WO2021004213A1 - 融合网络的路径标签确定方法及装置、存储介质及电子装置 - Google Patents

融合网络的路径标签确定方法及装置、存储介质及电子装置 Download PDF

Info

Publication number
WO2021004213A1
WO2021004213A1 PCT/CN2020/094754 CN2020094754W WO2021004213A1 WO 2021004213 A1 WO2021004213 A1 WO 2021004213A1 CN 2020094754 W CN2020094754 W CN 2020094754W WO 2021004213 A1 WO2021004213 A1 WO 2021004213A1
Authority
WO
WIPO (PCT)
Prior art keywords
management module
data network
optical network
network
network management
Prior art date
Application number
PCT/CN2020/094754
Other languages
English (en)
French (fr)
Inventor
程慧丽
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021004213A1 publication Critical patent/WO2021004213A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • H04L43/0894Packet rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/125Shortest path evaluation based on throughput or bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/22Alternate routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/34Source routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • H04L45/507Label distribution

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular to a method and device for determining a path label of a converged network, a storage medium, and an electronic device.
  • the main features of the services to be provided by the 5G network include large bandwidth, low latency and massive connections, which puts forward new requirements for the bearer network in terms of bandwidth, capacity, delay and networking flexibility.
  • the optical transport network technology combines the advantages of optical domain transmission and electrical domain processing. It not only provides end-to-end rigid transparent pipe connections and powerful networking capabilities, but also provides long-distance, large-capacity transmission capabilities.
  • the demand for low latency requires the core network to sink, and the transmission network also needs to support Layer 3 forwarding.
  • the segmented routing technology simplifies the traditional MPLS protocol control plane, has a wide range of deployment scenarios, and can implement TE in a simple way and quickly rebuild routing.
  • the integration of segment routing and optical network transmission is one of the hottest topics in the industry.
  • the three-layer data network puts forward a request for establishing a path to the optical network.
  • the establishment of a three-layer network is often after the customer requests, the business personnel to manually configure the virtual link. This not only increases the complexity of configuration and the cycle of network construction, but also wastes bandwidth.
  • the embodiment of the present invention provides a method and device for determining a path label of a converged network, a storage medium, and an electronic device, so as to solve at least one of the technical problems in the related art.
  • a method for determining a path label of a converged network includes: a data network management module of a centralized controller performs network configuration on a data network in the converged network, and calculates the path label of the data network
  • the optical network management module of the centralized controller performs network configuration on the optical network in the converged network, and notifies the data network management module of the routing and bandwidth usage information of the optical network; the data network management module is based on The route and bandwidth usage information of the optical network recalculate the path label of the data network, and send a crossover request to the optical network management module according to the new path label; the data network management module receives the optical network After the cross establishment success message fed back by the management module, the new path label is re-issued.
  • a device for determining a path label of a converged network includes a centralized controller, the centralized controller includes a data network management module and an optical network management module, the data network management module is used to configure the data network and calculate the path label of the data network; the optical network management The module is used to configure the optical network, and notify the data network management module of the routing and bandwidth usage information of the optical network; the data network management module is also used to renew the routing and bandwidth usage information of the optical network Calculate the path label of the data network, and send a cross establishment request to the optical network management module according to the new path label, and after receiving the cross establishment success message fed back by the optical network management module, re-issue the new Path label.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in the foregoing method embodiment when running.
  • an electronic device including a memory and a processor, the memory stores a computer program, and the processor is configured to run the computer program to execute the above method embodiments Steps in.
  • Fig. 1 is a schematic diagram of a data network and an optical network according to an embodiment of the invention
  • FIG. 2 is a flowchart of a method for determining a path label of a converged network according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of a device for determining a path label of a converged network according to an embodiment of the present invention
  • Figure 4 is a networking diagram of a data network and an optical network according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart of calculating a convergence path label in a converged network according to Embodiment 1 of the present invention.
  • FIG. 6 is a network diagram of traffic engineering according to Embodiment 2 of the present invention.
  • Figure 7 is a flowchart of calculating a path according to Embodiment 2 of the present invention.
  • Fig. 10 is a flow frame diagram of an electronic device according to an embodiment of the present invention.
  • the segmented routing multi-protocol label switching network is a three-layer data transmission network that uses label forwarding
  • the optical transport network is a physical layer network that transparently transmits data.
  • the fusion of the two networks makes the two no longer have a relationship between the upper and lower layers, but has become a parallel relationship, thus realizing the unified management of the data network and the optical network.
  • the integration also reduces the delay of the three-layer network and increases the network bandwidth.
  • the path of segmented routing is a label stack calculated based on the weight of the network path and the node label and adjacent label of the router. If the optical network is mixed in the network, the routing topology may change. The routing needs to be re-planned, and the label of the path needs to be recalculated, and the data network does not have the information of the optical network and the method of calculating the path based on the optical network information.
  • network elements N1 to N6 form a segmented routing data network
  • N11 to N14 form an optical network
  • CE1 and CE2 are client nodes.
  • the path taken from CE1 to CE2 is N1-N4-N5-N6. If a connection is established between N4 and N11, N6 and N12, after the optical network is added to the data network, the optimal path may become N1-N4-N11-N12-N6, which can effectively use bandwidth and reduce delay .
  • FIG. 2 is a flowchart of the method according to an embodiment of the present invention.
  • a centralized controller is introduced to control the converged network and calculate the label of the segment path.
  • the centralized controller includes a data network management module and an optical network management module. As shown in Figure 2, the process includes the following steps:
