WO2015102037A1 - Intake air cooling device - Google Patents

Intake air cooling device Download PDF

Info

Publication number
WO2015102037A1
WO2015102037A1 PCT/JP2014/005752 JP2014005752W WO2015102037A1 WO 2015102037 A1 WO2015102037 A1 WO 2015102037A1 JP 2014005752 W JP2014005752 W JP 2014005752W WO 2015102037 A1 WO2015102037 A1 WO 2015102037A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
intake air
intercooler
cooling
engine
Prior art date
Application number
PCT/JP2014/005752
Other languages
French (fr)
Japanese (ja)
Inventor
太一 浅野
雄史 川口
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201480072353.0A priority Critical patent/CN105874182B/en
Priority to DE112014006108.5T priority patent/DE112014006108B4/en
Publication of WO2015102037A1 publication Critical patent/WO2015102037A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/045Constructional details of the heat exchangers, e.g. pipes, plates, ribs, insulation, materials, or manufacturing and assembly
    • F02B29/0462Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an intake air cooling device that cools intake air of an engine.
  • Patent Document 1 describes a cooling device including a heat exchanger that cools a heat exchange fluid to two temperature levels.
  • This heat exchanger has one inflow nozzle, two outflow nozzles, and three flow paths.
  • the heat exchange fluid flows from one inflow nozzle.
  • the heat exchange fluid that has passed through only one of the three channels flows out from one outflow nozzle, and the heat medium that has passed through all three channels flows out from the other outflow nozzle.
  • the heat exchange fluid flowing out from one outflow nozzle is at a higher temperature than the heat exchange fluid flowing out from the other outflow nozzle.
  • the intercooler that cools the supercharged air is a water-cooled type. This is because when the intercooler is water-cooled, the capacity of the intake system can be reduced as compared with the case where the intercooler is air-cooled, so that the engine response can be improved.
  • the intercooler cools the supercharged air to a temperature about 10 ° C higher than the outside air temperature. Therefore, when adopting a water-cooled intercooler, it is necessary to circulate cooling water having a temperature lower than that of the circulating water (about 80 ° C.) circulating in the existing engine cooling circuit to the water-cooled intercooler.
  • a configuration in which the cooling water circulating in the engine cooling circuit is further cooled and then distributed to the water-cooled intercooler can be considered.
  • a configuration in which a part of the cooling water cooled by an existing radiator provided in the engine cooling circuit is further cooled by an intercooler radiator and then distributed to the intercooler can be considered.
  • the cooling water can be distributed to the water-cooled intercooler using the existing pump provided in the engine cooling circuit. Therefore, the number of pumps can be reduced as compared with the configuration in which the cooling water circuit for the water-cooled intercooler is provided independently of the engine cooling circuit.
  • the cooling water of the engine cooling circuit is always cooled by circulating through the radiator for the intercooler, so that the warm-up performance may be impaired. That is, it takes time for the cooling water to warm up to an appropriate temperature (about 80 ° C.) during warm-up immediately after starting the engine, which may deteriorate the fuel consumption of the engine (see FIG. 3 described later). ).
  • the present disclosure aims to suppress the deterioration of the engine warm-up performance while ensuring the cooling performance of the engine intake air.
  • the intake air cooling device includes a first radiator, a second radiator, a first intake air cooler, a second intake air cooler, a branching unit, and a switching unit.
  • the first radiator cools the cooling fluid by exchanging heat between the cooling fluid flowing out from the engine and the outside air.
  • the second radiator cools the cooling fluid by exchanging heat between the cooling fluid cooled by the first radiator and the outside air.
  • the first intake air cooler cools the intake air by exchanging heat between the cooling fluid cooled by the second radiator and the intake air of the engine.
  • the second intake air cooler cools the intake air by exchanging heat between the cooling fluid that flows by bypassing the first radiator and the second radiator and the intake air of the engine.
  • the branching portion branches the flow of the cooling fluid into a first radiator side flow toward the first radiator and a second intake cooler side flow toward the second intake cooler.
  • the switching unit blocks or distributes the first radiator side flow.
  • the switching unit cuts off the flow on the first radiator side, the cooling fluid does not flow through the first radiator and the second radiator. Therefore, it can suppress that heat is dissipated from the cooling fluid to the outside air, and thus it is possible to suppress the engine warm-up performance from being impaired.
  • the cooling fluid of the second intake air cooler side flow flows through the second intake air cooler, so that the intake air of the engine can be cooled.
  • the intake air cooling device includes a first radiator, a second radiator, a first intake air cooler, a second intake air cooler, a branching unit, and a switching unit.
  • the first radiator cools the cooling fluid by exchanging heat between the cooling fluid flowing out from the engine and the outside air.
  • the second radiator cools the cooling fluid by exchanging heat between the cooling fluid cooled by the first radiator and the outside air.
  • the first intake air cooler cools the intake air by exchanging heat between the cooling fluid cooled by the second radiator and the intake air of the engine.
  • the second intake air cooler cools the intake air by exchanging heat between the cooling fluid flowing out from the engine and the intake air of the engine.
  • the branching portion branches the flow of the cooling fluid flowing out from the engine into a first radiator side flow toward the first radiator and a second intake cooler side flow toward the second intake cooler.
  • the switching unit blocks or distributes the first radiator side flow.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. It is sectional drawing of the circulation channel on-off valve in 1st Embodiment.
  • the engine cooling circuit of 1st Embodiment it is a figure which shows the flow of the cooling water in case the circulation flow path on-off valve is closing.
  • an engine cooling circuit of a 4th embodiment it is a figure showing a flow of cooling water in case a circulation channel on-off valve is closed.
  • FIG. 1 shows an engine cooling circuit 10 constituting the intake air cooling device.
  • the engine cooling circuit 10 is a circuit through which cooling water (cooling fluid) for cooling the engine 11 circulates.
  • the engine 11 is an internal combustion engine that generates driving power for the vehicle.
  • a cooling water passage through which cooling water flows is formed inside the engine 11.
  • the cooling water is an ethylene glycol antifreeze (LLC).
  • LLC ethylene glycol antifreeze
  • the intake air (intake air) of the engine 11 is supercharged by a supercharger (not shown).
  • the engine cooling circuit 10 includes a pump 12, a first radiator 13, a second radiator 14, a first intercooler 15, a second intercooler 16, and a circulation flow path opening / closing valve 17.
  • the pump 12, the engine 11, the circulation channel opening / closing valve 17, and the first radiator 13 are arranged in this order in the circulation channel 18 through which the cooling water circulates.
  • the pump 12 is a fluid machine that sucks and discharges cooling water.
  • the pump 12 is a mechanical pump that is driven by the power output from the engine 11.
  • the pump 12 may be an electric pump driven by an electric motor.
  • the first radiator 13 is a heat exchanger that cools the cooling water by exchanging heat between the cooling water flowing out from the engine 11 and the outside air.
  • the first radiator 13 is a radiator that radiates heat of the cooling water to the outside air.
  • the second radiator 14 and the first intercooler 15 are disposed in the first intake air cooling channel 19.
  • the first intake cooling channel 19 is a channel that branches from the circulation channel 18 and joins the circulation channel 18.
  • a first branching section 20 where the first intake cooling flow path 19 branches from the circulation flow path 18 and a first merging section 21 where the first intake cooling flow path 19 merges with the circulation flow path 18 include the first radiator 13.
  • the cooling water outlet side of the pump 12 and the cooling water suction side of the pump 12 are provided.
  • the second radiator 14 is a heat exchanger that cools the cooling water by exchanging heat between the cooling water and the outside air.
  • the second radiator 14 is a radiator that radiates heat of the cooling water to the outside air.
  • the second radiator 14 is integrated with the first radiator 13, but may be configured separately from the first radiator 13.
  • the first branch portion 20 may be provided in a cooling water outlet side tank of the first radiator 13.
  • the first intercooler 15 is an intake air cooler (first intake air cooler) that cools the supercharged intake air by exchanging heat between the supercharged intake air that has been compressed by the supercharger (turbocharger) and becomes high temperature and the cooling water. It is. In order to reduce the capacity of the intake system as much as possible, the first intercooler 15 is disposed adjacent to the engine 11.
  • first intake air cooler intake air cooler
  • the cooling water inlet of the first intercooler 15 is connected to the cooling water outlet of the second radiator 14.
  • the cooling water outlet of the first intercooler 15 is connected to the cooling water inlet of the pump 12.
  • the second intercooler 16 is disposed in the second intake air cooling flow path 22.
  • the second intake cooling flow path 22 is a flow path that branches from the circulation flow path 18 and merges with the circulation flow path 18.
  • a second branch portion 23 where the second intake air cooling flow path 22 branches from the circulation flow path 18 is provided on the cooling water outlet side of the engine 11 and on the cooling water inlet side of the first radiator 13. .
  • the second intake cooling flow path 22 joins the first intake cooling flow path 19 at the second merging portion 24, and passes through a part of the first intake cooling flow path 19 at the first merging portion 21. It joins the circulation channel 18.
  • the second intercooler 16 is an intake air cooler (second intake air cooler) that cools the supercharged intake air by exchanging heat between the supercharged intake air that has been compressed by the supercharger (turbocharger) and becomes high temperature and the cooling water It is.
  • the second intercooler 16 is integrated with the first intercooler 15 in order to minimize the capacity of the intake system.
  • the second intercooler 16 may be configured separately from the first intercooler 15.
  • the cooling water inlet of the second intercooler 16 is connected to the cooling water discharge port of the pump 12.
  • the coolant outlet of the second intercooler 16 is connected to the coolant inlet of the pump 12.
  • the second intercooler 16 is located upstream of the first intercooler 15 in the supercharging intake air flow direction. Accordingly, the supercharged intake air flows in the order of the second intercooler 16 and the first intercooler 15.
  • the circulation channel opening / closing valve 17 is a switching unit that blocks or circulates the coolant flow in the circulation channel 18, and opens and closes the circulation channel 18 according to the temperature Tw (cooling fluid temperature) of the coolant.
  • the circulation flow path opening / closing valve 17 is a mechanical valve that opens and closes a valve body by a mechanical mechanism.
  • the circulation flow path opening / closing valve 17 is a mechanical thermostat valve.
  • the mechanical thermostat is a cooling water temperature responsive valve configured by a mechanical mechanism that opens and closes a cooling water flow path by displacing a valve body by a thermo wax (temperature sensitive member) whose volume changes with temperature.
  • the circulation channel opening / closing valve 17 may be an electronic control valve.
  • the circulation channel opening / closing valve 17 is closed when the cooling water temperature Tw is lower than the predetermined temperature Tw1, and is opened when the cooling water temperature Tw is equal to or higher than the predetermined temperature Tw1.
  • the predetermined temperature Tw1 is set to 80 ° C. or higher and 90 ° C. or lower.
  • the circulation channel opening / closing valve 17 is located on the cooling water inlet side of the first radiator 13, but may be located on the cooling water outlet side of the first radiator 13.
  • the circulation channel opening / closing valve 17 may be incorporated in the cooling water inlet side tank or the cooling water outlet side tank of the first radiator 13.
  • a second branch portion 23 is formed inside the circulation flow path opening / closing valve 17.
  • the first intercooler 15 and the second intercooler 16 of the present embodiment are each a plurality of tubes through which cooling water flows, and a collection of cooling water that is arranged on both ends of the plurality of tubes and flows through the tubes. Alternatively, it has a pair of collective distribution tanks 26 that perform distribution.
  • the first intercooler 15 and the second intercooler 16 are configured as so-called tank-and-tube heat exchangers.
  • the first intercooler 15 has a plurality of tubes 15a through which cooling water flows.
  • the tube 15a is a flat tube whose vertical cross-sectional shape in the longitudinal direction is flat.
  • Each tube 15a is laminated at a predetermined interval so that flat surfaces of its outer surface are parallel to each other and face each other.
  • a supercharged intake passage 15b for circulating the supercharged intake air is formed around the tube 15a, that is, between the adjacent tubes 15a.
  • the second intercooler 16 has a plurality of tubes 16a through which cooling water flows.
  • the tube 16a is a flat tube whose vertical cross-sectional shape in the longitudinal direction is flat.
  • the tube 16a of the second intercooler 16 is laminated at a predetermined interval so that the flat surfaces of the outer surface are parallel to each other and face each other. .
  • a supercharged intake passage 16b for circulating the supercharged intake air is formed around the tube 16a, that is, between the adjacent tubes 16a.
  • Outer fins 27 formed of the same member are disposed in the supercharging intake passage 15b and the supercharging intake passage 16b.
  • the outer fin 27 is joined to both the tubes 15a and 16a. Thereby, the 1st intercooler 15 and the 2nd intercooler 16 are integrated.
  • the outer fin 27 a corrugated fin obtained by bending a metal thin plate having excellent heat conductivity into a wave shape is employed.
  • the outer fins 27 are heat transfer fins that promote heat exchange between the cooling water and the supercharged intake air.
  • the tube 15a of the first intercooler 15, the tube 16a of the second intercooler 16, the collecting / distributing tank 26, the outer fin 27, etc. are all formed of an aluminum alloy and integrated by brazing and joining. Yes.
  • the second intercooler 16 is disposed downstream of the first intercooler 15 in the supercharging intake air flow direction.
  • the tube 15a and the outer fin 27 of the first intercooler 15 constitute a heat exchange core portion 15c.
  • the tubes 16a and the outer fins 27 of the second intercooler 16 constitute a heat exchange core portion 16c.
  • the heat exchange core portions 15c and 16c are portions of the intercoolers 15 and 16 that exchange heat with refrigerant and air.
  • first radiator 13 and the second radiator 14 Since the configurations of the first radiator 13 and the second radiator 14 are basically the same as the configurations of the first intercooler 15 and the second intercooler 16, the first radiator 13 and the second radiator 13 are enclosed in parentheses in FIGS. Reference numerals corresponding to the two radiators 14 are attached, and illustration of the first radiator 13 and the second radiator 14 is omitted.
  • the first radiator 13 and the second radiator 14 of the present embodiment are each a plurality of tubes through which cooling water flows, and a collection or distribution of cooling water that is arranged at both ends of the plurality of tubes and flows through the tubes.
  • the 1st radiator 13 and the 2nd radiator 14 are comprised as what is called a tank and tube type heat exchanger.
  • the first radiator 13 has a plurality of tubes 13a through which cooling water flows.
  • the tube 13a is a flat tube whose vertical cross-sectional shape in the longitudinal direction is flat.
  • Each tube 13a is laminated at a predetermined interval so that flat surfaces of its outer surface are parallel to each other and face each other.
  • the outside air passage 13b for circulating outside air is formed around the tube 13a, that is, between the adjacent tubes 13a.
  • the second radiator 14 has a plurality of tubes 14a for circulating cooling water therein.
  • the tube 14a is a flat tube whose vertical cross-sectional shape in the longitudinal direction is flat.
  • the tube 14a of the second radiator 14 is laminated at a predetermined interval so that the flat surfaces of the outer surface are parallel to each other and face each other.
  • an outside air passage 14b for circulating outside air is formed around the tube 14a, that is, between the adjacent tubes 14a.
  • Outer fins 29 formed of the same member are disposed in the outside air passage 13b and the outside air passage 14b.
  • the outer fin 29 is joined to both the tubes 13a and 14a. Thereby, the 1st radiator 13 and the 2nd radiator 14 are integrated.
  • corrugated fins obtained by bending a metal thin plate having excellent heat conductivity into a wave shape are employed.
  • the outer fin 29 promotes heat exchange between the cooling water and the supercharging intake air.
  • the tube 13a of the first radiator 13, the tube 14a of the second radiator 14, the collecting / distributing tank 28, the outer fins 29, and the like are all formed of an aluminum alloy and integrated by brazing and joining.
  • the first radiator 13 is located downstream of the second radiator 14 in the outside air flow direction.
  • the circulation flow path opening / closing valve 17 has one cooling water inlet 17a, two cooling water outlets 17b, 17c, a circulation flow path side valve body 17d, and a cooling water temperature detection unit 17e.
  • the cooling water inlet 17 a (cooling fluid inlet) is connected to the cooling water outlet of the engine 11.
  • the first cooling water outlet 17 b (first cooling fluid outlet) communicates with the cooling water inlet 17 a and is connected to the cooling water inlet of the first radiator 13.
  • the second cooling water outlet 17 c communicates with the cooling water inlet 17 a and is connected to the cooling water inlet of the second intercooler 16. Therefore, the second branch portion 23 is formed inside the circulation flow path opening / closing valve 17.
  • the circulation channel side valve element 17d is a valve member that blocks or circulates the cooling water flow in the circulation channel 18 by opening and closing the first cooling water outlet 17b.
  • the cooling water temperature detector 17e is a temperature detector that detects the temperature Tw of the cooling water.
  • the cooling water temperature detection unit 17e is a thermo wax (temperature sensitive member) whose volume changes with temperature. When the volume of the cooling water temperature detector 17e changes, the circulating flow path side valve element 17d is displaced to open and close the cooling water flow path.
  • the coolant temperature detector 17e may be a bimetal or a shape memory alloy.
  • an engine stop state In a state where the engine 11 is stopped (hereinafter referred to as an engine stop state), the engine 11 does not generate a driving force, so the pump 12 stops and the cooling water does not circulate.
