WO2012171191A1 - 用于建立多层路径的方法及其装置和系统 - Google Patents

用于建立多层路径的方法及其装置和系统 Download PDF

Info

Publication number
WO2012171191A1
WO2012171191A1 PCT/CN2011/075784 CN2011075784W WO2012171191A1 WO 2012171191 A1 WO2012171191 A1 WO 2012171191A1 CN 2011075784 W CN2011075784 W CN 2011075784W WO 2012171191 A1 WO2012171191 A1 WO 2012171191A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
node
service layer
client
path calculation
Prior art date
Application number
PCT/CN2011/075784
Other languages
English (en)
French (fr)
Inventor
资小兵
林毅
胡莹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11867631.1A priority Critical patent/EP2658168B1/en
Priority to CN201180000968.9A priority patent/CN103004148B/zh
Priority to PCT/CN2011/075784 priority patent/WO2012171191A1/zh
Publication of WO2012171191A1 publication Critical patent/WO2012171191A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/64Routing or path finding of packets in data switching networks using an overlay routing layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/42Centralised routing

Definitions

  • the present invention relates to the field of communications and, more particularly, to a method, apparatus and system for establishing a multi-layer path in the field of communications. Background technique
  • a transport network typically consists of nodes and links, and a transport network may consist of different levels of network types.
  • the upper layer network may be a packet transport network composed of a Multi-Protocol Label Switching (MPLS) node and a link
  • the lower layer network may be a Synchronous Digital Hierarchy (SDH) node and a link. Reuse (Time Division Multiplex, TDM) transport network.
  • the TDM connection in the lower SDH network provides a link for the upper MPLS network, that is, the TDM connection in the lower SDH network connects the two nodes in the upper MPLS network.
  • the SDH network and the WDM network may also have upper and lower network relationships.
  • the SDH network may be an upper layer network
  • the WDM network may be a lower layer network.
  • the WDM network may provide links for two nodes of the SDH network, so that SDH Data transmitted over the network can be carried over the WDM network.
  • such a network having an upper and lower layer network relationship may be referred to as a multi-layer network, and an upper layer network is referred to as a client layer network, and a lower layer network is referred to as a service layer network.
  • the multi-layer path established between the two nodes of the client layer network may include a link provided in the client layer network and a link provided in the service layer network, that is, the multi-layer path includes the client layer network.
  • the client layer path and the service layer path at the service layer network may be referred to as a multi-layer network, and an upper layer network is referred to as a client layer network, and a lower layer network is referred to as a service layer network.
  • the multi-layer path established between the two nodes of the client layer network may include a link provided in the client layer network and a link provided in the service layer network, that is, the multi-layer path includes the client layer network.
  • the client layer path and the service layer path at the service layer network may be referred to as a multi-
  • Multi-layer networks involve multiple levels of networks and complex path calculations.
  • a centralized path calculation unit can be deployed in the network to specifically manage path calculations in the network.
  • the Path Computation Client (PCC) in a multi-layer network can pass the Path Computation Element Communication (Path Computation Element Communication).
  • PCEP Obtains a multi-layer path from the Path Computation Element (PCE).
  • PCE Path Computation Element
  • the PCC sends a path calculation request message to the PCE, and receives a path calculation response message from the PCE.
  • the PCC extracts the multi-layer path calculated by the PCE from the path calculation response message, since the path calculation response message does not specify the transmission type supported by the service layer path, for example, the service layer path Supported switching types, signal types, etc., so the PCC cannot know which switching type or signal type to adopt or suit during the establishment of the service layer path, so that the PCC knows the service layer path when it establishes the network connection.
  • the switch node arbitrarily selects one of the multiple switch types or signal types supported by the ingress node to establish a network connection according to any selected switch type or signal type.
  • the exchange type or signal type arbitrarily selected by the PCC may be different from the exchange type or signal type on which the PCE obtains the multi-layer path. Therefore, when the PCC actually establishes a network connection according to an arbitrarily selected exchange type or signal type, the connection type or signal type supported by the service layer path in the multi-layer path may not be established, and the connection may not be established; Connections can still be established, but in this case, network resource utilization is reduced and the optimized path results calculated by PCE cannot be effectively utilized.
  • the embodiments of the present invention provide a method for establishing a multi-layer path, a path calculation client, a path calculation unit, and a system, which can solve the problem of establishment failure or resource utilization degradation caused by PCC blindly selecting a transmission type to establish a multi-layer path.
  • the effectiveness of multi-layer path establishment can be improved.
  • an embodiment of the present invention provides a method for establishing a multi-layer path, including: sending a path calculation request message to a path calculation unit, where the path calculation request message is used to request a path from a source node to a target node, The source node and the target node are located in a client layer network; receiving a path calculation response message returned by the path calculation unit, where the path calculation response message carries the source node to the target node via the client layer Path information of the network and service layer network, and a transmission type supported by the service layer path of the service layer network; according to the transmission type, establishing a path from the source node to the target node of the service layer path.
  • an embodiment of the present invention provides a method for establishing a multi-layer path, including: receiving a path calculation request message sent by a client, where the path calculation request message is used to request a calculation source node to a target node.
  • Path the source node and the target node are located in a client layer network; determining path information of the source node to the target node via the client layer network and a service layer network, and located in the service layer network a transmission type supported by the service layer path; generating a path calculation response message carrying the path information and the transmission type; sending the path calculation response message to the path calculation client, so that the path calculation client is based on The transmission
  • the type establishes a path from the source node to the target node of the service layer path.
  • an embodiment of the present invention provides a path calculation client, including: a sending module, configured to send a path calculation request message to a path calculation unit, where the path calculation request message is used to request to calculate a source node to a target node.
  • a path the source node and the target node are located in a client layer network
  • a receiving module configured to receive a path calculation response message returned by the path calculation unit, where the path calculation response message carries the source node to the target Path information of the node via the client layer network and the service layer network, and a transmission type supported by the service layer path of the service layer network
  • an establishing module configured to establish, according to the transmission type, the path including the service layer The path from the source node to the target node.
  • an embodiment of the present invention provides a path calculation unit, including: a receiving module, configured to receive a path calculation request message sent by a path calculation client, where the path calculation request message is used to request to calculate a source node to a target node.
  • the source node and the target node are located in a client layer network; a determining module, configured to determine path information of the source node to the target node via the client layer network and a service layer network, and located a transmission type supported by the service layer path of the service layer network, a generation module, configured to generate a path calculation response message carrying the path information and the transmission type, and a sending module, configured to send the client to the path calculation client
  • the path calculation response message is configured to cause the path calculation client to establish a path from the source node to the target node that includes the service layer path according to the transmission type.
  • an embodiment of the present invention provides a system for establishing a multi-layer path, the system including a path calculation client and a path calculation unit.
  • the path calculation client is configured to send a path calculation request message to the path calculation unit, where the path calculation request message is used to request a path for calculating a source node to a target node, where the source node and the target node are located at a client
  • the path calculation unit is configured to receive the path calculation request message sent by the path calculation client, determine the path information and the transmission type, and generate a path calculation response that carries the path information and the transmission type a message; sending the
  • the present invention provides a data structure of an explicit path object ERO, including multiple ERO sub-objects; calculating a parsing order of a client to an ERO sub-object along a path, the multiple The ERO sub-object sequentially carries the node information included in the path from the source node to the target node, where the source node and the target node are both located in the client layer network, and the path is via the client layer network and the service layer network;
  • the first ERO sub-object carries the node information of the ingress node of the service layer path of the service layer network, the second ERO sub-object carries the transmission type supported by the service layer path, and the second ERO sub-object is placed in the An adjacent location after the first ERO sub-object; a third ERO sub-object carrying node information of the egress node of the service layer path, and a fourth ERO sub-object carrying a transmission type supported by the service layer path, the fourth The ERO sub-object is placed adjacent to the third ERO sub-object
  • the path calculation client may be instructed to indicate the transmission type required for establishing the path, thereby preventing the path calculation client blindly selecting the transmission type to establish multiple layers.
  • the establishment failure caused by the path or the decrease of the resource utilization rate enables the path calculation client to effectively utilize the optimization result calculated by the path calculation unit, thereby improving the effectiveness of the multi-layer path establishment.
  • FIG. 1 is a flow chart of a method for establishing a multi-layer path according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an example of a multi-layer network topology according to an embodiment of the present invention.
  • FIG. 4 is an example of an encapsulation format of a plurality of ERO sub-objects carrying multi-layer path information and a transmission type according to an embodiment of the present invention
  • FIG. 5 is a flow chart of another method for establishing a multi-layer path according to an embodiment of the present invention
  • FIG. 6 is a flowchart of still another method for establishing a multi-layer path according to an embodiment of the present invention
  • a structural block diagram of a path establishment client in the embodiment of the present invention
  • FIG. 8 is a structural block diagram of another path establishing client according to an embodiment of the present invention
  • FIG. 9 is a structural block diagram of a path calculating unit according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a system for establishing a multi-layer path in accordance with an embodiment of the present invention. detailed description
  • the method 100 includes: sending, in S110, a path calculation request message to a path calculation unit, where the path calculation request message is used to request a path from a source node to a target node, where the source node and the target node are both located in the client layer network.
  • the path calculation response message returned by the receiving path calculation unit carries the path information of the source node to the target node via the client layer network and the service layer network, and the service layer path support located in the service layer network.
  • the transmission type in S130, establishing, according to the transmission type, a path from the source node to the target node of the service layer path.
  • method 100 can be performed by a PCC.
  • the PCC obtains a transmission type from the path calculation unit, and can establish a path according to the transmission type. Compared with blindly selecting the transmission type to establish the path, the transmission type used by the path calculated by the PCE can be determined, so that the optimization result calculated by the PCE can be more effectively utilized, and the effectiveness of the multi-layer path establishment is improved.
  • S110 to S130 according to an embodiment of the present invention will be described in detail.
  • the PCC requests to obtain the path information of the source node to the target node by transmitting a path calculation request message to the PCE.
  • the PCC can be either a source node or a network management device used to establish a path. If the PCC is a network management device, after receiving the path information, the network management device may send signaling to the node on the path from the source node to the target node to control the establishment of the path.
  • the source node and the target node are nodes located in the client layer network, and the paths between them may be established directly in the client layer network, and may also need to establish multiple paths including the client layer path and the service layer path in the client layer network and the service layer network. Layer path.
  • the PCE calculates a path from the source node to the target node for the PCC according to an existing path calculation method such as a Constraint Shortest Path First (CSPF) algorithm, and The calculated path information is carried in the path calculation response message and returned to the PCC.
  • CSPF Constraint Shortest Path First
  • the path calculation response message carries path information of the source node to the target node via the client layer network and the service layer network. Different from the existing path calculation response message, the path calculation response message also carries the transmission type supported by the service layer path.
  • the transmission type refers to the type of data that the nodes and links included in the service layer path can process and carry, and the data conforming to the transmission type can be successfully transmitted on the service layer path.
  • the transport type can include a switch type.
  • Switching types include, but are not limited to, packet switching types, time division multiplexing switching types, wavelength division multiplexing switching types, and the like.
  • packet switching type customer data is transmitted in a packet format (for example, Internet Protocol (IP) packets, MPLS packets, etc.), and a link between two nodes (for example, an Ethernet link) can be used to transmit packet data.
  • nodes such as router nodes, MPLS switch nodes
  • time division multiplexing switching type customer data is transmitted in a time division multiplexing manner, and bandwidth resources of links between two nodes (for example, optical fiber links) are divided into different time slots, and different time slots can transmit different clients.
  • nodes can handle the exchange of time slots.
  • the customer data is transmitted by wavelength division multiplexing, and the link between the two nodes (for example, the optical fiber link) can carry multiple wavelengths, and different wavelengths can transmit different customer data, and the nodes It is possible to handle the exchange of wavelengths (eg wavelength division equipment).
  • the type of transmission can include a signal type.
  • the signal type can represent the signal format of a specific signal that can be carried on the link, including but not limited to an Optical Channel Data Unit (ODU) 1 signal, an ODU2 signal, an ODU3 signal, and the like.
  • ODU Optical Channel Data Unit
  • ODU3 ODU3 signal
  • the transmission type can include both the exchange type and the signal type.
  • the exchange type may be carried, or the signal type may be carried, and the exchange type and the signal type may be carried at the same time.
  • a transmission type such as a switch type, a signal type
  • the PCC can be notified of the type of transmission required to establish a path.
  • the transmission type may be carried in a sub-object of an Explicit Route Object (ERO) included in the Path Computation Response message.
  • ERO Explicit Route Object
  • the Path Control Response message can be encapsulated in the payload of the TCP packet using the Transmission Control Protocol (TCP).
  • TCP Transmission Control Protocol
  • the path calculation response message consists of a message header and multiple objects.
  • object type (Object-Class) field of the object is 7
  • object type (OT, Object Type) field is 1
  • the object is an ERO
  • the path information is carried by the ERO.
  • the ERO consists of the ERO object header and the ERO object body.
