WO2018098818A1 - 联合路由建立方法及装置 - Google Patents

联合路由建立方法及装置 Download PDF

Info

Publication number
WO2018098818A1
WO2018098818A1 PCT/CN2016/108427 CN2016108427W WO2018098818A1 WO 2018098818 A1 WO2018098818 A1 WO 2018098818A1 CN 2016108427 W CN2016108427 W CN 2016108427W WO 2018098818 A1 WO2018098818 A1 WO 2018098818A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
information
topology
link
controller
Prior art date
Application number
PCT/CN2016/108427
Other languages
English (en)
French (fr)
Inventor
石礌
乔光毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680089393.5A priority Critical patent/CN109716716B/zh
Priority to PCT/CN2016/108427 priority patent/WO2018098818A1/zh
Priority to EP16922644.6A priority patent/EP3515021A4/en
Publication of WO2018098818A1 publication Critical patent/WO2018098818A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/64Routing or path finding of packets in data switching networks using an overlay routing layer

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and an apparatus for establishing a joint route.
  • a backbone network for implementing data transmission over a wide range (for example, between cities) is in the ascendant.
  • the backbone network mainly adopts a cross-layer networking between an Intent Protocol (IP) layer and an optical layer.
  • IP Intent Protocol
  • the IP layer can be used to transmit upper layer services, including service encapsulation, multi-service aggregation, and service routing.
  • the optical layer can be used for large-capacity long-distance service transmission. In the process of service transmission, the service first reaches the IP layer. When the resources of the IP layer are insufficient, the optical layer can be combined to perform service transmission.
  • the IP layer and the optical layer belong to two networks respectively, in order to enable the IP layer and the optical layer to jointly transmit services, it is necessary to establish a joint route between the IP layer and the optical layer, that is, to establish an optimal service transmission path. Transmission business.
  • the system architecture mainly includes an IP controller and a light controller.
  • the IP controller may obtain virtual network topology (VNT) information of the optical layer from the optical controller, where the VNT information is used to indicate a VNT link set, and each VNT in the VNT link set.
  • the links are virtual links and are used to represent reachability between two nodes in the IP layer, as shown in link 1, link 2, and link 3 in FIG.
  • the IP controller needs to be based on the IP layer topology and optical layer.
  • the VNT information constructs an IP layer augmented topology and uses a Shortest Path First (SPF) algorithm to determine the transmission path that can transmit the service.
  • SPF Shortest Path First
  • the IP controller notifies the optical controller of the VNT identifier corresponding to the optical layer link that needs to be established in the transmission path, and the optical controller establishes an actual optical layer link according to the VNT identifier, thereby implementing IP layer and light.
  • the link since the VNT link only indicates that two nodes are reachable in the optical layer, the fact that multiple VNT links can occupy the same optical layer resource may result in There may be only one or a very small number of VNTs in the multiple VNT links.
  • the link can be successfully established, and the IP controller may require multiple VNT links to be established at the same time when determining the transmission path capable of transmitting the service based on the constructed IP layer augmented topology. In this case, it may be due to part of the VNT chain.
  • the path establishment failed, causing the joint route establishment to fail.
  • an embodiment of the present invention provides a joint route establishment method and apparatus.
  • the technical solution is as follows:
  • a method for establishing a joint route comprising:
  • the to-be-transmitted service first reaches the IP layer, and the IP controller calculates a path for the to-be-transmitted service.
  • the IP controller calculates the path fails due to factors such as insufficient IP layer resources, the The IP controller sends a joint routing setup request to the super controller.
  • the unified topology may be abstracted into a multi-layer centralized topology according to different modulation modes supported by the optical layer link, that is, in the unified topology, the link attributes between the two nodes may be different, for example, two
  • the modulation mode supported by the link between the nodes is a multi-ary frequency shift keying modulation module
  • the unified topology may be considered to include an IP layer topology and an optical layer topology, when the link between the two nodes supports
  • the modulation mode is the quadrature phase shift keying modulation mode
  • the unified topology may be considered to include an IP layer topology and another optical layer topology.
  • the unified topology constructed may be used to indicate the topological relationship between the IP layer and each node included in the optical layer, that is, the established joint route is based on the actual IP layer link and the optical layer chain.
  • the path is established, so that multiple VNT links can be prevented from occupying the same optical layer resource, and the joint route that needs to be established can be successfully established, thereby improving the success rate of the joint route establishment.
  • the establishing the joint route based on the unified topology includes: determining, according to the unified topology, the optical layer information required to establish the joint route from the optical layer resource topology information; The optical layer information required for the joint routing is sent to the optical controller, so that the optical controller establishes an optical layer link; when receiving the first setup success message sent by the optical controller, based on the unified a topology, the IP layer information required to establish the joint route is determined from the IP layer resource topology information, where the first setup success message is used to indicate that the optical layer link is successfully established; The IP layer information required at the time is sent to the IP controller to enable the IP controller to establish an IP layer link.
  • the implementation process of establishing a joint route based on the unified topology may include: determining, according to the unified topology, a joint route by specifying a shortest path algorithm.
  • the joint route includes the optical layer link and the IP layer link
  • the establishment of the optical layer link is controlled by the optical controller
  • the establishment of the IP layer link is controlled by the IP controller
  • the optical layer information required for the joint routing is sent to the optical controller, so that the optical controller establishes the optical layer link, and sends the IP layer information required for establishing the joint routing to the IP controller. So that the IP controller establishes the IP layer link, thereby establishing the establishment of the joint route.
  • the optical layer information and the IP layer information required for establishing the joint route are respectively sent to the optical controller and the IP controller, so that the optical controller establishes an optical layer link, and The IP controller establishes an IP layer link to implement successful establishment of the joint route.
  • the method further includes: establishing the optical layer resource topology information The optical layer information required for the joint routing is marked as occupied information.
  • the super controller When the super controller receives the first setup success message sent by the optical controller, it indicates that the optical controller has completed the establishment of the optical layer link required in the joint routing, thereby indicating the optical layer link.
  • the optical layer information used has been used.
  • the super controller identifies the optical layer information to refresh the optical layer resource topology information.
  • the refresh result it is learned which optical layer information has been occupied and which are not yet occupied, thereby determining the optical layer information required for establishing the joint route.
  • the optical layer resource topology information is refreshed according to the specific path occupation information of the optical layer, and the entire network refresh is not required, thereby improving the topology refresh time.
  • the method further includes: when receiving the second setup success message sent by the IP controller, The IP layer information required to establish the joint route in the IP layer resource topology information is marked as occupied information, and the second setup success message is used to indicate that the IP layer link is successfully established.
  • the super controller When the super controller receives the second setup success message sent by the IP controller, it indicates that the IP controller has completed the establishment of the IP layer link required in the joint route, thereby indicating the IP.
  • the IP layer information used by the layer link has been used.
  • the super controller identifies the IP layer information to refresh the IP layer resource topology information, so that the next time the joint routing is established. According to the refresh result, it can be known which IP layer information has been occupied and which are not occupied, thereby determining the IP layer information required for establishing the joint route.
  • the topology information of the corresponding IP layer resource is refreshed according to the specific path occupation information of the IP layer, and the entire network refresh is not required, thereby improving the topology refresh time.
  • the establishing the joint route based on the unified topology includes: when the joint routing setup request carries the constraint condition of the to-be-transmitted service, establishing, according to the unified topology, a constraint that meets the to-be-transmitted service Federated routing of conditions.
  • the finally established joint route can satisfy the constraint condition of the service to be transmitted, that is, avoids
  • the optical layer link in the joint route established by the VNT information cannot meet the constraints of the service to be transmitted, ensuring the success rate of service transmission, thereby improving the utilization of network resources.
  • the IP layer resource topology information includes at least one of a node, a link, a link cost, a link capacity, an affinity attribute, and a link attribute of an IP layer.
  • the IP layer resource topology information includes the number of idle IP ports corresponding to the IP layer node, the IP link with the remaining bandwidth, the path length value corresponding to each link, the link transmission delay, and the shared shared link group. Information, etc.
  • the IP layer resource topology information includes the foregoing multiple information, so that the super controller can perceive the node resource information of the IP layer, so that the super controller can construct a unified topology with the optical layer according to the IP layer resource topology information. And establish a joint route according to the unified topology.
  • the optical layer resource topology information includes source node information, sink node information, inter-node idle wavelength information, link distance, intra-node wavelength cross-link information, relay resource information, and link-supported modulation mode of the optical layer. At least one of them.
  • the idle wavelength information between the nodes includes the number of idle wavelengths transmitted between the nodes, and the intra-node wavelength cross-over information may include an optical layer node crossover capability, a node internal cross minimum cost, and a node internal wavelength crossover capacity.
  • the optical layer resource topology information includes the foregoing multiple information, so that the super controller can sense the node resource information of the optical layer.
  • the super controller can construct a unified topology between the IP layer and the IP layer according to the optical layer resource topology information. And establish a joint route according to the unified topology.
  • a joint route establishing apparatus comprising:
  • a receiving module configured to receive a joint routing setup request sent by a network protocol IP controller
  • a constructing module configured to determine node resource information of the IP layer and node resource information of the optical layer according to the IP layer resource topology information and the optical layer resource topology information, and based on the node resource information of the IP layer and the node resource of the optical layer And a unified topology between the IP layer and the optical layer, where the unified topology is used to indicate a topological relationship between the IP layer and each node included in the optical layer;
  • the establishing module includes:
  • a determining unit configured to determine, according to the unified topology, optical layer information required to establish the joint route from the optical layer resource topology information
  • a sending unit configured to send optical layer information required to establish the joint route to the optical controller, so that the optical controller establishes an optical layer link
  • the determining unit is configured to determine, according to the unified topology, an IP required to establish the joint route from the IP layer resource topology information when receiving the first setup success message sent by the optical controller. Layer information, where the first setup success message is used to indicate that the optical layer link is successfully established;
  • the sending unit is configured to send, to the IP controller, IP layer information required to establish the joint route, so that the IP controller establishes an IP layer link.
