WO2017156710A1 - 一种业务路径建立的方法、节点设备和系统 - Google Patents

一种业务路径建立的方法、节点设备和系统 Download PDF

Info

Publication number
WO2017156710A1
WO2017156710A1 PCT/CN2016/076400 CN2016076400W WO2017156710A1 WO 2017156710 A1 WO2017156710 A1 WO 2017156710A1 CN 2016076400 W CN2016076400 W CN 2016076400W WO 2017156710 A1 WO2017156710 A1 WO 2017156710A1
Authority
WO
WIPO (PCT)
Prior art keywords
lsp
service
node
lsps
network controller
Prior art date
Application number
PCT/CN2016/076400
Other languages
English (en)
French (fr)
Inventor
张弦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES16893875T priority Critical patent/ES2844098T3/es
Priority to CN201680083293.1A priority patent/CN108781183B/zh
Priority to EP16893875.1A priority patent/EP3419228B1/en
Priority to EP20199674.1A priority patent/EP3823224A1/en
Priority to PCT/CN2016/076400 priority patent/WO2017156710A1/zh
Publication of WO2017156710A1 publication Critical patent/WO2017156710A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, a node device, and a system for establishing a service path.
  • the transmission network can adopt various transmission technologies, such as Synchronous Digital Hierarchy (SDH), Optical Transport Network (OTN), Wavelength Division Multiplexing (WDM), and the like.
  • SDH Synchronous Digital Hierarchy
  • OTN Optical Transport Network
  • WDM Wavelength Division Multiplexing
  • the traditional transport network only includes the management plane and the transport plane. Network management personnel need to control and manage the transport plane through the software of the management plane to implement the creation, management and teardown of the service path.
  • the control plane is introduced, which can support automatic topology discovery, automatic establishment of service paths, and fast re-routing.
  • Such an optical network including a control plane is called an Automatically Switched Optical Network (ASON).
  • ASON Automatically Switched Optical Network
  • the network architecture of ASON includes a management plane, a control plane, and a transport plane.
  • the Internet Engineering Task Force (IETF) also defines the Generalized Multi-Protocol Label Switching (GMPLS) protocol, which provides network control functions for ASON.
  • the GMPLS protocol includes routing protocols and signaling protocols.
  • a routing protocol such as the Open Shortest Path First-Traffic Engineering (OSPF-TE) protocol, is used to enable each network node to obtain network information, such as nodes, links, and bandwidths. Support for distributed routing calculations.
  • Signaling protocol such as traffic
  • the Resource Reservation Protocol-Traffic Engineering (RSVP-TE) protocol is used to implement distributed path establishment, that is, information is exchanged hop by hop between nodes to implement the path from the source node to the sink node. set up.
  • RSVP-TE Resource Reservation Protocol-Traffic Engineering
  • a service type that supports single data interface access is currently supported.
  • a service between the client device 1 and the client device 2 is accessed into the OTN network through a single data interface, and the service path can be established by using the GMPLS protocol.
  • flex-OTN also requires a type of service that supports multiple data interface accesses.
  • a service between the client device 1 and the client device 2 is accessed to the OTN network through multiple data interfaces.
  • each data interface corresponds to an independent one.
  • Business path The service paths of the different data interfaces are independent of each other. As a result, the performance of each service path is inconsistent, which reduces the service performance of the bearer and increases the difficulty of maintaining the service path.
  • the embodiments of the present invention provide a method, a node device, and a system for establishing a service path, which can solve the problem that the service performance carried by the service path is low and the service path is difficult to maintain.
  • the embodiment of the present invention provides a method for establishing a service path, where the network controller receives a first label switched path LSP service path request message, where the first LSP has a service association attribute, where the The service association attribute of an LSP indicates that the first LSP includes at least two second LSPs, the first LSP and the The two second LSPs have the same first node and the last node; the network controller calculates routing information of the second LSP; the network controller sends routing information of the second LSP to the transmitting plane, so as to facilitate The transmitting plane establishes the first LSP according to the routing information of the second LSP.
  • the first LSP has a service association attribute, and the first LSP includes at least two second LSPs to ensure that the service performance of any two second LSPs is close to or consistent, thereby improving the service performance of the first LSP and simplifying the maintenance of the service path. And management.
  • the service association attribute of the first LSP indicates the number of the second LSPs included in the first LSP.
  • the service association attribute of the first LSP indicates that each second LSP included in the first LSP has the same routing information.
  • Each of the second LSPs has the same routing information, that is, the first node, the last node, each intermediate node, and each link of each second LSP are the same, ensuring the consistent service performance of each second LSP.
  • the service performance of the first LSP is guaranteed.
  • the service association attribute of the first LSP indicates that a difference in service performance of any two second LSPs included in the first LSP is within a preset threshold range.
  • the service performance difference between any two second LSPs is within a preset range, and the service performance of any two second LSPs is guaranteed to be close, thereby ensuring the service performance of the first LSP.
  • the method further includes: when a route calculation of at least any one of the second LSPs having an association relationship with the first LSP fails, The network controller determines that the first LSP service path request fails.
  • the embodiment of the present invention provides a method for establishing a service path, where the first node sends a first label switched path LSP service path request message to the network controller, where the first LSP has a service association attribute.
  • the service association attribute of the first LSP indicates that the first LSP includes at least two second LSPs, and the first LSP and the at least two second LSPs have the same first node and the last node;
  • the node receives routing information of the second LSP from the network controller; the first node establishes the first LSP according to routing information of the second LSP.
  • the first LSP has a service association attribute, and the first LSP includes at least two second LSPs to ensure that the service performance of any two second LSPs is close to or consistent, thereby improving the service performance of the first LSP and simplifying the maintenance of the service path. And management.
  • the service association attribute of the first LSP indicates the number of the second LSPs included in the first LSP.
  • the service association attribute of the first LSP indicates that each second LSP included in the first LSP has the same routing information.
  • Each of the second LSPs has the same routing information, that is, the first node, the last node, each intermediate node, and each link of each second LSP are the same, ensuring the consistent service performance of each second LSP.
  • the service performance of the first LSP is guaranteed.
  • the service association attribute of the first LSP indicates that a difference in service performance of any two second LSPs included in the first LSP is within a preset threshold range.
  • the method further includes: the first node learns that at least one second LSP in the first LSP is faulty, and sends a rerouting message request to the network controller, where the rerouting request The message indicates reestablishing the failed at least one second LSP.
  • an embodiment of the present invention provides a network controller, including: a receiving module, configured to receive a first label switched path LSP service path request message, where the first LSP has a service association attribute, where the The service association attribute of an LSP indicates that the first LSP includes at least two second LSPs, and the first LSP and the at least two second LSPs have the same first node and the last node; and a calculation module is used for calculating The routing information of the second LSP, the sending module, configured to send the routing information of the second LSP to the transmitting plane, so that the transmitting plane establishes the first LSP according to the routing information of the second LSP.
  • the first LSP has a service association attribute, and the first LSP includes at least two second LSPs to ensure that the service performance of any two second LSPs is close to or consistent, thereby improving the service performance of the first LSP and simplifying the maintenance of the service path. And management.
  • the service association attribute of the first LSP indicates the number of the second LSPs included in the first LSP.
  • the service association attribute of the first LSP indicates that each second LSP included in the first LSP has the same routing information.
  • Each second LSP has the same routing information, that is, each second LSP passes through.
  • the first node, the last node, each intermediate node, and each link are the same, ensuring the consistent service performance of each second LSP, thereby ensuring the service performance of the first LSP.
  • the service association attribute of the first LSP indicates that a difference in service performance of any two second LSPs included in the first LSP is within a preset threshold range.
  • the service performance difference between any two second LSPs is within a preset range, and the service performance of any two second LSPs is guaranteed to be close, thereby ensuring the service performance of the first LSP.
  • the network controller further includes: a determining module, configured to determine, when the route calculation of at least any one of the second LSPs associated with the first LSP fails The LSP service path request failed.
  • the embodiment of the present invention provides a node device, including: a sending module, configured to send a first label switched path LSP service path request message to a network controller, where the first LSP has a service association attribute, The service association attribute of the first LSP indicates that the first LSP includes at least two second LSPs, and the first LSP and the at least two second LSPs have the same first node and the last node;
  • the routing information is used to receive the routing information from the second LSP of the network controller;
  • the LSP establishing module is configured to establish the first LSP according to the routing information of the second LSP.
  • the first LSP has a service association attribute, and the first LSP includes at least two second LSPs to ensure that the service performance of any two second LSPs is close to or consistent, thereby improving the service performance of the first LSP and simplifying the maintenance of the service path. And management.
  • the service association attribute of the first LSP indicates the number of the second LSPs included in the first LSP.
  • the service association attribute of the first LSP indicates that each second LSP included in the first LSP has the same routing information.
  • Each of the second LSPs has the same routing information, that is, the first node, the last node, each intermediate node, and each link of each second LSP are the same, ensuring the consistent service performance of each second LSP.
  • the service performance of the first LSP is guaranteed.
  • the service association attribute of the first LSP indicates that a difference in service performance of any two second LSPs included in the first LSP is within a preset threshold range.
  • the service performance difference between any two second LSPs is within a preset range, and the service performance of any two second LSPs is guaranteed to be close, thereby ensuring the service performance of the first LSP.
  • the node device further includes: a fault learning module, configured to learn that at least one second LSP in the first LSP is faulty, and the sending module is further configured to send by the network controller Re-routing a message request, the re-routing request message indicating re-establishing the failed at least one second LSP.
  • a fault learning module configured to learn that at least one second LSP in the first LSP is faulty
  • the sending module is further configured to send by the network controller Re-routing a message request, the re-routing request message indicating re-establishing the failed at least one second LSP.
  • an embodiment of the present invention provides a network controller, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer execution instruction, and the processor and the memory are connected through a bus, and when the computer is running, processing The computer executes the memory-stored computer-executable instructions to cause the computer to perform the method as described in the first aspect and any one of the possible implementations of the first aspect.
  • an embodiment of the present invention provides a node device, including: a processor, a memory, a bus, and a communication interface; the memory is configured to store a computer to execute an instruction, and the processor and the memory are connected through a bus, and when the computer is running, the processor The computer executing the memory storage executes instructions to cause the computer to perform the method of any one of the second aspect and the second aspect.
  • the embodiment of the present invention provides a network system, including the network controller in any one of the possible implementation manners of the third aspect or the third aspect, and at least two of the fourth aspect or the fourth aspect.
  • the at least two second LSPs that are associated with the first LSP are established, and any two seconds are guaranteed.
  • the service performance of the LSP is close or consistent, which improves the service performance of the first LSP and simplifies the maintenance and management of the service path.
  • FIG. 1 is a schematic diagram of an ASON network architecture in the prior art
  • 3 is another implementation manner of a client service accessing an OTN network in the prior art
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a network topology structure according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of signaling interaction of a method for establishing a service path according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a field format of an associated object according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a field format of an association object according to an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of signaling interaction of a method for processing a service path fault according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a network topology structure according to an embodiment of the present invention.
  • FIG. 11 is an exemplary flowchart of a method for establishing a service path according to an embodiment of the present invention.
  • FIG. 12 is an exemplary flowchart of a method for establishing a service path according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a network controller according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a node device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a computer device according to an embodiment of the present invention.
  • FIG. 16 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • Embodiments of the present invention can be applied to an ASON network architecture including a control plane.
  • the ASON network architecture includes a management plane, a control plane, and a transport plane.
  • the transport plane consists of a series of transport entities, such as Traffic Engineering (TE) links between nodes and nodes.
  • TE Traffic Engineering
  • the transport plane provides a channel for service transmission and can carry one-way or two-way service data end-to-end from the client device.
  • the client device accesses the transmission plane through the User Network Interface (UNI).
  • UNI User Network Interface
  • the client device dynamically requests, acquires, revokes, and modifies optical bandwidth connection resources having certain characteristics through the UNI.
  • the management plane that is, the platform used by the network administrator to manage the network, can be connected to the control plane and the transport plane through the Network Management Interface (NMI) to manage the control plane and the transport plane.
  • the control plane can be composed of a separate network controller, can also be composed of multiple control plane components, and can also be composed of a separate network controller and multiple control plane components.
  • the network controller and control plane components, or different control plane components, are connected by a control channel.
  • the control plane and the transfer plane are connected by a Connection Control Interface (CCI).
  • the control plane sends an exchange control command to the transmission plane through the CCI, or the transmission plane sends resource status information to the control plane through the CCI.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device 400 may be a network device in OTN, SDH, WDM.
  • Network device 400 can also be a network device in ASON that includes a transport plane and a control plane.
  • the network device 400 may include a signaling module 401, a routing module 402, a cross management module 403, and an LMP (Link Management Protocol) link management module 404.
  • the signaling module 401 can implement the functions of establishing a service path or tearing down a service path through the RSVP-TE protocol, and can implement a service synchronization and recovery function according to changes in service status.
  • the routing module 402 can collect the TE link information of the transport plane and the control link information of the control plane through the OSPF-TE protocol, and the routing module 402 can also calculate the service route according to the TE link of the entire network.
  • the cross-management module 403 can implement establishing a cross-connection, deleting a cross-connection, reporting link state information, and alarm information.
  • LMP link management The module 404 can create and maintain a control channel through the LMP protocol to verify the TE link.
  • FIG. 5 is a schematic diagram of a network topology structure according to an embodiment of the present invention.
  • the transport network includes a plurality of node devices A, B, C, D, E, F, G, H, such as OTN devices. Node devices are connected by physical links, that is, TE links.