  • Step S202 the data network management module of the centralized controller performs network configuration on the data network in the converged network, and calculates the path label of the data network;
  • Step S204 The optical network management module of the centralized controller performs network configuration on the optical network in the converged network, and notifies the data network management module of the routing and bandwidth usage information of the optical network;
  • Step S206 The data network management module recalculates the path label of the data network according to the route and bandwidth usage information of the optical network, and sends a cross-establishment request to the optical network management module according to the new path label;
  • Step S208 After the data network management module receives the cross establishment success message fed back by the optical network management module, it re-issues the new path label.
  • a centralized controller is used to configure the network.
  • the centralized controller is divided into a data network management module and an optical network management module.
  • the data network management module can configure the IP and labels of the data network and calculate routing, and the optical network management module can configure the crossover of the optical network.
  • the data network management module and the optical network management module can exchange configuration information with each other.
  • step S202 in the foregoing embodiment the three-layer data network and the optical network that enable the segment routing protocol coexist.
  • the optical equipment in the three-layer data network may be in the middle position or the edge position, and there is no restriction on the position of the network element. Conducive to the flexible configuration and expansion of the network.
  • the data network element and the optical network element to be connected use hybrid boards, and the ports at both ends adopt different mapping methods.
  • the route convergence is completed by the data network management module of the centralized controller.
  • the data network itself also runs routing protocols, but when the topology changes due to the addition of the optical network, the route convergence time of the network itself is longer, and some constrained path networks cannot be included in the routing calculation, and an accurate path cannot be calculated.
  • the data network management module of the centralized controller obtains relevant information from the optical network management module, uses it as route calculation information, determines the path label, and sends it to the source router.
  • the data network management module may subscribe to the optical network management module of the centralized controller for routing and bandwidth usage information of the optical network.
  • the path calculation of traffic engineering is also supported. If the constrained node is a node in the optical network, it is restricted only when the optical network establishes a cross path. When calculating the path label, the label of the constrained node is not counted. The constrained path also does the same.
  • the protection of the data network and the optical network are processed in coordination.
  • the end-to-end protection of the data network can nest the path protection of the optical network. If the path protection switch of the optical network is successful, the end-to-end protection of the data network will not switch paths.
  • control information of the centralized controller interoperating with the two networks is used to determine the path label. It supports not only the path calculation of traffic engineering, but also the calculation of cooperative protection path.
  • the segmented routing network can perceive the physical path changes and bandwidth usage of the optical network, integrate the optical network well, reduce transmission delay, and improve bandwidth utilization.
  • the embodiments of the present invention essentially or the part that contributes to related technologies can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to enable a terminal device (which can be a mobile phone, a computer, a server, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • a terminal device which can be a mobile phone, a computer, a server, or a network device, etc.
  • a device for determining a path label of a converged network is also provided, which is used to implement the above-mentioned embodiment and some other implementation manners, and what has been explained will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 3 is a structural block diagram of a device for determining a path label of a converged network according to an embodiment of the present invention.
  • the device includes a centralized controller 100, which is divided into a data network management module 110 and an optical network management module 120 .
  • the centralized controller 100 exchanges configuration information with network devices through a network configuration (netconf) interface.
  • network configuration network configuration
  • the data network management module 110 is used to configure the data network, calculate the path label of the data network, and subscribe to the optical network management module 120 for routing and bandwidth usage information of the optical network,
  • the optical network management module 120 is used to configure the optical network and notify the data network management module 110 of routing and bandwidth usage information of the optical network;
  • the data network management module 110 is further configured to recalculate the path label of the data network according to the routing and bandwidth usage information of the optical network, and send a cross-establishment request to the optical network management module 120 according to the new path label, After receiving the cross establishment success message fed back by the optical network management module 120, the new path label is re-issued.
  • the optical equipment in the three-layer data network may be in an intermediate position or an edge position, and the position of the optical network element is not specifically limited.
  • the connected data network element and optical network element use hybrid boards, and the ports at both ends adopt different mapping methods.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules are combined in any combination The forms are located in different processors.
  • FIG. 4 is a network diagram of the converged network of this embodiment.
  • CE1 is an access device
  • CE2 is a core network device
  • network elements N1 to N4 are transmission or backhaul devices in the 5G bearer network.
  • a single board that supports both packet services and optical layer services is called a hybrid service board.
  • the equipment that can use the hybrid service board is called a hybrid network element.
  • N1 and N3 are hybrid network elements
  • N4 is an optical network element or a hybrid network element.
  • a centralized controller is used to configure and manage the converged network.
  • the centralized controller includes a data network management module responsible for the configuration and management of the data network, and an optical network management module responsible for the configuration and management of the optical network.
  • the process steps of this embodiment mainly include:
  • Step S501 Establish a physical connection and configure a three-layer network.
  • Figure 2 shows the physical connection established between N1 to N3 network elements.
  • the service on CE1 is accessed by N1, and is added and dropped to CE2 on N3.
  • the private network IP configured by CE1 is advertised to the peer through the BGP protocol.
  • Each port of network elements N1 to N3 is enabled with ISIS protocol or OSPF protocol, and an Area is configured for the entire network.