  • the device further includes:
  • a marking module configured to mark the optical layer information required to establish the joint routing in the optical layer resource topology information as occupied information.
  • the marking module :
  • the second setup success message is used to successfully establish the IP layer link.
  • the establishing module further includes:
  • a establishing unit configured to establish, according to the unified topology, a joint route that satisfies the constraint condition of the to-be-transmitted service, when the joint routing setup request carries a constraint condition of the to-be-transmitted service.
  • the IP layer resource topology information includes at least one of a node, a link, a link cost, a link capacity, an affinity attribute, and a link attribute of an IP layer.
  • the optical layer resource topology information includes source node information, sink node information, inter-node idle wavelength information, link distance, intra-node wavelength cross-link information, relay resource information, and link-supported modulation mode of the optical layer. At least one of them.
  • a super controller comprising: a transmitter, a receiver, a memory, and a processor, wherein the memory, the transmitter, and the receiver are respectively connected to the processor,
  • the memory stores program code
  • the processor is configured to invoke program code to perform the joint route establishment method described in the first aspect above.
  • a computer storage medium for storing computer software instructions for use in the joint routing establishment device described above, or for storing a program designed to perform the second aspect described above for a joint routing establishment device.
  • an embodiment of the present invention further provides a communication chip, which is applied to a super controller, where the communication chip includes: an input/output interface, a memory, and at least one processor, and the memory and the input/output interface pass through a bus. Communicating with the at least one processor, the memory storing program code, the at least one processor for invoking program code, such that the super controller performs the joint routing establishment method of the first aspect described above.
  • the technical solution provided by the embodiment of the present application has the beneficial effects that when the joint routing setup request sent by the IP controller is received, the IP controller fails to calculate the path for the service to be transmitted. In this case, in order to continue to transmit the service.
  • the unified topology between the IP layer and the optical layer is constructed according to the IP layer resource topology information and the optical layer resource topology information, and the joint route is established according to the unified topology, because the established joint route is based on the IP layer resource topology information and the optical layer.
  • the resource topology information is determined. Therefore, the multiple VNT links are prevented from occupying the optical layer resources, and the joint routes that need to be established can be successfully established, thereby improving the success rate of the joint route establishment.
  • FIG. 1 is a schematic diagram of an implementation environment according to an exemplary embodiment
  • FIG. 2 is a schematic diagram of an implementation environment according to another exemplary embodiment
  • FIG. 3A is a schematic diagram of an implementation environment according to another exemplary embodiment
  • FIG. 3B is a schematic structural diagram of a super controller according to another exemplary embodiment
  • FIG. 4A is a flowchart of a joint route establishment method according to an exemplary embodiment
  • FIG. 4B is a schematic diagram of optical layer resource topology information involved in the embodiment of FIG. 4A;
  • FIG. 4C is a schematic structural diagram of a unified topology involved in the embodiment of FIG. 4A;
  • FIG. 5A is a schematic structural diagram of a joint route establishing apparatus according to an exemplary embodiment
  • FIG. 5B is a schematic structural diagram of an establishing module 530 according to an exemplary embodiment
  • FIG. 5C is a schematic structural diagram of another joint route establishing apparatus according to an exemplary embodiment
  • FIG. 5D is a schematic structural diagram of another establishing module 530 according to an exemplary embodiment.
  • FIG. 3A is a schematic diagram of an implementation environment according to another exemplary embodiment.
  • the implementation environment mainly includes an IP controller 110, a light controller 120, and a super controller 130.
  • the super controller 130 can be connected to the IP controller 110 and the optical controller 120 through a wired network or a wireless network and a wireless network, respectively.
  • the IP controller 110 may include an IP topology unit, an IP resource topology unit, and an IP path calculation unit, where the IP controller 110 may determine IP layer resource topology information by using the IP resource topology unit, and configure the IP layer resource topology. The information is sent to the super controller 130.
  • the IP controller 110 can also establish an IP layer link according to the IP layer information by using the IP topology unit and the optical path calculation unit.
  • the IP controller 110 can also pass the IP path.
  • the computing unit calculates a path for the service to be transmitted.
  • the optical controller 120 may include an optical topology unit, an optical resource topology unit, and an optical path calculation unit, where the optical controller 120 may determine optical layer resource topology information by using the optical resource topology unit, and the optical layer resource topology information. Send to the super controller 130.
  • the optical controller 120 can also establish an optical layer link according to the optical layer information by using the optical topology unit and the optical path calculation unit.
  • the super controller 130 may include a topology unit and a path calculation unit.
  • the super controller 130 can receive the IP layer resource topology information sent by the IP controller 110 and receive the optical layer resource topology information sent by the optical controller 120, that is, the optical controller 130 can perceive the node resources of the IP layer. Information and node resource information of the optical layer.
  • the super-controller 130 can construct a unified topology of the IP layer and the optical layer according to the IP layer resource topology information and the optical layer resource topology information.
  • the super controller 130 can determine the joint route based on the unified topology by using the path calculation unit.
  • the super controller 130 is mainly used to implement the following FIG. 4A. For the implementation process of the joint route involved in the embodiment, refer to the embodiment shown in FIG. 4A below.
  • FIG. 3B is a schematic structural diagram of a super controller 130 according to an exemplary embodiment.
  • the super controller 130 mainly includes a transmitter 1301, a receiver 1302, a memory 1303, a processor 1304, and a communication bus 1305. It will be understood by those skilled in the art that the structure of the super controller 130 shown in FIG. 3B does not constitute a limitation on the super controller 130, may include more or less components than the illustration, or combine some components, or The components of the present application are not limited in this embodiment.
  • the transmitter 1301 can be used to send data and/or signaling to the IP controller 110 and the optical controller 120.
  • the receiver 1302 can be configured to receive data and/or signaling sent by the IP controller 110 and the optical controller 120, and the transmitter 1301 and the receiver 1302 are equivalent to the above topology unit.
  • the memory 1303 can be used to store data sent by the IP controller 110 and the optical controller 120, and the memory 1303 can also be used to store one or more running programs for executing the joint routing establishment method and/or Module.
  • the processor 1304 is a control center of the super controller 130 and corresponds to the path calculation unit.
  • the processor 1304 can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the present application.
  • the processor 1304 can implement the joint route establishment method provided by the embodiment of FIG. 4A below by running or executing a software program and/or module stored in the memory 1303, and calling data stored in the memory 1303.
  • the communication bus 1305 can include a path for transferring information between the processor 1304 and the memory 1303.
  • FIG. 4A is a schematic diagram of a method for establishing a joint route according to an exemplary embodiment.
  • the method for establishing a joint route is performed by the super controller 130 in FIG. 3A as an example.
  • the method for establishing a joint route may include the following. Several implementation steps:
  • Step 401 Receive and store IP layer resource topology information sent by the IP controller, and receive and store optical layer resource topology information sent by the optical controller.
  • the IP layer resource topology information is used to indicate the node resource information of the IP layer
  • the optical layer resource topology information is used to indicate the node resource information of the optical layer.
  • the IP controller may send the node resource information of the IP layer.
  • the information is sent to the super controller.
  • the super controller After receiving the IP layer resource topology information, the super controller stores the IP layer resource topology information into its own memory.
  • the optical controller may also send the node resource information of the optical layer to the super controller. After receiving the optical layer resource topology information, the super controller stores the optical layer resource topology information into its own memory.
  • the super controller can sense node resource information for establishing an IP layer link and an optical layer link.
  • the IP layer resource topology information includes at least one of a node, a link, a link cost, a link capacity, an affinity attribute, and a link attribute of an IP layer.
  • the IP layer resource topology information includes the number of idle IP ports corresponding to the IP layer node, the IP link with the remaining bandwidth, the path length value corresponding to each link, the link transmission delay, and the shared shared link group. (Shared Risk Link Groups, SRLG) information, etc.
  • the optical layer resource topology information includes source node information of the optical layer, sink node information, idle wavelength information between nodes, link distance, wavelength cross-link information in the node, and relay resource information. At least one of the modulation modes supported by the link.
  • the idle wavelength information between the nodes includes the number of idle wavelengths transmitted between the nodes.
  • the intra-node wavelength cross-over information may include an optical layer node crossover capability, a node internal cross minimum cost, and a node internal wavelength crossover capacity.
  • each optical layer node may be represented by two resource nodes, and the optical layer node crossover capability may be abstracted into link a, link b, and link in FIG. 4B.
  • the link cost of link a, link b, and link c may be set to the minimum internal cost of the node, and the link capacity may include the internal wavelength cross-capacity of the node and the relay resource information.
  • the optical layer link transmission capability may be abstracted into the link d, the link e, the link f, and the link g in FIG. 4B, and may be a reachable path/optical multiplex section (Optical Multiplex Section, OMS) link, where multiple parallel links between two nodes are represented using two unidirectional resource links.
  • the link cost of the link d, the link e, the link f, and the link g may be set to be the minimum cost of transmission by the two nodes, and the link capacity may be set to the number of idle wavelengths transmitted between the nodes.
  • step 401 is actually an optional step, that is, in the actual implementation process, it is not necessary to perform the step 401 every time, and only the step 401 needs to be performed in the system initialization phase.
  • Step 402 Receive a joint routing setup request sent by the IP controller.
  • the to-be-transmitted service first reaches the IP layer, and the IP controller calculates a path for the to-be-transmitted service.
  • the IP controller calculates the path fails due to factors such as insufficient IP layer resources, the The IP controller sends a joint routing setup request to the super controller.
  • the joint routing setup request carries the constraint of the service to be transmitted, and in another possible implementation manner, the joint routing setup request may further carry the to-be-transmitted service.
  • the to-be-transmitted service may also be sent by the IP controller to the super-controller to send the joint routing setup request to the super-controller, which is not limited in this embodiment of the present invention.
  • Step 403 Determine node resource information of the IP layer and node resource information of the optical layer according to the IP layer resource topology information and the optical layer resource topology information, and construct an IP based on the node resource information of the IP layer and the node resource information of the optical layer.
  • the topological relationship between the nodes may be determined according to the resource information of each node. Therefore, the super controller may be based on the node resource information of the IP layer and the node resource information of the optical layer. Construct a unified topology between the IP layer and the optical layer.
  • the unified topology may be abstracted into a multi-layer centralized topology according to different modulation modes supported by the optical layer link.