  • the transport network may also include a network controller, each of which may be managed and controlled by a network controller.
  • the client side network includes client devices 1, 2, 3, 4, which may be, for example, data centers, routers, etc., which may be deployed independently or controlled by other network controllers.
  • each data interface has a bandwidth of 100G.
  • FIG. 6 is a flowchart of signaling interaction of a method for establishing a service path according to an embodiment of the present invention. As shown in FIG. 6, the method may be implemented based on the network topology shown in FIG. 5, and specifically includes the following steps:
  • the client device sends a first LSP service establishment request to the first node.
  • the client device 1 can send a first LSP service establishment request to the node A directly connected thereto.
  • N represents the number of data interfaces of the node devices in the transport plane
  • M represents the rate of a data interface.
  • the rate of each data interface can be the same, of course, the rate of each data interface can also be different. Therefore, need Three 100G LSPs are set up, and the three 100G LSPs are associated with the 300G LSPs. That is, the 300G LSP contains three 100G LSPs.
  • the first LSP may be a 300G LSP
  • the second LSP may be three 100G LSPs.
  • the first LSP has a service association attribute, which can be represented by an associated object in the related protocol message.
  • the client device 1 can request the node A to establish an LSP with a bandwidth of 300G from the client device 1 to the client device 2, and the node A is a head node of the 300G LSP in the transport network.
  • the client device 1 can also request that the node A establish three LSPs from the client device 1 to the client device 2, each having a bandwidth of 100 G, and the node A having the 100 G LSP is the first node in the transport network.
  • the first LSP service establishment request sent by the client device 1 to the node A may carry a source node (client device 1) and a sink node of the LSP ( Client device 2), bandwidth (300G).
  • the first LSP service setup request sent by the client device 1 to the node A carries the source node (client device 1) and the sink node of the three LSPs ( The client device 2) and the bandwidth (100G) may also carry the associated object of the first LSP.
  • client device 1 requests the node A to establish three LSPs from the client device 1 to the client device 2 with a bandwidth of 100 G
  • three PATH messages can be sent to the node A through a signaling protocol (such as the RSVP-TE protocol).
  • Each PATH message indicates that an LSP with a bandwidth of 100G is established from the client device 1 to the client device 2, and each PATH message may also carry an association object of the first LSP.
  • the following fields may be included in the association object in the RSVP-TE protocol:
  • C-Type defines two new Class-Types, for example, the value can be 5 or 6, etc. Don't be a Class-Type corresponding to IPv6 and IPv4.
  • the length can be 16 bits, indicating the association type.
  • the association type is to ensure that the service performance is optimal, that is, each LSP has the same routing information, and all the nodes (the first node, the last node, and the intermediate node) and the links that pass through are the same.
  • the association type is to ensure that the service performance is within the threshold range, that is, the LSPs do not necessarily have the same routing information.
  • the first node and the last node of each LSP are the same, but some intermediate nodes may be different, and the difference between service performance (such as delay, bit error rate, etc.) between LSPs needs to be within a preset threshold range. within.
  • Association ID The length can be 16 bits, indicating the association ID.
  • the association identifier may be a unique identifier assigned by a node or a controller, and may be uniquely identified globally in conjunction with the identifier of the node or the network controller.
  • Ipv4 (or IPv6) Association Source The length can be 32 bits or 128 bits, indicating the source that generates the associated object, that is, the body that generates the associated object, such as a client device, node, or network controller.
  • the length can be 16 to indicate the number of associated members. For example, the number of 100G LSPs included in the 300G LSP.
  • Extended Association ID can be an integer multiple of 32 bits. Indicates the association identifier. When the length of the Association ID is insufficient, an extended representation is made in this field.
  • the first node sends a first LSP service path request message to the network controller.
  • the first node A in the transport network sends a first LSP service path request message to the network controller, and may request the network controller to establish a first LSP with a bandwidth of 300G from the first node A to the last node D.
  • the first node A can also request the network controller to establish three slaves respectively. Node A to the last node D, the second LSP with a bandwidth of 100G.
  • the first LSP service path request message sent by the first node A to the network controller may carry the first node (node A) and end of the LSP. Node (node D), bandwidth (300G).
  • the first LSP service path request message sent by the first node A to the network controller carries the first node (node A) and the end of the three LSPs.
  • the node (node D) and the bandwidth (100G) may also carry the associated object of the first LSP.
  • the node A can be sent to the network controller through the Path Computation Element Communication Protocol (PCEP) protocol.
  • PCEP Path Computation Element Communication Protocol
  • Association type indicates the association type, which has the same meaning as the Association Type of the associated object in the RSVP-TE protocol.
  • Association ID indicates the association ID, which has the same meaning as the Association ID of the associated object in the RSVP-TE protocol.
  • Ipv4 (or IPv6) Association Source The meaning is the same as the Ipv4 (or IPv6) Associationtion Source of the associated object in the RSVP-TE protocol.
  • a new TLV can be added to carry in the new TLV.
  • Member number which has the same meaning as the Member number of the associated object in the RSVP-TE protocol.
  • the first LSP service path request message sent by the first node to the network controller may also be an LSP authorization message, where the LSP authorization message may also indicate an authorized network controller, and the network controller may determine whether the 300G LSP has a service association attribute (ie, Whether a plurality of second LSPs are included in the first LSP, and information about an associated object of the first LSP may also be determined. For example, the network controller may determine to establish multiple LSPs associated with the LSP of the 300G for the LSP of the 300G, including the number of LSPs to be established, the bandwidth of each LSP, and the type of association.
  • the LSP authorization message carries the associated identifier, the association type, and the number of associated members in the LSP authorization message.
  • the LSP authorization message carries the authorization identifier and does not carry the association object of the first LSP.
  • the network controller calculates, according to the first LSP service path request message, routing information of at least two second LSPs that are associated with the first LSP.
  • the network controller After the network controller receives the first LSP service path request message of the first node A, if the first LSP service path request message carries the association object of the first LSP, the network controller learns from the first LSP service path request message
  • the first LSP with a bandwidth of 300G establishes three second LSPs from the first node A to the last node D, each having a bandwidth of 100G.
  • the first LSP service has a service association attribute, that is, the first LSP includes three second LSPs.
  • the network controller may determine whether the first LSP has a service association attribute (that is, whether the first LSP includes multiple The second LSP) may also determine information of the associated object of the first LSP.
  • the network controller performs bulk path calculation according to the current network resource information. For example, if the association type is to ensure that the service performance is optimal, all the three LSPs have the same routing information. That is, all the nodes and links that each LSP passes through are the same. For example, the routing information of the three LSPs is A-B-C-D, but the time slot resources used by different LSPs may be different.
  • the calculated three LSPs do not necessarily have the same routing information.
  • the service performance difference is preset.
  • the routing information of one of the LSPs is A-B-C-F-E-D
  • the routing information of the other two LSPs is A-B-C-D.
  • the difference between the service performance of any two of the three LSPs is within a preset threshold.
  • the network controller sends routing information of at least two second LSPs to the head node.
  • the network controller After the routing information of each second LSP (the LSP of the 100G) included in the first LSP (the LSP of the 300G) is successfully calculated and the resource allocation is successful, the network controller sends the service path calculation result to the first node A, and the service path is calculated.
  • the result includes routing information of each second LSP (LSP of 100G).
  • the network controller may carry the first LSP when sending the service path calculation result to the node A.
  • the network controller may carry the service path calculation result to the node A.
  • the network controller sends the service path calculation result to the node A, which may be a PCRep message or a PCUpd message
  • the PCRep message or the PCUpd message may also carry the associated object of the first LSP.
  • S605 The first node establishes each second according to routing information of at least two second LSPs. LSP.
  • each of the second LSPs may be established by using a signaling protocol (such as the RSVP-TE protocol).
  • a signaling protocol such as the RSVP-TE protocol
  • the association object of the first LSP may be carried, so that each node passing through the second LSP can acquire the associated object of the first LSP.
  • each node For example, three LSPs whose routing information is ABCD and the bandwidth is 100G are respectively established, and the nodes A, B, C, and D obtain the associated object information in the process of establishing the LSP.
  • the LSP of the 300G includes three 100G LSPs and association identifiers. (such as business 1), association type (such as ensuring optimal business performance).
  • association identifiers such as business 1
  • association type such as ensuring optimal business performance
  • the first node returns a message that the first LSP is successfully established to the client device.
  • the first LSP When each second LSP in the first LSP is successfully established, the first LSP is successfully established, and the first node may reply to the client device that the first LSP is successfully established. For example, when the LSPs of the three 100Gs are successfully established, the LSP of the 300G is successfully established, and the first node A can reply to the RESV message to the client device 1, indicating that the LSP of the 300G is successfully established. Client devices can use these LSPs to deliver business data.
  • the network controller may include a Path Computation Element (PCE), which is a centralized path calculation unit, and is used to calculate routing information of the service path.
  • PCE Path Computation Element
  • the PCE can also be a standalone component.
  • the first LSP service establishment request may be directly sent to the network controller by the client device, the client controller, or the network controller, and the S601 and S602 need not be executed.
  • the first LSP service setup request may carry the association object of the first LSP.
  • the internet calculates the routing information of the at least two second LSPs that are associated with the first LSP according to the first LSP service path request, and sends the service path calculation result to the first node in the transport network.
  • the service path result carries the routing information of the at least two second LSPs, and may also carry the associated object of the first LSP.
  • the first LSP service establishment request sent by the network device to the network controller such as the client device, the client controller, or the network controller, may be a PCInitiate message; and the service path calculation result sent by the network controller to the first node may be a PCRpt message.
  • the service association attribute of the first LSP may be determined by any one of the client device, the network controller, and the first node.
  • the protocol message carries the associated object of the first LSP.
  • the at least two second LSPs that are associated with the first LSP are established to ensure that the service performance between any two second LSPs is close or consistent, thereby improving
  • the service performance of the first LSP simplifies the maintenance and management of the service path.
  • FIG. 9 is a signaling interaction flowchart of a method for processing a service path fault according to an embodiment of the present invention. As shown in FIG. 9, the following steps are specifically included:
  • S901 The node on the faulty link detects that at least one second LSP in the first LSP is faulty, and sends fault information to the first node.
  • the network topology of FIG. 10 is the same as that of FIG. 5, and it is assumed that an LSP with a bandwidth of 200G is established from the client device 3 to the client device 4 in the transport network of FIG.
  • the 200G LSP includes two 100G LSPs. One of the ports connected to node F and node G has failed, causing one of the 100G LSPs to fail. After detecting that one of the 100G LSPs fails, the node G sends a fault message to the first node H.
  • the information can carry the fault type and carry the rerouting policy information. Fault types can include fiber failures, partial node failures, and the like.
  • the rerouting strategy may include separately rerouting the failed second LSP or re-routing all of the second LSPs included in the first LSP as a whole.
  • the re-routing policy information may be determined by the node G according to the fault type and/or the locally stored LSP service association attribute information.
  • the service association attribute of the first LSP is stored in the node G, that is, the association object between the LSP of the 200G and the LSP of the two 100Gs is associated.
  • the fault type is a partial node fault or a port fault, and only one of the 100G LSPs is affected, the node G can determine that one of the 100G LSPs is rerouted.
  • the first LSP can be a 200G service
  • the second LSP can be two 100G LSPs.
  • S902 The first node sends a re-routing request to the network controller, requesting re-routing of the failed second LSP.
  • the first node H When the first node H sends a rerouting request to the network controller, it may carry the rerouting policy information.
  • the first node may obtain the re-routing policy information from the fault information, and the first node H may further determine the re-routing policy information according to the fault type and/or the locally stored LSP service association attribute information.
  • the method for the first node H to determine the policy information of the re-routing refer to the node G, and details are not described herein again.
  • S903 The network controller recalculates routing information for the second LSP that fails.
  • the network controller may obtain the rerouting policy information from the rerouting request sent by the first node H, and the network controller may also according to the fault type and/or the locally saved LSP service. Correlation attribute information and the like determine the policy information of the re-routing. For the method for the network controller to determine the re-routing policy information, refer to the node G, which is not described here.
  • the network controller recalculates the routing information for the failed LSP according to the rerouting policy information. For example, the network controller recalculates the routing information for a 100G LSP that fails.
  • the routing information can be H-G-F-E.
  • the routing information is the same as the original path, but a new port is reassigned between the G-Fs.
  • S904 The network controller sends re-routing information to the head node.
  • the network controller sends the re-routing information to the head node H, and the re-routing information carries the routing information of the LSP that needs to be re-routed.
  • the routing information may be H-G-F-E, and the routing information may further include information such as a port number, a used time slot, and the like.
  • S905 The first node establishes a second LSP according to the rerouting information.
  • the first node H establishes a second LSP according to the routing information H-G-F-E, and a new port number is used between the G-Fs.
  • any one of the fault detection node, the first node, or the network controller may be determined according to the fault type and/or the LSP service association attribute information. Rerouting policy information and rerouting based on rerouting policy information.
  • the at least one second LSP that is associated with the first LSP when at least one second LSP that is associated with the first LSP fails, the at least one second LSP that fails may be rerouted, which simplifies maintenance and management of the service path.
  • FIG. 11 is an exemplary flowchart of a method for establishing a service path according to an embodiment of the present invention, which may be performed by a network controller.
  • the network controller can be PCE, also Can be a computer or a server. As shown in FIG. 11, the following steps are included:
  • the network controller receives the first label switching path LSP service path request message, where the first LSP has a service association attribute, and the service association attribute of the first LSP indicates that the first LSP includes at least two The second LSP, the first LSP and the at least two second LSPs have the same first node and last node.
  • the network controller may receive the first LSP service path request message from the head node of the transport network, or receive a first LSP service setup request from any one of the client device, the client device controller, and the network management device.
  • the first LSP service path request message received by the network controller may carry the service association attribute of the first LSP.
  • the service association attribute of the first LSP may be represented by an association object of the PCEP protocol or the RSVP-TE protocol.
  • the service association attribute may include an association identifier of the first LSP, an association type, and a number of associated members.