  • the ERO object body can be further composed of at least one ER0 sub-object (the ER0 sub-object is referred to as the ERO sub-object in the following description).
  • the ERO sub-object carries the node information on the path, and each ERO sub-object carries the node information about one node.
  • N is a natural number
  • N ERO sub-objects are needed to carry the path respectively.
  • the node can be found through the node information, for example, the node information can be the IP address or node number of the node.
  • the transmission type can also be carried by the ERO sub-object.
  • the ERO sub-object carrying the transport type is placed adjacent to the ERO sub-object carrying the boundary node information.
  • the border node in this embodiment is located between the client layer network and the service layer network.
  • the ERO sub-object carrying the transmission type will be specifically described with reference to Figs. 2 to 4 .
  • the PCC controls the establishment of the service layer path based on the transmission type, so that the path from the source node to the target node including the service layer path can be further established.
  • the manner in which the PCC establishes a path belongs to the prior art, and specific details are not described herein.
  • the embodiment of the present invention differs in that the transmission type required for establishing the service layer path is no longer a blind, arbitrarily selected transmission type, but a transmission type supported by the service layer path returned by the PCE. .
  • the network management device sends control signaling to the nodes included in the service layer path according to the service layer path and the transmission type supported by the service layer path calculated by the PCE, to configure each node according to the transmission type. That is, each node of the service layer path configures a forwarding rule according to the transmission type according to the received control signaling, thereby establishing a service layer path.
  • the network management device configures a forwarding rule of a packet switching (for example, label switching under the MPLS protocol) in each node included in the service layer path; for a signal type of a specific ODU, the network management device is in each optical transmission network ( The Optical Transmission Network (OTN) node configures the cross-connection of the specific ODU.
  • a forwarding rule of a packet switching for example, label switching under the MPLS protocol
  • the network management device is in each optical transmission network ( The Optical Transmission Network (OTN) node configures the cross-connection of the specific ODU.
  • OTN optical Transmission Network
  • the source node when the PCC is the source node, the source node sends a Path message carrying the service layer path information and the transmission type to the ingress node of the service layer path according to the service layer path and the transmission type supported by the service layer path calculated by the PCE.
  • the ingress node finds that the ingress node itself is the first node of the service layer path specified by the Path message, and triggers the configuration of each node in the service layer path according to the transmission type, so that the service layer path can be established.
  • the establishment of the service layer path is controlled based on the Path message sent by the PCC.
  • the PCC by carrying the transmission type supported by the service layer path in the path calculation response message, the PCC can indicate the transmission type required to establish the path, thereby avoiding the PCC blind selection transmission.
  • the establishment failure or resource utilization degradation caused by the type to establish a multi-layer path enables the PCC to effectively utilize the optimization result calculated by the PCE, thereby improving the effectiveness of the multi-layer path establishment.
  • the embodiment of the present invention is used for The method of establishing a multi-layer path, since the PCC can obtain the transmission type supported by the service layer path from the PCE, the transmission type used by the PCC can be supported by the service layer path, so that the path is successfully established.
  • the service layer path can support the transmission type selected by the PCC, but the transmission type selected by the PCC is not supported by the PCE-calculated service layer path.
  • the optimal transmission type so that the resource utilization of the service layer path is reduced, and the method for establishing a multi-layer path according to the embodiment of the present invention, because the PCC can obtain the transmission type supported by the service layer path from the PCE, and the PCE is obtained.
  • the transmission type is the optimal transmission type for the multi-layer path, so when the service layer path is established by using the transmission type, the resource utilization of the service layer path can be improved.
  • the part above the dotted line is the client layer network, that is, the upper layer network; the part below the dotted line is the service layer network, that is, the lower layer network.
  • the client layer network is an MPLS packet network, including nodes VIII, B, C, D, E;
  • the service layer network is an SDH network, including nodes N1, N2, N3, N4, in each of the SDH networks
  • Nodes and links support two exchange types, TDM and packet.
  • the remaining bandwidth of each link is as shown.
  • the initial state there is no link between the D node and the E node of the client layer network.
  • Node A sends a path calculation request message to the PCE through the PCEP protocol, requesting to obtain path information of the 1G bandwidth between the node A and the node C.
  • the PCE calculates a multi-layer path based on the pre-acquired network topology information.
  • AD-N1-N4-N3-EC, and determine the service layer path D-N1-N4-N3-E requires TDM switching Type provides a connection.
  • the PCE returns the result of the path calculation to the node A by using the path calculation response message, and carries the multi-layer path information in the path calculation response message, and carries the TDM exchange type supported by the service layer path.
  • the transport type supported by the service layer path can be carried in the ERO sub-object, and the encapsulation format of the ERO sub-object carrying the transport type can be as shown in FIG. 3.
  • the transmission type is carried by the ERO sub-object in Figure 3, those skilled in the art will appreciate that it is also feasible to carry the transmission type through other data structures.
  • the TDM exchange type in the first example can be carried in the transmission type field in the encapsulation format shown in Fig. 3.
  • the L field, the Type field, and the Length field are standard headers in the ERO child object.
  • the L field as the ⁇ -scatter identifier is not necessary, that is, in the header of the ERO sub-object carrying the transport type, only the type field and the length field may be included.
  • the transport type field it is necessary to include the transport type field.
  • the type field can be used to identify that the data structure carries transport type information; the length field can be used to indicate the number of bytes occupied by the data structure; and the transport type field can be used to carry the transport type supported by the service layer path.
  • the transport type field can carry the exchange type, and can also carry the signal type, and can also carry the exchange type and signal type at the same time.
  • the type of the exchange is carried in the transport type field.
  • the TDM exchange type can be represented by 101, the packet switched type by 102, and the WDM (Wave Division Multiplex) exchange type by 103.
  • the Reserved field is an optional field and is not defined for the time being.
  • the reserved field may also be excluded from the ERO sub-object carrying the transport type, and its definition is arbitrary.
  • the PCE can place an ERO sub-object carrying a TDM exchange type adjacent to the ERO sub-object carrying the boundary node D information, and at the same time carrying the TDM exchange type.
  • the ERO sub-object is placed adjacent to the ERO sub-object carrying the boundary node E information.
  • the PCC parses the ERO sub-objects carrying the TDM exchange type, it can be determined that the node corresponding to the previously parsed node information is the boundary node between the client layer network and the service layer network, that is, the PCC can It is determined that node D and node E are boundary nodes located between the MPLS packet network and the SDH network.
  • the multi-layer path information can be carried in the path calculation response message through the encapsulation format shown in FIG.
  • the ERO sub-object of the path calculation response message may sequentially carry the following path information: information of the node A, information of the node D (for example, interface 1), TDM exchange type, information of the node N1 entry (for example, interface 2), Information about the exit of node N1 (eg interface 3), information of the entry of node N4 (eg interface 4), information of the exit of node N4 (eg interface 5), information of the entry of node N3 (eg interface 6), information of the exit of node N3 ( For example, interface 7), information of node E (for example, interface 8), TDM exchange type, and information of node C.
  • information of the node A information of the node D (for example, interface 1)
  • TDM exchange type information of the node N1 entry (for example, interface 2)
  • Information about the exit of node N1 eg interface 3
  • information of the entry of node N4 eg interface 4
  • information of the exit of node N4 eg interface 5
  • the information of the service layer path intermediate nodes N1, N4, N3 is carried in the embodiment shown in Fig. 4, the information about the entry and exit of the intermediate node is specifically included in the information about the intermediate node. However, in other embodiments, the information of the intermediate nodes N1, N4, and N3 of the service layer path may not be carried, or in the case of carrying the information of the intermediate node, only one of the intermediate nodes N1, N4, and N3 may be carried. Information.
  • the format of the ERO sub-object carrying the node information may be the same as the format in the prior art.
  • the format of the ERO sub-object carrying the information of the node N3 entry is described as an example.
  • the T field, the Type field, and the Length field are the headers of the ERO sub-object.
  • the Type field is 4, and the Length field is 12 to represent the ERO sub-object as an unnumbered interface identifier sub-object.
  • the Reserved field is 0.
  • the node identifier field may carry a node identifier, which is used to point to the corresponding node.
  • the node identifier may be the IP address of the node or the number of the node, and the node may be a router or other network device.
  • the interface identifier field can carry the interface identifier, which is used to point to the corresponding interface.
  • the interface identifier can be the IP address of the interface or the number of the interface.
  • the node identifier may be the IP address of the node N3 or the number of the node N3, and the interface identifier may be the IP address of the interface 6 or the number of the interface 6.
  • the node A After receiving the path calculation response message returned by the PCE, the node A can learn the TDM exchange type supported by the service layer path D-N1-N4-N3-E, and then the node A controls the D-N1- based on the TDM exchange type. A TDM connection is established between N4-N3-E. In this way, node A can use The appropriate exchange type controls the establishment of the service layer path, rather than blindly selecting the exchange type, so node A can make better use of the optimized path results calculated by PCE.
  • the second example is described.
  • the difference between the second example and the first example is mainly that the transmission type supported by the service layer path is a signal type rather than an exchange type.
  • the client layer network is an MPLS packet network
  • the service layer network is an OTN network.
  • Each link in the OTN network supports multiple signal types such as ODU1, ODU2, and ODU3.
  • the remaining bandwidth of each link in the client layer network is still as shown in Figure 2.
  • Node D and Node E are respectively connected to the OTN network as the service layer network through 10G Ethernet link, and 10G Ethernet between node D and node E.
  • the network links are not connected.
  • Node A sends a path calculation request message to the PCE through the PCEP protocol, requesting to obtain path information of the 1G bandwidth between the node A and the node C.
  • the PCE calculates the multi-layer path A-D-N1-N4-N3-E-C according to the pre-acquired network topology information, and determines that the service layer path D-N1-N4-N3-E needs to provide the connection by using the ODU2 signal type.
  • the PCE returns the result of the path calculation to the node A by using the path calculation response message, and carries the multi-layer path information in the path calculation response message, and carries the ODU2 signal type supported by the service layer path.
  • the signal type can be carried by means of the encapsulation format shown in Fig. 3, in which case the signal type needs to be carried in the transmission type field shown in Fig. 3.
  • different values can be defined for different signal types to distinguish. For example, you can define a value of 1 for ODU1, 2 for ODU2, and 3 for ODU3.
  • the PCE may place an ERO sub-object carrying the ODU2 signal type adjacent to the ERO sub-object carrying the boundary node D information, and simultaneously carry the ODU2 signal type.
  • the ERO sub-object is placed adjacent to the ERO sub-object carrying the boundary node E information.
  • the PCC parses the ERO sub-object carrying the ODU2 signal type, it can be determined that the node corresponding to the previously parsed node information is the boundary node between the client layer network and the service layer network, that is, the PCC can Determining that node D and node E are boundary sections between the MPLS packet network and the OTN network Point.
  • multi-layer path information and signal types can be carried by means of the package format shown in FIG.
  • the TDM exchange type information shown in FIG. 4 needs to be replaced with the ODU2 signal type information to reflect the plurality of ERO sub-objects carried in the path calculation response message in the second example.
  • the ERO sub-object of the path computation response message carries the following information in sequence: information of node A, information of node D (eg interface 1), type of ODU2 signal, information of node N1 entry (eg interface 2), node Information of the N1 exit (eg interface 3), information of the node N4 entry (eg interface 4), information of the node N4 exit (eg interface 5), node N3 entry information (eg interface 6), node N3 exit information (eg Interface 7), information of node E (eg interface 8), ODU2 signal type and information of node C.
  • information of node A information of node D (eg interface 1)
  • type of ODU2 signal information of node N1 entry (eg interface 2)
  • node Information of the N1 exit eg interface 3
  • information of the node N4 entry eg interface 4
  • information of the node N4 exit eg interface 5
  • node N3 entry information eg interface 6
  • node N3 exit information eg Interface 7
  • the node A After receiving the path calculation response message returned by the PCE, the node A can learn the ODU2 signal type supported by the service layer path D-N1-N4-N3-E, and then the node A controls the D-N1- based on the ODU2 signal type. A connection supporting ODU2 signal transmission is established between N4-N3-E. In this way, Node A can use the appropriate signal type to control the establishment of the service layer path, rather than blindly selecting the signal type, so Node A can make better use of the optimized path results calculated by PCE.
  • FIG. 5 is a flow diagram of a method 500 for establishing a multi-layer path in accordance with an embodiment of the present invention.
  • S510, S520, and S530 in method 500 are the same as S110, S120, and S130 in method 100.
  • the PCC After receiving the path calculation response message, the PCC sequentially parses the ERO sub-objects in order to extract information about the multi-layer path and the transmission type supported by the service layer path.
  • node A After node A receives the path calculation response message returned by PCE, node A parses the ERO sub-objects in order, and can extract each ERO sub-object shown in FIG. 4 in turn.
  • the node corresponding to the node information carried by the ERO sub-object adjacent to the ERO sub-object and determined by the ERO sub-object is a client layer network and a service layer. a boundary node between the networks; the boundary node includes an ingress node and an egress node of the service layer path.
  • the ERO sub-object carrying the transport type has been parsed before parsing the ERO sub-object, determining information of the egress node carrying the service layer path in the ERO sub-object adjacent to the ERO sub-object, The egress node of the service layer path can then be determined, the egress node of the service layer path belonging to the boundary node between the client layer network and the service layer network.
  • the first example of FIGS. 2 to 4 above will be described as an example.
  • the first ERO sub-object carrying the TDM exchange type is parsed, it is found that the TDM exchange type is not parsed before, and then the ERO sub-object that is adjacent to the first ERO sub-object carrying the TDM exchange type is determined.
  • the object carries the information of the ingress node of the service layer path, that is, the node D that determines that the node D is the service layer path.
  • the second ERO sub-object carrying the TDM exchange type it is found that the TDM exchange type has been parsed before, and then the ERO sub-object that is adjacent to the second ERO sub-object carrying the TDM exchange type is determined.
  • the object carries the information of the egress node of the service layer path, that is, the egress node that determines that the node E is the service layer path.
  • the node between the two nodes is the intermediate node of the service layer path (for example, FIG. 2 Nodes N1, N4, N3).
  • the node information carried by the ERO sub-object is the node information in the client layer network.