  • the link attributes may be different.
  • the modulation mode supported between the node C and the node D is Multi-Frequency Shift Keying (MFSK)
  • the IP layer topology and the optical layer resource topology 1 may be considered as A centralized topology
  • the modulation mode supported between the node C and the node D is Quadrature Phase Shift Keying (QPSK)
  • QPSK Quadrature Phase Shift Keying
  • the above-mentioned centralized topology is an abstract topology.
  • the topology topology of the unified topology between the IP layer and the optical layer is only one. As shown in Figure 4C, only each optical layer link may support multiple modulation modes.
  • Step 404 Establish a joint route based on the unified topology.
  • the implementation process of establishing a joint route may include: determining, according to the unified topology, a joint route by specifying a shortest path algorithm.
  • the specified shortest path algorithm may include a Dijkstra algorithm, a Floyd-Warshall algorithm, etc., which are not limited in this embodiment of the present invention.
  • the foregoing establishing the joint route based on the unified topology includes: establishing a joint route that meets the constraint condition of the to-be-transmitted service based on the unified topology.
  • the implementation process of establishing a joint route based on the unified topology is similar to the implementation process of establishing a joint route that satisfies the constraint condition of the to-be-transmitted service based on the unified topology.
  • a joint route that satisfies the constraint condition of the to-be-transmitted service is established as an example, and the specific implementation process is described in detail, which may include the following sub-steps (1)-(4):
  • the optical layer information required for establishing the joint route is determined from the optical layer resource topology information.
  • the joint route that satisfies the constraint condition of the service to be transmitted may be determined by specifying a shortest path algorithm, etc., that is, the joint route is an optimal transmission path, which is not difficult to understand.
  • the joint route includes an optical layer link and an IP layer link that need to be established.
  • the super controller After determining the joint route, the super controller determines the optical layer link to be established in the joint route, and then the super controller determines the optical layer required to establish the optical layer link from the optical layer resource topology information. information.
  • optical layer information required to establish the joint route is sent to the optical controller, so that the optical controller establishes an optical layer link.
  • the optical layer link and the IP layer link are separately established in the process of establishing the joint route.
  • the establishment of the optical layer link is controlled by the optical controller. Therefore, after determining the optical layer information required for establishing the optical layer link, the super controller needs to establish the optical layer link.
  • the optical layer information is sent to the optical controller to enable the optical controller to establish an optical layer link.
  • the optical controller receives the optical layer information required to establish the optical layer link, and then performs the optical layer information required to establish the optical layer link.
  • the link checksum is set up, that is, the optical controller determines whether the optical layer link is occupied by other services. If the optical layer link is not occupied by other services, the optical layer wave is generated based on the optical layer information.
  • the planar enhancement map determines and establishes the optical layer link based on the optical layer wave plane enhancement map.
  • the first setup success message may be sent to the super controller.
  • the super controller receives the first setup success message, it determines that the optical layer link is successfully established. In this case, the IP link part of the joint route is established.
  • the optical controller determines an IP layer link to be established in the joint route based on the unified topology, and then the super controller determines to establish the IP layer link from the IP layer resource topology information. IP layer information required at the time.
  • the super controller needs to establish the IP layer information required for the IP link, and then needs to establish the IP layer link.
  • the IP layer information is sent to the IP controller to enable the IP controller to establish an IP layer link.
  • the IP controller After receiving the IP layer information required for establishing the IP link, the IP controller performs link checksum establishment, that is, the IP controller determines whether the IP link to be established is occupied by other services. If the IP layer link is not occupied by other services, the IP link is established based on the IP layer information.
  • the joint route is successfully established.
  • the joint route can be used to transmit the service to be transmitted, that is, the super controller uses the joint route to deliver the service to be transmitted.
  • the IP layer link transmission delay of s->a is 6 ms
  • the link transmission delay of s->b is 7 ms
  • a->t is determined according to the link distance of the optical layer link.
  • the optical layer link transmission delay is 4ms
  • the optical layer link transmission delay from b->t is 2ms. If it is required to establish a link from s->t and the link transmission delay is less than 10ms, then according to The optical layer information may determine that the finally established joint route is s->b->E->F->I->t, wherein the arrow in FIG. 4C may indicate the flow direction of the service.
  • the foregoing is only an example in which the optical layer controller and the IP controller successfully establish an optical layer link and an IP layer link.
  • the optical controller fails to establish an optical layer chain successfully. If the path and/or the IP controller fails to establish an IP layer link, the super controller needs to re-establish the joint route that meets the constraints of the service to be transmitted according to the unified topology.
  • the specific implementation process refer to the above. Let me repeat.
  • the present invention implements a joint route establishment method, in the actual implementation process, the super controller
  • the IP layer resource topology information and the optical layer topology resource information are refreshed according to the usage of the specific transmission path.
  • the specific refresh operation may include the following two implementation modes.
  • the first type the optical layer information required to establish the joint route in the optical layer resource topology information is marked as occupied information.
  • the super controller when the super controller receives the first setup success message sent by the optical controller, it indicates that the optical controller has completed the establishment of the optical layer link required in the joint route, thereby indicating the The optical layer information used by the optical layer link has been used. In this case, the super controller identifies the optical layer information, so as to refresh the optical layer resource topology information, so that the joint route is established next time. In the process, according to the refresh result, it can be known which optical layer information has been occupied and which are not occupied, thereby determining the optical layer information required for establishing the joint route.
  • the implementation process of marking the optical layer information required to establish the joint routing information into the occupied information in the optical layer resource topology information may include: required for establishing the joint route, in a possible implementation manner.
  • the optical layer information is added to the specified identifier, and the specified identifier is used to identify that the optical layer information is occupied.
  • the specified identifier may be used or the like, which is not limited in this embodiment of the present invention.
  • the second type when receiving the second setup success message sent by the IP controller, marking the IP layer information required to establish the joint route in the IP layer resource topology information as occupied information, the second establishment The success message is used to indicate that the IP layer link is successfully established.
  • the super controller when the super controller receives the second setup success message sent by the IP controller, it indicates that the IP controller has completed the establishment of the IP layer link required in the joint route, thereby indicating The IP layer information used by the IP layer link has been used. In this case, the super controller identifies the IP layer information to refresh the IP layer resource topology information. Thus, the next time the joint route is established. In the process, according to the refresh result, it can be known which IP layer information has been occupied and which are not occupied, thereby determining the IP layer information required for establishing the joint route.
  • IP layer information required to establish the joint route in the IP layer resource topology information is marked as the implementation process of the occupied information and the required time for establishing the joint route in the optical layer resource topology information.
  • the implementation process of marking the optical layer information as occupied information is similar to the above, and will not be described in detail herein.
  • the above-mentioned resource topology information is refreshed according to the specific path occupation information, and the entire network refresh is not required, which improves the refresh time of the unified topology.
  • the IP controller when receiving the joint routing setup request sent by the IP controller, the IP controller fails to calculate a path for the to-be-transmitted service. In this case, in order to continue the transmission.
  • the service based on the IP layer resource topology information and the optical layer resource topology information, constructs a unified topology between the IP layer and the optical layer, and establishes a joint route according to the unified topology, because the established joint route is based on the IP layer resource topology information and light.
  • the layer resource topology information is determined. Therefore, the multiple VNT links are prevented from occupying the optical layer resources, and the joint routes that need to be established can be successfully established, thereby improving the success rate of the joint route establishment.
  • FIG. 5A is a schematic structural diagram of a joint route establishing apparatus according to an exemplary embodiment.
  • the joint route establishing apparatus may be implemented by software, hardware, or a combination of the two.
  • the joint routing establishing apparatus may include: a receiving module 510, The module 520 is constructed and the module 530 is built.
  • the receiving module 510 is configured to perform the foregoing step 402.
  • the constructing module 520 is configured to perform the above step 403.
  • the establishing module 530 is configured to perform the above step 404.
  • the establishing module 530 includes: a determining unit 530a and a sending unit 530b.
  • the determining unit 530a is configured to perform the sub-step (1) and the sub-step (3) in the above step 404; the sending unit 530b is configured to perform the sub-step (2) and the sub-step (4) in the above step 404.
  • the apparatus further includes a marking module 540, configured to perform the first implementation manner and the second implementation manner in the foregoing step 404.
  • the establishing module 530 further includes an establishing unit 530c, configured to establish, according to the unified topology, a constraint that satisfies the to-be-transmitted service, when the joint routing setup request carries a constraint condition of the to-be-transmitted service Joint routing.
  • an establishing unit 530c configured to establish, according to the unified topology, a constraint that satisfies the to-be-transmitted service, when the joint routing setup request carries a constraint condition of the to-be-transmitted service Joint routing.
  • the IP layer resource topology information includes at least one of a node, a link, a link cost, a link capacity, an affinity attribute, and a link attribute of the IP layer.
  • the optical layer resource topology information includes source node information of the optical layer, sink node information, idle wavelength information between nodes, link distance, intra-node wavelength cross information, relay resource information, and a modulation mode supported by the link. At least one of them.
  • the IP controller when receiving the joint routing setup request sent by the IP controller, the IP controller fails to calculate a path for the to-be-transmitted service. In this case, in order to continue to transmit the service, according to the IP layer resource topology.
  • the information and the optical layer resource topology information are used to construct a unified topology between the IP layer and the optical layer, and the joint route is established according to the unified topology.
  • the established joint route is determined according to the IP layer resource topology information and the optical layer resource topology information. Therefore, multiple VNT links are avoided Preempting the optical layer resources ensures that the joint routes that need to be established can be successfully established, thus improving the success rate of joint route establishment.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种联合路由建立方法及装置,涉及通信技术领域,该方法包括:当接收到IP控制器发送的联合路由设置请求时,根据IP层资源拓扑信息和光层资源拓扑信息,分别确定IP层的节点资源信息和光层的节点资源信息,并基于该IP层的节点资源信息和该光层的节点资源信息,构造IP层与光层之间的统一拓扑,根据统一拓扑,建立联合路由。由于所建立的联合路由是根据IP层资源拓扑信息和光层资源拓扑信息确定的,因此,避免多条VNT链路抢占同一份光层资源的情况,保证了需要建立的联合路由均能建立成功,从而提高了联合路由建立的成功率。

