JP2016050545A - Cooling system for vehicle - Google Patents

Cooling system for vehicle Download PDF

Info

Publication number
JP2016050545A
JP2016050545A JP2014177264A JP2014177264A JP2016050545A JP 2016050545 A JP2016050545 A JP 2016050545A JP 2014177264 A JP2014177264 A JP 2014177264A JP 2014177264 A JP2014177264 A JP 2014177264A JP 2016050545 A JP2016050545 A JP 2016050545A
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
low
engine
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014177264A
Other languages
Japanese (ja)
Inventor
晋 福永
Susumu Fukunaga
晋 福永
亮 福田
Akira Fukuda
亮 福田
嘉丈 武井
Yoshitake Takei
嘉丈 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014177264A priority Critical patent/JP2016050545A/en
Publication of JP2016050545A publication Critical patent/JP2016050545A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling system for a vehicle, which can make a refrigerant circulate in a low-temperature circuit by a refrigerant pump which makes a refrigerant of a main circuit circulate.SOLUTION: In a main circuit 2, cooling water for cooling an engine 7 can be made to flow in a circulated manner, and a water pump 3 makes the cooling water of the main circuit 2 circulate. A high-temperature heat exchanger 4 is arranged at the main circuit 2 on an upstream side of the water pump 3, and cools the cooling water whose temperature is raised by the engine 7. A low-temperature circuit 5 makes the cooling water which is branched from the main circuit 2 at a downstream side of the water pump 3 and flows in from the main circuit 2 circulate to an intercooler 15 and an EGR cooler 16 for cooling intake air of the engine 7, and after that, makes the cooling water be joined to the main circuit 2 at the upstream side of the water pump 3. A low-temperature heat exchanger 6 is arranged at the low-temperature circuit 5 at an upstream side of the intercooler 15 and the EGR cooler 16, and cools the cooling water which flows in from the main circuit 1.SELECTED DRAWING: Figure 1

Description

本発明は、車両の冷却システムに関する。   The present invention relates to a vehicle cooling system.

特許文献1には、吸気を冷やすための低温回路とエンジンを冷やすためのエンジン冷却回路(主回路)とを備える回路装置が記載されている。主回路は、エンジンとエンジンサーモスタットと冷媒冷却器と冷媒ポンプとを含み、エンジンサーモスタットから出発して供給管路が低温回路へと設けられている。低温回路は、冷媒ポンプと混合サーモスタットと給気/冷媒冷却器と低温冷却器とを含む。低温回路の混合サーモスタットの下流側、低温回路の低温冷却器の上流側、エンジン冷却回路の冷媒冷却器の下流側およびエンジン冷却回路の冷媒ポンプの上流側で管路間に還流管路が設けられる。   Patent Document 1 describes a circuit device including a low-temperature circuit for cooling intake air and an engine cooling circuit (main circuit) for cooling an engine. The main circuit includes an engine, an engine thermostat, a refrigerant cooler, and a refrigerant pump, and a supply line is provided to the low-temperature circuit starting from the engine thermostat. The low temperature circuit includes a refrigerant pump, a mixing thermostat, a charge / refrigerant cooler, and a low temperature cooler. A reflux line is provided between the pipes downstream of the mixing thermostat of the low-temperature circuit, upstream of the low-temperature cooler of the low-temperature circuit, downstream of the refrigerant cooler of the engine cooling circuit, and upstream of the refrigerant pump of the engine cooling circuit. .

通常運転状態のとき低温回路の冷媒は給気/冷媒冷却器を流通時に比較的強く暖められ、その際、混合サーモスタットが供給管路に対して閉鎖され、冷媒はエンジン冷却回路から低温回路内に達することができず、2つの分離された回路が存在する。   During normal operation, the refrigerant in the low-temperature circuit is warmed relatively strongly during circulation through the air supply / refrigerant cooler, at which time the mixing thermostat is closed to the supply line, and the refrigerant enters the low-temperature circuit from the engine cooling circuit. There are two separate circuits that cannot be reached.

エンジンの暖気時、または給気冷却が限定されまたは給気が加温されなければならない別の運転条件のとき、冷媒は比較的低温で給気/冷媒冷却器から進出する。こうした場合混合サーモスタット11が供給管路に対して開口しており、冷媒はエンジン冷却回路から低温回路に流れることができる。   When the engine is warming up, or when the charge air cooling is limited or another operating condition where the charge air must be warmed, the refrigerant enters the charge / refrigerator cooler at a relatively low temperature. In such a case, the mixing thermostat 11 is open to the supply line, and the refrigerant can flow from the engine cooling circuit to the low temperature circuit.

特表2006−522893号公報JP-T-2006-522893

上記構成では、通常運転状態では主回路と低温回路とが分離されて相互に独立した2つの回路となるので、冷媒を流通させるための冷媒ポンプを主回路と低温回路の双方に設ける必要があり、装置の大型化を招く。また、2つのポンプをエンジンによって駆動する場合、エンジンの駆動損失による燃費悪化の一因となる。   In the above configuration, since the main circuit and the low-temperature circuit are separated in the normal operation state and become two independent circuits, it is necessary to provide a refrigerant pump for circulating the refrigerant in both the main circuit and the low-temperature circuit. This leads to an increase in the size of the device. Further, when the two pumps are driven by the engine, it contributes to deterioration of fuel consumption due to engine drive loss.

そこで本発明は、主回路の冷媒を循環させる冷媒ポンプによって低温回路に冷媒を流通させることが可能な車両の冷却システムの提供を目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a vehicle cooling system capable of circulating a refrigerant in a low-temperature circuit by a refrigerant pump that circulates a refrigerant in a main circuit.

上記目的を達成すべく、本発明の第1の態様の冷却システムは、主回路と冷媒ポンプと高温熱交換器と低温回路と低温熱交換器とを備える。   In order to achieve the above object, the cooling system according to the first aspect of the present invention includes a main circuit, a refrigerant pump, a high-temperature heat exchanger, a low-temperature circuit, and a low-temperature heat exchanger.

主回路は、エンジンを冷却する冷媒が循環して流通可能であり、冷媒ポンプは、主回路の冷媒を循環させる。高温熱交換器は、冷媒ポンプの上流側の主回路に設けられ、エンジンで昇温した冷媒を冷却する。   The main circuit can circulate and circulate refrigerant for cooling the engine, and the refrigerant pump circulates refrigerant in the main circuit. The high temperature heat exchanger is provided in the main circuit upstream of the refrigerant pump, and cools the refrigerant whose temperature has been increased by the engine.

低温回路は、冷媒ポンプの下流側で主回路から分岐し、主回路から流入する冷媒を、エンジンの吸気を冷却する吸気冷却器へ流通させた後、冷媒ポンプの上流側で主回路に合流させる。低温熱交換器は、吸気冷却器の上流側の低温回路に設けられ、主回路から流入した冷媒を冷却する。   The low-temperature circuit branches from the main circuit on the downstream side of the refrigerant pump, distributes the refrigerant flowing from the main circuit to the intake air cooler that cools the intake air of the engine, and then joins the main circuit on the upstream side of the refrigerant pump . The low-temperature heat exchanger is provided in a low-temperature circuit on the upstream side of the intake air cooler, and cools the refrigerant flowing from the main circuit.

上記構成では、エンジンで昇温した冷媒は、主回路へ流入し、高温熱交換器で冷却されて、冷媒ポンプによって再度エンジンへ供給される。また、冷媒ポンプから流出した主回路の冷媒の一部は、低温回路へ流入し、低温熱交換器で冷却され、吸気冷却器を冷却した後、冷媒ポンプの上流側で主回路に戻る。   In the above configuration, the refrigerant whose temperature is increased by the engine flows into the main circuit, is cooled by the high-temperature heat exchanger, and is supplied to the engine again by the refrigerant pump. Further, a part of the refrigerant of the main circuit flowing out from the refrigerant pump flows into the low-temperature circuit, is cooled by the low-temperature heat exchanger, cools the intake air cooler, and then returns to the main circuit on the upstream side of the refrigerant pump.

冷媒ポンプの下流側は冷媒ポンプの吐出圧(差圧)により冷媒が最も高圧状態となる場所であり、この冷媒ポンプの下流側から低温回路が分岐するので、高圧状態の冷媒が冷温回路へ流入する。従って、低温回路の冷媒を流通させるための冷媒ポンプを別途設けることなく、主回路の冷媒を循環させる冷媒ポンプによって低温回路に冷媒を流通させることが可能となる。   The downstream side of the refrigerant pump is the place where the refrigerant reaches the highest pressure state due to the discharge pressure (differential pressure) of the refrigerant pump, and the low-temperature circuit branches from the downstream side of this refrigerant pump, so that the high-pressure refrigerant flows into the cold / hot circuit. To do. Therefore, it is possible to circulate the refrigerant in the low-temperature circuit by the refrigerant pump that circulates the refrigerant in the main circuit without separately providing a refrigerant pump for circulating the refrigerant in the low-temperature circuit.

また、高温熱交換器の下流側で低温回路が分岐するので、高温熱交換器で冷却された冷媒が低温回路の低温熱交換器によってさらに冷却されて吸気冷却器を流通する。このように、高温熱交換器と低温熱交換器とによる多段冷却により低温化された冷媒が吸気冷却器を流通するので、エンジンの吸気温度の低下を促進して燃費を向上させることができる。   Further, since the low-temperature circuit branches on the downstream side of the high-temperature heat exchanger, the refrigerant cooled by the high-temperature heat exchanger is further cooled by the low-temperature heat exchanger of the low-temperature circuit and flows through the intake air cooler. As described above, since the refrigerant cooled by the multistage cooling by the high-temperature heat exchanger and the low-temperature heat exchanger flows through the intake air cooler, it is possible to promote the decrease in the intake air temperature of the engine and improve the fuel consumption.

なお、上記構成は、低温回路の冷媒の流通を補助する補助ポンプを別途設けることを妨げるものではない。この場合、補助ポンプには、単独で冷媒を流通させる能力は不要であり、冷媒ポンプを補助して冷媒を流通させる能力があれば足りるので、小型で性能の低いポンプで済ませることができる。   In addition, the said structure does not prevent providing the auxiliary pump which assists the distribution | circulation of the refrigerant | coolant of a low-temperature circuit separately. In this case, the auxiliary pump does not need the ability to circulate the refrigerant alone, and only needs to have the ability to circulate the refrigerant by assisting the refrigerant pump. Therefore, a small and low-performance pump can be used.