  • the metric bidirectional and symmetrical configuration between network elements is 10.
  • Step S502 Enable the SR protocol.
  • the network elements N1 to N3 all enable the SR protocol, and configure the Node Segment to 101 to 103.
  • the centralized controller calculates the path label stack from N1 to N3 as (101, 103) and sends it to N1. The business will use this label stack for forwarding.
  • Step S503 The data network management module of the centralized controller subscribes information to the optical network management module.
  • the routing information generated by the data network management module includes three network elements from N1 to N3, and the attributes of the network elements that are registered with the optical network management module include topology information and so on.
  • Step S504 Configure the optical network.
  • N1, N3, and N4 are part of the optical network, which connect the physical links of the three network elements and configure the metric of the optical link.
  • the optical network management module of the centralized controller updates the routing information of the optical network.
  • Step S505 The optical network management module of the centralized controller notifies the data network management module of the changed topology. After the route update of the optical network management module involves the previously registered N1 and N3 network elements, the data network management module is notified that the two network elements are reachable, and the bandwidth usage of the relevant link is notified.
  • Step S506 the data network management module re-plans the path. After the data network management module receives the direct messages and bandwidth usage of N1 and N3, it reports to the user, and the user decides whether to use the perceived path. If it is used, recalculate the route, consider that the direct path is optimal, and send a request for establishing an optical crossover to the optical network management module.
  • Step S507 the optical network establishes a crossover.
  • the optical network management module receives the request to establish the optical crossover, it sends the crossover establishment information to N1, N4 and N3 respectively according to the optical routing information. After the cross is established, inform the data network management module.
  • Step S508 The data network management module updates the route and issues the source route. After the data network management module receives the successful cross-establishment message. Deliver the updated routing label to N1. After the cross is established successfully, the network elements N1 to N3 will also update the link state database and routing information. The service path is switched to N1-N4-N3.
  • FIG. 6 is a networking diagram of this embodiment. Compared with the embodiment, the network element N5 is added in this embodiment, and N5 is connected to CE2. The steps repeated in this embodiment and Embodiment 1 will not be repeated.
  • this embodiment mainly includes the following steps:
  • Step S701 the centralized controller configures the constraint node.
  • the necessary nodes for configuring the service path are N4 and N3.
  • the controller recognizes that N4 is a node in the optical network, and N3 is a node in the data network. Send the constraint information to the optical network management module and the data network management module respectively.
  • Step S702 The optical network management module and the data network management module separately process the constraint information.
  • the optical network management module and the data network management module respectively add their own constraint information when calculating the route.
  • FIG. 8 is a networking diagram of this embodiment.
  • Network elements N1 to N4 will enable fast re-route protection, and the protected link is not only the link of the first node.
  • Link protection is established between optical network network elements N5 and N6. The repeated steps in this embodiment and Embodiment 1 will not be repeated.
  • this embodiment mainly includes the following steps:
  • Step S901 Adjust the metric of the Layer 3 network link, and enable TI-LFA.
  • the metric of N1-N2 is changed to 15.
  • the working path is N1-N4-N5-N6-N3
  • the protection path is N1-N2-N3.
  • Step S902 Configure OAM of the three-layer network. Configure labeled BFD on N1 and N3 to detect the status of the working SR path.
  • the default BFD sending cycle is 3.3ms, and the detection time for generating an alarm is 3 times the sending cycle by default.
  • Step S903 The optical network establishes link protection. Establish optical layer link protection between network elements N5 and N6. One or more protection paths can be configured.
  • Step S904 processing of nested protection. Switching occurs when the working link between the network elements N5 and N6 in the optical network fails. When the switching time is less than the time when the BFD alarm is generated, the optical link is switched, and the TI-LFA does not switch. The time for the optical network link to switch is greater than the time when the data network BFD generates an alarm, the TI-LFA is switched, and the optical link does not switch.
  • An embodiment of the present invention also provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute the steps in any one of the foregoing method embodiments when running.
  • control information of the centralized controller interworking between the two networks is used to determine the path label. It supports not only the path calculation of traffic engineering, but also the calculation of cooperative protection path.
  • the segmented routing network can perceive the physical path changes and bandwidth usage of the optical network, integrate the optical network well, reduce transmission delay, and improve bandwidth utilization.
  • the data network can not only make a request for establishing a path to the optical network, but also the optical network can inform the data network optical network physical topology and bandwidth usage information.
  • the data network can decide the optical network link that can be used according to the information obtained, and recalculate the path label, thereby effectively using bandwidth and reducing delay.
  • the foregoing storage medium may include, but is not limited to: U disk, Read-Only Memory (Read-Only Memory, ROM for short), Random Access Memory (RAM for short), mobile hard disk, magnetic disk Various media that can store computer programs such as discs or optical discs.
  • an embodiment of the present invention also provides an electronic device, including a memory 1001 and a processor 1002, the memory 1001 stores a computer program, and the processor 1002 is configured to run the computer program to execute the foregoing method embodiments Steps in.
  • modules or steps of the above-mentioned embodiments of the present invention can be implemented by a general computing device, and they can be concentrated on a single computing device, or distributed among multiple computing devices.
  • they can be implemented with program codes executable by a computing device, so that they can be stored in a storage device for execution by the computing device, and in some cases, they can be different from
  • the steps shown or described are executed in order, or they are respectively fabricated into individual integrated circuit modules, or multiple modules or steps of them are fabricated into a single integrated circuit module for implementation. In this way, the present invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种融合网络的路径标签确定方法及装置、存储介质,及电子装置,其中,该方法包括:集中控制器的数据网络管理模块对数据网络进行网络配置,并计算数据网的路径标签(S202);所述数据网络管理模块向集中控制器的光网络管理模块订阅所述光网络的路由和带宽使用信息,所述光网络管理模块对光网络进行网络配置,并通知所述数据网络管理模块所述光网络的路由和带宽使用信息(S204);所述数据网络管理模块根据所述光网络的路由和带宽使用信息重新计算所述数据网络的路径标签,并根据新的路径标签向所述光网络管理模块发送建立交叉请求(S206);所述数据网络管理模块接收到所述光网络管理模块反馈的交叉建立成功消息后,重新下发所述新的路径标签(S208)。