  • the ERO sub-object adjacent to the currently parsed ERO sub-object is parsed. Is a node in the client layer network.
  • the PCC can easily determine the ingress node and the egress of the service layer path. Compared with the prior art, the PCC needs to compare the network topology information known to the PCC to determine the ingress node and the egress node of the service layer path, and can determine the service layer path more quickly and quickly, and reduce the determining service. The complexity of the ingress and egress nodes of the layer path is convenient.
  • the PCC can determine the transmission type supported by the service layer path, and can help the PCC determine the ingress node and the egress node of the service layer path, thereby enhancing the utility of the ERO sub-object carrying the transmission type, and the limited information is Pass to help PCC get more useful information.
  • a method 600 for establishing a multi-layer path in accordance with an embodiment of the present invention will be described with reference to FIG.
  • the method 600 includes: in S610, receiving a path calculation request message sent by a path calculation client, where the path calculation request message is used to request a path from a source node to a target node, where the source node and the target node are located at the client layer.
  • method 600 can be performed by a path computation unit.
  • the path calculation unit calculates a path calculation request message sent by the client according to a path such as a source node and a network management device, and can obtain a path from the source node to the target node according to a path calculation manner such as a CSPF algorithm.
  • a path calculation manner such as a CSPF algorithm.
  • the path calculation unit not only needs to carry the multi-layer path information in the path calculation response message, but more importantly, the path calculation response message needs to carry the transmission type, so that the path calculation client A multi-layer path is established based on the determined transmission type.
  • the path calculation client does not need to blindly and arbitrarily select the transmission type to establish a multi-layer path, so that the path establishment failure or the insufficient resource utilization can be avoided, so that the path calculation client can effectively utilize the path calculation according to the appropriate transmission type.
  • the optimized path calculated by the unit improves the effectiveness of multi-layer path establishment.
  • the operation of the path calculation unit corresponds to the operation of the path calculation client, the operation of the path calculation unit can be known by those skilled in the art by referring to the description in the method 100. To avoid repetition, details are not described herein.
  • the PCE can use a path calculation method such as a CSPF algorithm according to the bandwidth that the client layer network and the service layer network can support, and the traffic demand required by the path established by the PCC request, combined with the network topology information. Determining the multi-layer path between the source node and the target node requires a service layer path located in the service layer network. Since the PCE can collect information about the network topology, the PCE can know the type of transmission and the like supported by the nodes and links in the network, so that the type of transmission supported by the service layer path can be known.
  • a path calculation method such as a CSPF algorithm according to the bandwidth that the client layer network and the service layer network can support, and the traffic demand required by the path established by the PCC request, combined with the network topology information. Determining the multi-layer path between the source node and the target node requires a service layer path located in the service layer network. Since the PCE can collect information about the network topology, the PCE can know the type of transmission and the like supported by
  • the transmission type may include at least one of an exchange type and a signal type.
  • an exchange type For details, refer to the description of S120 in the above method 100.
  • the PCE not only carries the multi-layer path information in the path calculation response message, but It is important that the transmission type is also carried in the path computation response message to indicate the transmission type to the PCC.
  • the transmission type in the process of generating a path calculation response message, may be carried in the ERO sub-object included in the path calculation response message.
  • the transmission type may be carried in the ERO sub-object included in the path calculation response message.
  • the ERO sub-object carrying the transport type is placed adjacent to the ERO sub-object carrying the boundary node information.
  • the border node in this embodiment is located between the client layer network and the service layer network.
  • the PCC can easily determine the ingress node and the egress of the service layer path. Compared with the prior art, the PCC needs to compare the network topology information known to the PCC to determine the ingress node and the egress node of the service layer path, and can determine the service layer path more quickly and quickly, and reduce the determining service. The complexity of the ingress and egress nodes of the layer path is convenient.
  • the PCC can determine the transmission type supported by the service layer path, and can help the PCC determine the ingress node and the egress node of the service layer path, thereby enhancing the utility of the ERO sub-object carrying the transmission type, and the limited information is Pass to help PCC get more useful information.
  • FIG. 7 is a block diagram showing the structure of a path calculation client 700 according to an embodiment of the present invention.
  • the path computation client 700 includes a transmitting module 710, a receiving module 720, and an establishing module 730.
  • the sending module 710 is configured to send a path calculation request message to the path calculation unit, where the path calculation request message is used to request a path of the source node to the target node, where the source node and the target node are located in the client layer network.
  • the receiving module 720 is configured to receive a path calculation response message returned by the path calculation unit, where the path calculation response message carries path information of the source node to the target node via the client layer network and the service layer network, and the service layer path supported by the service layer network. Transmission type.
  • the establishing module 730 is configured to establish, according to the transmission type, the source node to the target node that includes the service layer path path of.
  • the above and other operations and/or functions of the sending module 710, the receiving module 720, and the establishing module 730 may refer to S110 to S130 of the above method 100, and may refer to the examples described above with reference to FIGS. 2 to 4 to help better understand, Avoid duplication, no more details here.
  • the transmission type supported by the service layer path is extracted from the path calculation response message received by the PCE, and the multi-layer path can be established according to the transmission type, thereby avoiding the path calculation client.
  • FIG. 8 is a block diagram showing the structure of a path calculation client 800 according to an embodiment of the present invention.
  • the transmitting module 810, the receiving module 820, and the establishing module 830 of the path computation client 800 are similar to the transmitting module 710, the receiving module 720, and the establishing module 730 of the path computation client 700.
  • the transmission type comprises at least one of an exchange type and a signal type.
  • the transmission type may be carried in the path calculation response message
  • the parsing order of the ERO sub-objects by the client 800 is calculated along the path, and the ERO sub-object carrying the transport type is placed adjacent to the ERO sub-object carrying the boundary node information.
  • the border node in this embodiment is located between the client layer network and the service layer network.
  • the path computation client 800 can also include a parsing module 840 and a determination module 850.
  • the parsing module 840 is configured to parse the ERO sub-objects included in the path computation response message in sequence after the receiving module 820 receives the path computation response message.
  • the determining module 850 is configured to determine that the parsed first ERO sub-object carries a transmission type, and determine that the node corresponding to the node information carried by the second ERO sub-object adjacent to the first ERO sub-object and that has been parsed is a client layer.
  • the determining module 850 may include a first determining unit 852 and a second determining unit 854.
  • the first determining unit 852 is configured to determine, if the ERO sub-object carrying the transmission type is not parsed before parsing the first ERO sub-object, determining the parsed adjacent to the first ERO sub-object
  • the second ERO sub-object carries information of the ingress node of the service layer path.
  • the second determining unit 854 is configured to determine that the ERO sub-object with the transport type is parsed before parsing the first ERO sub-object
  • the information of the egress node of the service layer path is carried in the adjacent second ERO sub-object that has been parsed.
  • the related description of the transmission type and the above and other operations and/or functions of the parsing module 840, the determining module 850, the first determining unit 852, and the second determining unit 854 may refer to S120 of the above method 100 and S522 and S524 of the method 500, and The examples described in conjunction with FIG. 2 to FIG. 4 can be referred to to help better understand. To avoid repetition, details are not described herein again.
  • the path calculation client provided by the embodiment of the present invention may be configured by calculating the parsing order of the ERO sub-objects by the client along the path, and placing the ERO sub-object carrying the transport type in the vicinity of the ERO sub-object carrying the boundary node information.
  • the ingress node and the egress node of the service layer path are easily determined. Compared with the path topology information that is known to the client in the prior art, the ingress node and the egress node of the service layer path can be determined.
  • the service layer path can be determined more quickly and quickly, and the complexity of determining the entry node and the exit node of the service layer path is reduced, and the implementation is convenient.
  • the embodiment of the present invention can enable the path calculation client to determine the transmission type supported by the service layer path, and can also help the path calculation client determine the ingress node and the egress node of the service layer path, thereby enhancing the ERO sub-object carrying the transmission type.
  • FIG. 9 is a block diagram showing the structure of a path calculation unit 900 according to an embodiment of the present invention.
  • the path calculation unit 900 includes a receiving module 910, a determining module 920, a generating module 930, and a transmitting module 940.
  • the receiving module 910 is configured to receive a path calculation request message sent by the path calculation client, where the path calculation request message is used to request a path from the source node to the target node, where the source node and the target node are located in the client layer network.
  • the determining module 920 is configured to determine path information of the source node to the target node via the client layer network and the service layer network, and a transport type supported by the service layer path of the service layer network.
  • the generating module 930 is configured to generate a path calculation response message carrying the path information and the transmission type.
  • the sending module 940 is configured to send a path calculation response message to the path calculation client, so that the path calculation client establishes a path from the source node to the target node that includes the service layer path according to the transmission type.
  • the foregoing operations and/or functions of the receiving module 910, the determining module 920, the generating module 930, and the sending module 940 may refer to S610 to S630 of the foregoing method 600. To avoid repetition, details are not described herein again.
  • the path calculation client by transmitting the transmission type in the path calculation response message, the path calculation client may be notified of the transmission type supported by the service layer path,
  • the path calculation client can establish a multi-layer path according to the transmission type, so that the path calculation client does not need to blindly and arbitrarily select a transmission type to establish a multi-layer path, thereby avoiding path establishment failure or insufficient resource utilization. Therefore, the path calculation client can effectively utilize the optimized path calculated by the path calculation unit according to the appropriate transmission type, thereby improving the effectiveness of the multi-layer path establishment.
  • the transmission type may include at least one of an exchange type and a signal type.
  • the generation module 930 is configured to carry the transmission type in the ERO sub-object included in the path computation response message.
  • the generating module 930 is configured to calculate a parsing order of the ERO sub-objects by the client along the path, and place the ERO sub-object carrying the transport type in an adjacent position after the ERO sub-object carrying the boundary node information, where the boundary
  • the node is located between the client layer network and the service layer network, including the ingress node and the egress node of the service layer path located in the service layer network.
  • the related content of the transmission type and the above and other operations and/or functions of the generating module 930 may refer to S110 of the above method 100 and S630 of the above method 600, and may refer to the examples described in conjunction with FIGS. 2 to 4 to help better perform. Understand, in order to avoid repetition, we will not repeat them here.
  • the path calculation unit provided by the embodiment of the present invention can make the PCC easily by placing the ERO sub-object carrying the transmission type adjacent to the ERO sub-object carrying the boundary node information by the parsing order of the ERO sub-objects along the PCC. Determining the ingress node and the egress node of the service layer path is easier and faster than the prior art PCC needs to compare the network topology information it knows to determine the ingress node and the egress node of the service layer path. The service layer path is determined, and the complexity of determining the ingress node and the egress node of the service layer path is reduced, and the implementation is convenient.
  • the embodiment of the present invention can enable the path calculation client to determine the transmission type supported by the service layer path, and can also help the PCC determine the ingress node and the egress node of the service layer path, thereby enhancing the utility of the ERO sub-object carrying the transmission type. Help PCC get more useful information through the transmission of limited information.
  • Figure 10 is a block diagram showing the structure of a system 1000 for establishing a multi-layer path in accordance with an embodiment of the present invention.
  • System 1000 includes a path computation client 1010 and a path computation unit 1020.
  • the path calculation client 1010 is configured to send a path calculation request message to the path calculation unit 1020, where the path calculation request message is used to request the path from the source node to the target node, the source node and the destination.
  • the target node is located in the client layer network; the path calculation response message returned by the receiving path calculation unit 1020, the path calculation response message carries the path information of the source node to the target node via the client layer network and the service layer network, and the service located in the service layer network
  • the transmission type supported by the layer path according to the transmission type, establishing a path from the source node to the target node of the service layer path.
  • the path calculation unit 1020 is configured to receive a path calculation request message sent by the path calculation client 1010, determine the path information and the transmission type, generate a path calculation response message carrying the path information and the transmission type, and calculate a path to the path.
  • the client 1010 sends a path calculation response message.
  • the above and other operations and/or functions of the path computation unit 1010 may be referred to the specific descriptions of the methods 100 and 500 above.
  • the above and other operations and/or functions of the path computation unit 1020 may be referred to the specific description in the method 600 above, and may be The examples described with reference to FIG. 2 to FIG. 4 are better understood to help understanding, and in order to avoid repetition, no further details are provided herein.
  • the path calculation unit notifies the path calculation client of the transmission type supported by the service layer path, so that the path calculation client can establish a multi-layer path according to the transmission type. Therefore, the path calculation client can be prevented from blindly selecting the transmission type to establish a multi-layer path, and the establishment failure or resource utilization degradation is caused, so that the path calculation client can effectively utilize the optimized path result calculated by the path calculation unit, thereby improving the multi-layer path establishment. Effectiveness.
  • RAM random access memory
  • ROM read only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM or technology Any other form of storage medium known.

