. 19 is a flowchart illustrating a first control algorithm for cleaning a filter of a dish washing machine according to an embodiment of the present invention.
  • the controller 720 starts a series of steps in order to prewash, main wash, pre-rinse, last rinse, etc. of the dishwasher 1 according to the course information input from the input unit 710. At this time, the controller 720 displays the entire washing time for each stroke through the display 750 so that the user can easily check the washing progress time.
  • the controller 720 determines whether the current stroke is a drainage stroke according to a series of strokes (800).
  • the controller 720 determines whether the vane 400 is positioned at the reference position (802). Determining whether the vane 400 is located at the reference position determines whether the vane 400 is located at the rearmost position of the rail assembly 430, that is, at the second position located close to the fixed nozzles 330 and 340. It is. This is because when the vane 400 moves and approaches the fixed nozzles 330 and 340, the permanent magnet 702 installed on the lower surface of the vane holder 490 moves with the vane 400, and the bottom plate cover 600 is moved. ), The position sensor 701 installed on the lower surface of the sensor detects the magnetic field generated by the permanent magnet 702 to detect that the vane 400 is located at a reference position (a second position located close to the fixed nozzle). do.
  • the reason for moving the vanes 400 to the reference position (second position) is to minimize the gap between the vanes 400 and the fixed nozzles 330 and 340 by the vanes 400 approaching the fixed nozzles 330 and 340. to be.
  • the controller 720 drives the motor 530 through the driving unit 740 to move the vane 400 to the reference position (804).
  • the controller 720 stops the driving of the motor 530 to stop the movement of the vane 400 (806).
  • step 802 determines whether the vane 400 is positioned at the reference position. If it is determined in step 802 that the vane 400 is positioned at the reference position, the controller 720 proceeds to step 806 to stop the movement of the vane 400.
  • the rotatable engaging portion 409 of the vane 400 interferes with the guide surface 611 of the rotation guide 610 of the bottom plate cover 600 and the vane 400 The silver is rotated about the coupling protrusion 493 of the vane holder (490).
  • the vane 400 is flipped backward so that the spraying direction of the washing water sprayed from the fixed nozzles 330 and 340 is directed toward the rear wall 32 of the washing tank 30. 400 is rotated in the direction of the fixed nozzle (330, 340) (807).
  • the controller 720 drives the circulation pump 51 at a first rotational speed (about 2600 RPM) so that the washing water is strongly sprayed toward the rear wall 32 of the washing tank 30 (808).
  • the washing water strongly sprayed toward the rear wall 32 of the washing tank 30 forms a fast and strong water stream along the bottom plate 35 of the washing tank 30, and the fast and strongly formed water stream flows through the bottom of the washing tank 30.
  • the dirt remaining in the fine filter 120 flows toward the coarse filter 140.
  • the dirt flowing toward the coarse filter 140 is collected into the dirt collecting chamber 111 in the sump 100 to remove dirt remaining in the bottom of the washing tank 30, in particular, the fine filter 120.
  • the controller 720 counts the driving time of the circulation pump 51 to determine whether the reference time (time for spraying the washing water to remove the dirt remaining on the bottom of the washing tank; about 3 seconds or less) has elapsed. (810)
  • step 810 if the reference time has not elapsed, the controller 720 feeds back to step 808 to drive the circulation pump 51 at a first rotational speed (about 2600 RPM) until the reference time elapses.
  • step 810 when the reference time elapses, the controller 720 stops the driving of the circulation pump 51 through the driving unit 740 to stop the injection of the washing water (812).
  • the controller 720 drives the drain pump 52 through the driving unit 740 to discharge the waste collected in the waste collection chamber 111 together with the washing water to the outside of the main body 10 (814). Proceed with the drying stroke to dry (816).
  • 20 is a flowchart illustrating a second control algorithm for cleaning a filter of a dish washing machine according to an embodiment of the present invention.
  • the controller 720 starts a series of steps in order to prewash, main wash, pre-rinse, last rinse, etc. of the dishwasher 1 according to the course information input from the input unit 710. At this time, the controller 720 displays the entire washing time for each stroke through the display 750 so that the user can easily check the washing progress time.
  • the controller 720 determines whether the current stroke is a drain stroke according to a series of strokes (900).
  • the control unit 720 drives the circulation pump 51 at a second rotation speed (about 1200 RPM) so that the washing water is weakly sprayed toward the bottom plate 35 of the washing tank 30 when the drain stroke is performed. 902).
  • the second rotational speed drives the circulation pump 51 at about 1/2 of the first rotational speed.
  • driving the circulation pump 51 at a second rotational speed (about 1200 RPM) that is slower than the first rotational speed (about 2600 RPM) does not allow the washing water sprayed from the nozzles 330 and 340 to the door 11.
  • the filter 120, 130, 140 is sprayed to the center of the bottom plate 35 of the washing tank 30 in which the filters 120, 130, and 140 are disposed so that the dirt remaining in the fine filter 120 flows along the bottom plate 35. To the side. The dirt flowing toward the coarse filter 140 is collected into the dirt collecting chamber 111 in the sump 100 to remove dirt remaining in the bottom of the washing tank 30, in particular, the fine filter 120.
  • the controller 720 counts the driving time of the circulation pump 51 to determine whether the reference time (time for spraying the washing water to remove the dirt remaining on the bottom of the washing tank; about 3 seconds or less) has elapsed. (904).
  • step 904 If it is determined in step 904 that the reference time has not elapsed, the controller 720 feeds back to step 902 to drive the circulation pump 51 at a second rotational speed (about 1200 RPM) until the reference time elapses.
  • step 904 when the reference time elapses, the controller 720 stops driving the circulation pump 51 through the driving unit 740 to stop the injection of the washing water (906).
  • the controller 720 drives the drain pump 52 through the driving unit 740 to discharge the waste collected in the waste collection chamber 111 together with the washing water to the outside of the main body 10 (908). Proceed with the drying stroke to dry (910).
  • the fine filter 120 is caused by the rotation of the vane 400 during the drainage stroke or by allowing the fast and strong water flow to the bottom plate 35 of the washing tank 30 regardless of the position of the vane 400.
  • the method of removing the remaining dirt in the) has been described, but in the following, an excessive amount of dirt is accumulated on the fine filter 120 at the top of the sump 100 during the preliminary washing, the main washing, and the like, thereby preventing the fine filter 120. If there is a way to remove the dirt blocking the fine filter 120 will be described.
  • the filter 120, 130, 140 may temporarily block the filter.
  • the amount of water stored in the sump 100 is reduced by not allowing the washing water to pass smoothly through the filters 120, 130, and 140, and the circulation amount of the washing water circulated for washing the dish is reduced, thereby preventing normal washing. You will not.
  • clogging of the filters 120, 130, 140 may occur in the washing and rinsing strokes, and the likelihood of occurrence in the preliminary washing stroke or the main washing stroke in which dirt is separated from the dishes is relatively high.
  • a process of detecting clogging of the filters 120, 130, and 140 in the preliminary washing or the washing stroke of the main washing will be described.
  • FIGS. 21A and 21B are flowcharts illustrating a first control algorithm for releasing filter clogging of a dishwasher according to another embodiment of the present invention
  • FIGS. 22A to 22K are filters of a dishwasher according to another embodiment of the present invention.
  • the controller 720 is input to the controller 720 through the input unit 710.
  • the controller 720 starts a series of steps in order to prewash, main wash, pre-rinse, last rinse, etc. of the dishwasher 1 according to the course information input from the input unit 710. At this time, the controller 720 displays the entire washing time for each stroke through the display 750 so that the user can easily check the washing progress time.
  • the controller 720 determines whether the current stroke is a preliminary washing or a washing stroke of the main washing according to the series of strokes (1000).
  • step 1000 if the washing stroke, the controller 720 drives the water supply valve 49 through the driving unit 740 to supply the water (washing water) necessary for the washing stroke.
  • the water supply valve 49 When the water supply valve 49 is driven, the water supply valve 49 opens and the washing water supplied through the external water supply pipe is supplied into the washing tank 30, and the washing water supplied into the washing tank 30 is lowered in the washing tank 30.
  • the sump 100 is collected into the prepared sump 100 (1002).
  • the flow rate of the washing water supplied to the washing tank 30 is detected by the flowmeter 705 to determine whether it is a predetermined first water supply amount (the amount of washing water required for the washing stroke, about 3400 to 4000 cc) (1004). ).
  • step 1004 if the flow rate of the washing water is not the first water supply amount, the controller 720 continues to supply the washing water until the flow rate of the washing water supplied to the washing tank 30 reaches the first water supply amount.
  • step 1004 when the flow rate of the washing water is the first water supply amount, the controller 720 stops driving the water supply valve 49 to stop the washing water supply.
  • the controller 720 drives the circulation pump 51 at a predetermined rotation speed (rotation speed for obtaining a pumping force required for a washing stroke, about 3000 to 3400 RPM) to the sump 100.
  • a predetermined rotation speed rotation speed for obtaining a pumping force required for a washing stroke, about 3000 to 3400 RPM
  • Pump down the washed water The wash water pumped by the circulation pump 51 is distributed to the rotating nozzles 311 and 313, the left fixed nozzle 330, and the right fixed nozzle 340 through the distribution device 200.
  • the washing water is sprayed at high pressure by the pumping force of the circulation pump 51, and the dishwasher 1 is separated from the dishes by the washing water sprayed with a large amount of dirt on the dishes.
  • the process of gathering toward the filter 120, 130, 140 at the bottom of the loop is repeated (1006).
  • the power consumption detector 760 detects a change amount in which the power consumption of the circulation pump 51 changes during the operation of the circulation pump 51 and transmits it to the controller 720.
  • the controller 720 detects the blockage of the filters 120, 130, and 140 by using the amount of change in power consumption during the operation of the circulation pump 51 (1008).
  • step 1008 if blockage of the filters 120, 130, 140 is not detected, the controller 720 continues the subsequent stroke (1009).
  • step 1008 the controller 720 stops the driving of the circulation pump 51 through the drive unit 740 to stop the washing stroke (1010). .
  • the controller 720 proceeds with the filter clogging algorithm to release the clogging of the filters 120, 130, and 140.
  • control unit 720 first drives the drain pump 52 through the driving unit 740 to perform a first drain operation for completely draining the dirt and washing water remaining in the sump 100. (1012).
  • the clogging of the micro filter 130 may be firstly released through a drainage operation in which the waste collected in the waste collection chamber 111 and the washing water are discharged together with the outside of the main body 10. 22a and 22b).
  • the controller 720 may stop the driving of the drain pump 52 through the driving unit 740, and may drive the water supply valve 49 to release the clogging of the filters 120, 130, and 140.
  • the wash water is supplied into the washing tank 30 (1014, see FIG. 22C).
  • the flow rate is detected by the flow meter 705 to determine whether it is a predetermined second water supply amount (a small amount of washing water that can fill the inside of the sump, about 700 to 900 cc) (1016).
  • step 1016 if the flow rate of the washing water is not the second water supply amount, the controller 720 continues to supply the washing water until the flow rate of the water supplied to the washing tank 30 reaches the second water supply amount.
  • step 1016 if the flow rate of the washing water is the second water supply amount, the controller 720 stops the water supply valve 49 to stop the washing water supply.
  • the controller 720 drives the motor 530 through the driving unit 740 to move the vane 400 to the front for a predetermined time (about 7 seconds) from the second position which is a reference position. After moving, it stops (refer 1018, FIG. 22D).
  • the first position in which the vane 400 is completely moved from the second position for a predetermined time is the gap between the vane 400 and the nozzles 330 and 340 when the vane 400 approaches the door 11. Location is maximized.
  • the reason for moving the vane 400 in front is that, when spraying the washing water from the nozzles 330 and 340, the washing water hits the vane 400 and may be sprayed toward the filters 120, 130 and 140 without changing the spraying direction. To make it work. That is, to space the vanes 400 from the nozzles 330 and 340 to effectively remove the dirt accumulated in the filters 120, 130, and 140.
  • the controller 720 drives the circulation pump 51 at a third rotational speed (about 1200 to 1400 RPM) to wash water sprayed from the nozzles 330 and 340 to sump 100. It is injected into the upper filter 120, 130, 140 (see 1020, Fig. 22e and 22f). At this time, the washing water sprayed from the nozzles 330 and 340 washes the dirt in the filters 120, 130 and 140 while moving back and forth through the filters 120, 130 and 140.
  • a third rotational speed about 1200 to 1400 RPM
  • the amount of washing water gathered in the sump 100 increases, causing a change in the spray strength of the washing water, thereby collecting dirt collected in the filters 120, 130, and 140. It can be removed effectively.
  • the six injection holes 331, which are provided in the nozzles 330 and 340. 341 may be configured to spray the washing water at the same time or to spray the washing water separately from some spray holes 331 and 341.
  • the washing water may be sprayed from the spray holes 331 and 341 located close to the filters 120, 130 and 140 from the six spray holes 331 and 341.
  • dirt scattered at the edges is collected toward the filters 120, 130, and 140 by the washing water sprayed from the left and right sides of the six injection holes 331 and 341.
  • washing water from the nozzles 330 and 340 in order to spray the washing water on the upper ends of the filters 120, 130, and 140 is described, but the present invention is not limited thereto. Washing water at the top of the filter (120, 130, 140) by spraying the washing water using a plurality of nozzles on one side of the washing tank 30, or by forming a separate nozzle for spraying the washing water from two or more sides or meeting points thereof
  • a method for efficiently spraying can achieve the same object and effect as the present invention, of course.
  • control unit 720 counts the driving time of the circulation pump 51 to pass the first time (time for moving the waste accumulated on the top of the filter to the waste collection chamber through the washing water injection; about 30 seconds) It is determined whether (1022).
  • step 1022 if the first time has not elapsed, the controller 720 feeds back to step 1020 to drive the circulation pump 51 at a third rotational speed (about 1200 to 1400 RPM) until the first time elapses. Let's do it.
  • step 1022 when the first time elapses, the controller 720 stops driving the circulation pump 51 through the driving unit 740 to stop the injection of the washing water (1024). Through the spraying operation of the washing water, some dirt accumulated at the top of the filter 120, 130, 140 may move to the waste collection chamber 111 to release the clogging of the filter 120, 130, 140 to some extent. The primary filter cleaning operation is in progress.
  • the controller 720 drives the drain pump 52 through the driving unit 740 to perform the secondary drainage operation of draining the dirt and washing water remaining in the sump 100 for a predetermined time (about 30 seconds). (1026).
  • the secondary drainage operation may be obtained by releasing the blockage of the micro filter 130 through the drainage operation of discharging the waste and the washing water collected in the waste collection chamber 111 to the outside of the main body 10 in a secondary manner ( See FIG. 22G).
  • the controller 720 may stop the driving of the drain pump 52 through the driving unit 740 and may drive the water supply valve 49 to release the clogging of the filters 120, 130, and 140.
  • the wash water is supplied into the washing tank 30 (see 1028, FIG. 22H).
  • the flow rate of the washing water supplied to the washing tank 30 is detected by the flowmeter 705 to determine whether the water is the second water supply amount (1030).
  • step 1030 if the flow rate of the washing water is not the second water supply amount, the controller 720 continues to supply the washing water until the flow rate of the water supplied to the washing tank 30 reaches the second water supply amount.
  • step 1030 if the flow rate of the washing water is the second water supply amount, the controller 720 stops the water supply valve 49 to stop the washing water supply.
  • the control unit 720 drives the circulation pump 51 at a third rotational speed (about 1200 to 1400 RPM) to wash water sprayed from the nozzles 330 and 340 to sump 100. ) To be injected toward the filters 120, 130 and 140 at the top (see 1032, FIGS. 22I and 22J).
  • the controller 720 counts the driving time of the circulation pump 51 for a second time (the time for the washing water sprayed from the nozzle is directly sprayed on the top of the filter to release the clogging of the filter; about 90 seconds) It is determined whether this has elapsed (1034).
  • step 1034 if the second time does not pass, the controller 720 feeds back to step 1032 to drive the circulation pump 51 at a third rotational speed (about 1200 to 1400 RPM) until the second time elapses. Let's do it.
  • step 1034 when the second time elapses, the controller 720 stops driving the circulation pump 51 through the driving unit 740 to stop the injection of the washing water (1036).
  • the controller 720 stops driving the circulation pump 51 through the driving unit 740 to stop the injection of the washing water (1036).
  • the washing water Through the direct injection of the washing water, a large amount of dirt accumulated on the top of the fine filter 120 moves to the coarse filter 140 to perform a second filter cleaning operation to release the top of the fine filter 120. do.
  • the controller 720 drives the drain pump 52 through the driving unit 740 to perform a third drainage operation of completely draining the dirt and washing water remaining in the sump 100 (1038).
  • the third drainage operation may obtain an effect of releasing the clogging of the micro filter 130 in a third manner through a drainage operation of discharging the waste collected in the waste collection chamber 111 together with the washing water to the outside of the main body 10 ( See FIG. 22K).
  • the filter clogging release algorithm is completed and the controller 720 drives the motor 530 through the driving unit 740 to move the vane 400 to the reference position (1040), and stops at step 1010.
  • a wash stroke is run again from the beginning (1042).
  • the filter clogging algorithm of step 1038 in step 1012 enables the subsequent normal washing operation to be performed without clogging the filters 120, 130, and 140.
  • the overall run time of this filter unblocking algorithm is about 3 minutes to 3 minutes 30 seconds.
  • the filter clogging release algorithm shown in FIGS. 21A and 21B is described as an example. Without being limited, it is also possible to proceed with an algorithm (see FIG. 19) that strikes the rear wall of the washing tank 30 by the rotation of the vane 400 to release the clogging of the filters 120, 130, and 140.
  • FIG. 21A and FIG. 21B if the filter clogging is detected during the preliminary washing or the washing stroke of the main washing, the washing stroke is stopped and the filter blocking algorithm is in progress, and the washing stopped when the filter blocking algorithm is completed.
  • the present invention is not limited thereto, and if the filter clogging is detected during the preliminary washing or the washing stroke of the main washing, the ongoing washing stroke is stopped and the filter clogging algorithm is advanced. On the other hand, if the filter clogging algorithm is completed, the same purpose and effect as the present invention can be achieved by skipping the stopped washing stroke and proceeding to the next stroke.
  • the controller 720 counts the time for which the washing stroke is in progress, and stores the time when clogging of the filters 120, 130, and 140 is detected, that is, when the washing stroke is stopped. After the filter unblocking algorithm, the remaining washing stroke is continued from the point where the washing stroke is stopped.
  • 22A to 22K are views illustrating a process of releasing filter clogging of the dish washing machine according to another embodiment of the present invention.
  • the washing water sprayed from the nozzles 330 and 340 using a small amount of washing water (about 700 to 900 cc) and a low rotational speed (about 1200 to 1400 RPM) of the circulation pump 51 is used. It can be seen that the excessive amount of dirt accumulated in the filter (120, 130, 140) is removed by intensively sprayed toward the filter (120, 130, 140) of the top of the sump (100).
  • FIG. 21A the same amount of wash water supplied for the first filter cleaning operation and the second filter cleaning operation is used as an example.
  • the present invention is not limited thereto, and the first filter cleaning operation and the second filter cleaning are not limited thereto. It is a matter of course that the same object and effect as the present invention can be achieved by varying the amount of washing water supplied for the operation. This will be described with reference to FIGS. 23A and 23B.
  • FIGS. 21A and 21B are flowcharts illustrating a second control algorithm for releasing filter clogging of a dish washing machine according to another embodiment of the present invention, and overlapping descriptions of the same parts as FIGS. 21A and 21B will be omitted as much as possible. do.
  • the controller 720 selects the selected course. According to the course information, a series of strokes leading to prewashing, main washing, preliminary rinsing, and final rinsing of the dishwasher 1 are started in order.
  • the controller 720 determines whether the current stroke is a preliminary washing or a washing stroke of the main washing according to the series of strokes (4000).
  • step 4000 if the washing stroke, the controller 720 supplies the washing water necessary for the washing stroke through the water supply valve 49 into the washing tank 30, and the washing water supplied into the washing tank 30 is the washing tank 30. It is collected 4002 into the sump 100 provided in the lower part.
  • the flow rate of the washing water supplied to the washing tank 30 is detected by the flow meter 705 to determine whether the water is the first water supply amount (4004).
  • step 4004 if the flow rate of the washing water is not the first water supply amount, the controller 720 continues to supply the washing water until the flow rate of the washing water supplied to the washing tank 30 reaches the first water supply amount.
  • the controller 720 drives the circulation pump 51 at a predetermined rotation speed (about 3000 to 3400 RPM) to pump the washing water stored in the sump 100.
  • a predetermined rotation speed about 3000 to 3400 RPM
  • the washing water is injected at high pressure from the nozzles (311, 313, 330, 340), and a large number of dirts on the tableware are separated from the dishes by the washing water sprayed to the sump 100
  • a washing stroke gathering toward the filter 120, 130, 140 located at the top proceeds (4006).
  • the filters 120, 130, 140 When the filters 120, 130, 140 are blocked, the amount of washing water stored in the sump 100 is reduced because the washing water does not pass smoothly through the filters 120, 130, 140.
  • the amount of circulation of the washing water circulated for dish washing is reduced, so that power consumption of the circulation pump 51 is reduced.
  • the change in power consumption of the circulation pump 51 is detected by the power consumption detector 760 and transmitted to the controller 720.
  • the controller 720 detects the blockage of the filters 120, 130, and 140 by using the amount of change in power consumption during the operation of the circulation pump 51 (4008).
  • step 4008 if blockage of the filters 120, 130, 140 is not detected, the controller 720 continues the subsequent stroke (4009).
  • step 4008 the control unit 720 stops the driving of the circulation pump 51 through the drive unit 740 to stop the washing stroke (4010) .
  • the controller 720 proceeds with the filter clogging algorithm to release the clogging of the filters 120, 130, and 140.
  • control unit 720 drives the drain pump 52 through the driving unit 740 to perform a first drain operation for completely draining the dirt and washing water remaining in the sump 100 ( 4012).
  • the clogging of the micro filter 130 may be firstly released through a drainage operation in which the waste collected in the waste collection chamber 111 and the washing water are discharged together with the outside of the main body 10. 22a and 22b).
  • the controller 720 may stop the driving of the drain pump 52 through the driving unit 740, and may drive the water supply valve 49 to release the clogging of the filters 120, 130, and 140.
  • the washing water is supplied into the washing tank 30 (4014, see FIG. 22C).
  • the flow rate of the washing water supplied to the washing tank 30 is detected by the flow meter 705 so that a predetermined second water supply amount (a small amount of washing that can fill the inside of the sump) Quantity, about 700 ⁇ 900cc) (4016).
  • step 4016 if the flow rate of the washing water is not the second water supply amount, the controller 720 continues to supply the washing water until the flow rate of the water supplied to the washing tank 30 reaches the second water supply amount.
  • the controller 720 drives the motor 530 through the driving unit 740 to move the vane 400 from the reference position for a predetermined time (about 7 seconds) and then stops. (4018, see FIG. 22D).
  • the controller 720 drives the circulation pump 51 at a third rotational speed (about 1200 to 1400 RPM) so that the washing water sprayed from the fixed nozzles 330 and 340 is sump 100. ) To be sprayed toward the upper filter 120, 130, 140 (see 4020, FIG. 22E and FIG. 22F).
  • control unit 720 counts the driving time of the circulation pump 51 to pass the first time (time for moving the waste accumulated on the top of the filter to the waste collection chamber through the washing water injection; about 30 seconds) It is determined whether or not (4022).
  • step 4022 if the first time does not pass, the controller 720 feeds back to step 4020 to drive the circulation pump 51 at a third rotational speed (about 1200 to 1400 RPM) until the first time elapses. Let's do it.
  • step 4022 when the first time elapses, the controller 720 stops driving of the circulation pump 51 through the driving unit 740 to stop the injection of the washing water (4024). Through the spraying operation of the washing water, some dirt accumulated at the top of the filter 120, 130, 140 may move to the waste collection chamber 111 to release the clogging of the filter 120, 130, 140 to some extent. The primary filter cleaning operation is in progress.
  • the controller 720 drives the drain pump 52 through the driving unit 740 to perform the secondary drainage operation of draining the dirt and washing water remaining in the sump 100 for a predetermined time (about 30 seconds). (4026).
  • the secondary drainage operation may be obtained by releasing the blockage of the micro filter 130 through the drainage operation of discharging the waste and the washing water collected in the waste collection chamber 111 to the outside of the main body 10 in a secondary manner ( See FIG. 22G).
  • the controller 720 may stop the driving of the drain pump 52 through the driving unit 740 and may drive the water supply valve 49 to release the clogging of the filters 120, 130, and 140.
  • the wash water is supplied into the washing tank 30 (4028, see FIG. 22H).
  • the flow rate of the washing water supplied to the washing tank 30 is detected by the flow meter 705 to determine the third water supply amount (a small amount of washing water to fill the inside of the sump, About 700 cc) (4030).
  • the third water supply uses less washing water than the second water supply. However, depending on the structure or design specifications of the dishwasher 1, the amount of the third water supply may be larger than the amount of the second water supply.
  • step 4030 if the flow rate of the washing water is not the third water supply amount, the controller 720 continues to supply the washing water until the flow rate of the water supplied to the washing tank 30 reaches the third water supply amount.
  • step 4030 if the flow rate of the washing water is the third water supply amount, the controller 720 stops the water supply valve 49 to stop the washing water supply.
  • the controller 720 drives the circulation pump 51 at a third rotational speed (about 1200 to 1400 RPM) to wash water sprayed from the nozzles 330 and 340 to sump 100. ) To be injected toward the filters 120, 130, and 140 (see 4032, FIGS. 22I and 22J).
  • the controller 720 counts the driving time of the circulation pump 51 for a second time (the time for the washing water sprayed from the nozzle is directly sprayed on the top of the filter to release the clogging of the filter; about 90 seconds) It is determined whether this has elapsed (4034).
  • step 4034 if the second time has not elapsed, the controller 720 feeds back to step 4032 to drive the circulation pump 51 at a third rotational speed (about 1200 to 1400 RPM) until the second time elapses. Let's do it.
  • step 4034 when the second time elapses, the controller 720 stops driving the circulation pump 51 through the driving unit 740 to stop the injection of the washing water (4036).
  • the controller 720 stops driving the circulation pump 51 through the driving unit 740 to stop the injection of the washing water (4036).
  • the washing water Through the direct spraying operation of the washing water, a large amount of dirt accumulated at the top of the fine filter 120 is moved to the coarse filter 140 to clean the secondary filter which can release the top of the filter 120, 130, 140. The operation proceeds.
  • the controller 720 drives the drain pump 52 through the driving unit 740 to perform the third drain operation for completely draining the dirt and washing water remaining in the sump 100 (4038).
  • the third drainage operation may obtain an effect of releasing the clogging of the micro filter 130 in a third manner through a drainage operation of discharging the waste collected in the waste collection chamber 111 together with the washing water to the outside of the main body 10 ( See FIG. 22K).
  • the filter clogging algorithm is completed and the controller 720 drives the motor 530 through the driving unit 740 to move the vanes 400 to the reference position (4040), and stops at step 4010.
  • a wash stroke is run again from the beginning (4042).
  • the filter clogging algorithm of step 4038 through 4040 enables the subsequent normal washing operation without filter clogging.
  • FIGS. 23A and 23B the driving of the circulation pump at the same rotational speed while changing the amount of the water supplied for the first filter washing operation and the second filter washing operation has been described as an example, but the present invention is not limited thereto. Without changing the amount of the water to be supplied for the first filter washing operation and the second filter washing operation without changing the rotational speed of the circulation pump can of course achieve the same object and effect as the present invention. This will be described with reference to FIGS. 24A and 24B.
  • 24A and 24B are flowcharts illustrating a third control algorithm for releasing filter clogging of the dishwasher according to another embodiment of the present invention, and overlapping descriptions of the same parts as in FIGS. 21A and 21B will be omitted as much as possible. do.
  • the controller 720 selects the selected course. According to the course information, a series of strokes leading to prewashing, main washing, preliminary rinsing, and final rinsing of the dishwasher 1 are started in order.
  • the controller 720 determines whether the current stroke is a preliminary washing or a washing stroke of the main washing according to the series of strokes (7000).
  • step 7000 if the washing stroke, the controller 720 supplies the washing water necessary for the washing stroke through the water supply valve 49 into the washing tank 30, and the washing water supplied into the washing tank 30 is the washing tank 30. It is collected 7002 into the sump 100 provided in the lower part.
  • the flow rate of the washing water supplied to the washing tank 30 is detected by the flow meter 705 to determine whether the water is the first water supply amount (7004).
  • step 7004 if the flow rate of the washing water is not the first water supply amount, the controller 720 continues to supply the washing water until the flow rate of the washing water supplied to the washing tank 30 reaches the first water supply amount.
  • the controller 720 drives the circulation pump 51 at a predetermined rotation speed (about 3000 to 3400 RPM) to pump the washing water stored in the sump 100.
  • a predetermined rotation speed about 3000 to 3400 RPM
  • the washing water is injected at high pressure from the nozzles (311, 313, 330, 340), and a large number of dirts on the tableware are separated from the dishes by the washing water sprayed to the sump 100 A washing stroke is gathered toward the top filters 120, 130, 140 (7006).
  • the filters 120, 130, 140 When the filters 120, 130, 140 are blocked, the amount of washing water stored in the sump 100 is reduced because the washing water does not pass smoothly through the filters 120, 130, 140.
  • the amount of circulation of the washing water circulated for dish washing is reduced, so that power consumption of the circulation pump 51 is reduced.
  • the change in power consumption of the circulation pump 51 is detected by the power consumption detector 760 and transmitted to the controller 720.
  • the controller 720 detects the blockage of the filters 120, 130, and 140 by using the amount of change in power consumption during the operation of the circulation pump 51 (7008).
  • step 7008 if the blockage of the filters 120, 130, 140 is not detected, the controller 720 continues the subsequent stroke (7009).
  • step 7008 if it is determined in step 7008 that the blockage of the filter (120, 130, 140) is detected, the controller 720 stops the driving of the circulation pump 51 through the drive unit 740 to stop the washing stroke (7010) .
  • the controller 720 proceeds with the filter clogging algorithm to release the clogging of the filters 120, 130, and 140.
  • control unit 720 drives the drain pump 52 through the driving unit 740 to perform a first drain operation for completely draining the dirt and washing water remaining in the sump 100 ( 7012).
  • the clogging of the micro filter 130 may be firstly released through a drainage operation in which the waste collected in the waste collection chamber 111 and the washing water are discharged together with the outside of the main body 10. 22a and 22b).
  • the controller 720 may stop the driving of the drain pump 52 through the driving unit 740, and may drive the water supply valve 49 to release the clogging of the filters 120, 130, and 140.
  • the wash water is supplied into the washing tank 30 (7014, see FIG. 22C).
  • the flow rate of the washing water supplied to the washing tank 30 is detected by the flow meter 705 so that a predetermined second water supply amount (a small amount of washing that can fill the inside of the sump) Quantity, about 700 to 900 cc) (7016).
  • step 7016 if the flow rate of the washing water is not the second water supply amount, the controller 720 continues to supply the washing water until the flow rate of the water supplied to the washing tank 30 reaches the second water supply amount.
  • the controller 720 drives the motor 530 through the driving unit 740 to move the vane 400 from the reference position for a predetermined time (about 7 seconds) and then stops. (7018, see FIG. 22D).
  • the controller 720 drives the circulation pump 51 at a third rotational speed (about 1200 to 1400 RPM) to wash water sprayed from the nozzles 330 and 340 to sump 100. In order to be sprayed toward the upper filter (120, 130, 140) (7020).
  • control unit 720 counts the driving time of the circulation pump 51 to pass the first time (time for moving the waste accumulated on the top of the filter to the waste collection chamber through the washing water injection; about 30 seconds) It is determined whether or not (7022).
  • step 7022 if the first time does not pass, the controller 720 feeds back to step 7020 to drive the circulation pump 51 at a third rotational speed (about 1200 to 1400 RPM) until the first time elapses. Let's do it.
  • step 7022 when the first time elapses, the controller 720 stops driving the circulation pump 51 through the driving unit 740 to stop the injection of the washing water (7024). Through the spraying operation of the washing water, some dirt accumulated at the top of the filter 120, 130, 140 may move to the waste collection chamber 111 to release the clogging of the filter 120, 130, 140 to some extent. The primary filter cleaning operation is in progress.
  • the controller 720 drives the drain pump 52 through the driving unit 740 to perform the secondary drainage operation of draining the dirt and washing water remaining in the sump 100 for a predetermined time (about 30 seconds). (7026).
  • the secondary drainage operation may be obtained by releasing the blockage of the micro filter 130 through the drainage operation of discharging the waste and the washing water collected in the waste collection chamber 111 to the outside of the main body 10 in a secondary manner ( See FIG. 22G).
  • the controller 720 may stop the driving of the drain pump 52 through the driving unit 740 and may drive the water supply valve 49 to release the clogging of the filters 120, 130, and 140.
  • the wash water is supplied into the washing tank 30 (7028, see FIG. 22H).
  • the flow rate of the washing water supplied to the washing tank 30 is detected by the flow meter 705 to determine a third water supply amount (a small amount of washing water to fill the inside of the sump, About 700 cc) (7030).
  • step 7030 if the flow rate of the washing water is not the third water supply amount, the controller 720 continues to supply the washing water until the flow rate of the water supplied to the washing tank 30 reaches the third water supply amount.
  • the controller 720 drives the circulation pump 51 at a fourth rotational speed (about 1000 to 1100 RPM) to wash water sprayed from the nozzles 330 and 340 to sump 100. ) To be sprayed toward the filters 120, 130, and 140 (see, for example, 6702, FIGS. 22I and 22J).
  • the fourth rotation speed is implemented at a lower speed than the third rotation speed.
  • the fourth rotation speed is realized at a higher speed than the third rotation speed so that the rotation speed of the circulation pump 51 can be changed according to the water supply amount.
  • the controller 720 counts the driving time of the circulation pump 51 for a second time (the time for the washing water sprayed from the nozzle is directly sprayed on the top of the filter to release the clogging of the filter; about 90 seconds) It is determined whether this has elapsed (7034).
  • step 7034 if the second time has not elapsed, the controller 720 feeds back to step 7032 to drive the circulation pump 51 at the fourth rotational speed (about 1000 to 1100 RPM) until the second time elapses. Let's do it.
  • step 7034 when the second time elapses, the controller 720 stops driving the circulation pump 51 through the driving unit 740 to stop the injection of the washing water (7036).
  • the controller 720 stops driving the circulation pump 51 through the driving unit 740 to stop the injection of the washing water (7036).
  • the washing water Through the direct spraying operation of the washing water, a large amount of dirt accumulated at the top of the fine filter 120 is moved to the coarse filter 140 to clean the secondary filter which can release the top of the filter 120, 130, 140. The operation proceeds.
  • the controller 720 drives the drain pump 52 through the driving unit 740 to perform the third drain operation for completely draining the dirt and washing water remaining in the sump 100 (7038).
  • the third drainage operation may obtain an effect of releasing the clogging of the micro filter 130 in a third manner through a drainage operation of discharging the waste collected in the waste collection chamber 111 together with the washing water to the outside of the main body 10 ( See FIG. 22K).
  • the filter clogging release algorithm is completed and the control unit 720 drives the motor 530 through the driving unit 740 to move the vane 400 to the reference position (7040), and stops at step 7010.
  • a wash stroke is run again from the beginning (7040).
  • the filter clogging algorithm of the step 7038 in step 7012 enables the subsequent normal washing operation to be performed without clogging the filters 120, 130, and 140.
  • the rotational speed of the circulation pump 51 is the same or variable while the same or different amount of the water to be supplied for the first filter washing operation and the second filter washing operation.
  • the present invention is not limited thereto, and the driving time of the circulation pump 51 driven for the first filter washing operation and the second filter washing operation may be differently adjusted in the first filter washing operation and the second filter washing operation. It is a matter of course that the same object and effect as the present invention can be achieved.
  • bubbles may be generated during the spraying of the washing water due to external factors such as dirt, detergent, and washing water. Especially when there are egg shells, a lot of bubbles are generated. If bubbles are generated during the washing stroke, a problem occurs in the process of introducing the washing water into the circulation pump 51, so that the amount of circulation of the washing water is significantly reduced, and power consumption of the circulation pump 51 is reduced.
  • 25A and 25B are flowcharts illustrating a control algorithm for foam detection of a dish washing machine according to another embodiment of the present invention, and overlapping descriptions of portions identical to those of FIGS. 21A and 21B will be omitted as much as possible.
  • the controller 720 selects the selected course. According to the course information, a series of strokes leading to prewashing, main washing, preliminary rinsing, and final rinsing of the dishwasher 1 are started in order.
  • the controller 720 determines whether the current stroke is a preliminary washing or a washing stroke of the main washing according to the series of strokes (10000).
  • step 10000 if the washing stroke, the controller 720 supplies the washing water necessary for the washing stroke through the water supply valve 49 into the washing tank 30, and the washing water supplied into the washing tank 30 is the washing tank 30. Collected into the sump 100 provided in the lower portion (10002).
  • the controller 720 drives the circulation pump 51 at a predetermined rotation speed (about 3000 to 3400 RPM) to pump the washing water stored in the sump 100.
  • a predetermined rotation speed about 3000 to 3400 RPM
  • the washing water is injected at high pressure from the nozzles (311, 313, 330, 340), and a large number of dirts on the tableware are separated from the dishes by the washing water sprayed to the sump 100 A washing stroke is gathered toward the upper fine filter 120 (10004).
  • the power consumption of the circulation pump 51 is reduced.
  • the change in power consumption of the circulation pump 51 is detected by the power consumption detector 760 and transmitted to the controller 720.
  • the controller 720 determines whether the power consumption is reduced by using the amount of change in power consumption during the operation of the circulation pump 51 (10006).
  • step 10006 if the power consumption does not change, the control unit 720 continues the subsequent normal stroke (10007).
  • step 10006 when the power consumption is changed, the controller 720 determines whether the change in the power consumption is caused by bubble generation or filter clogging. The driving is stopped (10008).
  • the controller 720 counts the stop time of the circulation pump 51 to determine whether the third time (time required to settle the bubble; about 3 minutes) has elapsed (10010).
  • step 10010 if the third time has not elapsed, the controller 720 feeds back to step 10008 and stops the circulation pump 51 until the third time elapses. This is to stop the driving of the circulation pump 51 for a predetermined time if the change in power consumption is caused by the foaming so that the bubbles naturally sink naturally.
  • step 10010 when the third time elapses, the controller 720 slow-starts the circulation pump 51 through the driving unit 740. Slow start drives the circulation pump 51 slowly from 1600 RPM to 3000 RPM. The reason for the slow start of the circulation pump 51 is to prevent the bubbles which have sunk primarily due to the stop of the circulation pump 51 from rising again.
  • the controller 720 counts the time for slow-starting the circulation pump 51 to determine whether the fourth time (approximately, one minute) has elapsed, and if the fourth time has not elapsed, the controller 720 determines that the fourth time has passed.
  • the circulation pump 51 is slow-started until it elapses.
  • the controller 720 circulates the washing water by driving the circulation pump 51 at a predetermined rotation speed (about 3000 to 3400 RPM) through the driving unit 740 (10012).
  • the controller 720 controls the washing water supplied from the distribution device 200 to be sprayed through the upper rotating nozzle 311 and the intermediate rotating nozzle 313 (10014).
  • the controller 720 counts the time that the washing water is sprayed through the upper rotating nozzle 311 and the intermediate rotating nozzle 313 to determine whether the fifth time (time required to wash the foam; about 2 minutes) has elapsed. (10016).
  • step 10016 if the fifth time does not pass, the controller 720 feeds back to step 10014 so that the washing water is sprayed through the upper rotating nozzle 311 and the intermediate rotating nozzle 313 until the fifth time elapses. To control. This is to wash the foam from the upper side of the washing tank 30 by spraying the washing water downward from the nozzles (311. 313) located on the upper side of the washing tank (30).
  • step 10020 when the fifth time elapses, the controller 720 controls the washing water supplied from the distribution device 200 to be sprayed through the lower fixed nozzles 330 and 340 (10018).
  • the controller 720 counts the time for which the washing water is sprayed through the fixed nozzles 330 and 340 to determine whether the sixth time (time required for washing the foam; about 2 minutes) has elapsed (10020).
  • the sixth time may be set differently from the fifth time.
  • step 10020 if the sixth time does not pass, the controller 720 feeds back to step 10018 and controls the washing water to be sprayed through the fixed nozzles 330 and 340 until the sixth time elapses. This is to wash the foam at the bottom of the washing tank 30 by spraying the washing water toward the front of the washing tank 30 from the nozzles 330 and 340 located at the lower side of the washing tank 30.
  • the circulating pump 51 is restarted, and the washing water is sprayed through the rotating nozzles 311 and 313, and then the washing water is sprayed through the fixed nozzles 330 and 340.
  • the rotation nozzle 311 while driving the circulation pump 51 after the third time has elapsed. , 313 may be configured to spray the washing water to wash the foam in the washing tank (30).
  • the present invention may be configured to wash the foam in the washing tank 30 by spraying the washing water through the fixed nozzles (330, 340) while restarting the circulation pump 51 after the third time. .
  • the present invention may be configured to sequentially run the washing water spraying operation through the re-drive and the rotation nozzles (311, 313) and the washing water spraying through the fixed nozzles (330, 340) of the circulation pump 51, respectively,
  • the operation can be configured to proceed alone or in parallel in parallel.
  • step 10020 when the sixth time elapses, the controller 720 determines whether the power consumption is reduced by using the amount of change in power consumption to finally determine whether bubbles are generated or the filter is clogged (10022).
  • step 10022 if the power consumption does not change, the controller 720 determines that the change in power consumption is due to the generation of bubbles, and proceeds to step 10007 to continue the normal operation thereafter.
  • step 10022 if the power consumption is changed, the controller 720 determines that the change in power consumption is due to the clogging of the filter, and stops the driving of the circulation pump 51 through the drive unit 740 to stop the washing stroke. do. After the filter unblocking algorithm for unblocking the fine filter 120 is performed, the process proceeds to step 10007 to continue the normal operation thereafter.

Abstract

세척조의 바닥과 필터에 남아 있는 오물을 제거할 수 있는 식기 세척기 및 그 제어방법을 제안한다. 배수 행정 시에 베인을 기준 위치에 위치시킨 상태에서 노즐에서 세척수를 분사하면, 베인의 반사각이 뒤쪽으로 젖혀지면서 세척수가 세척조의 후벽 쪽으로 강하게 분사되므로 세척수가 세척조의 바닥판을 따라 빠르고 강한 물살을 형성하고, 빠르고 강하게 형성된 물살은 세척조의 바닥을 흐르면서 세척조의 바닥 특히, 필터에 남아 있는 오물을 제거할 수 있게 된다. 또한, 예비 세척, 본 세척 등의 세척 행정 중에 섬프 상단의 필터에 과도한 양의 오물이 쌓여 필터를 막고 있는 경우에도 소량의 물을 이용하여 필터를 자동으로 세척할 수 있고, 세척수의 순환이 원활하지 못하여 세척 성능이 저하되는 문제의 원인이 필터 박힘에 의한 것인지 또는 거품 발생에 의한 것인지를 정확하게 판단하여 세척 성능을 효과적으로 개선할 수 있게 된다.

Description

식기 세척기 및 그 제어방법
본 발명은 세척조의 바닥과 필터에 남아 있는 오물을 제거할 수 있는 식기 세척기 및 그 제어방법에 관한 것이다.
식기 세척기는 내부에 세척조가 마련되는 본체와, 식기를 수납하는 바스켓과, 세척수를 저수하는 섬프와, 세척수를 분사하는 노즐과, 섬프의 세척수를 노즐로 공급하는 펌프를 구비하고, 식기에 고압의 세척수를 분사하여 식기를 세척하는 가전 기기이다.
식기 세척기는 세척을 위해 순환되는 세척수로부터 음식물 찌꺼기와 같은 오물을 걸러 주기 위해 세척수가 집수되는 세척조의 하부 바닥에 필터를 설치하고 있다.
그러나, 식기 세척이 완료된 후 세척조의 바닥 특히, 필터에 오물이 남아 있게 되면, 사용자가 식기를 꺼낼 때에 식기 세척에 대한 신뢰성이 저하되고, 사용자에게 불쾌감을 줄 수 있다.
세척조의 바닥과 필터에 남아 있는 오물을 효과적으로 제거할 수 있는 식기 세척기 및 그 제어방법을 제안하고자 한다.
이를 위해 본 발명의 일 측면에 의한 식기 세척기는, 세척조; 도어; 세척조의 내부에 설치되며, 세척수를 분사하는 노즐; 도어에 근접하여 위치하는 제1위치와 노즐에 근접하여 위치하는 제2위치 사이를 이동하며, 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인; 세척조의 바닥면에 설치되며, 세척수로부터 오물을 걸러 주는 필터를 포함하고, 베인은 제2위치에 도달하는 경우 노즐에서 분사되는 세척수가 세척조의 후벽을 향하도록 노즐 방향으로 회전하며, 베인의 회전에 의해 필터에 남아 있는 오물을 제거하는 것을 특징으로 한다.
또한, 본 발명의 일 측면에 의한 식기 세척기는, 베인을 이동시키는 모터; 모터의 구동에 따라 이동하는 베인이 제2위치에 도달하였는가를 검출하는 위치검출부; 베인이 제2위치에 도달하면, 베인의 이동을 정지하고 노즐에서 세척수를 분사하도록 제어하는 제어부를 더 포함한다.
또한, 본 발명의 일 측면에 의한 식기 세척기는, 세척조의 전방에서 후방으로 연장되게 설치되며, 베인의 이동을 안내하는 레일을 더 포함하고, 노즐은 세척조의 좌우 방향으로 연장되게 설치되며, 레일의 후방에 고정되게 설치된다.
위치 검출부는 베인이 노즐 방향으로 이동하여 레일의 최후방에 위치하면, 베인이 제2위치에 위치한다고 검출한다.
위치 검출부는, 베인에 설치되는 영구 자석과, 제2위치에 위치하여 영구 자석을 검출하는 위치 센서를 포함한다.
또한, 본 발명의 일 측면에 의한 식기 세척기는, 세척조의 바닥판의 일 측에 설치되며, 레일에 결합되는 바닥판 커버를 더 포함하고, 위치 검출부는, 베인에 설치되는 영구 자석; 바닥판 커버에 설치되며, 제2위치에 위치하여 영구 자석을 검출하는 위치 센서를 포함한다.
또한, 본 발명의 일 측면에 의한 식기 세척기는, 세척조의 하부에 설치되며, 세척수를 저장하는 섬프; 섬프에 저장된 세척수를 펌핑하여 노즐로 공급하는 펌프를 더 포함하고, 제어부는 노즐에서 분사되는 세척수의 양을 조절하도록 펌프의 회전 속도를 제어한다.
또한, 본 발명의 일 측면에 의한 식기 세척기는, 세척조의 하부에 설치되며, 세척수를 저장하는 섬프; 섬프에 저장된 세척수를 펌핑하여 노즐로 공급하는 펌프를 더 포함하고, 제어부는 노즐에서 분사되는 세척수의 양을 조절하도록 펌프의 구동 시간을 제어한다.
제어부는, 식기 세척기의 행정이 배수 행정인가를 판단하고; 배수 행정이면, 베인의 이동을 정지하고 노즐에서 세척수를 분사하여 베인의 회전에 의해 반사되는 세척수가 세척조의 후벽을 타격한 후에 필터로 향하도록 제어한다.
그리고, 본 발명의 다른 측면에 의한 식기 세척기는, 세척조; 도어; 세척조의 하부에 설치되며, 세척수를 저장하는 섬프; 섬프에 저장된 세척수를 펌핑하는 펌프; 펌프에 의해 펌핑되는 세척수를 세척조의 내부로 분사하는 노즐; 도어에 근접하여 위치하는 제1위치와 노즐에 근접하여 위치하는 제2위치 사이를 이동하며, 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인; 섬프의 상단을 덮도록 설치되며, 세척수로부터 오물을 걸러 준 후 섬프 내로 유입시키는 필터; 베인이 제2위치에 도달하면, 베인의 이동을 정지하고 펌프를 구동시켜 필터에 남아 있는 오물을 제거하는 제어부를 포함한다.
또한, 본 발명의 또 다른 측면에 의한 식기 세척기는, 본체; 본체의 내부에 설치되며, 바닥면에 배수구가 형성된 세척조; 세척조를 개폐시키는 도어; 세척조의 내부에 설치되며, 세척수를 분사하는 노즐; 도어에 근접하여 위치하는 제1위치와 노즐에 근접하여 위치하는 제2위치 사이를 이동하며, 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인; 배수구의 상단을 덮도록 설치되며, 세척수로부터 오물을 걸러 주는 필터를 포함하고, 베인은 제2위치에 도달하는 경우 노즐에서 분사되는 세척수가 세척조의 후벽을 향하도록 노즐 방향으로 회전하며, 배수 행정 시에 베인의 회전에 의해 필터에 남아 있는 오물을 제거하는 것을 특징으로 한다.
그리고, 본 발명의 일 측면은 세척조와, 세척조의 내부로 세척수를 분사하는 노즐과, 노즐로 세척수를 공급하는 펌프와, 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인과, 베인을 이동시키는 모터와, 세척수로부터 오물을 걸러 주는 필터를 구비하는 식기 세척기의 제어방법에 있어서, 배수 행정인가 판단하고;배수 행정이면, 베인이 노즐에 근접하여 위치하는 제2위치에 도달하였는가를 검출하고; 베인이 제2위치에 도달하면, 모터의 구동을 정지하여 베인의 이동을 정지시키고; 펌프의 구동에 따라 노즐에서 세척수를 분사하여 베인의 회전에 의해 반사되는 세척수가 세척조의 후벽을 타격한 후에 필터로 향하도록 유동시키고; 세척수의 유동에 따라 필터에 남아 있는 오물을 제거하는 것을 포함한다.
또한, 본 발명의 일 측면에 의한 식기 세척기의 제어방법은, 베인이 제2위치에 도달하지 않으면, 모터를 구동하여 베인을 제2위치로 이동시키는 것을 더 포함한다.
펌프를 구동하는 것은, 펌프의 회전 속도를 제어하여 노즐에서 분사되는 세척수의 양을 조절하는 것이다.
펌프를 구동하는 것은, 펌프의 구동 시간을 제어하여 노즐에서 분사되는 세척수의 양을 조절하는 것이다.
그리고, 본 발명의 다른 측면은 세척수를 저장하는 섬프와, 섬프에 저장된 세척수를 펌핑하는 펌프와, 펌프에 의해 펌핑되는 세척수를 세척조의 내부로 분사하는 노즐과, 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인과, 세척수로부터 오물을 걸러 준 후 섬프 내로 유입시키는 필터를 구비하는 식기 세척기의 제어방법에 있어서, 배수 행정인가 판단하고; 배수 행정이면, 베인과 노즐 간의 간격을 최소화한 위치에서 펌프를 구동하여 노즐에서 세척수를 분사하고; 분사된 세척수가 베인의 회전에 의해 반사되어 세척조의 후벽을 타격한 후에 필터로 향하도록 하여 필터에 남아 있는 오물을 제거하고; 펌프의 구동 시간을 카운트하여 기준 시간이 경과하였는가를 판단하고; 기준 시간이 경과하면, 펌프의 구동을 정지하여 세척수의 분사를 중지하고; 필터에서 여과된 오물과 섬프 내의 세척수를 배수하는 것을 포함한다.
그리고, 본 발명의 또 다른 측면에 의한 식기 세척기는, 세척조; 세척조의 내부에 설치되며, 세척수를 분사하는 노즐; 노즐에 세척수를 공급하는 순환 펌프; 세척조의 바닥면에 설치되며, 세척수로부터 오물을 걸러 주는 필터; 필터의 막힘을 검출하는 막힘 검출부; 세척 명령이 입력되면, 제1급수량의 세척수를 공급하고 순환 펌프를 구동하여 세척 행정을 진행하고, 필터의 막힘이 검출되면, 세척 행정을 중지하고 필터를 세척하는 행정을 진행하는 제어부를 포함하고, 제어부는 노즐에서 분사되는 세척수가 필터 쪽으로 분사되도록 제1급수량보다 제2급수량의 세척수를 공급하고, 세척 행정 시에 구동되는 순환 펌프의 회전 속도보다 낮은 회전 속도로 순환 펌프를 제어하여 필터를 세척하는 것을 특징으로 한다.
막힘 검출부는 세척 행정을 위한 순환 펌프의 구동 중에 순환 펌프의 소비 전력 변화를 검출하여 소비 전력이 감소하면 필터의 막힘을 검출한다.
또한, 본 발명의 또 다른 측면에 의한 식기 세척기는, 세척조의 하부에 설치되며, 세척수를 저장하는 섬프; 섬프에 세척수를 급수하는 급수밸브를 더 포함하고, 제2급수량은 섬프의 내측을 채울 수 있는 소량의 세척수량인 것이 바람직하다.
또한, 본 발명의 또 다른 측면에 의한 식기 세척기는, 세척조를 개폐시키는 도어; 도어에 근접하여 위치하는 제1위치와 노즐에 근접하여 위치하는 제2위치 사이를 이동하며, 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인을 더 포함하고, 베인이 제1위치에 도달하면, 제어부는 베인의 이동을 정지하고 노즐에서 분사되는 세척수가 필터를 향하도록 제어한다.
또한, 본 발명의 또 다른 측면에 의한 식기 세척기는, 베인을 이동시키는 모터를 더 포함하고, 제어부는 모터의 구동에 따라 이동하는 베인이 제2위치에서부터 이동한 시간을 카운트하여 일정 시간을 경과하면, 베인이 제1위치에 도달하였다고 판단한다.
또한, 본 발명의 또 다른 측면에 의한 식기 세척기는, 세척수를 배수시키는 배수 펌프를 더 포함하고, 순환 펌프의 구동 시간을 카운트하여 일정 시간을 경과하면, 제어부는 순환 펌프의 구동을 정지하고 배수 펌프를 구동하여 세척수를 배수한다.
또한, 본 발명의 또 다른 측면에 의한 식기 세척기는, 노즐은 복수 개의 분사홀을 더 포함하고, 제어부는 복수 개의 분사홀에서 동시에 세척수를 분사하거나 복수 개의 분사홀 중 일부의 분사홀에서 세척수를 분사하도록 제어한다.
그리고, 본 발명의 또 다른 측면에 의한 식기 세척기는, 세척조; 도어; 세척조의 내부에 설치되며, 세척수를 분사하는 노즐; 도어에 근접하여 위치하는 제1위치와 노즐에 근접하여 위치하는 제2위치 사이를 이동하며, 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인; 노즐에 세척수를 공급하는 순환 펌프; 세척조의 바닥면에 설치되며, 세척수로부터 오물을 걸러 주는 필터; 필터의 막힘을 검출하는 막힘 검출부; 필터의 막힘이 검출되면, 세척 행정을 중지하고 필터를 세척하는 행정을 진행하는 제어부를 포함하고, 제어부는 노즐에서 분사되는 세척수가 필터 쪽으로 분사되도록 베인을 제1위치로 이동시키고, 세척수의 급수량과 순환 펌프의 회전 속도를 제어하여 필터를 세척하는 것을 특징으로 한다.
또한, 본 발명의 또 다른 측면에 의한 식기 세척기는, 세척조의 하부에 설치되며, 세척수를 배수하는 배수 펌프를 더 포함하고, 필터의 막힘이 검출되면, 제어부는 순환 펌프의 구동을 정지하고 배수 펌프를 구동하여 세척수를 배수하도록 제어한다.
또한, 본 발명의 또 다른 측면에 의한 식기 세척기는, 세척수를 급수하는 급수밸브를 더 포함하고, 세척수의 배수가 완료되면, 제어부는 배수 펌프의 구동을 정지하고 급수밸브를 구동하여 세척수를 제2급수량까지 급수하도록 제어한다.
또한, 본 발명의 또 다른 측면에 의한 식기 세척기는, 베인을 이동시키는 모터를 더 포함하고, 모터의 구동에 따라 이동하는 베인이 제1위치에 도달하면, 제어부는 베인의 이동을 정지하고 노즐에서 분사되는 세척수가 필터를 향하도록 제어하는 것이다.
그리고, 본 발명의 또 다른 측면은 세척조와, 세척조의 내부로 세척수를 분사하는 노즐과, 노즐로 세척수를 공급하는 순환 펌프와, 세척수로부터 오물을 걸러 주는 필터를 구비하는 식기 세척기의 제어방법에 있어서, 순환 펌프의 구동에 따라 노즐에서 세척수를 세척조 내부로 분사하여 세척 행정을 진행하고; 순환 펌프의 구동 중에 순환 펌프의 소비 전력 변화를 검출하여 필터의 막힘을 검출하고; 필터의 막힘이 검출되면, 세척 행정을 중지하고 노즐에서 세척수를 필터 쪽으로 분사하여 필터를 세척하는 것을 포함한다.
필터의 막힘을 검출하는 것은, 세척 행정을 위한 순환 펌프의 구동 중에 순환 펌프의 소비 전력이 감소하면 필터의 막힘을 검출하는 것이다.
필터를 세척하는 것은, 세척수의 급수량과 순환 펌프의 회전 속도를 제어하여 필터를 막고 있는 오물을 제거하는 것이다.
세척수의 급수량을 제어하는 것은, 필터의 세척을 위해 급수되는 급수량을 세척 행정을 위해 급수되는 급수량보다 적게 공급하는 것이다.
순환 펌프의 회전 속도를 제어하는 것은, 필터의 세척을 위해 구동되는 순환 펌프의 회전 속도를 세척 행정을 위해 구동되는 순환 펌프의 회전 속도보다 낮게 제어하는 것이다.
필터를 세척하는 것은, 세척수의 분사 방향을 변경하는 베인을 이동시키고; 베인이 노즐로부터 이격되는 제1위치에 도달하면, 베인의 이동을 정지하고 노즐에서 세척수가 분사되도록 하는 것을 더 포함한다.
또한, 필터를 세척하는 것은, 순환 펌프의 구동 시간을 카운트하여 일정 시간을 경과하면, 순환 펌프의 구동을 정지하고 세척수를 배수하여 필터를 막고 있는 오물을 제거하는 것이다.
그리고, 본 발명의 또 다른 측면은 세척수를 저장하는 섬프와, 섬프에 저장된 세척수를 펌핑하는 순환 펌프와, 순환 펌프에 의해 펌핑되는 세척수를 세척조의 내부로 분사하는 노즐과, 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인과, 세척수로부터 오물을 걸러 준 후 섬프 내로 유입시키는 필터를 구비하는 식기 세척기의 제어방법에 있어서, 순환 펌프의 구동 중에 소비 전력 변화를 검출하여 필터의 막힘을 검출하고; 필터의 막힘이 검출되면, 세척수를 완전 배수한 후에 섬프를 채울 수 있는 최소량의 세척수를 급수하고; 베인과 노즐 간의 간격을 최대화한 제1위치에서 순환 펌프를 구동하여 노즐에서 급수된 세척수를 분사하고; 분사된 세척수가 순환 펌프의 구동에 의해 필터로 향하도록 하여 필터를 세척하고; 순환 펌프의 구동 시간을 카운트하여 일정 시간이 경과하였는가를 판단하고; 일정 시간이 경과하면, 순환 펌프의 구동을 정지하여 세척수의 분사를 중지하고; 필터에서 여과된 오물과 섬프 내의 세척수를 배수하는 것을 포함한다.
그리고, 본 발명의 또 다른 측면에 의한 식기 세척기는, 세척조; 세척조의 내부에 설치되며, 세척수를 분사하는 노즐; 노즐에 세척수를 공급하는 순환 펌프; 세척조의 바닥면에 설치되며, 세척수로부터 오물을 걸러 주는 필터; 순환 펌프의 구동 중에 소비 전력 변화를 검출하는 소비 전력 검출부; 소비 전력 변화가 검출되면, 순환 펌프의 구동을 정지시켰다가 재구동하여 소비 전력 변화가 지속되는가를 판단하는 제어부를 포함하고, 제어부는 소비 전력 변화가 지속되는지 여부에 따라 필터의 막힘 또는 거품 발생을 검출하는 것을 특징으로 한다.
제어부는 순환 펌프의 정지 시간을 카운트하여 일정 시간을 경과하면, 순환 펌프를 슬로 스타트시킨다.
또한, 제어부는 순환 펌프의 슬로 스타트 시간을 카운트하여 일정 시간을 경과하면, 순환 펌프를 재구동하여 노즐에서 세척수가 분사되도록 제어한다.
또한, 제어부는 순환 펌프의 재구동 시에 상부 쪽 노즐과 하부 쪽 노즐에서 세척수가 분사되도록 제어한다.
또한, 제어부는 순환 펌프의 재구동 시간이 일정 시간을 경과하면, 소비 전력 검출부를 통해 순환 펌프의 소비 전력 변화를 검출하여 소비 전력 변화가 지속되는가를 판단한다.
또한, 제어부는 소비 전력 변화가 지속되면, 필터의 막힘을 검출하여 세척 행정을 중지하고 필터를 세척하는 행정을 진행한다.
또한, 제어부는 소비 전력 변화가 지속되지 않으면, 세척조 내부에 거품이 발생하였다고 판단하고 세척 행정을 계속 진행한다.
그리고, 본 발명의 또 다른 측면은 세척조와, 세척조의 내부로 세척수를 분사하는 노즐과, 노즐로 세척수를 공급하는 순환 펌프와, 세척수로부터 오물을 걸러 주는 필터를 구비하는 식기 세척기의 제어방법에 있어서, 순환 펌프의 구동에 따라 노즐에서 세척수를 분사하여 세척 행정을 진행하고; 순환 펌프의 구동 중에 순환 펌프의 소비 전력 변화를 검출하고; 소비 전력 변화가 검출되면, 순환 펌프의 구동을 일정 시간 동안 정지시키고; 일정 시간이 경과하면, 순환 펌프를 재구동하여 순환 펌프의 소비 전력 변화가 지속되는가를 판단하고; 소비 전력 변화가 지속되면, 세척 행정을 중지하고 필터를 세척하는 행정을 진행하고; 소비 전력 변화가 지속되지 않으면, 세척 행정을 진행하는 것을 포함한다.
제안된 식기 세척기 및 그 제어방법에 의하면, 배수 행정 시에 베인을 기준 위치에 위치시킨 상태에서 노즐에서 세척수를 분사하면, 베인의 반사각이 뒤쪽으로 젖혀지면서 세척수가 세척조의 후벽 쪽으로 강하게 분사되므로 세척수가 세척조의 바닥판을 따라 빠르고 강한 물살을 형성하고, 빠르고 강하게 형성된 물살은 세척조의 바닥을 흐르면서 세척조의 바닥 특히, 필터에 남아 있는 오물을 제거할 수 있게 된다.
또한, 노즐로 세척수를 공급하는 순환 펌프의 회전 속도와 구동 시간을 제어하여 노즐에서 분사되는 세척수의 양을 조절함으로써 세척조의 바닥과 필터에 남아 있는 음식물 찌꺼기와 같은 오물을 효과적으로 제거할 수 있게 된다.
또한, 예비 세척, 본 세척 등의 세척 행정 중에 섬프 상단의 필터에 과도한 양의 오물이 쌓여 필터를 막고 있는 경우에도 소량의 물을 이용하여 필터를 자동으로 세척함으로써 사용자가 직접 필터를 분리하여 세척해야 하는 불편함을 없앨 수 있게 된다.
또한, 세척수의 순환이 원활하지 못하여 세척 성능이 저하되는 문제가 필터 박힘에 의한 것인지 또는 거품 발생에 의한 것인지를 정확하게 판단하여 해당 현상에 맞게 문제를 해결함으로써 세척 성능을 효과적으로 개선할 수 있게 된다.
도 1은 본 발명의 일 실시예에 의한 식기 세척기를 도시한 개략적인 단면도이다.
도 2는 본 발명의 일 실시예에 의한 식기 세척기의 하부를 도시한 도면이다.
도 3은 본 발명의 일 실시예에 의한 식기 세척기의 유로 구조를 도시한 도면이다.
도 4는 본 발명의 일 실시예에 의한 식기 세척기의 베인과 레일 어셈블리, 분사 노즐 어셈블리 및 바닥판 커버를 분해하여 도시한 도면이다.
도 5는 본 발명의 일 실시예에 의한 식기 세척기의 세척조 바닥판과 바닥판 커버 및 모터를 분해하여 도시한 도면이다.
도 6은 본 발명의 일 실시예에 의한 식기 세척기의 세척조 바닥판과 바닥판 커버 및 모터를 도시한 단면도이다.
도 7은 본 발명의 일 실시예에 의한 식기 세척기의 베인과 베인 홀더를 도시한 도면이다.
도 8은 본 발명의 일 실시예에 의한 식기 세척기의 베인을 도시한 사시도이다.
도 9 내지 도 11은 본 발명의 일 실시예에 의한 식기 세척기의 베인이 회전하는 동작을 도시한 도면이다.
도 12는 본 발명의 일 실시예에 의한 식기 세척기의 베인 이동 구간에서 베인이 세척수를 반사시키는 동작을 도시한 도면이다.
도 13은 본 발명의 일 실시예에 의한 식기 세척기의 베인 미이동 구간에서 베인이 세척수를 반사시키는 동작을 도시한 도면이다.
도 14는 본 발명의 일 실시예에 의한 식기 세척기의 섬프와 코스 필터 및 파인 필터를 도시한 도면이다.
도 15는 본 발명의 일 실시예에 의한 식기 세척기의 섬프와 코스 필터, 파인 필터 및 마이크로 필터를 분해하여 도시한 도면이다.
도 16은 도 14의 Ⅰ-Ⅰ 선에 따른 단면도이다.
도 17은 본 발명의 일 실시예에 의한 식기 세척기의 세척조의 하부를 도시한 평면도이다.
도 18은 본 발명의 일 실시예에 의한 식기 세척기의 제어 구성도이다.
도 19는 본 발명의 일 실시예에 의한 식기 세척기에서 필터 세척을 위한 제1제어 알고리즘을 나타낸 동작 순서도이다.
도 20은 본 발명의 일 실시예에 의한 식기 세척기에서 필터 세척을 위한 제2제어 알고리즘을 나타낸 동작 순서도이다.
도 21a 및 도 21b는 본 발명의 다른 실시예에 의한 식기 세척기의 필터 막힘 해제를 위한 제1제어 알고리즘을 나타낸 동작 순서도이다.
도 22a 내지 도 22k는 본 발명의 다른 실시예에 의한 식기 세척기의 필터 막힘을 해제하는 과정을 나타낸 도면이다.
도 23a 및 도 23b는 본 발명의 다른 실시예에 의한 식기 세척기의 필터 막힘 해제를 위한 제2제어 알고리즘을 나타낸 동작 순서도이다.
도 24a 및 도 24b는 본 발명의 다른 실시예에 의한 식기 세척기의 필터 막힘 해제를 위한 제3제어 알고리즘을 나타낸 동작 순서도이다.
도 25a 및 도 25b는 본 발명의 또 다른 실시예에 의한 식기 세척기의 거품 감지를 위한 제어 알고리즘을 나타낸 동작 순서도이다.
이하, 본 발명에 의한 일 실시예를 첨부된 도면을 참조하여 상세히 설명한다.
본 발명의 일 실시예에 의한 식기 세척기의 전체 구조를 도 1 및 도 2를 참조하여 개괄적으로 설명한다.
도 1은 본 발명의 일 실시예에 의한 식기 세척기를 도시한 개략적인 단면도이고, 도 2는 본 발명의 일 실시예에 의한 식기 세척기의 하부를 도시한 도면이다.
도 1 및 도 2에서, 식기 세척기(1)는 외관을 형성하는 본체(10)와, 본체(10)의 내부에 마련되는 세척조(30)와, 식기를 수납하도록 세척조(30)의 내부에 마련되는 바스켓들(12a, 12b)과, 세척수를 분사하는 노즐들(311, 313, 330, 340)과, 세척수를 저수하는 섬프(100)와, 섬프(100)의 세척수를 펌핑하여 노즐들(311, 313, 330, 340)에 공급하는 순환 펌프(51)와, 섬프(100)의 세척수를 오물과 함께 본체(10)의 외부로 배출시키는 배수 펌프(52)와, 세척조(30)의 내부를 이동하며 세척수를 식기 측으로 반사시키는 베인(400)과, 베인(400)을 구동시키는 구동 장치(420)를 포함한다.
세척조(30)는 식기를 수납할 수 있도록 전방이 개구된 대략 박스 형상을 가지며, 상부벽(31)과, 후벽(32)과, 좌측벽(33)과, 우측벽(34)과, 바닥판(35)을 포함한다. 세척조(30)의 전방 개구는 도어(11)에 의해 개폐된다.
바스켓들(12a, 12b)은 세척수가 고이지 않고 통과될 수 있도록 와이어로 이루어진 와이어 랙으로 구성할 수 있다. 바스켓들(12a, 12b)은 세척조(30)의 내부에 착탈 가능하게 마련될 수 있다. 바스켓들(12a, 12b)은 세척조(30)의 상부에 배치되는 상부 바스켓(12a)과, 세척조(30)의 하부에 배치되는 하부 바스켓(12b)을 포함한다.
순환 펌프(51)는 계자 권선(field coil)과 전기자(armature)로 구성되는 유니버설 모터(Universal Motor)나, 영구 자석과 전기 자석으로 구성되는 무정류자 직류 모터(Brushless Direct Motor; 이하, "BLDC 모터"라 한다) 등을 사용할 수 있다.
본 발명에서는 회전 속도의 제어가 가능한 BLDC 모터를 사용하는 순환 펌프(51)를 예로 들어 설명한다.
노즐들(311, 313, 330, 340)은 고압으로 세척수를 분사하여 식기를 세척한다. 노즐들(311, 313, 330, 340)은 세척조(30)의 상부에 마련되는 상부 회전 노즐(311)과, 세척조(30)의 중심부에 마련되는 중간 회전 노즐(313)과, 세척조(30)의 하부에 마련되는 고정 노즐들(330, 340)을 포함한다.
상부 회전 노즐(311)은 상부 바스켓(12a)의 상측에 마련되고, 수압에 의해 회전하면서 세척수를 아래 방향으로 분사할 수 있다. 이를 위해 상부 회전 노즐(311)의 하단에는 분사홀들(312)이 마련된다. 상부 회전 노즐(311)은 상부 바스켓(12a)에 수납된 식기를 향해 직접 세척수를 분사할 수 있다.
중간 회전 노즐(313)은 상부 바스켓(12a)과 하부 바스켓(12b)의 사이에 마련되고, 수압에 의해 회전하면서 세척수를 상하 방향으로 분사할 수 있다. 이를 위해 중간 회전 노즐(313)의 상단과 하단에는 분사홀들(314)이 마련된다. 중간 회전 노즐(313)은 상부 바스켓(12a)과 하부 바스켓(12b)에 수납된 식기를 향해 직접 세척수를 분사할 수 있다.
고정 노즐들(330, 340)은 회전 노즐들(311, 313)과는 달리 움직이지 않도록 마련되고, 세척조(30)의 일 측에 고정된다. 고정 노즐들(330, 340)은 대략 세척조(30)의 후벽(32)에 인접하게 배치되어, 세척조(30)의 전방을 향하여 세척수를 분사할 수 있다. 따라서, 고정 노즐들(330, 340)에서 분사된 세척수는 직접 식기를 향하지 않을 수 있다.
고정 노즐들(330, 340)에서 분사된 세척수는 베인(400)에 의해 식기 측으로 반사된다. 고정 노즐들(330, 340)은 하부 바스켓(12b)의 아래에 배치되고, 베인(400)은 고정 노즐들(330, 340)에서 분사된 세척수를 상측으로 반사시킨다. 즉, 고정 노즐들(330, 340)에서 분사된 세척수는 베인(400)에 의해 하부 바스켓(12b)에 수납된 식기를 향해 반사된다.
고정 노즐들(330, 340)은 각각 세척조(30)의 좌우 방향으로 배열되는 복수의 분사홀들(331, 341)을 가진다. 복수의 분사홀들(331, 341)은 전방을 향해 세척수를 분사한다.
베인(400)은 고정 노즐들(330, 340)에 마련된 복수의 분사홀들(331,341)에서 분사된 세척수를 모두 반사시킬 수 있도록 세척조(30)의 좌우 방향으로 길게 연장되게 설치되어 있다. 즉, 베인(400)의 길이 방향 일단부는 세척조(30)의 좌측벽(33)에 인접하고, 베인(400)의 길이 방향 타단부는 세척조(30)의 우측벽(34)에 인접하게 마련될 수 있다.
이러한 베인(400)은 고정 노즐들(330, 340)에서 분사되는 세척수의 분사 방향을 따라 선형 왕복 운동할 수 있다. 즉, 베인(400)은 도어(11)에 근접하여 위치하는 제1위치와 고정 노즐들(330, 340)에 근접하여 위치하는 제2위치 사이를 이동하며, 고정 노즐들(330, 340)에서 분사되는 세척수의 분사 방향을 변경하는 것으로, 세척조(30)의 전후 방향을 따라 선형 왕복 운동한다.
제2위치는 베인(400)의 이동 경로 중에 위치 센서(701)가 영구 자석(702)의 자기장을 검출하는 베인(400)의 기준 위치로, 베인(400)이 고정 노즐(330, 340)에 접근하여 베인(400)과 고정 노즐(330, 340) 간의 간격을 최소화한 위치이다.
제1위치는 베인(400)이 제2위치에서부터 이동한 시간을 이용하여 검출하는 베인(400)의 위치로, 베인(400)이 도어(11)에 접근하여 베인(400)과 고정 노즐(330, 340) 간의 간격을 최대화한 위치이다.
따라서, 고정 노즐들(330, 340)과 베인(400)을 포함하는 리니어 타입의 분사 구조는 사각 지대 없이 세척조(30)의 전 영역에 세척수를 분사하여 식기를 세척할 수 있다. 이는 회전 반경의 범위 내에만 세척수를 분사할 수 있는 로터 타입의 분사 구조와는 차별된다.
고정 노즐들(330, 340)은 세척조(30)의 좌측에 배치되는 좌측 고정 노즐(330)과, 세척조(30)의 우측에 배치되는 우측 고정 노즐(340)을 포함한다.
회전 노즐들(311, 313)과, 고정 노즐들(330, 340)은 상호 독립적으로 세척수를 분사할 수 있으며, 좌측 고정 노즐(330)과 우측 고정 노즐(340) 역시 상호 독립적으로 세척수를 분사할 수 있다.
좌측 고정 노즐(330)에서 분사된 세척수는 베인(400)에 의해 세척조(30)의 좌측 영역으로만 반사되고, 우측 고정 노즐(340)에서 분사된 세척수는 베인(400)에 의해 세척조(30)의 우측 영역에만 반사될 수 있다.
따라서, 식기 세척기(1)는 세척조(30)의 좌측과 우측을 독립적으로 분할하여 세척할 수 있다.
한편, 본 발명의 일 실시예에서는 세척조(30)의 좌측과 우측으로 분할하여 세척하는 것을 예로 들어 설명하였으나, 본 발명은 이에 한정되지 않고 필요에 따라 더욱 세분하여 분할 세척할 수 있음은 물론이다.
이하, 본 발명의 일 실시예에 의한 식기 세척기(1)의 주요 구성들에 대해 도면을 참조하여 차례로 설명하기로 한다.
먼저, 본 발명의 일 실시예에 의한 식기 세척기(1)의 행정, 유로 구조, 고정 노즐 어셈블리의 구조 및 세척수 분배 구조를 도 3을 참조하여 설명한다.
도 3은 본 발명의 일 실시예에 의한 식기 세척기의 유로 구조를 도시한 도면이다.
도 3에서, 본 발명의 일 실시예에 의한 식기 세척기(1)는 급수 행정, 세척 행정, 배수 행정 및 건조 행정을 포함한다.
급수 행정에서, 급수관(미도시)을 통해 세척조(30) 내부로 세척수가 급수되면, 세척조(30)에 급수되는 세척수는 세척조(30)의 바닥판(35)의 구배에 의해 세척조(30)의 하부에 마련된 섬프(100)로 유동되고 섬프(100)에 저수된다.
세척 행정에서, 순환 펌프(51)가 동작하여 섬프(100)에 저수된 세척수를 펌핑한다. 순환 펌프(51)에 의해 펌핑된 세척수는 분배 장치(200)를 통해 회전 노즐들(311, 313), 좌측 고정 노즐(330), 우측 고정 노즐(340)로 분배된다. 순환 펌프(51)의 펌핑력에 의해 노즐들(311, 313, 330, 340)에서 세척수가 고압으로 분사되어 식기를 세척할 수 있다.
여기서, 상부 회전 노즐(311)과 중간 회전 노즐(313)은 제2호스(271b)를 통해 분배 장치(200)로부터 세척수를 공급받을 수 있다. 좌측 고정 노즐(330)은 제1호스(271a)를 통해 분배 장치(200)로부터 세척수를 공급받을 수 있다. 우측 고정 노즐(340)은 제3호스(271c)를 통해 분배 장치(200)로부터 세척수를 공급받을 수 있다.
본 발명의 일 실시예에서 분배 장치(200)는 총 4개의 분배 모드를 갖도록 구성되어 있다.
제1모드에서, 분배 장치(200)는 제2호스(271b)를 통해 회전 노즐들(311, 313)로 세척수를 공급한다.
제2모드에서, 분배 장치(200)는 제3호스(271c)를 통해 우측 고정 노즐(340)로 세척수를 공급한다.
제3모드에서, 분배 장치(200)는 제1호스(271a)와, 제3호스(271c)를 통해 좌측 고정 노즐(330)과 우측 고정 노즐(340)로 세척수를 공급한다.
제4모드에서, 분배 장치(200)는 제1호스(271a)를 통해 좌측 고정 노즐(330)로 세척수를 공급한다.
한편, 분배 장치(200)는 본 발명의 일 실시예와는 달리 더 다양한 분배 모드를 갖도록 마련될 수도 있음은 물론이다.
노즐들(311, 313, 330,3 40)에서 분사된 세척수는 식기를 타격하며 식기에 묻은 오물을 제거하고, 오물과 함께 낙하하여 다시 섬프(100)에 저수될 수 있다. 순환 펌프(51)는 섬프(100)에 저수된 세척수를 다시 펌핑하여 순환시킨다. 세척 행정 중에 순환 펌프(51)는 동작 및 정지를 수 차례 반복할 수 있다. 이 과정에서 세척수와 함께 섬프(100)로 낙하한 오물은 섬프(100)에 설치된 필터에 의해 포집되어 노즐들(311, 313, 330, 340)로 순환되지 않고 섬프(100)에 남아 있게 된다.
배수 행정에서, 배수 펌프(52)가 동작하여 섬프(100)에 남아 있는 오물과 세척수를 함께 본체(10)의 외부로 배출한다.
건조 행정에서, 세척조(30)에 장착된 히터(미도시)가 동작하여 식기를 건조한다.
다음, 본 발명의 일 실시예에 의한 식기 세척기의 바닥판 커버를 도 4 내지 도 6을 참조하여 설명한다.
도 4는 본 발명의 일 실시예에 의한 식기 세척기의 베인과 레일 어셈블리, 분사 노즐 어셈블리 및 바닥판 커버를 분해하여 도시한 도면이고, 도 5는 본 발명의 일 실시예에 의한 식기 세척기의 세척조 바닥판과 바닥판 커버 및 모터를 분해하여 도시한 도면이며, 도 6은 본 발명의 일 실시예에 의한 식기 세척기의 세척조 바닥판과 바닥판 커버 및 모터를 도시한 단면도이다.
도 4 내지 도 6에서, 본 발명의 일 실시예에 의한 식기 세척기(1)는 세척조(30)의 바닥판(35)에 후방 일 측에 결합되는 바닥판 커버(600)를 포함한다.
바닥판 커버(600)는 바닥판(35)에 형성되는 모터 통과홀(37) 및 유로 통과홀들(38)을 실링하고, 베인(400)을 구동하는 모터(530)를 지지하며, 식기 세척기(1)의 레일 어셈블리(430)와 노즐 어셈블리(300)를 고정한다.
여기서, 전술한 바와 같이, 노즐 어셈블리(300)는 상부 회전 노즐(311), 중간 회전 노즐(313), 좌측 고정 노즐(330) 및 우측 고정 노즐(340)을 포함한다.
레일 어셈블리(430)는 베인(400)의 이동을 안내하는 것으로서, 자세한 구성은 이후에 설명한다.
바닥판(35)의 후방에는 바닥판 커버(600)가 결합되도록 돌출된 바닥판 돌출부(36)가 형성된다. 바닥판 돌출부(36)에는 베인(400)을 구동하기 위한 모터(530)가 통과하는 모터 통과홀(37)과, 노즐 어셈블리(300)와 분배 장치(200, 도 3 참조)를 연결하는 유로가 통과하는 유로 통과홀들(38)이 형성된다.
모터(530)는 바닥판 커버(600)의 밑면에 장착되고, 바닥판 커버(600)를 바닥판(35)에서 분리할 때 모터(530)는 모터 통과홀(37)을 통해 바닥판 커버(600)와 함께 인출될 수 있다.
유로 통과홀들(38)에는 구체적으로 바닥판 커버(600)의 호스 연결부들(652)이 통과할 수 있다.
바닥판 커버(600)는 모터(530)의 구동 샤프트(531)가 통과하는 샤프트 통과홀(640)과, 분배 장치(200)에서 연장된 호스들(271a, 271b, 271c)이 결합되도록 아래로 돌출되고 바닥판 돌출부(36)의 유로 통과홀들(38)에 삽입되는 호스 연결부들(652)과, 노즐 어셈블리(300)의 유입구들(315, 333, 343)이 결합되도록 위로 돌출되는 노즐 유입구 연결부들(651a, 651b, 651c)과, 노즐 어셈블리(300)와 레일 어셈블리(430)를 고정하기 위한 체결홀들(620)과, 베인(400)의 회전을 가이드하도록 돌출되는 회전 가이드(610)를 포함한다.
바닥판 커버(600)는 바닥판 돌출부(36)의 상면에 밀착 결합된다. 바닥판 커버(600)의 호스 연결부들(652)에는 고정캡들(680)이 결합되어 바닥판 커버(600)가 바닥판 돌출부(36)에 고정될 수 있다.
바닥판 커버(600)와, 바닥판 돌출부(36)의 사이에는 바닥판 돌출부(36)의 모터 통과홀(37)과, 유로 통과홀들(38)을 통해 세척조(30) 내부의 세척수가 세어 나가지 않도록 제1실링 부재(660)가 마련될 수 있다. 제1실링 부재(660)는 고무 재질로 형성될 수 있다.
바닥판 커버(600)의 밑면에는 베인(400)을 구동시키는 모터(530)가 장착되는 모터 장착부(630)가 마련될 수 있다. 모터(530)의 구동 샤프트(531)는 바닥판 커버(600)의 샤프트 통과홀(640)을 관통하여 세척조(30)의 내부로 돌출될 수 있다. 모터(530)의 구동 샤프트(531)에는 후술하는 구동 풀리(미도시)가 결합되어 구동 샤프트(531)와 함께 회전할 수 있다.
샤프트 통과홀(640)에는 샤프트 통과홀(640)로 세척조(30) 내부의 세척수가 세어 나가지 않도록 제2실링 부재(670)가 마련될 수 있다. 제2실링 부재(670)는 구동 샤프트(531)의 원활한 회전과 함께 실링이 이루어질 수 있도록 하는 메카니컬 실링 장치일 수 있다.
또한, 바닥판 커버(600)의 하면에는 위치 센서(701)가 설치되어 있고, 바닥판 커버(600)의 상면에는 위치 센서(701)가 장착되는 센서 장착부(703)가 마련되어 있다.
위치 센서(701)는 식기 세척기(1)의 동작 시에 베인(400)의 이동을 개시하거나 종료하기 위한 기준 위치를 검출하기 위한 것으로, 홀 센서를 사용할 수 있다.
또한, 위치 센서(701)는 베인(400)에 설치된 영구 자석(702, 도 7 참조)의 위치에 대응되게 설치한다.
또한, 위치 센서(701)는 베인(400)의 이동 중에 영구 자석(702)의 자기장을 검출할 수 있는 위치라면 어디든지 설치할 수 있다. 즉, 베인(400)의 이동 경로에서 베인(400)의 기준 위치를 검출할 수 있는 어떠한 위치에 설치하여도 된다.
바닥판 커버(600)의 상면은 기준 수평면(H, 도 6 참조)을 기준으로 소정의 각도(θ, 도 6 참조)로 경사지게 마련될 수 있다.
이는 바닥판 커버(600) 위에 오물이 쌓이거나 고정 노즐들(330, 340) 측으로 오물이 진행하는 것을 방지하기 위함이다. 본 발명의 일 실시예에 의한 식기 세척기(1)에서 고정 노즐들(330, 340)은 회전 노즐들(311, 313)과는 달리 움직이지 않으므로 오물이 잔존 및 정체될 수 있는 바, 상기와 같은 구조로써 이러한 문제가 발생하는 것을 방지할 수 있다.
바닥판 커버(600)의 상면과 기준 수평면(H)과의 경사각(θ)은 대략 3°이상인 것이 바람직할 수 있다.
또한, 바닥판 커버(600)의 단부는 바닥판(35)과 소정 간격(S, 도 6 참조) 이격되도록 마련될 수 있다. 이는 제조 및 조립상의 오차로 바닥판 커버(600)를 바닥판(35)과 완전히 밀착시키는 것이 어렵고, 오히려 바닥판 커버(600)의 단부와, 바닥판(35)의 사이에 형성되는 미세한 틈새로 오물이 끼는 것을 방지하기 위함이다. 바닥판 커버(600)의 단부와 바닥판(35)과의 간격(S)는 대략 5mm 이상인 것이 바람직할 수 있다.
바닥판 커버(600)에는 레일 어셈블리(430)와, 노즐 어셈블리(300)가 결합될 수 있다. 바닥판 커버(600), 레일 어셈블리(430), 노즐 어셈블리(300)는 체결 부재(690)에 의해 견고하게 고정될 수 있다. 이를 위해 바닥판 커버(600), 노즐 어셈블리(300), 레일 어셈블리(430)에는 각각 대응되는 위치에 체결홀(620, 453, 347)이 형성될 수 있다.
이러한 구조로써, 레일 어셈블리(430)와 노즐 어셈블리(300)가 상호 고정되고, 상호 정렬될 수 있다.
본 발명의 일 실시예에 의한 식기 세척기(1)에서 노즐 어셈블리(300)의 고정 노즐들(330, 340)에서 분사되는 세척수는 직접 식기를 향하지 않고 레일 어셈블리(430)에 결합되는 베인(400)에 의해 반사되어 식기를 향하므로, 고정 노즐들(330, 340)과 레일 어셈블리(430)의 정확한 위치 정렬이 요구되는 바, 이와 같은 결합 구조를 통해 이러한 요구를 충족시킬 수 있다.
한편, 미설명 부호 337, 347은 좌측 고정 노즐(330)과 우측 고정 노즐(340)에 각각 형성된 결합홀이다.
다음, 본 발명의 일 실시예에 의한 식기 세척기의 베인을 도 7 및 도 8을 참조하여 설명한다.
도 7은 본 발명의 일 실시예에 의한 식기 세척기의 베인과 베인 홀더를 도시한 도면이고, 도 8은 본 발명의 일 실시예에 의한 식기 세척기의 베인을 도시한 사시도이다.
도 7 및 도 8에서, 베인(400)은 레일(440)에 수직한 방향으로 길게 연장되도록 마련된다.
베인(400)은 고정 노즐들(330, 340)에서 분사된 세척수를 반사시키는 반사부(401)와, 반사부(401)에서 절곡되는 상부 지지부(410)와, 상부 지지부(410)에서 절곡되는 후방 지지부(411)와, 반사부(401)의 길이 방향 중앙부에 마련되는 캡부(404)와, 바닥판 커버(600)의 회전 가이드(610, 도 12 참조)에 간섭되도록 마련되는 회전 걸림부(409)와, 반사부(401)와 상부 지지부(410)와 후방 지지부(411)의 강도 보강을 위해 마련되는 보강 리브(414)와, 베인 홀더(490)의 상면에 지지되는 수평 지지부(412)와, 베인 홀더(490)의 측면에 지지되는 수직 지지부(413)을 포함한다.
반사부(401)는 세척수를 반사시키도록 경사지게 마련되는 반사면들(402a, 402b)을 포함한다. 반사면들(402a, 402b)은 세척수의 반사 각도를 다르게 하도록 서로 다른 경사를 갖고 길이 방향으로 교대로 배열되는 반사면(402a)과, 반사면(402b)을 포함할 수 있다.
캡부(404)는 베인 홀더(490)와의 결합을 위한 결합홈(405)과, 베인(400)이 바닥판 커버(600)의 회전 가이드(610)에 의해 회전할 때 베인(400)의 회전 범위를 제한하는 회전 스토퍼부(408)를 포함할 수 있다.
베인(400)의 결합홈(405)에는 베인 홀더(490)의 결합 돌기부(493)가 결합될 수 있다. 구체적으로 결합 돌기부(493)의 결합 축부(494)가 베인(400)의 결합홈(405)에 삽입될 수 있다. 결합 축부(494)는 베인(400)을 회전 가능하게 지지할 수 있다.
베인 홀더(490)의 하면에는 영구 자석(702)이 설치되어 있다. 영구 자석(702)은 베인(400)이 이동할 때, 베인(400)과 함께 이동하여 자기장을 생성하는 위치 식별 부재이다.
영구 자석(702)은 바닥판 커버(600)에 고정된 위치 센서(701)와 달리 베인(400)과 함께 이동하여 위치 센서(701)에서 자기장을 검출할 수 있도록 한다.
다음, 본 발명의 일 실시예에 의한 베인의 이동 구간과 미이동 구간 및 회전 동작에 대해 도 9 내지 도 13을 참조하여 설명한다.
도 9 내지 도 11은 본 발명의 일 실시예에 의한 식기 세척기의 베인이 회전하는 동작을 도시한 도면이고, 도 12는 본 발명의 일 실시예에 의한 식기 세척기의 베인 이동 구간에서 베인이 세척수를 반사시키는 동작을 도시한 도면이며, 도 13은 본 발명의 일 실시예에 의한 식기 세척기의 베인 미이동 구간에서 베인이 세척수를 반사시키는 동작을 도시한 도면이다.
도 9 내지 도 13에서, 본 발명의 일 실시예에 의한 식기 세척기(1)는 고정 노즐들(330, 340)에서 분사된 세척수를 베인(400)이 식기 측으로 반사시킨다. 고정 노즐들(330, 340)은 대략 수평 방향으로 세척수를 분사하므로 고정 노즐들(330, 340)과 베인(400)은 대략 상호 수평하게 위치된다. 따라서, 고정 노즐들(330, 340)이 배치된 영역에는 베인(400)이 이동할 수 없게 된다.
즉, 식기 세척기(1)는 베인(400)이 이동할 수 있는 베인 이동 구간(I1)과, 베인(400)이 이동할 수 없는 베인 미이동 구간(I2)을 갖는다.
본 발명의 일 실시예에 의한 식기 세척기(1)의 베인(400)은 베인 미이동 구간(I2)에 수납된 식기를 세척하도록 회전 가능하게 마련될 수 있다.
전술한 바와 같이, 바닥판 커버(600)에는 베인(400)의 이동을 안내하도록 돌출된 회전 가이드(610)가 형성되고, 베인(400)에는 회전 가이드(610)에 간섭되도록 회전 걸림부(409)가 형성된다. 회전 걸림부(409)는 베인(400)의 회전축을 형성함과 동시에 베인(400)에 구동력을 전달하는 베인 홀더(490)의 결합 돌기부(493) 보다 상측에 형성된다.
회전 가이드(610)는 회전 걸림부(409)가 접촉되고 베인(400)이 원활하게 회전될 수 있도록 곡면으로 형성되는 가이드면(611)을 포함한다.
베인(400)이 베인 이동 구간(I1)에서 베인 미이동 구간(I2)에 도달했을 때 베인(400)의 회전 걸림부(409)가 바닥판 커버(600)의 회전 가이드(610)의 가이드면(611)에 간섭되면, 베인(400)은 베인 홀더(490)의 결합 돌기부(493)을 중심으로 회전하게 된다. 따라서, 미이동 구간(I2)의 식기를 향해 세척수를 반사시킬 수 있게 된다.
도 14는 본 발명의 일 실시예에 의한 식기 세척기의 섬프와 코스 필터 및 파인 필터를 도시한 도면이고, 도 15는 본 발명의 일 실시예에 의한 식기 세척기의 섬프와 코스 필터, 파인 필터 및 마이크로 필터를 분해하여 도시한 도면이며, 도 16은 도 14의 Ⅰ-Ⅰ 선에 따른 단면도이고, 도 17은 본 발명의 일 실시예에 의한 식기 세척기의 세척조의 하부를 도시한 평면도이다.
도 14 내지 도 16에서, 본 발명의 일 실시예에 의한 식기 세척기(1)는 세척수를 저수하는 섬프(100)와, 섬프(100)의 세척수를 분사 노즐들(311, 313, 330, 340)로 순환시키는 순환 펌프(51)와, 섬프(100)의 세척수를 오물과 함께 본체(10)의 외부로 배출시키는 배수 펌프(52)와, 세척수에 포함된 오물을 거르기 위한 필터들(120, 130, 140)을 포함한다.
세척조(30)의 바닥판(35)에는 세척수를 섬프(100)로 배수하기 위한 배수구(50, 도 17 참조)가 형성되고, 세척조(30)의 바닥판(35)은 세척수가 자중에 의해 배수구(50) 측으로 안내되도록 배수구(50) 측으로 경사를 가질 수 있다.
섬프(100)는 대략 상면이 개구된 반구 형상을 가질 수 있다. 섬프(100)는 바닥부(101)와, 측벽부(103)와, 바닥부(101)와 측벽부(103)에 형성되고 세척수가 저수되는 저수 챔버(110)와, 순환 펌프(51)가 연결되는 순환 포트(107)와, 배수 펌프(52)가 연결되는 배수 포트(108)를 포함한다.
필터들(120, 130, 140)들은 바닥판(35)의 배수구(50)에 장착되는 파인 필터(120, fine filter)와, 섬프(100)에 장착되는 코스 필터(140, coarse filter) 및 마이크로 필터(130, micro filter)를 포함한다.
코스 필터(140)는 대략 원통 형상을 가질 수 있다.
또한, 코스 필터(140)는 섬프(100)의 측벽부(103)의 내 측면에 장착되어 상대적으로 큰 크기의 오물을 거를 수 있다.
또한, 코스 필터(140)는 마이크로 필터(130)의 통과홀(139)와, 파인 필터의 통과홀(122)을 관통하여 섬프(100)에 장착된다. 코스 필터(140)의 상부는 세척조(30)의 내부로 돌출되고 하부는 섬프(100)의 오물 포집 챔버(111)로 돌출된다. 오물 포집 챔버(111)에 대하여는 후술한다.
파인 필터(120)는 상대적으로 중간 크기 이상의 오물을 거르는 필터부(121)와, 코스 필터(140)가 통과하는 통과홀(122)을 가질 수 있다. 파인 필터(120)는 세척조(30)의 바닥판(35)의 배수구(50) 위에 대략 수평하게 장착될 수 있다. 파인 필터(120)는 세척수가 자중에 의해 통과홀(122) 측으로 안내되도록 경사를 가질 수 있다.
세척조(30)의 세척수는 파인 필터(120)의 경사를 따라 코스 필터(140) 측으로 유동할 수 있다. 다만, 일부의 세척수 및 오물은 파인 필터(120)의 필터부(121)를 통과하여 바로 섬프(100)의 저수 챔버(110)로 유동할 수 있다.
마이크로 필터(130)는 상대적으로 작은 크기 이상의 오물을 거르고 편평한 형상을 갖는 필터부(131)와, 필터부(131)를 지지하는 프레임들(132, 133, 135)과, 코스 필터(140)가 통과하는 통과홀(139)을 가질 수 있다.
프레임들(132, 133, 135)은 상부 프레임(132)과, 하부 프레임(133)과, 측부 프레임들(135)을 포함한다. 마이크로 필터(130)는 하부 프레임(133)이 섬프(100)의 바닥부(101)에 밀착하고, 측부 프레임들(135)이 섬프(100)의 측벽부(103)에 밀착되도록 섬프(100)에 장착된다.
마이크로 필터(130)는 섬프(100)의 저수 챔버(110)를 오물 포집 챔버(111)와, 순환 챔버(112)로 구획할 수 있다. 오물 포집 챔버(111)에는 배수 펌프(52)가 연결되고, 순환 챔버(112)에는 순환 펌프(51)가 연결된다.
전술한 바와 같이, 코스 필터(140)는 그 하부가 오물 포집 챔버(110)로 돌출되도록 마련되므로, 코스 필터(140)를 통과한 세척수 및 세척수에 포함된 오물은 오물 포집 챔버(110)로 유입된다.
오물 포집 챔버(111)로 유입된 세척수는 마이크로 필터(130)를 통과하여 순환 챔버(112)로 유동할 수 있다. 다만, 오물 포집 챔버(111)로 유입된 세척수에 포함된 오물은 마이크로 필터(130)를 통과하지 못하므로 순환 챔버(112)로 유동하지 못하고 그대로 오물 포집 챔버(111)에 남아 있게 된다.
오물 포집 챔버(110)에 포집된 오물은 배수 펌프(52)가 구동되면 세척수와 함께 본체(10)의 외부로 배출될 수 있다.
한편, 오물 포집 챔버(110)의 오물이 마이크로 필터(130)와 섬프(100)의 틈새를 통해 순환 챔버(112)로 유동하는 것을 방지하도록 마이크로 필터(130)는 섬프(100)의 바닥부(101) 및 측벽부(103)에 밀착되어야 한다.
이를 위해 마이크로 필터(130)의 하부 프레임(133)에는 하부 실링홈(134)이 형성되고, 측부 프레임(135)에는 측부 실링 돌기(136)가 형성될 수 있다. 이에 대응하여, 섬프(100)의 바닥부(101)에는 하부 실링홈(134)에 삽입되는 하부 실링 돌기(102)가 형성되고, 섬프(100)의 측벽부(103)에는 측부 실링 돌기(136)가 삽입되는 측부 실링 홈(104)이 형성될 수 있다.
이와 같은 하방 및 측방의 돌기 및 홈 구조로써, 마이크로 필터(130)와 섬프(100)의 실링이 강화될 수 있다.
한편, 코스 필터(140)는 섬프(100)에 수직 하방으로 삽입된 후에 풀림 위치에서 잠금 위치로 회전되어 섬프(100)에 장착될 수 있다.
도 17에서, 코스 필터(140)는 세척조(30)의 양 측벽들(33, 34) 중에 일 측벽에 치우치도록 배치될 수 있다. 즉, 코스 필터(140)는 우측벽(34) 보다 좌측벽(33)에 가깝게 배치될 수 있다. 이러한 코스 필터(140)의 배치를 통해 코스 필터(140)를 분리할 때 레일(440)에 간섭됨이 없이 코스 필터(140)를 용이하게 분리할 수 있게 된다.
다음에는, 본 발명의 일 실시예에 의한 식기 세척기(1)에서 세척조(30)의 바닥 특히, 파인 필터(120)에 남아 있는 오물을 제거하기 위한 제어 방법을 도 18 내지 도 20을 참조하여 설명한다.
도 18은 본 발명의 일 실시예에 의한 식기 세척기의 제어 구성도이다.
도 18에서, 본 발명의 일 실시예에 의한 식기 세척기(1)는 위치 검출부(700), 유량계(705), 입력부(710), 제어부(720), 메모리(730), 구동부(740), 디스플레이부(750) 및 소비 전력 검출부(760)를 더 포함하여 구성된다.
위치 검출부(700)는 베인 홀더(490)에 설치되는 영구 자석(702) 및 영구 자석(702)를 검출하는 위치 센서(701)를 포함한다.
유량계(705)는 세척조(30)에 급수된 세척수의 유량을 감지하여 제어부(720)에 전달한다.
영구 자석(702)은 베인 홀더(490)의 하면 또는 상면에 설치될 수 있다. 즉, 베인 홀더(490)에 설치되어 베인(400)과 함께 이동할 수 있다면 어디든지 위치할 수 있다.
위치 센서(701)는 영구 자석(702)의 위치에 대응하여 설치된다. 다만, 위치 센서(701)는 영구 자석(702)과 달리 베인(400)과 함께 이동하지 않는 위치 즉, 바닥판 커버(600)에 설치한다.
이와 같이 위치 센서(701)는 베인(400)의 이동 중에 영구 자석(702)의 자기장을 검출할 수 있는 위치라면 어디든지 위치할 수 있다. 다시 말해, 위치 센서(701)는 베인(400)의 이동 경로라면 어디든지 위치할 수 있다.
또한, 베인(400)의 이동 경로 중에 위치 센서(701)가 영구 자석(702)의 자기장을 검출하는 베인(400)의 위치가 기준 위치가 된다.
한편, 본 발명의 일 실시예에서는 위치 검출부(700)를 영구 자석(702)과 위치 센서(701)로 구성한 것을 예로 들어 설명하였으나, 본 발명은 이에 한정되는 것은 아니다.
예를 들어, 위치 검출부(700)를 영구 자석(702)과 위치 센서(701) 이외에도 돌출부와 마이크로 스위치(micro switch), 영구 자석과 리드 스위치(reed switch), 적외선 센서 모듈, 용량형 근접 센서, 초음파 센서 모듈 등으로 구성할 수 있다.
먼저, 위치 검출부(700)를 돌출부와 마이크로 스위치로 구성하는 경우, 돌출부는 베인 홀더(490)의 하면에 설치하고, 마이크로 스위치는 바닥판 커버(600)의 하면에 설치할 수 있다. 또한, 베인(400)의 기준 위치(베인이 고정 노즐에 접근하여 베인과 노즐 간의 간격을 최소화한 위치)에 위치하면 돌출부가 마이크로 스위치를 가압함으로써 위치 검출부(700)는 베인(400)이 기준 위치에 위치함을 검출할 수 있다.
다른 예로, 위치 검출부(700)를 적외선 센서 모듈로 구성하는 경우, 적외선 센서 모듈은 바닥판 커버(600)에 설치할 수 있으며, 베인(400)이 기준 위치에 위치하면 적외선 센서 모듈에서 발광된 적외선이 베인(400)에 반사되고, 적외선 센서 모듈은 반사된 반사광을 수광할 수 있다. 이와 같이 적외선 센서 모듈이 반사광을 수광하면 위치 검출부(700)는 베인(400)이 기준 위치에 위치함을 검출할 수 있다.
이외에도, 위치 검출부(700)는 베인(400)에 의한 정전 용량의 변화를 감지하는 용량형 근접 센서, 초음파를 발신하고 베인(400)에 의하여 반사되는 반사파를 검출하는 초음파 센서 모듈 등으로 구성할 수도 있다.
이와 같이, 본 발명의 일 실시예에 의한 식기 세척기(1)에서 영구 자석(702)과 위치 센서(701)를 설치하여 기준 위치를 정의하는 것은, 베인(400)의 안정적인 이동을 위함이다. 구체적으로, 식기 세척기(1)가 베인(400)의 위치를 검출하고, 검출된 베인(400)의 위치를 기준으로 베인(400)을 이동시키기 위함이다.
만일 영구 자석(702)과 위치 센서(701)를 설치하지 않는다면, 식기 세척기(1)는 베인(400)의 위치를 검출하지 못하므로 베인(400)를 이동시키기 위한 명령을 모터(530)에 전달할 수 없다. 또한, 베인(400)의 이동을 위한 기준점이 정의되지 않으면, 베인(400)를 정확한 위치로 이동시킬 수 없게 된다.
이와 같이, 영구 자석(702)과 위치 센서(701)를 이용하여 기준 위치를 정의함으로써 식기 세척기(1)는 베인(400)의 위치를 검출할 수 있으며, 베인(400)이 미리 정해진 이동 경로를 이동하도록 할 수 있고, 베인(400)를 미리 정해진 위치에 위치시킬 수 있다.
다시 말해, 기준 위치는 베인(400)의 이동의 기준점이 될 수 있다. 구체적으로, 식기 세척기(1)는 기준 위치를 기준으로 베인(400)을 이동시킴으로써 베인(400)의 위치를 산출할 수 있다. 예를 들어, 베인(400)을 특정한 위치에 위치시키고자 하는 경우, 식기 세척기(1)는 기준 위치를 기준으로 베인(400)를 이동시킴으로써 베인(400)를 원하는 위치로 이동시킬 수 있다.
이와 같은 이유로, 식기 세척기(1)의 세척 행정 또는 배수 행정이 개시되거나 종료되면 식기 세척기(1)는 베인(400)을 기준 위치에 위치시킨다. 즉, 기준 위치는 베인(400)이 이동을 개시하는 위치 및 베인(400)이 이동을 종료하는 위치가 될 수 있다.
한편, 본 발명의 일 실시예에서는 베인(400)이 기준 위치를 검출하기 위해 위치 검출부(700)를 설치한 것을 예로 들어 설명하였으나, 본 발명은 이에 한정되지 않고 모터(530)를 구동하여 베인(400)을 레일 어셈블리(430)의 최후방으로 이동시키고, 모터(530)를 구동하는 동안 구동 모터(530)에 공급되는 구동 전류를 검출하여 검출된 구동 전류의 크기가 미리 정해진 기준 전류 이상이면 베인(400)이 레일 어셈블리(430)의 최후방(기준 위치)에 위치하는 것으로 판단할 수도 있다.
입력부(710)는 사용자의 조작에 의해 식기 세척기(1)의 급수 행정, 세척 행정, 배수 행정 및 건조 행정 등을 실시하기 위한 명령을 입력한다.
또한, 입력부(710)는 사용자가 선택하는 세척 코스와 세척수 온도, 헹굼 추가 등의 운전 정보를 제어부(720)에 입력하는 것으로, 컨트롤 패널에 배치된 각종 버튼으로 구성될 수 있다.
세척 코스는 세척수를 급수하는 급수 행정, 급수 후 세척수를 식기에 분사시켜 세척하는 세척 행정, 세척수를 식기에 분사하기 전에 세척과 헹굼에 적정한 온도로 가열하는 가열 행정, 세척 후 세척수를 외부로 배출시키는 배수 행정, 세척 후 세척 완료된 식기를 건조시키는 건조 행정으로 이어지는 각 행정의 과정을 순서대로 동작시키는 표준 코스와, 사용자가 상황에 맞게 각 행정을 임의로 선택하여 동작시키는 수동 코스 등을 포함한다.
또한, 입력부(710)에는 상기의 버튼 외에도 조그 다이얼 등을 구비하여 세척 상태를 선택할 수 있으며, 선택된 세척 코스의 운전율과 세척 시간을 조절할 수 있는 변경 버튼을 별도로 구비할 수 있다.
이외에도, 입력부(710)는 키, 스위치, 터치 패드 등으로 구성될 수 있으며, 누름, 접촉, 압력, 회전 등의 조작에 의해 소정의 입력 데이터를 발생하는 모든 장치를 포함한다.
제어부(720)는 입력부(710)로부터 입력된 운전 정보에 따라 급수 행정과 세척 행정, 배수 행정, 건조 행정 등 식기 세척기(1)의 전반적인 동작을 제어하는 마이컴으로서, 위치 검출부(700)에 의해 검출된 베인(400)의 초기 위치에 따라 베인(400)의 이동을 제어한다.
또한, 제어부(720)는 배수 행정 전에 베인(400)을 초기 위치로 이동시키도록 모터(530)를 구동 제어한다.
또한, 제어부(720)는 배수 행정 전에 베인(400)을 초기 위치로 이동시킨 상태에서 세척수를 강하게 분사하여 세척조(30)의 바닥 특히, 파인 필터(120)에 남아 있는 오물을 제거하도록 순환 펌프(51)의 회전 속도(RPM)를 제어한다.
또한, 제어부(720)는 파인 필터(120)에 남아 있는 오물을 제거하기 위한 순환 펌프(51)의 구동 시간을 내장된 타이머(721)에서 카운트하여 기준 시간(세척조의 바닥에 남아 있는 오물을 제거하기 위해 세척수를 분사하기 위한 시간; 약, 3초 이내) 동안 순환 펌프(51)가 구동할 수 있도록 제어한다.
이를 위해, 제어부(720)는 베인(400)이 이동하여 바닥판 커버(600)에 접근할 때에 베인(400)과 노즐 어셈블리(300) 간의 간격을 최소화한 위치 즉, 기준 위치에 도달하면 모터(530)를 정지시키고, 순환 펌프(51)를 기준 시간(약, 3초 이내) 동안 일정 속도(약, 2600RPM)로 구동시켜 베인(400)에 의해 반사되는 세척수가 세척조(30)의 후벽(32)을 타격할 수 있도록 한다(도 13 참조).
세척조(30)의 후벽(32)을 타격한 세척수는 세척조(30)의 바닥판(35)을 따라 빠르고 강한 물살을 형성하고, 빠르고 강하게 형성된 물살은 세척조(30)의 바닥에 장착된 파인 필터(120)로 유동하여 파인 필터(120)에 남아 있는 오물을 제거할 수 있게 된다.
또한, 제어부(720)는 순환 펌프(51)의 구동 중에 소비 전력의 변화량을 이용하여 필터(120, 130, 140)의 막힘을 검출하고, 필터(120, 130, 140)의 막힘이 검출되면 세척 행정에 관계없이 필터(120, 130, 140)의 막힘을 해제하는 필터 막힘 해제 알고리즘을 진행한다.
필터 막힘 해제 알고리즘은 예비 세척, 본 세척 등의 세척 행정에 관계없이 필터(120, 130, 140)의 막힘이 검출되면, 소량(약, 700~900cc)의 물을 이용하여 필터(120, 130, 140)를 막고 있는 오물을 제거하도록 한다.
소량(약, 700~900cc)의 물을 급수한 후에 순환 펌프(51)를 제3회전 속도(약, 1200~1400RPM)로 구동시켜 세척수가 세척조(30)의 바닥판(35)을 따라 강하게 유동하도록 하고, 바닥판(35)을 따라 유동하는 물살에 의해 필터(120, 130, 140)의 막힘을 해제하도록 한다. 이에 대해서는 도 21a 내지 도 27b를 참조하여 상세히 설명하기로 한다.
700~900cc는 섬프(100)의 내측을 채울 수 있는 소량의 세척수량으로서, 정상 행정 시에 급수되는 물의 양의 1/4 이하로 적게 급수한다. 그 이유는 필터(120, 130, 140)가 막힌 상황에서 세척수를 섬프(100)의 수용량 이상으로 급수하게 되면 노즐(330, 340)에서 분사되는 세척수가 필터(120, 130, 140)를 직접 타격하는 것이 아니라 수면을 타격하게 되어 필터(120, 130, 140)를 막고 있는 오물을 제거하기 어렵기 때문에 필터(120, 130, 140)의 막힘을 해제하기 위해 급수되는 물의 양을 섬프(100)를 채울 수 있는 정도의 양으로 조절한다.
또한, 제3회전 속도(약, 1200~1400RPM)는 노즐(330, 340)에서 분사되는 세척수가 세척조(30)의 바닥면 중앙에 위치한 필터(120, 130, 140) 쪽으로 향하도록 하기 위한 속도로서, 정상 행정 시에 노즐(330, 340)에서 분사되는 세척수가 도어(11) 끝까지 갈 수 있는 회전 속도(약, 2600RPM 이상)의 절반 이하의 속도이다. 필터(120, 130, 140)가 막힌 상황에서 순환 펌프(51)를 제1회전 속도(약, 2600RPM) 이상으로 구동시키게 되면 노즐(330, 340)에서 분사되는 세척수가 필터(120, 140)를 직접 타격하는 것이 아니라 도어(11)를 타격하게 되어 필터(120, 130, 140)를 막고 있는 오물을 제거하기 어렵기 때문이다.
메모리(730)는 식기 세척기(1)의 동작을 제어하기 위한 제어데이터, 식기 세척기(1)의 동작 제어 중 사용되는 기준데이터, 식기 세척기(1)가 소정의 동작을 수행하는 중에 발생되는 동작데이터, 식기 세척기(1)가 소정 동작을 수행하도록 입력부(710)에 의해 입력된 설정데이터 등과 같은 설정 정보와, 식기 세척기(1)가 특정 동작을 수행한 횟수, 식기 세척기(1)의 모델 정보를 포함하는 사용 정보와, 식기 세척기(1)의 오동작 시 오동작의 원인 또는 오동작 위치를 포함하는 고장 정보가 저장될 수 있다.
이러한 메모리(730)는 데이터를 영구적으로 저장하는 자기 디스크(magnetic disc), 반도체 디스크(solid state disk) 등의 비휘발성 메모리(미도시) 뿐만 아니라 식기 세척기(1)의 동작을 제어하는 과정에서 생성되는 임시 데이터를 임시적으로 저장하는 D-램, S-램 등의 휘발성 메모리(미도시)를 포함할 수 있다.
구동부(740)는 제어부(720)의 구동 제어 신호에 따라 식기 세척기(1)의 동작에 관련된 급수 밸브(49), 순환 펌프(51), 배수 펌프(52), 분배 장치(200), 모터(530) 등을 구동시킨다.
급수 밸브(49)는 급수 행정에서 급수관(미도시)을 통해 세척조(30) 내부로 공급되는 물(세척수)의 급수를 제어한다.
디스플레이부(750)는 제어부(720)의 표시 제어 신호에 따라 식기 세척기(1)의 동작 상태를 표시함과 더불어, 사용자 인터페이스를 통해 입력된 터치 정보를 인식하여 사용자의 조작 상태를 표시한다.
또한, 디스플레이부(750)는 텍스트 표기가 가능한 LCD UI의 경우, 텍스트로 식기 세척기(1)의 동작 상태를 표시하여 사용자가 적절한 조치를 취할 수 있도록 구성할 수 있다.
또한, 디스플레이부(750)는 LED UI의 경우, 점등 또는 점멸, 지속 시간 차이를 이용하여 사용자가 식기 세척기(1)의 이상 상태를 인지할 수 있도록 구성할 수도 있다.
소비 전력 검출부(760)는 순환 펌프(51)의 구동 중에 순환 펌프(51)의 소비 전력이 변화하는 변화량을 검출하고, 검출된 소비 전력 변화량을 제어부(720)에 전달하여 파인 필터(120)의 막힘을 검출한다.
파인 필터(120)에서 필터링하여 세척을 진행할 수 있는 양보다 많은 양의 오물이 식기에서 분리될 경우, 파인 필터(120)는 일시적으로 막힘 현상이 발생한다. 특히 건더기가 큰 스파게티나 시금치, 곡물 찌꺼기 등의 오물이 파인 필터(120) 쪽으로 한꺼번에 모일 경우 파인 필터(120)는 일시적으로 막힘 현상이 발생할 수 있다. 이러한 파인 필터(120)의 막힘 현상은 예비 세척이나 본 세척의 세척 행정에서 주로 발생하며, 예비 세척에서 발생할 확률이 높다.
파인 필터(120)가 막히게 되면 순환 펌프(51)의 구동에 의해 순환되는 세척수의 순환량이 줄어들고, 이에 따라 순환 펌프(51)의 소비 전력이 감소하게 된다. 소비 전력 검출부(760)는 이러한 순환 펌프(51)의 소비 전력 변화량을 검출하여 파인 필터(120)의 막힘을 검출하는 수단으로 이용할 수 있다.
이하, 본 발명의 일 실시예에 의한 식기 세척기 및 그 제어방법의 동작 과정 및 작용 효과를 설명한다.
먼저, 식기 세척기(1)의 배수 행정 전에 베인(400)을 기준 위치로 위치시킨 상태에서 세척수를 분사하여 세척조(30)의 바닥 특히, 파인 필터120)에 남아 있는 오물을 제거하기 위한 방법을 도 19를 참조하여 설명한다.
도 19는 본 발명의 일 실시예에 의한 식기 세척기의 필터 세척을 위한 제1제어 알고리즘을 나타낸 동작 순서도이다.
도 19에서, 사용자가 세척조(30) 내부의 바스켓들(12a, 12b)에 세척하고자 하는 식기를 수납하고 세척 코스(예를 들어, 표준 코스)를 선택하면, 사용자가 선택한 코스 정보가 입력부(710)를 통해 제어부(720)에 입력된다.
따라서, 제어부(720)는 입력부(710)로부터 입력된 코스 정보에 따라 식기 세척기(1)의 예비 세척, 본 세척, 예비 헹굼, 마지막 헹굼 등으로 이어지는 일련의 행정을 순서대로 진행하기 시작한다. 이때, 제어부(720)는 각 행정이 진행되는 전체 세척 시간을 디스플레이부(750)를 통해 표시하여 사용자가 세척 진행 시간을 쉽게 확인할 수 있도록 한다.
이어서, 제어부(720)는 일련의 행정 진행에 따라 현재 진행 중인 행정이 배수 행정인가를 판단한다(800).
단계 800의 판단 결과, 배수 행정이면 제어부(720)는 베인(400)이 기준 위치에 위치하는가를 판단한다(802). 베인(400)이 기준 위치에 위치하는가를 판단하는 것은, 베인(400)이 레일 어셈블리(430)의 최후방 즉, 고정 노즐(330, 340)에 근접하여 위치하는 제2위치에 위치하였는가를 판단하는 것이다. 이는 베인(400)이 이동하여 고정 노즐(330, 340)에 근접할 때에 베인 홀더(490)의 하면에 설치된 영구 자석(702)이 베인(400)의 이동과 함께 이동하고, 바닥판 커버(600)의 하면에 설치된 위치 센서(701)는 영구 자석(702)에서 생성된 자기장을 검출하여 베인(400)이 기준 위치(고정 노즐에 근접하여 위치하는 제2위치)에 위치함을 검출할 수 있게 된다.
베인(400)을 기준 위치(제2 위치)로 이동시키는 이유는 베인(400)이 고정 노즐(330, 340)에 근접하여 베인(400)과 고정 노즐(330, 340) 간의 간격을 최소화하기 위함이다.
단계 802의 판단 결과, 베인(400)이 기준 위치에 위치하지 않으면 제어부(720)는 구동부(740)를 통해 모터(530)를 구동시켜 베인(400)을 기준 위치로 이동시킨다(804).
베인(400)이 기준 위치로 이동하면, 제어부(720)는 모터(530)의 구동을 정지시켜 베인(400)의 이동을 중지시킨다(806).
한편, 단계 802의 판단 결과, 베인(400)이 기준 위치에 위치하면 제어부(720)는 단계 806으로 진행하여 베인(400)의 이동을 중지시킨다.
이와 같이, 베인(400)이 기준 위치에 위치하면 베인(400)의 회전 걸림부(409)가 바닥판 커버(600)의 회전 가이드(610)의 가이드면(611)에 간섭되면서 베인(400)은 베인 홀더(490)의 결합 돌기부(493)를 중심으로 회전하게 된다.
따라서, 도 13에 도시한 바와 같이, 베인(400)의 반사각이 뒤쪽으로 젖혀지면서 고정 노즐(330, 340)에서 분사되는 세척수의 분사 방향이 세척조(30)의 후벽(32) 쪽을 향하도록 베인(400)이 고정 노즐(330, 340) 방향으로 회전하게 된다(807).
이 상태에서, 제어부(720)는 순환 펌프(51)를 제1회전 속도(약, 2600RPM)로 구동시켜 세척수가 세척조(30)의 후벽(32) 쪽으로 강하게 분사되도록 한다(808).
이에 따라, 세척조(30)의 후벽(32) 쪽으로 강하게 분사된 세척수는 세척조(30)의 바닥판(35)을 따라 빠르고 강한 물살을 형성하고, 빠르고 강하게 형성된 물살은 세척조(30)의 바닥을 흐르면서 파인 필터(120)에 남아 있는 오물을 코스 필터(140) 쪽으로 유동시킨다. 코스 필터(140) 쪽으로 유동되는 오물은 섬프(100) 내의 오물 포집 챔버(111)로 포집되어 세척조(30)의 바닥 특히, 파인 필터(120)에 남아 있는 오물을 제거할 수 있게 된다.
이때, 제어부(720)는 순환 펌프(51)의 구동 시간을 카운트하여 기준 시간(세척조의 바닥에 남아 있는 오물을 제거하기 위해 세척수를 분사하기 위한 시간; 약, 3초 이내)이 경과하였는가를 판단한다(810).
단계 810의 판단 결과, 기준 시간이 경과하지 않으면 제어부(720)는 단계 808로 피드백하여 기준 시간이 경과할 때까지 순환 펌프(51)를 제1회전 속도(약, 2600RPM)로 구동시킨다.
한편, 단계 810의 판단 결과, 기준 시간이 경과하면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척수의 분사를 중지한다(812).
이어서, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)를 구동시켜 세척수와 함께 오물 포집 챔버(111)에 포집된 오물을 본체(10)의 외부로 배출시킨 후(814), 식기를 건조하기 위한 건조 행정을 진행한다(816).
다음에는, 식기 세척기(1)의 배수 행정 전에 베인(400)의 위치와 관계없이 세척수를 분사하여 세척조(30)의 바닥 특히, 파인 필터120)에 남아 있는 오물을 제거하기 위한 방법을 도 20을 참조하여 설명한다.
도 20은 본 발명의 일 실시예에 의한 식기 세척기의 필터 세척을 위한 제2제어 알고리즘을 나타낸 동작 순서도이다.
도 20에서, 사용자가 세척조(30) 내부의 바스켓들(12a, 12b)에 세척하고자 하는 식기를 수납하고 세척 코스(예를 들어, 표준 코스)를 선택하면, 사용자가 선택한 코스 정보가 입력부(710)를 통해 제어부(720)에 입력된다.
따라서, 제어부(720)는 입력부(710)로부터 입력된 코스 정보에 따라 식기 세척기(1)의 예비 세척, 본 세척, 예비 헹굼, 마지막 헹굼 등으로 이어지는 일련의 행정을 순서대로 진행하기 시작한다. 이때, 제어부(720)는 각 행정이 진행되는 전체 세척 시간을 디스플레이부(750)를 통해 표시하여 사용자가 세척 진행 시간을 쉽게 확인할 수 있도록 한다.
이어서, 제어부(720)는 일련의 행정 진행에 따라 현재 진행 중인 행정이 배수 행정인가를 판단한다(900).
단계 900의 판단 결과, 배수 행정이면 제어부(720)는 순환 펌프(51)를 제2회전 속도(약, 1200RPM)로 구동시켜 세척수가 세척조(30)의 바닥판(35) 쪽으로 약하게 분사되도록 한다(902). 제2회전 속도는 제1회전 속도의 약, 1/2 속도로 순환 펌프(51)를 구동시키는 것이다. 이때 순환 펌프(51)를 제1회전 속도(약, 2600RPM)보다 느린 제2회전 속도(약, 1200RPM)로 구동시키는 것은, 노즐(330, 340)에서 분사되는 세척수가 도어(11) 까지 가지 않고 필터(120, 130, 140)가 위치한 세척조(30)의 바닥판(35) 중앙으로 분사되도록 하여 세척수가 바닥판(35)을 따라 흐르면서 파인 필터(120)에 남아 있는 오물을 코스 필터(140) 쪽으로 유동시킨다. 코스 필터(140) 쪽으로 유동되는 오물은 섬프(100) 내의 오물 포집 챔버(111)로 포집되어 세척조(30)의 바닥 특히, 파인 필터(120)에 남아 있는 오물을 제거할 수 있게 된다.
이때, 제어부(720)는 순환 펌프(51)의 구동 시간을 카운트하여 기준 시간(세척조의 바닥에 남아 있는 오물을 제거하기 위해 세척수를 분사하기 위한 시간; 약, 3초 이내)이 경과하였는가를 판단한다(904).
단계 904의 판단 결과, 기준 시간이 경과하지 않으면 제어부(720)는 단계 902로 피드백하여 기준 시간이 경과할 때까지 순환 펌프(51)를 제2회전 속도(약, 1200RPM)로 구동시킨다.
한편, 단계 904의 판단 결과, 기준 시간이 경과하면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척수의 분사를 중지한다(906).
이어서, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)를 구동시켜 세척수와 함께 오물 포집 챔버(111)에 포집된 오물을 본체(10)의 외부로 배출시킨 후(908), 식기를 건조하기 위한 건조 행정을 진행한다(910).
도 19 및 도 20에서는 배수 행정 시에 베인(400)의 회전에 의해 또는 베인(400)의 위치와 관계없이 세척조(30)의 바닥판(35)으로 빠르고 강한 물살이 흐르도록 하여 파인 필터(120)에 남아 있는 오물을 제거하는 방법을 설명하였으나, 이하에서는 예비 세척, 본 세척 등의 세척 행정 중에 섬프(100) 상단의 파인 필터(120)에 과도한 양의 오물이 쌓여 파인 필터(120)를 막고 있는 경우 파인 필터(120)를 막고 있는 오물을 제거하기 위한 방법에 대해 설명하고자 한다.
식기 세척기(1)의 예비 세척, 본 세척 등의 세척 행정 중에는 식기에 묻어 있는 많은 오물이 분사되는 세척수에 의해 식기에서 분리되어 식기 세척기(1)의 바닥에 있는 필터(120, 130, 140) 쪽으로 모이는 과정이 반복되어 세척 행정이 진행된다.
이때, 필터(120, 130, 140)에서 필터링하여 세척을 진행할 수 있는 양보다 많은 양의 오물이 식기에서 분리될 경우, 필터(120, 130, 140)는 일시적으로 막힘 현상이 발생할 수 있다.
이에 따라, 세척수가 필터(120, 130, 140)를 원활하게 통과하지 못함으로써 섬프(100)에 저수되는 물의 양이 감소하게 되고, 식기 세척을 위해 순환되는 세척수의 순환량이 줄어들어 정상적인 세척이 이루어지지 못하게 된다.
이에, 본 발명에서는 식기에서 많은 양의 오물이 분리되어 필터(120, 130, 140)로 모이게 되면 필터(120, 130, 140)의 막힘 현상에 의해 정상적인 세척이 이루어지지 못하는 경우에 대한 필터 막힘 해제 방법을 도 21a 내지 도 24b을 참조하여 설명한다.
본 발명의 실시예를 설명하기에 앞서, 필터(120, 130, 140)의 막힘은 세척 행정과 헹굼 행정에서 발생할 수 있으며, 식기에서 오물이 분리되는 예비 세척 행정 또는 본 세척 행정에서 발생할 가능성이 상대적으로 높으므로, 본 발명의 실시예에서는 예비 세척 또는 본 세척의 세척 행정에서 필터(120, 130, 140)의 막힘을 검출하는 과정을 예로 들어 설명하기로 한다.
먼저, 예비 세척 또는 본 세척의 세척 행정을 진행하는 중에 필터 막힘이 검출되면 진행 중인 세척 행정을 중지하고 필터 막힘 해제 알고리즘을 진행하다가, 필터 막힘 해제 알고리즘이 완료되면 중지한 세척 행정을 처음부터 다시 진행하는 방법을 도 21a 및 도 21b와, 도 22a 내지 도 22k를 참조하여 설명한다.
도 21a 및 도 21b는 본 발명의 다른 실시예에 의한 식기 세척기의 필터 막힘 해제를 위한 제1제어 알고리즘을 나타낸 동작 순서도이고, 도 22a 내지 도 22k는 본 발명의 다른 실시예에 의한 식기 세척기의 필터 막힘을 해제하는 과정을 나타낸 도면이다.
도 21a 및 도 21b에서, 사용자가 세척조(30) 내부의 바스켓들(12a, 12b)에 세척하고자 하는 식기를 수납하고 세척 코스(예를 들어, 표준 코스)를 선택하면, 사용자가 선택한 코스 정보가 입력부(710)를 통해 제어부(720)에 입력된다.
따라서, 제어부(720)는 입력부(710)로부터 입력된 코스 정보에 따라 식기 세척기(1)의 예비 세척, 본 세척, 예비 헹굼, 마지막 헹굼 등으로 이어지는 일련의 행정을 순서대로 진행하기 시작한다. 이때, 제어부(720)는 각 행정이 진행되는 전체 세척 시간을 디스플레이부(750)를 통해 표시하여 사용자가 세척 진행 시간을 쉽게 확인할 수 있도록 한다.
제어부(720)는 이러한 일련의 행정 진행에 따라 현재 진행 중인 행정이 예비 세척 또는 본 세척의 세척 행정인가를 판단한다(1000).
단계 1000의 판단 결과, 세척 행정이면 제어부(720)는 세척 행정에 필요한 물(세척수)을 공급하기 위해 구동부(740)를 통해 급수밸브(49)를 구동시킨다.
급수밸브(49)가 구동되면, 급수밸브(49)가 열리면서 외부의 급수관을 통해 공급된 세척수가 세척조(30) 내부로 급수되고, 세척조(30) 내부로 급수되는 세척수는 세척조(30) 하부에 마련된 섬프(100) 내부로 집수된다(1002).
세척 행정을 위한 세척수 급수 시, 세척조(30)에 급수되는 세척수의 유량을 유량계(705)에서 검출하여 미리 정해진 제1급수량(세척 행정에 필요한 세척수량, 약 3400~4000cc)인가를 판단한다(1004).
단계 1004의 판단 결과, 세척수의 유량이 제1급수량이 아니면 제어부(720)는 세척조(30)에 급수되는 세척수의 유량이 제1급수량에 도달할 때까지 세척수 급수를 계속한다.
한편, 단계 1004의 판단 결과, 세척수의 유량이 제1급수량이면 제어부(720)는 급수밸브(49)의 구동을 정지시켜 세척수 급수를 정지한다.
제1급수량까지 세척수 급수가 완료되면, 제어부(720)는 순환 펌프(51)를 정해진 회전 속도(세척 행정에 필요한 펌핑력을 얻기 위한 회전 속도, 약 3000~3400RPM)로 구동시켜 섬프(100)에 저수된 세척수를 펌핑한다. 순환 펌프(51)에 의해 펌핑된 세척수는 분배 장치(200)를 통해 회전 노즐들(311, 313), 좌측 고정 노즐(330), 우측 고정 노즐(340)로 분배된다. 순환 펌프(51)의 펌핑력에 의해 노즐들(311, 313, 330, 340)에서 세척수가 고압으로 분사되고, 식기에 묻어 있는 많은 오물이 분사되는 세척수에 의해 식기에서 분리되어 식기 세척기(1)의 바닥에 있는 필터(120, 130, 140) 쪽으로 모이는 과정이 반복되어 세척 행정이 진행된다(1006).
이때, 필터(120, 130, 140)에서 필터링하여 세척을 진행할 수 있는 양보다 많은 양의 오물이 식기에서 분리될 경우, 과도한 양의 오물이 필터(120, 130, 140)에 쌓이면서 필터(120, 130, 140)가 막히는 현상이 발생할 수 있다. 이러한 필터(120, 130, 140)의 막힘 현상은 주로 예비 세척에서 발생할 확률이 높다.
필터(120, 130, 140)가 막히게 되면 세척수가 필터(120, 130, 140)를 원활하게 통과하지 못함으로써 섬프(100)에 저수되는 세척수의 양이 감소하게 되고, 순환 펌프(51)의 구동에 따라 식기 세척을 위해 순환되는 세척수의 순환량이 줄어들고, 이에 따라 순환 펌프(51)의 소비 전력이 감소하게 된다. 순환 펌프(51)의 구동 중에 순환 펌프(51)의 소비 전력이 변화하는 변화량을 소비 전력 검출부(760)에서 검출하여 제어부(720)에 전달한다.
따라서, 제어부(720)는 순환 펌프(51)의 구동 중에 소비 전력의 변화량을 이용하여 필터(120, 130, 140)의 막힘을 검출한다(1008).
단계 1008의 판단 결과, 필터(120, 130, 140)의 막힘이 검출되지 않으면 제어부(720)는 이후의 행정을 계속해서 진행한다(1009).
한편, 단계 1008의 판단 결과, 필터(120, 130, 140)의 막힘이 검출되면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척 행정을 중지한다(1010).
세척 행정을 중지한 후에, 제어부(720)는 필터(120, 130, 140)의 막힘을 해제하기 위한 필터 막힘 해제 알고리즘을 진행한다.
필터 막힘 해제 알고리즘의 진행을 위해, 먼저 제어부(720)는 구동부(740)를 통해 배수 펌프(52)를 구동시켜 섬프(100)에 남아 있는 오물과 세척수를 완전히 배수하는 1차 배수 동작을 진행한다(1012).
1차 배수 동작은 오물 포집 챔버(111)에 포집된 오물과 세척수를 함께 본체(10)의 외부로 배출시키는 배수 동작을 통해 마이크로 필터(130)의 막힘을 1차로 해제하는 효과를 얻을 수 있다(도 22a 및 도 22b참조).
1차 배수 후에, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)의 구동을 정지하고, 급수밸브(49)를 구동시켜 필터(120, 130, 140)의 막힘을 해제할 수 있는 세척수를 세척조(30) 내부로 급수한다(1014, 도 22c 참조).
필터(120, 130, 140)의 막힘 해제를 위해 세척수가 급수될 때에, 급수되는 세척수에 의해 필터(120, 130, 140)에 모여 있는 오물이 조금씩 씻겨지고, 세척조(30)에 급수되는 세척수의 유량을 유량계(705)에서 검출하여 미리 정해진 제2급수량(섬프 내측을 채울 수 있는 소량의 세척수량, 약 700~900cc)인가를 판단한다(1016).
단계 1016의 판단 결과, 세척수의 유량이 제2급수량이 아니면 제어부(720)는 세척조(30)에 급수되는 유량이 제2급수량에 도달할 때까지 세척수 급수를 계속한다.
한편, 단계 1016의 판단 결과, 세척수의 유량이 제2급수량이면 제어부(720)는 급수밸브(49)를 정지시켜 세척수 급수를 정지한다.
제2급수량까지 세척수 급수가 완료되면, 제어부(720)는 구동부(740)를 통해 모터(530)를 구동시켜 베인(400)을 기준 위치인 제2위치에서 일정 시간(약, 7초) 동안 전면 이동시킨 후 정지시킨다(1018, 도 22d 참조).
베인(400)을 제2위치에서 일정 시간(약, 7초) 동안 전면 이동시킨 제1위치는 베인(400)이 도어(11)에 근접하여 베인(400)과 노즐(330, 340) 간의 간격을 최대화한 위치이다.
베인(400)을 전면 이동시키는 이유는, 노즐들(330, 340)에서 세척수를 분사할 때에 세척수가 베인(400)에 부딪쳐 분사 방향이 변경되지 않고 필터(120, 130, 140) 쪽으로 분사될 수 있도록 하기 위함이다. 즉, 필터(120, 130, 140)에 쌓여 있는 오물을 효과적으로 제거할 수 있도록 노즐들(330, 340)로부터 베인(400)의 간격을 띄우기 위한 것이다.
베인(400)의 전면 이동 후에, 제어부(720)는 순환 펌프(51)를 제3회전 속도(약, 1200~1400RPM)로 구동시켜 노즐들(330, 340)에서 분사되는 세척수가 섬프(100) 상단의 필터(120, 130, 140) 쪽으로 분사되도록 한다(1020, 도 22e 및 도 22f 참조). 이때, 노즐들(330, 340)에서 분사되는 세척수는 필터(120, 130, 140)를 왔다 갔다 하면서 필터(120, 130, 140)에 있는 오물을 씻어 준다.
도 22c에서 보듯이, 급수되는 세척수에 의해 오물이 조금이라도 씻기게 되면, 점차 대부분의 세척수가 섬프(100)로 모일 수 있어 알고리즘 초기에는 필터(120, 130, 140) 멀리까지 세척수가 분사되다가, 분사되는 세척수에 의해 오물이 흩어지면서 섬프(10))로 모이는 세척수의 흐름 속도가 줄어들어 필터(120, 130, 140) 앞부분으로 약하게 세척수가 분사된다. 다시 이러한 과정이 반복되면서 필터(120, 130, 140)의 앞부분에서 멀리까지 세척수 분사가 가능해진다. 즉, 필터(120, 130, 140)의 막힘이 조금씩 해소됨에 따라 섬프(100)에 모이는 세척수의 양이 증가하면서 세척수의 분사 세기에 변화가 생겨 필터(120, 130, 140)에 모여 있는 오물을 효과적으로 제거할 수 있게 된다.
한편, 노즐들(330, 340)에서 분사되는 세척수가 섬프(100) 상단의 필터(120, 130, 140) 쪽으로 분사되도록 하기 위해서는 노즐들(330, 340)에 마련된 6개의 분사홀들(331, 341)에서 동시에 세척수를 분사하거나 일부의 분사홀들(331, 341)에서 개별적으로 세척수를 분사하도록 구성할 수 있다. 개별적으로 세척수를 분사하는 경우에는 6개의 분사홀들(331, 341) 중에서 필터(120, 130, 140) 쪽에 가까이 위치한 분사홀들(331, 341)에서 세척수를 분사하도록 구성할 수 있다. 또한, 6개의 분사홀들(331, 341) 중에서 가장 좌측 및 우측에서 분사되는 세척수에 의해 가장자리로 흩어진 오물이 필터(120, 130, 140) 쪽으로 모아진다.
한편, 본 발명의 실시예에서는 필터(120, 130, 140)의 상단에 세척수를 효율적으로 분사하기 위해 노즐들(330, 340)에서 세척수를 분사하는 방법에 대하여 설명하였으나, 본 발명은 이에 한정되지 않고 세척조(30)의 일 측면에서 여러 개의 노즐을 이용하여 세척수를 분사하거나 두 개 이상의 측면 또는 그 만나는 점에서 세척수를 분사하는 별도의 노즐을 구성하여 필터(120, 130, 140)의 상단에 세척수를 효율적으로 분사하는 방법을 구현하여 본 발명과 동일한 목적 및 효과를 달성할 수 있음은 물론이다.
이때, 제어부(720)는 순환 펌프(51)의 구동 시간을 카운트하여 제1시간(세척수 분사를 통해 필터의 상단에 쌓여 있는 오물을 오물 포집 챔버로 이동시키기 위한 시간; 약, 30초)이 경과하였는가를 판단한다(1022).
단계 1022의 판단 결과, 제1시간이 경과하지 않으면 제어부(720)는 단계 1020로 피드백하여 제1시간이 경과할 때까지 순환 펌프(51)를 제3회전 속도(약, 1200~1400RPM)로 구동시킨다.
한편, 단계 1022의 판단 결과, 제1시간이 경과하면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척수의 분사를 중지한다(1024). 이러한 세척수의 분사 동작을 통해 필터(120, 130, 140)의 상단에 쌓여 있는 일부의 오물이 오물 포집 챔버(111)로 이동하여 필터(120, 130, 140)의 막힘을 어느 정도 해제할 수 있는 1차 필터 세척 동작이 진행된다.
이어서, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)를 구동시켜 섬프(100)에 남아 있는 오물과 세척수를 일정 시간(약, 30초) 동안 배수하는 2차 배수 동작을 진행한다(1026).
2차 배수 동작은 오물 포집 챔버(111)에 포집된 오물과 세척수를 함께 본체(10)의 외부로 배출시키는 배수 동작을 통해 마이크로 필터(130)의 막힘을 2차로 해제하는 효과를 얻을 수 있다(도 22g 참조).
2차 배수 후에, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)의 구동을 정지하고, 급수밸브(49)를 구동시켜 필터(120, 130, 140)의 막힘을 해제할 수 있는 세척수를 세척조(30) 내부로 급수한다(1028, 도 22h 참조).
필터(120, 130, 140)의 막힘 해제를 위한 세척수 급수 시, 세척조(30)에 급수되는 세척수의 유량을 유량계(705)에서 검출하여 제2급수량인가를 판단한다(1030).
단계 1030의 판단 결과, 세척수의 유량이 제2급수량이 아니면 제어부(720)는 세척조(30)에 급수되는 유량이 제2급수량에 도달할 때까지 세척수 급수를 계속한다.
한편, 단계 1030의 판단 결과, 세척수의 유량이 제2급수량이면 제어부(720)는 급수밸브(49)를 정지시켜 세척수 급수를 정지한다.
제2급수량까지 세척수 급수가 완료되면, 제어부(720)는 순환 펌프(51)를 제3회전 속도(약, 1200~1400RPM)로 구동시켜 노즐들(330, 340)에서 분사되는 세척수가 섬프(100) 상단의 필터(120, 130, 140) 쪽으로 분사되도록 한다(1032, 도 22i 및 도 22j 참조).
이때, 제어부(720)는 순환 펌프(51)의 구동 시간을 카운트하여 제2시간(노즐에서 분사되는 세척수가 필터의 상단에 직접 분사되어 필터의 막힘을 해제할 수 있는 시간; 약, 90초)이 경과하였는가를 판단한다(1034).
단계 1034의 판단 결과, 제2시간이 경과하지 않으면 제어부(720)는 단계 1032로 피드백하여 제2시간이 경과할 때까지 순환 펌프(51)를 제3회전 속도(약, 1200~1400RPM)로 구동시킨다.
한편, 단계 1034의 판단 결과, 제2시간이 경과하면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척수의 분사를 중지한다(1036). 이러한 세척수의 직접 분사 동작을 통해 파인 필터(120)의 상단에 쌓여 있는 상당량의 오물이 코스 필터(140)로 이동하여 파인 필터(120)의 상단 막힘을 해제할 수 있는 2차 필터 세척 동작이 진행된다.
제어부(720)는 구동부(740)를 통해 배수 펌프(52)를 구동시켜 섬프(100)에 남아 있는 오물과 세척수를 완전히 배수하는 3차 배수 동작을 진행한다(1038).
3차 배수 동작은 오물 포집 챔버(111)에 포집된 오물과 세척수를 함께 본체(10)의 외부로 배출시키는 배수 동작을 통해 마이크로 필터(130)의 막힘을 3차로 해제하는 효과를 얻을 수 있다(도 22k 참조).
3차 배수가 끝나면, 필터 막힘 해제 알고리즘이 완료되고 제어부(720)는 구동부(740)를 통해 모터(530)를 구동시켜 베인(400)을 기준 위치로 이동시킨 후에(1040), 단계 1010에서 중지한 세척 행정을 처음부터 다시 진행한다(1042). 세척 행정을 처음부터 다시 진행할 때에는 단계 1012에서 단계 1038의 필터 막힘 해제 알고리즘을 통해 필터(120, 130, 140)의 막힘 없이 이후의 정상 세척 동작을 진행할 수 있게 된다.
이러한 필터 막힘 해제 알고리즘의 전체 진행 시간은 약 3분~3분 30초 가량이 소요된다.
한편, 본 발명의 실시예에서는 예비 세척 또는 본 세척의 세척 행정을 진행하는 중에 필터 막힘이 검출되면 도 21a 및 도 21b에 도시한 필터 막힘 해제 알고리즘을 진행하는 것을 예로 들어 설명하였으나, 본 발명은 이에 한정되지 않고 베인(400)의 회전에 의해 세척조(30)의 후벽을 타격하는 알고리즘(도 19 참조)을 함께 진행하여 필터(120, 130, 140)의 막힘을 해제하는 것도 가능함은 물론이다.
또한, 도 21a 및 도 21b에서는 예비 세척 또는 본 세척의 세척 행정을 진행하는 중에 필터 막힘이 검출되면 진행 중인 세척 행정을 중지하고 필터 막힘 해제 알고리즘을 진행하다가, 필터 막힘 해제 알고리즘이 완료되면 중지한 세척 행정을 처음부터 다시 진행하는 방법에 대하여 설명하였으나, 본 발명은 이에 한정되지 않고 예비 세척 또는 본 세척의 세척 행정을 진행하는 중에 필터 막힘이 검출되면 진행 중인 세척 행정을 중지하고 필터 막힘 해제 알고리즘을 진행하다가, 필터 막힘 해제 알고리즘이 완료되면 중지한 세척 행정을 건너뛰고 다음의 행정을 진행하여도 본 발명과 동일한 목적 및 효과를 달성할 수 있음은 물론이다.
이외에도, 예비 세척 또는 본 세척의 세척 행정을 진행하는 중에 필터 막힘이 검출되면 진행 중인 세척 행정을 중지하고 필터 막힘 해제 알고리즘을 진행하다가, 필터 막힘 해제 알고리즘이 완료되면 세척 행정을 중지한 시점부터 해당 세척 행정의 남은 시간을 이어서 진행하는 방법도 가능하다. 이 경우에는 제어부(720)에서 세척 행정이 진행되는 시간을 카운트하여 필터(120, 130, 140)의 막힘이 검출되는 시점 즉, 세척 행정을 중지한 시점을 저장한다. 이후 필터 막힘 해제 알고리즘을 진행한 후에는 세척 행정을 중지한 시점부터 이어서 남은 세척 행정을 진행하는 것이다.
도 22a 내지 도 22k는 본 발명의 다른 실시예에 의한 식기 세척기의 필터 막힘을 해제하는 과정을 나타낸 도면이다.
도 22a 내지 도 22k에서 보듯이, 소량의 세척수(약, 700~900cc)와 순환 펌프(51)의 낮은 회전 속도(약, 1200~1400RPM)를 이용하여 노즐들(330, 340)에서 분사되는 세척수가 섬프(100) 상단의 필터(120, 130, 140) 쪽으로 집중적으로 분사되도록 함으로써 필터(120, 130, 140)에 쌓여 있는 과도한 양의 오물이 제거됨을 알 수 있다.
한편, 도 21a에서는 1차 필터 세척 동작 및 2차 필터 세척 동작을 위해 급수되는 세척수의 양을 동일하게 사용한 것을 예로 들어 설명하였으나, 본 발명은 이에 한정되지 않고 1차 필터 세척 동작 및 2차 필터 세척 동작을 위해 급수되는 세척수의 양을 다르게 하여도 본 발명과 동일한 목적 및 효과를 달성할 수 있음은 물론이다. 이를 도 23a 및 도 23b를 참조하여 설명한다.
먼저, 예비 세척 또는 본 세척의 세척 행정을 진행하는 중에 필터 막힘이 검출되면 진행 중인 세척 행정을 중지하고 필터 막힘 해제 알고리즘을 진행하다가, 필터 막힘 해제 알고리즘이 완료되면 중지한 세척 행정을 처음부터 다시 진행하는 방법을 도 23a 및 도 23b를 참조하여 설명한다.
도 23a 및 도 23b는 본 발명의 다른 실시예에 의한 식기 세척기의 필터 막힘 해제를 위한 제2제어 알고리즘을 나타낸 동작 순서도로서, 도 21a 및 도 21b와 동일한 부분에 대해서는 중복되는 설명을 최대한 생략하기로 한다.
도 23a 및 도 23b에서, 사용자가 세척조(30) 내부의 바스켓들(12a, 12b)에 세척하고자 하는 식기를 수납하고 세척 코스(예를 들어, 표준 코스)를 선택하면, 제어부(720)는 선택된 코스 정보에 따라 식기 세척기(1)의 예비 세척, 본 세척, 예비 헹굼, 마지막 헹굼 등으로 이어지는 일련의 행정을 순서대로 진행하기 시작한다.
이어서, 제어부(720)는 이러한 일련의 행정 진행에 따라 현재 진행 중인 행정이 예비 세척 또는 본 세척의 세척 행정인가를 판단한다(4000).
단계 4000의 판단 결과, 세척 행정이면 제어부(720)는 급수밸브(49)를 통해 세척 행정에 필요한 세척수를 세척조(30) 내부로 급수하고, 세척조(30) 내부로 급수되는 세척수는 세척조(30) 하부에 마련된 섬프(100) 내부로 집수된다(4002).
세척 행정을 위한 세척수 급수 시, 세척조(30)에 급수되는 세척수의 유량을 유량계(705)에서 검출하여 제1급수량인가를 판단한다(4004).
단계 4004의 판단 결과, 세척수의 유량이 제1급수량이 아니면 제어부(720)는 세척조(30)에 급수되는 세척수의 유량이 제1급수량에 도달할 때까지 세척수 급수를 계속한다.
제1급수량까지 세척수 급수가 완료되면, 제어부(720)는 순환 펌프(51)를 정해진 회전 속도(약, 3000~3400RPM)로 구동시켜 섬프(100)에 저수된 세척수를 펌핑한다. 순환 펌프(51)의 펌핑력에 의해 노즐들(311, 313, 330, 340)에서 세척수가 고압으로 분사되고, 식기에 묻어 있는 많은 오물이 분사되는 세척수에 의해 식기에서 분리되어 섬프(100)의 상단에 위치한 필터(120, 130, 140) 쪽으로 모이는 세척 행정이 진행된다(4006).
이때, 필터(120, 130, 140)에서 필터링하여 세척을 진행할 수 있는 양보다 많은 양의 오물이 식기에서 분리될 경우, 과도한 양의 오물이 필터(120, 130, 140)에 쌓이면서 필터(120, 130, 140)가 막히게 된다.
필터(120, 130, 140)가 막히면 세척수가 필터(120, 130, 140)를 원활하게 통과하지 못함으로써 섬프(100)에 저수되는 세척수의 양이 감소하고, 순환 펌프(51)의 구동에 따라 식기 세척을 위해 순환되는 세척수의 순환량이 줄어들어 순환 펌프(51)의 소비 전력이 감소하게 된다. 이러한 순환 펌프(51)의 소비 전력 변화량을 소비 전력 검출부(760)에서 검출하여 제어부(720)에 전달한다.
따라서, 제어부(720)는 순환 펌프(51)의 구동 중에 소비 전력의 변화량을 이용하여 필터(120, 130, 140)의 막힘을 검출한다(4008).
단계 4008의 판단 결과, 필터(120, 130, 140)의 막힘이 검출되지 않으면 제어부(720)는 이후의 행정을 계속해서 진행한다(4009).
한편, 단계 4008의 판단 결과, 필터(120, 130, 140)의 막힘이 검출되면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척 행정을 중지한다(4010).
세척 행정을 중지한 후에, 제어부(720)는 필터(120, 130, 140)의 막힘을 해제하기 위한 필터 막힘 해제 알고리즘을 진행한다.
필터 막힘 해제 알고리즘의 진행을 위해, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)를 구동시켜 섬프(100)에 남아 있는 오물과 세척수를 완전히 배수하는 1차 배수 동작을 진행한다(4012).
1차 배수 동작은 오물 포집 챔버(111)에 포집된 오물과 세척수를 함께 본체(10)의 외부로 배출시키는 배수 동작을 통해 마이크로 필터(130)의 막힘을 1차로 해제하는 효과를 얻을 수 있다(도 22a 및 도 22b 참조).
1차 배수 후에, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)의 구동을 정지하고, 급수밸브(49)를 구동시켜 필터(120, 130, 140)의 막힘을 해제할 수 있는 세척수를 세척조(30) 내부로 급수한다(4014, 도 22c 참조).
필터(120, 130, 140)의 막힘 해제를 위한 세척수 급수 시, 세척조(30)에 급수되는 세척수의 유량을 유량계(705)에서 검출하여 미리 정해진 제2급수량(섬프 내측을 채울 수 있는 소량의 세척수량, 약 700~900cc)인가를 판단한다(4016).
단계 4016의 판단 결과, 세척수의 유량이 제2급수량이 아니면 제어부(720)는 세척조(30)에 급수되는 유량이 제2급수량에 도달할 때까지 세척수 급수를 계속한다.
제2급수량까지 세척수 급수가 완료되면, 제어부(720)는 구동부(740)를 통해 모터(530)를 구동시켜 베인(400)을 기준 위치에서 일정 시간(약, 7초) 동안 전면 이동시킨 후 정지시킨다(4018, 도 22d 참조).
베인(400)의 전면 이동 후에, 제어부(720)는 순환 펌프(51)를 제3회전 속도(약, 1200~1400RPM)로 구동시켜 고정 노즐들(330, 340)에서 분사되는 세척수가 섬프(100) 상단의 필터(120, 130, 140) 쪽으로 분사되도록 한다(4020, 도 22e 및 도 22f 참조).
이때, 제어부(720)는 순환 펌프(51)의 구동 시간을 카운트하여 제1시간(세척수 분사를 통해 필터의 상단에 쌓여 있는 오물을 오물 포집 챔버로 이동시키기 위한 시간; 약, 30초)이 경과하였는가를 판단한다(4022).
단계 4022의 판단 결과, 제1시간이 경과하지 않으면 제어부(720)는 단계 4020로 피드백하여 제1시간이 경과할 때까지 순환 펌프(51)를 제3회전 속도(약, 1200~1400RPM)로 구동시킨다.
한편, 단계 4022의 판단 결과, 제1시간이 경과하면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척수의 분사를 중지한다(4024). 이러한 세척수의 분사 동작을 통해 필터(120, 130, 140)의 상단에 쌓여 있는 일부의 오물이 오물 포집 챔버(111)로 이동하여 필터(120, 130, 140)의 막힘을 어느 정도 해제할 수 있는 1차 필터 세척 동작이 진행된다.
이어서, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)를 구동시켜 섬프(100)에 남아 있는 오물과 세척수를 일정 시간(약, 30초) 동안 배수하는 2차 배수 동작을 진행한다(4026).
2차 배수 동작은 오물 포집 챔버(111)에 포집된 오물과 세척수를 함께 본체(10)의 외부로 배출시키는 배수 동작을 통해 마이크로 필터(130)의 막힘을 2차로 해제하는 효과를 얻을 수 있다(도 22g 참조).
2차 배수 후에, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)의 구동을 정지하고, 급수밸브(49)를 구동시켜 필터(120, 130, 140)의 막힘을 해제할 수 있는 세척수를 세척조(30) 내부로 급수한다(4028, 도 22h 참조).
필터(120, 130, 140)의 막힘 해제를 위한 세척수 급수 시, 세척조(30)에 급수되는 세척수의 유량을 유량계(705)에서 검출하여 제3급수량(섬프 내측을 채울 수 있는 소량의 세척수량, 약 700cc)인가를 판단한다(4030). 제3급수량은 제2급수량보다 적은 양의 세척수량을 사용한다. 그러나, 식기 세척기(1)의 구조 또는 설계 사양에 따라 제3급수량을 제2급수량보다 많은 양의 세척수량을 사용하여도 무방하다.
단계 4030의 판단 결과, 세척수의 유량이 제3급수량이 아니면 제어부(720)는 세척조(30)에 급수되는 유량이 제3급수량에 도달할 때까지 세척수 급수를 계속한다.
한편, 단계 4030의 판단 결과, 세척수의 유량이 제3급수량이면 제어부(720)는 급수밸브(49)를 정지시켜 세척수 급수를 정지한다.
제3급수량까지 세척수 급수가 완료되면, 제어부(720)는 순환 펌프(51)를 제3회전 속도(약, 1200~1400RPM)로 구동시켜 노즐들(330, 340)에서 분사되는 세척수가 섬프(100) 상단의 필터(120, 130, 140) 쪽으로 분사되도록 한다(4032, 도 22i 및 도 22j 참조).
이때, 제어부(720)는 순환 펌프(51)의 구동 시간을 카운트하여 제2시간(노즐에서 분사되는 세척수가 필터의 상단에 직접 분사되어 필터의 막힘을 해제할 수 있는 시간; 약, 90초)이 경과하였는가를 판단한다(4034).
단계 4034의 판단 결과, 제2시간이 경과하지 않으면 제어부(720)는 단계 4032로 피드백하여 제2시간이 경과할 때까지 순환 펌프(51)를 제3회전 속도(약, 1200~1400RPM)로 구동시킨다.
한편, 단계 4034의 판단 결과, 제2시간이 경과하면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척수의 분사를 중지한다(4036). 이러한 세척수의 직접 분사 동작을 통해 파인 필터(120)의 상단에 쌓여 있는 상당량의 오물이 코스 필터(140)로 이동하여 필터(120, 130, 140)의 상단 막힘을 해제할 수 있는 2차 필터 세척 동작이 진행된다.
제어부(720)는 구동부(740)를 통해 배수 펌프(52)를 구동시켜 섬프(100)에 남아 있는 오물과 세척수를 완전히 배수하는 3차 배수 동작을 진행한다(4038).
3차 배수 동작은 오물 포집 챔버(111)에 포집된 오물과 세척수를 함께 본체(10)의 외부로 배출시키는 배수 동작을 통해 마이크로 필터(130)의 막힘을 3차로 해제하는 효과를 얻을 수 있다(도 22k 참조).
3차 배수가 끝나면, 필터 막힘 해제 알고리즘이 완료되고 제어부(720)는 구동부(740)를 통해 모터(530)를 구동시켜 베인(400)을 기준 위치로 이동시킨 후에(4040), 단계 4010에서 중지한 세척 행정을 처음부터 다시 진행한다(4042). 세척 행정을 처음부터 다시 진행할 때에는 단계 4012에서 단계 4038의 필터 막힘 해제 알고리즘을 통해 필터 막힘 없이 이후의 정상 세척 동작을 진행할 수 있게 된다.
또한, 도 23a 및 도 23b에서는 1차 필터 세척 동작 및 2차 필터 세척 동작을 위해 급수되는 세척수의 양을 다르게 하면서 순환 펌프를 동일한 회전 속도로 구동하는 것을 예로 들어 설명하였으나, 본 발명은 이에 한정되지 않고 1차 필터 세척 동작 및 2차 필터 세척 동작을 위해 급수되는 세척수의 양을 다르게 하면서 순환 펌프의 회전 속도를 가변하여 구동하여도 본 발명과 동일한 목적 및 효과를 달성할 수 있음은 물론이다. 이를 도 24a 및 도 24b를 참조하여 설명한다.
먼저, 예비 세척 또는 본 세척의 세척 행정을 진행하는 중에 필터 막힘이 검출되면 진행 중인 세척 행정을 중지하고 필터 막힘 해제 알고리즘을 진행하다가, 필터 막힘 해제 알고리즘이 완료되면 중지한 세척 행정을 처음부터 다시 진행하는 방법을 도 24a 및 도 24b를 참조하여 설명한다.
도 24a 및 도 24b는 본 발명의 다른 실시예에 의한 식기 세척기의 필터 막힘 해제를 위한 제3제어 알고리즘을 나타낸 동작 순서도로서, 도 21a 및 도 21b와 동일한 부분에 대해서는 중복되는 설명을 최대한 생략하기로 한다.
도 24a 및 도 24b에서, 사용자가 세척조(30) 내부의 바스켓들(12a, 12b)에 세척하고자 하는 식기를 수납하고 세척 코스(예를 들어, 표준 코스)를 선택하면, 제어부(720)는 선택된 코스 정보에 따라 식기 세척기(1)의 예비 세척, 본 세척, 예비 헹굼, 마지막 헹굼 등으로 이어지는 일련의 행정을 순서대로 진행하기 시작한다.
이어서, 제어부(720)는 이러한 일련의 행정 진행에 따라 현재 진행 중인 행정이 예비 세척 또는 본 세척의 세척 행정인가를 판단한다(7000).
단계 7000의 판단 결과, 세척 행정이면 제어부(720)는 급수밸브(49)를 통해 세척 행정에 필요한 세척수를 세척조(30) 내부로 급수하고, 세척조(30) 내부로 급수되는 세척수는 세척조(30) 하부에 마련된 섬프(100) 내부로 집수된다(7002).
세척 행정을 위한 세척수 급수 시, 세척조(30)에 급수되는 세척수의 유량을 유량계(705)에서 검출하여 제1급수량인가를 판단한다(7004).
단계 7004의 판단 결과, 세척수의 유량이 제1급수량이 아니면 제어부(720)는 세척조(30)에 급수되는 세척수의 유량이 제1급수량에 도달할 때까지 세척수 급수를 계속한다.
제1급수량까지 세척수 급수가 완료되면, 제어부(720)는 순환 펌프(51)를 정해진 회전 속도(약, 3000~3400RPM)로 구동시켜 섬프(100)에 저수된 세척수를 펌핑한다. 순환 펌프(51)의 펌핑력에 의해 노즐들(311, 313, 330, 340)에서 세척수가 고압으로 분사되고, 식기에 묻어 있는 많은 오물이 분사되는 세척수에 의해 식기에서 분리되어 섬프(100)의 상단 필터(120, 130, 140) 쪽으로 모이는 세척 행정이 진행된다(7006).
이때, 필터(120, 130, 140)에서 필터링하여 세척을 진행할 수 있는 양보다 많은 양의 오물이 식기에서 분리될 경우, 과도한 양의 오물이 필터(120, 130, 140)에 쌓이면서 필터(120, 130, 140)가 막히게 된다.
필터(120, 130, 140)가 막히면 세척수가 필터(120, 130, 140)를 원활하게 통과하지 못함으로써 섬프(100)에 저수되는 세척수의 양이 감소하고, 순환 펌프(51)의 구동에 따라 식기 세척을 위해 순환되는 세척수의 순환량이 줄어들어 순환 펌프(51)의 소비 전력이 감소하게 된다. 이러한 순환 펌프(51)의 소비 전력 변화량을 소비 전력 검출부(760)에서 검출하여 제어부(720)에 전달한다.
따라서, 제어부(720)는 순환 펌프(51)의 구동 중에 소비 전력의 변화량을 이용하여 필터(120, 130, 140)의 막힘을 검출한다(7008).
단계 7008의 판단 결과, 필터(120, 130, 140)의 막힘이 검출되지 않으면 제어부(720)는 이후의 행정을 계속해서 진행한다(7009).
한편, 단계 7008의 판단 결과, 필터(120, 130, 140)의 막힘이 검출되면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척 행정을 중지한다(7010).
세척 행정을 중지한 후에, 제어부(720)는 필터(120, 130, 140)의 막힘을 해제하기 위한 필터 막힘 해제 알고리즘을 진행한다.
필터 막힘 해제 알고리즘의 진행을 위해, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)를 구동시켜 섬프(100)에 남아 있는 오물과 세척수를 완전히 배수하는 1차 배수 동작을 진행한다(7012).
1차 배수 동작은 오물 포집 챔버(111)에 포집된 오물과 세척수를 함께 본체(10)의 외부로 배출시키는 배수 동작을 통해 마이크로 필터(130)의 막힘을 1차로 해제하는 효과를 얻을 수 있다(도 22a 및 도 22b 참조).
1차 배수 후에, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)의 구동을 정지하고, 급수밸브(49)를 구동시켜 필터(120, 130, 140)의 막힘을 해제할 수 있는 세척수를 세척조(30) 내부로 급수한다(7014, 도 22c 참조).
필터(120, 130, 140)의 막힘 해제를 위한 세척수 급수 시, 세척조(30)에 급수되는 세척수의 유량을 유량계(705)에서 검출하여 미리 정해진 제2급수량(섬프 내측을 채울 수 있는 소량의 세척수량, 약 700~900cc)인가를 판단한다(7016).
단계 7016의 판단 결과, 세척수의 유량이 제2급수량이 아니면 제어부(720)는 세척조(30)에 급수되는 유량이 제2급수량에 도달할 때까지 세척수 급수를 계속한다.
제2급수량까지 세척수 급수가 완료되면, 제어부(720)는 구동부(740)를 통해 모터(530)를 구동시켜 베인(400)을 기준 위치에서 일정 시간(약, 7초) 동안 전면 이동시킨 후 정지시킨다(7018, 도 22d 참조).
베인(400)의 전면 이동 후에, 제어부(720)는 순환 펌프(51)를 제3회전 속도(약, 1200~1400RPM)로 구동시켜 노즐들(330, 340)에서 분사되는 세척수가 섬프(100) 상단의 필터(120, 130, 140) 쪽으로 분사되도록 한다(7020).
이때, 제어부(720)는 순환 펌프(51)의 구동 시간을 카운트하여 제1시간(세척수 분사를 통해 필터의 상단에 쌓여 있는 오물을 오물 포집 챔버로 이동시키기 위한 시간; 약, 30초)이 경과하였는가를 판단한다(7022).
단계 7022의 판단 결과, 제1시간이 경과하지 않으면 제어부(720)는 단계 7020로 피드백하여 제1시간이 경과할 때까지 순환 펌프(51)를 제3회전 속도(약, 1200~1400RPM)로 구동시킨다.
한편, 단계 7022의 판단 결과, 제1시간이 경과하면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척수의 분사를 중지한다(7024). 이러한 세척수의 분사 동작을 통해 필터(120, 130, 140)의 상단에 쌓여 있는 일부의 오물이 오물 포집 챔버(111)로 이동하여 필터(120, 130, 140)의 막힘을 어느 정도 해제할 수 있는 1차 필터 세척 동작이 진행된다.
이어서, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)를 구동시켜 섬프(100)에 남아 있는 오물과 세척수를 일정 시간(약, 30초) 동안 배수하는 2차 배수 동작을 진행한다(7026).
2차 배수 동작은 오물 포집 챔버(111)에 포집된 오물과 세척수를 함께 본체(10)의 외부로 배출시키는 배수 동작을 통해 마이크로 필터(130)의 막힘을 2차로 해제하는 효과를 얻을 수 있다(도 22g 참조).
2차 배수 후에, 제어부(720)는 구동부(740)를 통해 배수 펌프(52)의 구동을 정지하고, 급수밸브(49)를 구동시켜 필터(120, 130, 140)의 막힘을 해제할 수 있는 세척수를 세척조(30) 내부로 급수한다(7028, 도 22h 참조).
필터(120, 130, 140)의 막힘 해제를 위한 세척수 급수 시, 세척조(30)에 급수되는 세척수의 유량을 유량계(705)에서 검출하여 제3급수량(섬프 내측을 채울 수 있는 소량의 세척수량, 약 700cc)인가를 판단한다(7030).
단계 7030의 판단 결과, 세척수의 유량이 제3급수량이 아니면 제어부(720)는 세척조(30)에 급수되는 유량이 제3급수량에 도달할 때까지 세척수 급수를 계속한다.
제3급수량까지 세척수 급수가 완료되면, 제어부(720)는 순환 펌프(51)를 제4회전 속도(약, 1000~1100RPM)로 구동시켜 노즐들(330, 340)에서 분사되는 세척수가 섬프(100) 상단의 필터(120, 130, 140) 쪽으로 분사되도록 한다(7032, 도 22i 및 도 22j 참조). 제3급수량이 제2급수량보다 적은 경우에는 제4회전 속도를 제3회전 속도보다 낮은 속도로 구현한다. 반면, 제3급수량이 제2급수량보다 큰 경우에는 제4회전 속도를 제3회전 속도보다 높은 속도로 구현하여 급수량에 따라 순환 펌프(51)의 회전 속도를 가변할 수 있도록 한다.
이때, 제어부(720)는 순환 펌프(51)의 구동 시간을 카운트하여 제2시간(노즐에서 분사되는 세척수가 필터의 상단에 직접 분사되어 필터의 막힘을 해제할 수 있는 시간; 약, 90초)이 경과하였는가를 판단한다(7034).
단계 7034의 판단 결과, 제2시간이 경과하지 않으면 제어부(720)는 단계 7032로 피드백하여 제2시간이 경과할 때까지 순환 펌프(51)를 제4회전 속도(약, 1000~1100RPM)로 구동시킨다.
한편, 단계 7034의 판단 결과, 제2시간이 경과하면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척수의 분사를 중지한다(7036). 이러한 세척수의 직접 분사 동작을 통해 파인 필터(120)의 상단에 쌓여 있는 상당량의 오물이 코스 필터(140)로 이동하여 필터(120, 130, 140)의 상단 막힘을 해제할 수 있는 2차 필터 세척 동작이 진행된다.
제어부(720)는 구동부(740)를 통해 배수 펌프(52)를 구동시켜 섬프(100)에 남아 있는 오물과 세척수를 완전히 배수하는 3차 배수 동작을 진행한다(7038).
3차 배수 동작은 오물 포집 챔버(111)에 포집된 오물과 세척수를 함께 본체(10)의 외부로 배출시키는 배수 동작을 통해 마이크로 필터(130)의 막힘을 3차로 해제하는 효과를 얻을 수 있다(도 22k 참조).
3차 배수가 끝나면, 필터 막힘 해제 알고리즘이 완료되고 제어부(720)는 구동부(740)를 통해 모터(530)를 구동시켜 베인(400)을 기준 위치로 이동시킨 후에(7040), 단계 7010에서 중지한 세척 행정을 처음부터 다시 진행한다(7040). 세척 행정을 처음부터 다시 진행할 때에는 단계 7012에서 단계 7038의 필터 막힘 해제 알고리즘을 통해 필터(120, 130, 140)의 막힘 없이 이후의 정상 세척 동작을 진행할 수 있게 된다.
한편, 본 발명의 실시예에서는 1차 필터 세척 동작 및 2차 필터 세척 동작을 위해 급수되는 세척수의 양을 동일하거나 다르게 하면서 순환 펌프(51)의 회전 속도도 동일하거나 가변되게 제어하는 것을 예로 들어 설명하였으나, 본 발명은 이에 한정되지 않고 1차 필터 세척 동작 및 2차 필터 세척 동작을 위해 구동되는 순환 펌프(51)의 구동 시간을 1차 필터 세척 동작과 2차 필터 세척 동작에서 서로 다르게 조절하여도 본 발명과 동일한 목적 및 효과를 달성할 수 있음은 물론이다.
세척 행정 중에 파인 필터(120)에 과도한 양의 오물이 쌓여 파인 필터(120)가 막히게 되면, 세척수의 순환량이 줄어들어 순환 펌프(51)의 소비 전력이 감소한다. 도 21a 내지 도 24b에서는 이러한 순환 펌프(51)의 소비 전력 변화량을 이용하여 파인 필터(120)의 막힘 여부를 검출하고, 파인 필터(120)의 막힘을 해제하는 방법에 대하여 설명하였다.
그러나, 세척 행정 중에는 오물이나 세제, 세척수 등의 외적 요인에 의해 세척수의 분사 시에 거품이 발생될 수 있다. 특히 계란 껍질 등이 있을 경우 거품이 많이 발생한다. 세척 행정 중에 거품이 발생하게 되면 세척수가 순환 펌프(51)에 유입되는 과정에 문제가 발생하여 세척수의 순환량이 현저히 줄어들고, 순환 펌프(51)의 소비 전력이 감소한다.
따라서, 세척 행정 중에 순환 펌프(51)의 소비 전력이 감소하면 거품 발생으로 인한 것인지 또는 필터 막힘에 의한 것인지를 구분하여 적절하게 대응할 필요가 있다.
이에, 본 발명에서는 세척 행정 중에 순환 펌프(51)의 소비 전력이 감소하면 거품 발생 또는 필터 막힘에 의한 것인지를 판별하기 위한 알고리즘을 진행한다. 이를 도 25a 및 도 25b를 참조하여 설명한다.
도 25a 및 도 25b는 본 발명의 또 다른 실시예에 의한 식기 세척기의 거품 감지를 위한 제어 알고리즘을 나타낸 동작 순서도로서, 도 21a 및 도 21b와 동일한 부분에 대해서는 중복되는 설명을 최대한 생략하기로 한다.
도 25a 및 도 25b에서, 사용자가 세척조(30) 내부의 바스켓들(12a, 12b)에 세척하고자 하는 식기를 수납하고 세척 코스(예를 들어, 표준 코스)를 선택하면, 제어부(720)는 선택된 코스 정보에 따라 식기 세척기(1)의 예비 세척, 본 세척, 예비 헹굼, 마지막 헹굼 등으로 이어지는 일련의 행정을 순서대로 진행하기 시작한다.
이어서, 제어부(720)는 이러한 일련의 행정 진행에 따라 현재 진행 중인 행정이 예비 세척 또는 본 세척의 세척 행정인가를 판단한다(10000).
단계 10000의 판단 결과, 세척 행정이면 제어부(720)는 급수밸브(49)를 통해 세척 행정에 필요한 세척수를 세척조(30) 내부로 급수하고, 세척조(30) 내부로 급수되는 세척수는 세척조(30) 하부에 마련된 섬프(100) 내부로 집수된다(10002).
세척 행정에 필요한 양의 세척수가 급수되면, 제어부(720)는 순환 펌프(51)를 정해진 회전 속도(약, 3000~3400RPM)로 구동시켜 섬프(100)에 저수된 세척수를 펌핑한다. 순환 펌프(51)의 펌핑력에 의해 노즐들(311, 313, 330, 340)에서 세척수가 고압으로 분사되고, 식기에 묻어 있는 많은 오물이 분사되는 세척수에 의해 식기에서 분리되어 섬프(100)의 상단 파인 필터(120) 쪽으로 모이는 세척 행정이 진행된다(10004).
이때, 파인 필터(120)에서 필터링하여 세척을 진행할 수 있는 양보다 많은 양의 오물이 식기에서 분리되거나 또는 특정 오물(예를 들어, 계란 껍질)이나 세제로 인해 많은 양의 거품이 빌생될 경우, 세척수의 순환량이 줄어들어 순환 펌프(51)의 소비 전력이 감소하게 된다. 이러한 순환 펌프(51)의 소비 전력 변화량을 소비 전력 검출부(760)에서 검출하여 제어부(720)에 전달한다.
따라서, 제어부(720)는 순환 펌프(51)의 구동 중에 소비 전력의 변화량을 이용하여 소비 전력이 감소하였는가를 판단한다(10006).
단계 10006의 판단 결과, 소비 전력이 변화하지 않으면 제어부(720)는 이후의 정상 행정을 계속해서 진행한다(10007).
한편, 단계 10006의 판단 결과, 소비 전력이 변화하면 제어부(720)는 소비 전력의 변화가 거품 발생에 의한 것인지 또는 필터 막힘에 의한 것인지를 판단하기 위해 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시킨다(10008).
이어서, 제어부(720)는 순환 펌프(51)의 정지 시간을 카운트하여 제3시간(거품을 가라앉히는데 필요한 시간; 약, 3분)이 경과하였는가를 판단한다(10010).
단계 10010의 판단 결과, 제3시간이 경과하지 않으면 제어부(720)는 단계 10008로 피드백하여 제3시간이 경과할 때까지 순환 펌프(51)를 정지시킨다. 이는 소비 전력의 변화가 거품 발생에 의한 것이라면 순환 펌프(51)의 구동을 일정 시간 동안 정지시켜 거품이 1차적으로 자연스럽게 가라앉도록 하기 위함이다.
한편, 단계 10010의 판단 결과, 제3시간이 경과하면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)를 슬로 스타트(slow start)시킨다. 슬로 스타트는 순환 펌프(51)를 1600RPM에서 3000RPM까지 느리게 구동시킨다. 순환 펌프(51)를 슬로 스타트시키는 이유는 순환 펌프(51)의 정지로 1차적으로 가라앉은 거품이 다시 확 올라오지 않도록 하기 위함이다.
제어부(720)는 순환 펌프(51)를 슬로 스타트시키는 시간을 카운트하여 제4시간(약, 1분)이 경과하였는가를 판단하고, 제4시간이 경과하지 않으면 제어부(720)는 제4시간이 경과할 때까지 순환 펌프(51)를 슬로 스타트시킨다.
한편, 제4시간이 경과하면 제어부(720)는 구동부(740)를 통해 순환 펌프(51)를 정해진 회전 속도(약, 3000~3400RPM)로 재구동시켜 세척수를 순환시킨다(10012).
그리고, 제어부(720)는 분배 장치(200)로부터 공급받은 세척수가 상부 회전 노즐(311)과 중간 회전 노즐(313)을 통해 분사되도록 제어한다(10014).
제어부(720)는 상부 회전 노즐(311)과 중간 회전 노즐(313)을 통해 세척수가 분사되는 시간을 카운트하여 제5시간(거품을 씻어 주는데 필요한 시간; 약, 2분)이 경과하였는가를 판단한다(10016).
단계 10016의 판단 결과, 제5시간이 경과하지 않으면 제어부(720)는 단계 10014로 피드백하여 제5시간이 경과할 때까지 상부 회전 노즐(311)과 중간 회전 노즐(313)을 통해 세척수가 분사되도록 제어한다. 이는 세척조(30)의 상부 쪽에 위치한 노즐(311. 313)에서 세척수를 아래 방향으로 분사하여 세척조(30)의 상부 쪽부터 거품을 아래로 씻어 주기 위함이다.
한편, 단계 10020의 판단 결과, 제5시간이 경과하면 제어부(720)는 분배 장치(200)로부터 공급받은 세척수가 하부 고정 노즐들(330, 340)을 통해 분사되도록 제어한다(10018).
제어부(720)는 고정 노즐들(330, 340)을 통해 세척수가 분사되는 시간을 카운트하여 제6시간(거품을 씻어 주는데 필요한 시간; 약, 2분)이 경과하였는가를 판단한다(10020). 한편, 제6시간은 제5시간과 다르게 설정할 수도 있다.
단계 10020의 판단 결과, 제6시간이 경과하지 않으면 제어부(720)는 단계 10018로 피드백하여 제6시간이 경과할 때까지 고정 노즐들(330, 340)을 통해 세척수가 분사되도록 제어한다. 이는 이는 세척조(30)의 하부 쪽에 위치한 노즐(330, 340)에서 세척조(30)의 전방을 향하여 세척수를 분사하여 세척조(30)의 아래 쪽에 있는 거품을 씻어 주기 위함이다.
한편, 본 발명의 실시예에서는 제3시간이 경과한 후에 순환 펌프(51)를 재구동시키고 회전 노즐(311, 313)을 통해 세척수를 분사한 다음 고정 노즐(330, 340)을 통해 세척수를 분사하는 동작을 순차적으로 진행하여 세척조(30) 내부의 거품을 씻어 주는 것을 예로 들어 설명하였으나, 본 발명은 이에 한정되지 않고 제3시간이 경과한 후에 순환 펌프(51)를 재구동시키면서 회전 노즐(311, 313)을 통해 세척수를 분사하도록 구성하여 세척조(30) 내부의 거품을 씻어 주도록 구성할 수 있다.
이외에도, 본 발명은 제3시간이 경과한 후에 순환 펌프(51)를 재구동시키면서 고정 노즐(330, 340)을 통해 세척수를 분사하도록 구성하여 세척조(30) 내부의 거품을 씻어 주도록 구성할 수 있다.
또한, 본 발명은 순환 펌프(51)의 재구동과 회전 노즐(311, 313)을 통한 세척수 분사 동작 및 고정 노즐(330, 340)을 통한 세척수 분사 동작을 순차적으로 진행하도록 구성할 수도 있고 각각의 동작이 단독으로 진행되거나 또는 병렬로 연계하여 진행되도록 구성할 수 있음은 물론이다.
한편, 단계 10020의 판단 결과, 제6시간이 경과하면 제어부(720)는 거품 발생인지 또는 필터 막힘인지를 최종 판단하기 위해 소비 전력의 변화량을 이용하여 소비 전력이 감소하였는가를 판단한다(10022).
단계 10022의 판단 결과, 소비 전력이 변화하지 않으면 제어부(720)는 소비 전력의 변화가 거품 발생에 의한 것이라고 판단하고 단계 10007로 진행하여 이후의 정상 행정을 계속한다.
한편, 단계 10022의 판단 결과, 소비 전력이 변화하면 제어부(720)는 소비 전력의 변화가 필터 막힘에 의한 것이라고 판단하고 구동부(740)를 통해 순환 펌프(51)의 구동을 정지시켜 세척 행정을 중지한다. 그리고 파인 필터(120)의 막힘을 해제하기 위한 필터 막힘 해제 알고리즘을 진행한 후에 단계 10007로 진행하여 이후의 정상 행정을 계속한다.
이와 같이, 본 발명의 또 다른 실시예에서는 소비 전력의 변화가 거품 발생에 의한 것인지 또는 필터 막힘에 의한 것인지를 판단하여 거품 발생에 의한 것이면 거품을 가라앉힌 후에 정상 행정을 진행하도록 제어하고, 필터 막힘에 의한 것이면 필터 막힘 해제 알고리즘을 진행한 후에 정상 행정을 진행하도록 제어한다.
본 발명의 권리범위는 상기 설명한 특정 실시예에만 한정되는 것이 아니다. 특허청구범위에 명시된 본 발명의 기술적 사상으로서의 요지를 일탈하지 아니하는 범위 안에서 당 분야에서 통상의 지식을 가진 자에 의하여 수정 또는 변형 가능한 다양한 다른 실시예들도 본 발명의 권리범위에 속한다 할 것이다.

Claims (48)

  1. 세척조;
    도어;
    상기 세척조의 내부에 설치되며, 세척수를 분사하는 노즐;
    상기 도어에 근접하여 위치하는 제1위치와 상기 노즐에 근접하여 위치하는 제2위치 사이를 이동하며, 상기 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인;
    상기 세척조의 바닥면에 설치되며, 상기 세척수로부터 오물을 걸러 주는 필터를 포함하고,
    상기 베인은 상기 제2위치에 도달하는 경우 상기 노즐에서 분사되는 세척수가 상기 세척조의 후벽을 향하도록 상기 노즐 방향으로 회전하며, 상기 베인의 회전에 의해 상기 필터에 남아 있는 오물을 제거하는 것을 특징으로 하는 식기 세척기.
  2. 제1항에 있어서,
    상기 베인을 이동시키는 모터;
    상기 모터의 구동에 따라 이동하는 상기 베인이 상기 제2위치에 도달하였는가를 검출하는 위치검출부;
    상기 베인이 상기 제2위치에 도달하면, 상기 베인의 이동을 정지하고 상기 노즐에서 세척수를 분사하도록 제어하는 제어부를 더 포함하는 식기 세척기.
  3. 제2항에 있어서,
    상기 세척조의 전방에서 후방으로 연장되게 설치되며, 상기 베인의 이동을 안내하는 레일을 더 포함하고,
    상기 노즐은 상기 세척조의 좌우 방향으로 연장되게 설치되며, 상기 레일의 후방에 고정되게 설치되는 식기 세척기.
  4. 제3항에 있어서,
    상기 위치 검출부는 상기 베인이 상기 노즐 방향으로 이동하여 상기 레일의 최후방에 위치하면, 상기 베인이 상기 제2위치에 위치한다고 검출하는 식기 세척기.
  5. 제4항에 있어서,
    상기 위치 검출부는,
    상기 베인에 설치되는 영구 자석과, 상기 제2위치에 위치하여 상기 영구 자석을 검출하는 위치 센서를 포함하는 식기 세척기.
  6. 제3항에 있어서,
    상기 세척조의 바닥판의 일 측에 설치되며, 상기 레일에 결합되는 바닥판 커버를 더 포함하고,
    상기 위치 검출부는,
    상기 베인에 설치되는 영구 자석;
    상기 바닥판 커버에 설치되며, 상기 제2위치에 위치하여 상기 영구 자석을 검출하는 위치 센서를 포함하는 식기 세척기.
  7. 제1항에 있어서,
    상기 세척조의 하부에 설치되며, 세척수를 저장하는 섬프;
    상기 섬프에 저장된 세척수를 펌핑하여 상기 노즐로 공급하는 펌프를 더 포함하고,
    상기 제어부는 상기 노즐에서 분사되는 세척수의 양을 조절하도록 상기 펌프의 회전 속도를 제어하는 식기 세척기.
  8. 제1항에 있어서,
    상기 세척조의 하부에 설치되며, 세척수를 저장하는 섬프;
    상기 섬프에 저장된 세척수를 펌핑하여 상기 노즐로 공급하는 펌프를 더 포함하고,
    상기 제어부는 상기 노즐에서 분사되는 세척수의 양을 조절하도록 상기 펌프의 구동 시간을 제어하는 식기 세척기.
  9. 제1항에 있어서,
    상기 제어부는,
    상기 식기 세척기의 행정이 배수 행정인가를 판단하고;
    상기 배수 행정이면, 상기 베인의 이동을 정지하고 상기 노즐에서 세척수를 분사하여 상기 베인의 회전에 의해 반사되는 세척수가 상기 세척조의 후벽을 타격한 후에 상기 필터로 향하도록 제어하는 식기 세척기.
  10. 세척조;
    도어;
    상기 세척조의 하부에 설치되며, 세척수를 저장하는 섬프;
    상기 섬프에 저장된 세척수를 펌핑하는 펌프;
    상기 펌프에 의해 펌핑되는 세척수를 상기 세척조의 내부로 분사하는 노즐;
    상기 도어에 근접하여 위치하는 제1위치와 상기 노즐에 근접하여 위치하는 제2위치 사이를 이동하며, 상기 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인;
    상기 섬프의 상단을 덮도록 설치되며, 상기 세척수로부터 오물을 걸러 준 후 상기 섬프 내로 유입시키는 필터;
    상기 베인이 상기 제2위치에 도달하면, 상기 베인의 이동을 정지하고 상기 펌프를 구동시켜 상기 필터에 남아 있는 오물을 제거하는 제어부를 포함하는 식기 세척기.
  11. 제10항에 있어서,
    상기 베인을 이동시키는 모터;
    상기 모터의 구동에 따라 이동하는 상기 베인이 상기 제2위치에 도달하였는가를 검출하는 위치검출부를 더 포함하고,
    상기 제어부는 상기 베인이 상기 제2위치에 도달하면, 상기 모터의 구동을 정지하여 상기 베인의 이동을 정지시키는 식기 세척기.
  12. 제11항에 있어서,
    상기 제어부는,
    상기 식기 세척기의 행정이 배수 행정인가를 판단하고;
    상기 배수 행정이면, 상기 베인의 이동을 정지하고 상기 노즐에서 세척수를 분사하여 상기 베인에 의해 반사되는 세척수가 상기 세척조의 후벽을 타격한 후에 상기 필터로 향하도록 제어하는 식기 세척기.
  13. 본체;
    상기 본체의 내부에 설치되며, 바닥면에 배수구가 형성된 세척조;
    상기 세척조를 개폐시키는 도어;
    상기 세척조의 내부에 설치되며, 세척수를 분사하는 노즐;
    상기 도어에 근접하여 위치하는 제1위치와 상기 노즐에 근접하여 위치하는 제2위치 사이를 이동하며, 상기 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인;
    상기 배수구의 상단을 덮도록 설치되며, 상기 세척수로부터 오물을 걸러 주는 필터를 포함하고,
    상기 베인은 상기 제2위치에 도달하는 경우 상기 노즐에서 분사되는 세척수가 상기 세척조의 후벽을 향하도록 상기 노즐 방향으로 회전하며, 배수 행정 시에 상기 베인의 회전에 의해 상기 필터에 남아 있는 오물을 제거하는 것을 특징으로 하는 식기 세척기.
  14. 세척조와, 상기 세척조의 내부로 세척수를 분사하는 노즐과, 상기 노즐로 세척수를 공급하는 펌프와, 상기 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인과, 상기 베인을 이동시키는 모터와, 상기 세척수로부터 오물을 걸러 주는 필터를 구비하는 식기 세척기의 제어방법에 있어서,
    배수 행정인가 판단하고;
    상기 배수 행정이면, 상기 베인이 상기 노즐에 근접하여 위치하는 제2위치에 도달하였는가를 검출하고;
    상기 베인이 상기 제2위치에 도달하면, 상기 모터의 구동을 정지하여 상기 베인의 이동을 정지시키고;
    상기 펌프의 구동에 따라 상기 노즐에서 세척수를 분사하여 상기 베인의 회전에 의해 반사되는 세척수가 상기 세척조의 후벽을 타격한 후에 상기 필터로 향하도록 유동시키고;
    상기 세척수의 유동에 따라 상기 필터에 남아 있는 오물을 제거하는 식기 세척기의 제어방법.
  15. 제14항에 있어서,
    상기 베인이 상기 제2위치에 도달하지 않으면, 상기 모터를 구동하여 상기 베인을 상기 제2위치로 이동시키는 것을 더 포함하는 식기 세척기의 제어방법.
  16. 제14항에 있어서,
    상기 펌프를 구동하는 것은,
    상기 펌프의 회전 속도를 제어하여 상기 노즐에서 분사되는 세척수의 양을 조절하는 식기 세척기의 제어방법.
  17. 제14항에 있어서,
    상기 펌프를 구동하는 것은,
    상기 펌프의 구동 시간을 제어하여 상기 노즐에서 분사되는 세척수의 양을 조절하는 식기 세척기의 제어방법.
  18. 세척수를 저장하는 섬프와, 상기 섬프에 저장된 세척수를 펌핑하는 펌프와, 상기 펌프에 의해 펌핑되는 세척수를 세척조의 내부로 분사하는 노즐과, 상기 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인과, 상기 세척수로부터 오물을 걸러 준 후 상기 섬프 내로 유입시키는 필터를 구비하는 식기 세척기의 제어방법에 있어서,
    배수 행정인가 판단하고;
    상기 배수 행정이면, 상기 베인과 노즐 간의 간격을 최소화한 위치에서 상기 펌프를 구동하여 상기 노즐에서 세척수를 분사하고;
    상기 분사된 세척수가 상기 베인의 회전에 의해 반사되어 상기 세척조의 후벽을 타격한 후에 상기 필터로 향하도록 하여 상기 필터에 남아 있는 오물을 제거하고;
    상기 펌프의 구동 시간을 카운트하여 기준 시간이 경과하였는가를 판단하고;
    상기 기준 시간이 경과하면, 상기 펌프의 구동을 정지하여 상기 세척수의 분사를 중지하고;
    상기 필터에서 여과된 오물과 상기 섬프 내의 세척수를 배수하는 식기 세척기의 제어방법.
  19. 세척조;
    상기 세척조의 내부에 설치되며, 세척수를 분사하는 노즐;
    상기 노즐에 세척수를 공급하는 순환 펌프;
    상기 세척조의 바닥면에 설치되며, 상기 세척수로부터 오물을 걸러 주는 필터;
    상기 필터의 막힘을 검출하는 막힘 검출부;
    세척 명령이 입력되면, 제1급수량의 세척수를 공급하고 상기 순환 펌프를 구동하여 세척 행정을 진행하고, 상기 필터의 막힘이 검출되면, 상기 세척 행정을 중지하고 상기 필터를 세척하는 행정을 진행하는 제어부를 포함하고,
    상기 제어부는 상기 노즐에서 분사되는 세척수가 상기 필터 쪽으로 분사되도록 상기 제1급수량보다 적은 제2급수량의 세척수를 공급하고, 상기 세척 행정 시에 구동되는 상기 순환 펌프의 회전 속도보다 낮은 회전 속도로 상기 순환 펌프를 제어하여 상기 필터를 세척하는 것을 특징으로 하는 식기 세척기.
  20. 제19항에 있어서,
    상기 막힘 검출부는 상기 세척 행정을 위한 상기 순환 펌프의 구동 중에 상기 순환 펌프의 소비 전력 변화를 검출하여 상기 소비 전력이 감소하면 상기 필터의 막힘을 검출하는 식기 세척기.
  21. 제19항에 있어서,
    상기 세척수를 급수하는 급수밸브;
    상기 세척조의 하부에 설치되며, 상기 세척수를 저장하는 섬프를 더 포함하고,
    상기 제2급수량은 상기 섬프의 내측을 채울 수 있는 소량의 세척수량인 식기 세척기.
  22. 제19항에 있어서,
    상기 세척조를 개폐시키는 도어;
    상기 도어에 근접하여 위치하는 제1위치와 상기 노즐에 근접하여 위치하는 제2위치 사이를 이동하며, 상기 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인을 더 포함하고,
    상기 베인이 상기 제1위치에 도달하면, 상기 제어부는 상기 베인의 이동을 정지하고 상기 노즐에서 분사되는 세척수가 상기 필터를 향하도록 제어하는 식기 세척기.
  23. 제22항에 있어서,
    상기 베인을 이동시키는 모터를 더 포함하고,
    상기 제어부는 상기 모터의 구동에 따라 이동하는 상기 베인이 상기 제2위치에서부터 이동한 시간을 카운트하여 일정 시간을 경과하면, 상기 베인이 상기 제1위치에 도달하였다고 판단하는 식기 세척기.
  24. 제19항에 있어서,
    상기 세척수를 배수시키는 배수 펌프를 더 포함하고,
    상기 순환 펌프의 구동 시간을 카운트하여 일정 시간을 경과하면, 상기 제어부는 상기 순환 펌프의 구동을 정지하고 상기 배수 펌프를 구동하여 상기 세척수를 배수하는 식기 세척기.
  25. 제19항에 있어서,
    상기 노즐은 복수 개의 분사홀을 더 포함하고,
    상기 제어부는 상기 복수 개의 분사홀에서 동시에 세척수를 분사하거나 상기 복수 개의 분사홀 중 일부의 분사홀에서 세척수를 분사하도록 제어하는 식기 세척기.
  26. 세척조;
    도어;
    상기 세척조의 내부에 설치되며, 세척수를 분사하는 노즐;
    상기 도어에 근접하여 위치하는 제1위치와 상기 노즐에 근접하여 위치하는 제2위치 사이를 이동하며, 상기 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인;
    상기 노즐에 세척수를 공급하는 순환 펌프;
    상기 세척조의 바닥면에 설치되며, 상기 세척수로부터 오물을 걸러 주는 필터;
    상기 필터의 막힘을 검출하는 막힘 검출부;
    상기 필터의 막힘이 검출되면, 세척 행정을 중지하고 상기 필터를 세척하는 행정을 진행하는 제어부를 포함하고,
    상기 제어부는 상기 노즐에서 분사되는 세척수가 상기 필터 쪽으로 분사되도록 상기 베인을 상기 제1위치로 이동시키고, 상기 세척수의 급수량과 상기 순환 펌프의 회전 속도를 제어하여 상기 필터를 세척하는 것을 특징으로 하는 식기 세척기.
  27. 제26항에 있어서,
    상기 막힘 검출부는 상기 세척 행정을 위한 상기 순환 펌프의 구동 중에 상기 순환 펌프의 소비 전력 변화를 검출하여 상기 소비 전력이 감소하면 상기 필터의 막힘을 검출하는 식기 세척기.
  28. 제27항에 있어서,
    상기 세척조의 하부에 설치되며, 상기 세척수를 배수하는 배수 펌프를 더 포함하고,
    상기 필터의 막힘이 검출되면, 상기 제어부는 상기 순환 펌프의 구동을 정지하고 상기 배수 펌프를 구동하여 상기 세척수를 배수하도록 제어하는 식기 세척기.
  29. 제28항에 있어서,
    상기 세척수를 급수하는 급수밸브를 더 포함하고,
    상기 세척수의 배수가 완료되면, 상기 제어부는 배수 펌프의 구동을 정지하고 상기 급수밸브를 구동하여 상기 세척수를 제2급수량까지 급수하도록 제어하는 식기 세척기.
  30. 제26항에 있어서,
    상기 베인을 이동시키는 모터를 더 포함하고,
    상기 모터의 구동에 따라 이동하는 상기 베인이 상기 제1위치에 도달하면, 상기 제어부는 상기 베인의 이동을 정지하고 상기 노즐에서 분사되는 세척수가 상기 필터를 향하도록 제어하는 식기 세척기.
  31. 제26항에 있어서,
    상기 베인을 이동시키는 모터를 더 포함하고,
    상기 제어부는 상기 모터의 구동에 따라 이동하는 상기 베인이 상기 제2위치에서부터 이동한 시간을 카운트하여 일정 시간을 경과하면, 상기 베인이 상기 제1위치에 도달하였다고 판단하는 식기 세척기.
  32. 제30항에 있어서,
    상기 제어부는 상기 노즐에서 분사되는 세척수가 상기 필터로 향하도록 상기 순환 펌프를 제3회전 속도로 제어하는 식기 세척기.
  33. 세척조와, 상기 세척조의 내부로 세척수를 분사하는 노즐과, 상기 노즐로 세척수를 공급하는 순환 펌프와, 상기 세척수로부터 오물을 걸러 주는 필터를 구비하는 식기 세척기의 제어방법에 있어서,
    상기 순환 펌프의 구동에 따라 상기 노즐에서 세척수를 상기 세척조 내부로 분사하여 세척 행정을 진행하고;
    상기 순환 펌프의 구동 중에 상기 순환 펌프의 소비 전력 변화를 검출하여 상기 필터의 막힘을 검출하고;
    상기 필터의 막힘이 검출되면, 상기 세척 행정을 중지하고 상기 노즐에서 세척수를 상기 필터 쪽으로 분사하여 상기 필터를 세척하는 식기 세척기의 제어방법.
  34. 제33항에 있어서,
    상기 필터가 막혔는가를 검출하는 것은,
    상기 세척 행정을 위한 상기 순환 펌프의 구동 중에 상기 순환 펌프의 소비 전력이 감소하면 상기 필터의 막힘을 검출하는 식기 세척기의 제어방법.
  35. 제33항에 있어서,
    상기 필터를 세척하는 것은,
    상기 세척수의 급수량과 상기 순환 펌프의 회전 속도를 제어하여 상기 필터를 막고 있는 오물을 제거하는 식기 세척기의 제어방법.
  36. 제35항에 있어서,
    상기 세척수의 급수량을 제어하는 것은,
    상기 필터의 세척을 위해 급수되는 급수량을 상기 세척 행정을 위해 급수되는 급수량보다 적게 공급하는 식기 세척기의 제어방법.
  37. 제35항에 있어서,
    상기 순환 펌프의 회전 속도를 제어하는 것은,
    상기 필터의 세척을 위해 구동되는 상기 순환 펌프의 회전 속도를 상기 세척 행정을 위해 구동되는 상기 순환 펌프의 회전 속도보다 낮게 제어하는 식기 세척기의 제어방법.
  38. 제35항에 있어서,
    상기 필터를 세척하는 것은,
    상기 세척수의 분사 방향을 변경하는 베인을 이동시키고;
    상기 베인이 상기 노즐로부터 이격되는 제1위치에 도달하면, 상기 베인의 이동을 정지하고 상기 노즐에서 세척수가 분사되도록 하는 것을 더 포함하는 식기 세척기의 제어방법.
  39. 제35항에 있어서,
    상기 필터를 세척하는 것은,
    상기 순환 펌프의 구동 시간을 카운트하여 일정 시간을 경과하면, 상기 순환 펌프의 구동을 정지하고 상기 세척수를 배수하여 상기 필터를 막고 있는 오물을 제거하는 식기 세척기의 제어방법.
  40. 세척수를 저장하는 섬프와, 상기 섬프에 저장된 세척수를 펌핑하는 순환 펌프와, 상기 순환 펌프에 의해 펌핑되는 세척수를 세척조의 내부로 분사하는 노즐과, 상기 노즐에서 분사되는 세척수의 분사 방향을 변경하는 베인과, 상기 세척수로부터 오물을 걸러 준 후 상기 섬프 내로 유입시키는 필터를 구비하는 식기 세척기의 제어방법에 있어서,
    상기 순환 펌프의 구동 중에 소비 전력 변화를 검출하여 상기 필터의 막힘을 검출하고;
    상기 필터의 막힘이 검출되면, 상기 세척수를 완전 배수한 후에 상기 섬프를 채울 수 있는 최소량의 세척수를 급수하고;
    상기 베인과 노즐 간의 간격을 최대화한 위치에서 상기 순환 펌프를 구동하여 상기 노즐에서 상기 급수된 세척수를 분사하고;
    상기 분사된 세척수가 상기 순환 펌프의 구동에 의해 상기 필터로 향하도록 하여 상기 필터를 세척하고;
    상기 순환 펌프의 구동 시간을 카운트하여 일정 시간이 경과하였는가를 판단하고;
    상기 일정 시간이 경과하면, 상기 순환 펌프의 구동을 정지하여 상기 세척수의 분사를 중지하고;
    상기 필터에서 여과된 오물과 상기 섬프 내의 세척수를 배수하는 식기 세척기의 제어방법.
  41. 세척조;
    상기 세척조의 내부에 설치되며, 세척수를 분사하는 노즐;
    상기 노즐에 세척수를 공급하는 순환 펌프;
    상기 세척조의 바닥면에 설치되며, 상기 세척수로부터 오물을 걸러 주는 필터;
    상기 순환 펌프의 구동 중에 소비 전력 변화를 검출하는 소비 전력 검출부;
    상기 소비 전력 변화가 검출되면, 상기 순환 펌프의 구동을 정지시켰다가 재구동하여 상기 소비 전력 변화가 지속되는가를 판단하는 제어부를 포함하고,
    상기 제어부는 상기 소비 전력 변화가 지속되는지 여부에 따라 상기 필터의 막힘 또는 거품 발생을 검출하는 것을 특징으로 하는 식기 세척기.
  42. 제41항에 있어서,
    상기 제어부는 상기 순환 펌프의 정지 시간을 카운트하여 일정 시간을 경과하면, 상기 순환 펌프를 슬로 스타트시키는 식기 세척기.
  43. 제42항에 있어서,
    상기 제어부는 상기 순환 펌프의 슬로 스타트 시간을 카운트하여 일정 시간을 경과하면, 상기 순환 펌프를 재구동하여 상기 노즐에서 세척수가 분사되도록 제어하는 식기 세척기.
  44. 제43항에 있어서,
    상기 제어부는 상기 순환 펌프의 재구동 시에 상부 쪽 노즐과 하부 쪽 노즐에서 상기 세척수가 분사되도록 제어하는 식기 세척기.
  45. 제44항에 있어서,
    상기 제어부는 상기 순환 펌프의 재구동 시간이 일정 시간을 경과하면, 상기 소비 전력 검출부를 통해 상기 순환 펌프의 소비 전력 변화를 검출하여 상기 소비 전력 변화가 지속되는가를 판단하는 식기 세척기.
  46. 제45항에 있어서,
    상기 제어부는 상기 소비 전력 변화가 지속되면, 상기 필터의 막힘을 검출하여 세척 행정을 중지하고 상기 필터를 세척하는 행정을 진행하는 식기 세척기.
  47. 제45항에 있어서,
    상기 제어부는 상기 소비 전력 변화가 지속되지 않으면, 상기 세척조 내부에 거품이 발생하였다고 판단하고 상기 세척 행정을 계속 진행하는 식기 세척기.
  48. 세척조와, 상기 세척조의 내부로 세척수를 분사하는 노즐과, 상기 노즐로 세척수를 공급하는 순환 펌프와, 상기 세척수로부터 오물을 걸러 주는 필터를 구비하는 식기 세척기의 제어방법에 있어서,
    상기 순환 펌프의 구동에 따라 상기 노즐에서 세척수를 분사하여 세척 행정을 진행하고;
    상기 순환 펌프의 구동 중에 상기 순환 펌프의 소비 전력 변화를 검출하고;
    상기 소비 전력 변화가 검출되면, 상기 순환 펌프의 구동을 일정 시간 동안 정지시키고;
    상기 일정 시간이 경과하면, 상기 순환 펌프를 재구동하여 상기 순환 펌프의 소비 전력 변화가 지속되는가를 판단하고;
    상기 소비 전력 변화가 지속되면, 상기 세척 행정을 중지하고 상기 필터를 세척하는 행정을 진행하고;
    상기 소비 전력 변화가 지속되지 않으면, 상기 세척 행정을 진행하는 식기 세척기의 제어방법.
PCT/KR2014/012706 2013-12-31 2014-12-23 식기 세척기 및 그 제어방법 WO2015102287A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480076652.1A CN106061348B (zh) 2013-12-31 2014-12-23 洗碗机以及控制该洗碗机的方法
CA2934870A CA2934870C (en) 2013-12-31 2014-12-23 Dish washer and method for controlling same
EP14876375.8A EP3090673B1 (en) 2013-12-31 2014-12-23 Dish washer and method for controlling same
AU2014374695A AU2014374695B2 (en) 2013-12-31 2014-12-23 Dish washer and method for controlling same
US15/108,695 US9986884B2 (en) 2013-12-31 2014-12-23 Dish washer and method for controlling same
US15/976,996 US10244918B2 (en) 2013-12-31 2018-05-11 Dish washer and method for controlling same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0169140 2013-12-31
KR20130169140 2013-12-31
KR10-2014-0151608 2014-11-03
KR1020140151608A KR102379020B1 (ko) 2013-12-31 2014-11-03 식기 세척기 및 그 제어방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/108,695 A-371-Of-International US9986884B2 (en) 2013-12-31 2014-12-23 Dish washer and method for controlling same
US15/976,996 Continuation US10244918B2 (en) 2013-12-31 2018-05-11 Dish washer and method for controlling same