  • the cooling water temperature Tw is the same as the outside air temperature. That is, when the engine is stopped, the cooling water temperature Tw is equal to or lower than the predetermined temperature Tw1 (50 ° C. or more and 80 ° C. in the present embodiment), so the circulation flow path opening / closing valve 17 is closed.
  • the engine 11 When the engine 11 is started, the engine 11 generates driving force and heat, so that the pump 12 operates to suck or discharge the cooling water, and the cooling water temperature Tw gradually increases.
  • the circulation channel opening / closing valve 17 is closed until the cooling water temperature Tw reaches a predetermined temperature Tw1 (in this embodiment, 50 ° C. or more and 80 ° C.). Therefore, as shown by the thick solid line in FIG. 5, the cooling water discharged from the pump 12 flows through the engine 11 and the second intercooler 16 and is sucked into the pump 12, and the first radiator 13, the second radiator 14, and It does not circulate through the first intercooler 15.
  • a predetermined temperature Tw1 in this embodiment, 50 ° C. or more and 80 ° C.
  • the cooling water does not flow through the first radiator 13, the second radiator 14, and the first intercooler 15, so that the heat is not radiated from the cooling water to the outside air. It can promote warm-up.
  • the cooling water flows through the second intercooler 16, the supercharged intake air can be cooled or heated.
  • the supercharged intake air becomes hot.
  • the temperature of the supercharging intake air is higher than the temperature of the cooling water, the supercharging intake air is cooled by the second intercooler 16.
  • the supercharged intake air becomes cold.
  • the temperature of the supercharging intake air is lower than the temperature of the cooling water, the supercharging intake air is heated by the second intercooler 16.
  • the load on the engine 11 is low, the amount of heat lost by the cooling water is small, and the warm-up is not impaired.
  • the engine 11 can be warmed up by the supercharged intake air heated by the second intercooler 16, and an exhaust gas emission reduction effect can be obtained.
  • the circulation channel opening / closing valve 17 is opened. Therefore, the cooling water discharged from the pump 12 flows through the engine 11 and then branches into a first radiator side flow FR and a second intercooler side flow FI as shown in FIG.
  • the first radiator side flow FR is a flow of cooling water from the second branch portion 23 toward the first radiator 13.
  • the second intercooler side flow FI is a flow of cooling water from the second branch portion 23 toward the second intercooler 16.
  • the cooling water flowing through the first intercooler 15 is cooled by the first radiator 13 and the second radiator 14. Therefore, the temperature of the cooling water flowing through the first intercooler 15 is lower than that of the cooling water flowing through the second intercooler 16.
  • the first radiator side flow FR further branches after flowing through the first radiator 13. Specifically, the flow FR1 that is sucked into the pump 12 as it is and the flow FR2 that flows through the second radiator 14 and the first intercooler 15 and is sucked into the pump 12 are branched.
  • the supercharged intake air When the supercharged intake air is at a high load, the supercharged intake air is cooled in two stages in the order of the second intercooler 16 and the first intercooler 15, so that the cooling performance is improved.
  • the supercharged intake air At low load when the supercharged intake air is at a low temperature, the supercharged intake air is once warmed by the second intercooler 16 and cooled by the first intercooler 15. When the load is low, the flow rate of the supercharged intake air is small. Therefore, even if the supercharged intake air is once warmed by the second intercooler 16, the supercharged air intake can be sufficiently cooled by the first intercooler 15.
  • a branching portion that branches the flow of cooling water flowing out from the engine 11 into a first radiator-side flow FR toward the first radiator 13 and a second intercooler-side flow FI toward the second intercooler 16. 23 and a circulation flow path opening / closing valve 17 for blocking or circulating the first radiator side flow FR.
  • the circulation flow path opening / closing valve 17 blocks the first radiator side flow FR, the cooling water does not flow through the first radiator 13 and the second radiator 14. Therefore, it can suppress that heat is dissipated from the cooling water to the outside air.
  • the cooling water flows through the second intercooler 16 even if the circulation flow path opening / closing valve 17 blocks the first radiator side flow FR, the intake air of the engine 11 can be cooled.
  • the second intercooler 16 and the first intercooler 15 of this embodiment have tubes 15a and 16a through which cooling water flows, respectively.
  • the tube 16a of the second intercooler 16 and the tube 15a of the first intercooler 15 are joined to each other by heat transfer fins 27 formed on a thin plate material.
  • the heat exchange core portion 16c of the second intercooler 16 and the heat exchange core portion 15c of the first intercooler 15 are integrated with each other, the heat exchange core portions 16c and 15c are separate from each other.
  • the configuration can be simplified compared to the case where it is formed.
  • the first radiator 13 and the second radiator 14 of the present embodiment have tubes 13a and 14a through which cooling water flows, respectively.
  • the tube 13a of the 1st radiator 13 and the tube 14a of the 2nd radiator 14 are mutually joined by the heat-transfer fin 27 formed in the thin-plate material.
  • both the heat exchange core portions 13c and 14c are formed separately from each other.
  • the configuration can be simplified compared to the case where
  • the pressure loss of the outside air can be reduced as compared with the case where the first radiator 13 and the second radiator 14 are separated from each other.
  • the circulation channel opening / closing valve 17 of the present embodiment blocks or circulates the first radiator-side flow FR according to the cooling water temperature Tw detected by the cooling water temperature detection unit 17e.
  • the circulation flow path opening / closing valve 17 interrupts the first radiator-side flow FR, and the temperature Tw of the cooling water is equal to or higher than the predetermined temperature Tw1.
  • the first radiator side flow FR is circulated.
  • the predetermined temperature Tw1 is 80 ° C. or higher and 90 ° C. or lower. Thereby, it can suppress appropriately that the warming-up performance of the engine 11 is impaired.
  • the heater core 30 is disposed in the second intake cooling flow path 22.
  • the heater core 30 is a heating heat exchanger that heats the air by exchanging heat between the cooling water flowing out from the engine 11 and the air blown into the vehicle interior.
  • the air heated by the heater core 30 is used for air conditioning in the passenger compartment.
  • the heater core 30 is located upstream of the second intercooler 16 in the coolant flow direction.
  • the bypass flow path 31 is a flow path in which the cooling water flowing out from the heater core 30 flows around the second intercooler 16.
  • the bypass flow path 31 branches from a portion of the second intake air cooling flow path 22 between the heater core 30 and the second intercooler 16, and the second intake air cooling flow path 22 of the second inter cooler 16 is branched. Merges downstream of the cooling water flow.
  • the bypass flow path 31 adjusts the flow rate of the cooling water flowing through the second intercooler 16.
  • the second intercooler 16 is located downstream of the heater core 30 in the coolant flow direction. Therefore, the cooling water heat-exchanged by the heater core 30 flows through the second intercooler 16.
  • the cooling water dissipates heat to the air in the heater core 30, the temperature of the cooling water flowing through the second intercooler 16 is lowered. Therefore, the cooling performance of the supercharged intake air in the second intercooler 16 can be improved.
  • the present embodiment includes a bypass flow path 31 in which the cooling water that has flowed out of the heater core 30 flows around the second intercooler 16.
  • a third intercooler 32 is provided as shown in FIG.
  • the third intercooler 32 exchanges heat between the supercharged intake air and the cooling water that have been compressed by the supercharger (turbocharger) and become high temperature.
  • An intake air cooler that cools the intake and intake air.
  • the third intercooler 32 is integrated with the first intercooler 15 and the second intercooler 16.
  • the third intercooler 32 is disposed in the third intake air cooling channel 33.
  • the third intake air cooling flow path 33 is a flow path that branches from the circulation flow path 18 and joins the circulation flow path 18.
  • the third branch 34 where the third intake air cooling flow path 33 branches from the circulation flow path 18 is provided on the cooling water outlet side of the first radiator 13 and on the cooling water suction side of the pump 12.
  • the third intake air cooling flow path 33 joins the second intake air cooling flow path 22 at the third merging portion 35, and the first intake air cooling flow path 33 passes through a part of the second intake air cooling flow path 22. 19, and further merges with the circulation channel 18 at the first junction 21 via a part of the first intake cooling channel 19.
  • the cooling water inlet of the third intercooler 32 is connected to the cooling water outlet of the first radiator 13.
  • the cooling water outlet of the third intercooler 32 is connected to the cooling water inlet of the pump 12.
  • the third intercooler 32 is located between the first intercooler 15 and the second intercooler 16 in the supercharging intake air flow direction. Accordingly, the supercharged intake air flows in the order of the second intercooler 16, the third intercooler 32, and the first intercooler 15.
  • the cooling water flowing through the third intercooler 32 is cooled by the first radiator 13. Accordingly, the cooling water flowing through the third intercooler 32 has a lower temperature than the cooling water flowing through the second intercooler 16 and a higher temperature than the cooling water flowing through the first intercooler 15.
  • the supercharged intake air When the supercharged intake air is at a high load, the supercharged intake air is cooled in three stages in the order of the second intercooler 16, the third intercooler 32, and the first intercooler 15, so that the cooling performance is improved.
  • the supercharged intake air is once warmed by the second intercooler 16 and cooled in two stages in the order of the third intercooler 32 and the first intercooler 15.
  • the flow rate of the supercharged intake air is small. Therefore, even if the supercharged intake air is once warmed by the second intercooler 16, the supercharged air intake can be sufficiently cooled by the third intercooler 32 and the first intercooler 15.
  • the second branch portion 23 where the second intake cooling flow path 22 branches from the circulation flow path 18 is the cooling water outlet side of the engine 11 and the cooling water outlet side of the first radiator 13.
  • the second branch portion 23 is provided on the cooling water discharge side of the pump 12 and the cooling water inlet side of the engine 11.
  • the engine cooling circuit 10 includes a radiator bypass passage 40.
  • the radiator bypass channel 40 is a channel through which cooling water flows by bypassing the first radiator 13 and the second radiator 14.
  • the radiator bypass channel 40 branches from the circulation channel 18 at the third branching portion 41 and merges with the circulation channel 18 at the third junction 42.
  • the third branch portion 41 is provided on the cooling water outlet side of the engine 11 and on the cooling water inlet side of the circulation channel opening / closing valve 17.
  • the third junction 42 is provided on the cooling water outlet side of the first radiator 13 and on the cooling water suction side of the pump 12.
  • the circulation flow path opening / closing valve 17 When the circulation flow path opening / closing valve 17 is open, the flow rate of the cooling water flowing through the radiator bypass flow path 40 becomes too large, and the flow rate of the cooling water flowing through the first radiator 13 and the second radiator 14 becomes too small.
  • the flow path resistance of the radiator bypass flow path 40 is set to be large so as not to occur.
  • the circulation flow path opening / closing valve 17 is closed until the coolant temperature Tw reaches a predetermined temperature Tw1 (in this embodiment, 50 ° C. or higher and 80 ° C.). Therefore, as shown by the thick solid line in FIG. 9, the cooling water discharged from the pump 12 flows through the second intercooler 16 and the flow through the engine 11 at the second branch portion 23 and the third branch portion 41. Are then merged at the second junction 21 and the third junction 42 and sucked into the pump 12. On the other hand, the cooling water discharged from the pump 12 does not flow to the first radiator 13, the second radiator 14, and the first intercooler 15.
  • Tw1 in this embodiment, 50 ° C. or higher and 80 ° C.
  • the cooling water does not flow through the first radiator 13, the second radiator 14, and the first intercooler 15, so that the heat is not radiated from the cooling water to the outside air. It can promote warm-up.
  • the cooling water flows through the second intercooler 16, the supercharged intake air can be cooled or heated.
  • the circulation channel opening / closing valve 17 is opened. Therefore, the coolant discharged from the pump 12 flows through the engine 11 and then branches into a first radiator side flow FR and a second intercooler side flow FI as shown in FIG.
  • the first radiator side flow FR is a flow of cooling water from the second branch portion 23 toward the engine 11 and the first radiator 13.
  • the second intercooler side flow FI is a flow of cooling water from the second branch portion 23 toward the second intercooler 16.
  • the cooling water flowing through the first intercooler 15 is cooled by the first radiator 13 and the second radiator 14. Therefore, the temperature of the cooling water flowing through the first intercooler 15 is lower than that of the cooling water flowing through the second intercooler 16.
  • the first radiator side flow FR further branches after flowing through the first radiator 13. Specifically, the flow FR1 that is sucked into the pump 12 as it is and the flow FR2 that flows through the second radiator 14 and the first intercooler 15 and is sucked into the pump 12 are branched.
  • the supercharged intake air When the supercharged intake air is at a high load, the supercharged intake air is cooled in two stages in the order of the second intercooler 16 and the first intercooler 15, so that the cooling performance is improved.
  • the supercharged intake air At low load when the supercharged intake air is at a low temperature, the supercharged intake air is once warmed by the second intercooler 16 and cooled by the first intercooler 15. When the load is low, the flow rate of the supercharged intake air is small. Therefore, even if the supercharged intake air is once warmed by the second intercooler 16, the supercharged air intake can be sufficiently cooled by the first intercooler 15.
  • the second intercooler 16 cools the intake air by exchanging heat between the cooling water flowing by bypassing the first radiator 13 and the second radiator 14 and the intake air of the engine 11.
  • the first branching section 23 branches the flow of the cooling water into a first radiator side flow FR directed toward the first radiator 13 and a second intercooler side flow FI directed toward the second intercooler 16.
  • the circulation flow path opening / closing valve 17 blocks or circulates the first radiator side flow FR.
  • the first branch portion 23 is configured to change the flow of the cooling water on the cooling water outlet side of the first radiator 13 and the second radiator 14 and on the cooling water inlet side of the engine 11 to the first radiator side flow FR and the second flow. Branch to the intercooler side flow FI.
  • the flow of the cooling water before passing through the engine 11 can be branched into the first radiator side flow FR and the second intercooler side flow FI. Therefore, the temperature of the cooling water flowing into the second intercooler 16 is kept low compared to the case where the flow of the cooling water after passing through the engine 11 is branched into the first radiator side flow FR and the second intercooler side flow FI. be able to. Therefore, it is possible to prevent the cooling water from boiling in the second intercooler 16.
  • the above embodiments can be combined as appropriate.
  • the above embodiment can be variously modified as follows, for example.
  • the cooling fluid is an ethylene glycol antifreeze (LLC), but the cooling fluid may be various fluids.
  • the intake air cooling device that cools the intake air of the engine 11 that generates driving power for the vehicle has been described.
  • the present invention can be widely applied to the intake air cooling device that cools the intake air of various engines (internal combustion engines). It is.
  • valve opening temperature Tw1 of the circulation flow path opening / closing valve 17 is set to 80 ° C. or more and 90 ° C. or less, but the valve opening temperature Tw1 of the circulation flow path opening / closing valve 17 can be variously changed. .
  • the opening temperature Tw1 of the circulation flow path opening / closing valve 17 is set to 50 ° C. or more and 80 ° C. or less, the circulation flow path opening / closing valve 17 is opened at a cooling water temperature Tw lower than that in the above embodiment. Then, the cooling water flows through the first intercooler 15. Therefore, compared with the said embodiment, the action
  • the first intercooler 15 and the second intercooler 16 are configured as a tank-and-tube heat exchanger.
  • the 1st intercooler 15 and the 2nd intercooler 16 may be constituted as a plate lamination type heat exchanger.
  • the plate-stacked heat exchanger is a heat exchanger in which a plurality of substantially flat heat transfer plates are stacked with a space therebetween, and a heat exchange fluid channel is formed between the heat transfer plates.
  • the first radiator and the second radiator are also configured as a tank-and-tube heat exchanger, but the first radiator and the second radiator may also be configured as a plate-stacked heat exchanger. .
  • the heat exchange core portion 16c of the second intercooler 16 and the heat exchange core portion 15c of the first intercooler 15 are integrated.
  • the second intercooler 16 and the first intercooler 15 may be formed separately from each other and may be separated from each other in the flow direction of the intake air.
  • positioning of the 2nd intercooler 16 and the 1st intercooler 15 can be raised.
  • the heat exchange core portion 13c of the first radiator 13 and the heat exchange core portion 14c of the second radiator 14 are integrated.
  • the first radiator 13 and the second radiator 14 may be formed separately from each other and may be separated from each other in the flow direction of the intake air.
  • positioning of the 1st radiator 13 and the 2nd radiator 14 can be raised.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Supercharger (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This intake air cooling device is equipped with: a first radiator (13) that causes heat to be exchanged between a cooling fluid flowing out from an engine (11) and the outside air; a second radiator (14) that causes heat to be exchanged between the cooling fluid that has been cooled by the first radiator (13) and the outside air; a first intercooler (15) that causes heat to be exchanged between the cooling fluid that has been cooled by the second radiator (14) and intake air to the engine (11), thereby cooling the intake air; a second intercooler (16) that causes heat to be exchanged between the cooling fluid flowing out from the engine (11) and the intake air to the engine (11), thereby cooling the intake air; a branching section (23) that causes the flow of the cooling fluid flowing out from the engine (11) to split into a first radiator-side flow (FR) toward the first radiator (13) and a second intercooler-side flow (FI) toward the second intercooler (16); and a switching section (17) that blocks or allows the first radiator-side flow (FR) to circulate.