Abstract

本发明实施例提供了用于建立多层路径的方法、路径计算客户端、路径计算单元及其系统。该方法包括:向路径计算单元发送路径计算请求消息,路径计算请求消息用于请求计算源节点到目标节点的路径,源节点和目标节点位于客户层网络中;接收路径计算单元返回的路径计算响应消息,路径计算响应消息携带源节点到目标节点的经由客户层网络和服务层网络的路径信息、以及位于服务层网络的服务层路径支持的传输类型;根据所述传输类型,建立包含服务层路径的所述源节点到目标节点的路径。

Description

用于建立多层路径的方法及其装置和系统 技术领域
本发明涉及通信领域, 并且更具体地, 涉及通信领域中用于建立多层路 径的方法及其装置和系统。 背景技术
传送网络一般由节点和链路组成,一个传送网络可能由不同层次的网络 类型组成。 例如, 上层网络可以是多协议标签交换(Multi-Protocol Label Switching, MPLS ) 节点及链路组成的分组传送网, 下层网络可以是同步数 字系列 ( Synchronous Digital Hierarchy, SDH )节点及链路组成的时分复用 ( Time Division Multiplex, TDM )传送网。 此时, 下层 SDH网络中的 TDM 连接为上层 MPLS网络提供链路, 即, 下层 SDH网络中的 TDM连接将上 层 MPLS 网络中的两个节点连接起来。 类似地, SDH网络和波分网络也可 以存在上下层网络关系, 例如 SDH网络可以是上层网络, 波分网络可以是 下层网络, 波分网络可以为 SDH网络的两个节点提供链路, 使得 SDH网络 上传输的数据可以承载在波分网络上传输。
通常, 可以将这种具有上下层网络关系的网络称为多层网络, 上层网络 称为客户层网络, 下层网络称为服务层网络。 在客户层网络的两个节点之间 建立的多层路径可以包括在客户层网络中提供的链路和在服务层网络中提 供的链路, 也就是说, 多层路径包括位于客户层网络的客户层路径和位于服 务层网络的服务层路径。
多层网络由于涉及多个层次的网络, 路径计算复杂, 一般可以在网络中 部署一个集中式的路径计算单元来专门负责网络中的路径计算。
多层网络中的路径计算客户端 ( Path Computation Client, PCC )可以通 过路径计算单元通信协议 ( Path Computation Element Communication
Protocol, PCEP )从路径计算单元(Path Computation Element, PCE )获取 多层路径。 在获取多层路径的过程中, PCC向 PCE发送路径计算请求消息, 并从 PCE接收路径计算响应消息。
当 PCC从路径计算响应消息中提取出 PCE计算得到的多层路径时, 由 于路径计算响应消息没有指定服务层路径支持的传输类型, 例如服务层路径 支持的交换类型、 信号类型等, 因此 PCC在服务层路径的建立过程中不能 知晓需要采用或者适合采用哪种交换类型或信号类型, 使得 PCC在建立网 络连接时,从它所知晓的服务层路径的入口节点所支持的多种交换类型或信 号类型中任意选择一种交换类型或信号类型,根据任意选择的交换类型或信 号类型来建立网络连接。
但是, PCC任意选择的交换类型或信号类型可能与 PCE得到该多层路 径所基于的交换类型或信号类型不同。 因此, PCC在根据任意选择的交换类 型或信号类型实际建立网络连接时,可能由于与多层路径中的服务层路径支 持的交换类型或信号类型不同, 而不能建立起连接; 也有可能虽然不同但仍 可以建立连接, 但在该情况下, 会降低网络资源利用率, 不能有效利用 PCE 计算得到的优化路径结果。 发明内容
本发明实施例提供了用于建立多层路径的方法、 路径计算客户端、 路径 计算单元及系统, 能够解决 PCC盲目选择传输类型来建立多层路径而造成 的建立失败或资源利用率下降的问题, 从而可以提高多层路径建立的有效 性。
一方面, 本发明实施例提供了一种用于建立多层路径的方法, 包括: 向 路径计算单元发送路径计算请求消息, 所述路径计算请求消息用于请求计算 源节点到目标节点的路径, 所述源节点和所述目标节点位于客户层网络中; 接收所述路径计算单元返回的路径计算响应消息, 所述路径计算响应消息携 带所述源节点到所述目标节点的经由所述客户层网络和服务层网络的路径 信息、 以及位于所述服务层网络的服务层路径支持的传输类型; 根据所述传 输类型, 建立包含所述服务层路径的所述源节点到目标节点的路径。
另一方面, 本发明实施例提供了一种用于建立多层路径的方法, 包括: 接收路径计算客户端发送的路径计算请求消息, 所述路径计算请求消息用于 请求计算源节点到目标节点的路径,所述源节点和所述目标节点位于客户层 网络中; 确定所述源节点到所述目标节点的经由所述客户层网络和服务层网 络的路径信息、 以及位于所述服务层网络的服务层路径支持的传输类型; 生 成携带所述路径信息和所述传输类型的路径计算响应消息; 向所述路径计算 客户端发送所述路径计算响应消息, 以使所述路径计算客户端根据所述传输 类型建立包含所述服务层路径的所述源节点到目标节点的路径。
再一方面,本发明实施例提供了一种路径计算客户端, 包括:发送模块, 用于向路径计算单元发送路径计算请求消息,所述路径计算请求消息用于请 求计算源节点到目标节点的路径, 所述源节点和所述目标节点位于客户层网 络中; 接收模块, 用于接收所述路径计算单元返回的路径计算响应消息, 所 述路径计算响应消息携带所述源节点到所述目标节点的经由所述客户层网 络和服务层网络的路径信息、 以及位于所述服务层网络的服务层路径支持的 传输类型; 建立模块, 用于根据所述传输类型, 建立包含所述服务层路径的 所述源节点到目标节点的路径。
又一方面, 本发明实施例提供了一种路径计算单元, 包括: 接收模块, 用于接收路径计算客户端发送的路径计算请求消息, 所述路径计算请求消息 用于请求计算源节点到目标节点的路径, 所述源节点和所述目标节点位于客 户层网络中; 确定模块, 用于确定所述源节点到所述目标节点的经由所述客 户层网络和服务层网络的路径信息、 以及位于所述服务层网络的服务层路径 支持的传输类型; 生成模块, 用于生成携带所述路径信息和所述传输类型的 路径计算响应消息; 发送模块, 用于向所述路径计算客户端发送所述路径计 算响应消息, 以使所述路径计算客户端根据所述传输类型建立包含所述服务 层路径的所述源节点到目标节点的路径。
又一方面, 本发明实施例提供了一种用于建立多层路径的系统, 该系统 包括路径计算客户端和路径计算单元。 所述路径计算客户端, 用于向所述路 径计算单元发送路径计算请求消息,所述路径计算请求消息用于请求计算源 节点到目标节点的路径, 所述源节点和所述目标节点位于客户层网络中; 接 收所述路径计算单元返回的路径计算响应消息, 所述路径计算响应消息携带 所述源节点到所述目标节点的经由所述客户层网络和服务层网络的路径信 息、 以及位于所述服务层网络的服务层路径支持的传输类型; 根据所述传输 类型, 建立包含所述服务层路径的所述源节点到目标节点的路径。 所述路径 计算单元, 用于接收所述路径计算客户端发送的所述路径计算请求消息; 确 定所述路径信息和所述传输类型; 生成携带所述路径信息和所述传输类型的 路径计算响应消息; 向所述路径计算客户端发送所述路径计算响应消息。
又一方面, 本发明提供了一种显式路径对象 ERO的数据结构, 包括多 个 ERO子对象; 沿着路径计算客户端对 ERO子对象的解析顺序, 所述多个 ERO子对象依次携带源节点到目标节点的路径所包含的节点信息,所述源节 点和所述目标节点都位于客户层网络中, 所述路径经由所述客户层网络和服 务层网络; 其中: 第一 ERO子对象携带位于所述服务层网络的服务层路径 的入口节点的节点信息, 第二 ERO子对象携带所述服务层路径支持的传输 类型, 所述第二 ERO子对象被置于所述第一 ERO子对象之后的相邻处; 第 三 ERO子对象携带所述服务层路径的出口节点的节点信息, 第四 ERO子对 象携带所述服务层路径支持的传输类型, 所述第四 ERO子对象被置于所述 第三 ERO子对象之后的相邻处。
基于上述技术方案,通过在路径计算响应消息中携带服务层路径支持的 传输类型, 可以向路径计算客户端指示建立路径所需的传输类型, 从而避免 路径计算客户端盲目选择传输类型来建立多层路径而造成的建立失败或资 源利用率下降,使得路径计算客户端可以有效利用路径计算单元计算出的优 化结果, 进而可以提高多层路径建立的有效性。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例中所需要 使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例, 对于本领域技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其它的附图。
图 1是根据本发明实施例的用于建立多层路径的方法的流程图; 图 2是根据本发明实施例的多层网络拓朴的例子的结构示意图; 图 3是根据本发明实施例的携带传输类型的 ERO子对象的封装格式的 例子;
图 4是根据本发明实施例的携带多层路径信息和传输类型的多个 ERO 子对象的封装格式的例子;
图 5是根据本发明实施例的用于建立多层路径的另一方法的流程图; 图 6是根据本发明实施例的用于建立多层路径的再一方法的流程图; 图 7是根据本发明实施例的路径建立客户端的结构框图;
图 8是根据本发明实施例的另一路径建立客户端的结构框图; 图 9是根据本发明实施例的路径计算单元的结构框图;
图 10是根据本发明实施例的用于建立多层路径的系统的结构框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不是 全部实施例。 基于本发明中的所述实施例, 本领域技术人员在没有做出创造 性劳动的前提下所获得的所有其它实施例, 都应属于本发明保护的范围。
首先,结合图 1描述根据本发明实施例的用于建立多层路径的方法 100。 如图 1所示, 方法 100包括: 在 S110中, 向路径计算单元发送路径计 算请求消息, 路径计算请求消息用于请求计算源节点到目标节点的路径, 源 节点和目标节点都位于客户层网络中; 在 S120中, 接收路径计算单元返回 的路径计算响应消息,路径计算响应消息携带源节点到目标节点的经由客户 层网络和服务层网络的路径信息、 以及位于服务层网络的服务层路径支持的 传输类型; 在 S130中, 根据所述传输类型, 建立包含所述服务层路径的所 述源节点到目标节点的路径。
例如, 方法 100可以由 PCC执行。 PCC通过从路径计算单元获取传输 类型, 可以根据该传输类型来建立路径。 这相比于盲目选取传输类型建立路 径而言, 可以确定 PCE计算得到的路径使用的传输类型, 从而可以更有效 利用 PCE计算出的优化结果, 提高多层路径建立的有效性。 下面, 详细描 述根据本发明实施例的 S110至 S130。
在 S110中, PCC通过向 PCE发送路径计算请求消息, 以请求获得源节 点到目标节点的路径信息。 PCC可以是源节点, 也可以是用于建立路径的网 管设备。 若 PCC是网管设备, 则网管设备在收到路径信息之后, 可以向源 节点到目标节点的路径上的节点发送信令来控制路径的建立。 源节点和目标 节点是位于客户层网络的节点, 它们之间的路径可能直接在客户层网络中建 立,也可能需要在客户层网络和服务层网络中建立包括客户层路径和服务层 路径的多层路径。
