WO2015101168A1 - 故障恢复的方法及控制器 - Google Patents

故障恢复的方法及控制器 Download PDF

Info

Publication number
WO2015101168A1
WO2015101168A1 PCT/CN2014/093842 CN2014093842W WO2015101168A1 WO 2015101168 A1 WO2015101168 A1 WO 2015101168A1 CN 2014093842 W CN2014093842 W CN 2014093842W WO 2015101168 A1 WO2015101168 A1 WO 2015101168A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
controller
information
node
path
Prior art date
Application number
PCT/CN2014/093842
Other languages
English (en)
French (fr)
Inventor
宋雪飞
夏寅贲
郭宏翔
张东旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015101168A1 publication Critical patent/WO2015101168A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0668Management of faults, events, alarms or notifications using network fault recovery by dynamic selection of recovery network elements, e.g. replacement by the most appropriate element after failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • Embodiments of the present invention relate to the field of communications, and, more particularly, to a method and controller for fault recovery.
  • IP Internet Protocol
  • optical layer In the IP-over-Optical network model, the Internet Protocol (IP) layer and the optical layer are controlled independently of each other, and there is no dynamic coordination between the two control planes of the two layers.
  • IP Internet Protocol
  • a fault occurs in an IP-over-Optical network, it is generally based on a holdoff-timer. That is, the optical layer recovery is performed preferentially, and the optical layer recovery fails or the IP layer recovery is performed after the timeout.
  • This way of holdoff-timer is generally achieved by setting a timer at the IP layer.
  • the IP layer performs path recovery when a failure occurs in the IP-over-Optical network and the service causes the service to be interrupted for longer than the time period set by the timer.
  • the optical layer in the IP-over-Optical network fails, one possibility is that the optical layer's control plane does not complete the optical layer recovery during the time period set by the timer. Then, after the time period set by the timer, the IP layer recovery is further performed by the control plane of the IP layer.
  • control plane of the optical layer does not complete the recovery of the optical layer. It may be that the time period set by the timer is too short, and the control plane of the optical layer does not have enough time to complete the optical layer recovery. However, if the time period set by the timer is long enough, when the control plane of the optical layer is unable to complete the optical layer recovery, the control plane of the IP layer also needs to wait for a sufficient time before performing the IP layer recovery. This will cause the fault recovery to take too long and further delay the business interruption.
  • the embodiment of the invention provides a fault recovery method, which can solve the problem that the IP-over-Optical network fault recovery takes too long.
  • a method for fault recovery including: acquiring, by a first controller, a first topology letter
  • the first topology information includes topology information of a network protocol IP layer, topology information of an optical layer, and information of an inter-layer link, where the inter-layer link is a node of the IP layer and a node of the optical layer.
  • the first controller acquires fault information, the fault information includes at least fault information of the optical layer, and the first controller determines, according to the fault information, the fault information.
  • a service fault path of the service and the service the first controller determines a service recovery path of the service fault path according to the first topology information and the fault information, where the service recovery path is used for the service Transmission.
  • the method further includes: sending, by the first controller, the first configuration information to the first a second controller, the first configuration information is used by the second controller to configure, on a node of the optical layer, a path related to a node of the optical layer in the service recovery path, where the first The configuration information is configuration information related to the node of the optical layer in the service recovery path.
  • the first controller is a total controller, where a node in the service recovery path is related to a node of the IP layer
  • the method further includes: the first controller sending the second configuration information to the IP layer controller, where the path is different from the path related to the node of the IP layer in the service failure path,
  • the second configuration information is used by the IP layer controller to configure, on the node of the IP layer, a path related to a node of the IP layer in the service recovery path, where the second configuration information is the service
  • the configuration information related to the node of the IP layer in the recovery path is used by the IP layer controller to configure, on the node of the IP layer, a path related to a node of the IP layer in the service recovery path, where the second configuration information is the service The configuration information related to the node of the IP layer in the recovery path.
  • the first controller is an IP layer controller
  • the node in the service recovery path and the IP layer When the related path is different from the path related to the node of the IP layer in the service failure path, the method further includes: configuring, by the first controller, the service recovery on a node of the IP layer A path in the path that is related to a node of the IP layer.
  • the topology information of the optical layer is acquired by the first controller from the second controller, where the layer The information of the inter-link is acquired by the first controller from the second controller.
  • the first controller determines, according to the first topology information and the fault information, the service fault path
  • the service recovery path includes: the first controller determines the second topology information according to the first topology information and the fault information, and the new topology information of the optical layer included in the second topology information And the topology information of the optical layer included in the first topology information is different; the first controller determines the service recovery path of the service fault path according to the second topology information.
  • the fault information further includes: fault information of the IP layer and/or fault information of the inter-layer link .
  • a second aspect provides a method for recovering faults, including: acquiring, by a second controller, fault information of an optical layer; and sending, by the second controller, fault information of the optical layer to a first controller, so that Determining, by the first controller, the service related to the fault information and the service recovery path of the service according to the fault information and the topology information of the optical layer, where the topology information includes topology information of the optical layer and network protocol IP
  • the topology information of the layer and the information of the inter-layer link which is the link between the node of the IP layer and the node of the optical layer.
  • the method further includes: the second controller acquiring topology information of an optical layer; and sending, by the second controller, topology information of the optical layer to The first controller.
  • the method further includes: the second controller receiving configuration information sent by the first controller
  • the configuration information is configuration information related to a node of the optical layer in the service recovery path, and the second controller configures the service recovery path on a node of the optical layer according to the configuration information.
  • the second controller sends the fault information of the optical layer to the first controller, including: The second controller determines to send the fault information of the optical layer to the first controller according to the recovery strategy.
  • a third aspect provides a controller, where the controller includes: a first acquiring unit, configured to acquire first topology information, where the first topology information includes topology information of a network protocol IP layer, and topology information of an optical layer. Information about the inter-layer link, where the inter-layer link is a link between a node of the IP layer and a node of the optical layer, and a second acquiring unit, configured to acquire fault information, where the fault information is at least And the first determining unit is configured to determine, according to the fault information acquired by the second acquiring unit, a service related to the fault information and a service fault path of the service; a determining unit, configured to determine, according to the first topology information acquired by the first acquiring unit and the fault information acquired by the second acquiring unit, a service of the service fault path determined by the first determining unit A recovery path, the service recovery path being used for transmission of the service.
  • the controller further includes: a sending unit, configured to: send the first configuration information to another controller, where the first configuration information is used by the The other controller configures, on the node of the optical layer, a path related to a node of the optical layer in the service recovery path, where the first configuration information is the light in the service recovery path Configuration information about the nodes of the layer.
  • a sending unit configured to: send the first configuration information to another controller, where the first configuration information is used by the The other controller configures, on the node of the optical layer, a path related to a node of the optical layer in the service recovery path, where the first configuration information is the light in the service recovery path Configuration information about the nodes of the layer.
  • the controller is a total controller, and a path related to a node of the IP layer in the service recovery path
  • the sending unit is further configured to: send the second configuration information to the IP layer controller, where the second configuration information is used, and the path related to the node of the IP layer in the service fault path is different.
  • the layer controller configures, on the node of the IP layer, a path related to the node of the IP layer in the service recovery path, where the second configuration information is the IP layer in the service recovery path Node related configuration information.
  • the controller is an IP layer controller, and is related to a node of the IP layer in the service recovery path.
  • the sending unit is further configured to: configure the service recovery path in the node of the IP layer, and the path is different from the path related to the node of the IP layer in the service fault path. The path associated with the node of the IP layer.
  • the topology information of the optical layer is obtained by the controller from the another controller, and the inter-layer The information of the link is obtained by the controller from the other controller.
  • the second determining unit is specifically configured to: determine, according to the first topology information and the fault information, The second topology information, the new topology information of the optical layer included in the second topology information is different from the topology information of the optical layer included in the first topology information; according to the second topology Information, determining the service recovery path of the service failure path.
  • the fault information further includes: fault information of the IP layer and/or fault information of the inter-layer link .
  • a controller includes: a first acquiring unit, configured to acquire fault information of an optical layer; and a first sending unit, configured to: use the light acquired by the first acquiring unit
  • the fault information of the layer is sent to the first controller, so that the first controller determines a service related to the fault information and a service recovery path of the service according to the fault information and the topology information of the optical layer
  • the topology information includes topology information of the optical layer, topology information of a network protocol IP layer, and information of an inter-layer link, where the inter-layer link is a chain between a node of the IP layer and a node of the optical layer. road.
  • the controller further includes: a second acquiring unit, configured to acquire topology information of the optical layer, and a second sending unit, configured to use the second The topology information of the optical layer acquired by the obtaining unit is sent to the first controller.
  • the controller further includes: a receiving unit, configured to receive configuration information sent by the first controller
  • the configuration information is configuration information related to the node of the optical layer in the service recovery path
  • the configuration unit is configured to be configured on the node of the optical layer according to the configuration information received by the receiving unit.
  • the first acquiring unit is specifically configured to: according to the recovery policy, determine to send the fault information of the optical layer to The first controller.
  • the first controller obtains the topology information of the entire network of the IP-over-Optical network and the fault information of the entire network, and further determines the service recovery path. This provides an optimal service recovery path based on the entire network topology, and the recovery time is shorter.
  • Figure 1 is a schematic diagram of an IP-over-Optical network.
  • FIG. 2 is a schematic diagram of a scenario of an embodiment of the present invention.
  • FIG. 3 is a flow chart of a method of fault recovery in accordance with an embodiment of the present invention.
  • FIG. 4 is a flow chart of a method of fault recovery in accordance with another embodiment of the present invention.
  • Figure 5 is a flow chart of a method of fault recovery in accordance with another embodiment of the present invention.
  • FIG. 6 is a flow chart of a method of fault recovery in accordance with another embodiment of the present invention.
  • FIG. 7 is a block diagram of a controller in accordance with one embodiment of the present invention.
  • FIG. 8 is a block diagram of a controller in accordance with another embodiment of the present invention.
  • FIG. 9 is a block diagram of a controller in accordance with another embodiment of the present invention.
  • FIG. 10 is a block diagram of a controller in accordance with another embodiment of the present invention.
  • Figure 1 is a schematic diagram of an IP-over-Optical network.
  • the solid line frame shown in Figure 1 represents the IP layer and the dashed line frame represents the light layer.
  • nodes 101 to 104 are nodes of the IP layer
  • nodes 105 to 107 are nodes of the optical layer.
  • the actual transmission path of a node 101 to node 104 in a service in the IP-over-Optical network shown in FIG. 1 is: node 101 ⁇ node 102 ⁇ node 105 ⁇ node 107 ⁇ node 104. From the IP level, the transmission path is node 101 ⁇ node 102 ⁇ node 104, as indicated by the solid black arrow in FIG.
  • the star in FIG. 1 represents a fiber breakage fault between the node 105 and the node 107.
  • the node 105 and the node 107 will find the loss of the optical signal, and perform the protection switching operation of the optical layer.
  • the optical path between node 105 and node 107 is switched to node 105 ⁇ node 106 ⁇ node 107.
  • the actual transmission path of the node 101 to the node 104 of the IP layer becomes: node 101 ⁇ node 102 ⁇ node 105 ⁇ node 106 ⁇ node 107 ⁇ node 104.
  • the transmission path is still node 101 ⁇ node 102 ⁇ node 104.
  • the transmission path of the node 101 to the node 104 is switched to the node 101 ⁇ the node 103 ⁇ the node 104, which is the transmission path from the IP level, as indicated by the black dotted arrow in FIG.
  • the actual transmission path of the node 101 to the node 104 becomes: node 101 ⁇ node 103 ⁇ node 106 ⁇ node 107 ⁇ node 104.
  • the protection switching operation is first performed by the optical layer. If the optical layer does not complete the protection switching operation in the holdoff timer of the IP layer, the FRR is started by the IP layer.
  • the IP layer and the optical layer are independent of each other, the IP layer can only set the holdoff timer to be large enough to ensure that the optical layer performs the protection switching operation. However, if the holdoff timer is too long, the service will be interrupted for too long. Moreover, the transmission path through the optical layer protection switching operation or the FRR re-determined by the IP layer is not necessarily the optimal transmission path in the IP-over-Optical network, which may cause waste of resources.
  • FIG. 2 is a schematic diagram of a scenario of an embodiment of the present invention.
  • the solid line frame shown in FIG. 2 represents an IP layer, and the dotted line frame represents a light layer.
  • the Provider Edge (PE) device 208 and the PE device 209 are PE devices of the IP layer, the nodes 201 to 205 are nodes of the IP layer, and the nodes 211 to 215 are nodes of the optical layer.
  • PE Provider Edge
  • the node of the IP layer may be a router, or may be a switch, or may be another switching device, which is not limited by the present invention.
  • the optical layer node may be an optical transport network (OTN) device, or may be a Dense Wavelength Division Multiplexing (DWDM) device, or may be other optical devices. limited.
  • OTN optical transport network
  • DWDM Dense Wavelength Division Multiplexing
  • FIG. 3 is a flow chart of a method of fault recovery in accordance with an embodiment of the present invention.
  • the method shown in Figure 3 includes:
  • the first controller acquires first topology information, where the first topology information includes topology information of an IP layer, topology information of an optical layer, and information of an inter-layer link, where the inter-layer link is an IP layer node and an optical layer. The link between the nodes.
  • the first controller acquires fault information, where the fault information includes at least fault information of the optical layer.
  • the first controller determines, according to the fault information, a service related to the fault information and a service fault path of the service.
  • the first controller determines, according to the first topology information and the fault information, a service recovery path of the service fault path, where the service recovery path is used for the transmission of the service.
  • the first controller obtains the topology information of the entire network of the IP-over-Optical network and the fault information of the entire network, and further determines the service recovery path. This provides an optimal service recovery path based on the entire network topology, and the recovery time is shorter.
  • the fault information includes the number of faults, and may be a single point fault or a multipoint fault.
  • a single point of failure refers to only one failure in an IP-over-Optical network.
  • a multipoint failure refers to at least two failures in an IP-over-Optical network.
  • the fault information further includes a fault type, which may be a node fault or a link fault.
  • a node failure can be a node failure at the IP layer or a node failure at the optical layer.
  • the link fault may be a link fault between the nodes of the IP layer, which may be a link fault between the nodes of the optical layer, or a fault of the inter-layer link between the IP layer and the optical layer.
  • the node failure may be the failure of the individual port of the node, or may be the failure of the entire node, or may be the failure of the internal cross module of the node.
  • a link failure can be a disconnection between a link and a node, or a broken fiber in the middle of a link.
  • the fault information further includes a location of the fault. For example, which node of which layer is faulty or which link is faulty.
  • the fault information may further include fault information of the IP layer and/or fault information of the inter-layer link.
  • the first controller may directly obtain the fault information from the node or other controllers, or may first receive the alarm information from the node or other controller, and further determine the fault information according to the content of the alarm information.
  • the invention is not limited thereto.
  • the alarm information may include, but is not limited to, a node ID, a port ID, an alarm level, and an event type.
  • the first controller may be an IP layer controller, or may be a total controller of the IP-over-Optical network, which is not limited by the present invention.
  • the first controller may be a master controller.
  • the first controller acquiring the first topology information may include: acquiring topology information of the IP layer from the IP layer controller; acquiring topology information of the optical layer from the optical layer controller; and obtaining the topology information of the optical layer from the optical layer controller; Or obtain information about the inter-layer link from the optical layer controller.
  • the first topology information of the entire network of the IP-over-Optical network is determined according to the topology information of the IP layer, the topology information of the optical layer, and the information of the inter-layer link.
  • the first controller acquiring the fault information may include: acquiring the optical layer from the optical layer controller. Fault information.
  • the fault information may further include fault information of the IP layer and/or fault information of the inter-layer link.