本発明の第2の態様は、第1の態様の冷却システムであって、主回路から低温回路への冷媒の流入量を増減可能な低温回路流量変更手段を備える。   The second aspect of the present invention is the cooling system according to the first aspect, and includes low-temperature circuit flow rate changing means capable of increasing or decreasing the amount of refrigerant flowing from the main circuit to the low-temperature circuit.

上記構成では、主回路の冷媒によるエンジンの冷却と低温回路の冷媒による吸気の冷却との双方が全体として好適に実行されるように、冷媒ポンプから流出した冷媒のうちエンジンへ流通させる主回路の冷媒と低温回路へ流通させる冷媒との流量配分を、低温回路流用変更手段によって調整することができる。なお、低温回路流量変更手段による冷媒の流量配分は、例えば主回路の冷媒温度やエンジンの吸気温度(エンジンのインテークマニホールドのガス温度)や外気温やエンジン負荷等によって決定される。   In the above configuration, the main circuit that circulates to the engine out of the refrigerant that has flowed out of the refrigerant pump so that both the cooling of the engine by the refrigerant of the main circuit and the cooling of the intake air by the refrigerant of the low-temperature circuit are suitably performed as a whole. The flow rate distribution between the refrigerant and the refrigerant flowing through the low-temperature circuit can be adjusted by the low-temperature circuit flow changing means. The refrigerant flow distribution by the low-temperature circuit flow rate changing means is determined by, for example, the refrigerant temperature of the main circuit, the intake temperature of the engine (gas temperature of the intake manifold of the engine), the outside air temperature, the engine load, and the like.

本発明の第3の態様は、第2の態様の冷却システムであって、エンジン負荷検出手段と制御手段とを備える。   A third aspect of the present invention is the cooling system according to the second aspect, comprising engine load detection means and control means.

エンジン負荷検出手段は、エンジンの負荷を検出する。制御手段は、エンジン負荷検出手段が検出したエンジンの負荷に対してエンジンの吸気温度を有効に低下させる流量の冷媒が低温回路へ流入するように、低温回路流量変更手段を制御して主回路から低温回路への冷媒の流入量を調整する。   The engine load detection means detects the engine load. The control means controls the low temperature circuit flow rate changing means from the main circuit so that a refrigerant having a flow rate that effectively reduces the intake air temperature of the engine with respect to the engine load detected by the engine load detection means flows into the low temperature circuit. Adjust the amount of refrigerant flowing into the low-temperature circuit.

エンジン及び主回路の冷媒が高温となる通常運転時において、低温回路の冷媒の流量を減少させると、低温熱交換器から流出する冷媒の温度が低下し、吸気温度も低下し、エンジンの吸気充填効率が上昇し、燃費の向上に寄与する。一方、低温回路から主回路へ合流する(戻る)冷媒の流量が減少するため、主回路の冷媒の温度は上昇し、エンジン内の潤滑油の温度(油温)も上昇し、フリクションの低減による燃費の向上に寄与する。   If the refrigerant flow in the low-temperature circuit is reduced during normal operation when the refrigerant in the engine and main circuit is hot, the temperature of the refrigerant flowing out of the low-temperature heat exchanger decreases and the intake air temperature also decreases. Increases efficiency and contributes to improved fuel efficiency. On the other hand, since the flow rate of the refrigerant joining (returning) from the low-temperature circuit to the main circuit decreases, the temperature of the refrigerant in the main circuit rises, the temperature of the lubricating oil in the engine (oil temperature) also rises, and the friction is reduced. Contributes to improved fuel efficiency.

上記構成では、エンジンの負荷に対してエンジンの吸気温度を有効に低下させる流量の冷媒が低温回路へ流入するように、主回路から低温回路への冷媒の流入量が調整されるので、低温回路の冷媒の低温化による吸気温度の低温化と主回路の冷媒の高温化によるフリクション低減とを両立させて、燃費を向上させることができる。   In the above configuration, the amount of refrigerant flowing from the main circuit to the low-temperature circuit is adjusted so that the refrigerant having a flow rate that effectively reduces the intake air temperature of the engine with respect to the engine load flows into the low-temperature circuit. The fuel consumption can be improved by simultaneously reducing the intake air temperature by lowering the refrigerant temperature and reducing the friction by increasing the refrigerant temperature of the main circuit.

本発明の第4の態様は、第3の態様の冷却システムであって、エンジンから主回路へ流入した冷媒の温度を検出する冷媒温度検出手段を備え、主回路は、主バイパス管路と制御弁とを有する。   According to a fourth aspect of the present invention, there is provided the cooling system according to the third aspect, comprising refrigerant temperature detecting means for detecting the temperature of the refrigerant flowing from the engine into the main circuit, wherein the main circuit is connected to the main bypass line and the control. And a valve.

主バイパス管路は、高温熱交換器の上流側と下流側とを連通する。制御弁は、エンジンから流入した冷媒を高温熱交換器へ流通させる高温熱交換有効状態と、エンジンから流入した冷媒を高温熱交換器へ流通させずに主バイパス管路へ流通させる高温熱交換無効状態とに設定可能である。   The main bypass line communicates the upstream side and the downstream side of the high temperature heat exchanger. The control valve has a high-temperature heat exchange enabled state in which refrigerant flowing from the engine flows to the high-temperature heat exchanger, and high-temperature heat exchange disabled to flow refrigerant flowing from the engine to the main bypass line without flowing to the high-temperature heat exchanger It can be set to the state.

制御手段は、冷媒温度検出手段が検出した冷媒の温度が所定温度以上で且つエンジン負荷検出手段が検出したエンジンの負荷が所定負荷以上であるときは、制御弁を高温熱交換有効状態に設定する。また、冷媒温度検出手段が検出した冷媒の温度が所定温度未満であるとき、又は冷媒温度検出手段が検出した冷媒の温度が所定温度以上で且つエンジン負荷検出手段が検出したエンジンの負荷が所定負荷未満であるときは、制御弁を高温熱交換無効状態に設定する。   The control means sets the control valve in a high temperature heat exchange effective state when the temperature of the refrigerant detected by the refrigerant temperature detecting means is equal to or higher than a predetermined temperature and the engine load detected by the engine load detecting means is equal to or higher than the predetermined load. . Further, when the temperature of the refrigerant detected by the refrigerant temperature detecting means is lower than a predetermined temperature, or the temperature of the refrigerant detected by the refrigerant temperature detecting means is equal to or higher than the predetermined temperature and the engine load detected by the engine load detecting means is a predetermined load. If it is less, the control valve is set to a high temperature heat exchange invalid state.

エンジン及び主回路の冷媒が低温である暖機運転時は、エンジンの温度を早期に上昇させるために、冷媒を高温熱交換器で冷却せずにエンジンに供給することが好ましく、上記通常運転時は、エンジンを保護するために、高温熱交換器で冷却した冷媒をエンジンへ供給することが好ましい。しかし、通常運転時において、高温熱交換器による冷媒の冷却を一律に行なうと、主回路の冷媒の高温化によるフリクション低減が制限されてしまう可能性がある。一方、通常運転時であっても、エンジンの負荷が低い低負荷運転状態であれば、エンジンの保護に対する要求が低く、主回路の冷媒の高温化を優先させることが可能である。このため、エンジンを適切に保護しつつ、フリクション低減による燃費の向上をさらに図るためには、通常運転時の高温熱交換器による冷媒の冷却を、高負荷運転状態では実行し、低負荷運転状態では実行しないことが好ましい。   During warm-up operation when the refrigerant of the engine and the main circuit is at a low temperature, it is preferable to supply the refrigerant to the engine without cooling it with a high-temperature heat exchanger in order to increase the temperature of the engine early. In order to protect the engine, it is preferable to supply a refrigerant cooled by a high-temperature heat exchanger to the engine. However, if the refrigerant is uniformly cooled by the high-temperature heat exchanger during normal operation, there is a possibility that friction reduction due to the high temperature of the refrigerant in the main circuit may be limited. On the other hand, even during normal operation, if the engine load is low and the load is low, the demand for engine protection is low and priority can be given to the high temperature of the refrigerant in the main circuit. For this reason, in order to further improve fuel efficiency by reducing friction while protecting the engine appropriately, cooling of the refrigerant by the high-temperature heat exchanger during normal operation is executed in the high-load operation state and the low-load operation state. Then it is preferable not to execute.

上記構成では、主回路の冷媒の温度(主回路冷媒温度)が所定温度以上でエンジンの負荷が所定負荷以上(冷媒高温で且つ高負荷運転状態)であるときは、制御弁が高温熱交換有効状態に設定されて、冷媒が高温熱交換器を流通し、主回路冷媒温度が所定温度未満(冷媒低温)であるとき、又は主回路冷媒温度が所定温度以上で且つエンジンの負荷が所定負荷未満(冷媒高温で且つ低負荷運転状態)であるときは、制御弁が高温熱交換無効状態に設定されて、冷媒が高温熱交換器を流通しない。すなわち、冷媒低温である暖機運転時は、冷媒が高温熱交換器を流通せず、エンジンの温度が早期に上昇する。また、冷媒高温である通常運転時は、高負荷運転状態では冷媒が高温熱交換器を流通し、低負荷運転状態では冷媒が高温熱交換器を流通しない。従って、暖機運転時には、エンジンの温度を早期に上昇をさせることができ、通常運転時には、エンジンを適切に保護するとともに燃費を向上させることができる。   In the above configuration, when the temperature of the main circuit refrigerant (main circuit refrigerant temperature) is equal to or higher than the predetermined temperature and the engine load is equal to or higher than the predetermined load (high-temperature refrigerant and high-load operation state), the control valve is effective for high-temperature heat exchange. When the refrigerant flows through the high-temperature heat exchanger and the main circuit refrigerant temperature is lower than a predetermined temperature (refrigerant low temperature), or the main circuit refrigerant temperature is higher than the predetermined temperature and the engine load is lower than the predetermined load When it is (high refrigerant temperature and low load operation state), the control valve is set to the high temperature heat exchange invalid state, and the refrigerant does not flow through the high temperature heat exchanger. That is, during the warm-up operation at a low refrigerant temperature, the refrigerant does not flow through the high-temperature heat exchanger, and the engine temperature rises early. Further, during normal operation where the refrigerant is at a high temperature, the refrigerant flows through the high temperature heat exchanger in a high load operation state, and the refrigerant does not flow through the high temperature heat exchanger in a low load operation state. Therefore, the temperature of the engine can be raised early during the warm-up operation, and the engine can be appropriately protected and the fuel consumption can be improved during the normal operation.