在 S120中, PCE收到路径计算请求消息之后, 按照诸如约束式最短路 径优先( Constraint Shortest Path First, CSPF )算法之类的已有的路径计算方 式为 PCC计算源节点到目标节点的路径, 并将计算出的路径信息携带在路 径计算响应消息中返回给 PCC。
当 PCE计算出的路径是包含客户层路径和服务层路径的多层路径时, 路径计算响应消息携带源节点到目标节点的经由客户层网络和服务层网络 的路径信息。 与现有的路径计算响应消息不同的是, 路径计算响应消息还携 带服务层路径支持的传输类型。
传输类型是指服务层路径中包含的节点和链路能够处理并承载的数据 所属于的类型, 符合传输类型的数据可以在服务层路径上顺利传输。
例如, 传输类型可以包括交换类型。 交换类型包含但不限于分组交换类 型、 时分复用交换类型、 波分复用交换类型等。 在分组交换类型中, 采用分 组的格式(例如互联网协议(Internet Protocol, IP )分组、 MPLS分组等) 传送客户数据, 两节点之间的链路(例如以太网链路)可以用于传送分组数 据, 而节点 (例如路由器节点、 MPLS交换机节点)可以处理分组数据的转 发。 在时分复用交换类型中, 采用时分复用的方式传送客户数据, 两节点间 的链路(例如光纤链路)的带宽资源被划分为不同的时隙, 不同的时隙可以 传送不同的客户数据, 而节点 (例如 SDH设备)可以处理时隙的交换。 在 波分复用交换类型中, 采用波分复用的方式传送客户数据, 两节点间的链路 (例如光纤链路)可以承载多个波长,不同的波长可以传送不同的客户数据, 而节点可以处理波长的交换(例如波分设备)。
再例如, 传输类型可以包括信号类型。 信号类型可以表征链路上可承载 的具体信号所具有的信号格式, 包括但不限于光通道数据单元 (Optical Channel Data Unit, ODU ) 1信号、 ODU2信号、 ODU3信号等。 在一个交换 类型下, 可以具有多个信号类型, 例如 0DU1、 ODU2、 ODU3信号属于时 分复用交换类型。
又例如, 传输类型可以同时包括交换类型和信号类型。
这样, 在路径计算响应消息中, 可以携带交换类型, 也可以携带信号类 型, 还可以同时携带交换类型和信号类型。 通过携带诸如交换类型、 信号类 型之类的传输类型, 可以向 PCC通知建立路径所需的传输类型。
根据本发明的一个实施例,传输类型可以携带在路径计算响应消息包含 的显式路径对象( Explicit Route Object , ERO ) 的子对象中。
例如, 可以利用传输控制协议(Transmission Control Protocol, TCP )将 路径计算响应消息封装在 TCP 包的净荷中。 路径计算响应消息由消息头和 多个对象组成。 当对象的对象类 (Object-Class )字段为 7、 对象类型 (OT, Object Type )字段为 1时, 该对象为 ERO, 通过 ERO携带路径信息。 ERO由 ERO的对象头和 ERO的对象体组成, ERO的对象体又可进一 步由至少一个 ER0的子对象(在下文表述中将 ER0的子对象称为 ERO子 对象)组成。 通过 ERO子对象来携带路径上的节点信息, 每个 ERO子对象 携带关于一个节点的节点信息, 因此当一条路径包含 N ( N为自然数)个节 点时, 需要 N个 ERO子对象来分别携带路径上的各个节点信息。 通过节点 信息可以找到该节点, 例如节点信息可以是节点的 IP地址或节点编号等。 在本发明的实施例中, 还可以通过 ERO子对象来携带传输类型。
在本发明的一个实施例中, 沿着 PCC对 ERO子对象的解析顺序, 携带 传输类型的 ERO子对象被置于携带边界节点信息的 ERO子对象之后的相邻 处。 本实施例中的边界节点位于客户层网络与服务层网络之间。 结合图 2至 图 4来具体描述携带传输类型的 ERO子对象。
在 S130中, 当 PCC从 PCE收到传输类型时, PCC基于该传输类型控 制服务层路径的建立,从而可以进一步建立起包含服务层路径的源节点到目 标节点的路径。 在此需要说明的是, PCC建立路径的方式属于现有技术, 具 体内容不再赘述。 本发明实施例与现有技术相比, 不同之处在于, 服务层路 径的建立所需的传输类型不再是盲目、 任意选取的传输类型, 而是 PCE返 回的服务层路径所支持的传输类型。
例如, 当 PCC是网管设备时, 网管设备根据 PCE计算得到的服务层路 径和服务层路径支持的传输类型, 分别向服务层路径包含的节点发送控制信 令, 以按照传输类型对各节点进行配置, 即服务层路径的各节点根据接收到 的控制信令, 按照传输类型配置转发规则, 从而建立起服务层路径。 举例来 说, 对于分组交换类型, 网管设备在服务层路径包含的各节点配置分组交换 (例如 MPLS协议下的标签交换)的转发规则;对于特定 ODU的信号类型, 网管设备在各光传送网络(Optical Transmission Network, OTN )节点配置 该特定 ODU的交叉连接。
再例如, 当 PCC是源节点时, 源节点根据 PCE计算得到的服务层路径 和服务层路径支持的传输类型, 向服务层路径的入口节点发送携带服务层路 径信息和传输类型的 Path消息。 入口节点发现入口节点自身是 Path消息指 定的服务层路径的首节点, 根据传输类型触发服务层路径中各节点的配置, 从而可以建立起服务层路径。 此时, 服务层路径的建立是基于 PCC发送的 Path消息而控制建立起的。 根据本发明实施例提供的用于建立多层路径的方法,通过在路径计算响 应消息中携带服务层路径支持的传输类型, 可以向 PCC指示建立路径所需 的传输类型, 从而避免 PCC盲目选择传输类型来建立多层路径而造成的建 立失败或资源利用率下降,使得 PCC可以有效利用 PCE计算出的优化结果, 进而提高多层路径建立的有效性。
具体而言, 在现有技术中由于 PCC盲目选择传输类型建立多层路径, 有可能服务层路径不能支持 PCC所选择的传输类型, 从而造成路径建立的 失败, 而利用本发明实施例的用于建立多层路径的方法, 由于 PCC 可以从 PCE获取服务层路径支持的传输类型, 因此 PCC使用的传输类型可被服务 层路径支持, 从而路径建立成功。 另外, 在现有技术中由于 PCC盲目选择 传输类型建立多层路径, 有可能服务层路径可以支持 PCC所选择的传输类 型, 但是 PCC所选择的传输类型并不是 PCE计算得到的服务层路径可支持 的最优传输类型, 从而使服务层路径的资源利用率降低, 而利用本发明实施 例的用于建立多层路径的方法, 由于 PCC可以从 PCE获取服务层路径支持 的传输类型, 而 PCE得到的传输类型对于多层路径而言是最优的传输类型, 因此当利用该传输类型建立服务层路径时, 可以提高服务层路径的资源利用 率。
下面, 结合图 2示出的多层网络拓朴的例子来描述用于建立路径的方法 的两个例子。 在图 2中, 虚线之上的部分是客户层网络, 即上层网络; 虚线 之下的部分是服务层网络, 即下层网络。
首先描述第一例子。在第一例子中,假设客户层网络是 MPLS分组网络, 包括节点八、 B、 C、 D、 E; 服务层网络是 SDH网络, 包括节点 Nl、 N2、 N3、 N4, 在该 SDH网络中各节点和链路支持 TDM和分组两个交换类型。 在客户层网络中, 各链路的剩余带宽如图所示。 在初始状态中, 客户层网络 的 D节点和 E节点之间没有链路。
当节点 A希望建立节点 A和节点 C之间 1G带宽的路径时, 可以执行 如下步骤(1 )至(4 ) :
( 1 )节点 A通过 PCEP协议向 PCE发送路径计算请求消息, 请求获得 节点 A至节点 C之间 1G带宽的路径信息。
( 2 ) PCE 根据预先获取的网络拓朴信息, 计算得到多层路径
A-D-N1-N4-N3-E-C, 并确定服务层路径 D-N1-N4-N3-E需要采用 TDM交换 类型提供连接。
( 3 ) PCE将上述路径计算的结果利用路径计算响应消息返回给节点 A, 在路径计算响应消息中携带多层路径信息, 并携带服务层路径支持的 TDM 交换类型。
可以将服务层路径支持的传输类型携带在 ERO子对象, 携带传输类型 的 ERO子对象的封装格式可以如图 3所示。 虽然在图 3中通过 ERO子对象 来携带传输类型,但是本领域技术人员可以想到通过其它数据结构来携带传 输类型也是可行的。 在第一例子中, 由于传输类型具体为交换类型, 因此可 以将第一例子中的 TDM交换类型携带在图 3所示的封装格式中的传输类型 字段中。
在图 3中, L字段、 类型(Type )字段和长度(Length )字段是 ERO子 对象中的标准头部。 当在 ERO子对象中携带传输类型时, 作为 ^散标识符 的 L字段不是必要的, 也就是说, 在携带传输类型的 ERO子对象的头部中, 可以只包含类型字段和长度字段。 此外, 在携带传输类型的 ERO子对象的 数据部分中, 需要包含传输类型字段。
其中, 类型字段可用于标识数据结构携带有传输类型信息; 长度字段可 用于指示数据结构所占用的字节数;传输类型字段可用于携带服务层路径支 持的传输类型。
在 ERO子对象中, 不同的 Type值代表不同的子对象。 因此, 可以为携 带传输类型的 ERO子对象分配唯一的 Type标号, 例如用 Type=100表示该 ERO子对象是携带传输类型的子对象。
在传输类型字段中可以携带交换类型, 也可以携带信号类型, 还可以同 时携带交换类型和信号类型。 在第一例子中, 在传输类型字段中携带交换类 型,例如可以用 101表示 TDM交换类型,用 102表示分组交换类型,用 103 表示 WDM ( Wave Division Multiplex, 波分复用 ) 交换类型。
预留(Reserved )字段是可选字段,暂时未定义。在携带传输类型的 ERO 子对象中也可以不包括预留字段, 其定义具有任意性。
沿着 PCC对 ERO子对象的解析顺序, PCE可以将一个携带 TDM交换 类型的 ERO子对象置于携带边界节点 D信息的 ERO子对象之后的相邻处, 并同时将另一个携带有 TDM交换类型的 ERO子对象置于携带有边界节点 E 信息的 ERO子对象之后的相邻处。 借助上述方式, 可以在路径计算响应消 息中表示出节点 D和节点 E被指定为边界节点。通过解析 ERO子对象, PCC 在解析出携带 TDM交换类型的 ERO子对象时,可以确定前一个解析出的节 点信息所对应的节点是客户层网络和服务层网络之间的边界节点, 即 PCC 可以确定节点 D和节点 E是位于 MPLS分组网络与 SDH网络之间的边界节 点。
针对 PCE计算得到的 A-D-N1-N4-N3-E-C多层路径,可以通过图 4所示 的封装格式在路径计算响应消息中携带多层路径信息。
在图 4中, 路径计算响应消息的 ERO子对象可以依次携带如下路径信 息: 节点 A的信息、 节点 D的信息 (例如接口 1 ) 、 TDM交换类型、 节点 N1入口的信息 (例如接口 2 ) 、 节点 N1出口的信息 (例如接口 3 ) 、 节点 N4入口的信息 (例如接口 4 ) 、 节点 N4出口的信息 (例如接口 5 ) 、 节点 N3入口的信息 (例如接口 6 ) 、 节点 N3出口的信息 (例如接口 7 ) 、 节点 E的信息 (例如接口 8 ) 、 TDM交换类型和节点 C的信息。
虽然在图 4所示的实施例中携带了服务层路径中间节点 Nl、 N4、 N3的 信息, 在关于中间节点的信息中具体包含该中间节点的入口和出口的信息。 但是在其它实施例中, 也可以不携带服务层路径的中间节点 Nl、 N4、 N3的 信息, 或者在携带中间节点的信息的情况下, 只携带中间节点 Nl、 N4、 N3 入口和出口之一的信息。