  • the method may further include acquiring fault information of the IP layer from the IP layer controller, and further comprising acquiring fault information of the inter-layer link from the IP layer controller or from the optical layer controller.
  • step 303 the first controller determines, according to the fault information, a path of the service affected by the fault information in the IP-over-Optical network, that is, a service fault path of the service.
  • the first controller may determine the second topology information according to the first topology information and the fault information.
  • the second topology information is new topology information after the information of the link interrupted by the fault information is removed from the first topology information.
  • the new topology information of the optical layer included in the second topology information is different from the topology information of the optical layer included in the first topology information.
  • the first controller may determine, according to the second topology information, a service recovery path of the service fault path.
  • the second topology information includes new topology information of the IP layer, new topology information of the optical layer, and new information of the intermediate link.
  • the new topology information of the optical layer is different from the old topology information of the optical layer.
  • the old topology information of the optical layer refers to the topology information of the optical layer in the first topology information acquired in step 301.
  • the new topology information of the IP layer is the same as the old topology information of the IP layer, and the new information of the intermediate link is the same as the old information of the intermediate link. If the fault information includes the fault information of the optical layer and the fault information of the IP layer, the new topology information of the IP layer is different from the old topology information of the IP layer, and the new information of the intermediate link is the same as the old information of the intermediate link. . If the fault information includes the fault information of the optical layer and the fault information of the inter-layer link, the new topology information of the IP layer is the same as the old topology information of the IP layer, and the new information of the intermediate link and the old link of the intermediate link The information is different.
  • the fault information includes the fault information of the optical layer, the fault information of the IP layer, and the fault information of the inter-layer link
  • the new topology information of the IP layer is different from the old topology information of the IP layer
  • the new information of the intermediate link is The old information of the intermediate link is different.
  • the old topology information of the IP layer refers to the topology information of the IP layer in the first topology information acquired in step 301
  • the old information of the intermediate link refers to the first topology acquired in step 301.
  • Information about the intermediate link in the message is information about the intermediate link in the message.
  • the first controller may send the first configuration information to the optical layer controller, where the first configuration information is used by the optical layer controller to configure the service recovery path and the optical layer on the node of the optical layer.
  • the path related to the node, the first configuration information is configuration information related to the node of the optical layer in the service recovery path.
  • the first controller may further send the second configuration information to the IP layer controller, where
  • the second configuration information is used by the IP layer controller to configure, on the node of the IP layer, a path related to the node of the IP layer in the service recovery path, where the second configuration information is configuration information related to the node of the IP layer in the service recovery path.
  • the first controller can obtain the topology information of the entire network of the IP-over-Optical network and the fault information of the entire network, and can perform fault recovery in time.
  • the first controller may also be an IP layer controller.
  • the first controller acquiring the first topology information may include: directly acquiring topology information of the IP layer and information of the inter-layer link; and acquiring topology information of the optical layer from the second controller. Further, the first topology information of the entire network of the IP-over-Optical network may be determined according to the topology information of the IP layer, the topology information of the optical layer, and the information of the inter-layer link.
  • the second controller here can be a light layer controller.
  • the first controller acquiring the fault information may include: acquiring fault information of the optical layer from the optical layer controller.
  • the fault information may further include fault information of the IP layer and/or fault information of the inter-layer link.
  • the method may further include acquiring fault information of the IP layer from a node of the IP layer, acquiring fault information of the inter-layer link from a node of the IP layer or from a second controller.
  • step 303 the first controller determines, according to the fault information, a path of the service affected by the fault information in the IP-over-Optical network, that is, a service fault path of the service.
  • the first controller may determine the second topology information according to the first topology information and the fault information.
  • the second topology information is new topology information after the information of the link interrupted by the fault information is removed from the first topology information.
  • the new topology information of the optical layer included in the second topology information is different from the topology information of the optical layer included in the first topology information.
  • the first controller may determine, according to the second topology information, a service recovery path of the service fault path.
  • the second topology information includes new topology information of the IP layer, new topology information of the optical layer, and new information of the intermediate link.
  • the new topology information of the optical layer is different from the old topology information of the optical layer.
  • the old topology information of the optical layer refers to the topology information of the optical layer in the first topology information acquired in step 301.
  • the new topology information of the IP layer is the same as the old topology information of the IP layer, and the new information of the intermediate link is the same as the old information of the intermediate link. If the fault information includes the fault information of the optical layer and the fault information of the IP layer, the new topology information of the IP layer is different from the old topology information of the IP layer, and the new information of the intermediate link is the same as the old information of the intermediate link. . If the fault information includes the fault information of the optical layer and the fault information of the inter-layer link, the new topology information of the IP layer is the same as the old topology information of the IP layer, and the new information of the intermediate link and the old link of the intermediate link The information is different.
  • the fault information includes the fault information of the optical layer, the fault information of the IP layer, and the fault information of the inter-layer link
  • the new topology information of the IP layer is different from the old topology information of the IP layer
  • the new information of the intermediate link is The old information of the intermediate link is different.
  • the old topology information of the IP layer refers to the topology information of the IP layer in the first topology information acquired in step 301
  • the old information of the intermediate link refers to the first topology acquired in step 301.
  • Information about the intermediate link in the message is information about the intermediate link in the message.
  • the first controller may determine, according to the second topology information, a unified resource allocation algorithm to determine a service recovery path. That is to say, the first controller can determine a relatively optimized service recovery path according to the resource occupation of the IP-over-Optical network, so that the transmission of the service can be ensured, and resource waste can be reduced.
  • the path of the optical layer and the path of the IP layer may be different compared to the service fault path.
  • the first controller may send configuration information related to the node of the optical layer in the service recovery path to the second controller, where the configuration information is used by the second controller to configure on the node of the optical layer.
  • the path in the service recovery path that is related to the node of the optical layer.
  • the first controller may send, by using a protocol interface, configuration information related to the node of the optical layer in the service recovery path to the second controller.
  • the first controller may receive the feedback information sent by the second controller, where the feedback information is sent by the second controller after successfully configuring the path related to the node of the optical layer in the service recovery path.
  • the first controller may also configure the service recovery path and the IP on the node of the IP layer.
  • the path associated with the node of the layer may be configured to configure the service recovery path and the IP on the node of the IP layer.
  • the first controller may be sent to the node of the corresponding IP layer in the form of a flow table.
  • the first controller may release resources occupied by the connection interrupted by the fault information, and further update the change of the occupancy status of the network resource caused by the release. This ensures resources that are transferred using the service recovery path.
  • FIG. 4 is a flow chart of a method of fault recovery in accordance with another embodiment of the present invention.
  • the method shown in Figure 4 includes:
  • the second controller acquires fault information of the optical layer.
  • the second controller sends the fault information of the optical layer to the first controller, so that the first controller determines, according to the fault information and the topology information of the optical layer, the service related to the fault information and the service recovery path of the service.
  • the topology information includes topology information of the optical layer, topology information of the IP layer, and information of the inter-layer link, and the inter-layer link is a link between the node of the IP layer and the node of the optical layer.
  • the first controller obtains the topology information of the entire network of the IP-over-Optical network and the fault information of the entire network, and further determines the service recovery path. This provides an optimal service recovery path based on the entire network topology, and the recovery time is shorter.
  • the second controller is an optical layer controller
  • the first controller is an IP layer controller or a total controller.
  • the method shown in FIG. 4 may further include: acquiring, by the second controller, topology information of the optical layer, and transmitting the topology information of the optical layer to the first controller.
  • the method shown in FIG. 4 may further include: receiving, by the second controller, configuration information sent by the first controller, where the configuration information is related to a node of the optical layer in the service recovery path. Configuration information. Further, the second controller configures a path related to the node of the optical layer in the service recovery path on the node of the optical layer according to the configuration information.
  • the second controller may send the configuration information to the node of the corresponding optical layer in the form of a flow table.
  • the resources occupied by the connection of the optical layer interrupted by the failure information may be released, and the change of the occupation status of the network resource caused by the release may be further updated. This ensures resources that are transferred using the service recovery path.
  • the second controller may directly obtain the fault information of the optical layer from the node of the optical layer, or the second controller may first receive the alarm information from the node of the optical layer, and further determine the fault according to the content of the alarm information.
  • the information is not limited by the present invention.
  • the node of the optical layer relies on the physical monitoring capability supported by the node itself, and when the optical power in the receiving direction on the interconnecting port is detected to be abruptly changed to 0 or decreased to a certain threshold, a corresponding alarm information is generated.
  • the alarm information is reported to the second controller.
  • the alarm message may include, but is not limited to, a node ID, a port ID, an alarm level, and an event type.
  • the second controller may further acquire fault information of the inter-layer link. And correspondingly, in step 402, the second controller may send the fault information of the optical layer and the fault information of the inter-layer link to the first controller.
  • the second controller may send the fault information of the optical layer to the first controller according to the recovery policy.
  • the recovery policy is stored on the second controller, and the recovery policy is used by the second controller for failure recovery.
  • the recovery policy may be a simultaneous recovery policy of the IP layer and the optical layer.
  • the second controller does not perform the fault recovery, and directly executes step 402 to send the fault information to the first controller.
  • the first controller may perform the FRR of the IP layer, and determine the service recovery path according to the protection resource reservation of the IP layer, or the first controller may simultaneously reserve the protection resource according to the optical layer and the protection resource of the IP layer. To determine the business recovery path.
  • the recovery policy may be a sequential recovery policy of the IP layer after the optical layer.
  • the second controller may perform optical layer switching according to the fault information of the optical layer to determine a fault recovery path of the optical layer.
  • the fault information of the optical layer and the fault recovery path of the optical layer are sent to the first controller. Then, the first controller may decide to adjust or not adjust the service recovery path according to the topology information of the entire network.
  • the recovery policy may be a single-layer recovery policy of the optical layer.
  • the second controller may perform a protection resource reservation and a cross-connection switching scheme preset in the optical layer according to the fault information of the optical layer. To determine the business recovery path. In this case, if the second controller can complete the optical layer The single layer recovery, the second controller no longer performs step 402, that is, the second controller no longer sends the fault information to the first controller.
  • the recovery policy may be Operation Administration and Maintenance (OAM) configuration information stored in the second controller.
  • OAM Operation Administration and Maintenance
  • the recovery strategy can be pre-configured.
  • FIG. 5 and FIG. 6 take the scenario shown in FIG. 2 as a description scenario, and take the service between the PE device 208 and the PE device 209 shown in FIG. 2 as an example. Describe.
  • the PE device 208 can access the network through the node 201 or the node 203, and the PE device 209 can access the network through the node 205. It is also assumed that the service transmission path between the PE device 208 and the PE device 209 is PE device 208 ⁇ node 203 ⁇ node 213 ⁇ node 215 ⁇ node 205 ⁇ PE device 209.
  • Figure 5 is a flow chart of a method of fault recovery in accordance with another embodiment of the present invention. The method shown in Figure 5 includes:
  • the optical layer controller 207 acquires topology information of the optical layer.
  • the topology information of the optical layer includes a connection relationship between respective nodes of the optical layer.
  • step 501 a broken fiber fault occurs in the link between node 213 and node 215.
  • the optical layer controller 207 acquires fault information of the optical layer.
  • the optical layer controller 207 can determine the fault information of the optical layer by combining the alarm information reported by the node 213 and the node 215.
  • the fault information of the optical layer includes the location of the fault: the link between node 213 and node 215, and the type of fault: broken fiber.
  • the optical layer controller 207 sends the topology information of the optical layer and the fault information of the optical layer to the IP layer controller 206.
  • the optical layer controller 207 may simultaneously transmit the topology information of the optical layer and the fault information of the optical layer to the IP layer controller 206, or the optical layer controller 207 may also perform the topology information and the optical layer of the optical layer.
  • the fault information is sent to the IP layer controller 206 in succession, which is not limited by the present invention.
  • the optical layer controller 207 determines to transmit the fault information of the optical layer to the IP layer controller 206 according to the recovery policy.
  • the IP layer controller 206 determines the service and the service failure path.
  • the IP layer controller 206 determines that the service affected by the fault information is a service between the PE device 208 and the PE device 209 according to the fault information of the optical layer, and may further determine that the service fault path of the service is: the PE device 208. ⁇ Node 203 ⁇ Node 213 ⁇ Node 215 ⁇ Node 205 ⁇ PE device 209.
  • the IP layer controller 206 determines the service failure path based on the determined service and the first topology information.
  • the first topology information refers to topology information of the entire network including the IP layer and the optical layer.
  • the IP layer controller 206 needs to according to the topology information of the IP layer, the topology information of the optical layer, and the inter-layer
  • the topology information of the link is used to determine the first topology information.
  • the topology information of the IP layer and the topology information of the inter-layer link are stored in the IP layer controller 206 in advance.
  • the IP layer controller 206 determines a service recovery path.
  • the IP layer controller 206 determines the second topology information according to the fault information of the optical layer and the first topology information, and determines the service recovery path according to the second topology information, and the service recovery path is used by the PE device 208 and the PE device 209. The transfer of business between.
  • the second topology information is new topology information after the information of the link that is interrupted by the fault information of the optical layer is removed in the first topology information, and the second topology information indicates that there is no connection between the node 213 and the node 215. .
  • the service recovery path determined by the IP layer controller 206 using the uniform resource allocation algorithm is: PE device 208 ⁇ node 203 ⁇ node 213 ⁇ node 214 ⁇ node 215 ⁇ node 205 ⁇ PE device 209.
  • the IP layer controller 206 sends configuration information related to the node of the optical layer in the service recovery path to the optical layer controller 207.
  • the service recovery path is the same as the service failure path, and the nodes of the IP layer are the same, and the transmission relationship of the nodes through the IP layer is also the same.
  • the nodes of the IP layer involved in the service recovery path and the service failure path are both the node 203 and the node 205.
  • both the service recovery path and the service failure path indicate that the last hop of the node 203 is the PE device 208, and the next hop is the node 213.
  • Both the service recovery path and the service failure path indicate that the last hop of node 205 is node 215 and the next hop is PE device 209. Therefore, the IP layer controller 206 does not need to reconfigure the information on node 203 and node 205.
  • the service recovery path is different from the service failure path in that the nodes of the optical layer involved are different.
  • the nodes of the optical layer involved in the service failure path are node 213 and node 215, and the nodes of the optical layer involved in the service recovery path are node 213, node 214, and node 215. Therefore, the information on node 213, node 214, and node 215 needs to be reconfigured.
  • the optical layer controller 207 configures a path related to a node of the optical layer in the service recovery path according to the configuration information.
  • the optical layer controller 207 delivers the configuration information to the node 213, the node 214, and the node 215 in the form of a flow table. That is, the optical layer controller 207 indicates that the next hop of the node 213 is the node 214, indicating that the next hop of the node 214 is the node 215.
  • FIG. 6 is a flow chart of a method of fault recovery in accordance with another embodiment of the present invention.