Description

融合网络的路径标签确定方法及装置、存储介质及电子装置
相关申请的交叉引用
本申请基于申请号为201910615647.8、申请日为2019年07月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明实施例涉及通信领域,具体而言,涉及一种融合网络的路径标签确定方法及装置、存储介质,及电子装置。
背景技术
5G网络拟提供业务的主要特征包括大带宽、低延迟和海量连接,从而对承载网在带宽、容量、时延和组网灵活性方面提出了新的需求。光传送网技术结合了光域传输和电域处理的优势,不仅可以提供端到端的刚性透明管道连接和强大的组网能力,而且可以提供长距离、大容量传输能力。低时延的需求要求核心网下沉,传输网也需要支持三层的转发。分段路由技术对传统的MPLS协议控制面做了简化,具有广泛的部署场景,能以简单的方式实现TE、快速重建路由等。分段路由与光网络传输的融合是业界最热的课题之一。
目前提出的融合网络策略中,三层数据网络向光网络提出了建立路径的请求。但是三层网络的搭建往往是客户提出请求后,业务人员去手动配置虚拟链路。这样既增加了配置的复杂度和建网的周期,也会造成带宽的浪费。
发明内容
本发明实施例提供了一种融合网络的路径标签确定方法及装置、存储介质,及电子装置,以至少解决相关技术中的技术问题之一。
根据本发明的一个实施例,提供了一种融合网络的路径标签确定方法,包括:集中控制器的数据网络管理模块对融合网络中的数据网络进行网络配置,并计算所述数据网络的路径标签;所述集中控制器的光网络管理模块对所述融合网络中的光网络进行网络配置,并通知所述数据网络管理模块所述光网络的路由和带宽使用信息;所述数据网络管理模块根据所述光网络的路由和带宽使用信息重新计算所述数据网络的路径标签,并根据新的路径标签向所述光网络管理模块发送建立交叉请求;所述数据网络管理模块接收到所述光网络管理模块反馈的交叉建立成功消息后,重新下发所述新的路径标签。
根据本发明的另一个实施例,提供了一种融合网络的路径标签确定装置。该装置包括 集中控制器,所述集中控制器包括数据网络管理模块和光网络管理模块,所述数据网络管理模块用于对数据网络进行网络配置,并计算数据网的路径标签;所述光网络管理模块用于对光网络进行网络配置,并通知所述数据网络管理模块所述光网络的路由和带宽使用信息;所述数据网络管理模块还用于根据所述光网络的路由和带宽使用信息重新计算所述数据网络的路径标签,并根据新的路径标签向所述光网络管理模块发送建立交叉请求,接收到所述光网络管理模块反馈的交叉建立成功消息后,重新下发所述新的路径标签。
根据本发明的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行上述方法实施例中的步骤。
根据本发明的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述方法实施例中的步骤。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据发明实施例的数据网络与光网络组网示意图;
图2是根据本发明实施例的融合网络的路径标签确定方法流程图;
图3是根据本发明实施例的融合网络的路径标签确定装置的结构框图;
图4是根据本发明实施例1的数据网络和光网络的组网图;
图5是根据本发明实施例1的融合网络计算收敛路径标签的流程图;
图6是根据本发明实施例2的流量工程的组网图;
图7是根据本发明实施例2的计算路径的流程图;
图8是根据本发明实施例3的保护嵌套的组网图;
图9是根据本发明实施例3的保护协同处理的流程图;
图10是根据本发明实施例的电子装置的流框架图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
分段路由的多协议标签交换网络,是使用标签转发的三层数据传输网络,而光传送网络是对数据透传的物理层的网络。两种网络的融合,使得两者不再是上下层的关系,而变成并列的关系,从而实现对数据网和光网络的统一管理。融合的同时也降低了三层网络的延时,提高了网络的带宽。
分段路由的路径是根据网络路径的权重及路由器的节点标签和邻接标签计算出的标签栈,如果网络中混合了光网络,路由拓扑可能发生了变化。路由需要重新规划,路径的标签需要重新计算,而数据网络并没有光网络的信息和根据光网络信息计算路径的方法。如图1所示,网元N1~N6组成分段路由数据网络,N11~N14组成光网络,CE1和CE2是客户节点。从CE1到CE2走的路径为N1-N4-N5-N6。如果N4和N11,N6和N12之间建立连接,那么光网络加入到数据网络后,最优路径可能变成N1-N4-N11-N12-N6,这样既可以有效利用带宽,也可降低时延。
为此,在本实施例中提供了一种融合网络的路径标签确定方法,图2是根据本发明实施例的方法流程图。在本实施例中,引入一种集中控制器对融合网络进行控制并计算分段路径的标签。集中控制器包括数据网络管理模块和光网络管理模块。如图2所示,该流程包括如下步骤:
步骤S202,集中控制器的数据网络管理模块对融合网络中的数据网络进行网络配置,并计算数据网的路径标签;