  • the association identifier may be an identifier assigned by the network controller, the head node, or the client device to the first LSP.
  • the association type includes ensuring optimal service performance and ensuring that the service performance is within the threshold. To ensure optimal service performance, each second LSP has the same routing information, and the first node, the last node, the intermediate node, and the link are the same.
  • the service performance is within the threshold range, that is, the difference between the first node and the last node of each second LSP is the same, and the difference between the service performance between any two second LSPs is within a preset threshold range.
  • the number of associated members is the number of second LSPs included in the first LSP.
  • the network controller calculates routing information of the second LSP.
  • the first LSP includes at least two second LSPs.
  • each second LSP in the first LSP has the same route when the association type is to ensure that the service performance is optimal. information. That is, all the nodes and links that the second LSP passes through are the same, and the service performance of all the second LSPs is consistent as much as possible to ensure the service performance of the first LSP.
  • each second LSP has the same routing information.
  • the second LSP may have the same routing information, the first node and the last node between the other second LSPs are the same, the service performance difference is within a preset threshold range, or all the second LSPs are not the same. Routing information, but the first node and the last node between any two second LSPs are the same, and the difference in service performance needs to be within a preset threshold range to ensure that the service performance of all the second LSPs is close, thereby ensuring the first LSP service performance.
  • S1103 The network controller sends the routing information of the second LSP to the transmitting plane, so that the transmitting plane establishes the first LSP according to the routing information of the second LSP.
  • the network controller When each second LSP in the first LSP is successfully calculated, the network controller sends routing information of each second LSP to the first node of the transport network. After each second LSP is successfully established, the first LSP is successfully established. If at least one of the second LSPs fails to calculate, the network controller replies to the first node of the transport network with a message that the first LSP service path request fails.
  • the network association controller determines the service association attribute of the first LSP, that is, the first node fails to determine the service association attribute of the first LSP
  • the network controller sends the routing information of the second LSP to the first node of the transport network.
  • the association object of the first LSP may be further used to represent the service association attribute of the first LSP.
  • the network controller may reroute the failed second LSP. All second LSPs in the first LSP may be rerouted.
  • the network controller ensures that the service performance of any two second LSPs is close or consistent by establishing at least two second LSPs that are associated with the first LSP in the process of establishing the first LSP.
  • the service performance of the first LSP is improved, and the maintenance and management of the service path is simplified.
  • FIG. 12 is an exemplary flowchart of a method for establishing a service path according to an embodiment of the present invention.
  • the method may be performed by a node device in a transport network, for example, a head node of an LSP in a transport network.
  • the node device can be an OTN device, a WDM device, an SDH device, or the like. As shown in Figure 12, the following steps are included:
  • the first node sends a first label switching path LSP service path request message to the network controller, where the first LSP has a service association attribute, and the service association attribute of the first LSP indicates that the first LSP includes at least Two second LSPs, the first LSP and the at least two second LSPs have the same first node and last node.
  • the first node may carry the service association attribute of the first LSP in the first LSP service path request message sent to the network controller.
  • the service association attribute of the first LSP may be represented by an association object of the RSVP-TE protocol.
  • the service association attribute may include an association identifier of the first LSP, an association type, and a number of associated members.
  • the association identifier may be an identifier assigned by the network controller, the head node, or the client device to the first LSP.
  • the association type includes ensuring optimal service performance and ensuring that the service performance is within the threshold. To ensure optimal service performance, each second LSP has the same routing information, and the first node, the last node, the intermediate node, and the link are the same. Ensure that the service performance is within the threshold range, that is, the first node and the last node of each second LSP are the same and arbitrary. The difference in service performance between the two second LSPs is within a preset threshold range.
  • the number of associated members is the number of second LSPs included in the first LSP.
  • the head node receives routing information of the second LSP from the network controller.
  • the first node When each second LSP in the first LSP is successfully calculated, the first node receives routing information of each second LSP from the network controller. If at least one of the second LSPs fails to calculate, the first node receives a message that the first LSP service path request from the network controller fails.
  • the first LSP includes at least two second LSPs.
  • each second LSP in the first LSP has the same routing information when the association type is that the service performance is optimal. That is, all the nodes and links that the second LSP passes through are the same, and the service performance of all the second LSPs is consistent as much as possible to ensure the service performance of the first LSP.
  • each second LSP has the same routing information.
  • the second LSP may have the same routing information, the first node and the last node between the other second LSPs are the same, the service performance difference is within a preset threshold range, or all the second LSPs are not the same. Routing information, but the first node and the last node between any two second LSPs are the same, and the difference in service performance needs to be within a preset threshold range to ensure that the service performance of all the second LSPs is close, thereby ensuring the first LSP service performance.
  • the first node receives the network from the network.
  • the routing information of the second LSP of the network controller may also carry an association object of the first LSP, which is used to indicate a service association attribute of the first LSP.
  • S1203 The first node establishes each second LSP according to the routing information of the second LSP.
  • each of the second LSPs may be established by using a signaling protocol (such as the RSVP-TE protocol).
  • a signaling protocol such as the RSVP-TE protocol
  • the association object of the first LSP may be carried, so that each node passing through the second LSP can acquire the associated object of the first LSP.
  • each node facilitates distributed management of the established LSP by each node, such as rerouting.
  • the network controller may reroute the failed second LSP, and may also all the second LSPs in the first LSP. Reroute.
  • the first node establishes the first LSP, and establishes at least two second LSPs that are associated with the first LSP to ensure that the service performance of any two second LSPs is close or consistent, thereby improving
  • the service performance of the first LSP simplifies the maintenance and management of the service path.
  • FIG. 13 is a schematic structural diagram of a network controller according to an embodiment of the present invention.
  • the network controller can be a PCE or a computer or server. As shown in FIG. 13, the network controller includes: a receiving module 1301, a calculating module 1302, and a sending module 1303.
  • the receiving module 1301 is configured to receive the first label switching path LSP service path. a request message, where the first LSP has a service association attribute, and the service association attribute of the first LSP indicates that the first LSP includes at least two second LSPs, the first LSP and the at least two The second LSP has the same head node and end node.
  • the service association attribute of the first LSP indicates the number of the second LSPs included in the first LSP.
  • the service association attribute of the first LSP may also indicate that each second LSP in the first LSP has the same routing information, that is, the first node, the intermediate node, the last node, and the link passing between any two second LSPs are the same.
  • the service association attribute of the first LSP may also indicate that the first node and the last node of any two second LSPs included in the first LSP are the same, and the difference in service performance is within a preset threshold range.
  • the calculating module 1302 is configured to calculate routing information of the second LSP.
  • the sending module 1303 is configured to send the routing information of the second LSP to the transmitting plane, so that the transmitting plane establishes the first LSP according to the routing information of the second LSP.
  • the network controller shown in FIG. 13 can perform the steps in the method embodiments shown in FIG. 6, FIG. 9, and FIG. 11, and details are not described herein again.
  • the network controller ensures that the service performance of any two second LSPs is close or consistent by establishing at least two second LSPs that are associated with the first LSP in the process of establishing the first LSP.
  • the service performance of the first LSP is improved, and the maintenance and management of the service path is simplified.
  • FIG. 14 is a schematic structural diagram of a node device according to an embodiment of the present invention.
  • the node device can be an OTN device, a WDM device, an SDH device, or the like.
  • the device structure diagram of the node device can also refer to the embodiment shown in FIG.
  • the node device may be the head node of the LSP in the transport network.
  • the node device includes: a sending module 1401, and a receiving module 1402. And an LSP establishment module 1403.
  • the sending module 1401 is configured to send a first label switching path LSP service path request message to the network controller, where the first LSP has a service association attribute, and the service association attribute of the first LSP indicates the first
  • the LSP includes at least two second LSPs, and the first LSP and the at least two second LSPs have the same first node and last node.
  • the service association attribute of the first LSP indicates the number of the second LSPs included in the first LSP.
  • the service association attribute of the first LSP may also indicate that each second LSP in the first LSP has the same routing information, that is, the first node, the intermediate node, the last node, and the link passing between any two second LSPs are the same.
  • the service association attribute of the first LSP may also indicate that the first node and the last node of any two second LSPs included in the first LSP are the same, and the difference in service performance is within a preset threshold range.
  • the receiving module 1402 is configured to receive routing information of the second LSP from the network controller.
  • the LSP establishing module 1403 is configured to establish the first LSP according to the routing information of the second LSP.
  • the network controller shown in FIG. 14 can perform the steps in the method embodiments shown in FIG. 6, FIG. 9, and FIG. 12, and details are not described herein again.
  • the node device establishes the first LSP, and establishes at least two second LSPs that are associated with the first LSP to ensure that the service performance of any two second LSPs is close or consistent, thereby improving
  • the service performance of the first LSP simplifies the maintenance and management of the service path.
  • FIG. 15 is a schematic structural diagram of a computer device according to an embodiment of the present invention.
  • the computer device 1500 includes a processor 1501, a memory 1502, an input/output interface 1503, a communication interface 1504, and a bus 1505.
  • the processor 1501, the memory 1502, the input/output interface 1503, and the communication interface 1504 implement a communication connection with each other through the bus 1505.
  • the processor 1501 can be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or at least one integrated circuit for executing related programs to implement the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 1502 may be a read only memory (ROM), a static storage device, a dynamic storage device, or a random access memory (RAM).
  • the memory 1502 can store an operating system and other applications.
  • the program code for implementing the technical solution provided by the embodiment of the present invention is saved in the memory 1502 and executed by the processor 1501.
  • the input/output interface 1503 is for receiving input data and information, and outputting data such as operation results.
  • Communication interface 1504 enables communication between computer device 1500 and other devices or communication networks using transceivers such as, but not limited to, transceivers.
  • Bus 1505 can include a path for communicating information between various components of computer device 1500, such as processor 1501, memory 1502, input/output interface 1503, and communication interface 1504.
  • the network controller receives the first label switched path LSP service path request message by using the communication interface 1504, where the first LSP has a service association attribute, and the service association attribute of the first LSP indicates that the first LSP is included. At least two second LSPs, the first LSP and the at least two second LSPs have the same first node and last node.
  • the network controller executes the code stored in the memory 1502 by the processor 1501 to calculate routing information of the second LSP.
  • the network controller sends the routing information of the second LSP to the transmitting plane through the communication interface 1504, so that the transmitting plane establishes the first LSP according to the routing information of the second LSP.
  • the node device sends a first label switched path LSP service path request message to the network controller through the communication interface 1504, where the first LSP has a service association attribute, and the service association attribute of the first LSP indicates the first
  • the LSP includes at least two second LSPs, and the first LSP and the at least two second LSPs have the same first node and last node.
  • the node device receives the routing information of the second LSP from the network controller through the communication interface 1504, and executes the code stored in the memory 1502 by the processor 1501, and establishes each second according to the routing information of the second LSP. LSP.
  • the steps in the method embodiments shown in FIG. 6, FIG. 9, FIG. 11, and FIG. 12 can be implemented by the computer device 1500 shown in FIG.
  • the computer device 1500 shown in FIG. 15 only shows the processor 1501, the memory 1502, the input/output interface 1503, the communication interface 1504, and the bus 1505, those skilled in the art will understand in the specific implementation process.
  • Computer device 1500 also includes other devices necessary for normal operation Pieces.
  • computer device 1500 may also include hardware devices that implement other additional functions, depending on the particular needs.
  • computer device 1500 may also only include the components necessary to implement embodiments of the present invention, and does not necessarily include all of the devices shown in FIG.
  • the service performance of any two second LSPs is ensured by establishing at least two second LSPs that are associated with the first LSP. Close or consistent, thereby improving the service performance of the first LSP and simplifying the maintenance and management of the service path.
  • FIG. 16 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • the network system includes a network controller 1601 and at least two node devices 1602.
  • the network controller 1601 can perform the steps in the method embodiments shown in FIG. 6, FIG. 9, and FIG. 11.
  • the structure and function of the network controller 1601 can be referred to the embodiment shown in FIG. 13 and FIG.
  • the node device 1602 can perform the steps in the method embodiments shown in FIG. 6, FIG. 9, and FIG. 12.
  • the structure and function of the node device 1602 can be referred to the embodiment shown in FIG. 4, FIG. 14, and FIG.
  • the network controller 1601 is configured to receive a first label switching path LSP service path request message, where the first LSP has a service association attribute, and the service association attribute of the first LSP indicates that the first LSP includes at least two a second LSP, the first LSP and the at least two second LSPs have the same first node and a last node; and are used for calculating routing information of the second LSP; and And routing information of the second LSP, so that the transmitting plane establishes the first LSP according to the routing information of the second LSP.
  • the node device 1602 is configured to send the first label switching path LSP to the network controller.
  • the service path request message wherein the first LSP has a service association attribute, and the service association attribute of the first LSP indicates that the first LSP includes at least two second LSPs, the first LSP and the at least The two second LSPs have the same first node and the last node; receive routing information of the second LSP from the network controller; and are further configured to establish the first LSP according to the routing information of the second LSP.
  • the network controller and/or the node device ensure the service performance of any two second LSPs by establishing at least two second LSPs that are associated with the first LSP in the process of establishing the first LSP. Close or consistent, thereby improving the service performance of the first LSP and simplifying the maintenance and management of the service path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开了一种业务路径建立的方法、节点设备和系统。其中,业务路径建立的方法包括:网络控制器接收第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点;所述网络控制器计算所述第二LSP的路由信息;所述网络控制器向传送平面发送所述第二LSP的路由信息,以便于传送平面根据所述第二LSP的路由信息建立所述第一LSP。通过以上技术方案,提高了第一LSP的业务性能,简化了业务路径的维护和管理。