Description

吸気冷却装置Intake air cooling system 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年1月6日に出願された日本特許出願2014-000101号、および2014年5月14日に出願された日本特許出願2014-100129号を基にしている。 This application includes Japanese Patent Application No. 2014-000101 filed on January 6, 2014, and Japanese Patent Application 2014 filed on May 14, 2014, the disclosures of which are incorporated herein by reference. Based on No. 1000012.
 本開示は、エンジンの吸気を冷却する吸気冷却装置に関する。 The present disclosure relates to an intake air cooling device that cools intake air of an engine.
 従来、特許文献1には、熱交換流体を2つの温度レベルに冷却する熱交換器を備える冷却装置が記載されている。この熱交換器は、1つの流入ノズルと2つの流出ノズルと3つの流路とを有する。1つの流入ノズルから熱交換流体が流入する。3つの流路のうち1つの流路のみを通過した熱交換流体が一方の流出ノズルから流出し、3つの流路を全て通過した熱媒体が他方の流出ノズルから流出する。 Conventionally, Patent Document 1 describes a cooling device including a heat exchanger that cools a heat exchange fluid to two temperature levels. This heat exchanger has one inflow nozzle, two outflow nozzles, and three flow paths. The heat exchange fluid flows from one inflow nozzle. The heat exchange fluid that has passed through only one of the three channels flows out from one outflow nozzle, and the heat medium that has passed through all three channels flows out from the other outflow nozzle.
 一方の流出ノズルから流出した熱交換流体は、他方の流出ノズルから流出した熱交換流体よりも高温となっている。 The heat exchange fluid flowing out from one outflow nozzle is at a higher temperature than the heat exchange fluid flowing out from the other outflow nozzle.
特表2006-523160号公報Special Table 2006-523160
 近年、ターボ過給した小排気量エンジンを採用することによって燃費を向上させる過給ダウンサイジング車が増えつつある。過給ダウンサイジング車では、過給気を冷却するインタークーラを水冷式にするのが好ましい。インタークーラを水冷式にした場合、インタークーラを空冷式にした場合と比較して吸気系の容量を減らすことができるので、エンジンレスポンスを向上できるからである。 In recent years, there are an increasing number of supercharged downsizing vehicles that improve fuel efficiency by adopting turbocharged small displacement engines. In the supercharged downsizing vehicle, it is preferable that the intercooler that cools the supercharged air is a water-cooled type. This is because when the intercooler is water-cooled, the capacity of the intake system can be reduced as compared with the case where the intercooler is air-cooled, so that the engine response can be improved.
 インタークーラは、過給気を外気温度よりも10℃程度高い温度まで冷却する。そのため、水冷式インタークーラを採用する場合、既存のエンジン冷却回路を循環する冷却水(80℃程度)よりも低温の冷却水を水冷式インタークーラに流通させる必要がある。 The intercooler cools the supercharged air to a temperature about 10 ° C higher than the outside air temperature. Therefore, when adopting a water-cooled intercooler, it is necessary to circulate cooling water having a temperature lower than that of the circulating water (about 80 ° C.) circulating in the existing engine cooling circuit to the water-cooled intercooler.
 そこで、エンジン冷却回路を循環する冷却水をさらに冷却してから水冷式インタークーラに流通させる構成が考えられる。具体的には、エンジン冷却回路に設けられた既存のラジエータで冷却された冷却水の一部をインタークーラ用ラジエータでさらに冷却してからインタークーラに流通させる構成が考えられる。 Therefore, a configuration in which the cooling water circulating in the engine cooling circuit is further cooled and then distributed to the water-cooled intercooler can be considered. Specifically, a configuration in which a part of the cooling water cooled by an existing radiator provided in the engine cooling circuit is further cooled by an intercooler radiator and then distributed to the intercooler can be considered.
 この構成によると、エンジン冷却回路に設けられた既存のポンプを利用して水冷式インタークーラに冷却水を流通させることができる。したがって、水冷式インタークーラ用の冷却水回路をエンジン冷却回路とは独立に設ける構成と比較してポンプの個数を削減できる。 According to this configuration, the cooling water can be distributed to the water-cooled intercooler using the existing pump provided in the engine cooling circuit. Therefore, the number of pumps can be reduced as compared with the configuration in which the cooling water circuit for the water-cooled intercooler is provided independently of the engine cooling circuit.
 しかしながら、この構成によると、エンジン冷却回路の冷却水が常にインタークーラ用ラジエータを流通して冷却されるので、暖機性能が損なわれる恐れがある。すなわち、エンジンを始動した直後の暖機時に冷却水が適切な温度(80℃程度)まで昇温するのに時間がかかり、エンジンの燃費を悪化させてしまう恐れがある(後述する図3を参照)。 However, according to this configuration, the cooling water of the engine cooling circuit is always cooled by circulating through the radiator for the intercooler, so that the warm-up performance may be impaired. That is, it takes time for the cooling water to warm up to an appropriate temperature (about 80 ° C.) during warm-up immediately after starting the engine, which may deteriorate the fuel consumption of the engine (see FIG. 3 described later). ).
 この対策として、暖機時にエンジン冷却回路の冷却水がインタークーラ用ラジエータに流通しないようにして暖機性能を確保することが考えられる。しかしながら、この対策によると暖機時に吸気を冷却できない恐れがある。 As a countermeasure, it is conceivable to ensure the warm-up performance by preventing the cooling water from the engine cooling circuit from flowing to the intercooler radiator during warm-up. However, according to this measure, there is a possibility that the intake air cannot be cooled when warming up.
 本開示は上記点に鑑みて、エンジン吸気の冷却性能を確保しつつ、エンジン暖機性能が損なわれることを抑制することを目的とする。 In view of the above points, the present disclosure aims to suppress the deterioration of the engine warm-up performance while ensuring the cooling performance of the engine intake air.
 本開示の第1態様に係る吸気冷却装置は、第1ラジエータ、第2ラジエータ、第1給気冷却器、第2吸気冷却器、分岐部、および切替部を備える。第1ラジエータは、エンジンから流出した冷却用流体と外気とを熱交換させて冷却用流体を冷却する。第2ラジエータは、第1ラジエータで冷却された冷却用流体と外気とを熱交換させて冷却用流体を冷却する。第1吸気冷却器は、第2ラジエータで冷却された冷却用流体とエンジンの吸気とを熱交換して吸気を冷却する。第2吸気冷却器は、第1ラジエータおよび第2ラジエータをバイパスして流れる冷却用流体とエンジンの吸気とを熱交換して吸気を冷却する。分岐部は、冷却用流体の流れを、第1ラジエータに向かう第1ラジエータ側流れと、第2吸気冷却器に向かう第2吸気冷却器側流れとに分岐させる。切替部は、第1ラジエータ側流れを遮断または流通させる。 The intake air cooling device according to the first aspect of the present disclosure includes a first radiator, a second radiator, a first intake air cooler, a second intake air cooler, a branching unit, and a switching unit. The first radiator cools the cooling fluid by exchanging heat between the cooling fluid flowing out from the engine and the outside air. The second radiator cools the cooling fluid by exchanging heat between the cooling fluid cooled by the first radiator and the outside air. The first intake air cooler cools the intake air by exchanging heat between the cooling fluid cooled by the second radiator and the intake air of the engine. The second intake air cooler cools the intake air by exchanging heat between the cooling fluid that flows by bypassing the first radiator and the second radiator and the intake air of the engine. The branching portion branches the flow of the cooling fluid into a first radiator side flow toward the first radiator and a second intake cooler side flow toward the second intake cooler. The switching unit blocks or distributes the first radiator side flow.
 切替部が第1ラジエータ側流れを遮断すると、冷却用流体が第1ラジエータおよび第2ラジエータを流れなくなる。したがって、冷却用流体から外気に放熱されることを抑制でき、ひいてはエンジンの暖機性能が損なわれることを抑制できる。 When the switching unit cuts off the flow on the first radiator side, the cooling fluid does not flow through the first radiator and the second radiator. Therefore, it can suppress that heat is dissipated from the cooling fluid to the outside air, and thus it is possible to suppress the engine warm-up performance from being impaired.
 さらに、切替部が第1ラジエータ側流れを遮断しても第2吸気冷却器側流れの冷却用流体が第2吸気冷却器を流れるので、エンジンの吸気を冷却できる。 Furthermore, even if the switching unit cuts off the first radiator side flow, the cooling fluid of the second intake air cooler side flow flows through the second intake air cooler, so that the intake air of the engine can be cooled.
 したがって、エンジンの吸気の冷却性能を確保しつつ、エンジンの暖機性能が損なわれることを抑制できる。 Therefore, it is possible to prevent the warm-up performance of the engine from being impaired while ensuring the cooling performance of the intake air of the engine.
 本開示の第2態様に係る吸気冷却装置は、第1ラジエータ、第2ラジエータ、第1吸気冷却器、第2吸気冷却器、分岐部、および切替部を備える。第1ラジエータは、エンジンから流出した冷却用流体と外気とを熱交換させて冷却用流体を冷却する。第2ラジエータは、第1ラジエータで冷却された冷却用流体と外気とを熱交換させて冷却用流体を冷却する。第1吸気冷却器は、第2ラジエータで冷却された冷却用流体とエンジンの吸気とを熱交換して吸気を冷却する。第2吸気冷却器は、エンジンから流出した冷却用流体とエンジンの吸気とを熱交換して吸気を冷却する。分岐部は、エンジンから流出した冷却用流体の流れを、第1ラジエータに向かう第1ラジエータ側流れと、第2吸気冷却器に向かう第2吸気冷却器側流れとに分岐させる。切替部は、第1ラジエータ側流れを遮断または流通させる。 The intake air cooling device according to the second aspect of the present disclosure includes a first radiator, a second radiator, a first intake air cooler, a second intake air cooler, a branching unit, and a switching unit. The first radiator cools the cooling fluid by exchanging heat between the cooling fluid flowing out from the engine and the outside air. The second radiator cools the cooling fluid by exchanging heat between the cooling fluid cooled by the first radiator and the outside air. The first intake air cooler cools the intake air by exchanging heat between the cooling fluid cooled by the second radiator and the intake air of the engine. The second intake air cooler cools the intake air by exchanging heat between the cooling fluid flowing out from the engine and the intake air of the engine. The branching portion branches the flow of the cooling fluid flowing out from the engine into a first radiator side flow toward the first radiator and a second intake cooler side flow toward the second intake cooler. The switching unit blocks or distributes the first radiator side flow.
 これによると、上記した第1態様の作用効果と同様の作用効果を奏することができる。 According to this, it is possible to achieve the same effects as the effects of the first aspect described above.
第1実施形態におけるエンジン冷却回路の全体構成図である。It is a whole lineblock diagram of the engine cooling circuit in a 1st embodiment. 第1実施形態における第1インタークーラの斜視図ある。It is a perspective view of the 1st intercooler in a 1st embodiment. 図2のIII-III断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 第1実施形態における循環流路開閉弁の断面図である。It is sectional drawing of the circulation channel on-off valve in 1st Embodiment. 第1実施形態のエンジン冷却回路において、循環流路開閉弁が閉弁している場合における冷却水の流れを示す図である。In the engine cooling circuit of 1st Embodiment, it is a figure which shows the flow of the cooling water in case the circulation flow path on-off valve is closing. 第2実施形態におけるエンジン冷却回路の全体構成図である。It is a whole block diagram of the engine cooling circuit in 2nd Embodiment. 第3実施形態におけるエンジン冷却回路の全体構成図である。It is a whole block diagram of the engine cooling circuit in 3rd Embodiment. 第4実施形態におけるエンジン冷却回路の全体構成図である。It is a whole block diagram of the engine cooling circuit in 4th Embodiment. 第4実施形態のエンジン冷却回路において、循環流路開閉弁が閉弁している場合における冷却水の流れを示す図である。In an engine cooling circuit of a 4th embodiment, it is a figure showing a flow of cooling water in case a circulation channel on-off valve is closed.
 以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(第1実施形態)
 吸気冷却装置を構成するエンジン冷却回路10を図1に示す。エンジン冷却回路10は、エンジン11を冷却するための冷却水(冷却用流体)が循環する回路である。エンジン11は、車両の走行用動力を発生する内燃機関である。
Hereinafter, embodiments will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.
(First embodiment)
FIG. 1 shows an engine cooling circuit 10 constituting the intake air cooling device. The engine cooling circuit 10 is a circuit through which cooling water (cooling fluid) for cooling the engine 11 circulates. The engine 11 is an internal combustion engine that generates driving power for the vehicle.
 エンジン11の内部には、冷却水が流れる冷却水流路が形成されている。本実施形態では、冷却水は、エチレングリコール系の不凍液(LLC)である。エンジン11の吸入空気(吸気)は、過給機(図示せず)によって過給される。 A cooling water passage through which cooling water flows is formed inside the engine 11. In this embodiment, the cooling water is an ethylene glycol antifreeze (LLC). The intake air (intake air) of the engine 11 is supercharged by a supercharger (not shown).
 エンジン冷却回路10は、ポンプ12、第1ラジエータ13、第2ラジエータ14、第1インタークーラ15、第2インタークーラ16および循環流路開閉弁17を備える。ポンプ12、エンジン11、循環流路開閉弁17、第1ラジエータ13は、冷却水が循環する循環流路18に、この順番で配置されている。 The engine cooling circuit 10 includes a pump 12, a first radiator 13, a second radiator 14, a first intercooler 15, a second intercooler 16, and a circulation flow path opening / closing valve 17. The pump 12, the engine 11, the circulation channel opening / closing valve 17, and the first radiator 13 are arranged in this order in the circulation channel 18 through which the cooling water circulates.
 ポンプ12は、冷却水を吸入して吐出する流体機械である。本実施形態では、ポンプ12は、エンジン11から出力される動力によって駆動される機械式ポンプである。ポンプ12は、電動モータによって駆動される電動ポンプであってもよい。 The pump 12 is a fluid machine that sucks and discharges cooling water. In the present embodiment, the pump 12 is a mechanical pump that is driven by the power output from the engine 11. The pump 12 may be an electric pump driven by an electric motor.
 第1ラジエータ13は、エンジン11から流出した冷却水と外気とを熱交換させて冷却水を冷却する熱交換器である。換言すれば、第1ラジエータ13は、冷却水の持つ熱を外気に放熱させる放熱器である。 The first radiator 13 is a heat exchanger that cools the cooling water by exchanging heat between the cooling water flowing out from the engine 11 and the outside air. In other words, the first radiator 13 is a radiator that radiates heat of the cooling water to the outside air.
 第2ラジエータ14および第1インタークーラ15は、第1吸気冷却用流路19に配置されている。第1吸気冷却用流路19は、循環流路18から分岐して循環流路18に合流する流路である。 The second radiator 14 and the first intercooler 15 are disposed in the first intake air cooling channel 19. The first intake cooling channel 19 is a channel that branches from the circulation channel 18 and joins the circulation channel 18.
 循環流路18から第1吸気冷却用流路19が分岐する第1分岐部20、および循環流路18に第1吸気冷却用流路19が合流する第1合流部21は、第1ラジエータ13の冷却水出口側かつポンプ12の冷却水吸入側に設けられている。 A first branching section 20 where the first intake cooling flow path 19 branches from the circulation flow path 18 and a first merging section 21 where the first intake cooling flow path 19 merges with the circulation flow path 18 include the first radiator 13. The cooling water outlet side of the pump 12 and the cooling water suction side of the pump 12 are provided.
 第2ラジエータ14は、冷却水と外気とを熱交換させて冷却水を冷却する熱交換器である。換言すれば、第2ラジエータ14は、冷却水の持つ熱を外気に放熱させる放熱器である。 The second radiator 14 is a heat exchanger that cools the cooling water by exchanging heat between the cooling water and the outside air. In other words, the second radiator 14 is a radiator that radiates heat of the cooling water to the outside air.
 図1の例では、第2ラジエータ14は第1ラジエータ13と一体化されているが、第1ラジエータ13と別体に構成されていてもよい。第2ラジエータ14が第1ラジエータ13と一体化されている場合、第1分岐部20は、第1ラジエータ13の冷却水出口側タンク内に設けられていてもよい。 In the example of FIG. 1, the second radiator 14 is integrated with the first radiator 13, but may be configured separately from the first radiator 13. When the second radiator 14 is integrated with the first radiator 13, the first branch portion 20 may be provided in a cooling water outlet side tank of the first radiator 13.
 第1インタークーラ15は、過給機(ターボチャージャ)で圧縮されて高温になった過給吸気と冷却水とを熱交換して過給吸気を冷却する吸気冷却器(第1吸気冷却器)である。吸気系の容量を極力小さくするために、第1インタークーラ15はエンジン11に隣接するように配置されている。 The first intercooler 15 is an intake air cooler (first intake air cooler) that cools the supercharged intake air by exchanging heat between the supercharged intake air that has been compressed by the supercharger (turbocharger) and becomes high temperature and the cooling water. It is. In order to reduce the capacity of the intake system as much as possible, the first intercooler 15 is disposed adjacent to the engine 11.
 第1インタークーラ15の冷却水入口は、第2ラジエータ14の冷却水出口に接続されている。第1インタークーラ15の冷却水出口は、ポンプ12の冷却水吸入口に接続されている。 The cooling water inlet of the first intercooler 15 is connected to the cooling water outlet of the second radiator 14. The cooling water outlet of the first intercooler 15 is connected to the cooling water inlet of the pump 12.
 第2インタークーラ16は、第2吸気冷却用流路22に配置されている。第2吸気冷却用流路22は、循環流路18から分岐して循環流路18に合流する流路である。 The second intercooler 16 is disposed in the second intake air cooling flow path 22. The second intake cooling flow path 22 is a flow path that branches from the circulation flow path 18 and merges with the circulation flow path 18.
 循環流路18から第2吸気冷却用流路22が分岐する第2分岐部23は、エンジン11の冷却水出口側かつ第1ラジエータ13の冷却水出口側の冷却水入口側に設けられている。第2吸気冷却用流路22は、第1吸気冷却用流路19に第2合流部24にて合流し、第1吸気冷却用流路19の一部を介して第1合流部21にて循環流路18に合流する。 A second branch portion 23 where the second intake air cooling flow path 22 branches from the circulation flow path 18 is provided on the cooling water outlet side of the engine 11 and on the cooling water inlet side of the first radiator 13. . The second intake cooling flow path 22 joins the first intake cooling flow path 19 at the second merging portion 24, and passes through a part of the first intake cooling flow path 19 at the first merging portion 21. It joins the circulation channel 18.
 第2インタークーラ16は、過給機(ターボチャージャ)で圧縮されて高温になった過給吸気と冷却水とを熱交換して過給吸気を冷却する吸気冷却器(第2吸気冷却器)である。吸気系の容量を極力小さくするために、第2インタークーラ16は第1インタークーラ15と一体化されている。第2インタークーラ16は第1インタークーラ15と別体に構成されていてもよい。 The second intercooler 16 is an intake air cooler (second intake air cooler) that cools the supercharged intake air by exchanging heat between the supercharged intake air that has been compressed by the supercharger (turbocharger) and becomes high temperature and the cooling water It is. The second intercooler 16 is integrated with the first intercooler 15 in order to minimize the capacity of the intake system. The second intercooler 16 may be configured separately from the first intercooler 15.
 第2インタークーラ16の冷却水入口は、ポンプ12の冷却水吐出口に接続されている。第2インタークーラ16の冷却水出口は、ポンプ12の冷却水吸入口に接続されている。 The cooling water inlet of the second intercooler 16 is connected to the cooling water discharge port of the pump 12. The coolant outlet of the second intercooler 16 is connected to the coolant inlet of the pump 12.
 第2インタークーラ16は、第1インタークーラ15の過給吸気流れ方向の上流に位置している。したがって、過給吸気は、第2インタークーラ16、第1インタークーラ15の順に流れる。 The second intercooler 16 is located upstream of the first intercooler 15 in the supercharging intake air flow direction. Accordingly, the supercharged intake air flows in the order of the second intercooler 16 and the first intercooler 15.
 循環流路開閉弁17は、循環流路18の冷却水流れを遮断または流通させる切替部であり、冷却水の温度Tw(冷却用流体温度)に応じて循環流路18を開閉する。循環流路開閉弁17は、機械的機構で弁体を開閉する機械式弁である。 The circulation channel opening / closing valve 17 is a switching unit that blocks or circulates the coolant flow in the circulation channel 18, and opens and closes the circulation channel 18 according to the temperature Tw (cooling fluid temperature) of the coolant. The circulation flow path opening / closing valve 17 is a mechanical valve that opens and closes a valve body by a mechanical mechanism.
 例えば、循環流路開閉弁17は機械式サーモスタット弁である。機械式サーモスタットは、温度によって体積変化するサーモワックス(感温部材)によって弁体を変位させて冷却水流路を開閉する機械的機構で構成される冷却水温度応動弁である。循環流路開閉弁17は、電子制御弁であってもよい。 For example, the circulation flow path opening / closing valve 17 is a mechanical thermostat valve. The mechanical thermostat is a cooling water temperature responsive valve configured by a mechanical mechanism that opens and closes a cooling water flow path by displacing a valve body by a thermo wax (temperature sensitive member) whose volume changes with temperature. The circulation channel opening / closing valve 17 may be an electronic control valve.
 循環流路開閉弁17は、冷却水温度Twが所定温度Tw1未満である場合に閉弁し、冷却水温度Twが所定温度Tw1以上である場合に開弁する。本実施形態では、所定温度Tw1は80℃以上90℃以下に設定されている。 The circulation channel opening / closing valve 17 is closed when the cooling water temperature Tw is lower than the predetermined temperature Tw1, and is opened when the cooling water temperature Tw is equal to or higher than the predetermined temperature Tw1. In the present embodiment, the predetermined temperature Tw1 is set to 80 ° C. or higher and 90 ° C. or lower.
 図1の例では、循環流路開閉弁17は、第1ラジエータ13の冷却水入口側に位置しているが、第1ラジエータ13の冷却水出口側に位置していてもよい。循環流路開閉弁17は、第1ラジエータ13の冷却水入口側タンクまたは冷却水出口側タンクに内蔵されていてもよい。図1の例では、循環流路開閉弁17の内部に第2分岐部23が形成されている。 In the example of FIG. 1, the circulation channel opening / closing valve 17 is located on the cooling water inlet side of the first radiator 13, but may be located on the cooling water outlet side of the first radiator 13. The circulation channel opening / closing valve 17 may be incorporated in the cooling water inlet side tank or the cooling water outlet side tank of the first radiator 13. In the example of FIG. 1, a second branch portion 23 is formed inside the circulation flow path opening / closing valve 17.
 次に、図2、図3を用いて、第1インタークーラ15および第2インタークーラ16の詳細構成を説明する。 Next, the detailed configuration of the first intercooler 15 and the second intercooler 16 will be described with reference to FIGS.
 本実施形態の第1インタークーラ15および第2インタークーラ16は、それぞれ冷却水を流通させる複数本のチューブ、この複数本のチューブの両端側に配置されてそれぞれのチューブを流通する冷却水の集合あるいは分配を行う一対の集合分配用タンク26等を有する。第1インタークーラ15および第2インタークーラ16は、いわゆるタンクアンドチューブ型の熱交換器として構成されている。 The first intercooler 15 and the second intercooler 16 of the present embodiment are each a plurality of tubes through which cooling water flows, and a collection of cooling water that is arranged on both ends of the plurality of tubes and flows through the tubes. Alternatively, it has a pair of collective distribution tanks 26 that perform distribution. The first intercooler 15 and the second intercooler 16 are configured as so-called tank-and-tube heat exchangers.
 図3に示すように、第1インタークーラ15は、内部に冷却水を流通させる複数本のチューブ15aを有する。チューブ15aは、長手方向垂直断面形状が扁平形状の扁平チューブである。各チューブ15aは、その外表面のうち平坦面同士が互いに平行に、かつ対向するように所定の間隔を開けて積層されている。 As shown in FIG. 3, the first intercooler 15 has a plurality of tubes 15a through which cooling water flows. The tube 15a is a flat tube whose vertical cross-sectional shape in the longitudinal direction is flat. Each tube 15a is laminated at a predetermined interval so that flat surfaces of its outer surface are parallel to each other and face each other.
 これにより、チューブ15aの周囲、すなわち隣り合うチューブ15aの間には、過給吸気を流通させる過給吸気通路15bが形成されている。 Thus, a supercharged intake passage 15b for circulating the supercharged intake air is formed around the tube 15a, that is, between the adjacent tubes 15a.
 第2インタークーラ16は、内部に冷却水を流通させる複数本のチューブ16aを有する。チューブ16aは、長手方向垂直断面形状が扁平形状の扁平チューブである。第2インタークーラ16のチューブ16aは、第1インタークーラ15のチューブ15aと同様に、その外表面のうち平坦面同士が互いに平行に、かつ対向するように所定の間隔を開けて積層されている。 The second intercooler 16 has a plurality of tubes 16a through which cooling water flows. The tube 16a is a flat tube whose vertical cross-sectional shape in the longitudinal direction is flat. Similarly to the tube 15a of the first intercooler 15, the tube 16a of the second intercooler 16 is laminated at a predetermined interval so that the flat surfaces of the outer surface are parallel to each other and face each other. .
 これにより、チューブ16aの周囲、すなわち隣り合うチューブ16aの間には、過給吸気を流通させる過給吸気通路16bが形成されている。 Thereby, a supercharged intake passage 16b for circulating the supercharged intake air is formed around the tube 16a, that is, between the adjacent tubes 16a.
 過給吸気通路15bおよび過給吸気通路16bには、同一部材で形成されたアウターフィン27が配置されている。アウターフィン27は双方のチューブ15a、16aに接合されている。これにより、第1インタークーラ15および第2インタークーラ16は一体化されている。 Outer fins 27 formed of the same member are disposed in the supercharging intake passage 15b and the supercharging intake passage 16b. The outer fin 27 is joined to both the tubes 15a and 16a. Thereby, the 1st intercooler 15 and the 2nd intercooler 16 are integrated.
 アウターフィン27としては、伝熱性に優れる金属の薄板を波状に曲げ成形したコルゲートフィンが採用されている。アウターフィン27は、冷却水と過給吸気との熱交換を促進する伝熱フィンである。 As the outer fin 27, a corrugated fin obtained by bending a metal thin plate having excellent heat conductivity into a wave shape is employed. The outer fins 27 are heat transfer fins that promote heat exchange between the cooling water and the supercharged intake air.
 第1インタークーラ15のチューブ15a、第2インタークーラ16のチューブ16a、集合分配用タンク26、アウターフィン27等はいずれもアルミニウム合金で形成されており、ろう付け接合されることにより一体化されている。第2インタークーラ16は、第1インタークーラ15の過給吸気流れ方向の下流に配置されている。 The tube 15a of the first intercooler 15, the tube 16a of the second intercooler 16, the collecting / distributing tank 26, the outer fin 27, etc. are all formed of an aluminum alloy and integrated by brazing and joining. Yes. The second intercooler 16 is disposed downstream of the first intercooler 15 in the supercharging intake air flow direction.
 第1インタークーラ15のチューブ15aおよびアウターフィン27は、熱交換コア部15cを構成している。第2インタークーラ16のチューブ16aおよびアウターフィン27は、熱交換コア部16cを構成している。熱交換コア部15c、16cは、各インタークーラ15、16のうち冷媒と空気と熱交換させる部位のことである。 The tube 15a and the outer fin 27 of the first intercooler 15 constitute a heat exchange core portion 15c. The tubes 16a and the outer fins 27 of the second intercooler 16 constitute a heat exchange core portion 16c. The heat exchange core portions 15c and 16c are portions of the intercoolers 15 and 16 that exchange heat with refrigerant and air.
 次に、第1ラジエータ13および第2ラジエータ14の詳細構成について説明する。第1ラジエータ13および第2ラジエータ14の構成は、基本的に第1インタークーラ15および第2インタークーラ16の構成と同様であるので、図2、図3の括弧内に第1ラジエータ13および第2ラジエータ14に対応する符号を付して第1ラジエータ13および第2ラジエータ14の図示を省略している。 Next, the detailed configuration of the first radiator 13 and the second radiator 14 will be described. Since the configurations of the first radiator 13 and the second radiator 14 are basically the same as the configurations of the first intercooler 15 and the second intercooler 16, the first radiator 13 and the second radiator 13 are enclosed in parentheses in FIGS. Reference numerals corresponding to the two radiators 14 are attached, and illustration of the first radiator 13 and the second radiator 14 is omitted.
 本実施形態の第1ラジエータ13および第2ラジエータ14は、それぞれ冷却水を流通させる複数本のチューブ、この複数本のチューブの両端側に配置されてそれぞれのチューブを流通する冷却水の集合あるいは分配を行う一対の集合分配用タンク28等を有する。第1ラジエータ13および第2ラジエータ14は、いわゆるタンクアンドチューブ型の熱交換器として構成されている。 The first radiator 13 and the second radiator 14 of the present embodiment are each a plurality of tubes through which cooling water flows, and a collection or distribution of cooling water that is arranged at both ends of the plurality of tubes and flows through the tubes. A pair of collective distribution tanks 28 and the like. The 1st radiator 13 and the 2nd radiator 14 are comprised as what is called a tank and tube type heat exchanger.
 第1ラジエータ13は、内部に冷却水を流通させる複数本のチューブ13aを有する。チューブ13aは、長手方向垂直断面形状が扁平形状の扁平チューブである。各チューブ13aは、その外表面のうち平坦面同士が互いに平行に、かつ対向するように所定の間隔を開けて積層されている。 The first radiator 13 has a plurality of tubes 13a through which cooling water flows. The tube 13a is a flat tube whose vertical cross-sectional shape in the longitudinal direction is flat. Each tube 13a is laminated at a predetermined interval so that flat surfaces of its outer surface are parallel to each other and face each other.
 これにより、チューブ13aの周囲、すなわち隣り合うチューブ13aの間には、外気を流通させる外気通路13bが形成されている。 Thereby, the outside air passage 13b for circulating outside air is formed around the tube 13a, that is, between the adjacent tubes 13a.
 第2ラジエータ14は、内部に冷却水を流通させる複数本のチューブ14aを有する。チューブ14aは、長手方向垂直断面形状が扁平形状の扁平チューブである。第2ラジエータ14のチューブ14aは、第1ラジエータ13のチューブ13aと同様に、その外表面のうち平坦面同士が互いに平行に、かつ対向するように所定の間隔を開けて積層されている。 The second radiator 14 has a plurality of tubes 14a for circulating cooling water therein. The tube 14a is a flat tube whose vertical cross-sectional shape in the longitudinal direction is flat. Similarly to the tube 13a of the first radiator 13, the tube 14a of the second radiator 14 is laminated at a predetermined interval so that the flat surfaces of the outer surface are parallel to each other and face each other.
 これにより、チューブ14aの周囲、すなわち隣り合うチューブ14aの間には、外気を流通させる外気通路14bが形成されている。 Thus, an outside air passage 14b for circulating outside air is formed around the tube 14a, that is, between the adjacent tubes 14a.
 外気通路13bおよび外気通路14bには、同一部材で形成されたアウターフィン29が配置されている。アウターフィン29は双方のチューブ13a、14aに接合されている。これにより、第1ラジエータ13および第2ラジエータ14は一体化されている。 Outer fins 29 formed of the same member are disposed in the outside air passage 13b and the outside air passage 14b. The outer fin 29 is joined to both the tubes 13a and 14a. Thereby, the 1st radiator 13 and the 2nd radiator 14 are integrated.
 アウターフィン29としては、伝熱性に優れる金属の薄板を波状に曲げ成形したコルゲートフィンが採用されている。アウターフィン29は冷却水と過給吸気との熱交換を促進する。 As the outer fins 29, corrugated fins obtained by bending a metal thin plate having excellent heat conductivity into a wave shape are employed. The outer fin 29 promotes heat exchange between the cooling water and the supercharging intake air.
 第1ラジエータ13のチューブ13a、第2ラジエータ14のチューブ14a、集合分配用タンク28、アウターフィン29等はいずれもアルミニウム合金で形成されており、ろう付け接合されることにより一体化されている。第1ラジエータ13は、第2ラジエータ14の外気流れ方向の下流に位置している。 The tube 13a of the first radiator 13, the tube 14a of the second radiator 14, the collecting / distributing tank 28, the outer fins 29, and the like are all formed of an aluminum alloy and integrated by brazing and joining. The first radiator 13 is located downstream of the second radiator 14 in the outside air flow direction.
 図4に示すように、循環流路開閉弁17は、1つの冷却水入口17a、2つの冷却水出口17b、17c、循環流路側弁体17dおよび冷却水温度検出部17eを有する。 As shown in FIG. 4, the circulation flow path opening / closing valve 17 has one cooling water inlet 17a, two cooling water outlets 17b, 17c, a circulation flow path side valve body 17d, and a cooling water temperature detection unit 17e.
 冷却水入口17a(冷却用流体入口)は、エンジン11の冷却水出口に接続されている。第1冷却水出口17b(第1冷却用流体出口)は、冷却水入口17aと連通しており、第1ラジエータ13の冷却水入口に接続されている。第2冷却水出口17cは、冷却水入口17aと連通しており、第2インタークーラ16の冷却水入口に接続されている。したがって、循環流路開閉弁17の内部に、第2分岐部23が形成されている。 The cooling water inlet 17 a (cooling fluid inlet) is connected to the cooling water outlet of the engine 11. The first cooling water outlet 17 b (first cooling fluid outlet) communicates with the cooling water inlet 17 a and is connected to the cooling water inlet of the first radiator 13. The second cooling water outlet 17 c communicates with the cooling water inlet 17 a and is connected to the cooling water inlet of the second intercooler 16. Therefore, the second branch portion 23 is formed inside the circulation flow path opening / closing valve 17.
 循環流路側弁体17dは、第1冷却水出口17bを開閉することによって循環流路18の冷却水流れを遮断または流通させる弁部材である。 The circulation channel side valve element 17d is a valve member that blocks or circulates the cooling water flow in the circulation channel 18 by opening and closing the first cooling water outlet 17b.
 冷却水温度検出部17eは、冷却水の温度Twを検出する温度検出器である。例えば、冷却水温度検出部17eは、温度によって体積変化するサーモワックス(感温部材)である。冷却水温度検出部17eが体積変化することによって、循環流路側弁体17dを変位させて冷却水流路を開閉する。冷却水温度検出部17eは、バイメタルや形状記憶合金であってもよい。 The cooling water temperature detector 17e is a temperature detector that detects the temperature Tw of the cooling water. For example, the cooling water temperature detection unit 17e is a thermo wax (temperature sensitive member) whose volume changes with temperature. When the volume of the cooling water temperature detector 17e changes, the circulating flow path side valve element 17d is displaced to open and close the cooling water flow path. The coolant temperature detector 17e may be a bimetal or a shape memory alloy.
 次に、上記構成における作動を説明する。エンジン11が停止している状態(以下、エンジン停止状態と言う。)では、エンジン11が駆動力を発生しないので、ポンプ12が停止して冷却水が循環しない。 Next, the operation in the above configuration will be described. In a state where the engine 11 is stopped (hereinafter referred to as an engine stop state), the engine 11 does not generate a driving force, so the pump 12 stops and the cooling water does not circulate.
 エンジン停止状態では、エンジン11が熱を発生しないので、冷却水温度Twは外気温度と同じになっている。すなわち、エンジン停止状態では、冷却水温度Twが所定温度Tw1(本実施形態では50℃以上80℃)以下なので、循環流路開閉弁17が閉弁している。 When the engine is stopped, the engine 11 does not generate heat, so the cooling water temperature Tw is the same as the outside air temperature. That is, when the engine is stopped, the cooling water temperature Tw is equal to or lower than the predetermined temperature Tw1 (50 ° C. or more and 80 ° C. in the present embodiment), so the circulation flow path opening / closing valve 17 is closed.