Description

联合路由建立方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种联合路由建立方法及装置。
背景技术
在通信网络中,用于实现大范围(例如,城市之间)数据传输的骨干网方兴未艾,目前,骨干网主要采用网络协议(Intent Protocol,IP)层和光层之间的跨层组网。其中,IP层可以用于传送上层业务,包括业务封装,多业务汇聚和业务路由选择等,光层可以用于大容量长距离的业务传输。在业务传输过程中,业务首先到达IP层,当IP层的资源不足时,即可结合光层来进行业务传输。在实际应用时,由于IP层和光层分别属于两张网络,因此,为了使得IP层和光层能够协同传输业务,需要建立IP层和光层之间的联合路由,即建立最优的业务传输路径来传输业务。
在现有技术中,请参考图1,示出了一种建立IP层和光层之间联合路由的系统架构,该系统架构中主要包括IP控制器和光控制器。在系统初始化时,IP控制器可以从光控制器中获取光层的虚拟网络拓扑(Virtual Network Topology,VNT)信息,该VNT信息用于指示VNT链路集合,VNT链路集合中的每个VNT链路均为虚拟链路,且用于代表IP层中两个节点间的可达性,如图2中链路1、链路2和链路3所示。在进行业务传输时,当业务到达IP层且IP控制器为该业务计算路径失败时,说明IP层无法独立实现该业务的传输,在该种情况下,IP控制器需要基于IP层拓扑和光层的VNT信息,构造IP层增广拓扑,并使用最短路径优先(Shortest Path First,SPF)算法确定能够传输该业务的传输路径。之后,IP控制器将该传输路径中需要建立的光层链路对应的VNT标识通知给光控制器,由光控制器根据该VNT标识,建立实际的光层链路,从而实现IP层与光层之间联合路由的建立。
然而,上述提供的联合路由建立方法中,存在如下技术问题:由于VNT链路只是表示两个节点在光层可达,实际上可能由于多条VNT链路抢占同一份光层资源的原因,导致该多条VNT链路中可能只有一条或者极少数的VNT 链路能够成功建立,而IP控制器在基于所构造IP层增广拓扑确定能够传输该业务的传输路径时,可能要求同时建立多条VNT链路,在该种情况下,可能由于部分VNT链路建立失败,导致联合路由建立失败。
发明内容
为了解决现有技术中的问题,本发明实施例提供了一种联合路由建立方法及装置。所述技术方案如下:
第一方面,提供了一种联合路由建立方法,所述方法包括:
接收网络协议IP控制器发送的联合路由设置请求;根据IP层资源拓扑信息和光层资源拓扑信息,分别确定IP层的节点资源信息和光层的节点资源信息,并基于所述IP层的节点资源信息和所述光层的节点资源信息,构造所述IP层与所述光层之间的统一拓扑,所述统一拓扑用于指示所述IP层和所述光层包括的各个节点之间的拓扑关系;基于所述统一拓扑,建立联合路由。
在本发明实施例中,在业务传输过程中,待传输业务首先到达IP层,IP控制器为该待传输业务计算路径,当由于IP层资源不足等因素导致IP控制器计算路径失败时,该IP控制器向该超级控制器发送联合路由设置请求。
其中,根据光层链路支持的调制模式不同,可以将该统一拓扑抽象为多层集中拓扑,也即是,在该统一拓扑中,两个节点之间的链路属性可能不同,例如,两个节点之间的链路支持的调制模式为多进制频移键控调制模块时,可以认为该统一拓扑包括IP层拓扑和一种光层拓扑,当该两个节点之间的链路支持的调制模式为正交相移键控调制模式时,可以认为该统一拓扑包括IP层拓扑和另一种光层拓扑。
上述在建立联合路由过程中,由于构造的统一拓扑可以用于指示该IP层和该光层包括的各个节点之间拓扑关系,即所建立的联合路由是根据实际的IP层链路和光层链路建立的,所以,可以避免多条VNT链路抢占同一份光层资源的情况,保证了需要建立的联合路由均能建立成功,从而提高了联合路由建立的成功率。
可选地,所述基于所述统一拓扑,建立联合路由,包括:基于所述统一拓扑,从所述光层资源拓扑信息中确定建立所述联合路由时所需的光层信息;将建立所述联合路由时所需的光层信息发送给光控制器,以使所述光控制器建立光层链路;当接收到所述光控制器发送的第一建立成功消息时,基于所述统一 拓扑,从所述IP层资源拓扑信息中确定建立所述联合路由时所需的IP层信息,所述第一建立成功消息用于指示所述光层链路建立成功;将建立所述联合路由时所需的IP层信息发送给所述IP控制器,以使所述IP控制器建立IP层链路。
在本发明实施例中,在一种可能的实现方式中,基于该统一拓扑,建立联合路由的实现过程可以包括:基于该统一拓扑,通过指定最短路径算法,确定并建立联合路由。
由于该联合路由中包括了光层链路和IP层链路,而光层链路的建立是由光控制器控制,而IP层链路的建立是由IP控制器控制,因此,需要将建立该联合路由时所需的光层信息发送给该光控制器,以使该光控制器建立该光层链路,并将建立该联合路由时所需的IP层信息发送给该IP控制器,以使该IP控制器建立该IP层链路,从而实现联合路由的建立。
上述在建立联合路由的过程中,分别将建立该联合路由时所需的光层信息和IP层信息发送给光控制器和IP控制器,以使该光控制器建立光层链路,并使得IP控制器建立IP层链路,从而实现联合路由的成功建立。
可选地,所述基于所述统一拓扑,从所述IP层资源拓扑信息中确定建立所述联合路由时所需的IP层信息之前,还包括:将所述光层资源拓扑信息中建立所述联合路由时所需的光层信息标记为已占用的信息。
当该超级控制器接收到该光控制器发送的第一建立成功消息时,说明该光控制器已经完成联合路由中所需的该光层链路的建立,从而也说明了该光层链路所使用的光层信息已经被使用,在该种情况下,该超级控制器将该光层信息进行标识,从而对该光层资源拓扑信息进行刷新,如此,在下一次建立联合路由过程中,可以根据该刷新结果,获知哪些光层信息已经被占用,哪些还未被占用,从而确定建立联合路由所需的光层信息。
在本发明实施例中,根据光层具体路径占用信息刷新对应的光层资源拓扑信息,不需要进行全网刷新,提升了拓扑的刷新时间。
可选地,所述将建立所述联合路由时所需的IP层信息发送给所述IP控制器之后,还包括:当接收到所述IP控制器发送的第二建立成功消息时,将所述IP层资源拓扑信息中建立所述联合路由时所需的IP层信息标记为已占用的信息,所述第二建立成功消息用于指示所述IP层链路建立成功。
当该超级控制器接收到该IP控制器发送的第二建立成功消息时,说明该IP控制器已经完成该联合路由中所需的IP层链路的建立,从而也说明了该IP 层链路所使用的IP层信息已经被使用,在该种情况下,该超级控制器将该IP层信息进行标识,从而对IP层资源拓扑信息进行刷新,如此,在下一次建立联合路由过程中,可以根据该刷新结果,获知哪些IP层信息已经被占用,哪些还未被占用,从而确定建立联合路由时所需的IP层信息。
在本发明实施例中,根据IP层具体路径占用信息刷新对应的IP层资源拓扑信息,不需要进行全网刷新,提升了拓扑的刷新时间。
可选地,所述基于所述统一拓扑,建立联合路由,包括:当所述联合路由设置请求中携带待传输业务的约束条件时,基于所述统一拓扑,建立满足所述待传输业务的约束条件的联合路由。
在本发明实施例中,由于所建立的联合路由是根据实际的IP层链路和光层链路建立的,因此,最终建立的联合路由能够满足待传输业务的约束条件,也即是,避免了通过VNT信息建立的联合路由中的光层链路无法满足待传输业务的约束条件,保证了业务传输的成功率,从而提高了网络资源的利用率。
可选地,所述IP层资源拓扑信息包括IP层的节点、链路、链路代价、链路容量、亲和属性和链路属性中的至少一个。
具体地,该IP层资源拓扑信息包括IP层节点对应的空闲IP端口的个数、有剩余带宽的IP链路、各个链路对应的路径长度值、链路传输时延以及共享分享链路组信息等。
该IP层资源拓扑信息包括上述多种信息,使得超级控制器可以感知IP层的节点资源信息,如此,该超级控制器可以根据该IP层资源拓扑信息,构造与光层之间的统一拓扑,并根据该统一拓扑建立联合路由。
可选地,所述光层资源拓扑信息包括光层的源节点信息、宿节点信息、节点间空闲波长信息、链路距离、节点内波长交叉信息、中继资源信息和链路支持的调制模式中的至少一个。
其中,上述节点间空闲波长信息包括节点之间传输的空闲波长个数,上述节点内波长交叉信息可以包括光层节点交叉能力、节点内部交叉最小代价以及节点内部波长交叉容量等。
该光层资源拓扑信息包括上述多种信息,使得超级控制器可以感知光层的节点资源信息,如此,该超级控制器可以根据该光层资源拓扑信息,构造与IP层之间的统一拓扑,并根据该统一拓扑建立联合路由。
第二方面,提供了一种联合路由建立装置,所述装置包括:
接收模块,用于接收网络协议IP控制器发送的联合路由设置请求;
构造模块,用于根据IP层资源拓扑信息和光层资源拓扑信息,分别确定IP层的节点资源信息和光层的节点资源信息,并基于所述IP层的节点资源信息和所述光层的节点资源信息,构造所述IP层与所述光层之间的统一拓扑,所述统一拓扑用于指示所述IP层和所述光层包括的各个节点之间拓扑关系;
建立模块,用于基于所述统一拓扑,建立联合路由。
可选地,所述建立模块包括:
确定单元,用于基于所述统一拓扑,从所述光层资源拓扑信息中确定建立所述联合路由时所需的光层信息;