本発明の第5の態様は、第1〜第3の何れかの態様の冷却システムであって、主回路は、主バイパス管路と主回路サーモスタットとを有し、低温回路は、低温バイパス管路と低温回路サーモスタットとを有する。   A fifth aspect of the present invention is the cooling system according to any one of the first to third aspects, wherein the main circuit includes a main bypass pipe and a main circuit thermostat, and the low-temperature circuit includes a low-temperature bypass pipe. And a low temperature circuit thermostat.

主バイパス管路は、高温熱交換器の上流側と下流側とを連通する。主回路サーモスタットは、エンジンから流入した冷媒の温度が第1の所定温度以上であるときは、エンジンから流入した冷媒を高温熱交換器へ流通させ、エンジンから流入した冷媒の温度が第1の所定温度未満のときは、エンジンから流入した冷媒を高温熱交換器へ流通させずに主バイパス管路へ流通させる。   The main bypass line communicates the upstream side and the downstream side of the high temperature heat exchanger. The main circuit thermostat causes the refrigerant flowing from the engine to flow to the high-temperature heat exchanger when the temperature of the refrigerant flowing from the engine is equal to or higher than the first predetermined temperature, and the temperature of the refrigerant flowing from the engine is the first predetermined temperature. When the temperature is lower than the temperature, the refrigerant flowing from the engine is circulated to the main bypass pipe without being circulated to the high-temperature heat exchanger.

低温バイパス管路は、低温熱交換器の上流側と下流側とを連通する。低温回路サーモスタットは、主回路から流入した冷媒の温度が第2の所定温度以上であるときは、主回路から流入した冷媒を低温熱交換器へ流通させ、主回路から流入した冷媒の温度が第2の所定温度未満のときは、主回路から流入した冷媒を低温熱交換器へ流通させずに低温バイパス管路へ流通させる。   The low temperature bypass line communicates the upstream side and the downstream side of the low temperature heat exchanger. When the temperature of the refrigerant flowing from the main circuit is equal to or higher than the second predetermined temperature, the low-temperature circuit thermostat circulates the refrigerant flowing from the main circuit to the low-temperature heat exchanger, and the temperature of the refrigerant flowing from the main circuit is When the temperature is lower than the predetermined temperature of 2, the refrigerant flowing from the main circuit is circulated to the low temperature bypass pipe without being circulated to the low temperature heat exchanger.

上記構成では、主回路の冷媒の温度が第1の所定温度未満であり、低温回路の冷媒の温度が第2の所定温度未満であるときは、主回路の冷媒は高温熱交換器を流通せず、低温回路の冷媒は低温熱交換器を流通しない。このように、主回路及び低温回路の冷媒がともに低温(第1の所定温度以下及び第2の所定温度以下)である暖機運転時には、主回路及び低温回路の双方の冷媒が熱交換器で冷却されないので、エンジンの温度を早期に上昇をさせることができる。   In the above configuration, when the temperature of the refrigerant in the main circuit is lower than the first predetermined temperature and the temperature of the refrigerant in the low-temperature circuit is lower than the second predetermined temperature, the refrigerant in the main circuit passes through the high-temperature heat exchanger. The refrigerant in the low-temperature circuit does not flow through the low-temperature heat exchanger. As described above, during the warm-up operation in which both the refrigerant in the main circuit and the low-temperature circuit are at a low temperature (below the first predetermined temperature and the second predetermined temperature), the refrigerant in both the main circuit and the low-temperature circuit is the heat exchanger. Since it is not cooled, the engine temperature can be raised quickly.

本発明の第6の態様は、第1〜第5の何れかの態様の冷却システムであって、主回路は主分岐管路を有する。主分岐管路は、高温熱交換器の上流側と冷媒ポンプの上流側とを連通し、高温熱交換器の上流側から分岐して流入した冷媒を吸気冷却器へ流通させる。   A sixth aspect of the present invention is the cooling system according to any one of the first to fifth aspects, wherein the main circuit has a main branch pipe. The main branch pipe communicates the upstream side of the high-temperature heat exchanger and the upstream side of the refrigerant pump, and distributes the refrigerant that has branched and entered from the upstream side of the high-temperature heat exchanger to the intake air cooler.

上記構成では、吸気冷却器は、主回路(主分岐管路)の冷媒と低温回路の冷媒の双方によって多段冷却されるので、エンジンの吸気温度の低下をさらに促進して燃費を向上させることができる。   In the above configuration, the intake air cooler is multi-stage cooled by both the refrigerant in the main circuit (main branch line) and the refrigerant in the low-temperature circuit, so that the reduction in the intake air temperature of the engine can be further promoted to improve fuel efficiency. it can.

本発明の第7の態様は、第1〜第6の何れかの態様の冷却システムであって、吸気冷却器は、直列状に配置されたインタークーラとEGRクーラとを含む。   A seventh aspect of the present invention is the cooling system according to any one of the first to sixth aspects, wherein the intake air cooler includes an intercooler and an EGR cooler arranged in series.

上記構成では、インタークーラとEGRクーラとが直列状に配置されているので、低温回路の冷媒流量が少ない場合であっても、インタークーラ及びEGRクーラを効率良く冷却することができ、吸気温度を低下させて燃費を向上させることができる。   In the above configuration, since the intercooler and the EGR cooler are arranged in series, the intercooler and the EGR cooler can be efficiently cooled even when the refrigerant flow rate in the low-temperature circuit is small, and the intake air temperature is reduced. The fuel consumption can be improved by lowering.

本発明によれば、主回路の冷媒を循環させる冷媒ポンプによって低温回路に冷媒を流通させることができる。   According to the present invention, the refrigerant can be circulated through the low-temperature circuit by the refrigerant pump that circulates the refrigerant in the main circuit.

本発明の第1実施形態に係る冷却システムを模式的に示す構成図である。It is a lineblock diagram showing typically the cooling system concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係る冷却システムを模式的に示す構成図である。It is a block diagram which shows typically the cooling system which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る冷却システムを模式的に示す構成図である。It is a block diagram which shows typically the cooling system which concerns on 3rd Embodiment of this invention. 主回路の水流量に対する低温回路の水流量の割合と、エンジンの吸気温度と、主回路の水温との関係を示す図である。It is a figure which shows the relationship of the ratio of the water flow rate of the low temperature circuit with respect to the water flow rate of the main circuit, the engine intake air temperature, and the water temperature of the main circuit. 本発明の第4実施形態に係る冷却システムを模式的に示す構成図である。It is a block diagram which shows typically the cooling system which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係る冷却システムを模式的に示す構成図である。It is a block diagram which shows typically the cooling system which concerns on 4th Embodiment of this invention.

以下、本発明の第1実施形態を図1に基づいて説明する。なお、上流側及び下流側は、特に説明がない限り、冷却水(冷媒)の流通方向の上流側及び下流側を意味する。   A first embodiment of the present invention will be described below with reference to FIG. The upstream side and the downstream side mean the upstream side and the downstream side in the flow direction of the cooling water (refrigerant) unless otherwise specified.

図1に示すように、車両の冷却システム1は、主回路2とウォータポンプ(冷媒ポンプ)3と高温熱交換器(HT RAD)4と低温回路5と低温熱交換器(LT RAD)6とを備える。主回路2は、エンジン7を冷却する冷却水(冷媒)が循環して流通可能な管路であり、冷媒ウォータポンプ3は、主回路2の冷却水を循環させる。   As shown in FIG. 1, a vehicle cooling system 1 includes a main circuit 2, a water pump (refrigerant pump) 3, a high-temperature heat exchanger (HT RAD) 4, a low-temperature circuit 5, and a low-temperature heat exchanger (LT RAD) 6. Is provided. The main circuit 2 is a conduit through which cooling water (refrigerant) for cooling the engine 7 can circulate and flow, and the refrigerant water pump 3 circulates the cooling water of the main circuit 2.

主回路2は、主上流側管路8と主下流側管路9と主バイパス管路10と主回路サーモスタット11とから主に構成される。主上流側管路8は、エンジン7内の冷却路の出口側と高温熱交換器5の入口側とを連通する。主下流側管路9は、高温熱交換器5の出口側とエンジン8内の冷却路の入口側とを連通する。主バイパス管路10は、主上流側管路8(高温熱交換器5の上流側)と主下流側管路9(高温熱交換器5の下流側)とを、高温熱交換器5を介さずに直接連通する。   The main circuit 2 is mainly composed of a main upstream line 8, a main downstream line 9, a main bypass line 10, and a main circuit thermostat 11. The main upstream line 8 communicates the outlet side of the cooling path in the engine 7 and the inlet side of the high temperature heat exchanger 5. The main downstream line 9 communicates the outlet side of the high temperature heat exchanger 5 and the inlet side of the cooling path in the engine 8. The main bypass line 10 is connected to the main upstream line 8 (upstream side of the high temperature heat exchanger 5) and the main downstream side line 9 (downstream side of the high temperature heat exchanger 5) via the high temperature heat exchanger 5. Communicate directly with each other.

主回路サーモスタット11は、例えばワックスエレメントタイプのサーモスタットであり、主上流側管路8と主バイパス管路10との分岐部に設けられる。主回路サーモスタット11は、冷却水の温度(水温)が所定温度(第1の所定温度)T1以上であるときは、冷却水を高温熱交換器4へ流通させ、水温が所定温度T1未満のときは、冷却水を高温熱交換器4へ流通させずに主バイパス管路10へ流通させるように、自身の熱膨張によって主上流側管路8の下流側(高温熱交換器4側)の管路を閉じる。主バイパス管路10を流通した冷却水は、高温熱交換器4の下流側の合流部12から主下流側管路9へ流入する。なお、主回路サーモスタット11を、主バイパス管路10の分岐部よりも下流側(高温熱交換器4側)の主上流側管路8や合流部12よりも上流側(高温熱交換器4側)の主下流側管路9に設けてもよい。   The main circuit thermostat 11 is, for example, a wax element type thermostat, and is provided at a branch portion between the main upstream line 8 and the main bypass line 10. When the temperature (water temperature) of the cooling water is equal to or higher than the predetermined temperature (first predetermined temperature) T1, the main circuit thermostat 11 circulates the cooling water to the high temperature heat exchanger 4 and the water temperature is lower than the predetermined temperature T1. Is a pipe on the downstream side of the main upstream pipe line 8 (on the high temperature heat exchanger 4 side) by its own thermal expansion so that the cooling water flows through the main bypass pipe line 10 without flowing through the high temperature heat exchanger 4. Close the road. Cooling water flowing through the main bypass pipe 10 flows into the main downstream pipe 9 from the junction 12 on the downstream side of the high-temperature heat exchanger 4. The main circuit thermostat 11 is connected to the upstream side of the main upstream pipe line 8 and the junction part 12 (on the high temperature heat exchanger 4 side) on the downstream side (on the high temperature heat exchanger 4 side) of the branch portion of the main bypass pipe line 10. ) May be provided in the main downstream pipe line 9.