  • the method shown in Figure 5 includes:
  • the IP layer controller 206 acquires topology information of the IP layer and topology information of the inter-layer link.
  • the optical layer controller 207 acquires topology information of the optical layer.
  • the optical layer controller 207 sends the topology information of the optical layer to the IP layer controller 206.
  • the IP layer controller 206 determines the first topology information.
  • the IP layer controller 206 determines the first topology information according to the topology information of the IP layer, the topology information of the optical layer, and the topology information of the inter-layer link.
  • the first topology information is topology information of the entire network.
  • step 603 the link between node 203 and node 213 has a fiber break failure, and at the same time node 212 generates a failure fault.
  • the IP layer controller 206 obtains the first alarm information, and the optical layer controller 207 obtains the second alarm information.
  • the IP layer controller 206 receives the first alarm information sent by the node 203, and the first alarm information indicates that the signal of the port connected by the node 203 and the node 201 is lost.
  • the optical layer controller 207 receives the second alarm information transmitted by the node 211, the node 213, and the node 214.
  • the alarm information sent by the node 211 indicates that the signal of the port connected by the node 211 and the node 212 is lost.
  • the alert information sent by node 214 indicates that the signal of the port to which node 214 is connected to node 212 is lost.
  • the alarm information transmitted by the node 213 indicates that the signal of the port to which the node 213 is connected to the node 212 is lost, and the signal indicating the port to which the node 213 is connected to the node 203 is lost.
  • the optical layer controller 207 sends the second alarm information to the IP layer controller 206.
  • the optical layer controller 207 sends the second alarm information to the IP layer controller 206 according to the recovery policy.
  • the recovery strategy may be OAM configuration information stored in the optical layer controller 207.
  • the IP layer controller 206 determines the fault information.
  • the IP layer controller 206 may determine the fault information according to the fault determination mechanism, combining the first alarm information and the second alarm information.
  • the fault judging mechanism may be pre-configured according to the monitoring capability of the IP layer controller 206 for the fault or the like. The ability to monitor faults includes the time it takes to know the fault.
  • the fault information includes the number of faults, the location of the fault, and the type of the fault.
  • the failure information includes a fiber breakage fault between the node 203 and the node 213, and a failure fault of the node 212.
  • the IP layer controller 206 determines the service and the service failure path.
  • the IP layer controller 206 determines, according to the fault information, that the service affected by the fault information is a service between the PE device 208 and the PE device 209, and the service fault path of the service is the PE device 208 ⁇ Node 203 ⁇ Node 213. ⁇ Node 215 ⁇ Node 205 ⁇ PE device 209.
  • the IP layer controller 206 determines a service recovery path.
  • the IP layer controller 206 may determine the second topology information according to the first topology information and the fault information, and determine the service recovery path according to the second topology information, and the service recovery path is used between the PE device 208 and the PE device 209. Business transmission.
  • the second topology information is new topology information after the information of the link that is interrupted by the fault information is removed from the first topology information.
  • the IP layer controller 206 may perform cross-layer negotiation and decision according to the second topology information, and determine an optimal service reconstruction path as a service recovery path according to the network resource status.
  • the service recovery path determined by the IP layer controller 206 may be PE device 208 ⁇ node 201 ⁇ node 211 ⁇ node 213 ⁇ node 215 ⁇ node 205 ⁇ PE device 209.
  • the IP layer controller 206 configures a path related to a node of the IP layer in the service recovery path.
  • the IP layer controller 206 may send the first configuration information to the PE device 208 and the node 201 in the form of a flow table.
  • the first configuration information is configuration information related to a node of the IP layer in the service recovery path. That is, the first configuration information indicates that the next hop of the PE device 208 is the node 201, and the next hop of the node 201 is the node 211.
  • the configuration information on the node 205 is the same as the configuration information on the node 205 in the service failure path. At this time, the IP layer controller 206 does not need to be reconfigured at the node 205.
  • the IP layer controller 206 sends configuration information related to the node of the optical layer in the service recovery path to the optical layer controller 207.
  • the service recovery path is different from the service failure path in that the nodes of the optical layer involved are different.
  • the nodes of the optical layer involved in the service failure path are node 213 and node 215, and the nodes of the optical layer involved in the service recovery path are node 211, node 213, and node 215. Therefore, the information on node 211, node 213, and node 215 needs to be reconfigured.
  • the optical layer controller 207 configures a path in the service recovery path related to the node of the optical layer.
  • the optical layer controller 207 sends the second configuration information to the node 211 and the node 213 in the form of a flow table.
  • the second configuration information is configuration information related to a node of the optical layer in the service recovery path.
  • the configuration information on the node 215 is the same as the configuration information on the node 215 in the service failure path.
  • the optical layer controller 207 does not need to be reconfigured at the node 215. That is, the optical layer controller 207 indicates that the next hop of the node 211 is the node 213, and the last hop of the node 213 is the node 211.
  • the optical layer controller 207 may send feedback information to the IP layer controller 206, where the feedback information is used to instruct the optical layer controller 207 to establish a path related to the node of the optical layer in the service recovery path.
  • the process has been completed. Subsequently, the IP layer controller 206 can release the resources occupied by the service failure path on the node 203.
  • step 609 may also be performed after step 610, or step 609 may be performed after step 611.
  • the invention is not limited thereto.
  • the IP layer controller can acquire the topology of the IP layer and the optical layer, and can obtain the fault information of the IP layer and the optical layer, and can also determine the service recovery path in time for the occurrence of multiple points of failure.
  • FIG. 7 is a block diagram of a controller in accordance with one embodiment of the present invention.
  • the controller 700 shown in FIG. 7 includes a first acquisition unit 701, a second acquisition unit 702, a first determination unit 703, and a second determination unit 704.
  • the first acquiring unit 701 is configured to acquire first topology information, where the first topology information includes topology information of an IP layer, topology information of an optical layer, and information of an inter-layer link, where the inter-layer link is an IP layer node and light.
  • the second obtaining unit 702 is configured to acquire fault information, where the fault information includes at least fault information of the optical layer.
  • the first determining unit 703 is configured to use the fault acquired by the second acquiring unit 702. Information, determining the service related to the fault information and the service fault path of the service.
  • the second determining unit 704 is configured to determine, according to the first topology information acquired by the first acquiring unit 701 and the fault information acquired by the second acquiring unit 702, a service recovery path of the service fault path determined by the first determining unit 703, where the service recovery path is Used for the transmission of this service.
  • the first controller obtains the topology information of the entire network of the IP-over-Optical network and the fault information of the entire network, and further determines the service recovery path. This provides an optimal service recovery path based on the entire network topology, and the recovery time is shorter.
  • the controller 700 may further include a sending unit, configured to send the first configuration information to another controller, where the first configuration information is used by another controller to configure on a node of the optical layer.
  • a sending unit configured to send the first configuration information to another controller, where the first configuration information is used by another controller to configure on a node of the optical layer.
  • the controller 700 is a total controller.
  • the sending unit may be further configured to: send the second configuration information to the IP layer controller, where the second configuration information is used by the IP layer controller to configure a path related to the node of the IP layer in the service recovery path on the node of the IP layer,
  • the second configuration information is configuration information related to a node of the IP layer in the service recovery path.
  • the controller 700 is an IP layer controller, when the path related to the node of the IP layer in the service recovery path is different from the path related to the node of the IP layer in the service failure path.
  • the sending unit may be further configured to: configure, on the node of the IP layer, a path related to the node of the IP layer in the service recovery path.
  • the topology information of the optical layer is obtained by the controller 700 from the other controller, and the information of the inter-layer link is obtained by the controller 700 from the other controller.
  • the second determining unit 704 is specifically configured to: determine, according to the first topology information and the fault information, the second topology information, the new topology of the optical layer included in the second topology information.
  • the information is different from the topology information of the optical layer included in the first topology information.
  • the service recovery path of the service fault path is determined.
  • the fault information further includes: fault information of the IP layer and/or fault information of the inter-layer link.
  • the controller 700 can implement the processes implemented by the first controller in the embodiments of FIG. 3 to FIG. 6 without repeating the repetition, and details are not described herein again.
  • FIG. 8 is a block diagram of a controller in accordance with another embodiment of the present invention.
  • the controller 800 shown in FIG. 8 includes a first acquisition unit 801 and a first transmission unit 802.
  • the first obtaining unit 801 is configured to acquire fault information of the optical layer.
  • the first sending unit 802 is configured to send the fault information of the optical layer acquired by the first acquiring unit 801 to the first controller, so that the first controller root Determining the service related to the fault information and the service recovery path of the service according to the fault information and the topology information of the optical layer, and the topology information includes the topology information of the optical layer, the topology information of the IP layer, and the information of the inter-layer link, and the inter-layer chain
  • a path is a link between a node of an IP layer and a node of an optical layer.
  • the first controller obtains the topology information of the entire network of the IP-over-Optical network and the fault information of the entire network, and further determines the service recovery path. This provides an optimal service recovery path based on the entire network topology, and the recovery time is shorter.
  • the controller 800 may further include a second obtaining unit and a second sending unit.
  • the second obtaining unit is configured to acquire topology information of the optical layer.
  • the second sending unit is configured to send topology information of the optical layer acquired by the second acquiring unit to the first controller.
  • the controller 800 may further include a receiving unit and a configuration unit.
  • the receiving unit is configured to receive configuration information sent by the first controller, where the configuration information is configuration information related to a node of the optical layer in the service recovery path.
  • the configuration unit is configured to configure a path related to the node of the optical layer in the service recovery path on the node of the optical layer according to the configuration information received by the receiving unit.
  • the first obtaining unit 801 may be specifically configured to: according to the recovery policy, determine to send fault information of the optical layer to the first controller.
  • the controller 800 can implement the various processes implemented by the second controller in the embodiment of FIG. 3 to FIG. 6, and the repetition is not avoided, and details are not described herein again.
  • FIG. 9 is a block diagram of a controller in accordance with another embodiment of the present invention.
  • the controller 900 shown in FIG. 9 includes a processor 901, a memory 902, a receiving circuit 903, and a transmitting circuit 904.
  • the receiving circuit 903 is configured to acquire first topology information, where the first topology information includes topology information of an IP layer, topology information of an optical layer, and information of an inter-layer link, where the inter-layer link is an IP layer node and an optical layer. The link between the nodes. And obtaining fault information, where the fault information includes at least fault information of the optical layer.
  • the processor 901 is configured to determine, according to the fault information acquired by the receiving circuit 903, a service related to the fault information and a service fault path of the service. And determining, according to the first topology information acquired by the receiving circuit 903 and the fault information acquired by the receiving circuit 903, a service recovery path of the service fault path, where the service recovery path is used for transmission of the service.
  • the first controller obtains the topology information of the entire network of the IP-over-Optical network and the fault information of the entire network, and further determines the service recovery path. This provides an optimal service recovery path based on the entire network topology, and the recovery time is shorter.
  • bus system 905 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 905 various buses are labeled as bus system 905 in FIG.
  • the method disclosed in the foregoing embodiments of the present invention may be applied to the processor 901 or implemented by the processor 901.
  • the processor 901 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may pass through the integrated logic circuit of the hardware in the processor 901 or soft. The instructions in the form of pieces are completed.
  • the processor 901 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a random access memory (RAM), a flash memory, a read-only memory (ROM), a programmable read only memory or an electrically erasable programmable memory, a register, etc.
  • RAM random access memory
  • ROM read-only memory
  • programmable read only memory or an electrically erasable programmable memory
  • register etc.
  • the storage medium is located in the memory 902, and the processor 901 reads the information in the memory 902 and completes the steps of the above method in combination with its hardware.
  • the sending circuit 904 is configured to send the first configuration information to another controller, where the first configuration information is used by another controller to configure the service recovery path on the node of the optical layer.
  • the controller 900 is a total controller.
  • the sending circuit 904 is further configured to: send the second configuration information to the IP layer controller, where the second configuration information is used by the IP layer controller to configure a path related to the node of the IP layer in the service recovery path on the node of the IP layer,
  • the second configuration information is configuration information related to a node of the IP layer in the service recovery path.
  • the controller 900 is an IP layer controller, when the path related to the node of the IP layer in the service recovery path is different from the path related to the node of the IP layer in the service failure path.
  • the sending circuit 904 is further configured to: configure, on a node of the IP layer, a path related to a node of the IP layer in the service recovery path.
  • the topology information of the optical layer is obtained by the controller 900 from the other controller, and the information of the inter-layer link is obtained by the controller 900 from the other controller.
  • the processor 901 is specifically configured to: determine, according to the first topology information and the fault information, second topology information, new topology information of the optical layer included in the second topology information, The topology information of the optical layer included in the first topology information is different; and the service recovery path of the service fault path is determined according to the second topology information.
  • the fault information further includes: fault information of the IP layer and/or fault information of the inter-layer link.
  • the controller 900 can implement the various processes implemented by the first controller in the embodiments of FIGS. 3 to 6, Duplication is not avoided and will not be repeated here.
  • FIG. 10 is a block diagram of a controller in accordance with another embodiment of the present invention.
  • the controller 1000 shown in FIG. 10 includes a processor 1001, a memory 1002, a receiving circuit 1003, and a transmitting circuit 1004.
  • the receiving circuit 1003 is configured to acquire fault information of the optical layer.
  • the sending circuit 1004 is configured to send the fault information of the optical layer acquired by the receiving circuit 1003 to the first controller, so that the first controller determines the service related to the fault information and the service according to the fault information and the topology information of the optical layer.
  • the service recovery path includes topology information of the optical layer, topology information of the IP layer, and information of the inter-layer link, and the inter-layer link is a link between the node of the IP layer and the node of the optical layer.
  • the first controller obtains the topology information of the entire network of the IP-over-Optical network and the fault information of the entire network, and further determines the service recovery path. This provides an optimal service recovery path based on the entire network topology, and the recovery time is shorter.
  • bus system 1005 which in addition to the data bus includes a power bus, a control bus, and a status signal bus.
  • bus system 1005 various buses are labeled as bus system 1005 in FIG.
  • the method disclosed in the foregoing embodiments of the present invention may be applied to the processor 1001 or implemented by the processor 1001.
  • the processor 1001 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1001 or an instruction in a form of software.
  • the processor 1001 described above may be a general purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software modules can be located in RAM, flash memory, ROM, programmable read only memory, or electrically erasable programmable memory, registers, and the like, which are well established in the art.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002 and completes the steps of the above method in combination with its hardware.
  • the receiving circuit 1003 is further configured to acquire topology information of the optical layer.
  • the transmitting circuit 1004 is further configured to send topology information of the optical layer acquired by the receiving circuit 1003 to the first controller.
  • the receiving circuit 1003 is further configured to receive configuration information sent by the first controller, where the configuration information is configuration information related to a node of the optical layer in the service recovery path.
  • the processor 1001 is configured to configure a path related to a node of the optical layer in the service recovery path on the node of the optical layer according to the configuration information received by the receiving unit.
  • the receiving circuit 1003 may be specifically configured to: according to the recovery policy, determine to send fault information of the optical layer to the first controller.
  • the controller 1000 can implement the various processes implemented by the second controller in the embodiment of FIG. 3 to FIG. 6, and the repetition is not avoided, and details are not described herein again.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供了一种故障恢复的方法,该方法包括:第一控制器获取第一拓朴信息,第一拓朴信息包括IP层的拓朴信息、光层的拓朴信息和层间链路的信息,层间链路是所述IP层的节点与所述光层的节点之间的链路;第一控制器获取故障信息,该故障信息至少包括光层的故障信息;第一控制器根据故障信息,确定与故障信息有关的业务以及所述业务的业务故障路径;第一控制器根据第一拓朴信息和故障信息,确定业务故障路径的业务恢复路径,该业务恢复路径用于所述业务的传输。本发明实施例通过第一控制器获取IP-over-Optical网络的全网的拓朴信息和全网的故障信息,并进一步确定业务恢复路径。这样能够根据全网拓朴提供最优的业务恢复路径,并且故障恢复的耗时较短。