发送单元,用于将建立所述联合路由时所需的光层信息发送给光控制器,以使所述光控制器建立光层链路;
所述确定单元,用于当接收到所述光控制器发送的第一建立成功消息时,基于所述统一拓扑,从所述IP层资源拓扑信息中确定建立所述联合路由时所需的IP层信息,所述第一建立成功消息用于指示所述光层链路建立成功;
所述发送单元,用于将建立所述联合路由时所需的IP层信息发送给所述IP控制器,以使所述IP控制器建立IP层链路。
可选地,所述装置还包括:
标记模块,用于将所述光层资源拓扑信息中建立所述联合路由时所需的光层信息标记为已占用的信息。
可选地,所述标记模块:
还用于当接收到所述IP控制器发送的第二建立成功消息时,将所述IP层资源拓扑信息中建立所述联合路由时所需的IP层信息标记为已占用的信息,所述第二建立成功消息用于所述IP层链路建立成功。
可选地,所述建立模块还包括:
建立单元,用于当所述联合路由设置请求中携带待传输业务的约束条件时,基于所述统一拓扑,建立满足所述待传输业务的约束条件的联合路由。
可选地,所述IP层资源拓扑信息包括IP层的节点、链路、链路代价、链路容量、亲和属性和链路属性中的至少一个。
可选地,所述光层资源拓扑信息包括光层的源节点信息、宿节点信息、节点间空闲波长信息、链路距离、节点内波长交叉信息、中继资源信息和链路支持的调制模式中的至少一个。
第三方面,提供了一种超级控制器,该超级控制器包括:发射器、接收器、存储器和处理器,所述存储器、所述发送器和所述接收器分别与所述处理器连接,所述存储器存储有程序代码,所述处理器用于调用程序代码,执行上述第一方面所述的联合路由建立方法。
第四方面,提供了一种计算机存储介质,用于储存为上述联合路由建立装置所用的计算机软件指令,或存储用于执行上述第二方面为联合路由建立装置所设计的程序。
第五方面,本发明实施例还提供一种通信芯片,应用于超级控制器中,所述通信芯片包括:输入输出接口、存储器和至少一个处理器,所述存储器、所述输入输出接口通过总线与所述至少一个处理器相通信,所述存储器存储有程序代码,所述至少一个处理器用于调用程序代码,使得所述超级控制器执行上述第一方面所述的联合路由建立方法。
上述本发明实施例第二方面到第三方面所获得的技术效果与第一方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
本申请实施例提供的技术方案的有益效果是:当接收到IP控制器发送的联合路由设置请求时,说明IP控制器为待传输业务计算路径失败,在该种情况下,为了能够继续传输业务,根据IP层资源拓扑信息和光层资源拓扑信息,构造IP层与光层之间的统一拓扑,并根据该统一拓扑,建立联合路由,由于所建立的联合路由是根据IP层资源拓扑信息和光层资源拓扑信息确定的,因此,避免了多条VNT链路抢占光层资源的情况,保证了需要建立的联合路由均能建立成功,从而提高了联合路由建立的成功率。
附图说明
图1是根据一示例性实施例示出的一种实施环境示意图;
图2是根据另一示例性实施例示出的一种实施环境示意图;
图3A是根据另一示例性实施例示出的一种实施环境示意图;
图3B是根据另一示例性实施例示出的一种超级控制器的结构示意图;
图4A是根据一示例性实施例示出的一种联合路由建立方法的流程图;
图4B是图4A实施例所涉及的一种光层资源拓扑信息的示意图;
图4C是图4A实施例所涉及的一种统一拓扑的结构示意图;
图5A是根据一示例性实施例示出的一种联合路由建立装置的结构示意图;
图5B是根据一示例性实施例示出的一种建立模块530的结构示意图;
图5C是根据一示例性实施例示出的另一种联合路由建立装置的结构示意图;
图5D是根据一示例性实施例示出的另一种建立模块530的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在介绍本申请实施例提供的联合路由建立方法之前,先对本申请实施例所涉及的实施环境进行介绍,请参考图3A,图3A是根据另一示例性实施例示出的一种实施环境示意图。该实施环境中主要包括IP控制器110、光控制器120和超级控制器130,该超级控制器130可以通过有线网络或者无线网络与无线网络分别与IP控制器110和光控制器120连接。
进一步地,该IP控制器110可以包括IP拓扑单元、IP资源拓扑单元和IP路径计算单元,该IP控制器110可以通过该IP资源拓扑单元确定IP层资源拓扑信息,并将该IP层资源拓扑信息发送给超级控制器130,该IP控制器110还可以通过该IP拓扑单元和该光路径计算单元,根据IP层信息建立IP层链路,另外,该IP控制器110还可以通过该IP路径计算单元为待传输业务计算路径。
进一步地,该光控制器120可以包括光拓扑单元、光资源拓扑单元和光路径计算单元,该光控制器120可以通过该光资源拓扑单元确定光层资源拓扑信息,并将该光层资源拓扑信息发送给该超级控制器130。另外,该光控制器120还可以通过该光拓扑单元和光路径计算单元,根据光层信息建立光层链路。
进一步地,该超级控制器130可以包括拓扑单元和路径计算单元。该超级控制器130可以通过该拓扑单元接收IP控制器110发送的IP层资源拓扑信息,以及接收光控制器120发送的光层资源拓扑信息,即该光控制器130可以感知IP层的节点资源信息以及光层的节点资源信息。并且,该超级控制器130可以通过该拓扑单元根据IP层资源拓扑信息和光层资源拓扑信息,构造IP层与光层的统一拓扑。另外,该超级控制器130还可以通过该路径计算单元基于该统一拓扑,确定联合路由,综上,该超级控制器130主要用于实现如下图4A实 施例所涉及的联合路由建立方法,具体实现过程请参见如下图4A所示实施例。
图3B是根据一示例性实施例示出的一种超级控制器130的结构示意图。该超级控制器130主要包括有发射器1301、接收器1302、存储器1303、处理器1304以及通信总线1305。本领域技术人员可以理解,图3B中示出的超级控制器130的结构并不构成对超级控制器130的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,本申请实施例对此不做限定。
其中,该发射器1301可以用于向IP控制器110和光控制器120发送数据和/或信令等。该接收器1302可以用于接收该IP控制器110和光控制器120发送的数据和/或信令等,该发射器1301和该接收器1302相当于上述拓扑单元。该存储器1303可以用于存储上述IP控制器110和上述光控制器120发送的数据,并且,该存储器1303也可以用于存储用于执行该联合路由建立方法的一个或多个运行程序和/或模块。
其中,该处理器1304是该超级控制器130的控制中心,相当于上述路径计算单元。该处理器1304可以一个通用中央处理器(Central Processing Unit,以下简称CPU),微处理器,特定应用集成电路(Application-Specific Integrated Circuit,以下简称ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。该处理器1304可以通过运行或执行存储在存储器1303内的软件程序和/或模块,以及调用存储在存储器1303内的数据,来实现下文图4A实施例所提供的联合路由建立方法。
其中,该通信总线1305可包括一通路,在上述处理器1304和存储器1303之间传送信息。
图4A是根据一示例性实施例示出的一种联合路由建立方法,本申请实施例以该联合路由建立方法由图3A中超级控制器130执行为例进行说明,该联合路由建立方法可以包括如下几个实现步骤:
步骤401:接收并存储IP控制器发送的IP层资源拓扑信息,以及接收并存储光控制器发送的光层资源拓扑信息。
其中,该IP层资源拓扑信息用于指示IP层的节点资源信息,该光层资源拓扑信息用于指示光层的节点资源信息。
在本申请实施例,在系统初始化时,IP控制器可以将IP层的节点资源信 息发送给超级控制器,该超级控制器接收到IP层资源拓扑信息后,将该IP层资源拓扑信息存储至自身的存储器中。同理,光控制器也可以将光层的节点资源信息发送给该超级控制器,该超级控制器接收到光层资源拓扑信息后,将光层资源拓扑信息存储至自身的存储器中,如此,该超级控制器可以感知用于建立IP层链路和光层链路的节点资源信息。
其中,在一种可能的实现方式中,该IP层资源拓扑信息包括IP层的节点、链路、链路代价、链路容量、亲和属性和链路属性中的至少一个。
具体地,该IP层资源拓扑信息包括IP层节点对应的空闲IP端口的个数、有剩余带宽的IP链路、各个链路对应的路径长度值、链路传输时延以及共享分享链路组(Shared Risk Link Groups,SRLG)信息等。
其中,在一种可能的实现方式中,该光层资源拓扑信息包括光层的源节点信息、宿节点信息、节点间空闲波长信息、链路距离、节点内波长交叉信息、中继资源信息和链路支持的调制模式中的至少一个。
其中,上述节点间空闲波长信息包括节点之间传输的空闲波长个数。
其中,上述节点内波长交叉信息可以包括光层节点交叉能力、节点内部交叉最小代价以及节点内部波长交叉容量等。