携带节点信息的 ERO子对象的格式可以与现有技术中的格式相同。 以 携带节点 N3入口的信息的 ERO子对象的格式为例进行描述。 T字段、 类型 ( Type )字段、 长度(Length )字段为 ERO子对象的头部, 例如, Type字 段为 4、Length字段为 12用于表征该 ERO子对象为无编号接口标识子对象。 预留 (Reserved )字段都为 0。 节点标识字段可以携带节点标识, 用于指向 相应的节点, 例如节点标识可以是节点的 IP地址或节点的编号, 节点可以 是路由器也可以是其它网络设备。 接口标识字段可以携带接口标识, 用于指 向相应的接口, 例如接口标识可以是接口的 IP地址或接口的编号。 对于携 带 N3信息的 ERO子对象而言, 节点标识可以是节点 N3的 IP地址或节点 N3的编号, 接口标识可以是接口 6的 IP地址或接口 6的编号。
( 4 )节点 A收到 PCE返回的路径计算响应消息之后, 由于可以获知服 务层路径 D-N1-N4-N3-E支持的 TDM交换类型, 于是节点 A基于 TDM交 换类型控制在 D-N1-N4-N3-E之间建立 TDM连接。 这样, 节点 A可以使用 恰当的交换类型来控制服务层路径的建立, 而不是盲目地选择交换类型, 因 此节点 A可以更好地利用 PCE计算得到的优化路径结果。
返回图 2的网络拓朴的例子来描述第二例子。第二例子与第一例子的区 别主要在于服务层路径支持的传输类型是信号类型而不是交换类型。
在第二例子中, 在图 2的网络拓朴中, 假设客户层网络是 MPLS分组网 络,服务层网络是 OTN网络, OTN网络中各链路支持 ODUl、 ODU2、 ODU3 等多种信号类型。客户层网络中各链路的剩余带宽仍如图 2所示, 节点 D和 节点 E分别通过 10G以太网链路接入到作为服务层网络的 OTN网络, 节点 D和节点 E之间的 10G以太网链路没有相连。
当节点 A希望建立节点 A和节点 C之间 1G带宽的路径时, 可以执行 如下步骤(1 )至(4 ) :
( 1 )节点 A通过 PCEP协议向 PCE发送路径计算请求消息, 请求获得 节点 A至节点 C之间 1G带宽的路径信息。
( 2 ) PCE 根据预先获取的网络拓朴信息, 计算得到多层路径 A-D-N1-N4-N3-E-C, 并确定服务层路径 D-N1-N4-N3-E需要采用 ODU2信 号类型提供连接。
( 3 ) PCE将上述路径计算的结果利用路径计算响应消息返回给节点 A, 在路径计算响应消息中携带多层路径信息, 并携带服务层路径支持的 ODU2 信号类型。
可以借助于图 3所示的封装格式来携带信号类型, 此时需要在图 3所示 的传输类型字段中携带信号类型。 例如, 可以为不同的信号类型定义不同的 取值来进行区分。 举例来说, 可以定义值 1表示 ODU1 , 2表示 ODU2, 3 表示 ODU3。
沿着 PCC对 ERO子对象的解析顺序, PCE可以将一个携带 ODU2信号 类型的 ERO子对象置于携带边界节点 D信息的 ERO子对象之后的相邻处, 并同时将另一个携带 ODU2信号类型的 ERO子对象置于携带边界节点 E信 息的 ERO子对象之后的相邻处。 借助上述方式, 可以在路径计算响应消息 中表示出节点 D和节点 E被指定为边界节点。 通过解析 ERO子对象, PCC 在解析出携带 ODU2信号类型的 ERO子对象时, 可以确定前一个解析出的 节点信息所对应的节点是客户层网络和服务层网络之间的边界节点,即 PCC 可以确定节点 D和节点 E是位于 MPLS分组网络与 OTN网络之间的边界节 点。
例如,可以借助于图 4所示的封装格式来携带多层路径信息和信号类型。 此时, 需要将当前图 4所示的 TDM交换类型信息替换为 ODU2信号类型信 息, 以反应在第二例子中路径计算响应消息携带的多个 ERO子对象。 在第 二例子中, 路径计算响应消息的 ERO子对象依次携带如下信息: 节点 A的 信息、 节点 D的信息 (例如接口 1 ) 、 ODU2信号类型、 节点 N1入口的信 息(例如接口 2 ) 、 节点 N1出口的信息(例如接口 3 ) 、 节点 N4入口的信 息 (例如接口 4 ) 、 节点 N4出口的信息(例如接口 5 ) 、 节点 N3入口的信 息 (例如接口 6 )、 节点 N3出口的信息(例如接口 7 )、 节点 E的信息(例 如接口 8 ) 、 ODU2信号类型和节点 C的信息。
( 4 )节点 A收到 PCE返回的路径计算响应消息之后, 由于可以获知服 务层路径 D-N1-N4-N3-E支持的 ODU2信号类型, 于是节点 A基于 ODU2 信号类型控制在 D-N1-N4-N3-E之间建立支持 ODU2信号传输的连接。这样, 节点 A可以使用恰当的信号类型来控制服务层路径的建立,而不是盲目地选 择信号类型, 因此节点 A可以更好地利用 PCE计算得到的优化路径结果。
图 5是根据本发明实施例的用于建立多层路径的方法 500的流程图。 方 法 500中的 S510、 S520和 S530与方法 100中的 S110、 S120和 S130相同。
在 S522中, 依次解析路径计算响应消息包含的 ERO子对象。
PCC收到路径计算响应消息之后, 按照顺序来依次解析 ERO子对象, 以从中提取出关于多层路径的信息以及服务层路径支持的传输类型。
以上述图 2至图 4的第一例子为例进行说明。 当节点 A收到 PCE返回 的路径计算响应消息之后, 节点 A按照顺序解析 ERO子对象, 可以依次提 取出图 4所示的各个 ERO子对象。
在 S524中, 确定当前解析的 ERO子对象携带有传输类型的情况下, 确 定与该 ERO子对象相邻的且已被解析的 ERO子对象携带的节点信息对应的 节点是客户层网络和服务层网络之间的边界节点; 所述边界节点包括所述服 务层路径的入口节点和出口节点。
沿着 PCC对 ERO子对象的解析顺序, 对于当前解析的 ERO子对象, 在该 ERO子对象携带传输类型的情况下,如果在解析该 ERO子对象之前还 没有解析出携带传输类型的 ERO子对象, 则确定在与该 ERO子对象相邻的 且已被解析的 ERO子对象中携带有服务层路径的入口节点的信息, 于是可 以确定服务层路径的入口节点, 该服务层路径的入口节点属于客户层网络和 服务层网络之间的边界节点。 如果在解析该 ERO子对象之前已经解析出携 带传输类型的 ERO子对象, 则确定在与该 ERO子对象相邻的且已被解析的 ERO子对象中携带有服务层路径的出口节点的信息,于是可以确定服务层路 径的出口节点,该服务层路径的出口节点属于客户层网络和服务层网络之间 的边界节点。
仍以上述图 2至图 4 的第一例子为例进行说明。 当解析出第一个携带 TDM交换类型的 ERO子对象时, 发现之前没有解析 TDM交换类型, 于是 确定与该第一个携带 TDM交换类型的 ERO子对象相邻的、 且已被解析的 ERO子对象携带的是服务层路径的入口节点的信息, 即确定节点 D是服务 层路径的入口节点。 当解析出第二个携带 TDM交换类型的 ERO子对象时, 发现之前已经解析 TDM交换类型, 于是确定与该第二个携带 TDM交换类 型的 ERO子对象相邻的、且已被解析的 ERO子对象携带的是服务层路径的 出口节点的信息, 即确定节点 E是 务层路径的出口节点。
当确定了服务层路径的入口节点和出口节点,这两个节点是位于客户层 网络与服务层网络的边界节点时,在两者之间的节点即为服务层路径的中间 节点 (例如图 2中的节点 Nl、 N4、 N3 )。 另外, 当确定了服务层路径的入 口节点和出口节点时, 还可以进一步确定某个 ERO子对象携带的节点信息 是否是客户层网络中的节点信息。 例如, 在当前解析的 ERO子对象没有携 带传输类型时, 如果之前从未解析到携带传输类型的 ERO子对象, 则说明 与当前解析的 ERO子对象相邻的、且已被解析的 ERO子对象是客户层网络 中的节点。
通过沿着 PCC对 ERO子对象的解析顺序, 将携带传输类型的 ERO子 对象置于携带边界节点信息的 ERO子对象之后的相邻处, PCC可以容易地 确定出服务层路径的入口节点和出口节点, 相比于现有技术中 PCC需要比 对 PCC所知晓的网络拓朴信息、 才能确定服务层路径的入口节点和出口节 点而言, 可以更加筒便快捷地确定服务层路径, 降低确定服务层路径的入口 节点和出口节点的复杂度, 且实现方便。 因此, 本发明实施例既可以使 PCC 确定服务层路径支持的传输类型, 又可以帮助 PCC确定服务层路径的入口 节点和出口节点, 从而可以加强携带传输类型的 ERO子对象的效用, 通过 有限信息的传递来帮助 PCC获取更多有用信息。 下面,参考图 6描述根据本发明实施例的用于建立多层路径的方法 600。 如图 6所示, 方法 600包括: 在 S610中, 接收路径计算客户端发送的 路径计算请求消息,路径计算请求消息用于请求计算源节点到目标节点的路 径, 源节点和目标节点位于客户层网络中; 在 S620中, 确定源节点到目标 节点的经由客户层网络和服务层网络的路径信息、 以及位于服务层网络的服 务层路径支持的传输类型; 在 S630中, 生成携带所述路径信息和传输类型 的路径计算响应消息; 在 S640中, 向路径计算客户端发送路径计算响应消 息, 以使路径计算客户端根据传输类型建立包含所述服务层路径的所述源节 点到目标节点的路径。
例如, 方法 600可以由路径计算单元执行。 路径计算单元根据诸如源节 点、 网管设备之类的路径计算客户端发送的路径计算请求消息, 可以按照诸 如 CSPF算法之类的路径计算方式来获取源节点到目标节点的路径。 当计算 出的路径是多层路径时,路径计算单元不仅需要在路径计算响应消息中携带 多层路径信息, 更重要的是, 需要在路径计算响应消息中携带传输类型, 从 而使路径计算客户端根据确定的传输类型来建立多层路径。 显然, 路径计算 客户端无需盲目、 任意地选取传输类型来建立多层路径, 因此可以避免路径 建立的失败或者资源利用的不充分,使得路径计算客户端可以根据恰当的传 输类型来有效利用路径计算单元计算得到的优化路径,提高多层路径建立的 有效性。
由于路径计算单元的操作与路径计算客户端的操作相对应, 因此本领域 技术人员通过参考方法 100中的描述, 可以知晓路径计算单元的操作, 为了 避免重复, 此处不再赘述。
在 S620中, PCE根据客户层网络和服务层网络各链路能够支持的带宽 以及 PCC请求建立的路径所需的流量需求, 再结合网络拓朴信息, 可以利 用诸如 CSPF算法之类的路径计算方式确定源节点和目标节点之间的多层路 径需要经由位于服务层网络的服务层路径。 由于 PCE可以收集到关于网络 拓朴的信息, 因此 PCE可以知晓网络中节点和链路所支持的传输类型等, 从而可以知晓服务层路径支持的传输类型。
根据本发明的一个实施例,传输类型可以包括交换类型和信号类型中的 至少一项。 具体内容可以参考上述方法 100中 S120的描述。
在 S630中, PCE不仅将多层路径信息携带在路径计算响应消息中, 更 重要的是将传输类型也携带在路径计算响应消息中以向 PCC指示传输类型。 根据本发明的一个实施例, 在生成路径计算响应消息的过程中, 可以将 传输类型携带在路径计算响应消息包含的 ERO子对象中。 具体内容可以参 考上述方法 100中 S120的描述, 并可以参考结合图 2的网络拓朴例子所描 述的携带传输类型的封装方式(如图 3所示)。