Description

一种业务路径建立的方法、节点设备和系统 技术领域
本发明涉及通信领域,尤其涉及一种业务路径建立的方法、节点设备和系统。
背景技术
传送网络可以采用多种传送技术,如同步数据系列(Synchronous Digital Hierarchy,SDH)、光传送网络(Optical Transport Network,OTN)、波分复用(Wavelength Division Multiplexing WDM)等。传统的传送网络仅包含管理平面和传送平面,需要网络管理人员通过管理平面的软件对传送平面进行控制和管理,以实现业务路径的创建、管理和拆除等。在传送网络,例如在OTN中,引入控制平面,能够支持拓扑自动发现、业务路径自动建立和快速重路由等。这种包含控制平面的光网络称为自动交换光网络(Automatically Switched Optical Network,ASON)。
如图1所示,ASON的网络架构包含管理平面、控制平面和传送平面。因特网工程任务组(Internet Engineering Task Force,IETF)还定义了扩展多协议标记交换(Generalized Multi-Protocol Label Switching,GMPLS)协议,用于为ASON提供网络控制的功能。GMPLS协议包括路由协议和信令协议等。路由协议,例如流量工程扩展的开放式最短路径优先(Open Shortest Path First-Traffic Engineering,OSPF-TE)协议,用于使各个网络节点能够获取网络信息,例如节点、链路和带宽等信息,以支持分布式的路由计算。信令协议,例如流量 工程扩展的资源预留协议(Resource Reservation Protocol-Traffic Engineering,RSVP-TE)协议,用于实现分布式的路径建立,即节点之间逐跳地进行信息交互,实现从源节点到宿节点的路径建立。
随着传送技术的发展,OTN网络能够承载的客户业务的带宽和类型越来越丰富。例如,在灵活OTN(flexible OTN,或者flex-OTN)网络中,目前支持单一数据接口接入的业务类型。如图2所示,客户设备1和客户设备2之间的一个业务通过单一数据接口接入到OTN网络中,利用GMPLS协议可以实现业务路径的建立。flex-OTN还需要支持多个数据接口接入的业务类型。如图3所示,客户设备1和客户设备2之间的一个业务通过多个数据接口接入到OTN网络,如果采用现有的GMPLS协议实现业务路径的建立,则每个数据接口对应一个独立的业务路径。由于不同数据接口之间的业务路径相互独立,导致每个业务路径的性能不一致,导致承载的业务性能降低,还会增加业务路径维护的难度。
发明内容
有鉴于此,本发明实施例提供一种业务路径建立的方法、节点设备和系统,可以解决业务路径承载的业务性能低、业务路径维护困难的问题。
第一方面,本发明实施例提供了一种业务路径建立的方法,包括:网络控制器接收第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至 少两条第二LSP具有相同的首节点和末节点;所述网络控制器计算所述第二LSP的路由信息;所述网络控制器向传送平面发送所述第二LSP的路由信息,以便于传送平面根据所述第二LSP的路由信息建立所述第一LSP。
第一LSP具有业务关联属性,第一LSP中包含至少两条第二LSP,保证任意两条第二LSP的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
在一种可能的实现方式中,所述第一LSP的业务关联属性指示所述第一LSP中包含的第二LSP的数量。
在一种可能的实现方式中,所述第一LSP的业务关联属性指示所述第一LSP中包含的每一条第二LSP具有相同的路由信息。
每一条第二LSP具有相同的路由信息,即每一条第二LSP经过的首节点、末节点、每一个中间节点和每一条链路都相同,保证了每一条第二LSP的业务性能一致,从而保证了第一LSP的业务性能。
在一种可能的实现的方式中,所述第一LSP的业务关联属性指示所述第一LSP中包含的任意两条第二LSP的业务性能的差值在预设的阈值范围之内。
任意两条第二LSP之间的业务性能的差值在预设的范围之内,保证了任意两条第二LSP的业务性能接近,从而保证了第一LSP的业务性能。
在一种可能的实现的方式中,所述方法还包括:当与所述第一LSP具有关联关系的至少任意一条第二LSP的路由计算失败时,所述 网络控制器确定所述第一LSP业务路径请求失败。
第二方面,本发明实施例提供了一种业务路径建立的方法,包括:首节点向网络控制器发送第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点;所述首节点接收来自所述网络控制器的所述第二LSP的路由信息;所述首节点根据所述第二LSP的路由信息建立所述第一LSP。
第一LSP具有业务关联属性,第一LSP中包含至少两条第二LSP,保证任意两条第二LSP的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
在一种可能的实现方式中,所述第一LSP的业务关联属性指示所述第一LSP中包含的第二LSP的数量。
在一种可能的实现方式中,所述第一LSP的业务关联属性指示所述第一LSP中包含的每一条第二LSP具有相同的路由信息。
每一条第二LSP具有相同的路由信息,即每一条第二LSP经过的首节点、末节点、每一个中间节点和每一条链路都相同,保证了每一条第二LSP的业务性能一致,从而保证了第一LSP的业务性能。
在一种可能的实现方式中,所述第一LSP的业务关联属性指示所述第一LSP中包含的任意两条第二LSP的业务性能的差值在预设的阈值范围之内。
任意两条第二LSP之间的业务性能的差值在预设的范围之内,保 证了任意两条第二LSP的业务性能接近,从而保证了第一LSP的业务性能。
在一种可能的实现方式中,所述方法还包括:所述首节点获知所述第一LSP中的至少一条第二LSP发生故障,向网络控制器发送重路由消息请求,所述重路由请求消息指示重新建立所述发生故障的至少一条第二LSP。
第三方面,本发明实施例提供了一种网络控制器,包括:接收模块,用于接收第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点;计算模块,用于计算所述第二LSP的路由信息;发送模块,用于向传送平面发送所述第二LSP的路由信息,以便于传送平面根据所述第二LSP的路由信息建立所述第一LSP。
第一LSP具有业务关联属性,第一LSP中包含至少两条第二LSP,保证任意两条第二LSP的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
在一种可能的实现方式中,所述第一LSP的业务关联属性指示所述第一LSP中包含的第二LSP的数量。
在一种可能的实现方式中,所述第一LSP的业务关联属性指示所述第一LSP中包含的每一条第二LSP具有相同的路由信息。
每一条第二LSP具有相同的路由信息,即每一条第二LSP经过的 首节点、末节点、每一个中间节点和每一条链路都相同,保证了每一条第二LSP的业务性能一致,从而保证了第一LSP的业务性能。
在一种可能的实现方式中,所述第一LSP的业务关联属性指示所述第一LSP中包含的任意两条第二LSP的业务性能的差值在预设的阈值范围之内。
任意两条第二LSP之间的业务性能的差值在预设的范围之内,保证了任意两条第二LSP的业务性能接近,从而保证了第一LSP的业务性能。
在一种可能的实现方式中,所述网络控制器还包括:确定模块,用于当与所述第一LSP具有关联关系的至少任意一条第二LSP的路由计算失败时,确定所述第一LSP业务路径请求失败。
第四方面,本发明实施例提供了一种节点设备,包括:发送模块,用于向网络控制器发送第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点;接收模块,用于接收来自所述网络控制器的所述第二LSP的路由信息;LSP建立模块,用于根据所述第二LSP的路由信息建立所述第一LSP。
第一LSP具有业务关联属性,第一LSP中包含至少两条第二LSP,保证任意两条第二LSP的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
在一种可能的实现方式中,所述所述第一LSP的业务关联属性指示所述第一LSP中包含的第二LSP的数量。
在一种可能的实现方式中,所述第一LSP的业务关联属性指示所述第一LSP中包含的每一条第二LSP具有相同的路由信息。
每一条第二LSP具有相同的路由信息,即每一条第二LSP经过的首节点、末节点、每一个中间节点和每一条链路都相同,保证了每一条第二LSP的业务性能一致,从而保证了第一LSP的业务性能。
在一种可能的实现方式中,所述第一LSP的业务关联属性指示所述第一LSP中包含的任意两条第二LSP的业务性能的差值在预设的阈值范围之内。
任意两条第二LSP之间的业务性能的差值在预设的范围之内,保证了任意两条第二LSP的业务性能接近,从而保证了第一LSP的业务性能。
在一种可能的实现方式中,所述节点设备还包括:故障获知模块,用于获知所述第一LSP中的至少一条第二LSP发生故障,所述发送模块,还用于网络控制器发送重路由消息请求,所述重路由请求消息指示重新建立所述发生故障的至少一条第二LSP。
第五方面,本发明实施例提供了一种网络控制器,包括:处理器、存储器、总线和通信接口;存储器用于存储计算机执行指令,处理器与存储器通过总线连接,当计算机运行时,处理器执行存储器存储的计算机执行指令,以使计算机执行如第一方面及第一方面的任意一种可能的实现方式所述的方法。
第六方面,本发明实施例提供了一种节点设备,包括:处理器、存储器、总线和通信接口;存储器用于存储计算机执行指令,处理器与存储器通过总线连接,当计算机运行时,处理器执行存储器存储的计算机执行指令,以使计算机执行如第二方面及第二方面的任意一种可能的实现方式所述的方法。
第七方面,本发明实施例提供了一种网络系统,包括,如第三方面或第三方面任意一种可能的实现方式中的网络控制器和至少两个如第四方面或第四方面任意一种可能的实现方式中节点设备。
根据本发明实施例提供的技术方案,在网络控制器和/或节点设备建立第一LSP的过程中,通过建立与第一LSP具有关联关系的至少两条第二LSP,保证任意两条第二LSP的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
附图说明
为了更清楚地说明本发明的实施例或现有技术中的技术方案,下面将对描述背景技术和实施例时所使用的附图作简单的介绍。
图1是现有技术中ASON网络架构示意图;
图2是现有技术中客户业务接入OTN网络的一种实现方式;
图3是现有技术中客户业务接入OTN网络的另一种实现方式;
图4是本发明实施例提供的一种网络设备的结构示意图;
图5是本发明实施例提供的一种网络拓扑结构示意图;
图6是本发明实施例提供的一种业务路径建立的方法的信令交互流程图;
图7是本发明实施例提供的一种关联对象的字段格式示意图;
图8是本发明实施例提供的一种关联对象的字段格式示意图;
图9是本发明实施例提供一种业务路径故障处理的方法的信令交互流程图;
图10是本发明实施例提供的一种网络拓扑结构示意图;
图11是本发明实施例提供的一种业务路径建立的方法的示范性流程图;
图12是本发明实施例提供的一种业务路径建立的方法的示范性流程图;
图13是本发明实施例提供的一种网络控制器的结构示意图;
图14是本发明实施例提供的一种节点设备的结构示意图;
图15是本发明实施例提供的一种计算机设备的结构示意图;
图16是本发明实施例提供的一种网络系统的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。
本发明实施例可以应用于包含控制平面的ASON网络架构中。如图1所示,ASON网络架构中包括管理平面、控制平面和传送平面。其中,传送平面由一系列的传送实体组成,例如各个节点和节点之间的流量工程(Traffic Engineering,TE)链路。传送平面提供业务传送的通道,可承载客户设备端到端的单向或双向业务数据。客户设备通过用户网络接口(User Network Interface,UNI)接入到传送平面的 某个节点(例如节点2),客户设备通过UNI动态地请求获取、撤销、修改具有一定特性的光带宽连接资源。管理平面即网管人员用于对网络进行管理的平台,可以通过网络管理接口(Network Management Interface,NMI)分别与控制平面和传送平面相连,实现对控制平面和传送平面的管理。控制平面可以由一个独立的网络控制器构成,还可以由多个控制平面组件构成,还可以由一个独立的网络控制器和多个控制平面组件构成。网络控制器和控制平面组件之间,或者不同的控制平面组件之间通过控制通道连接起来。控制平面和传送平面之间通过连接控制接口(Connection Control Interface,CCI)相连。控制平面通过CCI发送交换控制命令到传送平面,或者传送平面通过CCI发送资源状态信息到控制平面。
图4是本发明实施例提供的一种网络设备的结构示意图。如图4所示,网络设备400可以是OTN、SDH、WDM中的网络设备。网络设备400还可以是ASON中的网络设备,包含了传送平面和控制平面。网络设备400可以包括信令模块401、路由模块402、交叉管理模块403和LMP(Link Management Protocol)链路管理模块404。其中,信令模块401可以通过RSVP-TE协议实现业务路径的建立或业务路径的拆除等功能,并且可以根据业务状态的变化,实现业务的同步和恢复功能。路由模块402可以通过OSPF-TE协议实现收集和洪泛传送平面的TE链路信息、控制平面的控制链路信息,并且路由模块402还可以根据全网TE链路计算业务路由。交叉管理模块403可以实现建立交叉连接、删除交叉连接、上报链路状态信息和告警信息等。LMP链路管理 模块404可以通过LMP协议创建和维护控制通道,对TE链路进行校验。
图5是本发明实施例提供的一种网络拓扑结构示意图。如图5所示,传送网络中包括多个节点设备A、B、C、D、E、F、G、H,例如OTN设备。节点设备之间通过物理链路相连,即TE链路。传送网络还可以包括网络控制器,各个节点设备可以由网络控制器进行管理和控制。客户侧网络包括客户设备1、2、3、4,例如可以为数据中心、路由器等,可以独立部署或由其他的网络控制器的控制。假设客户设备1、客户设备2之间的一个300G的业务通过三个数据接口接入到传送网络中,每个数据接口的带宽为100G;客户设备3、客户设备4之间的一个200G的业务通过两个数据接口接入到传送网络中,每个数据接口的带宽为100G。