请参考图4B,在一种可能的实现方式中,每个光层节点可以使用两个资源节点来表示,光层节点交叉能力可以抽象为图4B中的链路a、链路b和链路c。其中,链路a、链路b和链路c的链路代价可以设置为节点内部交叉最小代价,链路容量可以包括节点内部波长交叉容量和中继资源信息。
请继续参考图4B,光层链路传输能力可以抽象为图4B中的链路d、链路e、链路f和链路g,可以是可达路径/光复用段层(Optical Multiplex Section,OMS)链路,两个节点之间多个并行链路使用两条单向资源链路表示。其中,该链路d、链路e、链路f和链路g的链路代价可以设置为两个节点传输的最小代价,链路容量可以设置为节点之间传输的空闲波长个数。
这里需要说明的是,该步骤401实际上为可选步骤,也即是,在实际实现过程中,并不需要每次均执行该步骤401,只需要在系统初始化阶段执行该步骤401即可。
步骤402:接收该IP控制器发送的联合路由设置请求。
在业务传输过程中,待传输业务首先到达IP层,IP控制器为该待传输业务计算路径,当由于IP层资源不足等因素导致IP控制器计算路径失败时,该 IP控制器向该超级控制器发送联合路由设置请求。
在一种可能的实现方式中,该联合路由设置请求中携带待传输业务的约束条件,在另一种可能的实现方式中,该联合路由设置请求中还可以携带待传输业务。
需要说明的是,该待传输业务也可以由该IP控制器在向超级控制器发送该联合路由设置请求,发送至该超级控制器中,本发明实施例对此不做限定。
步骤403:根据IP层资源拓扑信息和光层资源拓扑信息,分别确定IP层的节点资源信息和光层的节点资源信息,并基于该IP层的节点资源信息和该光层的节点资源信息,构造IP层与光层之间的统一拓扑,该统一拓扑用于指示该IP层和该光层包括的各个节点之间拓扑关系。
由于当获知IP层和光层节点资源信息时,即可以根据各个节点资源信息确定节点之间的拓扑关系,因此,超级控制器基于该IP层的节点资源信息和该光层的节点资源信息,可以构造IP层与光层之间的统一拓扑。
在实际实现过程中,根据光层链路支持的调制模式不同,可以将该统一拓扑抽象为多层集中拓扑,请参考图4C,也即是,在该统一拓扑中,两个节点之间的链路属性可能不同,例如,当节点C和节点D之间支持的调制模式为多进制频移键控(Multi-Frequency Shift Keying,MFSK)时,可以认为IP层拓扑和光层资源拓扑1为一个集中拓扑,当该节点C和节点D之间支持的调制模式为正交相移键控(Quadrature Phase Shift Keyin,QPSK)时,可以认为IP层拓扑和光层资源拓扑2为另一个集中拓扑,上述多个集中拓扑共同组成该统一拓扑。
需要说明的是,上述集中拓扑均为抽象的拓扑,在实际实现时,根据IP层资源拓扑信息和光层资源拓扑信息,构造出的IP层与光层之间的统一拓扑的拓扑连接仅为一种,如图4C所示,只是每条光层链路可能支持多种调制模式。
步骤404:基于该统一拓扑,建立联合路由。
在一种可能的实现方式中,基于该统一拓扑,建立联合路由的实现过程可以包括:基于该统一拓扑,通过指定最短路径算法,确定并建立联合路由。
其中,该指定最短路径算法可以包括Dijkstra(迪杰斯特拉)算法、Floyd-Warshall(弗洛伊德)算法等,本发明实施例对此不做限定。
需要说的是,通常情况下,在上述基于统一拓扑,通过指定最短路径算法 确定该联合路由的过程中,为了尽量减少建立光层链路,一般采用上述Dijkstra算法,通过权重设置,以尽可能控制路由走在IP层资源拓扑。其中,上述基于统一拓扑,通过Dijkstra算法,确定建立联合路由的具体实现过程可以参见现有技术,本发明实施例对此不做详细介绍。
另外,当上述联合路由设置请求中携带待传输业务的约束条件时,上述基于该统一拓扑,建立联合路由包括:基于该统一拓扑,建立满足该待传输业务的约束条件的联合路由。
其中,基于该统一拓扑建立联合路由的实现过程与基于该统一拓扑建立满足该待传输业务的约束条件的联合路由的实现过程类似。接下来,以基于该统一拓扑,建立满足该待传输业务的约束条件的联合路由为例,对其具体实现过程进行详细介绍,主要可以包括如下(1)-(4)几个子步骤:
(1)基于该统一拓扑,从该光层资源拓扑信息中确定建立该联合路由时所需的光层信息。
如前文所述,在上述执行过程中,可以通过指定最短路径算法等方式,来确定满足待传输业务的约束条件的联合路由,也即是,该联合路由为最优传输路径,不难理解,该联合路由中包括需要建立的光层链路和IP层链路。
上述确定该联合路由后,该超级控制器确定该联合路由中需要建立的光层链路,之后,该超级控制器从光层资源拓扑信息中确定建立该光层链路时所需的光层信息。
(2)将建立该联合路由时所需的光层信息发送给该光控制器,以使该光控制器建立光层链路。
在实际实现过程中,由于该联合路由中包括了光层链路和IP层链路,因此,在建立联合路由的过程中,需要分别建立光层链路和IP层链路。而光层链路的建立是由光控制器控制的,所以,该超级控制器确定建立该光层链路时所需的光层信息后,需要将该建立该光层链路时所需的光层信息发送给光控制器,以使该光控制器建立光层链路。
在实际应用过程中,由于可能存在其它业务占用了上述联合路由中所要建立的光层链路的情况,因此,该光控制器接收到建立该光层链路时所需的光层信息后进行链路校验和建立,也即是,该光控制器判断该光层链路是否被其它业务占用,如果该光层链路未被其它业务占用,则基于该光层信息,生成光层波平面增光图,基于该光层波平面增光图确定并建立该光层链路。
(3)当接收到该光控制器发送的第一建立成功消息时,基于该统一拓扑,从该IP层资源拓扑信息中确定建立该联合路由时所需的IP层信息,该第一建立成功消息用于指示该光层链路建立成功。
该光控制器建立该光层链路成功后,可以向该超级控制器发送第一建立成功消息,当该超级控制器接收到该第一建立成功消息时,确定光层链路建立成功,在该种情况下,建立该联合路由中的IP链路部分。在建立该IP链路之前,该光控制器基于该统一拓扑,该联合路由中需要建立的IP层链路,之后,该超级控制器将从IP层资源拓扑信息中确定建立该IP层链路时所需的IP层信息。
(4)将建立该联合路由时所需的IP层信息发送给该IP控制器,以使该IP控制器建立IP层链路。
与上述同理,由于IP链路的建立是由IP控制器控制的,因此,该超级控制器确定建立IP链路所需的IP层信息后,需要将建立该IP层链路时所需的IP层信息发送给IP控制器,以使该IP控制器建立IP层链路。
该IP控制器接收到建立该IP链路时所需的IP层信息后,进行链路校验和建立,也即是,该IP控制器判断该需要建立的IP链路是否被其它业务占用,如果该IP层链路未被其它业务占用,则基于该IP层信息,建立该IP链路。
当该IP控制器成功建立该IP链路后,上述联合路由便随之成功完成建立。该联合路由成功建立后,即可利用该联合路由传输待传输的业务,也即是,该超级控制器利用该联合路由下发待传输的业务。
请参考图4C,假设s->a的IP层链路传输时延为6ms,s->b的链路传输时延为7ms,并且,根据光层链路的链路距离确定a->t的光层链路传输时延为4ms,从b->t的光层链路传输时延为2ms,如果要求建立一条从s->t且链路传输时延小于10ms的链路,则根据光层信息,可以确定最终建立的联合路由为s->b->E->F->I->t,其中,图4C中的箭头可以表示业务的流向。
需要说明的是,上述仅是以光控制器和IP控制器成功建立光层链路和IP层链路为例进行说明,在实际实现过程中,若该光控制器未能成功建立光层链路和/或IP控制器未能成功建立IP层链路,则该超级控制器需要重新根据该统一拓扑,建立满足待传输业务的约束条件的联合路由,具体实现过程可以参见上文,这里不再赘述。
至此,本发明实现了联合路由建立方法,在实际实现过程中,超级控制器 还需要根据具体传输路径的使用情况,对IP层资源拓扑信息和光层拓扑资源信息进行刷新操作,具体刷新操作可以包括如下两种实现方式。
第一种:将该光层资源拓扑信息中建立该联合路由时所需的光层信息标记为已占用的信息。
也即是,当该超级控制器接收到该光控制器发送的第一建立成功消息时,说明该光控制器已经完成联合路由中所需的该光层链路的建立,从而也说明了该光层链路所使用的光层信息已经被使用,在该种情况下,该超级控制器将该光层信息进行标识,从而对该光层资源拓扑信息进行刷新,如此,在下一次建立联合路由过程中,可以根据该刷新结果,获知哪些光层信息已经被占用,哪些还未被占用,从而确定建立联合路由所需的光层信息。
其中,在一种可能的实现方式中,将该光层资源拓扑信息中建立该联合路由时所需的光层信息标记为已占用的信息的实现过程可以包括:为建立该联合路由时所需的光层信息添加指定标识,该指定标识用于标识该光层信息已被占用,例如,该指定标识可以为Used等,本发明实施例对此不做限定。
第二种:当接收到该IP控制器发送的第二建立成功消息时,将该IP层资源拓扑信息中建立该联合路由时所需的IP层信息标记为已占用的信息,该第二建立成功消息用于指示该IP层链路建立成功。
与上述同理,当该超级控制器接收到该IP控制器发送的第二建立成功消息时,说明该IP控制器已经完成该联合路由中所需的IP层链路的建立,从而也说明了该IP层链路所使用的IP层信息已经被使用,在该种情况下,该超级控制器将该IP层信息进行标识,从而对IP层资源拓扑信息进行刷新,如此,在下一次建立联合路由过程中,可以根据该刷新结果,获知哪些IP层信息已经被占用,哪些还未被占用,从而确定建立联合路由时所需的IP层信息。
需要说明的是,将该IP层资源拓扑信息中建立该联合路由时所需的IP层信息标记为已占用的信息的实现过程与将该光层资源拓扑信息中建立该联合路由时所需的光层信息标记为已占用的信息的实现过程上述类似,这里不再详细描述。
上述根据具体路径占用信息刷新对应的资源拓扑信息,不需要进行全网刷新,提升了统一拓扑的刷新时间。
在本发明实施例中,当接收到IP控制器发送的联合路由设置请求时,说明IP控制器为待传输业务计算路径失败,在该种情况下,为了能够继续传输 业务,根据IP层资源拓扑信息和光层资源拓扑信息,构造IP层与光层之间的统一拓扑,并根据该统一拓扑,建立联合路由,由于所建立的联合路由是根据IP层资源拓扑信息和光层资源拓扑信息确定的,因此,避免了多条VNT链路抢占光层资源的情况,保证了需要建立的联合路由均能建立成功,从而提高了联合路由建立的成功率。
图5A是根据一示例性实施例示出的一种联合路由建立装置的结构示意图,该联合路由建立装置可以由软件、硬件或者两者的结合实现,该联合路由建立装置可以包括:接收模块510、构造模块520和建立模块530。
该接收模块510,用于执行上述步骤402。
该构造模块520,用于执行上述步骤403。
该建立模块530,用于执行上述步骤404。
可选地,请参考图5B至图5D,该建立模块530包括:确定单元530a和发送单元530b。
其中,该确定单元530a,用于执行上述步骤404中子步骤(1)和子步骤(3);该发送单元530b,用于执行上述步骤404中子步骤(2)和子步骤(4)。
可选地,该装置还包括标记模块540,用于执行上述步骤404中的第一种实现方式和第二种实现方式。
可选地,该建立模块530还包括建立单元530c,用于当所述联合路由设置请求中携带待传输业务的约束条件时,基于所述统一拓扑,建立满足所述待传输业务的约束条件的联合路由。
可选地,该IP层资源拓扑信息包括IP层的节点、链路、链路代价、链路容量、亲和属性和链路属性中的至少一个。
可选地,该光层资源拓扑信息包括光层的源节点信息、宿节点信息、节点间空闲波长信息、链路距离、节点内波长交叉信息、中继资源信息和链路支持的调制模式中的至少一个。
在本发明实施例中,当接收到IP控制器发送的联合路由设置请求时,说明IP控制器为待传输业务计算路径失败,在该种情况下,为了能够继续传输业务,根据IP层资源拓扑信息和光层资源拓扑信息,构造IP层与光层之间的统一拓扑,并根据该统一拓扑,建立联合路由,由于所建立的联合路由是根据IP层资源拓扑信息和光层资源拓扑信息确定的,因此,避免了多条VNT链路 抢占光层资源的情况,保证了需要建立的联合路由均能建立成功,从而提高了联合路由建立的成功率。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述实施例并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种联合路由建立方法,其特征在于,所述方法包括:
    接收网络协议IP控制器发送的联合路由设置请求;
    根据IP层资源拓扑信息和光层资源拓扑信息,分别确定IP层的节点资源信息和光层的节点资源信息,并基于所述IP层的节点资源信息和所述光层的节点资源信息,构造所述IP层与所述光层之间的统一拓扑,所述统一拓扑用于指示所述IP层和所述光层包括的各个节点之间的拓扑关系;
    基于所述统一拓扑,建立联合路由。
  2. 如权利要求1所述的方法,其特征在于,所述基于所述统一拓扑,建立联合路由,包括:
    基于所述统一拓扑,从所述光层资源拓扑信息中确定建立所述联合路由时所需的光层信息;
    将建立所述联合路由时所需的光层信息发送给光控制器,以使所述光控制器建立光层链路;
    当接收到所述光控制器发送的第一建立成功消息时,基于所述统一拓扑,从所述IP层资源拓扑信息中确定建立所述联合路由时所需的IP层信息,所述第一建立成功消息用于指示所述光层链路建立成功;
    将建立所述联合路由时所需的IP层信息发送给所述IP控制器,以使所述IP控制器建立IP层链路。
  3. 如权利要求2所述的方法,其特征在于,所述基于所述统一拓扑,从所述IP层资源拓扑信息中确定建立所述联合路由时所需的IP层信息之前,还包括:
    将所述光层资源拓扑信息中建立所述联合路由时所需的光层信息标记为已占用的信息。
  4. 如权利要求2所述的方法,其特征在于,所述将建立所述联合路由时所需的IP层信息发送给所述IP控制器之后,还包括:
    当接收到所述IP控制器发送的第二建立成功消息时,将所述IP层资源拓扑信息中建立所述联合路由时所需的IP层信息标记为已占用的信息,所述第二建立成功消息用于指示所述IP层链路建立成功。
  5. 如权利要求1至4任一所述的方法,其特征在于,所述基于所述统一拓扑,建立联合路由,包括:
    当所述联合路由设置请求中携带待传输业务的约束条件时,基于所述统一拓扑,建立满足所述待传输业务的约束条件的联合路由。
  6. 如权利要求1所述的方法,其特征在于,所述IP层资源拓扑信息包括所述IP层的节点、链路、链路代价、链路容量、亲和属性和链路属性中的至少一个。
  7. 如权利要求1所述的方法,其特征在于,所述光层资源拓扑信息包括所述光层的源节点信息、宿节点信息、节点间空闲波长信息、链路距离、节点内波长交叉信息、中继资源信息和链路支持的调制模式中的至少一个。
  8. 一种超级控制器,其特征在于,所述超级控制器包括:接收器、存储器和处理器,所述存储器和所述接收器分别与所述处理器连接,所述存储器存储有程序代码,所述处理器用于调用程序代码:
    所述接收器,用于接收网络协议IP控制器发送的联合路由设置请求;
    所述处理器,用于根据IP层资源拓扑信息和光层资源拓扑信息,分别确定IP层的节点资源信息和光层的节点资源信息,并基于所述IP层的节点资源信息和所述光层的节点资源信息,构造所述IP层与所述光层之间的统一拓扑,所述统一拓扑用于指示所述IP层和所述光层包括的各个节点之间拓扑关系;
    所述处理器,用于基于所述统一拓扑,建立联合路由。
  9. 如权利要求8所述的超级控制器,其特征在于,所述处理器,还用于基于所述统一拓扑,从所述光层资源拓扑信息中确定建立所述联合路由时所需的光层信息;
    所述超级控制器还包括发射器:
    所述发射器,用于将建立所述联合路由时所需的光层信息发送给光控制器,以使所述光控制器建立光层链路;
    所述处理器,还用于当接收到所述光控制器发送的第一建立成功消息时,基于所述统一拓扑,从所述IP层资源拓扑信息中确定建立所述联合路由时所需的IP层信息,所述第一建立成功消息用于指示所述光层链路建立成功;
    所述发射器,还用于将建立所述联合路由时所需的IP层信息发送给所述IP控制器,以使所述IP控制器建立IP层链路。
  10. 如权利要求9所述的超级控制器,其特征在于,所述处理器还用于:
    将所述光层资源拓扑信息中建立所述联合路由时所需的光层信息标记为已占用的信息。
  11. 如权利要求9所述的超级控制器,其特征在于,所述处理器还用于:
    当接收到所述IP控制器发送的第二建立成功消息时,将所述IP层资源拓扑信息中建立所述联合路由时所需的IP层信息标记为已占用的信息,所述第二建立成功消息用于指示所述IP层链路建立成功。
  12. 如权利要求8至11任一所述的超级控制器,其特征在于,所述处理器用于:
    当所述联合路由设置请求中携带待传输业务的约束条件时,基于所述统一拓扑,建立满足所述待传输业务的约束条件的联合路由。
  13. 如权利要求8所述的超级控制器,其特征在于,所述IP层资源拓扑信息包括所述IP层的节点、链路、链路代价、链路容量、亲和属性和链路属性中的至少一个。
  14. 如权利要求8所述的超级控制器,其特征在于,所述光层资源拓扑信息包括所述光层的源节点信息、宿节点信息、节点间空闲波长信息、链路距离、节点内波长交叉信息、中继资源信息和链路支持的调制模式中的至少一个。
PCT/CN2016/108427 2016-12-02 2016-12-02 联合路由建立方法及装置 WO2018098818A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680089393.5A CN109716716B (zh) 2016-12-02 2016-12-02 联合路由建立方法及装置
PCT/CN2016/108427 WO2018098818A1 (zh) 2016-12-02 2016-12-02 联合路由建立方法及装置
EP16922644.6A EP3515021A4 (en) 2016-12-02 2016-12-02 METHOD AND DEVICE FOR ESTABLISHING A JOINT ROAD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/108427 WO2018098818A1 (zh) 2016-12-02 2016-12-02 联合路由建立方法及装置

Publications (1)

Publication Number Publication Date
WO2018098818A1 true WO2018098818A1 (zh) 2018-06-07

Family

ID=62241077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108427 WO2018098818A1 (zh) 2016-12-02 2016-12-02 联合路由建立方法及装置

Country Status (3)

Country Link
EP (1) EP3515021A4 (zh)
CN (1) CN109716716B (zh)
WO (1) WO2018098818A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114520935A (zh) * 2020-11-18 2022-05-20 华为技术有限公司 一种路径选择方法以及路径选择装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101072171A (zh) * 2006-05-09 2007-11-14 薄明霞 多纤IP over WDM网中的一种新型联合路由方法
CN101217335A (zh) * 2008-01-17 2008-07-09 北京邮电大学 波长可变换智能光网络联合路由单点重入的规避方法
US20160277210A1 (en) * 2015-03-18 2016-09-22 Juniper Networks, Inc. Evpn inter-subnet multicast forwarding

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6892233B1 (en) * 2000-05-04 2005-05-10 Nortel Networks Limited Optical communication network and method of remotely managing multiplexers
DE60127843T2 (de) * 2000-07-20 2008-01-17 At & T Corp. Wiederintriebnahme auf IP/Optischer Schicht nach Ausfall eines Routers
CN100527703C (zh) * 2003-02-03 2009-08-12 日本电信电话株式会社 光网络、光边缘路由器及其程序、切入方法和边缘路由器
CN101459574B (zh) * 2007-12-14 2013-03-20 华为技术有限公司 网络部署方法和网络系统以及ip节点
CN102075428B (zh) * 2011-01-20 2012-11-14 中国电信股份有限公司 联合路由设置方法和装置
US8787154B1 (en) * 2011-12-29 2014-07-22 Juniper Networks, Inc. Multi-topology resource scheduling within a computer network
CN103338414B (zh) * 2013-05-28 2016-05-25 苏州大学 一种最小化IP over WDM网络能耗的方法
US9258238B2 (en) * 2013-08-30 2016-02-09 Juniper Networks, Inc. Dynamic end-to-end network path setup across multiple network layers
CN103746841A (zh) * 2013-12-30 2014-04-23 华为技术有限公司 故障恢复的方法及控制器
US9780909B2 (en) * 2014-12-29 2017-10-03 Juniper Networks, Inc. Network topology optimization with feasible optical paths

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101072171A (zh) * 2006-05-09 2007-11-14 薄明霞 多纤IP over WDM网中的一种新型联合路由方法
CN101217335A (zh) * 2008-01-17 2008-07-09 北京邮电大学 波长可变换智能光网络联合路由单点重入的规避方法
US20160277210A1 (en) * 2015-03-18 2016-09-22 Juniper Networks, Inc. Evpn inter-subnet multicast forwarding

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANG, QIONG ET AL.: "A Cost-based Integrated Routing Algorithm for IP/GMPLS over WDM Networks", SEMICONDUCTOR OPTOELECTRONICS, vol. 31, no. 4, 31 August 2010 (2010-08-31), pages 597 - 602, XP009513523, ISSN: 1001-5868, DOI: 10.16818/j.issn1001-5868.2010.04.025 *
See also references of EP3515021A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114520935A (zh) * 2020-11-18 2022-05-20 华为技术有限公司 一种路径选择方法以及路径选择装置
WO2022105499A1 (zh) * 2020-11-18 2022-05-27 华为技术有限公司 一种路径选择方法以及路径选择装置
CN114520935B (zh) * 2020-11-18 2023-04-07 华为技术有限公司 一种路径选择方法以及路径选择装置

Also Published As

Publication number Publication date
EP3515021A4 (en) 2019-08-07
EP3515021A1 (en) 2019-07-24
CN109716716A (zh) 2019-05-03
CN109716716B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
US7738359B1 (en) System, device, and method for managing alternate site switching in an optical communication system
US10516478B2 (en) Controller based path estimation and path provisioning using optical impairment data
US9634928B2 (en) Mesh network of simple nodes with centralized control
CN103873378B (zh) 具有集中控制的聚合网络
US9363164B2 (en) Logical inter-cloud dispatcher
WO2015124026A1 (zh) 流表项生成方法以及装置
CN101395594B (zh) 用于计算机网络中ip骨干上的数据流的最优路由的技术
WO2015042824A1 (zh) 跨域路径的建立方法及设备
WO2011017945A1 (zh) 多层网络中转发邻接的属性继承方法及相应的多层网络
US8917626B2 (en) System and method for managing internetwork communications among a plurality of networks
WO2016165139A1 (zh) 一种虚拟网络的故障恢复方法和装置
WO2015035616A1 (zh) 跨网通信方法及装置
US20230254245A1 (en) Data Frame Sending Method and Network Device
JP5817078B2 (ja) 伝送システム、集中制御計算機、及び伝送方法
WO2022194023A1 (zh) 报文处理的方法、网络设备及控制器
CN100579025C (zh) 一种自动交换光网络的路由信息维护方法
WO2014029287A1 (zh) 隧道负荷分担方法及装置
US7499404B2 (en) Distributed quality of service routing
WO2018098818A1 (zh) 联合路由建立方法及装置
WO2021004213A1 (zh) 融合网络的路径标签确定方法及装置、存储介质及电子装置
CN105684362B (zh) 流保留协议的第一协议实体与路由选择协议的第二协议实体之间的互相配合
WO2017156710A1 (zh) 一种业务路径建立的方法、节点设备和系统
CN108243104B (zh) 一种多层lsp控制方法和装置
WO2018107359A1 (zh) 一种连接建立方法、系统及节点设备
CN112134743B (zh) 一种参数配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016922644

Country of ref document: EP

Effective date: 20190415

NENP Non-entry into the national phase

Ref country code: DE