Description

故障恢复的方法及控制器
本申请要求于2013年12月30日提交中国专利局、申请号为CN201310744223.4、发明名称为“故障恢复的方法及控制器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信领域,并且更具体地,涉及一种故障恢复的方法及控制器。
背景技术
IP-over-Optical网络模型中,网络协议(Internet Proticol,IP)层和光层是分别相互独立地进行控制的,两层的两个控制平面之间没有动态的协同。
当IP-over-Optical网络中出现故障时,一般采取的是基于holdoff-timer的方式。即优先进行光层恢复,光层恢复失败或者超时后再进行IP层恢复。这种holdoff-timer的方式一般是通过在IP层设置定时器来实现的。当IP-over-Optical网络中出现故障,并且该故障导致业务中断的时间超过在定时器所设置的时间段之后,IP层才会进行路径恢复。
例如,当IP-over-Optical网络中的光层出现故障时,一种可能是:在定时器所设置的时间段内,光层的控制平面没有完成光层恢复。那么在定时器所设置的时间段之后,才进一步由IP层的控制平面进行IP层恢复。
而其中,光层的控制平面没有完成光层恢复的原因,有可能是定时器所设置的时间段太短,导致光层的控制平面没有足够的时间完成光层恢复。但是,如果定时器所设置的时间段足够长,那么在光层的控制平面没有能力完成光层恢复时,IP层的控制平面也需要等待足够长的时间后再进行IP层恢复。这样会导致故障恢复的时间过长,也进一步导致业务中断的时间过长。
发明内容
本发明实施例提供一种故障恢复的方法,能够解决IP-over-Optical网络故障恢复的时间过长的问题。
第一方面,提供了一种故障恢复的方法,包括:第一控制器获取第一拓扑信 息,所述第一拓扑信息包括网络协议IP层的拓扑信息、光层的拓扑信息和层间链路的信息,所述层间链路是所述IP层的节点与所述光层的节点之间的链路;所述第一控制器获取故障信息,所述故障信息至少包括所述光层的故障信息;所述第一控制器根据所述故障信息,确定与所述故障信息有关的业务以及所述业务的业务故障路径;所述第一控制器根据所述第一拓扑信息和所述故障信息,确定所述业务故障路径的业务恢复路径,所述业务恢复路径用于所述业务的传输。
结合第一方面,在第一种可能的实现方式中,在所述确定所述业务故障路径的业务恢复路径之后,所述方法还包括:所述第一控制器将第一配置信息发送至第二控制器,所述第一配置信息用于所述第二控制器在所述光层的节点上配置所述业务恢复路径中与所述光层的节点有关的路径,其中,所述第一配置信息为所述业务恢复路径中的与所述光层的节点有关的配置信息。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第一控制器为总控制器,当所述业务恢复路径中的与所述IP层的节点有关的路径,和所述业务故障路径中的与所述IP层的节点有关的路径不同时,所述方法还包括:所述第一控制器将第二配置信息发送至IP层控制器,所述第二配置信息用于所述IP层控制器在所述IP层的节点上配置所述业务恢复路径中与所述IP层的节点有关的路径,其中,所述第二配置信息为所述业务恢复路径中的与所述IP层的节点有关的配置信息。
结合第一方面的第一种可能的实现方式,在第三种可能的实现方式中,所述第一控制器为IP层控制器,当所述业务恢复路径中的与所述IP层的节点有关的路径,和所述业务故障路径中的与所述IP层的节点有关的路径不同时,所述方法还包括:所述第一控制器在所述IP层的节点上配置所述业务恢复路径中与所述IP层的节点有关的路径。
结合第一方面或者上述任一种可能的实现方式,在第四种可能的实现方式中,所述光层的拓扑信息由所述第一控制器从所述第二控制器获取,所述层间链路的信息由所述第一控制器从所述第二控制器获取。
结合第一方面或者上述任一种可能的实现方式,在第五种可能的实现方式中,所述第一控制器根据所述第一拓扑信息和所述故障信息,确定所述业务故障路径的业务恢复路径,包括:所述第一控制器根据所述第一拓扑信息和所述故障信息,确定第二拓扑信息,所述第二拓扑信息中所包含的所述光层的新的拓扑信息,与所述第一拓扑信息中所包含的所述光层的拓扑信息不同;所述第一控制器根据所述第二拓扑信息,确定所述业务故障路径的所述业务恢复路径。
结合第一方面或者上述任一种可能的实现方式,在第六种可能的实现方式中,所述故障信息还包括:所述IP层的故障信息和/或所述层间链路的故障信息。
第二方面,提供了一种故障恢复的方法,包括:第二控制器获取光层的故障信息;所述第二控制器将所述光层的故障信息发送至第一控制器,以使得所述第一控制器根据所述光层的故障信息和拓扑信息确定与所述故障信息有关的业务以及所述业务的业务恢复路径,所述拓扑信息包括所述光层的拓扑信息、网络协议IP层的拓扑信息和层间链路的信息,所述层间链路是所述IP层的节点与所述光层的节点之间的链路。
结合第二方面,在第一种可能的实现方式中,所述方法还包括:所述第二控制器获取光层的拓扑信息;所述第二控制器将所述光层的拓扑信息发送至所述第一控制器。
结合第二方面或者第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述方法还包括:所述第二控制器接收所述第一控制器发送的配置信息,所述配置信息为所述业务恢复路径中的与所述光层的节点有关的配置信息;所述第二控制器根据所述配置信息在所述光层的节点上配置所述业务恢复路径中与所述光层的节点有关的路径。
结合第二方面或者上述任一种可能的实现方式,在第三种可能的实现方式中,所述第二控制器将所述光层的故障信息发送至第一控制器,包括:所述第二控制器根据恢复策略,确定将所述光层的故障信息发送至所述第一控制器。
第三方面,提供了一种控制器,所述控制器包括:第一获取单元,用于获取第一拓扑信息,所述第一拓扑信息包括网络协议IP层的拓扑信息、光层的拓扑信息和层间链路的信息,所述层间链路是所述IP层的节点与所述光层的节点之间的链路;第二获取单元,用于获取故障信息,所述故障信息至少包括所述光层的故障信息;第一确定单元,用于根据所述第二获取单元获取的所述故障信息,确定与所述故障信息有关的业务以及所述业务的业务故障路径;第二确定单元,用于根据所述第一获取单元获取的所述第一拓扑信息和所述第二获取单元获取的所述故障信息,确定所述第一确定单元确定的所述业务故障路径的业务恢复路径,所述业务恢复路径用于所述业务的传输。
结合第三方面,在第一种可能的实现方式中,所述控制器还包括:发送单元,用于:将第一配置信息发送至另一控制器,所述第一配置信息用于所述另一控制器在所述光层的节点上配置所述业务恢复路径中与所述光层的节点有关的路径,其中,所述第一配置信息为所述业务恢复路径中的与所述光层的节点有关的配置信息。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述控制器为总控制器,当所述业务恢复路径中的与所述IP层的节点有关的路径,和所述业务故障路径中的与所述IP层的节点有关的路径不同时,所述发送单元,还用于:将第二配置信息发送至IP层控制器,所述第二配置信息用于所述IP 层控制器在所述IP层的节点上配置所述业务恢复路径中与所述IP层的节点有关的路径,其中,所述第二配置信息为所述业务恢复路径中的与所述IP层的节点有关的配置信息。
结合第三方面的第一种可能的实现方式,在第三种可能的实现方式中,所述控制器为IP层控制器,当所述业务恢复路径中的与所述IP层的节点有关的路径,和所述业务故障路径中的与所述IP层的节点有关的路径不同时,所述发送单元,还用于:在所述IP层的节点上配置所述业务恢复路径中与所述IP层的节点有关的路径。
结合第三方面或者上述任一种可能的实现方式,在第四种可能的实现方式中,所述光层的拓扑信息是所述控制器从所述另一控制器获取的,所述层间链路的信息是所述控制器从所述另一控制器获取的。
结合第三方面或者上述任一种可能的实现方式,在第五种可能的实现方式中,所述第二确定单元,具体用于:根据所述第一拓扑信息和所述故障信息,确定第二拓扑信息,所述第二拓扑信息中所包含的所述光层的新的拓扑信息,与所述第一拓扑信息中所包含的所述光层的拓扑信息不同;根据所述第二拓扑信息,确定所述业务故障路径的所述业务恢复路径。
结合第三方面或者上述任一种可能的实现方式,在第六种可能的实现方式中,所述故障信息还包括:所述IP层的故障信息和/或所述层间链路的故障信息。
第四方面,提供了一种控制器,所述控制器包括:第一获取单元,用于获取光层的故障信息;第一发送单元,用于将所述第一获取单元获取的所述光层的故障信息发送至第一控制器,以使得所述第一控制器根据所述光层的故障信息和拓扑信息确定与所述故障信息有关的业务以及所述业务的业务恢复路径,所述拓扑信息包括所述光层的拓扑信息、网络协议IP层的拓扑信息和层间链路的信息,所述层间链路是所述IP层的节点与所述光层的节点之间的链路。
结合第四方面,在第一种可能的实现方式中,所述控制器还包括:第二获取单元,还用于获取光层的拓扑信息;第二发送单元,还用于将所述第二获取单元获取的所述光层的拓扑信息发送至所述第一控制器。
结合第四方面或者第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述控制器还包括:接收单元,用于接收所述第一控制器发送的配置信息,所述配置信息为所述业务恢复路径中的与所述光层的节点有关的配置信息;配置单元,用于根据所述接收单元接收的所述配置信息在所述光层的节点上配置所述业务恢复路径中与所述光层的节点有关的路径。
结合第四方面或者上述任一种可能的实现方式,在第三种可能的实现方式中,所述第一获取单元,具体用于:根据恢复策略,确定将所述光层的故障信息发送至所述第一控制器。
本发明实施例通过第一控制器获取IP-over-Optical网络的全网的拓扑信息和全网的故障信息,并进一步确定业务恢复路径。这样能够根据全网拓扑提供最优的业务恢复路径,并且故障恢复的耗时较短。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是IP-over-Optical网络的示意图。
图2是本发明实施例的一个场景的示意图。
图3是本发明一个实施例的故障恢复的方法的流程图。
图4是本发明另一个实施例的故障恢复的方法的流程图。
图5是本发明另一个实施例的故障恢复的方法的流程图。
图6是本发明另一个实施例的故障恢复的方法的流程图。
图7是本发明一个实施例的控制器的框图。
图8是本发明另一个实施例的控制器的框图。
图9是本发明另一个实施例的控制器的框图。
图10是本发明另一个实施例的控制器的框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是IP-over-Optical网络的示意图。图1所示的实线框代表IP层,虚线框代表光层。其中的节点101至104为IP层的节点,节点105至107为光层的节点。
假设,一个业务在图1所示的IP-over-Optical网络中的节点101至节点104的实际传输路径为:节点101→节点102→节点105→节点107→节点104。从IP层面上来看,该传输路径为节点101→节点102→节点104,如图1中的黑色实线箭头所示。
当光层的节点105和节点107之间的链路发生故障时,如图1中的星形代表节点105和节点107之间的断纤故障。此时,节点105和节点107会发现光信号的丢失,便执行光层的保护倒换操作。例如,节点105和节点107之间的光通路被切换至节点105→节点106→节点107。此时,IP层的节点101至节点104的实际传输路径变为:节点101→节点102→节点105→节点106→节点107→节点104。但是,从IP层面上来看,该传输路径仍然为节点101→节点102→节点104。
另一方面,IP层的节点之间会有类似心跳检测的机制来维持节点之间的连接。当节点102和节点104之间的心跳中断的时间超过其预先设置的holdoff timer时,就认为节点102和节点104之间的链接出现了故障,此时IP层便启动快速重路由(Fast Route Restoration,FRR)。例如,节点101至节点104的传输路径会被切换至节点101→节点103→节点104,这是从IP层面上来看的传输路径,如图1中的黑色虚线箭头所示。而此时节点101至节点104的实际传输路径变为:节点101→节点103→节点106→节点107→节点104。
实际是,当IP-over-Optical网络中发生故障时,首先由光层执行保护倒换操作,如果在IP层的holdoff timer内,光层未完成保护倒换操作,便由IP层启动FRR。
由于IP层和光层是相互独立的,IP层只能将holdoff timer设置的足够大,才能保证光层执行保护倒换操作的时间。但是,holdoff timer时间过长,会导致业务中断的时间过长。而且,通过光层的保护倒换操作,或者通过IP层的FRR重新确定的传输路径不一定是IP-over-Optical网络中的最优传输路径,可能会造成资源浪费。
图2是本发明实施例的一个场景的示意图。图2所示的实线框代表IP层,虚线框代表光层。其中的运营商边缘(Provider Edge,PE)设备208和PE设备209为IP层的PE设备,节点201至205为IP层的节点,节点211至215为光层的节点。
本发明实施例中,IP层的节点可以是路由器,也可以是交换机,或者也可以是其他的交换设备,本发明对此不作限定。光层的节点可以是光传送网(Optical Transport Network,OTN)设备,或者可以是密集波分复用(Dense Wavelength Division Multiplexing,DWDM)设备,或者也可以是其他的光设备,本发明对此不作限定。