图6是本发明实施例提供的一种业务路径建立的方法的信令交互流程图。如图6所示,该方法可以基于图5所示的网络拓扑结构实现,具体包括如下步骤:
S601:客户设备向首节点发送第一LSP业务建立请求。
例如,当客户设备1和客户设备2之间要建立一条300G的第一标签交换路径(Label Switched Path,LSP)业务时,客户设备1可以向与其直接相连的节点A发送第一LSP业务建立请求。该300G的LSP是通过三个数据接口接入到传送网络的节点A的,表示为N*M Gbps的LSP,其中,N=3,M=100。这里,N表示传送平面中节点设备的数据接口的个数,M表示一个数据接口的速率。这里,每个数据接口的速率可以相同,当然,每个数据接口的速率也可以不同。因此,需要 建立三条100G的LSP,并且,这三条100G的LSP和300G的LSP之间具有关联关系,即300G的LSP中包含三条100G的LSP。
本实施例中,第一LSP可以是一条300G的LSP,第二LSP可以是三条100G的LSP。第一LSP具有业务关联属性,可以通过相关协议消息中的关联对象表示。
客户设备1可以请求节点A建立一条从客户设备1到客户设备2,带宽为300G的LSP,节点A为300G的LSP在传送网络中的首节点。客户设备1还可以请求节点A分别建立三条从客户设备1到客户设备2,带宽均为100G的LSP,节点A为100G的LSP在传送网络中的首节点。
可选地,如果客户设备1请求节点A建立一条带宽为300G的LSP,客户设备1向节点A发送的第一LSP业务建立请求中可以携带一条LSP的源节点(客户设备1)、宿节点(客户设备2)、带宽(300G)。
可选地,如果客户设备1请求节点A分别建立三条带宽为100G的LSP,客户设备1向节点A发送的第一LSP业务建立请求中携带三条LSP的源节点(客户设备1)、宿节点(客户设备2)、带宽(100G),还可以携带第一LSP的关联对象。例如,客户设备1请求节点A建立三条从客户设备1到客户设备2,带宽均为100G的LSP时,可以通过信令协议(如RSVP-TE协议),向节点A发送三个PATH消息。每个PATH消息均指示建立从客户设备1到客户设备2,带宽为100G的LSP,每个PATH消息中还可以携带第一LSP的关联对象。例如,如图7所示,RSVP-TE协议中的关联对象中可以包括以下字段:
C-Type:定义两种新的Class-Type,例如取值可以为5或6等,分 别为IPv6和IPv4对应的Class-Type。
Association Type:长度可以为16位,表示关联类型。例如关联类型为保证业务性能最优,即各条LSP具有相同的路由信息,经过的所有节点(首节点、末节点和中间节点)和链路都相同。再例如,关联类型为保证业务性能在阈值范围之内,即各条LSP之间不一定具有完全相同的路由信息。比如,各条LSP的首节点和末节点相同,但经过的部分中间节点可以不同,各条LSP之间的业务性能(如延时、误码率等)的差值需要在预设的阈值范围之内。
Association ID:长度可以为16位,表示关联标识。该关联标识可以是节点或控制器等分配的唯一标识,可以结合节点或网络控制器的标识在全局唯一标识该关联对象。
Ipv4(或者IPv6)Associattion Source:长度可以为32位或128位,表示产生关联对象的源,即产生关联对象的主体,例如客户设备、节点或网络控制器等。
Member mumber:长度可以为16为,表示关联的成员个数。例如,300G的LSP中包含的100G的LSP的条数。
Extended Association ID:长度可变,可以为32位的整数倍。表示关联标识,当Association ID的长度不足时,在该字段中进行扩展表示。
S602:首节点向网络控制器发送第一LSP业务路径请求消息。
传送网络中的首节点A向网络控制器发送第一LSP业务路径请求消息,可以请求网络控制器建立一条从首节点A到末节点D,带宽为300G的第一LSP。首节点A还可以请求网络控制器分别建立三条从首 节点A到末节点D,带宽均为100G的第二LSP。
可选地,如果首节点A请求网络控制器建立一条带宽为300G的LSP,首节点A向网络控制器发送的第一LSP业务路径请求消息中可以携带一条LSP的首节点(节点A)、末节点(节点D)、带宽(300G)。
可选地,如果首节点A请求网络控制器分别建立三条带宽为100G的LSP,首节点A向网络控制器发送的第一LSP业务路径请求消息中携带三条LSP的首节点(节点A)、末节点(节点D)、带宽(100G),还可以携带第一LSP的关联对象。例如,节点A请求网络控制器建立三条从首节点A到末节点D,带宽均为100G的LSP时,可以通过路径计算单元通信协议(Path Computation Element Communication Protocol,PCEP)协议,向网络控制器发送第一LSP业务路径请求消息。第一LSP业务路径请求消息可以通过一条消息表示,还可以通过多条消息表示。第一LSP业务路径请求消息可以为PCReq消息。第一LSP的关联对象可以在PECP协议中进行表示。例如,如图8所示,PCEP协议中的关联对象中可以包括以下字段:
Association type:表示关联类型,其含义和RSVP-TE协议中关联对象的Association Type相同。
Association ID:表示关联标识,其含义和RSVP-TE协议中关联对象的Association ID相同。
Ipv4(或者IPv6)Associattion Source:其含义和RSVP-TE协议中关联对象的Ipv4(或者IPv6)Associattion Source相同。
Optional TLVs:可以新增一个新的TLV,在新增的TLV中携带 Member number,其含义和RSVP-TE协议中关联对象的Member number相同。
首节点向网络控制器发送的第一LSP业务路径请求消息还可以为LSP授权消息,该LSP授权消息还可以指示授权网络控制器,可以由网络控制器确定300G的LSP是否具有业务关联属性(即第一LSP中是否包括多条第二LSP),还可以确定第一LSP的关联对象的信息。例如,可以由网络控制器决定针对300G的LSP建立与300G的LSP具有关联关系的多条LSP,包括需要建立LSP的数量,以及每条LSP的带宽,还有关联类型等。则LSP授权消息中携带的第一LSP的关联对象中关联标识、关联类型、关联成员的数量等字段可以为空值,或者LSP授权消息中携带授权标识位,不携带第一LSP的关联对象。
S603:网络控制器根据第一LSP业务路径请求消息计算出与第一LSP具有关联关系的至少两条第二LSP的路由信息。
网络控制器接收到首节点A的第一LSP业务路径请求消息后,如果第一LSP业务路径请求消息中携带了第一LSP的关联对象,网络控制器从第一LSP业务路径请求消息中获知针对带宽为300G的第一LSP建立三条从首节点A到末节点D,带宽均为100G的第二LSP。此时,第一LSP业务具有业务关联属性,即第一LSP中包括三条第二LSP。
如果首节点向网络控制器发送的第一LSP业务路径请求消息中未携带第一LSP的关联对象,则可以由网络控制器确定第一LSP是否具有业务关联属性(即第一LSP中是否包括多条第二LSP),还可以确定第一LSP的关联对象的信息。
假设针对300G的第一LSP建立三条100G的第二LSP,网络控制器根据当前的网络资源信息进行批量路径计算。例如关联类型为保证业务性能最优时,计算出的三条LSP都具有相同的路由信息,即三条LSP中的每一条LSP经过的所有节点和链路都是相同的。如,三条LSP的路由信息均为A-B-C-D,但不同LSP使用的时隙资源可以不同。
例如关联类型为保证业务性能在阈值范围之内时,计算出的三条LSP不一定具有完全相同的路由信息,只要保证三条LSP之间的首节点和末节点相同、业务性能的差值在预设的阈值范围内即可。如,其中一条LSP的路由信息为A-B-C-F-E-D,另外两条LSP的路由信息为A-B-C-D,这三条LSP中任意两条LSP的业务性能的差值在预设的阈值范围之内。
S604:网络控制器向首节点发送至少两条第二LSP的路由信息。
当第一LSP(300G的LSP)中包含的每一条第二LSP(100G的LSP)的路由信息都计算成功且资源分配成功后,网络控制器向首节点A发送业务路径计算结果,业务路径计算结果中包含每一条第二LSP(100G的LSP)的路由信息。
如果首节点A授权网络控制器确定第一LSP的业务关联属性时,即首节点未能确定第一LSP的业务关联属性时,网络控制器向节点A发送业务路径计算结果时可以携带第一LSP的关联对象。网络控制器向节点A发送业务路径计算结果可以为PCRep消息或者是PCUpd消息时,PCRep消息或者PCUpd消息中还可以携带第一LSP的关联对象。
S605:首节点根据至少两条第二LSP的路由信息建立每一条第二 LSP。
首节点A接收到网络控制器计算出的至少两条第二LSP的路由信息后,可以通过信令协议(如RSVP-TE协议)分别建立每一条第二LSP。在建立第二LSP的信令协议中,可以携带第一LSP的关联对象,使得第二LSP中经过的每个节点都能获取第一LSP的关联对象。
例如,分别建立三条路由信息为A-B-C-D,带宽均为100G的LSP,并且节点A、B、C、D在LSP建立的过程获取了关联对象信息,包括300G的LSP中包含三条100G的LSP、关联标识(如业务1)、关联类型(如保证业务性能最优)等。各个节点在获取了关联对象信息后,有利于各个节点对建立好的LSP做分布式管理,例如重路由等。
S606、首节点向客户设备回复第一LSP建立成功的消息。
当第一LSP中的每一条第二LSP都建立成功时,则第一LSP建立成功,首节点可以向客户设备回复第一LSP建立成功的消息。例如,三条100G的LSP建立都成功时,300G的LSP建立成功,首节点A可以向客户设备1回复RESV消息,表示300G的LSP建立成功。客户设备可以使用这些LSP传递业务数据。
本实施例中,网络控制器中可以包含路径计算单元(Path Computation Element,PCE),PEC是一个集中式的路径计算单元,用于计算业务路径的路由信息。PCE还可以是一个独立的组件。在PCE Initiation模式下,第一LSP业务建立请求可以由客户设备、客户控制器或网管等直接发送给网络控制器,则S601、S602不需要执行。其中,第一LSP业务建立请求中可以携带第一LSP的关联对象。网络 控制器根据第一LSP业务路径请求计算与第一LSP具有关联关系的至少两条第二LSP的路由信息,并向传送网络中的首节点发送业务路径计算结果。业务路径结果中携带了至少两条第二LSP的路由信息,还可以携带第一LSP的关联对象。其中,客户设备、客户控制器或网管等发送给网络控制器的第一LSP业务建立请求可以为PCInitiate消息;网络控制器向首节点发送的业务路径计算结果可以为PCRpt消息。
本发明实施例中,可以由客户设备、网络控制器、首节点中的任意一个设备确定第一LSP的业务关联属性,即第一LSP的关联对象的字段信息,并且在RSVP-TE、PCEP等协议消息中携带第一LSP的关联对象。在传送网络中,在建立第一LSP的过程中,通过建立与第一LSP具有关联关系的至少两条第二LSP,保证任意两条第二LSP之间的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
图9是本发明实施例提供的一种业务路径故障处理的方法的信令交互流程图。如图9所示,具体包括如下步骤:
S901:故障链路上的节点检测到第一LSP中的至少一条第二LSP发生故障,向首节点发送故障信息。
例如,图10的网络拓扑结构与图5相同,假设图10的传送网络中建立了一条从客户设备3到客户设备4,带宽为200G的LSP。其中,该200G的LSP中包括两条100G的LSP。节点F和节点G相连的其中一个端口发生了故障,导致其中一条100G的LSP发生故障。节点G检测到其中一条100G的LSP发生故障后,向首节点H发送故障信息,故障信 息中可以携带故障类型,还可以携带重路由的策略信息。故障类型可以包括光纤故障、节点部分故障等。重路由的策略可以包括对发生故障的第二LSP单独进行重路由,或者对与第一LSP中包含的所有第二LSP整体进行重路由。
例如,重路由的策略信息可以由节点G根据故障类型和/或本地保存的LSP业务关联属性信息等判断得出。例如,节点G中保存了第一LSP的业务关联属性,即表示一条200G的LSP和两条100G的LSP之间的具有关联关系的关联对象。此时,故障类型为节点部分故障,或者端口故障,仅影响其中一条100G的LSP,则节点G可以判断出对其中一条100G的LSP进行重路由即可。
本实施例中,仅对发生故障的100G的LSP进行重路由。第一LSP可以为一条200G的业务,第二LSP可以为两条100G的LSP。
S902:首节点向网络控制器发送重路由请求,请求对发生故障的第二LSP进行重路由。
首节点H向网络控制器发送重路由请求时,可以携带重路由的策略信息。首节点可以从故障信息获取重路由的策略信息,首节点H还可以根据故障类型和/或本地保存的LSP业务关联属性信息等判断得到重路由的策略信息。首节点H判断得到重路由的策略信息的方法可参见节点G,此处不再赘述。
S903:网络控制器针对发生故障的第二LSP重新计算路由信息。
网络控制器可以从首节点H发送的重路由请求中获取重路由的策略信息,网络控制器还可以根据故障类型和/或本地保存的LSP业务 关联属性信息等判断得到重路由的策略信息。网络控制器判断得到重路由的策略信息的方法可参见节点G,此处不再赘述。
网络控制器根据重路由策略信息对发生故障的LSP重新计算路由信息。例如,网络控制器对发生故障的一条100G的LSP重新计算路由信息,路由信息可以为H-G-F-E,路由信息和原路径相同,但G-F之间重新分配了一个新的端口。
S904:网络控制器向首节点发送重路由信息。
网络控制器向首节点H发送重路由信息,重路由信息中携带了需要重路由的LSP的路由信息。例如,路由信息可以为H-G-F-E,路由信息还可以包括端口号、使用的时隙等信息。
S905:首节点根据重路由信息建立第二LSP。
首节点H根据路由信息H-G-F-E建立第二LSP,G-F之间使用新的端口号。
本实施例中,当第一LSP中包含的至少一条第二LSP发生故障时,可以由故障检测节点、首节点或者网络控制器中的任意一个设备根据故障类型和/或LSP业务关联属性信息确定重路由的策略信息,并根据重路由的策略信息进行重路由。