步骤S204,所述集中控制器的光网络管理模块对融合网络中的光网络进行网络配置,并通知所述数据网络管理模块所述光网络的路由和带宽使用信息;
步骤S206,所述数据网络管理模块根据所述光网络的路由和带宽使用信息重新计算所述数据网络的路径标签,并根据新的路径标签向所述光网络管理模块发送建立交叉请求;
步骤S208,所述数据网络管理模块接收到所述光网络管理模块反馈的交叉建立成功消息后,重新下发所述新的路径标签。
其中,在本实施例中,使用集中控制器对网络进行配置。集中控制器分为数据网络管理模块和光网络管理模块,数据网络管理模块可以对数据网络的IP、标签等进行配置及计算路由,光网络管理模块可以对光网络的交叉等进行配置。同时数据网络管理模块和光网络管理模块可以互相交流配置信息。
在上述实施例中的步骤S202中,启用分段路由协议的三层数据网络与光网络并存。三层数据网络中光设备可能处于中间位置或是边缘位置,不对网元所处的位置做限制。利于网路的灵活配置和扩容。
其中,在上述实施例中,对接的数据网元和光网元使用混合板,两端端口采用不同的映射方式。
其中,在上述实施例中,网络拓扑变化时路由收敛由集中控制器的数据网络管理模块完成。数据网络本身也运行路由协议,但由于光网络的加入引起拓扑发生变化时,网络本身路由收敛时间较长,且有些约束路径网络本身不能纳入到路由计算中,无法计算出准确 的路径。集中控制器的数据网络管理模块从光网络管理模块获取相关信息,作为路由计算的信息,确定路径标签,下发到源路由器。
其中,在步骤S204之前,所述数据网络管理模块可以向集中控制器的光网络管理模块订阅所述光网络的路由和带宽使用信息。
其中,在上述实施例中,还支持流量工程的路径计算。约束节点如果是光网络中的节点,仅在光网络建立交叉路径时有约束,在计算路径标签时,约束节点的标签不计算在内。约束路径也做同样的处理。
其中,在上述实施例中,数据网络和光网络的保护协同处理。数据网络的端到端保护可以嵌套光网络的路径保护。如果光网络的路径保护切换成功,数据网络端到端的保护将不切换路径。
在上述实施例中,使用了集中控制器互通两种网络的控制信息来确定路径标签。既支持流量工程的路径计算,也支持协同保护路径的计算。分段路由网络可以感知到光网络的物理路径变化及带宽使用情况,很好的融合光网络,降低传输时延,提高带宽利用率。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下采用前者。基于这样的理解,本发明的实施例本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种融合网络的路径标签确定装置,该装置用于实现上述实施例及其他一些实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的融合网络的路径标签确定装置的结构框图,如图3所示,该装置包括集中控制器100,集中控制器100分为数据网络管理模块110和光网络管理模块120。集中控制器100通过网络配置(netconf)接口与网络设备交互配置信息。
所述数据网络管理模块110用于对数据网络进行配置,并计算数据网的路径标签,向光网络管理模块120订阅所述光网络的路由和带宽使用信息,
所述光网络管理模块120用于对光网络进行配置,并通知所述数据网络管理模块110所述光网络的路由和带宽使用信息;
所述数据网络管理模块110还用于根据所述光网络的路由和带宽使用信息重新计算所 述数据网络的路径标签,并根据新的路径标签向所述光网络管理模块120发送建立交叉请求,接收到所述光网络管理模块120反馈的交叉建立成功消息后,重新下发所述新的路径标签。
在本实施例中,三层数据网络中的光设备可能处于中间位置或是边缘位置,光网元所处的位置没有具体限制。对接的数据网元和光网元使用混合板,两端端口采用不同的映射方式。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
下面通过具体应用中的实施例对本发明的实施方式进一步进行具体描述。
实施例1
本实施例主要描述了在数据网络中加入光网络的链路后,数据网络的路径更新的实现过程。图4是为本实施例的融合网络组网图。如图4所示,CE1为接入设备,CE2为核心网设备,网元N1~N4是5G承载网中传输或回传的设备。在本实施例中,将既支持分组业务又支持光层业务的单板称为混合业务板。将可以使用混合业务板的设备称作混合网元。N1和N3是混合网元,N4是光网元或者混合网元。在本实施例中通过集中控制器对融合网络进行配置和管理,集中控制器包括负责数据网络的配置和管理的数据网络管理模块,以及包括负责光网络的配置和管理的光网络管理模块。
如图5所示,本实施例的流程步骤主要包括:
步骤S501:建立物理连接,配置三层网络。N1~N3网元之间建立物理连接如图2所示。CE1上的业务由N1接入,在N3上下路到CE2。网元N1和网元N3上配置L3Vpn业务和IBGP实例。CE1配置的私网IP通过BGP协议通告到对端。
网元N1~N3各端口启用ISIS协议或OSPF协议,整个网络配置一个Area。网元之间的metric双向对称配置为10。