图3是本发明一个实施例的故障恢复的方法的流程图。图3所示的方法包括:
301,第一控制器获取第一拓扑信息,该第一拓扑信息包括IP层的拓扑信息、光层的拓扑信息和层间链路的信息,该层间链路是IP层的节点与光层的节点之间的链路。
302,第一控制器获取故障信息,该故障信息至少包括光层的故障信息。
303,第一控制器根据故障信息,确定与故障信息有关的业务以及该业务的业务故障路径。
304,第一控制器根据第一拓扑信息和故障信息,确定业务故障路径的业务恢复路径,该业务恢复路径用于该业务的传输。
本发明实施例通过第一控制器获取IP-over-Optical网络的全网的拓扑信息和全网的故障信息,并进一步确定业务恢复路径。这样能够根据全网拓扑提供最优的业务恢复路径,并且故障恢复的耗时较短。
本发明实施例中,故障信息包括故障的个数,可以是单点故障,也可以是多点故障。单点故障是指IP-over-Optical网络中只有一个故障,多点故障是指IP-over-Optical网络中有至少两个故障。
本发明实施例中,故障信息还包括故障的类型,可以是节点故障,也可以是链路故障。节点故障可以是IP层的节点故障,也可以是光层的节点故障。链路故障可以是IP层的节点间的链路故障,可以是光层的节点间的链路故障,也可以是IP层和光层之间的层间链路的故障。其中,节点故障可以是节点的个别端口失灵,或者也可以是整个节点的故障,或者也可以是节点的内部的交叉模块的故障。链路故障可以是链路与节点之间的连接断开,也可以是链路中间的断纤。
本发明实施例中,故障信息还包括故障的位置。例如,是哪一层的哪个节点的故障,或者是哪条链路的故障。
具体地,本发明实施例中,故障信息还可包括IP层的故障信息和/或层间链路的故障信息。
可选地,在步骤302中,第一控制器可以从节点或者其他控制器直接获取故障信息,也可以先从节点或者其他控制器接收告警信息,再进一步根据告警信息的内容来确定故障信息,本发明对此不作限定。其中,告警信息可以包括但不限于节点ID、端口ID、告警级别和事件类型。
本发明实施例中,第一控制器可以是IP层控制器,或者也可以是IP-over-Optical网络的总控制器,本发明对此不作限定。
可选地,第一控制器可以是总控制器。
具体地,在步骤301中,第一控制器获取第一拓扑信息,可包括:从IP层控制器获取IP层的拓扑信息;从光层控制器获取光层的拓扑信息;从IP层控制器或者从光层控制器获取层间链路的信息。并进一步可根据IP层的拓扑信息、光层的拓扑信息和层间链路的信息确定IP-over-Optical网络的全网的第一拓扑信息。
在步骤302中,第一控制器获取故障信息,可包括:从光层控制器获取光层 的故障信息。
可选地,作为一个实施例,故障信息还可包括IP层的故障信息和/或层间链路的故障信息。进一步地,还可包括从IP层控制器获取IP层的故障信息,还可包括从IP层控制器或者从光层控制器获取层间链路的故障信息。
在步骤303中,第一控制器根据故障信息,确定该故障信息所影响的业务在该IP-over-Optical网络中的路径,即该业务的业务故障路径。
在步骤304中,第一控制器可根据第一拓扑信息和故障信息确定第二拓扑信息。该第二拓扑信息是在第一拓扑信息中除去故障信息所中断的链路的信息之后的新的拓扑信息。并且,该第二拓扑信息中所包含的光层的新的拓扑信息,与第一拓扑信息中所包含的光层的拓扑信息不同。进一步地,第一控制器可根据第二拓扑信息,确定业务故障路径的业务恢复路径。
具体地,第二拓扑信息包括IP层的新的拓扑信息、光层的新的拓扑信息和中间链路的新信息。并且,光层的新的拓扑信息与光层的旧的拓扑信息不同。其中,所说的光层的旧的拓扑信息是指步骤301中所获取的第一拓扑信息中的光层的拓扑信息。
若故障信息只包括光层的故障信息,则,IP层的新的拓扑信息与IP层的旧的拓扑信息相同,中间链路的新信息与中间链路的旧的信息相同。若故障信息包括光层的故障信息和IP层的故障信息,则,IP层的新的拓扑信息与IP层的旧的拓扑信息不同,中间链路的新信息与中间链路的旧的信息相同。若故障信息包括光层的故障信息和层间链路的故障信息,则,IP层的新的拓扑信息与IP层的旧的拓扑信息相同,中间链路的新信息与中间链路的旧的信息不同。若故障信息包括光层的故障信息、IP层的故障信息和层间链路的故障信息,则,IP层的新的拓扑信息与IP层的旧的拓扑信息不同,中间链路的新信息与中间链路的旧的信息不同。其中,所说的IP层的旧的拓扑信息是指步骤301中所获取的第一拓扑信息中的IP层的拓扑信息,中间链路的旧的信息是指步骤301中所获取的第一拓扑信息中的中间链路的信息。
并且,在步骤304之后,第一控制器可将第一配置信息发送至光层控制器,该第一配置信息用于光层控制器在光层的节点上配置业务恢复路径中与光层的节点有关的路径,该第一配置信息为业务恢复路径中的与光层的节点有关的配置信息。
若业务恢复路径中的与IP层的节点有关的路径,和业务故障路径中的与IP层的节点有关的路径不同,第一控制器还可将第二配置信息发送至IP层控制器,该第二配置信息用于IP层控制器在IP层的节点上配置业务恢复路径中与IP层的节点有关的路径,该第二配置信息为业务恢复路径中的与IP层的节点有关的配置信息。
这样,第一控制器可以获取IP-over-Optical网络的全网的拓扑信息以及全网的故障信息,能够及时地进行故障恢复。
可选地,第一控制器也可以是IP层控制器。
具体地,在步骤301中,第一控制器获取第一拓扑信息,可包括:直接获取IP层的拓扑信息和层间链路的信息;从第二控制器获取光层的拓扑信息。进一步地,可根据IP层的拓扑信息、光层的拓扑信息和层间链路的信息确定IP-over-Optical网络的全网的第一拓扑信息。这里的第二控制器可以是光层控制器。
在步骤302中,第一控制器获取故障信息,可包括:从光层控制器获取光层的故障信息。
可选地,作为一个实施例,故障信息还可包括IP层的故障信息和/或层间链路的故障信息。进一步地,还可包括从IP层的节点获取IP层的故障信息,从IP层的节点或者从第二控制器获取层间链路的故障信息。
在步骤303中,第一控制器根据故障信息,确定该故障信息所影响的业务在该IP-over-Optical网络中的路径,即该业务的业务故障路径。
在步骤304中,第一控制器可根据第一拓扑信息和故障信息确定第二拓扑信息。该第二拓扑信息是在第一拓扑信息中除去故障信息所中断的链路的信息之后的新的拓扑信息。并且,该第二拓扑信息中所包含的光层的新的拓扑信息,与第一拓扑信息中所包含的光层的拓扑信息不同。进一步地,第一控制器可根据第二拓扑信息,确定业务故障路径的业务恢复路径。
具体地,第二拓扑信息包括IP层的新的拓扑信息、光层的新的拓扑信息和中间链路的新信息。并且,光层的新的拓扑信息与光层的旧的拓扑信息不同。其中,所说的光层的旧的拓扑信息是指步骤301中所获取的第一拓扑信息中的光层的拓扑信息。
若故障信息只包括光层的故障信息,则,IP层的新的拓扑信息与IP层的旧的拓扑信息相同,中间链路的新信息与中间链路的旧的信息相同。若故障信息包括光层的故障信息和IP层的故障信息,则,IP层的新的拓扑信息与IP层的旧的拓扑信息不同,中间链路的新信息与中间链路的旧的信息相同。若故障信息包括光层的故障信息和层间链路的故障信息,则,IP层的新的拓扑信息与IP层的旧的拓扑信息相同,中间链路的新信息与中间链路的旧的信息不同。若故障信息包括光层的故障信息、IP层的故障信息和层间链路的故障信息,则,IP层的新的拓扑信息与IP层的旧的拓扑信息不同,中间链路的新信息与中间链路的旧的信息不同。其中,所说的IP层的旧的拓扑信息是指步骤301中所获取的第一拓扑信息中的IP层的拓扑信息,中间链路的旧的信息是指步骤301中所获取的第一拓扑信息中的中间链路的信息。
具体地,第一控制器可根据该第二拓扑信息,采用统一资源分配算法来确定业务恢复路径。也就是说,第一控制器可根据IP-over-Optical全网的资源占用情况来确定一条比较优化的业务恢复路径,这样能够保证该业务的传输,并且能够减少资源浪费。
例如,即使故障信息只包括光层的故障信息,该业务恢复路径与业务故障路径相比,可能光层的路径和IP层的路径均不相同。
并且,在步骤304之后,第一控制器可将业务恢复路径中的与光层的节点有关的配置信息发送至第二控制器,该配置信息用于第二控制器在光层的节点上配置业务恢复路径中与光层的节点有关的路径。
具体地,第一控制器可通过协议接口将业务恢复路径中与光层的节点有关的配置信息发送至第二控制器。
进一步地,第一控制器可接收第二控制器发送的反馈信息,该反馈信息是第二控制器在将业务恢复路径中的与光层的节点有关的路径配置成功之后发送的。
若业务恢复路径中的与IP层的节点有关的路径,和业务故障路径中的与IP层的节点有关的路径不同,第一控制器还可在IP层的节点上配置业务恢复路径中与IP层的节点有关的路径。
具体地,第一控制器可以流表的形式下发至相应的IP层的节点。
可选地,作为一个实施例,在步骤304之后,第一控制器可释放因故障信息而中断的连接所占用的资源,并进一步更新因释放所引起的网络资源的占用状态的变化。从而可以保证使用业务恢复路径进行传输的资源。
图4是本发明另一个实施例的故障恢复的方法的流程图。图4所示的方法包括:
401,第二控制器获取光层的故障信息。
402,第二控制器将光层的故障信息发送至第一控制器,以使得第一控制器根据该光层的故障信息和拓扑信息确定与该故障信息有关的业务以及该业务的业务恢复路径,该拓扑信息包括光层的拓扑信息、IP层的拓扑信息和层间链路的信息,层间链路是IP层的节点与光层的节点之间的链路。
本发明实施例通过第一控制器获取IP-over-Optical网络的全网的拓扑信息和全网的故障信息,并进一步确定业务恢复路径。这样能够根据全网拓扑提供最优的业务恢复路径,并且故障恢复的耗时较短。
本发明实施例中,第二控制器是光层控制器,第一控制器是IP层控制器或者总控制器。
可选地,作为一个实施例,图4所示的方法还可包括:第二控制器获取光层的拓扑信息,并将光层的拓扑信息发送至第一控制器。
可选地,作为另一个实施例,图4所示的方法还可包括:第二控制器接收第一控制器发送的配置信息,该配置信息为业务恢复路径中的与光层的节点有关的配置信息。进一步地,第二控制器根据该配置信息在光层的节点上配置业务恢复路径中与光层的节点有关的路径。
具体地,第二控制器可通过流表的形式将该配置信息下发至相应的光层的节点。
并且,在第二控制器完成上述配置之后,可释放光层的因故障信息而中断的连接所占用的资源,并进一步更新因释放所引起的网络资源的占用状态的变化。从而可以保证使用业务恢复路径进行传输的资源。
在步骤401中,第二控制器可从光层的节点直接获取光层的故障信息,或者,第二控制器可先从光层的节点接收告警信息,再进一步根据告警信息的内容来确定故障信息,本发明对此不作限定。
具体地,光层的节点依靠节点自身所支持的物理监测能力,当在互连端口上的接收方向上监测到光功率突变为0或降低到某个阈值时,则生成一个相应的告警信息,并将告警信息上报至第二控制器。其中,告警消息可以包括但不限于节点ID、端口ID、告警级别和事件类型。
可选地,作为一个实施例,在步骤401中,第二控制器还可获取层间链路的故障信息。并相应地,在步骤402中,第二控制器可将光层的故障信息和层间链路的故障信息发送至第一控制器。
可选地,在步骤402中,第二控制器可根据恢复策略,将该光层的故障信息发送至第一控制器。其中,该恢复策略是存储在第二控制器上的,该恢复策略用于该第二控制器进行故障恢复的策略。
具体地,恢复策略可以是IP层与光层的同时恢复策略,此时,在步骤401之后,第二控制器不进行故障恢复,直接执行步骤402,将故障信息发送至第一控制器。而第一控制器可执行IP层的FRR,并根据IP层的保护资源预留确定业务恢复路径,或者,第一控制器可同时根据光层的保护资源预留和IP层的保护资源预留来确定业务恢复路径。
或者,恢复策略可以是先光层后IP层的顺序恢复策略,此时,在步骤401之后,第二控制器可根据光层的故障信息,执行光层倒换,确定光层的故障恢复路径。再在步骤402中,将光层的故障信息和光层的故障恢复路径一并发送至第一控制器。随后,第一控制器可根据全网的拓扑信息决定调整或者不调整业务恢复路径。
或者,恢复策略可以为光层的单层恢复策略,此时,在步骤401之后,第二控制器可根据光层的故障信息,执行在光层预先设置的保护资源预留和交叉连接倒换方案,来确定业务恢复路径。在这种情况下,第二控制器若可完成光层 的单层恢复,第二控制器不再执行步骤402,即第二控制器不再将故障信息发送至第一控制器。
可选地,该恢复策略可以是存储在第二控制器中的操作管理维护(Operation Administration and Maintenance,OAM)配置信息。该恢复策略可以是预配置的。
为了方便描述本发明实施例,以下图5和图6中的实施例以图2所示的场景作为描述场景,并以图2中所示的PE设备208和PE设备209之间的业务为例进行描述。
如图2所示,PE设备208可通过节点201或节点203接入网络,PE设备209可通过节点205接入网络。并假设PE设备208和PE设备209之间的业务传输路径为PE设备208→节点203→节点213→节点215→节点205→PE设备209。
图5是本发明另一个实施例的故障恢复的方法的流程图。图5所示的方法包括:
501,光层控制器207获取光层的拓扑信息。
该光层的拓扑信息包括光层的各个节点之间的连接关系。
在步骤501之后,节点213和节点215之间的链路发生断纤故障。
502,光层控制器207获取光层的故障信息。