本发明实施例中,当与第一LSP具有关联关系的至少一条第二LSP发生故障时,可以对发生故障的至少一条第二LSP进行重路由,简化了业务路径的维护和管理。
图11是本发明实施例提供的一种业务路径建立的方法的示范性流程图,该方法可以由网络控制器执行。网络控制器可以为PCE,还 可以为计算机或服务器。如图11所示,包括如下步骤:
S1101:网络控制器接收第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点。
网络控制器可以接收来自传送网络的首节点的第一LSP业务路径请求消息,或者接收来自客户设备、客户设备控制器、网管中任意一个设备的第一LSP业务建立请求。
网络控制器接收到的第一LSP业务路径请求消息中,可以携带第一LSP的业务关联属性。第一LSP的业务关联属性可以通过PCEP协议或RSVP-TE协议的关联对象表示。
其中,业务关联属性可以包括第一LSP的关联标识、关联类型和关联成员的数量等。关联标识可以为网络控制器、首节点或客户设备为第一LSP分配的标识。关联类型包括保证业务性能最优和保证业务性能在阈值范围之内。保证业务性能最优即各条第二LSP具有相同的路由信息,经过的首节点、末节点、中间节点和链路都相同。保证业务性能在阈值范围之内即各条第二LSP的首节点和末节点相同、任意两条第二LSP之间的业务性能的差值在预设的阈值范围之内。关联成员的数量即第一LSP中包含的第二LSP的数量。
S1102:所述网络控制器计算所述第二LSP的路由信息。
第一LSP中包含至少两条第二LSP。可选地,当关联类型为保证业务性能最优时,第一LSP中的每一条第二LSP具有相同的路由 信息。即每条第二LSP经过的所有的节点和链路均相同,尽量保证所有的第二LSP的业务性能一致,从而保证第一LSP的业务性能。
可选地,当关联类型为保证业务性能在阈值范围之内时,不需要确保每条第二LSP都具有相同的路由信息。可以使部分第二LSP具有相同的路由信息,其他第二LSP之间的首节点和末节点相同、业务性能差值在预设的阈值范围之内;或者所有的第二LSP都不具有相同的路由信息,但是任意两条第二LSP之间的首节点和末节点相同、业务性能的差值需要在预设的阈值范围之内,保证所有的第二LSP的业务性能接近,从而保证第一LSP的业务性能。
S1103:所述网络控制器向传送平面发送所述第二LSP的路由信息,以便于传送平面根据所述第二LSP的路由信息建立所述第一LSP。
当第一LSP中每一条第二LSP均计算成功时,网络控制器向传送网络的首节点发送每一条第二LSP的路由信息。当每一条第二LSP建立成功后,则第一LSP建立成功。如果其中至少一条第二LSP计算失败,则网络控制器向传送网络的首节点回复第一LSP业务路径请求失败的消息。
可选地,如果由网络控制器确定第一LSP的业务关联属性时,即首节点未能确定第一LSP的业务关联属性时,网络控制器向传送网络的首节点发送第二LSP的路由信息时,还可以携带第一LSP的关联对象,用于表示第一LSP的业务关联属性。
当第一LSP建立成功之后,如果第一LSP中的至少一条第二LSP发生故障时,网络控制器可以对发生故障的第二LSP进行重路由,还 可以对第一LSP中所有的第二LSP进行重路由。
本发明实施例中,网络控制器在建立第一LSP的过程中,通过建立与第一LSP具有关联关系的至少两条第二LSP,保证任意两条第二LSP的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
图12是本发明实施例提供的一种业务路径建立的方法的示范性流程图,该方法可以由传送网络中的节点设备执行,例如,传送网络中LSP的首节点。节点设备可以为OTN设备、WDM设备、SDH设备等。如图12所示,包括如下步骤:
S1201:首节点向网络控制器发送第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点。
首节点在向网络控制器发送的第一LSP业务路径请求消息中,可以携带第一LSP的业务关联属性。第一LSP的业务关联属性可以通过RSVP-TE协议的关联对象表示。
其中,业务关联属性可以包括第一LSP的关联标识、关联类型和关联成员的数量等。关联标识可以为网络控制器、首节点或客户设备为第一LSP分配的标识。关联类型包括保证业务性能最优和保证业务性能在阈值范围之内。保证业务性能最优即各条第二LSP具有相同的路由信息,经过的首节点、末节点、中间节点和链路都相同。保证业务性能在阈值范围之内即各条第二LSP的首节点和末节点相同、任意 两条第二LSP之间的业务性能的差值在预设的阈值范围之内。关联成员的数量即第一LSP中包含的第二LSP的数量。
S1202:所述首节点接收来自所述网络控制器的所述第二LSP的路由信息。
当第一LSP中每一条第二LSP均计算成功时,首节点接收来自网络控制器的每一条第二LSP的路由信息。如果其中至少一条第二LSP计算失败,则首节点接收来自网络控制器第一LSP业务路径请求失败的消息。
第一LSP中包含至少两条第二LSP。可选地,当关联类型为业务性能最优时,第一LSP中的每一条第二LSP具有相同的路由信息。即每条第二LSP经过的所有的节点和链路均相同,尽量保证所有的第二LSP的业务性能一致,从而保证第一LSP的业务性能。
可选地,当关联类型为保证业务性能在阈值范围之内时,不需要确保每条第二LSP都具有相同的路由信息。可以使部分第二LSP具有相同的路由信息,其他第二LSP之间的首节点和末节点相同、业务性能差值在预设的阈值范围之内;或者所有的第二LSP都不具有相同的路由信息,但是任意两条第二LSP之间的首节点和末节点相同、业务性能的差值需要在预设的阈值范围之内,保证所有的第二LSP的业务性能接近,从而保证第一LSP的业务性能。
可选地,如果由网络控制器确定第一LSP的业务关联属性时,即首节点未能确定第一LSP的业务关联属性时,首节点接收来自网 络控制器的第二LSP的路由信息中,还可以携带第一LSP的关联对象,用于表示第一LSP的业务关联属性。
S1203:所述首节点根据所述第二LSP的路由信息建立每一条第二LSP。
首节点接收来自网络控制器的至少两条第二LSP的路由信息后,可以通过信令协议(如RSVP-TE协议)分别建立每一条第二LSP。在建立第二LSP的信令协议中,可以携带第一LSP的关联对象,使得第二LSP中经过的每个节点都能获取第一LSP的关联对象。各个节点在获取了关联对象信息后,有利于各个节点对建立好的LSP做分布式管理,例如重路由等。
当每一条第二LSP建立成功后,则第一LSP建立成功。当第一LSP建立成功之后,如果第一LSP中的至少一条第二LSP发生故障时,网络控制器可以对发生故障的第二LSP进行重路由,还可以对第一LSP中所有的第二LSP进行重路由。
本发明实施例中,首节点在建立第一LSP的过程中,通过建立与第一LSP具有关联关系的至少两条第二LSP,保证任意两条第二LSP的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
图13是本发明实施例提供的一种网络控制器的结构示意图。网络控制器可以为PCE,还可以为计算机或服务器。如图13所示,网络控制器包括:接收模块1301、计算模块1302和发送模块1303。
其中,接收模块1301,用于接收第一标签交换路径LSP业务路径 请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点。
其中,第一LSP的业务关联属性指示第一LSP中包含的第二LSP的数量。第一LSP的业务关联属性还可以指示第一LSP中的每一条第二LSP具有相同的路由信息,即任意两条第二LSP之间经过的首节点、中间节点、末节点和链路都相同。第一LSP的业务关联属性还可以指示第一LSP中包含的任意两条第二LSP的首节点和末节点相同、业务性能的差值在预设的阈值范围之内。
计算模块1302,用于计算所述第二LSP的路由信息。
发送模块1303,用于向传送平面发送所述第二LSP的路由信息,以便于传送平面根据所述第二LSP的路由信息建立所述第一LSP。
图13所示的网络控制器可以执行如图6、图9、图11所示的方法实施例中的步骤,此处不再赘述。
本发明实施例中,网络控制器在建立第一LSP的过程中,通过建立与第一LSP具有关联关系的至少两条第二LSP,保证任意两条第二LSP的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
图14是本发明实施例提供的一种节点设备的结构示意图。节点设备可以为OTN设备、WDM设备、SDH设备等。节点设备的装置结构图还可以参考图4所示的实施例。该节点设备可以为传送网络中LSP的首节点。如图14所示,节点设备包括:发送模块1401、接收模块1402 和LSP建立模块1403。
其中,发送模块1401,用于向网络控制器发送第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点。
其中,第一LSP的业务关联属性指示第一LSP中包含的第二LSP的数量。第一LSP的业务关联属性还可以指示第一LSP中的每一条第二LSP具有相同的路由信息,即任意两条第二LSP之间经过的首节点、中间节点、末节点和链路都相同。第一LSP的业务关联属性还可以指示第一LSP中包含的任意两条第二LSP的首节点和末节点相同、业务性能的差值在预设的阈值范围之内。
接收模块1402,用于接收来自所述网络控制器的所述第二LSP的路由信息。
LSP建立模块1403,用于根据所述第二LSP的路由信息建立所述第一LSP。
图14所示的网络控制器可以执行如图6、图9、图12所示的方法实施例中的步骤,此处不再赘述。
本发明实施例中,节点设备在建立第一LSP的过程中,通过建立与第一LSP具有关联关系的至少两条第二LSP,保证任意两条第二LSP的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
图15是本发明实施例提供的一种计算机设备的结构示意图。如图15所示,计算机设备1500包括:包括处理器1501、存储器1502、输入/输出接口1503、通信接口1504和总线1505。其中,处理器1501、存储器1502、输入/输出接口1503和通信接口1504通过总线1505实现彼此之间的通信连接。
处理器1501可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者至少一个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
存储器1502可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器1502可以存储操作系统和其他应用程序。在通过软件或者固件来实现本发明实施例提供的技术方案时,用于实现本发明实施例提供的技术方案的程序代码保存在存储器1502中,并由处理器1501来执行。
输入/输出接口1503用于接收输入的数据和信息,输出操作结果等数据。
通信接口1504使用例如但不限于收发器一类的收发装置,来实现计算机设备1500与其他设备或通信网络之间的通信。
总线1505可包括一通路,在计算机设备1500各个部件(例如处理器1501、存储器1502、输入/输出接口1503和通信接口1504)之间传送信息。
其中,网络控制器通过通信接口1504接收第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点。
网络控制器通过处理器1501执行保存于存储器1502的代码,计算所述第二LSP的路由信息。
网络控制器通过通信接口1504向传送平面发送所述第二LSP的路由信息,以便于传送平面根据所述第二LSP的路由信息建立所述第一LSP。
其中,节点设备通过通信接口1504向网络控制器发送第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点。
节点设备通过通信接口1504接收来自所述网络控制器的所述第二LSP的路由信息,并且通过处理器1501执行保存于存储器1502的代码,根据所述第二LSP的路由信息建立每一条第二LSP。
具体地,通过图15所示的计算机设备1500可以实现图6、图9、图11、图12所示的方法实施例中的步骤。应注意,尽管图15所示的计算机设备1500仅仅示出了处理器1501、存储器1502、输入/输出接口1503、通信接口1504以及总线1505,但是在具体实现过程中,本领域的技术人员应当明白,计算机设备1500还包含实现正常运行所必须的其他器 件。同时,根据具体需要,本领域的技术人员应当明白,计算机设备1500还可包含实现其他附加功能的硬件器件。此外,本领域的技术人员应当明白,计算机设备1500也可仅仅包含实现本发明实施例所必须的器件,而不必包含图15中所示的全部器件。
本发明实施例中,在网络控制器和/或节点设备建立第一LSP的过程中,通过建立与第一LSP具有关联关系的至少两条第二LSP,保证任意两条第二LSP的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
图16是本发明实施例提供的一种网络系统的结构示意图。如图16所示,该网络系统包括网络控制器1601和至少两个节点设备1602。其中,网络控制器1601可以执行图6、图9、图11所示的方法实施例中的步骤,网络控制器1601的结构和功能可以参见图13、图15所示的实施例。节点设备1602可以执行图6、图9、图12所示的方法实施例中的步骤,节点设备1602的结构和功能可以参见图4、图14、图15所示的实施例。
网络控制器1601,用于接收第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点;用于计算所述第二LSP的路由信息;还用于向传送平面发送所述第二LSP的路由信息,以便于传送平面根据所述第二LSP的路由信息建立所述第一LSP。
节点设备1602,用于向网络控制器发送第一标签交换路径LSP业 务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点;接收来自所述网络控制器的所述第二LSP的路由信息;还用于根据所述第二LSP的路由信息建立所述第一LSP。
本发明实施例中,网络控制器和/或节点设备在建立第一LSP的过程中,通过建立与第一LSP具有关联关系的至少两条第二LSP,保证任意两条第二LSP的业务性能接近或一致,从而提高了第一LSP的业务性能,简化了业务路径的维护和管理。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (21)