步骤S502:启用SR协议。网元N1~N3均启用SR协议,配置Node Segment为101~103。集中控制器计算从N1到N3的路径标签栈为(101,103)并下发到N1。业务会使用此标签栈进行转发。
步骤S503:集中控制器的数据网络管理模块向光网络管理模块订阅信息。数据网络管理模块生成的路由信息包括N1~N3三个网元,向光网络管理模块注册关注的网元的属性包括拓扑信息等。
步骤S504:配置光网络。N1,N3和N4是光网络的一部分,连接三个网元的物理链 路,配置光链路的metric。集中控制器的光网络管理模块更新光网络的路由信息。
步骤S505:集中控制器的光网络管理模块向数据网络管理模块通知变化的拓扑。光网络管理模块的路由更新后,涉及到之前注册的N1和N3网元,告知数据网络管理模块两个网元可达,并通告相关链路的带宽使用情况。
步骤S506:数据网络管理模块重新规划路径。数据网络管理模块收到N1和N3可直达的消息及带宽使用情况后,上报给用户,由用户决定是否使用感知到的路径。如果使用,重新计算路由,认为走直达路径是最优的,向光网络管理模块发送建立光交叉的请求。
步骤S507:光网络建立交叉。光网络管理模块收到建立光交叉的请求后,根据光路由信息向N1,N4和N3分别下发建立交叉的信息。交叉建立后告知数据网络管理模块。
步骤S508:数据网络管理模块更新路由下发源路由。数据网络管理模块收到交叉建立成功的消息后。下发更新的路由标签给N1。交叉建立成功后,网元N1~N3也会更新链路状态库和路由信息。业务路径切换成N1-N4-N3。
实施例2
本实施例主要描述了融合网络在存在流量工程时路径确定的过程。图6是本实施例的组网图。与实施例相比,本实施例中增加了网元N5,N5与CE2对接。本实施例与实施例1重复的步骤不再赘述。
如图7所示,本实施例主要包括如下步骤:
步骤S701:集中控制器配置约束节点。配置业务路径的必经节点为N4和N3。控制器识别出N4是光网络中的节点,而N3是数据网络的节点。分别将约束信息发给光网络管理模块和数据网络管理模块。
步骤S702:光网络管理模块和数据网络管理模块分别处理约束信息。光网络管理模块和数据网络管理模块在计算路由时分别加入各自的约束信息。
实施例3
本实施例主要描述了融合网络中数据网络管理模块和光网络管理模块对保护的协同处理。图8是本实施例的组网图。网元N1~N4都会启用快速重建路由保护,受保护的链路并不仅是首节点的链路。光网络网元N5和N6之间建立链路保护。本实施例与实施例1中重复的步骤不再赘述。
如图9所示,本实施例主要包括如下步骤:
步骤S901:调整三层网络链路的metric,启用TI-LFA。N1-N2的metric改为15,启用TI-LFA后,工作路径是N1-N4-N5-N6-N3,保护路径是N1-N2-N3。
步骤S902:配置三层网络的OAM。在N1和N3上配置支持带标签的BFD,对工作 SR路径状态进行检测。BFD发送周期默认为3.3ms,产生告警的检测时间默认是发送周期的3倍。
步骤S903:光网络建立链路保护。在网元N5和N6之间建立光层的链路保护。保护路径可以配置一条或多条。
步骤S904:嵌套保护的处理。光网络中的网元N5和N6之间的工作链路故障时发生倒换,在倒换的时间小于BFD产生告警的时间,光链路发生切换,TI-LFA不发生切换。光网络链路倒换的时间大于数据网络BFD产生告警的时间,TI-LFA发生切换,光链路不切换。
本发明的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
在本发明的上述实施例中,使用了集中控制器互通两种网络的控制信息来确定路径标签。既支持流量工程的路径计算,也支持协同保护路径的计算。分段路由网络可以感知到光网络的物理路径变化及带宽使用情况,很好的融合光网络,降低传输时延,提高带宽利用率。
在本发明的实施例中,数据网络不但可以向光网络提出建路径的请求,而且光网络可告知数据网络光网物理拓扑及带宽使用情况的信息。数据网络可根据得到的信息决策可以使用的光网络链路,并重新计算路径标签,从而有效利用带宽和降低时延。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
参照图10,本发明的实施例还提供了一种电子装置,包括存储器1001和处理器1002,该存储器1001中存储有计算机程序,该处理器1002被设置为运行计算机程序以执行上述方法实施例中的步骤。
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,在一些实施例中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的一些实施例而已,并不用于限制本发明,对于本领域的技术人 员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种融合网络的路径标签确定方法,包括:
    集中控制器的数据网络管理模块对融合网络中的数据网络进行网络配置,并计算所述数据网络的路径标签;