具体地,节点213和节点215在互连端口上的接收方向上监测到光功率突变为0或降低到某个阈值时,分别生成一个相应的告警信息,并将告警信息上报至光层控制器207。光层控制器207结合节点213和节点215上报的告警信息,可确定光层的故障信息。该光层的故障信息包括故障的位置:节点213和节点215之间的链路,和故障的类型:断纤。
503,光层控制器207将光层的拓扑信息和光层的故障信息发送至IP层控制器206。
应注意,该步骤中,光层控制器207可将光层的拓扑信息和光层的故障信息同时发送至IP层控制器206,或者,光层控制器207也可将光层的拓扑信息和光层的故障信息先后发送至IP层控制器206,本发明对此不作限定。
具体地,光层控制器207根据恢复策略,确定将光层的故障信息发送至IP层控制器206。
504,IP层控制器206确定业务以及业务故障路径。
具体地,IP层控制器206根据光层的故障信息确定该故障信息所影响的业务是PE设备208和PE设备209之间的业务,并且可进一步确定该业务的业务故障路径为:PE设备208→节点203→节点213→节点215→节点205→PE设备209。
应注意,IP层控制器206是根据所确定的业务和第一拓扑信息确定业务故障路径的。其中,第一拓扑信息是指包括IP层和光层的全网的拓扑信息。
具体地,IP层控制器206需根据IP层的拓扑信息、光层的拓扑信息和层间 链路的拓扑信息来确定第一拓扑信息的。其中,IP层的拓扑信息和层间链路的拓扑信息提前存储在该IP层控制器206中。
505,IP层控制器206确定业务恢复路径。
具体地,IP层控制器206根据光层的故障信息和第一拓扑信息确定第二拓扑信息,并根据第二拓扑信息确定业务恢复路径,并且该业务恢复路径用于PE设备208和PE设备209之间的业务传输。
其中,第二拓扑信息是在第一拓扑信息中除去光层的故障信息所中断的链路的信息之后的新的拓扑信息,该第二拓扑信息指示节点213和节点215之间没有之间连接。
例如,假设IP层控制器206采用统一资源分配算法所确定的业务恢复路径为:PE设备208→节点203→节点213→节点214→节点215→节点205→PE设备209。
506,IP层控制器206将业务恢复路径中与光层的节点有关的配置信息发送至光层控制器207。
具体地,业务恢复路径与业务故障路径相比,所涉及的IP层的节点相同,并且经IP层的节点的传输关系也相同。业务恢复路径和业务故障路径中所涉及的IP层的节点均为节点203和节点205。并且,业务恢复路径和业务故障路径均指示节点203的上一跳为PE设备208,下一跳为节点213。业务恢复路径和业务故障路径均指示节点205的上一跳为节点215,下一跳为PE设备209。因此,IP层控制器206不需要重新配置节点203和节点205上的信息。
具体地,业务恢复路径与业务故障路径相比,所涉及的光层的节点有所不同。业务故障路径中所涉及的光层的节点为节点213和节点215,而业务恢复路径中所涉及的光层的节点为节点213、节点214和节点215。因此,节点213、节点214和节点215上的信息需要重新配置。
507,光层控制器207根据配置信息配置业务恢复路径中与光层的节点有关的路径。
具体地,光层控制器207通过流表的形式将该配置信息下发至节点213、节点214和节点215。即,光层控制器207指示节点213的下一跳为节点214,指示节点214的下一跳为节点215。
这样,便完成了PE设备208和PE设备209之间的业务恢复路径的建立。
图6是本发明另一个实施例的故障恢复的方法的流程图。图5所示的方法包括:
601,IP层控制器206获取IP层的拓扑信息和层间链路的拓扑信息;光层控制器207获取光层的拓扑信息。
602,光层控制器207将光层的拓扑信息发送至IP层控制器206。
603,IP层控制器206确定第一拓扑信息。
具体地,IP层控制器206根据IP层的拓扑信息、光层的拓扑信息和层间链路的拓扑信息确定第一拓扑信息。第一拓扑信息为全网的拓扑信息。
假设在步骤603之后,节点203和节点213之间的链路发生断纤故障,并且同时节点212产生失灵故障。
604,IP层控制器206获取第一告警信息,光层控制器207获取第二告警信息。
具体地,IP层控制器206接收节点203发送的第一告警信息,该第一告警信息指示节点203与节点201连接的端口的信号丢失。
光层控制器207接收由节点211、节点213和节点214发送的第二告警信息。其中,节点211发送的告警信息指示节点211与节点212连接的端口的信号丢失。节点214发送的告警信息指示节点214与节点212连接的端口的信号丢失。节点213发送的告警信息指示节点213与节点212连接的端口的信号丢失,以及指示节点213与节点203连接的端口的信号丢失。
605,光层控制器207将第二告警信息发送至IP层控制器206。
具体地,光层控制器207根据恢复策略,将第二告警信息发送至IP层控制器206。该恢复策略可以是存储在光层控制器207中的OAM配置信息。
606,IP层控制器206确定故障信息。
具体地,IP层控制器206可根据故障判断机制,结合第一告警信息和第二告警信息,确定故障信息。该故障判断机制可以是根据该IP层控制器206对故障的监测能力等所预配置的。对故障的监测能力包括获知故障的耗时等。
其中,该故障信息包括故障的个数,故障的位置和故障的类型。该故障信息包括节点203和节点213之间的断纤故障,以及节点212的失灵故障。
607,IP层控制器206确定业务以及业务故障路径。
具体地,IP层控制器206根据故障信息,确定该故障信息所影响的业务为PE设备208和PE设备209之间的业务,以及该业务的业务故障路径为PE设备208→节点203→节点213→节点215→节点205→PE设备209。
608,IP层控制器206确定业务恢复路径。
具体地,IP层控制器206可根据第一拓扑信息和故障信息确定第二拓扑信息,并根据第二拓扑信息确定业务恢复路径,并且该业务恢复路径用于PE设备208和PE设备209之间的业务传输。
其中,第二拓扑信息是在第一拓扑信息中除去故障信息所中断的链路的信息之后的新的拓扑信息。
具体地,IP层控制器206可根据该第二拓扑信息进行跨层协商和决策,并结合网络资源状态,确定一条最优的业务重建路径为业务恢复路径。
例如,IP层控制器206所确定的业务恢复路径可以为PE设备208→节点201→节点211→节点213→节点215→节点205→PE设备209。
609,IP层控制器206配置业务恢复路径中与IP层的节点有关的路径。
具体地,IP层控制器206可以流表的形式将第一配置信息下发至PE设备208和节点201。该第一配置信息为业务恢复路径中与IP层的节点有关的配置信息。即,该第一配置信息指示PE设备208的下一跳为节点201,指示节点201的下一跳为节点211。而节点205上的配置信息与业务故障路径中在节点205上的配置信息相同,此时IP层控制器206无需在节点205重新进行配置。
610,IP层控制器206将业务恢复路径中与光层的节点有关的配置信息发送至光层控制器207。
具体地,业务恢复路径与业务故障路径相比,所涉及的光层的节点有所不同。业务故障路径中所涉及的光层的节点为节点213和节点215,而业务恢复路径中所涉及的光层的节点为节点211、节点213和节点215。因此,节点211、节点213和节点215上的信息需要重新配置。
611,光层控制器207配置业务恢复路径中与光层的节点有关的路径。
具体地,光层控制器207将第二配置信息通过流表的形式下发至节点211和节点213。该第二配置信息为业务恢复路径中与光层的节点有关的配置信息。而节点215上的配置信息与业务故障路径中在节点215上的配置信息相同,此时光层控制器207无需在节点215重新进行配置。即,光层控制器207指示节点211的下一跳为节点213,节点213的上一跳为节点211。
可选地,在步骤611之后,光层控制器207可发送反馈信息至IP层控制器206,该反馈信息用于指示光层控制器207建立业务恢复路径中与光层的节点有关的路径的过程已经完成。随后,IP层控制器206可释放业务故障路径在节点203上所占用的资源。
应注意,本发明实施例中,步骤609也可以在步骤610之后再执行,或者步骤609也可以在步骤611之后再执行。本发明对此不作限定。
这样,本发明实施例中,IP层控制器能够获取IP层和光层的拓扑,以及能够获取IP层和光层的故障信息,对于出现的多点故障,也能够及时地确定业务恢复路径。
图7是本发明一个实施例的控制器的框图。图7所示的控制器700包括第一获取单元701、第二获取单元702、第一确定单元703和第二确定单元704。
第一获取单元701用于获取第一拓扑信息,该第一拓扑信息包括IP层的拓扑信息、光层的拓扑信息和层间链路的信息,该层间链路是IP层的节点与光层的节点之间的链路。第二获取单元702用于获取故障信息,该故障信息至少包括光层的故障信息。第一确定单元703用于根据第二获取单元702获取的故障 信息,确定与该故障信息有关的业务以及该业务的业务故障路径。第二确定单元704用于根据第一获取单元701获取的第一拓扑信息和第二获取单元702获取的故障信息,确定第一确定单元703确定的业务故障路径的业务恢复路径,该业务恢复路径用于该业务的传输。
本发明实施例通过第一控制器获取IP-over-Optical网络的全网的拓扑信息和全网的故障信息,并进一步确定业务恢复路径。这样能够根据全网拓扑提供最优的业务恢复路径,并且故障恢复的耗时较短。
可选地,作为一个实施例,控制器700还可包括发送单元,用于将第一配置信息发送至另一控制器,该第一配置信息用于另一控制器在光层的节点上配置该业务恢复路径中与光层的节点有关的路径,其中,第一配置信息为业务恢复路径中的与光层的节点有关的配置信息。
可选地,作为另一个实施例,控制器700为总控制器,当业务恢复路径中的与IP层的节点有关的路径,和业务故障路径中的与IP层的节点有关的路径不同时,发送单元,还可用于:将第二配置信息发送至IP层控制器,该第二配置信息用于IP层控制器在IP层的节点上配置业务恢复路径中与IP层的节点有关的路径,其中,第二配置信息为业务恢复路径中的与IP层的节点有关的配置信息。
可选地,作为另一个实施例,控制器700为IP层控制器,当业务恢复路径中的与IP层的节点有关的路径,和业务故障路径中的与IP层的节点有关的路径不同时,发送单元,还可用于:在IP层的节点上配置业务恢复路径中与IP层的节点有关的路径。
可选地,作为另一个实施例,光层的拓扑信息是控制器700从该另一控制器获取的,层间链路的信息是控制器700从该另一控制器获取的。
可选地,作为另一个实施例,第二确定单元704可具体用于:根据第一拓扑信息和故障信息,确定第二拓扑信息,该第二拓扑信息中所包含的光层的新的拓扑信息,与第一拓扑信息中所包含的光层的拓扑信息不同;根据该第二拓扑信息,确定业务故障路径的业务恢复路径。
可选地,作为另一个实施例,故障信息还包括:IP层的故障信息和/或层间链路的故障信息。
控制器700能够实现图3至图6的实施例中由第一控制器实现的各个过程,未避免重复,这里不再赘述。
图8是本发明另一个实施例的控制器的框图。图8所示的控制器800包括:第一获取单元801和第一发送单元802。
第一获取单元801用于获取光层的故障信息。第一发送单元802用于将第一获取单元801获取的光层的故障信息发送至第一控制器,以使得第一控制器根 据该光层的故障信息和拓扑信息确定与故障信息有关的业务以及该业务的业务恢复路径,拓扑信息包括光层的拓扑信息、IP层的拓扑信息和层间链路的信息,层间链路是IP层的节点与光层的节点之间的链路。
本发明实施例通过第一控制器获取IP-over-Optical网络的全网的拓扑信息和全网的故障信息,并进一步确定业务恢复路径。这样能够根据全网拓扑提供最优的业务恢复路径,并且故障恢复的耗时较短。
可选地,作为一个实施例,控制器800还可包括第二获取单元和第二发送单元。第二获取单元可用于获取光层的拓扑信息。第二发送单元可用于将第二获取单元所获取的光层的拓扑信息发送至第一控制器。
可选地,作为另一个实施例,控制器800还可包括接收单元和配置单元。其中,接收单元用于接收第一控制器发送的配置信息,该配置信息为业务恢复路径中的与光层的节点有关的配置信息。配置单元用于根据接收单元接收的配置信息在光层的节点上配置业务恢复路径中与光层的节点有关的路径。
可选地,作为另一个实施例,第一获取单元801可具体用于:根据恢复策略,确定将光层的故障信息发送至第一控制器。
控制器800能够实现图3至图6的实施例中由第二控制器实现的各个过程,未避免重复,这里不再赘述。
图9是本发明另一个实施例的控制器的框图。图9所示的控制器900包括:处理器901、存储器902、接收电路903和发送电路904。
接收电路903用于获取第一拓扑信息,该第一拓扑信息包括IP层的拓扑信息、光层的拓扑信息和层间链路的信息,该层间链路是IP层的节点与光层的节点之间的链路。并获取故障信息,该故障信息至少包括光层的故障信息。处理器901用于根据接收电路903获取的故障信息,确定与该故障信息有关的业务以及该业务的业务故障路径。并根据接收电路903获取的第一拓扑信息和接收电路903获取的故障信息,确定业务故障路径的业务恢复路径,该业务恢复路径用于该业务的传输。
本发明实施例通过第一控制器获取IP-over-Optical网络的全网的拓扑信息和全网的故障信息,并进一步确定业务恢复路径。这样能够根据全网拓扑提供最优的业务恢复路径,并且故障恢复的耗时较短。