  1. 一种业务路径建立的方法,其特征在于,所述方法包括:
    网络控制器接收第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点;
    所述网络控制器计算所述第二LSP的路由信息;
    所述网络控制器向传送平面发送所述第二LSP的路由信息,以便于传送平面根据所述第二LSP的路由信息建立所述第一LSP。
  2. 如权利要求1所述的方法,其特征在于,所述第一LSP的业务关联属性指示所述第一LSP中包含的第二LSP的数量。
  3. 如权利要求1所述的方法,其特征在于,所述第一LSP的业务关联属性指示所述第一LSP中包含的每一条第二LSP具有相同的路由信息。
  4. 如权利要求1所述的方法,其特征在于,所述第一LSP的业务关联属性指示所述第一LSP中包含的任意两条第二LSP的业务性能的差值在预设的阈值范围之内。
  5. 如权权利要求1-4任一所述的方法,其特征在于,所述方法还包括:
    当与所述第一LSP具有关联关系的至少任意一条第二LSP的路由计算失败时,所述网络控制器确定所述第一LSP业务路径请求失败。
  6. 一种业务路径建立的方法,其特征在于,所述方法包括:
    首节点向网络控制器发送第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点;
    所述首节点接收来自所述网络控制器的所述第二LSP的路由信息;
    所述首节点根据所述第二LSP的路由信息建立所述第一LSP。
  7. 如权利要求6所述的方法,其特征在于,所述第一LSP的业务关联属性指示所述第一LSP中包含的第二LSP的数量。
  8. 如权利要求6所述的方法,其特征在于,所述第一LSP的业务关联属性指示所述第一LSP中包含的每一条第二LSP具有相同的路由信息。
  9. 如权利要求6所述的方法,其特征在于,所述第一LSP的业务关联属性指示所述第一LSP中包含的任意两条第二LSP的业务性能的差值在预设的阈值范围之内。
  10. 如权利要求6-9任一所述的方法,其特征在于,所述方法还包括:
    所述首节点获知所述第一LSP中的至少一条第二LSP发生故障,向网络控制器发送重路由消息请求,所述重路由请求消息指示重新建立所述发生故障的至少一条第二LSP。
  11. 一种网络控制器,其特征在于,所述网络控制器包括:
    接收模块,用于接收第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点;
    计算模块,用于计算所述第二LSP的路由信息;
    发送模块,用于向传送平面发送所述第二LSP的路由信息,以便于传送平面根据所述第二LSP的路由信息建立所述第一LSP。
  12. 如权利要求11所述的网络控制器,其特征在于,所述第一LSP的业务关联属性指示所述第一LSP中包含的第二LSP的数量。
  13. 如权利要求11所述的网络控制器,其特征在于,所述第一LSP的业务关联属性指示所述第一LSP中包含的每一条第二LSP具有相同的路由信息。
  14. 如权利要求11所述的网络控制器,其特征在于,所述第一LSP的业务关联属性指示所述第一LSP中包含的任意两条第二LSP的业务性能的差值在预设的阈值范围之内。
  15. 如权利要求11-14任一所述的网络控制器,其特征在于,所述网络控制器还包括:
    确定模块,用于当与所述第一LSP具有关联关系的至少任意一条第二LSP的路由计算失败时,确定所述第一LSP业务路径请求失败。
  16. 一种节点设备,其特征在于,所述节点设备包括:
    发送模块,用于向网络控制器发送第一标签交换路径LSP业务路径请求消息,其中,所述第一LSP具有业务关联属性,所述第一LSP的业务关联属性指示所述第一LSP中包含至少两条第二LSP,所述第一LSP和所述至少两条第二LSP具有相同的首节点和末节点;
    接收模块,用于接收来自所述网络控制器的所述第二LSP的路由信息;
    LSP建立模块,用于根据所述第二LSP的路由信息建立所述第一LSP。
  17. 如权利要求16所述的节点设备,其特征在于,所述所述第一LSP的业务关联属性指示所述第一LSP中包含的第二LSP的数量。
  18. 如权利要求16所述的节点设备,其特征在于,所述第一LSP的业务关联属性指示所述第一LSP中包含的每一条第二LSP具有相同的路由信息。
  19. 如权利要求16所述的节点设备,其特征在于,所述第一LSP的业务关联属性指示所述第一LSP中包含的任意两条第二LSP的业务性能的差值在预设的阈值范围之内。
  20. 如权利要求16-19任一所述的节点设备,其特征在于,所述节点设备还包括:
    故障获知模块,用于获知所述第一LSP中的至少一条第二LSP发生故障,
    所述发送模块,还用于网络控制器发送重路由消息请求,所述重路由请求消息指示重新建立所述发生故障的至少一条第二LSP。
  21. 一种网络系统,其特征在于,所述网络系统包括:
    如权利要求11-15任一所述网络控制器和至少两个如权利要求16-20任一所述的节点设备。
PCT/CN2016/076400 2016-03-15 2016-03-15 一种业务路径建立的方法、节点设备和系统 WO2017156710A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES16893875T ES2844098T3 (es) 2016-03-15 2016-03-15 Método de establecimiento de trayectos de servicio, dispositivo de nodo y sistema
CN201680083293.1A CN108781183B (zh) 2016-03-15 2016-03-15 一种业务路径建立的方法、节点设备和系统
EP16893875.1A EP3419228B1 (en) 2016-03-15 2016-03-15 Service path establishment method, node device, and system
EP20199674.1A EP3823224A1 (en) 2016-03-15 2016-03-15 Service path establishment method, node device, and system
PCT/CN2016/076400 WO2017156710A1 (zh) 2016-03-15 2016-03-15 一种业务路径建立的方法、节点设备和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/076400 WO2017156710A1 (zh) 2016-03-15 2016-03-15 一种业务路径建立的方法、节点设备和系统