ウォータポンプ3は、合流部12の下流側の主下流側管路9に設けられ、エンジン7に向けて冷却水を流出させることによって主回路2の冷却水を循環させる。   The water pump 3 is provided in the main downstream pipe line 9 on the downstream side of the merging portion 12 and circulates the cooling water of the main circuit 2 by flowing the cooling water toward the engine 7.

高温熱交換器4は、例えばラジエータであり、ウォータポンプ3の上流側に配置され、エンジン7で昇温して主上流側管路8へ流入した冷却水を冷却する。   The high-temperature heat exchanger 4 is, for example, a radiator, and is disposed on the upstream side of the water pump 3. The high-temperature heat exchanger 4 cools the cooling water that is heated by the engine 7 and flows into the main upstream pipe line 8.

主回路水温が所定温度T1以上である通常運転時は、主回路サーモスタット11が開状態となり、エンジン7から主回路2へ流入した冷却水は、高温熱交換器4で冷却されてエンジン7に供給されるので、エンジン7を好適に冷却することができる。一方、外気温が低い環境下でエンジン7を始動した場合などのように、主回路水温が所定温度T1未満である暖機運転時は、主回路サーモスタット11が閉状態となり、エンジン7から主回路2へ流入した冷却水は、高温熱交換器4を流通せずにエンジン7に供給されるので、エンジン7の温度を早期に上昇させることができる。   During normal operation in which the main circuit water temperature is equal to or higher than the predetermined temperature T1, the main circuit thermostat 11 is opened, and the cooling water flowing from the engine 7 into the main circuit 2 is cooled by the high temperature heat exchanger 4 and supplied to the engine 7. Therefore, the engine 7 can be suitably cooled. On the other hand, during the warm-up operation in which the main circuit water temperature is lower than the predetermined temperature T1, such as when the engine 7 is started in an environment where the outside air temperature is low, the main circuit thermostat 11 is closed and the engine 7 Since the cooling water that has flowed into 2 is supplied to the engine 7 without flowing through the high-temperature heat exchanger 4, the temperature of the engine 7 can be raised at an early stage.

低温回路5は、ウォータポンプ3の下流側の主回路2から分岐して流入する冷却水を、エンジン7の吸気を冷却する吸気冷却器(後述するインタークーラ15及びEGRクーラ16)へ流通させた後、ウォータポンプ3の上流側で主回路2に合流させる管路であり、低温上流側管路13と低温下流側管路14とから主に構成される。低温上流側管路13は、ウォータポンプ3の下流側(ウォータポンプ3とエンジン7との間)の主下流側管路9の分岐部17と低温熱交換器6の入口側とを連通する。低温下流側管路14は、低温熱交換器6の出口側と主下流側管路9の合流部12とを連通する。低温下流側管路14の中間部は、2つの経路(低温分岐管路14a、14b)に分岐して合流する。一方の低温分岐管路14aへ流入した冷却水はインタークーラ15内の冷却路を流通し、他方の低温分岐管路14bへ流入した冷却水はEGRクーラ内の冷却路を流通する。すなわち、インタークーラ15とEGRクーラ16とは、低温下流側管路14に並列状に配置される。   The low-temperature circuit 5 circulates the cooling water flowing in from the main circuit 2 on the downstream side of the water pump 3 to an intake air cooler (intercooler 15 and EGR cooler 16 described later) that cools the intake air of the engine 7. Thereafter, the pipe is joined to the main circuit 2 on the upstream side of the water pump 3, and mainly includes a low temperature upstream pipe 13 and a low temperature downstream pipe 14. The low temperature upstream line 13 communicates the branch portion 17 of the main downstream line 9 downstream of the water pump 3 (between the water pump 3 and the engine 7) and the inlet side of the low temperature heat exchanger 6. The low temperature downstream pipe line 14 communicates the outlet side of the low temperature heat exchanger 6 and the junction 12 of the main downstream pipe line 9. The intermediate portion of the low temperature downstream pipe 14 branches into two paths (low temperature branch pipes 14a and 14b) and joins. The cooling water that has flowed into one of the low-temperature branch pipes 14a flows through the cooling path in the intercooler 15, and the cooling water that has flowed into the other low-temperature branch pipe 14b flows through the cooling path in the EGR cooler. That is, the intercooler 15 and the EGR cooler 16 are arranged in parallel to the low temperature downstream pipe line 14.

低温熱交換器6は、例えばラジエータであり、インタークーラ15及びEGRクーラ16の上流側に配置され、分岐部17から低温回路5へ流入した冷却水を冷却する。   The low-temperature heat exchanger 6 is, for example, a radiator, and is disposed on the upstream side of the intercooler 15 and the EGR cooler 16, and cools the cooling water flowing into the low-temperature circuit 5 from the branch portion 17.

インタークーラ15は、ターボ装置によって加圧(圧縮)された吸気の流通路に設けられ、エンジン7に向かって流通する吸気を低温回路5の冷却水によって冷却する。EGRクーラ16は、EGR装置によって吸気に還流されるEGRガスの流通路に設けられ、エンジン7に向かって流通するEGRガスを低温回路5の冷却水によって冷却する。   The intercooler 15 is provided in the flow path of the intake air pressurized (compressed) by the turbo device, and cools the intake air flowing toward the engine 7 with the cooling water of the low-temperature circuit 5. The EGR cooler 16 is provided in a flow path of EGR gas recirculated to the intake air by the EGR device, and cools the EGR gas flowing toward the engine 7 with cooling water of the low-temperature circuit 5.

本実施形態によれば、通常運転状態においてエンジン7で昇温した冷却水は、主回路2へ流入し、高温熱交換器4で冷却されて、ウォータポンプ3によって再度エンジンへ7供給される。また、ウォータポンプ3から流出した主回路2の冷却水の一部は、分岐部17から低温回路5へ流入し、低温熱交換器6で冷却され、インタークーラ15及びEGRクーラ16を冷却した後、ウォータポンプ3の上流側の合流部12で主回路2に戻る。   According to this embodiment, the cooling water heated by the engine 7 in the normal operation state flows into the main circuit 2, is cooled by the high-temperature heat exchanger 4, and is again supplied to the engine 7 by the water pump 3. Further, a part of the cooling water of the main circuit 2 flowing out from the water pump 3 flows into the low-temperature circuit 5 from the branch portion 17 and is cooled by the low-temperature heat exchanger 6 to cool the intercooler 15 and the EGR cooler 16. Return to the main circuit 2 at the junction 12 on the upstream side of the water pump 3.

ウォータポンプ3の下流側はウォータポンプ3の吐出圧(差圧)により冷却水が最も高圧状態となる場所であり、このウォータポンプ3の下流側の分岐部17から低温回路5が分岐するので、高圧状態の冷却水が冷温回路5へ流入する。従って、低温回路5の冷却水を流通させるためのウォータポンプを別途設けることなく、主回路2の冷却水を循環させるウォータポンプ3によって低温回路5に冷却水を流通させることができる。   The downstream side of the water pump 3 is a place where the coolant becomes the highest pressure state due to the discharge pressure (differential pressure) of the water pump 3, and the low-temperature circuit 5 branches from the branch portion 17 on the downstream side of the water pump 3. High-pressure cooling water flows into the cooling / heating circuit 5. Therefore, the cooling water can be circulated to the low temperature circuit 5 by the water pump 3 that circulates the cooling water of the main circuit 2 without separately providing a water pump for circulating the cooling water of the low temperature circuit 5.

また、高温熱交換器4の下流側の分岐部17から低温回路5が分岐するので、高温熱交換器4で冷却された冷却水が低温回路5の低温熱交換器6によってさらに冷却されてインタークーラ15及びEGRクーラ16を流通する。このように、高温熱交換器4と低温熱交換器6とによる多段冷却により低温化された冷却水がインタークーラ15及びEGRクーラ16を流通するので、エンジン7の吸気温度の低下を促進して燃費を向上させることができる。   Further, since the low-temperature circuit 5 branches from the branch portion 17 on the downstream side of the high-temperature heat exchanger 4, the cooling water cooled by the high-temperature heat exchanger 4 is further cooled by the low-temperature heat exchanger 6 of the low-temperature circuit 5. The cooler 15 and the EGR cooler 16 are distributed. Thus, since the cooling water cooled by the multistage cooling by the high-temperature heat exchanger 4 and the low-temperature heat exchanger 6 flows through the intercooler 15 and the EGR cooler 16, the reduction of the intake temperature of the engine 7 is promoted. Fuel consumption can be improved.

次に、本発明の第2実施形態を図2に基づいて説明する。なお、第1実施形態と同様の構成については、同一の符号を付してその説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図2に示すように、本実施形態の冷却システム18では、インタークーラ15とEGRクーラ16とが直列状に配置される。インタークーラ15はEGRクーラ16の上流側に配置され、低温熱交換器6から低温下流側間Rの14へ流入した冷却水は、インタークーラ15内の冷却路を流通した後、EGRクーラ内の冷却路を流通して、合流部12から主回路2へ戻る。   As shown in FIG. 2, in the cooling system 18 of this embodiment, the intercooler 15 and the EGR cooler 16 are arranged in series. The intercooler 15 is arranged on the upstream side of the EGR cooler 16, and the cooling water flowing into the R 14 between the low temperature heat exchanger 6 and the low temperature downstream side R flows through the cooling path in the intercooler 15, and then in the EGR cooler. It flows through the cooling path and returns from the junction 12 to the main circuit 2.