控制器900中的各个组件通过总线系统905耦合在一起,其中总线系统905除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图9中将各种总线都标为总线系统905。
上述本发明实施例揭示的方法可以应用于处理器901中,或者由处理器901实现。处理器901可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器901中的硬件的集成逻辑电路或者软 件形式的指令完成。上述的处理器901可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器902,处理器901读取存储器902中的信息,结合其硬件完成上述方法的步骤。
可选地,作为一个实施例,发送电路904可用于将第一配置信息发送至另一控制器,该第一配置信息用于另一控制器在光层的节点上配置该业务恢复路径中与光层的节点有关的路径,其中,第一配置信息为业务恢复路径中的与光层的节点有关的配置信息。
可选地,作为另一个实施例,控制器900为总控制器,当业务恢复路径中的与IP层的节点有关的路径,和业务故障路径中的与IP层的节点有关的路径不同时,发送电路904还可用于:将第二配置信息发送至IP层控制器,该第二配置信息用于IP层控制器在IP层的节点上配置业务恢复路径中与IP层的节点有关的路径,其中,第二配置信息为业务恢复路径中的与IP层的节点有关的配置信息。
可选地,作为另一个实施例,控制器900为IP层控制器,当业务恢复路径中的与IP层的节点有关的路径,和业务故障路径中的与IP层的节点有关的路径不同时,发送电路904还可用于:在IP层的节点上配置业务恢复路径中与IP层的节点有关的路径。
可选地,作为另一个实施例,光层的拓扑信息是控制器900从该另一控制器获取的,层间链路的信息是控制器900从该另一控制器获取的。
可选地,作为另一个实施例,处理器901可具体用于:根据第一拓扑信息和故障信息,确定第二拓扑信息,该第二拓扑信息中所包含的光层的新的拓扑信息,与第一拓扑信息中所包含的光层的拓扑信息不同;根据该第二拓扑信息,确定业务故障路径的业务恢复路径。
可选地,作为另一个实施例,故障信息还包括:IP层的故障信息和/或层间链路的故障信息。
控制器900能够实现图3至图6的实施例中由第一控制器实现的各个过程, 未避免重复,这里不再赘述。
图10是本发明另一个实施例的控制器的框图。图10所示的控制器1000包括:处理器1001、存储器1002、接收电路1003和发送电路1004。
接收电路1003用于获取光层的故障信息。发送电路1004用于将接收电路1003获取的光层的故障信息发送至第一控制器,以使得第一控制器根据该光层的故障信息和拓扑信息确定与故障信息有关的业务以及该业务的业务恢复路径,拓扑信息包括光层的拓扑信息、IP层的拓扑信息和层间链路的信息,层间链路是IP层的节点与光层的节点之间的链路。
本发明实施例通过第一控制器获取IP-over-Optical网络的全网的拓扑信息和全网的故障信息,并进一步确定业务恢复路径。这样能够根据全网拓扑提供最优的业务恢复路径,并且故障恢复的耗时较短。
控制器1000中的各个组件通过总线系统1005耦合在一起,其中总线系统1005除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图10中将各种总线都标为总线系统1005。
上述本发明实施例揭示的方法可以应用于处理器1001中,或者由处理器1001实现。处理器1001可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1001可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于RAM、闪存、ROM、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件完成上述方法的步骤。
可选地,作为一个实施例,接收电路1003还可用于获取光层的拓扑信息。发送电路1004还可用于将接收电路1003所获取的光层的拓扑信息发送至第一控制器。
可选地,作为另一个实施例,接收电路1003还可用于接收第一控制器发送的配置信息,该配置信息为业务恢复路径中的与光层的节点有关的配置信息。处理器1001用于根据接收单元接收的配置信息在光层的节点上配置业务恢复路径中与光层的节点有关的路径。
可选地,作为另一个实施例,接收电路1003可具体用于:根据恢复策略,确定将光层的故障信息发送至第一控制器。
控制器1000能够实现图3至图6的实施例中由第二控制器实现的各个过程,未避免重复,这里不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种故障恢复的方法,其特征在于,所述方法包括:
    第一控制器获取第一拓扑信息,所述第一拓扑信息包括网络协议IP层的拓扑信息、光层的拓扑信息和层间链路的信息,所述层间链路是所述IP层的节点与所述光层的节点之间的链路;
    所述第一控制器获取故障信息,所述故障信息至少包括所述光层的故障信息;
    所述第一控制器根据所述故障信息,确定与所述故障信息有关的业务以及所述业务的业务故障路径;
    所述第一控制器根据所述第一拓扑信息和所述故障信息,确定所述业务故障路径的业务恢复路径,所述业务恢复路径用于所述业务的传输。
  2. 根据权利要求1所述的方法,其特征在于,在所述确定所述业务故障路径的业务恢复路径之后,所述方法还包括:
    所述第一控制器将第一配置信息发送至第二控制器,所述第一配置信息用于所述第二控制器在所述光层的节点上配置所述业务恢复路径中与所述光层的节点有关的路径,
    其中,所述第一配置信息为所述业务恢复路径中的与所述光层的节点有关的配置信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一控制器为总控制器,当所述业务恢复路径中的与所述IP层的节点有关的路径,和所述业务故障路径中的与所述IP层的节点有关的路径不同时,所述方法还包括:
    所述第一控制器将第二配置信息发送至IP层控制器,所述第二配置信息用于所述IP层控制器在所述IP层的节点上配置所述业务恢复路径中与所述IP层的节点有关的路径,
    其中,所述第二配置信息为所述业务恢复路径中的与所述IP层的节点有关的配置信息。
  4. 根据权利要求2所述的方法,其特征在于,所述第一控制器为IP层控制器,当所述业务恢复路径中的与所述IP层的节点有关的路径,和所述业务故障路径中的与所述IP层的节点有关的路径不同时,所述方法还包括:
    所述第一控制器在所述IP层的节点上配置所述业务恢复路径中与所述IP层的节点有关的路径。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述光层的拓扑信息由所述第一控制器从所述第二控制器获取,所述层间链路的信息由所述第一控制器从所述第二控制器获取。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,所述第一控制器根据所述第一拓扑信息和所述故障信息,确定所述业务故障路径的业务恢复路径,包括:
    所述第一控制器根据所述第一拓扑信息和所述故障信息,确定第二拓扑信息,所述第二拓扑信息中所包含的所述光层的新的拓扑信息,与所述第一拓扑信息中所包含的所述光层的拓扑信息不同;
    所述第一控制器根据所述第二拓扑信息,确定所述业务故障路径的所述业务恢复路径。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述故障信息还包括:所述IP层的故障信息和/或所述层间链路的故障信息。
  8. 一种故障恢复的方法,其特征在于,所述方法包括:
    第二控制器获取光层的故障信息;
    所述第二控制器将所述光层的故障信息发送至第一控制器,以使得所述第一控制器根据所述光层的故障信息和拓扑信息确定与所述故障信息有关的业务以及所述业务的业务恢复路径,所述拓扑信息包括所述光层的拓扑信息、网络协议IP层的拓扑信息和层间链路的信息,所述层间链路是所述IP层的节点与所述光层的节点之间的链路。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第二控制器获取光层的拓扑信息;
    所述第二控制器将所述光层的拓扑信息发送至所述第一控制器。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述第二控制器接收所述第一控制器发送的配置信息,所述配置信息为所述业务恢复路径中的与所述光层的节点有关的配置信息;
    所述第二控制器根据所述配置信息在所述光层的节点上配置所述业务恢复路径中与所述光层的节点有关的路径。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述第二控制器将所述光层的故障信息发送至第一控制器,包括:
    所述第二控制器根据恢复策略,确定将所述光层的故障信息发送至所述第一控制器。
  12. 一种控制器,其特征在于,所述控制器包括:
    第一获取单元,用于获取第一拓扑信息,所述第一拓扑信息包括网络协议IP层的拓扑信息、光层的拓扑信息和层间链路的信息,所述层间链路是所述IP层的节点与所述光层的节点之间的链路;
    第二获取单元,用于获取故障信息,所述故障信息至少包括所述光层的故障信息;
    第一确定单元,用于根据所述第二获取单元获取的所述故障信息,确定与所述故障信息有关的业务以及所述业务的业务故障路径;
    第二确定单元,用于根据所述第一获取单元获取的所述第一拓扑信息和所述第二获取单元获取的所述故障信息,确定所述第一确定单元确定的所述业务故障路径的业务恢复路径,所述业务恢复路径用于所述业务的传输。
  13. 根据权利要求12所述的控制器,其特征在于,所述控制器还包括:
    发送单元,用于:将第一配置信息发送至另一控制器,所述第一配置信息用于所述另一控制器在所述光层的节点上配置所述业务恢复路径中与所述光层的节点有关的路径,
    其中,所述第一配置信息为所述业务恢复路径中的与所述光层的节点有关的配置信息。
  14. 根据权利要求13所述的控制器,其特征在于,所述控制器为总控制器,当所述业务恢复路径中的与所述IP层的节点有关的路径,和所述业务故障路径中的与所述IP层的节点有关的路径不同时,所述发送单元,还用于:
    将第二配置信息发送至IP层控制器,所述第二配置信息用于所述IP层控制器在所述IP层的节点上配置所述业务恢复路径中与所述IP层的节点有关的路径,
    其中,所述第二配置信息为所述业务恢复路径中的与所述IP层的节点有关的配置信息。
  15. 根据权利要求13所述的控制器,其特征在于,所述控制器为IP层控制器,当所述业务恢复路径中的与所述IP层的节点有关的路径,和所述业务故障路径中的与所述IP层的节点有关的路径不同时,所述发送单元,还用于:
    在所述IP层的节点上配置所述业务恢复路径中与所述IP层的节点有关的路径。
  16. 根据权利要求12至15任一项所述的控制器,其特征在于,所述光层的拓扑信息是所述控制器从所述另一控制器获取的,所述层间链路的信息是所述控制器从所述另一控制器获取的。
  17. 根据权利要求12至16任一项所述的控制器,其特征在于,所述第二确定单元,具体用于:
    根据所述第一拓扑信息和所述故障信息,确定第二拓扑信息,所述第二拓扑信息中所包含的所述光层的新的拓扑信息,与所述第一拓扑信息中所包含的所述光层的拓扑信息不同;
    根据所述第二拓扑信息,确定所述业务故障路径的所述业务恢复路径。
  18. 根据权利要求12至17任一项所述的控制器,其特征在于,所述故障信息还包括:所述IP层的故障信息和/或所述层间链路的故障信息。
  19. 一种控制器,其特征在于,所述控制器包括:
    第一获取单元,用于获取光层的故障信息;
    第一发送单元,用于将所述第一获取单元获取的所述光层的故障信息发送至第一控制器,以使得所述第一控制器根据所述光层的故障信息和拓扑信息确定与所述故障信息有关的业务以及所述业务的业务恢复路径,所述拓扑信息包括所述光层的拓扑信息、网络协议IP层的拓扑信息和层间链路的信息,所述层间链路是所述IP层的节点与所述光层的节点之间的链路。
  20. 根据权利要求19所述的控制器,其特征在于,所述控制器还包括:
    第二获取单元,还用于获取光层的拓扑信息;
    第二发送单元,还用于将所述第二获取单元获取的所述光层的拓扑信息发送至所述第一控制器。
  21. 根据权利要求19或20所述的控制器,其特征在于,所述控制器还包括:
    接收单元,用于接收所述第一控制器发送的配置信息,所述配置信息为所述业务恢复路径中的与所述光层的节点有关的配置信息;
    配置单元,用于根据所述接收单元接收的所述配置信息在所述光层的节点上配置所述业务恢复路径中与所述光层的节点有关的路径。
  22. 根据权利要求19至21所述的控制器,其特征在于,所述第一获取单元,具体用于:根据恢复策略,确定将所述光层的故障信息发送至所述第一控制器。
PCT/CN2014/093842 2013-12-30 2014-12-15 故障恢复的方法及控制器 WO2015101168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310744223.4A CN103746841A (zh) 2013-12-30 2013-12-30 故障恢复的方法及控制器
CN201310744223.4 2013-12-30