可以有多种方式将传输类型携带在不同位置的 ERO子对象中。 在本发 明的一个实施例中, 沿着 PCC对 ERO子对象的解析顺序, 携带传输类型的 ERO子对象被置于携带边界节点信息的 ERO子对象之后的相邻处。 本实施 例中的边界节点位于客户层网络与服务层网络之间。具体内容可以参考结合 图 2的网络拓朴例子所描述的路径计算响应消息包含的 ERO子对象的封装 方式(如图 4所示)。
通过沿着 PCC对 ERO子对象的解析顺序, 将携带传输类型的 ERO子 对象置于携带边界节点信息的 ERO子对象之后的相邻处, PCC可以容易地 确定出服务层路径的入口节点和出口节点, 相比于现有技术中 PCC需要比 对 PCC所知晓的网络拓朴信息、 才能确定服务层路径的入口节点和出口节 点而言, 可以更加筒便快捷地确定服务层路径, 降低确定服务层路径的入口 节点和出口节点的复杂度, 且实现方便。 因此, 本发明实施例既可以使 PCC 确定服务层路径支持的传输类型, 又可以帮助 PCC确定服务层路径的入口 节点和出口节点, 从而可以加强携带传输类型的 ERO子对象的效用, 通过 有限信息的传递来帮助 PCC获取更多有用信息。
上面描述了根据本发明实施例的用于建立多层路径的方法, 下面结合图 7 至图 9描述根据本发明实施例的用于建立多层路径的相关装置的结构框 图。
图 7是根据本发明实施例的路径计算客户端 700的结构框图。
路径计算客户端 700包括发送模块 710、接收模块 720和建立模块 730。 发送模块 710用于向路径计算单元发送路径计算请求消息,路径计算请求消 息用于请求计算源节点到目标节点的路径, 源节点和目标节点位于客户层网 络中。 接收模块 720用于接收路径计算单元返回的路径计算响应消息, 路径 计算响应消息携带源节点到目标节点的经由客户层网络和服务层网络的路 径信息、 以及位于服务层网络的服务层路径支持的传输类型。 建立模块 730 用于根据所述传输类型, 建立包含所述服务层路径的所述源节点到目标节点 的路径。
发送模块 710、接收模块 720和建立模块 730的上述和其它操作和 /或功 能可以参考上述方法 100的 S110至 S130, 并可以参考上述图 2至图 4描述 的例子来帮助更好地理解, 为了避免重复, 此处不再赘述。
根据本发明实施例提供的路径计算客户端, 通过从 PCE收到的路径计 算响应消息中提取出服务层路径支持的传输类型,可以根据该传输类型来建 立多层路径,从而避免路径计算客户端盲目选择传输类型来建立多层路径而 造成的建立失败或资源利用率下降,使得路径计算客户端可以有效利用 PCE 计算出的优化结果, 提高多层路径建立的有效性。
图 8是根据本发明实施例的路径计算客户端 800的结构框图。
路径计算客户端 800的发送模块 810、 接收模块 820和建立模块 830与 路径计算客户端 700的发送模块 710、接收模块 720和建立模块 730相类似。
根据本发明的一个实施例,传输类型包括交换类型和信号类型中的至少 一项。
根据本发明的实施例, 传输类型可以携带在路径计算响应消息包含的
ERO子对象中。
更进一步地, 沿着路径计算客户端 800对 ERO子对象的解析顺序, 携 带传输类型的 ERO子对象被置于携带边界节点信息的 ERO子对象之后的相 邻处。 本实施例中的边界节点位于客户层网络与服务层网络之间。 在该情况 下, 路径计算客户端 800还可以包括解析模块 840和确定模块 850。 解析模 块 840用于在接收模块 820收到路径计算响应消息之后,依次解析路径计算 响应消息包含的 ERO子对象。确定模块 850用于确定解析的第一 ERO子对 象携带有传输类型, 确定与所述第一 ERO子对象相邻的且已被解析的第二 ERO 子对象携带的节点信息对应的节点是客户层网络和服务层网络之间的 边界节点; 所述边界节点包括所述服务层路径的入口节点和出口节点。
根据本发明的一个实施例,确定模块 850可以包括第一确定单元 852和 第二确定单元 854。第一确定单元 852用于如果在解析所述第一 ERO子对象 之前还没有解析出携带传输类型的 ERO子对象, 则确定在与所述第一 ERO 子对象相邻的已被解析的所述第二 ERO子对象中携带有服务层路径的入口 节点的信息。 第二确定单元 854用于如果在解析所述第一 ERO子对象之前 已经解析出携带传输类型的 ERO子对象, 则确定在与所述第一 ERO子对象 相邻的已被解析的所述第二 ERO子对象中携带有服务层路径的出口节点的 信息。
传输类型的相关描述以及解析模块 840、 确定模块 850、 第一确定单元 852和第二确定单元 854的上述和其它操作和 /或功能可以参考上述方法 100 的 S120以及方法 500的 S522和 S524, 并可以参考结合图 2至图 4描述的 例子来帮助更好地理解, 为了避免重复, 此处不再赘述。
通过沿着路径计算客户端对 ERO子对象的解析顺序, 将携带传输类型 的 ERO子对象置于携带边界节点信息的 ERO子对象之后的相邻处, 本发明 实施例提供的路径计算客户端可以容易地确定出服务层路径的入口节点和 出口节点,相比于现有技术中路径计算客户端需要比对它所知晓的网络拓朴 信息、 才能确定服务层路径的入口节点和出口节点而言, 可以更加筒便快捷 地确定服务层路径, 降低确定服务层路径的入口节点和出口节点的复杂度, 且实现方便。 因此, 本发明实施例既可以使路径计算客户端确定服务层路径 支持的传输类型, 又可以帮助路径计算客户端确定服务层路径的入口节点和 出口节点, 从而可以加强携带传输类型的 ERO子对象的效用, 通过有限信 息的传递来帮助 PCC获取更多有用信息。
图 9是根据本发明实施例的路径计算单元 900的结构框图。
路径计算单元 900包括接收模块 910、 确定模块 920、 生成模块 930和 发送模块 940。 接收模块 910用于接收路径计算客户端发送的路径计算请求 消息, 路径计算请求消息用于请求计算源节点到目标节点的路径, 源节点和 目标节点位于客户层网络中。确定模块 920用于确定源节点到目标节点的经 由客户层网络和服务层网络的路径信息、以及位于服务层网络的服务层路径 支持的传输类型。生成模块 930用于生成携带所述路径信息和所述传输类型 的路径计算响应消息。发送模块 940用于向路径计算客户端发送路径计算响 应消息, 以使路径计算客户端根据所述传输类型建立包含所述服务层路径的 所述源节点到目标节点的路径。
接收模块 910、 确定模块 920、 生成模块 930和发送模块 940的上述和 其它操作和 /或功能可以参考上述方法 600的 S610至 S630, 为了避免重复, 此处不再赘述。
根据本发明实施例提供的路径计算单元,通过将传输类型携带在路径计 算响应消息中, 可以向路径计算客户端通知服务层路径支持的传输类型, 从 而可以使路径计算客户端根据该传输类型来建立多层路径, 这样, 路径计算 客户端无需盲目、 任意地选取传输类型来建立多层路径, 因此可以避免路径 建立的失败或者资源利用的不充分,使得路径计算客户端可以根据恰当的传 输类型来有效利用路径计算单元计算得到的优化路径,提高多层路径建立的 有效性。
根据本发明的一个实施例,传输类型可以包括交换类型和信号类型中的 至少一项。
根据本发明的一个实施例, 生成模块 930用于将传输类型携带在路径计 算响应消息包含的 ERO子对象中。
更进一步地, 生成模块 930用于沿着路径计算客户端对 ERO子对象的 解析顺序,将携带传输类型的 ERO子对象置于携带边界节点信息的 ERO子 对象之后的相邻处, 其中, 边界节点位于客户层网络和服务层网络之间, 包 括位于服务层网络的服务层路径的入口节点和出口节点。
传输类型的相关内容以及生成模块 930 的上述和其它操作和 /或功能可 以参考上述方法 100的 S110和上述方法 600的 S630, 并可以参考结合图 2 至图 4描述的例子来帮助更好地进行理解, 为了避免重复, 此处不再赘述。
本发明实施例提供的路径计算单元通过沿着 PCC对 ERO子对象的解析 顺序,将携带传输类型的 ERO子对象置于携带边界节点信息的 ERO子对象 之后的相邻处, 可以使 PCC容易地确定出服务层路径的入口节点和出口节 点, 相比于现有技术中 PCC需要比对它所知晓的网络拓朴信息、 才能确定 服务层路径的入口节点和出口节点而言, 可以更加简便快捷地确定服务层路 径, 降低确定服务层路径的入口节点和出口节点的复杂度, 且实现方便。 因 此, 本发明实施例既可以使路径计算客户端确定服务层路径支持的传输类 型, 又可以帮助 PCC确定服务层路径的入口节点和出口节点, 从而可以加 强携带传输类型的 ERO子对象的效用, 通过有限信息的传递来帮助 PCC获 取更多有用信息。
图 10是根据本发明实施例的用于建立多层路径的系统 1000 的结构框 图。
系统 1000包括路径计算客户端 1010和路径计算单元 1020。
路径计算客户端 1010用于向路径计算单元 1020发送路径计算请求消 息, 路径计算请求消息用于请求计算源节点到目标节点的路径, 源节点和目 标节点位于客户层网络中; 接收路径计算单元 1020返回的路径计算响应消 息,路径计算响应消息携带源节点到目标节点的经由客户层网络和服务层网 络的路径信息、 以及位于服务层网络的服务层路径支持的传输类型; 根据所 述传输类型, 建立包含所述服务层路径的所述源节点到目标节点的路径。
路径计算单元 1020用于接收路径计算客户端 1010发送的路径计算请求 消息; 确定所述路径信息和所述传输类型; 生成携带所述路径信息和所述传 输类型的路径计算响应消息; 向路径计算客户端 1010发送路径计算响应消 息。
路径计算单元 1010的上述和其它操作和 /或功能可以参考上述方法 100 和 500中的具体描述, 路径计算单元 1020的上述和其它操作和 /或功能可以 参考上述方法 600中的具体描述, 并可以结合参考图 2至图 4描述的例子来 更好地帮助理解, 为了避免重复, 此处不再赘述。
根据本发明实施例提供的用于建立多层路径的系统,路径计算单元通过 向路径计算客户端通知服务层路径支持的传输类型,使得路径计算客户端可 以根据该传输类型来建立多层路径,从而避免路径计算客户端盲目选择传输 类型来建立多层路径而造成的建立失败或资源利用率下降,使得路径计算客 户端可以有效利用路径计算单元计算出的优化路径结果,进而提高多层路径 建立的有效性。
本领域技术人员可以意识到,结合本文中所公开的实施例中描述的各方 法步骤和单元, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为了 清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描 述了各实施例的步骤及组成。 这些功能究竟以硬件还是软件方式来执行, 取 决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定 的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发 明的范围。
结合本文中所公开的实施例描述的方法步骤可以用硬件、处理器执行的 软件程序、 或者二者的结合来实施。 软件程序可以置于随机存取存储器 ( RAM ), 内存、 只读存储器 (ROM )、 电可编程 ROM、 电可擦除可编程 ROM, 寄存器、 硬盘、 可移动磁盘、 CD-ROM 或技术领域内所公知的任意 其它形式的存储介质中。
尽管已示出和描述了本发明的一些实施例, 但本领域技术人员应该理 解, 在不脱离本发明原理的情况下, 可对这些实施例进行各种修改, 这样的 修改应落入本发明的范围内。