 エンジン11が始動すると、エンジン11が駆動力および熱を発生するので、ポンプ12が作動して冷却水を吸入または吐出するとともに、冷却水温度Twが徐々に上昇する。 When the engine 11 is started, the engine 11 generates driving force and heat, so that the pump 12 operates to suck or discharge the cooling water, and the cooling water temperature Tw gradually increases.
 冷却水温度Twが所定温度Tw1(本実施形態では50℃以上80℃)に到達するまでは循環流路開閉弁17が閉弁している。したがって、図5の太実線に示すように、ポンプ12から吐出された冷却水は、エンジン11および第2インタークーラ16を流通してポンプ12に吸入され、第1ラジエータ13、第2ラジエータ14および第1インタークーラ15には流通しない。 The circulation channel opening / closing valve 17 is closed until the cooling water temperature Tw reaches a predetermined temperature Tw1 (in this embodiment, 50 ° C. or more and 80 ° C.). Therefore, as shown by the thick solid line in FIG. 5, the cooling water discharged from the pump 12 flows through the engine 11 and the second intercooler 16 and is sucked into the pump 12, and the first radiator 13, the second radiator 14, and It does not circulate through the first intercooler 15.
 このように、エンジン11が始動して間もない場合、第1ラジエータ13、第2ラジエータ14および第1インタークーラ15に冷却水が流通しないので、冷却水から外気に放熱されることがなく、暖機を促進できる。一方、第2インタークーラ16には冷却水が流通するので、過給吸気を冷却または加熱できる。 As described above, when the engine 11 is just started, the cooling water does not flow through the first radiator 13, the second radiator 14, and the first intercooler 15, so that the heat is not radiated from the cooling water to the outside air. It can promote warm-up. On the other hand, since the cooling water flows through the second intercooler 16, the supercharged intake air can be cooled or heated.
 例えば加速時のようにエンジン11の負荷が高い場合(高負荷時)、過給吸気が高温になる。過給吸気の温度が冷却水の温度よりも高い場合、第2インタークーラ16で過給吸気が冷却される。 For example, when the load of the engine 11 is high (for example, during acceleration), the supercharged intake air becomes hot. When the temperature of the supercharging intake air is higher than the temperature of the cooling water, the supercharging intake air is cooled by the second intercooler 16.
 エンジン11の負荷が低い場合(低負荷時)、過給吸気は低温になる。過給吸気の温度が冷却水の温度よりも低い場合、第2インタークーラ16で過給吸気が加熱される。但し、負荷が低いので、冷却水が失う熱量は少なく、暖機を損なうことはない。 When the load on the engine 11 is low (low load), the supercharged intake air becomes cold. When the temperature of the supercharging intake air is lower than the temperature of the cooling water, the supercharging intake air is heated by the second intercooler 16. However, since the load is low, the amount of heat lost by the cooling water is small, and the warm-up is not impaired.
 第2インタークーラ16で加熱された過給吸気によってエンジン11を暖機できるとともに、排気ガスのエミッション低減効果を得ることができる。 The engine 11 can be warmed up by the supercharged intake air heated by the second intercooler 16, and an exhaust gas emission reduction effect can be obtained.
 冷却水温度Twがさらに上昇して所定温度Tw1(本実施形態では50℃以上80℃)に到達した場合、循環流路開閉弁17が開弁する。したがって、ポンプ12から吐出された冷却水はエンジン11を流通したのち、図1に示すように第1ラジエータ側流れFRと第2インタークーラ側流れFIとに分岐する。 When the cooling water temperature Tw further rises and reaches a predetermined temperature Tw1 (50 ° C. or more and 80 ° C. in the present embodiment), the circulation channel opening / closing valve 17 is opened. Therefore, the cooling water discharged from the pump 12 flows through the engine 11 and then branches into a first radiator side flow FR and a second intercooler side flow FI as shown in FIG.
 第1ラジエータ側流れFRは、第2分岐部23から第1ラジエータ13に向かう冷却水の流れである。第2インタークーラ側流れFIは、第2分岐部23から第2インタークーラ16に向かう冷却水の流れである。 The first radiator side flow FR is a flow of cooling water from the second branch portion 23 toward the first radiator 13. The second intercooler side flow FI is a flow of cooling water from the second branch portion 23 toward the second intercooler 16.
 第1インタークーラ15を流通する冷却水は、第1ラジエータ13および第2ラジエータ14で冷却されている。したがって、第1インタークーラ15を流通する冷却水は、第2インタークーラ16を流通する冷却水よりも温度が低くなる。 The cooling water flowing through the first intercooler 15 is cooled by the first radiator 13 and the second radiator 14. Therefore, the temperature of the cooling water flowing through the first intercooler 15 is lower than that of the cooling water flowing through the second intercooler 16.
 第1ラジエータ側流れFRは、第1ラジエータ13を流通したのち、さらに分岐する。具体的には、そのままポンプ12に吸入される流れFR1と、第2ラジエータ14および第1インタークーラ15を流通してポンプ12に吸入される流れFR2とに分岐する。 The first radiator side flow FR further branches after flowing through the first radiator 13. Specifically, the flow FR1 that is sucked into the pump 12 as it is and the flow FR2 that flows through the second radiator 14 and the first intercooler 15 and is sucked into the pump 12 are branched.
 過給吸気が高温になる高負荷時においては、過給吸気は第2インタークーラ16、第1インタークーラ15の順に2段冷却されるので、冷却性能が向上する。 When the supercharged intake air is at a high load, the supercharged intake air is cooled in two stages in the order of the second intercooler 16 and the first intercooler 15, so that the cooling performance is improved.
 過給吸気が低温になる低負荷時においては、過給吸気は第2インタークーラ16で一旦暖められて第1インタークーラ15で冷やされる。低負荷時では過給吸気の流量が少ないので、第2インタークーラ16で過給吸気が一旦暖められても、第1インタークーラ15で過給吸気を十分冷却できる。 At low load when the supercharged intake air is at a low temperature, the supercharged intake air is once warmed by the second intercooler 16 and cooled by the first intercooler 15. When the load is low, the flow rate of the supercharged intake air is small. Therefore, even if the supercharged intake air is once warmed by the second intercooler 16, the supercharged air intake can be sufficiently cooled by the first intercooler 15.
 本実施形態は、エンジン11から流出した冷却水の流れを、第1ラジエータ13に向かう第1ラジエータ側流れFRと、第2インタークーラ16に向かう第2インタークーラ側流れFIとに分岐させる分岐部23と、第1ラジエータ側流れFRを遮断または流通させる循環流路開閉弁17とを備える。 In the present embodiment, a branching portion that branches the flow of cooling water flowing out from the engine 11 into a first radiator-side flow FR toward the first radiator 13 and a second intercooler-side flow FI toward the second intercooler 16. 23 and a circulation flow path opening / closing valve 17 for blocking or circulating the first radiator side flow FR.
 これによると、循環流路開閉弁17が第1ラジエータ側流れFRを遮断すると冷却水が第1ラジエータ13および第2ラジエータ14を流れなくなる。したがって、冷却水から外気に放熱されることを抑制でき、ひいてはエンジン11の暖機性能が損なわれることを抑制できる。 According to this, when the circulation flow path opening / closing valve 17 blocks the first radiator side flow FR, the cooling water does not flow through the first radiator 13 and the second radiator 14. Therefore, it can suppress that heat is dissipated from the cooling water to the outside air.
 しかも、循環流路開閉弁17が第1ラジエータ側流れFRを遮断しても冷却水が第2インタークーラ16を流れるので、エンジン11の吸気を冷却できる。 Moreover, since the cooling water flows through the second intercooler 16 even if the circulation flow path opening / closing valve 17 blocks the first radiator side flow FR, the intake air of the engine 11 can be cooled.
 したがって、エンジン11の吸気を冷却する冷却性能を確保しつつエンジン11の暖機性能が損なわれることを抑制できる。 Therefore, it is possible to suppress the warm-up performance of the engine 11 from being impaired while ensuring the cooling performance for cooling the intake air of the engine 11.
 本実施形態の第2インタークーラ16および第1インタークーラ15はそれぞれ、冷却水が流れるチューブ15a、16aを有する。第2インタークーラ16のチューブ16aおよび第1インタークーラ15のチューブ15aは、薄板材に形成された伝熱フィン27で互いに接合されている。 The second intercooler 16 and the first intercooler 15 of this embodiment have tubes 15a and 16a through which cooling water flows, respectively. The tube 16a of the second intercooler 16 and the tube 15a of the first intercooler 15 are joined to each other by heat transfer fins 27 formed on a thin plate material.
 これによると、第2インタークーラ16の熱交換コア部16cと第1インタークーラ15の熱交換コア部15cとが互いに一体化されているので、両熱交換コア部16c、15cが互いに別体で形成されている場合と比較して構成を簡素化できる。 According to this, since the heat exchange core portion 16c of the second intercooler 16 and the heat exchange core portion 15c of the first intercooler 15 are integrated with each other, the heat exchange core portions 16c and 15c are separate from each other. The configuration can be simplified compared to the case where it is formed.
 また、第2インタークーラ16および第1インタークーラ15が互いに隣接しているので、第2インタークーラ16および第1インタークーラ15が互いに離間されている場合と比較して過給吸気の圧力損失を低減できる。 Moreover, since the 2nd intercooler 16 and the 1st intercooler 15 are mutually adjacent | abutted, compared with the case where the 2nd intercooler 16 and the 1st intercooler 15 are mutually spaced apart, the pressure loss of supercharging intake air is reduced. Can be reduced.
 本実施形態の第1ラジエータ13および第2ラジエータ14はそれぞれ、冷却水が流れるチューブ13a、14aを有する。第1ラジエータ13のチューブ13aおよび第2ラジエータ14のチューブ14aは、薄板材に形成された伝熱フィン27で互いに接合されている。 The first radiator 13 and the second radiator 14 of the present embodiment have tubes 13a and 14a through which cooling water flows, respectively. The tube 13a of the 1st radiator 13 and the tube 14a of the 2nd radiator 14 are mutually joined by the heat-transfer fin 27 formed in the thin-plate material.
 これによると、第1ラジエータ13の熱交換コア部13cと第2ラジエータ14の熱交換コア部14cとが互いに一体化されているので、両熱交換コア部13c、14cが互いに別体で形成されている場合と比較して構成を簡素化できる。 According to this, since the heat exchange core portion 13c of the first radiator 13 and the heat exchange core portion 14c of the second radiator 14 are integrated with each other, both the heat exchange core portions 13c and 14c are formed separately from each other. The configuration can be simplified compared to the case where
 また、第1ラジエータ13および第2ラジエータ14が互いに隣接しているので、第1ラジエータ13および第2ラジエータ14が互いに離間されている場合と比較して外気の圧力損失を低減できる。 Further, since the first radiator 13 and the second radiator 14 are adjacent to each other, the pressure loss of the outside air can be reduced as compared with the case where the first radiator 13 and the second radiator 14 are separated from each other.
 本実施形態の循環流路開閉弁17は、冷却水温度検出部17eが検出した冷却水の温度Twに応じて第1ラジエータ側流れFRを遮断または流通させる。 The circulation channel opening / closing valve 17 of the present embodiment blocks or circulates the first radiator-side flow FR according to the cooling water temperature Tw detected by the cooling water temperature detection unit 17e.
 具体的には、循環流路開閉弁17は、冷却水の温度Twが所定温度Tw1未満である場合、第1ラジエータ側流れFRを遮断し、冷却水の温度Twが所定温度Tw1以上である場合、第1ラジエータ側流れFRを流通させる。所定温度Tw1は80℃以上90℃以下である。これにより、エンジン11の暖機性能が損なわれることを適切に抑制できる。
(第2実施形態)
 本実施形態では、図6に示すように、第2吸気冷却用流路22にヒータコア30が配置されている。
Specifically, when the temperature Tw of the cooling water is lower than the predetermined temperature Tw1, the circulation flow path opening / closing valve 17 interrupts the first radiator-side flow FR, and the temperature Tw of the cooling water is equal to or higher than the predetermined temperature Tw1. The first radiator side flow FR is circulated. The predetermined temperature Tw1 is 80 ° C. or higher and 90 ° C. or lower. Thereby, it can suppress appropriately that the warming-up performance of the engine 11 is impaired.
(Second Embodiment)
In the present embodiment, as shown in FIG. 6, the heater core 30 is disposed in the second intake cooling flow path 22.
 ヒータコア30は、エンジン11から流出した冷却水と車室内への送風する空気とを熱交換させて空気を加熱する加熱用熱交換器である。ヒータコア30で加熱された空気は、車室内の空調に利用される。 The heater core 30 is a heating heat exchanger that heats the air by exchanging heat between the cooling water flowing out from the engine 11 and the air blown into the vehicle interior. The air heated by the heater core 30 is used for air conditioning in the passenger compartment.
 ヒータコア30は、第2インタークーラ16の冷却水流れ方向の上流に位置している。 The heater core 30 is located upstream of the second intercooler 16 in the coolant flow direction.
 迂回流路31は、ヒータコア30から流出した冷却水が第2インタークーラ16を迂回して流れる流路である。迂回流路31は、第2吸気冷却用流路22のうちヒータコア30と第2インタークーラ16との間の部位から分岐して、第2吸気冷却用流路22のうち第2インタークーラ16の冷却水流れ下流に合流する。迂回流路31は、第2インタークーラ16を流れる冷却水の流量を調整する。 The bypass flow path 31 is a flow path in which the cooling water flowing out from the heater core 30 flows around the second intercooler 16. The bypass flow path 31 branches from a portion of the second intake air cooling flow path 22 between the heater core 30 and the second intercooler 16, and the second intake air cooling flow path 22 of the second inter cooler 16 is branched. Merges downstream of the cooling water flow. The bypass flow path 31 adjusts the flow rate of the cooling water flowing through the second intercooler 16.
 本実施形態では、第2インタークーラ16は、ヒータコア30の冷却水流れ方向の下流に位置している。したがって、第2インタークーラ16には、ヒータコア30で熱交換された冷却水が流通する。 In the present embodiment, the second intercooler 16 is located downstream of the heater core 30 in the coolant flow direction. Therefore, the cooling water heat-exchanged by the heater core 30 flows through the second intercooler 16.
 ヒータコア30では冷却水が空気に放熱するので、第2インタークーラ16に流通する冷却水の温度が低くなる。そのため、第2インタークーラ16における過給吸気の冷却性能を向上できる。 Since the cooling water dissipates heat to the air in the heater core 30, the temperature of the cooling water flowing through the second intercooler 16 is lowered. Therefore, the cooling performance of the supercharged intake air in the second intercooler 16 can be improved.
 本実施形態は、ヒータコア30から流出した冷却水が第2インタークーラ16を迂回して流れる迂回流路31を備える。これにより、第2インタークーラ16における冷却水流量をヒータコア30における冷却水流量よりも少なくできるので、第2インタークーラ16における過給吸気の冷却性能を適切に調整できる。
(第3実施形態)
 本実施形態では、図7に示すように、第3インタークーラ32を備えている。第3インタークーラ32は、第1インタークーラ15および第2インタークーラ16と同様に、過給機(ターボチャージャ)で圧縮されて高温になった過給吸気と冷却水とを熱交換して過給吸気を冷却する吸気冷却器である。吸気系の容量を極力小さくするために、第3インタークーラ32は、第1インタークーラ15および第2インタークーラ16と一体化されている。
The present embodiment includes a bypass flow path 31 in which the cooling water that has flowed out of the heater core 30 flows around the second intercooler 16. Thereby, since the cooling water flow rate in the 2nd intercooler 16 can be made smaller than the cooling water flow rate in the heater core 30, the cooling performance of the supercharging intake air in the 2nd intercooler 16 can be adjusted appropriately.
(Third embodiment)
In the present embodiment, a third intercooler 32 is provided as shown in FIG. Similarly to the first intercooler 15 and the second intercooler 16, the third intercooler 32 exchanges heat between the supercharged intake air and the cooling water that have been compressed by the supercharger (turbocharger) and become high temperature. An intake air cooler that cools the intake and intake air. In order to minimize the capacity of the intake system, the third intercooler 32 is integrated with the first intercooler 15 and the second intercooler 16.
 第3インタークーラ32は、第3吸気冷却用流路33に配置されている。第3吸気冷却用流路33は、循環流路18から分岐して循環流路18に合流する流路である。 The third intercooler 32 is disposed in the third intake air cooling channel 33. The third intake air cooling flow path 33 is a flow path that branches from the circulation flow path 18 and joins the circulation flow path 18.
 循環流路18から第3吸気冷却用流路33が分岐する第3分岐部34は、第1ラジエータ13の冷却水出口側かつポンプ12の冷却水吸入側に設けられている。第3吸気冷却用流路33は、第2吸気冷却用流路22に第3合流部35にて合流し、第2吸気冷却用流路22の一部を介して第1吸気冷却用流路19に合流し、さらに第1吸気冷却用流路19の一部を介して第1合流部21にて循環流路18に合流する。 The third branch 34 where the third intake air cooling flow path 33 branches from the circulation flow path 18 is provided on the cooling water outlet side of the first radiator 13 and on the cooling water suction side of the pump 12. The third intake air cooling flow path 33 joins the second intake air cooling flow path 22 at the third merging portion 35, and the first intake air cooling flow path 33 passes through a part of the second intake air cooling flow path 22. 19, and further merges with the circulation channel 18 at the first junction 21 via a part of the first intake cooling channel 19.
 第3インタークーラ32の冷却水入口は、第1ラジエータ13の冷却水出口に接続されている。第3インタークーラ32の冷却水出口は、ポンプ12の冷却水吸入口に接続されている。 The cooling water inlet of the third intercooler 32 is connected to the cooling water outlet of the first radiator 13. The cooling water outlet of the third intercooler 32 is connected to the cooling water inlet of the pump 12.
 第3インタークーラ32は、過給吸気の流れ方向において、第1インタークーラ15と第2インタークーラ16との間に位置している。したがって、過給吸気は、第2インタークーラ16、第3インタークーラ32、第1インタークーラ15の順に流れる。 The third intercooler 32 is located between the first intercooler 15 and the second intercooler 16 in the supercharging intake air flow direction. Accordingly, the supercharged intake air flows in the order of the second intercooler 16, the third intercooler 32, and the first intercooler 15.