本実施形態によれば、インタークーラ15とEGRクーラ16とが直列状に配置されているので、低温回路の冷却水の流量(水流量)が少ない場合であっても、インタークーラ15及びEGRクーラ16を効率良く冷却することができ、吸気温度を低下させて燃費を向上させることができる。   According to this embodiment, since the intercooler 15 and the EGR cooler 16 are arranged in series, the intercooler 15 and the EGR cooler can be used even when the flow rate (water flow rate) of the cooling water in the low-temperature circuit is small. 16 can be efficiently cooled, and the fuel consumption can be improved by lowering the intake air temperature.

また、EGRクーラ16が冷却するEGRガスの温度(600℃程度)は、インタークーラ15が冷却する吸気(外気などの新気)の温度(200℃以下)に比して高いため、インタークーラ15をEGRクーラ16の後に冷却すると、EGRクーラ16から流出した冷却水の温度が急激に上昇してしまい、インタークーラ15の冷却が有効に行なわれない可能性が生じるが、本実施形態ではインタークーラ15をEGRクーラ16の上流側に配置して、インタークーラ15をEGRクーラ16よりも先に冷却するので、インタークーラ15とEGRクーラ16の双方を確実に冷却することができる。   Further, since the temperature of the EGR gas (about 600 ° C.) cooled by the EGR cooler 16 is higher than the temperature of intake air (fresh air such as outside air) (200 ° C. or less) cooled by the intercooler 15, the intercooler 15 Is cooled after the EGR cooler 16, the temperature of the cooling water flowing out from the EGR cooler 16 suddenly rises, and there is a possibility that the intercooler 15 is not effectively cooled. 15 is disposed upstream of the EGR cooler 16 and the intercooler 15 is cooled before the EGR cooler 16, so that both the intercooler 15 and the EGR cooler 16 can be reliably cooled.

次に、本発明の第3実施形態を図3に基づいて説明する。なお、上述の実施形態と同様の構成については、同一の符号を付してその説明を省略する。   Next, a third embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図3に示すように、本実施形態の冷却システム19は、第2実施形態の冷却システム18に加えて、低温回路流量制御弁(低温回路流量変更手段)20とエンジン負荷検出部(エンジン負荷検出手段)21とECU(Electric Control Unit)22と水温センサ(冷媒温度検出手段)23とを備える。また、主上流側管路8とバイパス管路10との分岐部には、主回路サーモスタット11(図1及び図2参照)に代えて高温熱交換切替弁(制御弁)24が設けられる。   As shown in FIG. 3, in addition to the cooling system 18 of the second embodiment, the cooling system 19 of the present embodiment includes a low-temperature circuit flow control valve (low-temperature circuit flow changing means) 20 and an engine load detector (engine load detection). Means) 21, ECU (Electric Control Unit) 22, and water temperature sensor (refrigerant temperature detection means) 23. In addition, a high temperature heat exchange switching valve (control valve) 24 is provided at a branch portion between the main upstream pipe line 8 and the bypass pipe line 10 in place of the main circuit thermostat 11 (see FIGS. 1 and 2).

エンジン負荷検出部21は、例えばアクセル開度センサによって構成され、エンジン7の負荷(エンジン負荷)を逐次検出し、検出したエンジン負荷をECU22へ出力する。   The engine load detection unit 21 is configured by, for example, an accelerator opening sensor, and sequentially detects the load (engine load) of the engine 7 and outputs the detected engine load to the ECU 22.

水温センサ23は、主上流側管路8に設けられ、エンジン7から主回路2へ流入した冷却水の温度(水温)を逐次検出し、検出した水温をECU22へ出力する。   The water temperature sensor 23 is provided in the main upstream pipe 8, sequentially detects the temperature (water temperature) of the cooling water flowing into the main circuit 2 from the engine 7, and outputs the detected water temperature to the ECU 22.

高温熱交換切替弁24は、主上流側管路8と主バイパス管路10との分岐部に設けられ、主上流側管路8の下流側(高温熱交換器4側)の管路を開放する高温熱交換有効状態と、閉止する高温熱交換無効状態とに切替わる。高温熱交換有効状態では、エンジン7から流入した冷却水が高温熱交換器4へ流通する。高温熱交換無効状態では、エンジン7から流入した冷却水は高温熱交換器4へ流通せずに主バイパス管路10へ流通する。   The high-temperature heat exchange switching valve 24 is provided at a branch portion between the main upstream pipeline 8 and the main bypass pipeline 10, and opens the pipeline on the downstream side (high-temperature heat exchanger 4 side) of the main upstream pipeline 8. The high-temperature heat exchange effective state to be switched and the high-temperature heat exchange invalid state to be closed are switched. In the high temperature heat exchange effective state, the cooling water flowing from the engine 7 flows to the high temperature heat exchanger 4. In the high temperature heat exchange invalid state, the cooling water flowing from the engine 7 flows to the main bypass pipe 10 without flowing to the high temperature heat exchanger 4.

低温回路流量制御弁20は、主下流側管路9の分岐部17に設けられ、低温回路5側の管路を開閉することによって、主回路2から低温回路5への冷却水の流入量を増減する。   The low-temperature circuit flow control valve 20 is provided at the branch portion 17 of the main downstream pipe 9 and opens and closes the pipe on the low-temperature circuit 5 side, thereby reducing the amount of cooling water flowing from the main circuit 2 to the low-temperature circuit 5. Increase or decrease.

ECU22は、CPU(Central Processing Unit)とROM(Read Only Memory)とRAM(Random Access Memory)とを備え、ROMに記憶された冷却制御プログラムをCPUが読み出して実行することにより、制御手段として機能する。ROM又はRAM(記憶部)には、後述する低温回路流量設定情報が予め記憶されている。ECU22は、エンジン負荷検出部21が検出したエンジン7の負荷に対してエンジン7の吸気温度を有効に低下させる流量の冷却水が低温回路5へ流入するように、エンジン負荷検出部21が検出するエンジン負荷に基づいて低温回路流量制御弁20を制御し、主回路2から低温回路5への冷却水の流入量を調整する。また、ECU22は、エンジン7な保護と燃費の向上とが好適に行なわれるように、エンジン負荷検出部21が検出するエンジン負荷と水温センサ23が検出する水温とに基づいて高温熱交換切替弁24の状態を切替える。   The ECU 22 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and functions as a control unit when the CPU reads and executes a cooling control program stored in the ROM. . Low-temperature circuit flow rate setting information described later is stored in advance in the ROM or RAM (storage unit). The ECU 22 detects the engine load detection unit 21 so that cooling water having a flow rate that effectively reduces the intake air temperature of the engine 7 with respect to the load of the engine 7 detected by the engine load detection unit 21 flows into the low-temperature circuit 5. Based on the engine load, the low-temperature circuit flow control valve 20 is controlled to adjust the inflow amount of the cooling water from the main circuit 2 to the low-temperature circuit 5. In addition, the ECU 22 performs high-temperature heat exchange switching valve 24 based on the engine load detected by the engine load detection unit 21 and the water temperature detected by the water temperature sensor 23 so that the protection of the engine 7 and the improvement of fuel efficiency are suitably performed. Switch the state.

次に、ECU22が実行する低温回路流量制御弁20の制御について説明する。   Next, the control of the low-temperature circuit flow control valve 20 executed by the ECU 22 will be described.

図4は、エンジン7及び主回路2の冷却水が高温となる通常運転時において、エンジン負荷を一定の負荷に維持して主回路2の冷却水の流量(主回路2の水流量)に対する低温回路5の冷却水の流量(低温回路5の水流量)の割合(分岐割合)を変化させた場合のエンジン7の吸気温度と主回路2の冷却水の温度(水温)とを示す図である。なお、図4中において、主回路2の水温を実線で示し、エンジン7の吸気温度を2点鎖線で示す。   FIG. 4 shows a low temperature with respect to the flow rate of the cooling water of the main circuit 2 (water flow rate of the main circuit 2) while maintaining the engine load at a constant load during normal operation when the cooling water of the engine 7 and the main circuit 2 becomes high temperature. It is a figure which shows the intake-air temperature of the engine 7 at the time of changing the ratio (branch ratio) of the flow volume of the cooling water of the circuit 5 (water flow volume of the low-temperature circuit 5), and the temperature (water temperature) of the cooling water of the main circuit 2. . In FIG. 4, the water temperature of the main circuit 2 is indicated by a solid line, and the intake air temperature of the engine 7 is indicated by a two-dot chain line.

図4に示すように、低温回路流量制御弁20を全開状態から絞り、分岐割合(低温回路5の水流量)を減少させると、低温熱交換器6から流出する冷却水の温度が低下し、吸気温度も低下する。吸気温度は、分岐割合の減少に従って低下し、所定の分岐割合(最低吸気温分岐割合)Rtで最低温度に達した後、反転して上昇する。また、分岐割合を減少させると、低温回路5から主回路2へ合流する(戻る)冷却水の流量が減少するため、主回路2の水温は上昇する。吸気温度が低下すると、エンジン7の吸気充填効率が上昇するので、燃費が向上する。また、主回路2の水温が上昇(冷却水が高温化)すると、エンジン7内の潤滑油の温度(油温)が上昇し、フリクションが低減するので、燃費が向上する。   As shown in FIG. 4, when the low-temperature circuit flow control valve 20 is throttled from the fully opened state and the branching ratio (water flow rate of the low-temperature circuit 5) is decreased, the temperature of the cooling water flowing out from the low-temperature heat exchanger 6 is decreased. The intake air temperature also decreases. The intake air temperature decreases as the branching ratio decreases, reaches a minimum temperature at a predetermined branching ratio (minimum intake air temperature branching ratio) Rt, and then reverses and rises. Further, when the branching ratio is decreased, the flow rate of the cooling water that joins (returns) from the low-temperature circuit 5 to the main circuit 2 decreases, so that the water temperature of the main circuit 2 rises. When the intake air temperature decreases, the intake air charging efficiency of the engine 7 increases, and the fuel efficiency improves. Further, when the water temperature of the main circuit 2 rises (cooling water becomes high temperature), the temperature of the lubricating oil (oil temperature) in the engine 7 rises and friction is reduced, so that fuel efficiency is improved.

最低吸気温分岐割合Rtはエンジン負荷によって異なるため、実験やシミュレーション等によってエンジン負荷毎の最低吸気温分岐割合Rtを求め、求めた最低吸気温分岐割合Rtの水量を低温回路5へ流入させる低温回路流量制御弁20の開度を目標開度として求め、エンジン負荷と目標開度との対応関係を低温回路流量設定情報として記憶部に予め記憶させる。低温回路流量設定情報は、テーブルやマップ等であってもよく、演算式であってもよい。   Since the minimum intake air temperature branching ratio Rt varies depending on the engine load, a low temperature circuit that obtains the minimum intake air temperature branching ratio Rt for each engine load by experiment, simulation, etc. and flows the water amount of the determined minimum intake air temperature branching ratio Rt into the low temperature circuit 5 The opening degree of the flow control valve 20 is obtained as a target opening degree, and the correspondence between the engine load and the target opening degree is stored in advance in the storage unit as low-temperature circuit flow setting information. The low-temperature circuit flow rate setting information may be a table, a map, or the like, or an arithmetic expression.

ECU22は、エンジン負荷検出部21が検出したエンジン負荷と低温回路流量設定情報とを用いて目標開度を決定し、決定した目標開度に低温回路流量制御弁20を設定する。これにより、エンジン負荷検出部21が検出したエンジン7の負荷に対してエンジン7の吸気温度を有効に低下させる流量の冷却水が低温回路5へ流入する。   The ECU 22 determines the target opening using the engine load detected by the engine load detector 21 and the low-temperature circuit flow rate setting information, and sets the low-temperature circuit flow control valve 20 to the determined target opening. As a result, cooling water having a flow rate that effectively reduces the intake air temperature of the engine 7 with respect to the load of the engine 7 detected by the engine load detection unit 21 flows into the low-temperature circuit 5.

次に、ECU22が実行する高温熱交換切替弁24の制御について説明する。   Next, control of the high temperature heat exchange switching valve 24 executed by the ECU 22 will be described.

エンジン7及び主回路2の冷却水が低温である暖機運転時は、エンジン7の温度を早期に上昇させるために、冷却水を高温熱交換器4で冷却せずにエンジン7に供給することが好ましく、エンジン7及び主回路2の冷却水が高温となる通常運転時は、エンジン7を保護するために、高温熱交換器で4冷却した冷却水をエンジン7へ供給することが好ましい。しかし、通常運転時において、高温熱交換器4による冷却水の冷却を一律に行なうと、主回路2の冷却水の高温化によるフリクション低減が制限されてしまう可能性がある。一方、通常運転時であっても、エンジン7の負荷が低い低負荷運転状態であれば、エンジン7の保護に対する要求が低く、主回路2の冷却水の高温化を優先させることが可能である。従って、エンジン7を適切に保護しつつ、フリクション低減による燃費の向上をさらに図るためには、通常運転時の高温熱交換器4による冷却水の冷却を、高負荷運転状態では実行し、低負荷運転状態では実行しないことが好ましい。   During warm-up operation in which the cooling water of the engine 7 and the main circuit 2 is at a low temperature, the cooling water is supplied to the engine 7 without being cooled by the high temperature heat exchanger 4 in order to increase the temperature of the engine 7 early. Preferably, during normal operation in which the cooling water of the engine 7 and the main circuit 2 is at a high temperature, it is preferable to supply the engine 7 with the cooling water that has been cooled by the high-temperature heat exchanger in order to protect the engine 7. However, when cooling water is uniformly cooled by the high-temperature heat exchanger 4 during normal operation, there is a possibility that friction reduction due to the high temperature of the cooling water in the main circuit 2 may be limited. On the other hand, even during normal operation, if the load on the engine 7 is low and the load is low, the requirement for protection of the engine 7 is low, and it is possible to prioritize the high temperature of the cooling water in the main circuit 2. . Therefore, in order to further improve the fuel efficiency by reducing the friction while appropriately protecting the engine 7, cooling of the cooling water by the high temperature heat exchanger 4 during normal operation is executed in a high load operation state, and the low load It is preferable not to execute in the operating state.

このため、ECU22は、水温センサ23が検出した水温が所定温度T0以上で且つエンジン負荷検出部21が検出したエンジン負荷が所定負荷L0以上であるときは、高温熱交換切替弁24を高温熱交換有効状態に設定する。また、水温センサ23が検出した水温が所定温度T0未満であるとき、又は水温センサ23が検出した水温が所定温度T0以上で且つエンジン負荷検出部21が検出したエンジン負荷が所定負荷L0未満であるときは、高温熱交換切替弁24を高温熱交換無効状態に設定する。   For this reason, when the water temperature detected by the water temperature sensor 23 is equal to or higher than the predetermined temperature T0 and the engine load detected by the engine load detection unit 21 is equal to or higher than the predetermined load L0, the ECU 22 switches the high temperature heat exchange switching valve 24 to the high temperature heat exchange. Set to enabled state. Further, when the water temperature detected by the water temperature sensor 23 is lower than the predetermined temperature T0, or the water temperature detected by the water temperature sensor 23 is equal to or higher than the predetermined temperature T0, and the engine load detected by the engine load detection unit 21 is lower than the predetermined load L0. If so, the high temperature heat exchange switching valve 24 is set to a high temperature heat exchange invalid state.

本実施形態によれば、エンジン負荷に対してエンジン7の吸気温度を有効に低下させる流量の冷却水が低温回路5へ流入するように、主回路2から低温回路5への冷却水の流入量が調整されるので、低温回路5の冷却水の低温化による吸気温度の低温化と主回路2の冷却水の高温化によるフリクション低減とを両立させて、燃費を向上させることができる。   According to this embodiment, the inflow amount of the cooling water from the main circuit 2 to the low temperature circuit 5 so that the cooling water having a flow rate that effectively reduces the intake air temperature of the engine 7 with respect to the engine load flows into the low temperature circuit 5. Therefore, the lowering of the intake air temperature due to the lowering of the cooling water in the low-temperature circuit 5 and the reduction of the friction due to the higher temperature of the cooling water in the main circuit 2 can both be achieved, and fuel efficiency can be improved.

また、主回路2の冷却水の温度(主回路水温)が所定温度T0以上でエンジン負荷が所定負荷L0以上(高水温で且つ高負荷運転状態)であるときは、高温熱交換切替弁24が高温熱交換有効状態に設定されて、冷却水が高温熱交換器4を流通し、主回路水温が所定温度T0未満(低水温)であるとき、又は主回路水温が所定温度T0以上で且つエンジン負荷が所定負荷L0未満(高水温で且つ低負荷運転状態)であるときは、高温熱交換切替弁24が高温熱交換無効状態に設定されて、冷却水が高温熱交換器4を流通しない。すなわち、低水温である暖機運転時は、冷却水が高温熱交換器4を流通せず、エンジン7の温度が早期に上昇する。また、高水温である通常運転時は、高負荷運転状態では冷却水が高温熱交換器4を流通し、低負荷運転状態では冷却水が高温熱交換器4を流通しない。従って、暖機運転時には、エンジンの温度を早期に上昇をさせることができ、通常運転時には、エンジンを適切に保護するとともに燃費を向上させることができる。   When the temperature of the cooling water in the main circuit 2 (main circuit water temperature) is equal to or higher than the predetermined temperature T0 and the engine load is equal to or higher than the predetermined load L0 (high water temperature and high load operation state), the high temperature heat exchange switching valve 24 is When the high-temperature heat exchange is set to the effective state and the cooling water flows through the high-temperature heat exchanger 4 and the main circuit water temperature is lower than the predetermined temperature T0 (low water temperature), or the main circuit water temperature is equal to or higher than the predetermined temperature T0 and the engine When the load is less than the predetermined load L0 (high water temperature and low load operation state), the high temperature heat exchange switching valve 24 is set to the high temperature heat exchange invalid state, and the cooling water does not flow through the high temperature heat exchanger 4. That is, during the warm-up operation at a low water temperature, the cooling water does not flow through the high-temperature heat exchanger 4 and the temperature of the engine 7 rises early. Further, during normal operation at a high water temperature, the cooling water flows through the high temperature heat exchanger 4 in a high load operation state, and the cooling water does not flow through the high temperature heat exchanger 4 in a low load operation state. Therefore, the temperature of the engine can be raised early during the warm-up operation, and the engine can be appropriately protected and the fuel consumption can be improved during the normal operation.

次に、本発明の第4実施形態を図5に基づいて説明する。なお、上述の実施形態と同様の構成については、同一の符号を付してその説明を省略する。   Next, a fourth embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図5に示すように、本実施形態の冷却システム25は、第3実施形態の冷却システム19に加えて、低温回路5に低温バイパス管路26と低温回路サーモスタット27とが設けられる。   As shown in FIG. 5, in the cooling system 25 of the present embodiment, a low temperature bypass pipe 26 and a low temperature circuit thermostat 27 are provided in the low temperature circuit 5 in addition to the cooling system 19 of the third embodiment.

低温バイパス管路26は、低温上流側管路13(低温熱交換器6の上流側)と低温下流側管路14(低温熱交換器6の下流側であってインタークーラ15の上流側)とを、低温熱交換器6を介さずに直接連通する。   The low temperature bypass line 26 includes a low temperature upstream line 13 (upstream side of the low temperature heat exchanger 6) and a low temperature downstream line 14 (downstream side of the low temperature heat exchanger 6 and upstream side of the intercooler 15). Are communicated directly without going through the low-temperature heat exchanger 6.

低温回路サーモスタット27は、例えばワックスエレメントタイプのサーモスタットであり、低温上流側管路13と低温バイパス管路26との分岐部に設けられる。低温回路サーモスタット27は、冷却水の温度(水温)が所定温度(第2の所定温度)T2以上であるときは、冷却水を低温熱交換器6へ流通させ、水温が所定温度T2未満のときは、冷却水を低温熱交換器6へ流通させずに低温バイパス管路26へ流通させるように、自身の熱膨張によって低温上流側管路13の下流側(低温熱交換器6側)の管路を閉じる。低温バイパス管路26を流通した冷却水は、低温熱交換器6の下流側の合流部28から低温下流側管路14へ流入する。なお、低温回路サーモスタット27を、低温バイパス管路26の分岐部よりも下流側(低温熱交換器6側)の低温上流側管路13や合流部28よりも上流側(低温熱交換器6側)の低温下流側管路14に設けてもよい。また、低温回路サーモスタット27が管路を開閉する所定温度T2は、主回路サーモスタット11が管路を開閉する所定温度T1と同じであってもよく、異なっていてもよい。   The low temperature circuit thermostat 27 is, for example, a wax element type thermostat, and is provided at a branch portion between the low temperature upstream line 13 and the low temperature bypass line 26. When the temperature of the cooling water (water temperature) is equal to or higher than the predetermined temperature (second predetermined temperature) T2, the low-temperature circuit thermostat 27 distributes the cooling water to the low-temperature heat exchanger 6 and the water temperature is lower than the predetermined temperature T2. Is a pipe on the downstream side (low temperature heat exchanger 6 side) of the low temperature upstream pipe line 13 by its own thermal expansion so that the cooling water is allowed to flow to the low temperature bypass line 26 without flowing to the low temperature heat exchanger 6. Close the road. Cooling water flowing through the low temperature bypass pipe 26 flows into the low temperature downstream pipe 14 from the junction 28 on the downstream side of the low temperature heat exchanger 6. The low-temperature circuit thermostat 27 is connected to the low-temperature upstream pipeline 13 and the junction 28 on the downstream side (low-temperature heat exchanger 6 side) of the branch portion of the low-temperature bypass pipeline 26 (on the low-temperature heat exchanger 6 side). ) May be provided in the low temperature downstream pipe line 14. In addition, the predetermined temperature T2 at which the low-temperature circuit thermostat 27 opens and closes the pipe line may be the same as or different from the predetermined temperature T1 at which the main circuit thermostat 11 opens and closes the pipe line.

本実施形態によれば、主回路2の水温の温度が所定温度T1未満であり、低温回路5の水温が所定温度T2未満であるときは、主回路2の冷却水は高温熱交換器4を流通せず、低温回路5の冷却水は低温熱交換器6を流通しない。このように、主回路2及び低温回路5の冷却水がともに低温(第1の所定温度T1以下及び第2の所定温度T2以下)である暖機運転時には、主回路2及び低温回路5の双方の冷却水が熱交換器4,6で冷却されないので、エンジン7の温度をさらに早期に上昇をさせることができる。   According to this embodiment, when the temperature of the water temperature of the main circuit 2 is less than the predetermined temperature T1 and the water temperature of the low-temperature circuit 5 is less than the predetermined temperature T2, the cooling water of the main circuit 2 passes through the high-temperature heat exchanger 4. The cooling water in the low-temperature circuit 5 does not flow through the low-temperature heat exchanger 6. As described above, both the main circuit 2 and the low temperature circuit 5 are in the warm-up operation in which both the cooling water of the main circuit 2 and the low temperature circuit 5 are low in temperature (the first predetermined temperature T1 or lower and the second predetermined temperature T2 or lower). Since the cooling water is not cooled by the heat exchangers 4 and 6, the temperature of the engine 7 can be raised even earlier.

次に、本発明の第5実施形態を図6に基づいて説明する。なお、上述の実施形態と同様の構成については、同一の符号を付してその説明を省略する。   Next, a fifth embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to the above-mentioned embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.

図6に示すように、本実施形態の冷却システム29は、第1実施形態の冷却システム1に加えて、主回路2に主分岐管路30が設けられる。   As shown in FIG. 6, in the cooling system 29 of the present embodiment, a main branch pipeline 30 is provided in the main circuit 2 in addition to the cooling system 1 of the first embodiment.

主分岐管路30は、主回路サーモスタット11の上流側の主上流側管路8とウォータポンプ3の上流側の主下流側管路9とを連通する。主上流側管路8から主分岐管路30へ流入した冷却水は、EGRクーラ15内の第2の冷却路を流通し、主下流側管路9へ流入する。主回路2の冷却水は低温回路5の冷却水よりも高温であるため、主回路2の冷却水が流通する第2の冷却路は、EGRガスの流通方向の上流側に配置され、低温回路5の冷却水が流通する冷却路は、EGRガスの流通方向の下流側に配置される。   The main branch line 30 communicates the main upstream line 8 on the upstream side of the main circuit thermostat 11 and the main downstream line 9 on the upstream side of the water pump 3. The cooling water that has flowed from the main upstream pipe 8 into the main branch pipe 30 flows through the second cooling path in the EGR cooler 15 and flows into the main downstream pipe 9. Since the cooling water of the main circuit 2 has a higher temperature than the cooling water of the low-temperature circuit 5, the second cooling path through which the cooling water of the main circuit 2 flows is arranged upstream in the flow direction of the EGR gas. The cooling path through which the cooling water 5 flows is arranged on the downstream side in the flow direction of the EGR gas.

本実施形態によれば、EGRクーラ16は、主回路2(主分岐管路30)の冷却水と低温回路5の冷却水との双方によって多段冷却されるので、エンジン7の吸気温度の低下をさらに促進して燃費を向上させることができる。   According to the present embodiment, the EGR cooler 16 is multi-stage cooled by both the cooling water of the main circuit 2 (main branch pipe 30) and the cooling water of the low-temperature circuit 5, so that the intake air temperature of the engine 7 is reduced. Further promotion can improve fuel consumption.

以上、本発明者によってなされた発明を適用した実施形態について説明したが、この実施形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、この実施形態に基づいて当業者等によりなされる他の実施形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論である。   As mentioned above, although the embodiment to which the invention made by the present inventor is applied has been described, the present invention is not limited by the discussion and the drawings that form part of the disclosure of the present invention according to this embodiment. That is, it is needless to say that other embodiments, examples, operation techniques, and the like made by those skilled in the art based on this embodiment are all included in the scope of the present invention.

例えば、第3又は第4実施形態において、高温熱交換切替弁24に代えて第1実施形態の主回路サーモスタット11を設けてもよい。   For example, in the third or fourth embodiment, the main circuit thermostat 11 of the first embodiment may be provided instead of the high temperature heat exchange switching valve 24.

第2〜第4実施形態のEGRクーラ16を、第5実施形態と同様に主分岐管路30の冷却水によって多段冷却してもよく、インタークーラ15を主分岐管路30の冷却水によって多段冷却してもよい。   Similarly to the fifth embodiment, the EGR cooler 16 of the second to fourth embodiments may be multi-stage cooled by the cooling water of the main branch pipeline 30, and the intercooler 15 may be multi-stage cooled by the cooling water of the main branch pipeline 30. It may be cooled.

第1又は第6実施形態において、低温分岐管路14a、14bの分岐部14cに、インタークーラ15へ流入する冷却水の流量とEGRクーラ16へ流入する冷却水の流量との比率を変更可能な流量制御弁を設け、エンジン7の吸気温度がさらに効率良く低下するように流量制御弁を開閉制御してもよい。   In the first or sixth embodiment, the ratio between the flow rate of the cooling water flowing into the intercooler 15 and the flow rate of the cooling water flowing into the EGR cooler 16 can be changed in the branch portions 14c of the low temperature branch pipes 14a and 14b. A flow rate control valve may be provided, and the flow rate control valve may be controlled to open and close so that the intake air temperature of the engine 7 is more efficiently lowered.

また、第1〜第5実施形態は、低温回路5の冷却水の流通を補助する補助ポンプを別途設けることを妨げるものではない。この場合、補助ポンプには、単独で冷却水を流通させる能力は不要であり、ウォータポンプ3を補助して冷却水を流通させる能力があれば足りるので、小型で性能の低いポンプで済ませることができる。   In addition, the first to fifth embodiments do not prevent the provision of an auxiliary pump that assists the circulation of the cooling water in the low-temperature circuit 5. In this case, the auxiliary pump does not need the ability to circulate the cooling water alone, and only needs to be able to circulate the cooling water by assisting the water pump 3, so that a small and low-performance pump can be used. it can.

本発明は、燃費向上に好適な冷却システムとしてエンジンを備える様々な車両に適用可能である。   The present invention can be applied to various vehicles including an engine as a cooling system suitable for improving fuel consumption.

1,18,19,25,29 冷却システム
2 主回路
3 ウォータポンプ(冷媒ポンプ)
4 高温熱交換器
5 低温回路
6 低温熱交換器
7 エンジン
8 主上流側管路
9 主下流側管路
10 主バイパス管路
11 主回路サーモスタット
12 合流部
13 低温上流側管路
14 低温下流側管路
14a,14b 低温分岐管路
15 インタークーラ(吸気冷却器)
16 EGRクーラ(吸気冷却器)
17 分岐部
20 低温回路流量制御弁(低温回路流量変更手段)
21 エンジン負荷検出部(エンジン負荷検出手段)
22 ECU(制御手段)
23 水温センサ(冷媒温度検出手段)
24 高温熱交換切替弁(制御弁)
26 低温バイパス管路
27 低温回路サーモスタット
28 合流部
30 主分岐管路
1, 18, 19, 25, 29 Cooling system 2 Main circuit 3 Water pump (refrigerant pump)
4 High Temperature Heat Exchanger 5 Low Temperature Circuit 6 Low Temperature Heat Exchanger 7 Engine 8 Main Upstream Line 9 Main Downstream Line 10 Main Bypass Line 11 Main Circuit Thermostat 12 Junction 13 Low Temperature Upstream Line 14 Low Temperature Downstream Line Paths 14a and 14b Low-temperature branch line 15 Intercooler (intake air cooler)
16 EGR cooler (intake air cooler)
17 Branch 20 Low-temperature circuit flow control valve (low-temperature circuit flow rate changing means)
21 Engine load detector (engine load detector)
22 ECU (control means)
23 Water temperature sensor (refrigerant temperature detection means)
24 High temperature heat exchange switching valve (control valve)
26 Low-temperature bypass line 27 Low-temperature circuit thermostat 28 Merge section 30 Main branch line

Claims (7)

エンジンを冷却する冷媒が循環して流通可能な主回路と、
前記主回路の冷媒を循環させる冷媒ポンプと、
前記冷媒ポンプの上流側の前記主回路に設けられ、前記エンジンで昇温した冷媒を冷却する高温熱交換器と、
前記冷媒ポンプの下流側で前記主回路から分岐し、前記主回路から流入する冷媒を、前記エンジンの吸気を冷却する吸気冷却器へ流通させた後、前記冷媒ポンプの上流側で前記主回路に合流させる低温回路と、
前記吸気冷却器の上流側の前記低温回路に設けられ、前記主回路から流入した冷媒を冷却する低温熱交換器と、を備える
ことを特徴とする車両の冷却システム。
A main circuit through which refrigerant for cooling the engine circulates and circulates;
A refrigerant pump for circulating the refrigerant of the main circuit;
A high-temperature heat exchanger that is provided in the main circuit upstream of the refrigerant pump and that cools the refrigerant heated by the engine;
The refrigerant branched from the main circuit on the downstream side of the refrigerant pump and circulated from the main circuit to the intake air cooler that cools the intake air of the engine, and then to the main circuit on the upstream side of the refrigerant pump. A low-temperature circuit to merge,
A vehicle cooling system, comprising: a low-temperature heat exchanger provided in the low-temperature circuit upstream of the intake air cooler for cooling the refrigerant flowing from the main circuit.
請求項1に記載の冷却システムであって、
前記主回路から前記低温回路への冷媒の流入量を増減可能な低温回路流量変更手段を備える
ことを特徴とする車両の冷却システム。
The cooling system according to claim 1,
A vehicle cooling system comprising: a low-temperature circuit flow rate changing means capable of increasing or decreasing the amount of refrigerant flowing from the main circuit to the low-temperature circuit.
請求項2に記載の冷却システムであって、
前記エンジンの負荷を検出するエンジン負荷検出手段と、
前記エンジン負荷検出手段が検出した前記エンジンの負荷に対して前記エンジンの吸気温度を有効に低下させる流量の冷媒が前記低温回路へ流入するように、前記低温回路流量変更手段を制御して前記主回路から前記低温回路への冷媒の流入量を調整する制御手段と、を備える
ことを特徴とする車両の冷却システム。
The cooling system according to claim 2,
Engine load detecting means for detecting the load of the engine;
The low-temperature circuit flow rate changing means is controlled to control the main circuit so that a refrigerant having a flow rate that effectively reduces the intake air temperature of the engine with respect to the engine load detected by the engine load detection means flows into the low-temperature circuit. And a control means for adjusting an inflow amount of the refrigerant from the circuit to the low temperature circuit.
請求項3に記載の冷却システムであって、
前記エンジンから前記主回路へ流入した冷媒の温度を検出する冷媒温度検出手段を備え、
前記主回路は、前記高温熱交換器の上流側と下流側とを連通する主バイパス管路と、前記エンジンから流入した冷媒を前記高温熱交換器へ流通させる高温熱交換有効状態と、前記エンジンから流入した冷媒を前記高温熱交換器へ流通させずに前記主バイパス管路へ流通させる高温熱交換無効状態とに設定可能な制御弁とを有し、
前記制御手段は、前記冷媒温度検出手段が検出した冷媒の温度が所定の温度以上で且つ前記エンジン負荷検出手段が検出した前記エンジンの負荷が所定負荷以上であるときは、前記制御弁を前記高温熱交換有効状態に設定し、前記冷媒温度検出手段が検出した冷媒の温度が前記所定の温度未満であるとき、又は前記冷媒温度検出手段が検出した冷媒の温度が前記所定の温度以上で且つ前記エンジン負荷検出手段が検出した前記エンジンの負荷が前記所定負荷未満であるときは、前記制御弁を前記高温熱交換無効状態に設定する
ことを特徴とする車両の冷却システム。
A cooling system according to claim 3,
Refrigerant temperature detection means for detecting the temperature of the refrigerant flowing into the main circuit from the engine,
The main circuit includes a main bypass pipe that communicates the upstream side and the downstream side of the high-temperature heat exchanger, a high-temperature heat exchange effective state in which the refrigerant flowing from the engine flows to the high-temperature heat exchanger, and the engine A control valve that can be set to a high-temperature heat exchange invalid state for circulating the refrigerant flowing in from the main bypass pipe without flowing to the high-temperature heat exchanger,
The control means raises the control valve when the refrigerant temperature detected by the refrigerant temperature detection means is equal to or higher than a predetermined temperature and the engine load detected by the engine load detection means is equal to or higher than a predetermined load. When the temperature of the refrigerant detected by the refrigerant temperature detecting means is lower than the predetermined temperature, or the temperature of the refrigerant detected by the refrigerant temperature detecting means is equal to or higher than the predetermined temperature When the engine load detected by the engine load detection means is less than the predetermined load, the control valve is set to the high temperature heat exchange invalid state.
請求項1〜請求項3の何れか1項に記載の冷却システムであって、
前記主回路は、前記高温熱交換器の上流側と下流側とを連通する主バイパス管路と、前記エンジンから流入した冷媒の温度が第1の所定温度以上であるときは、前記エンジンから流入した冷媒を前記高温熱交換器へ流通させ、前記エンジンから流入した冷媒の温度が前記第1の所定温度未満のときは、前記エンジンから流入した冷媒を前記高温熱交換器へ流通させずに前記主バイパス管路へ流通させる主回路サーモスタットとを有し、
前記低温回路は、前記低温熱交換器の上流側と下流側とを連通する低温バイパス管路と、前記主回路から流入した冷媒の温度が第2の所定温度以上であるときは、前記主回路から流入した冷媒を前記低温熱交換器へ流通させ、前記主回路から流入した冷媒の温度が前記第2の所定温度未満のときは、前記主回路から流入した冷媒を前記低温熱交換器へ流通させずに前記低温バイパス管路へ流通させる低温回路サーモスタットとを有する
ことを特徴とする車両の冷却システム。
The cooling system according to any one of claims 1 to 3,
The main circuit flows from the engine when the temperature of the refrigerant flowing in from the engine is equal to or higher than a first predetermined temperature, and a main bypass line communicating the upstream side and the downstream side of the high-temperature heat exchanger. When the temperature of the refrigerant flowing from the engine is lower than the first predetermined temperature, the refrigerant flowing from the engine is not circulated to the high temperature heat exchanger. A main circuit thermostat that circulates to the main bypass line,
The low-temperature circuit includes the low-temperature bypass pipe that communicates the upstream side and the downstream side of the low-temperature heat exchanger, and the temperature of the refrigerant flowing from the main circuit is equal to or higher than a second predetermined temperature. The refrigerant flowing from the main circuit is circulated to the low temperature heat exchanger, and when the temperature of the refrigerant flowing from the main circuit is lower than the second predetermined temperature, the refrigerant flowing from the main circuit is circulated to the low temperature heat exchanger. And a low-temperature circuit thermostat for circulating to the low-temperature bypass pipe.
請求項1〜請求項5の何れか1項に記載の冷却システムであって、
前記主回路は、前記高温熱交換器の上流側と前記冷媒ポンプの上流側とを連通し、前記高温熱交換器の上流側から分岐して流入した冷媒を前記吸気冷却器へ流通させる主分岐管路を有する
ことを特徴とする車両の冷却システム。
The cooling system according to any one of claims 1 to 5,
The main circuit communicates the upstream side of the high-temperature heat exchanger and the upstream side of the refrigerant pump, and distributes the refrigerant branched and flowing from the upstream side of the high-temperature heat exchanger to the intake air cooler. A cooling system for a vehicle, characterized by comprising a conduit.
請求項1〜請求項6の何れか1項に記載の冷却システムであって、
前記吸気冷却器は、直列状に配置されたインタークーラとEGRクーラとを含む
ことを特徴とする車両の冷却システム。
The cooling system according to any one of claims 1 to 6,
The intake air cooler includes an intercooler and an EGR cooler arranged in series.
JP2014177264A 2014-09-01 2014-09-01 Cooling system for vehicle Pending JP2016050545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014177264A JP2016050545A (en) 2014-09-01 2014-09-01 Cooling system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014177264A JP2016050545A (en) 2014-09-01 2014-09-01 Cooling system for vehicle

Publications (1)

Publication Number Publication Date
JP2016050545A true JP2016050545A (en) 2016-04-11

Family

ID=55658238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014177264A Pending JP2016050545A (en) 2014-09-01 2014-09-01 Cooling system for vehicle

Country Status (1)

Country Link
JP (1) JP2016050545A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017200463A1 (en) * 2016-05-19 2017-11-23 Scania Cv Ab A cooling system for a combustion engine and a further object
JP2018071392A (en) * 2016-10-26 2018-05-10 いすゞ自動車株式会社 Internal combustion engine
JP2019190323A (en) * 2018-04-20 2019-10-31 いすゞ自動車株式会社 Cooling system
DE112018004267T5 (en) 2017-09-29 2020-05-07 Isuzu Motors Limited COOLING SYSTEM

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017200463A1 (en) * 2016-05-19 2017-11-23 Scania Cv Ab A cooling system for a combustion engine and a further object
CN109154227A (en) * 2016-05-19 2019-01-04 斯堪尼亚商用车有限公司 Cooling system for internal combustion engines and other objects
EP3458692A4 (en) * 2016-05-19 2020-02-19 Scania CV AB A cooling system for a combustion engine and a further object
JP2018071392A (en) * 2016-10-26 2018-05-10 いすゞ自動車株式会社 Internal combustion engine
DE112018004267T5 (en) 2017-09-29 2020-05-07 Isuzu Motors Limited COOLING SYSTEM
US11053893B2 (en) 2017-09-29 2021-07-06 Isuzu Motors Limited Cooling system
JP2019190323A (en) * 2018-04-20 2019-10-31 いすゞ自動車株式会社 Cooling system
JP7135402B2 (en) 2018-04-20 2022-09-13 いすゞ自動車株式会社 cooling system

Similar Documents

Publication Publication Date Title
RU2678926C2 (en) Method (versions) of cooling vehicle engine and vehicle cabin heating system
RU2628682C2 (en) Engine system for vehicle
CN105874182B (en) Inlet gas cooling device
CN105626222B (en) Cooling system for a vehicle, in particular for a commercial vehicle
JP5993759B2 (en) Engine intake cooling system
US20130167784A1 (en) Method for operating a coolant circuit
EP2795078B1 (en) Arrangement and method for cooling of coolant in a cooling system in a vehicle
JP5825184B2 (en) Engine cooling system
KR101610153B1 (en) Engine system having two cooling loop
JP2009216028A (en) Cooling device for internal combustion engine
KR101779273B1 (en) Engine intake air thermal management device and associated thermal management method
JP5633199B2 (en) Internal combustion engine cooling system
CN108343500A (en) A kind of car engine cooling system
JP2014009617A (en) Cooling device of internal combustion engine
JP2016050545A (en) Cooling system for vehicle
JP2016000971A (en) Internal combustion engine system with supercharger
JP2013113182A (en) Cooling apparatus for engine and cooling method thereof
JP6094231B2 (en) Internal combustion engine cooling system
JP2014083918A (en) Intake air temperature regulating system
JP2013113118A (en) Engine cooling device
JP6256578B2 (en) Internal combustion engine cooling system
JP6604540B2 (en) Engine cooling system
CN106401727B (en) Auxiliary cooling system
US8978597B2 (en) Cooling system
WO2013039176A1 (en) Egr gas cooling system