Publications (1)

Publication Number Publication Date
WO2015101168A1 true WO2015101168A1 (zh) 2015-07-09

Family

ID=50503832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093842 WO2015101168A1 (zh) 2013-12-30 2014-12-15 故障恢复的方法及控制器

Country Status (2)

Country Link
CN (1) CN103746841A (zh)
WO (1) WO2015101168A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885630A (zh) * 2020-07-01 2020-11-03 中国联合网络通信集团有限公司 数据传输方法及通信装置
CN113727221A (zh) * 2021-08-13 2021-11-30 烽火通信科技股份有限公司 一种光网络智能控制方法、装置及系统
WO2024051060A1 (zh) * 2022-09-08 2024-03-14 烽火通信科技股份有限公司 一种ip和光网络保护倒换协同管控的方法和系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746841A (zh) * 2013-12-30 2014-04-23 华为技术有限公司 故障恢复的方法及控制器
CN104539445B (zh) * 2014-12-01 2018-02-23 北京百度网讯科技有限公司 一种用于管理业务资源的方法和装置
CN106850424A (zh) * 2015-12-07 2017-06-13 中国联合网络通信集团有限公司 一种ip层路径的选择方法、装置及系统
ES2747523T3 (es) * 2016-02-16 2020-03-10 Huawei Tech Co Ltd Método y aparato para asignación de ruta óptica
CN107872384B (zh) * 2016-09-28 2021-09-28 中兴通讯股份有限公司 一种网络带宽的调整方法及装置
WO2018098818A1 (zh) * 2016-12-02 2018-06-07 华为技术有限公司 联合路由建立方法及装置
CN111200506B (zh) * 2018-11-19 2023-08-29 中兴通讯股份有限公司 一种故障感知方法及装置和控制器
CN111988682B (zh) * 2019-05-22 2022-11-04 华为技术有限公司 网络控制方法、装置和系统
CN112087257B (zh) * 2019-06-13 2022-04-12 华为技术有限公司 一种光网络的故障保护方法、设备和系统
CN112860496A (zh) 2019-11-27 2021-05-28 华为技术有限公司 故障修复操作推荐方法、装置及存储介质
CN111984474B (zh) * 2020-09-27 2022-08-19 苏州浪潮智能科技有限公司 一种双控集群故障恢复的方法、系统及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136940A (zh) * 2010-12-31 2011-07-27 华为技术有限公司 一种网络恢复方法和装置
CN102186124A (zh) * 2011-04-29 2011-09-14 东北大学 一种wdm光网络中的基于效用的层间协调方法
CN103746841A (zh) * 2013-12-30 2014-04-23 华为技术有限公司 故障恢复的方法及控制器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136940A (zh) * 2010-12-31 2011-07-27 华为技术有限公司 一种网络恢复方法和装置
CN102186124A (zh) * 2011-04-29 2011-09-14 东北大学 一种wdm光网络中的基于效用的层间协调方法
CN103746841A (zh) * 2013-12-30 2014-04-23 华为技术有限公司 故障恢复的方法及控制器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885630A (zh) * 2020-07-01 2020-11-03 中国联合网络通信集团有限公司 数据传输方法及通信装置
CN111885630B (zh) * 2020-07-01 2023-06-30 中国联合网络通信集团有限公司 数据传输方法及通信装置
CN113727221A (zh) * 2021-08-13 2021-11-30 烽火通信科技股份有限公司 一种光网络智能控制方法、装置及系统
WO2024051060A1 (zh) * 2022-09-08 2024-03-14 烽火通信科技股份有限公司 一种ip和光网络保护倒换协同管控的方法和系统

Also Published As

Publication number Publication date
CN103746841A (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
WO2015101168A1 (zh) 故障恢复的方法及控制器
US8886831B2 (en) System and methodology for fast link failover based on remote upstream failures
Song et al. Control path management framework for enhancing software-defined network (SDN) reliability
EP2985952B1 (en) Method and device for protecting service reliability, and network virtualization system
US9203732B2 (en) Recovery of traffic in a connection-oriented network
JP2007129606A (ja) 伝送路システム、および同システムにおけるフレーム伝送装置、ならびに伝送路切り替え方法、プログラム
WO2014176975A1 (zh) Drni中同一端内系统之间交互信息的方法和系统
CN103684716A (zh) 在可冗余操作的工业通信网络中传输消息的方法和可冗余操作的工业通信网络的通信设备
JP6308534B2 (ja) ネットワーク保護方法およびネットワーク保護装置、オフリングノード、ならびにシステム
JP2013519268A (ja) データ転送方法、データ転送装置及びデータ転送システム
CN110324375B (zh) 一种信息备份方法及相关设备
US8711681B2 (en) Switch redundancy in systems with dual-star backplanes
WO2011131069A1 (zh) 捆绑链路的检测方法及分布式设备
US10033573B2 (en) Protection switching method, network, and system
JP5567213B2 (ja) 要求に応じてプロバイダネットワークを通る接続を復旧するための方法および装置
EP3139527B1 (en) Protection switching method, node and control device
EP2953299B1 (en) Protection switching method, system and node
JP7447259B2 (ja) パケット伝送経路切り替え方法、デバイス、及びシステム
CN111885630B (zh) 数据传输方法及通信装置
US10862706B2 (en) Detection of node isolation in subtended ethernet ring topologies
EP2953294B1 (en) Protection switching method, system, and node
EP2898636B1 (en) Method for running a computer network
CN109495286B (zh) 相交环复用段告警检测方法及装置、计算机可读存储介质
JP4944986B2 (ja) 伝送路システムおよび伝送路構築方法
WO2012071831A1 (zh) 业务切换方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875930

Country of ref document: EP

Kind code of ref document: A1