 第3インタークーラ32を流通する冷却水は、第1ラジエータ13で冷却されている。したがって、第3インタークーラ32を流通する冷却水は、第2インタークーラ16を流通する冷却水よりも温度が低くなり且つ第1インタークーラ15を流通する冷却水よりも温度が高くなる。 The cooling water flowing through the third intercooler 32 is cooled by the first radiator 13. Accordingly, the cooling water flowing through the third intercooler 32 has a lower temperature than the cooling water flowing through the second intercooler 16 and a higher temperature than the cooling water flowing through the first intercooler 15.
 過給吸気が高温になる高負荷時においては、過給吸気は第2インタークーラ16、第3インタークーラ32、第1インタークーラ15の順に3段冷却されるので、冷却性能が向上する。 When the supercharged intake air is at a high load, the supercharged intake air is cooled in three stages in the order of the second intercooler 16, the third intercooler 32, and the first intercooler 15, so that the cooling performance is improved.
 過給吸気が低温になる低負荷時においては、過給吸気は第2インタークーラ16で一旦暖められて第3インタークーラ32、第1インタークーラ15の順に2段冷却される。低負荷時では過給吸気の流量が少ないので、第2インタークーラ16で過給吸気が一旦暖められても、第3インタークーラ32および第1インタークーラ15で過給吸気を十分冷却できる。
(第4実施形態)
 上記実施形態では、循環流路18から第2吸気冷却用流路22が分岐する第2分岐部23は、エンジン11の冷却水出口側かつ第1ラジエータ13の冷却水出口側の冷却水入口側に設けられているが、本実施形態では、図8に示すように、第2分岐部23は、ポンプ12の冷却水吐出側かつエンジン11の冷却水入口側に設けられている。
At a low load when the supercharged intake air is at a low temperature, the supercharged intake air is once warmed by the second intercooler 16 and cooled in two stages in the order of the third intercooler 32 and the first intercooler 15. When the load is low, the flow rate of the supercharged intake air is small. Therefore, even if the supercharged intake air is once warmed by the second intercooler 16, the supercharged air intake can be sufficiently cooled by the third intercooler 32 and the first intercooler 15.
(Fourth embodiment)
In the above embodiment, the second branch portion 23 where the second intake cooling flow path 22 branches from the circulation flow path 18 is the cooling water outlet side of the engine 11 and the cooling water outlet side of the first radiator 13. However, in this embodiment, as shown in FIG. 8, the second branch portion 23 is provided on the cooling water discharge side of the pump 12 and the cooling water inlet side of the engine 11.
 エンジン冷却回路10は、ラジエータバイパス流路40を備えている。ラジエータバイパス流路40は、冷却水が第1ラジエータ13および第2ラジエータ14をバイパスして流れる流路である。 The engine cooling circuit 10 includes a radiator bypass passage 40. The radiator bypass channel 40 is a channel through which cooling water flows by bypassing the first radiator 13 and the second radiator 14.
 ラジエータバイパス流路40は、第3分岐部41で循環流路18から分岐して、第3合流部42で循環流路18に合流する。第3分岐部41は、エンジン11の冷却水出口側かつ循環流路開閉弁17の冷却水入口側に設けられている。第3合流部42は、第1ラジエータ13の冷却水出口側かつポンプ12の冷却水吸入側に設けられている。 The radiator bypass channel 40 branches from the circulation channel 18 at the third branching portion 41 and merges with the circulation channel 18 at the third junction 42. The third branch portion 41 is provided on the cooling water outlet side of the engine 11 and on the cooling water inlet side of the circulation channel opening / closing valve 17. The third junction 42 is provided on the cooling water outlet side of the first radiator 13 and on the cooling water suction side of the pump 12.
 循環流路開閉弁17が開弁している場合にラジエータバイパス流路40を流れる冷却水の流量が多くなり過ぎて第1ラジエータ13および第2ラジエータ14を流れる冷却水の流量が少なくなり過ぎることがないように、ラジエータバイパス流路40の流路抵抗が大きく設定されている。 When the circulation flow path opening / closing valve 17 is open, the flow rate of the cooling water flowing through the radiator bypass flow path 40 becomes too large, and the flow rate of the cooling water flowing through the first radiator 13 and the second radiator 14 becomes too small. The flow path resistance of the radiator bypass flow path 40 is set to be large so as not to occur.
 次に、上記構成における作動を説明する。エンジン11の始動後、冷却水温度Twが所定温度Tw1(本実施形態では50℃以上80℃)に到達するまでは循環流路開閉弁17が閉弁している。したがって、図9の太実線に示すように、ポンプ12から吐出された冷却水は、第2分岐部23および第3分岐部41で第2インタークーラ16を流通する流れとエンジン11を流通する流れとに分岐した後、第2合流部21および第3合流部42で合流してポンプ12に吸入される。一方、ポンプ12から吐出された冷却水は、第1ラジエータ13、第2ラジエータ14および第1インタークーラ15には流通しない。 Next, the operation in the above configuration will be described. After the engine 11 is started, the circulation flow path opening / closing valve 17 is closed until the coolant temperature Tw reaches a predetermined temperature Tw1 (in this embodiment, 50 ° C. or higher and 80 ° C.). Therefore, as shown by the thick solid line in FIG. 9, the cooling water discharged from the pump 12 flows through the second intercooler 16 and the flow through the engine 11 at the second branch portion 23 and the third branch portion 41. Are then merged at the second junction 21 and the third junction 42 and sucked into the pump 12. On the other hand, the cooling water discharged from the pump 12 does not flow to the first radiator 13, the second radiator 14, and the first intercooler 15.
 このように、エンジン11が始動して間もない場合、第1ラジエータ13、第2ラジエータ14および第1インタークーラ15に冷却水が流通しないので、冷却水から外気に放熱されることがなく、暖機を促進できる。一方、第2インタークーラ16には冷却水が流通するので、過給吸気を冷却または加熱できる。 As described above, when the engine 11 is just started, the cooling water does not flow through the first radiator 13, the second radiator 14, and the first intercooler 15, so that the heat is not radiated from the cooling water to the outside air. It can promote warm-up. On the other hand, since the cooling water flows through the second intercooler 16, the supercharged intake air can be cooled or heated.
 冷却水温度Twがさらに上昇して所定温度Tw1(本実施形態では50℃以上80℃)に到達した場合、循環流路開閉弁17が開弁する。したがって、ポンプ12から吐出された冷却水はエンジン11を流通したのち、図8に示すように第1ラジエータ側流れFRと第2インタークーラ側流れFIとに分岐する。 When the cooling water temperature Tw further rises and reaches a predetermined temperature Tw1 (50 ° C. or more and 80 ° C. in the present embodiment), the circulation channel opening / closing valve 17 is opened. Therefore, the coolant discharged from the pump 12 flows through the engine 11 and then branches into a first radiator side flow FR and a second intercooler side flow FI as shown in FIG.
 第1ラジエータ側流れFRは、第2分岐部23からエンジン11および第1ラジエータ13に向かう冷却水の流れである。第2インタークーラ側流れFIは、第2分岐部23から第2インタークーラ16に向かう冷却水の流れである。 The first radiator side flow FR is a flow of cooling water from the second branch portion 23 toward the engine 11 and the first radiator 13. The second intercooler side flow FI is a flow of cooling water from the second branch portion 23 toward the second intercooler 16.
 第1インタークーラ15を流通する冷却水は、第1ラジエータ13および第2ラジエータ14で冷却されている。したがって、第1インタークーラ15を流通する冷却水は、第2インタークーラ16を流通する冷却水よりも温度が低くなる。 The cooling water flowing through the first intercooler 15 is cooled by the first radiator 13 and the second radiator 14. Therefore, the temperature of the cooling water flowing through the first intercooler 15 is lower than that of the cooling water flowing through the second intercooler 16.
 第1ラジエータ側流れFRは、第1ラジエータ13を流通したのち、さらに分岐する。具体的には、そのままポンプ12に吸入される流れFR1と、第2ラジエータ14および第1インタークーラ15を流通してポンプ12に吸入される流れFR2とに分岐する。 The first radiator side flow FR further branches after flowing through the first radiator 13. Specifically, the flow FR1 that is sucked into the pump 12 as it is and the flow FR2 that flows through the second radiator 14 and the first intercooler 15 and is sucked into the pump 12 are branched.
 過給吸気が高温になる高負荷時においては、過給吸気は第2インタークーラ16、第1インタークーラ15の順に2段冷却されるので、冷却性能が向上する。 When the supercharged intake air is at a high load, the supercharged intake air is cooled in two stages in the order of the second intercooler 16 and the first intercooler 15, so that the cooling performance is improved.
 過給吸気が低温になる低負荷時においては、過給吸気は第2インタークーラ16で一旦暖められて第1インタークーラ15で冷やされる。低負荷時では過給吸気の流量が少ないので、第2インタークーラ16で過給吸気が一旦暖められても、第1インタークーラ15で過給吸気を十分冷却できる。 At low load when the supercharged intake air is at a low temperature, the supercharged intake air is once warmed by the second intercooler 16 and cooled by the first intercooler 15. When the load is low, the flow rate of the supercharged intake air is small. Therefore, even if the supercharged intake air is once warmed by the second intercooler 16, the supercharged air intake can be sufficiently cooled by the first intercooler 15.
 第2インタークーラ16には、エンジン11通過前の比較的低温の冷却水(例えば70~80℃程度)が流れる。そのため、上記実施形態のようにエンジン11通過後の高温の冷却水(例えば90℃程度)が第2インタークーラ16を流れる場合と比較して第2インタークーラ16に流入する冷却水の温度を低く抑えることができる。 The relatively low-temperature cooling water (for example, about 70 to 80 ° C.) before passing through the engine 11 flows through the second intercooler 16. Therefore, the temperature of the cooling water flowing into the second intercooler 16 is lower than that when the high-temperature cooling water (for example, about 90 ° C.) after passing through the engine 11 flows through the second intercooler 16 as in the above embodiment. Can be suppressed.
 その結果、第2インタークーラ16で高温の吸気(例えば150~180℃程度)と熱交換した冷却水が沸騰することを抑制できる。 As a result, it is possible to suppress boiling of the cooling water heat-exchanged with the high-temperature intake air (for example, about 150 to 180 ° C.) by the second intercooler 16.
 本実施形態では、第2インタークーラ16は、第1ラジエータ13および第2ラジエータ14をバイパスして流れる冷却水とエンジン11の吸気とを熱交換して吸気を冷却する。第1分岐部23は、冷却水の流れを、第1ラジエータ13に向かう第1ラジエータ側流れFRと、第2インタークーラ16に向かう第2インタークーラ側流れFIとに分岐させる。循環流路開閉弁17は、第1ラジエータ側流れFRを遮断または流通させる。 In the present embodiment, the second intercooler 16 cools the intake air by exchanging heat between the cooling water flowing by bypassing the first radiator 13 and the second radiator 14 and the intake air of the engine 11. The first branching section 23 branches the flow of the cooling water into a first radiator side flow FR directed toward the first radiator 13 and a second intercooler side flow FI directed toward the second intercooler 16. The circulation flow path opening / closing valve 17 blocks or circulates the first radiator side flow FR.
 これによると、上記実施形態と同様に、エンジン11の吸気を冷却する冷却性能を確保しつつエンジン11の暖機性能が損なわれることを抑制できる。 According to this, similarly to the above-described embodiment, it is possible to prevent the warm-up performance of the engine 11 from being impaired while ensuring the cooling performance for cooling the intake air of the engine 11.
 本実施形態では、第1分岐部23は、第1ラジエータ13および第2ラジエータ14の冷却水出口側かつエンジン11の冷却水入口側における冷却水の流れを、第1ラジエータ側流れFRと第2インタークーラ側流れFIとに分岐させる。 In the present embodiment, the first branch portion 23 is configured to change the flow of the cooling water on the cooling water outlet side of the first radiator 13 and the second radiator 14 and on the cooling water inlet side of the engine 11 to the first radiator side flow FR and the second flow. Branch to the intercooler side flow FI.
 これによると、エンジン11通過前の冷却水の流れを第1ラジエータ側流れFRと第2インタークーラ側流れFIとに分岐させることができる。したがって、エンジン11通過後の冷却水の流れを第1ラジエータ側流れFRと第2インタークーラ側流れFIとに分岐させる場合と比較して第2インタークーラ16に流入する冷却水の温度を低く抑えることができる。したがって、第2インタークーラ16で冷却水が沸騰することを抑制できる。
(他の実施形態)
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
According to this, the flow of the cooling water before passing through the engine 11 can be branched into the first radiator side flow FR and the second intercooler side flow FI. Therefore, the temperature of the cooling water flowing into the second intercooler 16 is kept low compared to the case where the flow of the cooling water after passing through the engine 11 is branched into the first radiator side flow FR and the second intercooler side flow FI. be able to. Therefore, it is possible to prevent the cooling water from boiling in the second intercooler 16.
(Other embodiments)
The above embodiments can be combined as appropriate. The above embodiment can be variously modified as follows, for example.
 (1)上記実施形態では、冷却用流体はエチレングリコール系の不凍液(LLC)であるが、冷却用流体は種々の流体であってもよい。 (1) In the above embodiment, the cooling fluid is an ethylene glycol antifreeze (LLC), but the cooling fluid may be various fluids.
 (2)上記実施形態では、車両の走行用動力を発生するエンジン11の吸気を冷却する吸気冷却装置について説明したが、種々のエンジン(内燃機関)の吸気を冷却する吸気冷却装置に広く適用可能である。 (2) In the above embodiment, the intake air cooling device that cools the intake air of the engine 11 that generates driving power for the vehicle has been described. However, the present invention can be widely applied to the intake air cooling device that cools the intake air of various engines (internal combustion engines). It is.
 (3)上記実施形態では、循環流路開閉弁17の開弁温度Tw1が80℃以上90℃以下に設定されているが、循環流路開閉弁17の開弁温度Tw1を種々変更可能である。 (3) In the above embodiment, the valve opening temperature Tw1 of the circulation flow path opening / closing valve 17 is set to 80 ° C. or more and 90 ° C. or less, but the valve opening temperature Tw1 of the circulation flow path opening / closing valve 17 can be variously changed. .
 例えば、循環流路開閉弁17の開弁温度Tw1が50℃以上80℃以下に設定されていれば、上記実施形態と比較して低い冷却水温度Twで循環流路開閉弁17が開弁して第1インタークーラ15に冷却水が流通する。したがって、上記実施形態と比較して、エンジン11の暖機よりも吸気冷却性能を優先した作動を実現できる。 For example, if the opening temperature Tw1 of the circulation flow path opening / closing valve 17 is set to 50 ° C. or more and 80 ° C. or less, the circulation flow path opening / closing valve 17 is opened at a cooling water temperature Tw lower than that in the above embodiment. Then, the cooling water flows through the first intercooler 15. Therefore, compared with the said embodiment, the action | operation which gave priority to the intake air cooling performance rather than the warming-up of the engine 11 is realizable.
 (4)上記実施形態では、第1インタークーラ15および第2インタークーラ16はタンクアンドチューブ型の熱交換器として構成されている。しかしながら、第1インタークーラ15および第2インタークーラ16はプレート積層型の熱交換器として構成されていてもよい。 (4) In the above embodiment, the first intercooler 15 and the second intercooler 16 are configured as a tank-and-tube heat exchanger. However, the 1st intercooler 15 and the 2nd intercooler 16 may be constituted as a plate lamination type heat exchanger.
 プレート積層型の熱交換器は、複数の略平板状の伝熱プレートが間隔をおいて重ね合わされていて、伝熱プレート間に熱交換流体の流路が形成されている熱交換器である。 The plate-stacked heat exchanger is a heat exchanger in which a plurality of substantially flat heat transfer plates are stacked with a space therebetween, and a heat exchange fluid channel is formed between the heat transfer plates.
 上記実施形態では、第1ラジエータおよび第2ラジエータもタンクアンドチューブ型の熱交換器として構成されているが、第1ラジエータおよび第2ラジエータもプレート積層型の熱交換器として構成されていてもよい。 In the above embodiment, the first radiator and the second radiator are also configured as a tank-and-tube heat exchanger, but the first radiator and the second radiator may also be configured as a plate-stacked heat exchanger. .
 (5)上記実施形態では、第2インタークーラ16の熱交換コア部16cと第1インタークーラ15の熱交換コア部15cとが一体化されている。しかしながら、第2インタークーラ16および第1インタークーラ15は、互いに別体に形成されていて、且つ吸気の流れ方向に互いに離間していてもよい。 (5) In the above embodiment, the heat exchange core portion 16c of the second intercooler 16 and the heat exchange core portion 15c of the first intercooler 15 are integrated. However, the second intercooler 16 and the first intercooler 15 may be formed separately from each other and may be separated from each other in the flow direction of the intake air.
 これによると、第2インタークーラ16および第1インタークーラ15の配置の自由度を高めることができる。 According to this, the freedom degree of arrangement | positioning of the 2nd intercooler 16 and the 1st intercooler 15 can be raised.
 (6)上記実施形態では、第1ラジエータ13の熱交換コア部13cと第2ラジエータ14の熱交換コア部14cとが一体化されている。しかしながら、第1ラジエータ13および第2ラジエータ14は、互いに別体に形成されていて、且つ吸気の流れ方向に互いに離間していてもよい。 (6) In the above embodiment, the heat exchange core portion 13c of the first radiator 13 and the heat exchange core portion 14c of the second radiator 14 are integrated. However, the first radiator 13 and the second radiator 14 may be formed separately from each other and may be separated from each other in the flow direction of the intake air.
 これによると、第1ラジエータ13および第2ラジエータ14の配置の自由度を高めることができる。 According to this, the freedom degree of arrangement | positioning of the 1st radiator 13 and the 2nd radiator 14 can be raised.