    所述集中控制器的光网络管理模块对所述融合网络中的光网络进行网络配置,并通知所述数据网络管理模块所述光网络的路由和带宽使用信息;
    所述数据网络管理模块根据所述光网络的路由和带宽使用信息重新计算所述数据网络的路径标签,并根据新的路径标签向所述光网络管理模块发送建立交叉请求;
    所述数据网络管理模块接收到所述光网络管理模块反馈的交叉建立成功消息后,重新下发所述新的路径标签。
  2. 根据权利要求1所述的方法,其中,所述光网络管理模块通知所述数据网络管理模块所述光网络的路由和带宽使用信息之前,还包括:
    所述数据网络管理模块向所述光网络管理模块订阅所述光网络的路由和带宽使用信息。
  3. 根据权利要求1所述的方法,其中,所述光网络管理模块通知所述数据网络管理模块所述光网络的路由和带宽使用信息,包括:
    所述光网络管理模块通知所述数据网络管理模块所述数据网络与所述光网络之间的可达链路以及带宽使用信息。
  4. 根据权利要求3所述的方法,其中,根据所述光网络的路由和带宽使用信息重新计算所述数据网络的路径标签之前,还包括:
    所述数据网络管理模块向用户上报所述可达链路以及带宽使用信息,并根据用户的指令确认是否重新计算所述数据网络的路径标签。
  5. 根据权利要求3所述的方法,其中,所述数据网络管理模块接收到所述光网络管理模块反馈的交叉建立成功消息之前,还包括:
    所述光网络管理模块向所述可达链路的网元下发建立交叉的信息。
  6. 根据权利要求1所述的方法,还包括:
    所述数据网络管理模块根据数据网络的约束信息计算所述数据网络的路径标签;和/或
    所述光网络管理模块根据光网络的约束信息建立交叉路径。
  7. 根据权利要求1所述的方法,还包括:
    所述数据网络的端到端保护嵌套所述光网络的路径保护。
  8. 根据权利要求7所述的方法,其中,所述数据网络的端到端保护嵌套所述光网络的路径保护,包括:
    当所述光网络中的工作链路故障时,光网络链路延迟倒换的时间小于数据网络BFD产生告警的时间,光网络链路发生切换,数据网络链路不发生切换;当光网络链路延迟倒换的时间大于数据网络BFD产生告警的时间,数据网络链路发生切换,光网络链路不切换。
  9. 一种融合网络的路径标签确定装置,包括集中控制器,其中,所述集中控制器包括数据网络管理模块和光网络管理模块,
    所述数据网络管理模块用于对数据网络进行网络配置,并计算数据网的路径标签;
    所述光网络管理模块用于对光网络进行网络配置,并通知所述数据网络管理模块所述光网络的路由和带宽使用信息;
    所述数据网络管理模块还用于根据所述光网络的路由和带宽使用信息重新计算所述数据网络的路径标签,并根据新的路径标签向所述光网络管理模块发送建立交叉请求,接收到所述光网络管理模块反馈的交叉建立成功消息后,重新下发所述新的路径标签。
  10. 根据权利要求9所述的装置,其中,
    所述数据网络管理模块,还用于向所述光网络管理模块订阅所述光网络的路由和带宽使用信息。
  11. 根据权利要求9所述的装置,其中,
    所述光网络管理模块还用于通知所述数据网络管理模块所述数据网络与所述光网络之间的可达链路以及带宽使用信息。
  12. 根据权利要求11所述的装置,其中,
    所述数据网络管理模块还用于向用户上报所述可达链路以及带宽使用信息,并根据用户的指令确认是否重新计算所述数据网络的路径标签。
  13. 根据权利要求9所述的装置,其中,
    所述数据网络管理模块还用于根据数据网络的约束信息计算所述数据网络的路径标签;和/或
    所述光网络管理模块还用于根据光网络的约束信息建立交叉路径。
  14. 根据权利要求9所述的装置,其中,
    所述集中控制器,还用于将所述数据网络的端到端保护嵌套所述光网络的路径保护。
  15. 根据权利要求14所述的装置,其中,
    所述集中控制器,还用于在所述光网络中的工作链路故障时,当光网络链路的延迟倒换的时间小于数据网络BFD产生告警的时间,对光网络链路进行切换,而数据网络链路不 进行切换;当光网络链路延迟倒换的时间大于数据网络BFD产生告警的时间,对数据网络链路进行切换,而光网络链路不进行切换。
  16. 一种存储介质,存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至8任一项中所述的方法。
  17. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至8任一项中所述的方法。
PCT/CN2020/094754 2019-07-09 2020-06-05 融合网络的路径标签确定方法及装置、存储介质及电子装置 WO2021004213A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910615647.8 2019-07-09
CN201910615647.8A CN112217651B (zh) 2019-07-09 2019-07-09 融合网络的路径标签确定方法及装置

Publications (1)

Publication Number Publication Date
WO2021004213A1 true WO2021004213A1 (zh) 2021-01-14

Family

ID=74048710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094754 WO2021004213A1 (zh) 2019-07-09 2020-06-05 融合网络的路径标签确定方法及装置、存储介质及电子装置

Country Status (2)

Country Link
CN (1) CN112217651B (zh)
WO (1) WO2021004213A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114124781A (zh) * 2021-11-23 2022-03-01 中国联合网络通信集团有限公司 SRv6中报文的转发方法、系统、电子设备及存储介质
CN114422424A (zh) * 2021-12-30 2022-04-29 中国电信股份有限公司 一种传输网络的路由计算方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710519A (zh) * 2012-06-01 2012-10-03 中兴通讯股份有限公司 一种建立及拆除跨域lsp的方法、系统及设备
US20150103844A1 (en) * 2013-10-11 2015-04-16 Futurewei Technologies, Inc. Using PCE as SDN Controller
CN105704019A (zh) * 2014-12-16 2016-06-22 思科技术公司 用于分段路由邻接分段的节点保护
CN107637031A (zh) * 2015-07-06 2018-01-26 华为技术有限公司 用于网络业务的路径计算单元中央控制器(pcecc)
CN108337157A (zh) * 2017-12-22 2018-07-27 华为技术有限公司 一种网络中传输报文的方法和节点

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090122707A1 (en) * 2007-11-13 2009-05-14 At&T Services, Inc. Multi-layer cascading network bandwidth control
CN103313148B (zh) * 2012-03-13 2018-08-14 中兴通讯股份有限公司 开销修改及防止子网同时倒换的方法、装置、网元和网络
US9258238B2 (en) * 2013-08-30 2016-02-09 Juniper Networks, Inc. Dynamic end-to-end network path setup across multiple network layers
CN105323137B (zh) * 2014-07-31 2019-11-29 南京中兴新软件有限责任公司 业务数据传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102710519A (zh) * 2012-06-01 2012-10-03 中兴通讯股份有限公司 一种建立及拆除跨域lsp的方法、系统及设备
US20150103844A1 (en) * 2013-10-11 2015-04-16 Futurewei Technologies, Inc. Using PCE as SDN Controller
CN105704019A (zh) * 2014-12-16 2016-06-22 思科技术公司 用于分段路由邻接分段的节点保护
CN107637031A (zh) * 2015-07-06 2018-01-26 华为技术有限公司 用于网络业务的路径计算单元中央控制器(pcecc)
CN108337157A (zh) * 2017-12-22 2018-07-27 华为技术有限公司 一种网络中传输报文的方法和节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP TECHNICAL SPECIFICATION GROUP CORE NETWORK AND TERMINALS: "Study on User Plane Protocol in 5GC(Release 16)", 3GPP TR 29.892 V1.0.0 (2019-03), 31 March 2019 (2019-03-31), DOI: 20200824170116A *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114124781A (zh) * 2021-11-23 2022-03-01 中国联合网络通信集团有限公司 SRv6中报文的转发方法、系统、电子设备及存储介质
CN114422424A (zh) * 2021-12-30 2022-04-29 中国电信股份有限公司 一种传输网络的路由计算方法及装置
CN114422424B (zh) * 2021-12-30 2023-08-11 中国电信股份有限公司 一种传输网络的路由计算方法及装置

Also Published As

Publication number Publication date
CN112217651B (zh) 2023-07-07
CN112217651A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
CN111587580B (zh) 内部网关协议洪泛最小化
EP1863235B1 (en) Method and system for multi-domain route computation
US10848416B2 (en) Reduced configuration for multi-stage network fabrics
CN101455030B (zh) 动态共享风险节点组(srng)成员发现
CN102055665B (zh) 广播上或nbma上的ospf点到多点模式
KR101643911B1 (ko) 원격통신 네트워크에서 링크―다이버스 트래픽 경로들을 확립하기 위한 방법 및 관련 장치
EP3055948B1 (en) Routing of point-to-multipoint services in a multi-domain network
US8667174B2 (en) Method and system for survival of data plane through a total control plane failure
CN105659529A (zh) 通过中央控制的ad-hoc按需路由
EP3229413B1 (en) Cross-domain cooperative method, cooperative device and control device for network as a service business
WO2021004213A1 (zh) 融合网络的路径标签确定方法及装置、存储介质及电子装置
CN106572016B (zh) 路径计算方法及装置
WO2014183657A1 (zh) 一种确定下一跳、发布路由信息的方法和装置
WO2015093478A1 (ja) ネットワークシステム、制御装置、制御方法およびプログラム
CN113193988B (zh) 一种多pce的路径计算交互方法和系统
WO2021219049A1 (zh) 一种信息上报方法、信息处理方法、装置及设备
CN106572050B (zh) 能力协商方法及装置
CN116074236A (zh) 报文转发方法及装置
JP5045551B2 (ja) ルート集約装置、及び集約処理方法
WO2020087394A1 (zh) 链路资源的传输方法及装置
WO2015093476A1 (ja) ネットワークシステム、制御装置、制御方法およびプログラム
JPWO2014123194A1 (ja) 通信システム、制御装置、通信制御方法およびプログラム
Ali Offline constraint-based routing in OSPF networks: a server based study
KR20120068585A (ko) 도메인 간 품질 보장 서비스 제공을 위한 경로 설정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836259

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836259

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20836259

Country of ref document: EP

Kind code of ref document: A1