Publications (1)

Publication Number Publication Date
WO2017156710A1 true WO2017156710A1 (zh) 2017-09-21

Family

ID=59851901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076400 WO2017156710A1 (zh) 2016-03-15 2016-03-15 一种业务路径建立的方法、节点设备和系统

Country Status (4)

Country Link
EP (2) EP3823224A1 (zh)
CN (1) CN108781183B (zh)
ES (1) ES2844098T3 (zh)
WO (1) WO2017156710A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411688B (zh) * 2020-03-16 2023-04-07 华为技术有限公司 一种路由计算的方法、设备和系统
CN114286205B (zh) * 2020-09-27 2024-04-23 华为技术有限公司 一种数据帧的发送方法和网络设备
CN116634469B (zh) * 2023-07-21 2023-09-19 南京源兴智达信息科技有限公司 一种基于多LoRa节点的数据传输管理系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725727A (zh) * 2004-07-21 2006-01-25 华为技术有限公司 一种标签交换路径聚合方法
EP1780960A2 (en) * 2005-11-01 2007-05-02 Ericsson AB Ring LSP topology for supporting VPNs over MPLS-based networks
CN101030939A (zh) * 2007-03-27 2007-09-05 华为技术有限公司 自动交换光网络中建立、恢复标签交换路径的方法及装置
CN102299852A (zh) * 2011-09-02 2011-12-28 清华大学 跨域业务域间链路与域内通道的绑定映射控制方法及装置
CN102487329A (zh) * 2010-12-02 2012-06-06 中兴通讯股份有限公司 业务恢复方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030189933A1 (en) * 2002-04-03 2003-10-09 Timucin Ozugur Shared wavelength group to differentiate label switched paths for congestion control in optical burst switching networks
KR100617291B1 (ko) * 2003-11-05 2006-08-30 한국전자통신연구원 Ip와 레이블 교환의 혼합형 데이터를 전달하는 다중 프로토콜 레이블 교환 장치 및 그 방법
US20120163165A1 (en) * 2010-12-23 2012-06-28 Electronics And Telecommunications Research Institute Apparatus and method for packet transport service based on multi protocol label switching-transport profile (mpls-tp) network
US8948001B2 (en) * 2012-06-26 2015-02-03 Juniper Networks, Inc. Service plane triggered fast reroute protection
US8711855B1 (en) * 2012-12-18 2014-04-29 Juniper Networks, Inc. Topology discovery, control channel establishment, and datapath provisioning within an aggregation network with centralized control
US9253097B1 (en) * 2012-12-28 2016-02-02 Juniper Networks, Inc. Selective label switched path re-routing
US8953500B1 (en) * 2013-03-29 2015-02-10 Juniper Networks, Inc. Branch node-initiated point to multi-point label switched path signaling with centralized path computation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725727A (zh) * 2004-07-21 2006-01-25 华为技术有限公司 一种标签交换路径聚合方法
EP1780960A2 (en) * 2005-11-01 2007-05-02 Ericsson AB Ring LSP topology for supporting VPNs over MPLS-based networks
CN101030939A (zh) * 2007-03-27 2007-09-05 华为技术有限公司 自动交换光网络中建立、恢复标签交换路径的方法及装置
CN102487329A (zh) * 2010-12-02 2012-06-06 中兴通讯股份有限公司 业务恢复方法及装置
CN102299852A (zh) * 2011-09-02 2011-12-28 清华大学 跨域业务域间链路与域内通道的绑定映射控制方法及装置

Also Published As

Publication number Publication date
ES2844098T3 (es) 2021-07-21
CN108781183A (zh) 2018-11-09
EP3419228A1 (en) 2018-12-26
CN108781183B (zh) 2020-09-08
EP3823224A1 (en) 2021-05-19
EP3419228A4 (en) 2019-01-16
EP3419228B1 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US10516478B2 (en) Controller based path estimation and path provisioning using optical impairment data
US10250459B2 (en) Bandwidth on-demand services in multiple layer networks
JP4997196B2 (ja) 通信ネットワークシステム、パス計算装置、通信路確立制御方法
KR101643911B1 (ko) 원격통신 네트워크에서 링크―다이버스 트래픽 경로들을 확립하기 위한 방법 및 관련 장치
KR101605052B1 (ko) 링 네트워크 레이블 전환 경로 생성 방법, 관련 장치 및 통신 시스템
US20110255443A1 (en) Virtual routers for gmpls networks
EP1755240B1 (en) Method for performing association in automatic switching optical network
US8824461B2 (en) Method and apparatus for providing a control plane across multiple optical network domains
US8233487B2 (en) Communication network system that establishes communication path by transferring control signal
WO2017156710A1 (zh) 一种业务路径建立的方法、节点设备和系统
US20100128640A1 (en) Apparatus and method for calculating an optimum route between a pair of nodes in a communication network
WO2015024440A1 (zh) 一种获取ip链路的链路开销值的方法及系统
Eadala et al. A review on deployment architectures of path computation element using software defined networking paradigm
CN113905291A (zh) 连接建立方法、设备和存储介质
WO2017066923A1 (zh) 一种业务路径建立的方法、网络控制器和系统
EP3007393B1 (en) Method and system for processing rsvp-te signaling
WO2012171191A1 (zh) 用于建立多层路径的方法及其装置和系统
Chen The LSP Protection/Restoration Mechanism in GMPLS
JP2012054730A (ja) 通信装置、ネットワーク及びそれらに用いる自律分散経路制御方法並びにそのプログラム
Jamhour et al. Improving recovery in GMPLS-based WSON through crank-back re-routing
Domancich et al. PCE for GMPLS networks
Alicherry et al. FASTeR: Sub‐50 ms shared restoration in mesh networks

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016893875

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016893875

Country of ref document: EP

Effective date: 20180920

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893875

Country of ref document: EP

Kind code of ref document: A1