Claims (12)

  1.  エンジン(11)から流出した冷却用流体と外気とを熱交換させて前記冷却用流体を冷却する第1ラジエータ(13)と、
     前記第1ラジエータ(13)で冷却された前記冷却用流体と前記外気とを熱交換させて前記冷却用流体を冷却する第2ラジエータ(14)と、
     前記第2ラジエータ(14)で冷却された前記冷却用流体と前記エンジン(11)の吸気とを熱交換して前記吸気を冷却する第1吸気冷却器(15)と、
     前記第1ラジエータ(13)および前記第2ラジエータ(14)をバイパスして流れる前記冷却用流体と前記エンジン(11)の吸気とを熱交換して前記吸気を冷却する第2吸気冷却器(16)と、
     前記冷却用流体の流れを、前記第1ラジエータ(13)に向かう第1ラジエータ側流れ(FR)と、前記第2吸気冷却器(16)に向かう第2吸気冷却器側流れ(FI)とに分岐させる分岐部(23)と、
     前記第1ラジエータ側流れ(FR)を遮断または流通させる切替部(17)とを備える吸気冷却装置。
    A first radiator (13) that cools the cooling fluid by exchanging heat between the cooling fluid flowing out of the engine (11) and the outside air;
    A second radiator (14) for cooling the cooling fluid by exchanging heat between the cooling fluid cooled by the first radiator (13) and the outside air;
    A first intake air cooler (15) for exchanging heat between the cooling fluid cooled by the second radiator (14) and the intake air of the engine (11) to cool the intake air;
    A second intake air cooler (16) that cools the intake air by exchanging heat between the cooling fluid flowing by bypassing the first radiator (13) and the second radiator (14) and the intake air of the engine (11). )When,
    The flow of the cooling fluid is divided into a first radiator side flow (FR) toward the first radiator (13) and a second intake air cooler side flow (FI) toward the second intake air cooler (16). A branching section (23) for branching;
    An intake air cooling apparatus comprising: a switching unit (17) for blocking or circulating the first radiator side flow (FR).
  2.  エンジン(11)から流出した冷却用流体と外気とを熱交換させて前記冷却用流体を冷却する第1ラジエータ(13)と、
     前記第1ラジエータ(13)で冷却された前記冷却用流体と前記外気とを熱交換させて前記冷却用流体を冷却する第2ラジエータ(14)と、
     前記第2ラジエータ(14)で冷却された前記冷却用流体と前記エンジン(11)の吸気とを熱交換して前記吸気を冷却する第1吸気冷却器(15)と、
     前記エンジン(11)から流出した前記冷却用流体と前記エンジン(11)の吸気とを熱交換して前記吸気を冷却する第2吸気冷却器(16)と、
     前記エンジン(11)から流出した前記冷却用流体の流れを、前記第1ラジエータ(13)に向かう第1ラジエータ側流れ(FR)と、前記第2吸気冷却器(16)に向かう第2吸気冷却器側流れ(FI)とに分岐させる分岐部(23)と、
     前記第1ラジエータ側流れ(FR)を遮断または流通させる切替部(17)とを備える吸気冷却装置。
    A first radiator (13) that cools the cooling fluid by exchanging heat between the cooling fluid flowing out of the engine (11) and the outside air;
    A second radiator (14) for cooling the cooling fluid by exchanging heat between the cooling fluid cooled by the first radiator (13) and the outside air;
    A first intake air cooler (15) for exchanging heat between the cooling fluid cooled by the second radiator (14) and the intake air of the engine (11) to cool the intake air;
    A second intake air cooler (16) that cools the intake air by exchanging heat between the cooling fluid flowing out of the engine (11) and the intake air of the engine (11);
    The cooling fluid flowing out of the engine (11) is divided into a first radiator side flow (FR) toward the first radiator (13) and a second intake air cooling toward the second intake air cooler (16). A branch part (23) for branching into the vessel side flow (FI),
    An intake air cooling apparatus comprising: a switching unit (17) for blocking or circulating the first radiator side flow (FR).
  3.  前記分岐部(23)は、前記第1ラジエータ(13)および前記第2ラジエータ(14)の出口側かつ前記エンジン(11)の入口側における前記冷却用流体の流れを前記第1ラジエータ側流れ(FR)と前記第2吸気冷却器側流れ(FI)とに分岐させる請求項1に記載の吸気冷却装置。 The branch (23) is configured to flow the cooling fluid on the outlet side of the first radiator (13) and the second radiator (14) and on the inlet side of the engine (11) on the first radiator side flow ( FR) and the second intake air cooler side flow (FI) are branched.
  4.  前記エンジン(11)から流出した前記冷却用流体と車室内へ送風する空気とを熱交換させて前記空気を加熱するヒータコア(30)を備え、
     前記第2吸気冷却器(16)は、前記ヒータコア(30)の前記冷却用流体の流れ方向の下流に位置している請求項1ないし3のいずれか1つに記載の吸気冷却装置。
    A heater core (30) for heating the air by exchanging heat between the cooling fluid that has flowed out of the engine (11) and the air blown into the vehicle interior;
    The intake air cooling device according to any one of claims 1 to 3, wherein the second intake air cooler (16) is located downstream of the heater core (30) in the flow direction of the cooling fluid.
  5.  前記ヒータコア(30)から流出した前記冷却用流体が前記第2吸気冷却器(16)を迂回して流れる迂回流路(31)を備える請求項4に記載の吸気冷却装置。 The intake air cooling device according to claim 4, further comprising a bypass channel (31) through which the cooling fluid flowing out of the heater core (30) flows around the second intake air cooler (16).
  6.  前記第2吸気冷却器(16)および前記第1吸気冷却器(15)はそれぞれ、冷却用流体が流れるチューブ(15a、16a)を有しており、
     前記第2吸気冷却器(16)のチューブ(16a)および前記第1吸気冷却器(15)のチューブ(15a)は、薄板材に形成された伝熱フィン(27)で互いに接合されている請求項1ないし5のいずれか1つに記載の吸気冷却装置。
    The second intake air cooler (16) and the first intake air cooler (15) each have tubes (15a, 16a) through which cooling fluid flows,
    The tube (16a) of the second intake air cooler (16) and the tube (15a) of the first intake air cooler (15) are joined together by heat transfer fins (27) formed in a thin plate material. Item 6. The intake air cooling device according to any one of Items 1 to 5.
  7.  前記第2吸気冷却器(16)および前記第1吸気冷却器(15)は、互いに別体に形成されており、且つ前記吸気の流れ方向に互いに離間している請求項1ないし5のいずれか1つに記載の吸気冷却装置。 The second intake air cooler (16) and the first intake air cooler (15) are formed separately from each other and are separated from each other in the flow direction of the intake air. The intake air cooling device according to one.
  8.  前記第1ラジエータ(13)および前記第2ラジエータ(14)はそれぞれ、冷却用流体が流れるチューブ(13a、14a)を有しており、
     前記第1ラジエータ(13)のチューブ(13a)および前記第2ラジエータ(14)のチューブ(14a)は、薄板材に形成された伝熱フィン(27)で互いに接合されている請求項1ないし5のいずれか1つに記載の吸気冷却装置。
    The first radiator (13) and the second radiator (14) each have tubes (13a, 14a) through which a cooling fluid flows,
    The tube (13a) of the first radiator (13) and the tube (14a) of the second radiator (14) are joined to each other by heat transfer fins (27) formed in a thin plate material. The intake air cooling device according to any one of the above.
  9.  前記第1ラジエータ(13)および前記第2ラジエータ(14)は、互いに別体に形成されており、且つ前記吸気の流れ方向に互いに離間している請求項1ないし5のいずれか1つに記載の吸気冷却装置。 The first radiator (13) and the second radiator (14) are formed separately from each other and are separated from each other in the flow direction of the intake air. Intake cooling system.
  10.  前記冷却用流体の温度(Tw)を検出する温度検出器(17e)を備え、
     前記切替部(17)は、前記温度検出器(17e)が検出した温度(Tw)に応じて前記第1ラジエータ側流れ(FR)を遮断または流通させる請求項1ないし9のいずれか1つに記載の吸気冷却装置。
    A temperature detector (17e) for detecting the temperature (Tw) of the cooling fluid;
    The switching unit (17) according to any one of claims 1 to 9, wherein the first radiator side flow (FR) is cut off or circulated according to a temperature (Tw) detected by the temperature detector (17e). The intake air cooling device described.
  11.  前記切替部(17)は、前記温度検出器(17e)が検出した温度(Tw)が所定温度(Tw1)未満である場合、前記第1ラジエータ側流れ(FR)を遮断し、前記温度検出器(17e)が検出した温度(Tw)が所定温度(Tw1)以上である場合、前記第1ラジエータ側流れ(FR)を流通させ、
     前記所定温度(Tw1)は80℃以上90℃以下である請求項10に記載の吸気冷却装置。
    When the temperature (Tw) detected by the temperature detector (17e) is lower than a predetermined temperature (Tw1), the switching unit (17) shuts off the first radiator side flow (FR), and the temperature detector When the temperature (Tw) detected by (17e) is equal to or higher than the predetermined temperature (Tw1), the first radiator side flow (FR) is circulated,
    The intake air cooling device according to claim 10, wherein the predetermined temperature (Tw1) is 80 ° C or higher and 90 ° C or lower.
  12.  前記切替部(17)は、前記温度検出器(17e)が検出した温度(Tw)が所定温度(Tw1)未満である場合、前記第1ラジエータ側流れ(FR)を遮断し、前記温度検出器(17e)が検出した温度(Tw)が所定温度(Tw1)以上である場合、前記第1ラジエータ側流れ(FR)を流通させ、
     前記所定温度(Tw1)は50℃以上80℃以下である請求項10に記載の吸気冷却装置。
    When the temperature (Tw) detected by the temperature detector (17e) is lower than a predetermined temperature (Tw1), the switching unit (17) shuts off the first radiator side flow (FR), and the temperature detector When the temperature (Tw) detected by (17e) is equal to or higher than the predetermined temperature (Tw1), the first radiator side flow (FR) is circulated,
    The intake air cooling device according to claim 10, wherein the predetermined temperature (Tw1) is 50 ° C or higher and 80 ° C or lower.
PCT/JP2014/005752 2014-01-06 2014-11-17 Intake air cooling device WO2015102037A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480072353.0A CN105874182B (en) 2014-01-06 2014-11-17 Inlet gas cooling device
DE112014006108.5T DE112014006108B4 (en) 2014-01-06 2014-11-17 Cooling device for intake air

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-000101 2014-01-06
JP2014000101 2014-01-06
JP2014-100129 2014-05-14
JP2014100129A JP6201886B2 (en) 2014-01-06 2014-05-14 Intake air cooling system

Publications (1)

Publication Number Publication Date
WO2015102037A1 true WO2015102037A1 (en) 2015-07-09

Family

ID=53493386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005752 WO2015102037A1 (en) 2014-01-06 2014-11-17 Intake air cooling device

Country Status (4)

Country Link
JP (1) JP6201886B2 (en)
CN (1) CN105874182B (en)
DE (1) DE112014006108B4 (en)
WO (1) WO2015102037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982554A (en) * 2020-08-17 2020-11-24 浙江银轮机械股份有限公司 Intercooler heat resistance test equipment and intercooler heat resistance test method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137828A (en) * 2016-02-04 2017-08-10 いすゞ自動車株式会社 Intake air temperature control system
JP6409793B2 (en) 2016-02-11 2018-10-24 株式会社デンソー Intercooler
JP6432539B2 (en) 2016-02-12 2018-12-05 株式会社デンソー Intercooler
KR101704340B1 (en) 2016-03-03 2017-02-07 현대자동차주식회사 Hybrid intercooler system integrated with air conditioning system and control method thereof
CN109072765B (en) 2016-03-31 2020-08-28 株式会社电装 Intercooler
CN106979064A (en) * 2017-04-12 2017-07-25 潍柴西港新能源动力有限公司 Cold temperature control system and method in natural gas engine
JP2019002350A (en) * 2017-06-15 2019-01-10 カルソニックカンセイ株式会社 Cooling system
JP7139592B2 (en) * 2017-10-06 2022-09-21 いすゞ自動車株式会社 cooling system
DE102017123469A1 (en) * 2017-10-10 2019-04-11 Volkswagen Aktiengesellschaft Method for operating an internal combustion engine, internal combustion engine and motor vehicle
FR3080443B1 (en) * 2018-04-18 2020-06-19 Renault S.A.S. COOLING RADIATOR WITH INTEGRATED BY-PASS AND COOLING CIRCUIT
WO2021210323A1 (en) * 2020-04-15 2021-10-21 株式会社デンソー Cooling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781438U (en) * 1980-11-07 1982-05-20
JPS60108621A (en) * 1983-11-15 1985-06-14 Matsushita Refrig Co Ceiling embedded type air conditioner
JP2006523160A (en) * 2003-03-21 2006-10-12 ヴァレオ テルミーク モツール Devices for cooling some equipment of automobiles and related heat exchangers
JP2011518279A (en) * 2008-04-18 2011-06-23 スカニア シーブイ アクチボラグ Cooling device for supercharged internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317439A (en) * 1979-08-24 1982-03-02 The Garrett Corporation Cooling system
JPS6015929U (en) * 1983-07-12 1985-02-02 ダイハツディーゼル株式会社 Diesel engine supply air temperature control device
DE19719792B4 (en) * 1997-05-10 2004-03-25 Behr Gmbh & Co. Method and device for regulating the temperature of a medium
DE102006044155A1 (en) * 2006-09-15 2008-03-27 Behr Gmbh & Co. Kg Thermostat heat exchanger arrangement for use in secondary coolant cycle of charge air cooler, has thermostat integrated into wall of heat exchanger, arranged in outlet opening of heat exchanger and partially extends within heat exchanger
CN102362054B (en) * 2009-03-23 2014-01-22 康奈可关精株式会社 Intake control system
JP2010249129A (en) * 2009-03-27 2010-11-04 Calsonic Kansei Corp Charge air cooler and cooling system
KR20120063260A (en) * 2010-12-07 2012-06-15 현대자동차주식회사 Apparatus of cooling system for vehicle and controlling method using the same
US8826893B2 (en) * 2011-01-14 2014-09-09 General Electric Company Thermal management systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781438U (en) * 1980-11-07 1982-05-20
JPS60108621A (en) * 1983-11-15 1985-06-14 Matsushita Refrig Co Ceiling embedded type air conditioner
JP2006523160A (en) * 2003-03-21 2006-10-12 ヴァレオ テルミーク モツール Devices for cooling some equipment of automobiles and related heat exchangers
JP2011518279A (en) * 2008-04-18 2011-06-23 スカニア シーブイ アクチボラグ Cooling device for supercharged internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982554A (en) * 2020-08-17 2020-11-24 浙江银轮机械股份有限公司 Intercooler heat resistance test equipment and intercooler heat resistance test method

Also Published As

Publication number Publication date
CN105874182A (en) 2016-08-17
JP6201886B2 (en) 2017-09-27
DE112014006108T5 (en) 2016-09-22
CN105874182B (en) 2018-08-31
DE112014006108B4 (en) 2020-01-30
JP2015145667A (en) 2015-08-13

Similar Documents

Publication Publication Date Title
WO2015102037A1 (en) Intake air cooling device
JP6327032B2 (en) Intake air cooling system
US9592717B2 (en) Heat exchange system
JP5227205B2 (en) Cooling device for internal combustion engine
JP5835505B2 (en) Dual radiator engine cooling module-single coolant loop
EP2192286B1 (en) Method and system for extra cooling of the coolant in a vehicle´s cooling system
JP2018127915A (en) Engine cooling system
JP2012184693A (en) Cooling device of internal combustion engine
US20200318529A1 (en) Cooling circuit and oil cooler
CN108331655B (en) Cooling assembly for temperature control
CN106029409B (en) Heating, ventilation and air handling system for hybrid vehicle
WO2016031089A1 (en) Drive system
JP2016050545A (en) Cooling system for vehicle
WO2015194125A1 (en) Intake air cooling device
CN114658533B (en) Engine intercooling system and vehicle
JP6369120B2 (en) Hybrid vehicle cooling system
JP5708042B2 (en) V-type engine cooling system
JP2012167613A (en) Engine
WO2018096812A1 (en) Cooling device
JP4379137B2 (en) Cooling device for vehicle engine
US11319855B2 (en) Heat accumulation and dissipation device for internal combustion engine
JP6604540B2 (en) Engine cooling system
WO2015049833A1 (en) Intake air cooling device
JP2010169010A (en) Cooling device for internal combustion engine
JP6354198B2 (en) Radiator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014006108

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876472

Country of ref document: EP

Kind code of ref document: A1