Publications (1)

Publication Number Publication Date
WO2015102287A1 true WO2015102287A1 (ko) 2015-07-09

Family

ID=53493584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012706 WO2015102287A1 (ko) 2013-12-31 2014-12-23 식기 세척기 및 그 제어방법

Country Status (1)

Country Link
WO (1) WO2015102287A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108209814A (zh) * 2018-01-16 2018-06-29 浙江欧琳生活健康科技有限公司 一种洗碗机的洗涤装置
CN108968860A (zh) * 2018-07-31 2018-12-11 珠海格力电器股份有限公司 清洗设备
CN110355145A (zh) * 2019-08-23 2019-10-22 浙江气派智能科技有限公司 具有锁渣功能的渣篮组件及清洗机
US10492659B2 (en) * 2015-11-13 2019-12-03 Samsung Electronics Co., Ltd. Dish washing machine and method of controlling the same
CN111227741A (zh) * 2018-11-29 2020-06-05 宁波方太厨具有限公司 一种清洗机的箱体结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117996A (ja) * 1996-10-23 1998-05-12 Matsushita Electric Ind Co Ltd 食器洗い機の運転方法
US20070181156A1 (en) * 2004-03-16 2007-08-09 Atilla Uz Dishwasher and control method thereof
JP2008036130A (ja) * 2006-08-07 2008-02-21 Toto Ltd 食器洗浄機
KR20110061830A (ko) * 2009-12-02 2011-06-10 엘지전자 주식회사 식기 세척기의 제어 방법
US20130319487A1 (en) * 2012-06-05 2013-12-05 Samsung Electronics Co., Ltd. Dish washing machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10117996A (ja) * 1996-10-23 1998-05-12 Matsushita Electric Ind Co Ltd 食器洗い機の運転方法
US20070181156A1 (en) * 2004-03-16 2007-08-09 Atilla Uz Dishwasher and control method thereof
JP2008036130A (ja) * 2006-08-07 2008-02-21 Toto Ltd 食器洗浄機
KR20110061830A (ko) * 2009-12-02 2011-06-10 엘지전자 주식회사 식기 세척기의 제어 방법
US20130319487A1 (en) * 2012-06-05 2013-12-05 Samsung Electronics Co., Ltd. Dish washing machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10492659B2 (en) * 2015-11-13 2019-12-03 Samsung Electronics Co., Ltd. Dish washing machine and method of controlling the same
CN108209814A (zh) * 2018-01-16 2018-06-29 浙江欧琳生活健康科技有限公司 一种洗碗机的洗涤装置
CN108968860A (zh) * 2018-07-31 2018-12-11 珠海格力电器股份有限公司 清洗设备
CN111227741A (zh) * 2018-11-29 2020-06-05 宁波方太厨具有限公司 一种清洗机的箱体结构
CN110355145A (zh) * 2019-08-23 2019-10-22 浙江气派智能科技有限公司 具有锁渣功能的渣篮组件及清洗机

Similar Documents

Publication Publication Date Title
WO2015102287A1 (ko) 식기 세척기 및 그 제어방법
WO2015102358A1 (ko) 식기 세척기 및 그 제어방법
EP3089643A1 (en) Dish washing machine
WO2021045436A1 (en) Cleaning device having vacuum cleaner and docking station and method of controlling the same
WO2015133798A1 (en) Washing machine
WO2015102357A1 (en) Dish washing machine
WO2016126086A1 (en) Dish washer
WO2013085302A1 (ko) 벽걸이형 드럼세탁기
EP3068277A1 (en) Dishwasher and method of controlling the same
WO2013085296A1 (ko) 벽걸이형 드럼세탁기
WO2020214004A1 (en) Condensing duct, and washing and drying machine including the same
WO2013085299A1 (ko) 벽걸이형 드럼세탁기
WO2013085298A1 (ko) 벽걸이형 드럼세탁기
WO2013085294A1 (ko) 벽걸이형 드럼세탁기
WO2016043452A1 (ko) 세탁기 및 그 제어 방법
WO2013085297A1 (ko) 벽걸이형 드럼세탁기
WO2013085293A1 (ko) 벽걸이형 드럼세탁기
WO2020190074A1 (en) Washing machine and controlling method thereof
WO2015068990A1 (en) Dishwasher and method of controlling the same
WO2019164244A1 (ko) 세탁장치 및 이의 제어방법
WO2015102355A1 (en) Dish washing machine
WO2020013472A1 (ko) 청소기의 노즐
EP3905940A1 (en) Dishwasher
WO2020009368A1 (ko) 식기 세척기 및 그 제어방법
AU2018341366B2 (en) Laundry treating apparatus and method for controlling the apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2934870

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2014876375

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014876375

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15108695

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014374695

Country of ref document: AU

Date of ref document: 20141223

Kind code of ref document: A