Claims

权利要求
1. 一种用于建立多层路径的方法, 其特征在于, 包括:
向路径计算单元发送路径计算请求消息, 所述路径计算请求消息用于请 求计算源节点到目标节点的路径, 所述源节点和所述目标节点位于客户层网 络中;
接收所述路径计算单元返回的路径计算响应消息, 所述路径计算响应消 息携带所述源节点到所述目标节点的经由所述客户层网络和服务层网络的 路径信息、 以及位于所述服务层网络的服务层路径支持的传输类型;
根据所述传输类型, 建立包含所述服务层路径的所述源节点到目标节点 的路径。
2. 根据权利要求 1所述的方法, 其特征在于, 所述传输类型包括交换 类型和信号类型中的至少一项。
3. 根据权利要求 1或 2所述的方法, 其特征在于, 所述传输类型被携 带在所述路径计算响应消息包含的显式路径对象 ERO子对象中。
4. 根据权利要求 3所述的方法, 其特征在于, 沿着路径计算客户端对 ERO子对象的解析顺序,所述传输类型被携带在位于携带有边界节点信息的 ERO子对象之后的相邻的 ERO子对象中; 其中, 所述边界节点位于所述客 户层网络和所述服务层网络之间。
5. 根据权利要求 4所述的方法, 其特征在于, 所述接收所述路径计算 单元返回的路径计算响应消息之后, 还包括:
依次解析所述路径计算响应消息包含的 ERO子对象;
若解析的第一 ERO 子对象携带有所述传输类型, 则确定与所述第一 ERO子对象相邻的且已被解析的第二 ERO子对象携带的节点信息对应的节 点是所述客户层网络和所述服务层网络之间的边界节点; 所述边界节点包括 所述服务层路径的入口节点和出口节点。
6.根据权利要求 5所述的方法,其特征在于,所述确定与所述第一 ERO 子对象相邻的且已被解析的第二 ERO子对象携带的节点信息对应的节点是 所述客户层网络和所述服务层网络之间的边界节点包括:
若在解析所述第一 ERO子对象之前还没有解析出携带所述传输类型的
ERO子对象, 则确定所述第二 ERO子对象携带有服务层路径的入口节点的 信息;
若在解析所述第一 ERO 子对象之前已经解析出携带所述传输类型的 ERO子对象, 则确定所述第二 ERO子对象携带有服务层路径的出口节点的 信息。
7. 一种用于建立多层路径的方法, 其特征在于, 包括:
接收路径计算客户端发送的路径计算请求消息, 所述路径计算请求消息 用于请求计算源节点到目标节点的路径, 所述源节点和所述目标节点位于客 户层网络中;
确定所述源节点到所述目标节点的经由所述客户层网络和服务层网络 的路径信息、 以及位于所述服务层网络的服务层路径支持的传输类型; 生成携带所述路径信息和所述传输类型的路径计算响应消息; 向所述路径计算客户端发送所述路径计算响应消息, 以使所述路径计算 客户端根据所述传输类型建立包含所述服务层路径的所述源节点到目标节 点的路径。
8. 根据权利要求 7所述的方法, 其特征在于, 所述传输类型包括交换 类型和信号类型中的至少一项。
9. 根据权利要求 7或 8所述的方法, 其特征在于, 所述生成携带所述 服务层路径和所述传输类型的路径计算响应消息包括:
将所述传输类型携带在所述路径计算响应消息包含的显式路径对象 ERO子对象中。
10. 根据权利要求 9所述的方法, 其特征在于, 所述将所述传输类型携 带在所述路径计算响应消息包含的 ERO子对象中包括:
沿着路径计算客户端对 ERO子对象的解析顺序, 将所述传输类型携带 在位于携带有边界节点信息的 ERO子对象之后的相邻的 ERO子对象中; 其 中, 所述边界节点位于所述客户层网络和所述服务层网络之间。
11. 一种路径计算客户端, 其特征在于, 包括:
发送模块, 用于向路径计算单元发送路径计算请求消息, 所述路径计算 请求消息用于请求计算源节点到目标节点的路径,所述源节点和所述目标节 点位于客户层网络中;
接收模块, 用于接收所述路径计算单元返回的路径计算响应消息, 所述 路径计算响应消息携带所述源节点到所述目标节点的经由所述客户层网络 和服务层网络的路径信息、 以及位于所述服务层网络的服务层路径支持的传 输类型;
建立模块, 用于根据所述传输类型, 建立包含所述服务层路径的所述源 节点到目标节点的路径。
12. 根据权利要求 11所述的路径计算客户端, 其特征在于, 所述传输 类型包括交换类型和信号类型中的至少一项。
13. 根据权利要求 11或 12所述的路径计算客户端, 其特征在于, 所述 传输类型被携带在所述路径计算响应消息包含的显式路径对象 ERO子对象 中。
14. 根据权利要求 13所述的路径计算客户端, 其特征在于, 沿着路径 计算客户端对 ERO子对象的解析顺序, 所述传输类型被携带在位于携带有 边界节点信息的 ERO子对象之后的相邻的 ERO子对象中; 其中, 所述边界 节点位于所述客户层网络和所述服务层网络之间。
15. 根据权利要求 14所述的路径计算客户端, 其特征在于, 还包括: 解析模块, 用于在所述接收模块收到所述路径计算响应消息之后, 依次 解析所述路径计算响应消息包含的 ERO子对象;
确定模块, 用于确定解析的第一 ERO子对象携带有所述传输类型, 确 定与所述第一 ERO子对象相邻的且已被解析的第二 ERO子对象携带的节点 信息对应的节点是所述客户层网络和所述服务层网络之间的边界节点; 所述 边界节点包括所述服务层路径的入口节点和出口节点。
16. 根据权利要求 15所述的路径计算客户端, 其特征在于, 所述确定 模块包括:
第一确定单元, 用于若在解析所述第一 ERO子对象之前还没有解析出 携带所述传输类型的 ERO子对象, 则确定所述第二 ERO子对象携带有服务 层路径的入口节点的信息;
第二确定单元, 用于若在解析所述第一 ERO子对象之前已经解析出携 带所述传输类型的 ERO子对象, 则确定所述第二 ERO子对象携带有服务层 路径的出口节点的信息。
17. 一种路径计算单元, 其特征在于, 包括:
接收模块, 用于接收路径计算客户端发送的路径计算请求消息, 所述路 径计算请求消息用于请求计算源节点到目标节点的路径, 所述源节点和所述 目标节点位于客户层网络中;
确定模块, 用于确定所述源节点到所述目标节点的经由所述客户层网络 和服务层网络的路径信息、 以及位于所述服务层网络的服务层路径支持的传 输类型;
生成模块, 用于生成携带所述路径信息和所述传输类型的路径计算响应 消息;
发送模块, 用于向所述路径计算客户端发送所述路径计算响应消息, 以 使所述路径计算客户端根据所述传输类型建立包含所述服务层路径的所述 源节点到目标节点的路径。
18. 根据权利要求 17所述的路径计算单元, 其特征在于, 所述传输类 型包括交换类型和信号类型中的至少一项。
19. 根据权利要求 17或 18所述的路径计算单元, 其特征在于, 所述生 成模块用于将所述传输类型携带在所述路径计算响应消息包含的显式路径 对象 ERO子对象中。
20. 根据权利要求 19所述的路径计算单元, 其特征在于, 所述生成模 块用于沿着路径计算客户端对 ERO子对象的解析顺序, 将所述传输类型携 带在位于携带有边界节点信息的 ERO子对象之后的相邻的 ERO子对象中; 其中, 所述边界节点位于所述客户层网络和所述服务层网络之间。
21. 一种用于建立多层路径的系统, 其特征在于, 包括路径计算客户端 和路径计算单元, 其中:
所述路径计算客户端, 用于向所述路径计算单元发送路径计算请求消 息, 所述路径计算请求消息用于请求计算源节点到目标节点的路径, 所述源 节点和所述目标节点位于客户层网络中;接收所述路径计算单元返回的路径 计算响应消息,所述路径计算响应消息携带所述源节点到所述目标节点的经 由所述客户层网络和服务层网络的路径信息、 以及位于所述服务层网络的服 务层路径支持的传输类型; 根据所述传输类型, 建立包含所述服务层路径的 所述源节点到目标节点的路径;
所述路径计算单元, 用于接收所述路径计算客户端发送的所述路径计算 请求消息; 确定所述路径信息和所述传输类型; 生成携带所述路径信息和所 述传输类型的路径计算响应消息; 向所述路径计算客户端发送所述路径计算 响应消息。
22. 一种显式路径对象 ERO的数据结构, 其特征在于, 包括多个 ER0 子对象; 沿着路径计算客户端对 ERO子对象的解析顺序, 所述多个 ERO子 对象依次携带源节点到目标节点的路径所包含的节点信息, 所述源节点和所 述目标节点都位于客户层网络中, 所述路径经由所述客户层网络和服务层网 络; 其中:
第一 ERO子对象携带位于所述服务层网络的服务层路径的入口节点的 节点信息, 第二 ERO子对象携带所述服务层路径支持的传输类型, 所述第 二 ERO子对象被置于所述第一 ERO子对象之后的相邻处;
第三 ERO 子对象携带所述服务层路径的出口节点的节点信息, 第四 ERO子对象携带所述服务层路径支持的传输类型, 所述第四 ERO子对象被 置于所述第三 ERO子对象之后的相邻处。
23. 根据权利要求 22所述的数据结构, 其特征在于, 所述第二 ERO子 对象和所述第四 ERO子对象包括类型字段、 长度字段和传输类型字段, 其 中:
所述类型字段用于标识所述 ERO子对象携带有传输类型信息; 所述长度字段用于指示所述 ERO子对象所占用的字节数;
所述传输类型字段用于携带所述服务层路径支持的传输类型。
PCT/CN2011/075784 2011-06-15 2011-06-15 用于建立多层路径的方法及其装置和系统 WO2012171191A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11867631.1A EP2658168B1 (en) 2011-06-15 2011-06-15 Method, apparatus and system for establishing multi-layer path
CN201180000968.9A CN103004148B (zh) 2011-06-15 2011-06-15 用于建立多层路径的方法及其装置和系统
PCT/CN2011/075784 WO2012171191A1 (zh) 2011-06-15 2011-06-15 用于建立多层路径的方法及其装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/075784 WO2012171191A1 (zh) 2011-06-15 2011-06-15 用于建立多层路径的方法及其装置和系统

Publications (1)

Publication Number Publication Date
WO2012171191A1 true WO2012171191A1 (zh) 2012-12-20

Family

ID=47356504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/075784 WO2012171191A1 (zh) 2011-06-15 2011-06-15 用于建立多层路径的方法及其装置和系统

Country Status (3)

Country Link
EP (1) EP2658168B1 (zh)
CN (1) CN103004148B (zh)
WO (1) WO2012171191A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10715420B2 (en) 2016-02-27 2020-07-14 Huawei Technologies Co., Ltd. System, method and apparatus for implementing fast reroute (FRR)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753427A (zh) * 2008-12-09 2010-06-23 华为技术有限公司 网络生存性路径计算方法及系统和路径计算服务器
US20100220999A1 (en) * 2009-02-27 2010-09-02 Futurewei Technologies, Inc. Encoding of Wavelength Converter Systems
CN101997760A (zh) * 2009-08-14 2011-03-30 中兴通讯股份有限公司 一种确定转发邻接标签交换路径上首尾节点的方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921779B1 (fr) * 2007-09-28 2011-02-18 Alcatel Lucent Communication d'une information de risque dans un reseau multi-domaine
US7852863B2 (en) * 2007-12-20 2010-12-14 Ciena Corporation System and methods for connections using automatically switched optical network control planes
US8374502B2 (en) * 2009-02-27 2013-02-12 Futurewei Technologies, Inc. Open shortest path first extensions in support of wavelength switched optical networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101753427A (zh) * 2008-12-09 2010-06-23 华为技术有限公司 网络生存性路径计算方法及系统和路径计算服务器
US20100220999A1 (en) * 2009-02-27 2010-09-02 Futurewei Technologies, Inc. Encoding of Wavelength Converter Systems
CN101997760A (zh) * 2009-08-14 2011-03-30 中兴通讯股份有限公司 一种确定转发邻接标签交换路径上首尾节点的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E. OKI ET AL.: "Framework for PCE-Based Inter-Layer MPLS and GMPLS Traffic Engineering.", IETF RFC5623., vol. 7, September 2009 (2009-09-01), pages 13 - 16, XP055108266 *
HUANG LILI ET AL.: "Research on PCE-based ASON Routing Technology.", STUDY ON OPTICAL COMMUNICATIONS., vol. 2009, no. 2, April 2009 (2009-04-01), pages 10 - 13, 18, XP008151581 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10715420B2 (en) 2016-02-27 2020-07-14 Huawei Technologies Co., Ltd. System, method and apparatus for implementing fast reroute (FRR)

Also Published As

Publication number Publication date
EP2658168A1 (en) 2013-10-30
EP2658168A4 (en) 2014-04-30
EP2658168B1 (en) 2015-09-09
CN103004148B (zh) 2015-05-13
CN103004148A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
US10250459B2 (en) Bandwidth on-demand services in multiple layer networks
KR102057980B1 (ko) 네트워크 서비스를 위한 경로 계산 요소 중앙 제어기(PCECCs)
EP3249865B1 (en) Method and devices for constructing label and forwarding label packet
US8340104B2 (en) Communication network system, path calculation device, and communication path establishment control method
US8155000B2 (en) Technique for enabling traffic engineering on CE-CE paths across a provider network
US8531969B2 (en) Path computation systems and methods for heterogeneous multi-domain networks
EP3043519B1 (en) Method, controller, forwarding device, and network system for forwarding packets
US10623302B2 (en) X channel to zone in zone routing
EP2232789B1 (en) Enhancing routing optimality in ip networks requiring path establishment
US8233487B2 (en) Communication network system that establishes communication path by transferring control signal
EP3131239B1 (en) Method and apparatus for path establishment
WO2011032430A1 (zh) 一种伪线建立方法和节点装置
WO2009043256A1 (fr) Procédé, système et dispositif d'obtention de trajets à commutation par étiquette
CN104753713A (zh) 一种sdn部署业务的方法和sdn控制器
WO2010048859A1 (zh) 一种路径计算方法、节点设备及路径计算单元
CN110099002B (zh) 一种路径计算方法及装置
WO2019006704A1 (zh) 一种路径计算的方法、装置和系统
WO2009140873A1 (zh) 链路属性信息的配置方法、通信设备与通信系统
US20140185607A1 (en) Communication system, communication path establishing method and management server
WO2015024440A1 (zh) 一种获取ip链路的链路开销值的方法及系统
WO2012171191A1 (zh) 用于建立多层路径的方法及其装置和系统
Eadala et al. A review on deployment architectures of path computation element using software defined networking paradigm
Miyazawa et al. Experimental demonstrations of interworking between an optical packet and circuit integrated network and openflow-based networks
JP2006279818A (ja) 光ネットワークおよびノード装置および光カットスルーリンクの設定方法
WO2013063751A1 (zh) 转发邻居-标签交换路径的连接建立方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011867631

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE