CN102186124A - 一种wdm光网络中的基于效用的层间协调方法 - Google Patents

一种wdm光网络中的基于效用的层间协调方法 Download PDF

Info

Publication number
CN102186124A
CN102186124A CN2011101097956A CN201110109795A CN102186124A CN 102186124 A CN102186124 A CN 102186124A CN 2011101097956 A CN2011101097956 A CN 2011101097956A CN 201110109795 A CN201110109795 A CN 201110109795A CN 102186124 A CN102186124 A CN 102186124A
Authority
CN
China
Prior art keywords
layer
light path
wdm
lsp
resource conservation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011101097956A
Other languages
English (en)
Other versions
CN102186124B (zh
Inventor
王兴伟
王宇
黄敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201110109795.6A priority Critical patent/CN102186124B/zh
Publication of CN102186124A publication Critical patent/CN102186124A/zh
Application granted granted Critical
Publication of CN102186124B publication Critical patent/CN102186124B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明提供一种WDM光网络中的基于效用的层间协调方法,该方法包括计算WDM层保护资源使用率、计算IP层的光路故障恢复的效用、比较WDM层故障恢复效用和IP层故障恢复效用;该方法可以实现当发生故障时决定各层的故障恢复顺序,同时综合考虑故障恢复时间和保护资源使用率,设计了一种基于效用的均衡故障恢复时间和保护资源使用率的层间协调机制,动态的对故障恢复进行评估和决策,能够较好的利用WDM层恢复和IP层恢复的优点,降低故障恢复时间和提高保护资源使用率。

Description

一种WDM光网络中的基于效用的层间协调方法
技术领域
本发明属于网络技术领域,具体涉及一种WDM光网络中的基于效用的层间协调方法。
背景技术
随着互联网的高速发展,人们对通信系统的容量和性能提出了新的要求。波分复用(Wavelength Division Multiplexing,WDM)技术可以提供巨大的传输容量,满足互联网业务对带宽的需求。但是,一旦发生网络故障,将导致大量业务中断。与此同时,为了降低网络运营成本,提高带宽资源利用率,传输网络逐渐由传统的IP over ATM over SDH/SONET over WDM多层重叠结构向IP over WDM两层结构发展,将IP业务直接承载在WDM光网络上。为提高IP over WDM网络在发生故障时提供不间断服务的能力,在IP层和WDM层需要提供保护机制和恢复机制。
WDM层恢复的优点是故障恢复时间短,缺点是使用的保护资源多;IP层恢复的优点是使用的保护资源少,缺点是故障恢复时间长,带来的恢复动作较多,信令开销比较大。层间协调机制的主要作用就是当发生故障时,决定各层的故障恢复顺序,最优化整个系统的使用效率。WDM光网络中传统的层间协调机制局限性较多,如保持时间定时器法需要设置固定值的定时器等。
发明内容
针对上述现有技术存在的问题,本发明提供一种WDM光网络中的基于效用的层间协调方法,该方法综合考虑了故障恢复时间和保护资源使用率,设计了一种基于效用的均衡故障恢复时间和保护资源使用率的层间协调机制,动态的对故障恢复进行评估和决策。
本发明的WDM光网络中的基于效用的层间协调方法,包括如下步骤:
当一条物理链路发生故障时,进行如下层间协调:
对于经过该物理链路的每一条光路:
步骤(1):如果该光路未提供WDM层保护,则在IP层恢复该光路上承载的业务,机制结束。
步骤(2):根据式计算WDM层保护资源使用率RUR1
其中,hp为其保护光路的跳数,B为单位波长带宽,hw为工作光路的跳数,
Figure BDA0000058308020000012
为该工作光路承载的第i个业务的带宽;
根据保护资源类型计算WDM层故障恢复时间:
如果保护资源类型是专用,
按式PST1=F1+n1×P1+(n1+1)×D1+2×h1×P1+2×(h1+1)×D1计算,
如果保护资源类型是共享,
按式PST1=F1+n1×P1+(n1+1)×D1+2×h1×P1+2×(h1+1)×D1+(h1+1)×X1计算;
其中:D1为节点消息处理时间,P1为物理链路传播延时,X1为OXC配置时间,F1为故障探测时间,n1为发生故障物理链路源节点到光路源节点的跳数,h1为保护光路的跳数。
根据式
Figure BDA0000058308020000021
计算WDM层的光路故障恢复的效用;
其中,U1为WDM层的光路故障恢复的效用;α+β=1;F为一个常量,满足F<F1
步骤(3):计算IP层的光路故障恢复的效用,具体步骤如下:
步骤(3.1)计算IP层保护的工作资源:
列出该光路承载的所有工作LSP;通过计算该LSP经过的物理链路的跳数与其承载的业务的带宽的乘积得出其占用的物理带宽。对所有工作LSP占用的物理带宽进行求和得到该条光路采用IP层恢复时的工作资源。
计算IP层保护的保护资源:
保护资源专用时,保护资源等于该光路承载的所有业务的保护LSP占用的物理带宽的总和。
保护资源共享时,需要考虑某条逻辑链路上多个保护LSP共享带宽的情况。计算保护资源的步骤如下:
1)列出该光路承载业务的保护LSP经过的各逻辑链路;
2)如果有多条上述保护LSP经过同一逻辑链路,那么根据以下逻辑链路保护资源共享策略计算这些保护LSP共享此逻辑链路时需要占用的实际带宽:
令Rl为所有保护LSP经过逻辑链路l的请求集合;Er为请求r的工作LSP经过的物理链路的集合;保护LSP经过l的工作LSP所经过的物理链路构成l的所保护物理链路集合
Figure BDA0000058308020000022
为工作LSP经过物理链路e,保护LSP经过逻辑链路l的请求集合;对于任意e∈A1,都记录了保护该物理链路需要分配的带宽数br为业务r的请求带宽。
每当为一个新业务请求建立保护LSP时,如果该保护LSP经过逻辑链路l,那么首先列出其工作LSP经过的各逻辑链路列出来,然后再依次列出各逻辑链路经过的物理链路。这些物理链路间可能有重复,去掉重复的物理链路,每条物理链路只保留一条,构成集合A2
对于任意的e∈A2,如果
Figure BDA0000058308020000031
,那么将e添加到A1中,同时将令
Figure BDA0000058308020000032
br为新业务的请求带宽;如果e∈A1,令
Figure BDA0000058308020000033
该逻辑链路分配的保护资源带宽
Figure BDA0000058308020000034
如果l上没有足够的空闲带宽,则系统出现资源分配错误,随机选择在WDM层或IP层来恢复该光路上承载的业务,方法结束。
3)对于每一条逻辑链路,计算其占用的实际带宽与其物理跳数的乘积作为该逻辑链路的保护资源使用量;
4)对上步中计算出的各保护资源使用量求和,得出IP层保护的保护资源;
工作资源与保护资源的比值就是IP层保护资源使用率RUR2
步骤(3.2)根据保护资源类型计算IP层故障恢复时间;
如果保护资源类型是专用,对于某条LSPi其保护切换时间按式PSTi=F2+n2×P2+(n2+1)×D2+2×h2×P2+2×(h2+1)×D2计算,
如果保护资源类型是共享,需要考虑路由器节点标签分配的时间按式PSTi=F2+n2×P2+(n2+1)×D2+2×h2×P2+2×(h2+1)×D2+(h2+1)×X2计算;
其中:D2为路由器节点消息处理时间,P2为逻辑链路传播延时,X2为节点标签分配时间,F2为故障探测时间,n2为故障逻辑链路源点到业务源点的跳数,h2为保护LSP的跳数;
该光路在IP层恢复的保护切换时间为经过该光路的所有工作LSP的保护切换时间的最大值:PST2=max{PSTi}
步骤(3.3)根据式
Figure BDA0000058308020000035
计算IP层光路故障恢复效用;
其中,U2为IP层光路故障恢复效用;α+β=1;F为一个常量,与计算U1的公式中的相同,满足F<F2
步骤(4):比较WDM层故障恢复效用和IP层故障恢复效用:
如果WDM层故障恢复效用U1大于IP层故障恢复效用U2,则在WDM层恢复该光路上承载的业务;
如果WDM层故障恢复效用U1小于IP层故障恢复效用U2,则在IP层恢复该光路上承载的业务;
如果WDM层故障恢复效用U1等于IP层故障恢复效用U2,则随机选择在WDM层或IP层来恢复该光路上承载的业务;
机制结束。
本发明的WDM光网络中的基于效用的层间协调方法,提出了一种WDM光网络中的基于效用的层间协调机制,来实现当发生故障时决定各层的故障恢复顺序;综合考虑故障恢复时间和保护资源使用率,设计了一种基于效用的均衡故障恢复时间和保护资源使用率的层间协调机制,动态的对故障恢复进行评估和决策,能够较好的利用WDM层恢复和IP层恢复的优点,降低故障恢复时间和提高保护资源使用率。
附图说明
图1为网络结构由多层重叠向两层演进的示意图;
图2为重叠模型的示意图;
图3为对等模型的示意图;
图4为物理拓扑举例(物理拓扑N)的示意图;
图5为物理拓扑N对应的波长分层图(波长分层图G)的示意图;
图6为网络模型的示意图;
图7为网络节点的示意图;
图8为波长分层图;
图9为基本的多层辅助图;
图10为添加了接纳链路后的多层辅助图;
图11为逻辑链路保护资源共享策略。
具体实施方式
下面结合附图对本发明的WDM光网络中的基于效用的层间协调方法做进一步详细描述。
一、光网络基本平台
1 IP over WDM网络概述及其关键技术
1.1WDM技术
移动业务的持续高速增长,3G新兴业务蓄势待发,远程教育、电视会议、视频点播、电子商务等互联网业务的蓬勃发展,使得数据通信业务量呈爆炸性增长。爆炸性增长的业务需求对通信系统的容量、功能和性能提出了新的要求。
增加通信系统带宽的最简单方法是铺设更多的光纤,但铺设光纤代价昂贵,且受自然环境等物理条件的限制,可扩展性差。另外一种方法是采用时分复用(Time Division Multiplexing,TDM)技术,它提高了传输比特率,但单根光纤的传输容量仍是有限的,不能有效的利用光纤带宽。在这种背景下,波分复用(Wavelength Division Multiplexing,WDM)技术应运而生。波分复用是一种在同一根光纤中传输多个不同波长光载波信号的技术。在发送端通过复用器(Multiplexer)将不同波长的光载波信号汇合在一起,放到一条光纤中进行传输;在接收端通过解复用器将不同波长的光载波信号分离开,经由光接收机转换为原信号。光纤中各波长独立传输,互不影响,极大的提高了光纤的传输容量,使波分复用成为最佳的网络扩容方式。随着光器件成本的降低,以及DQPSK、DP-QPSK等调制技术、电子色散补偿、超级带外FEC编码等新技术的突破和成熟,单波长40Gbit/s,传输链路容量1.6Tbit/s等系统已经商用。日本NEC和法国阿尔卡特公司分别在100km距离上实现了总量为10.9Tbit/s(273×40Gbit/s)和总量为10.2Tbit/s(256×40Gbit/s)的传输容量最新世界纪录。
传统的点到点WDM系统结构采用简单的线性方式,以波长通路方式扩容,可以提供大量的原始带宽,它需要在网络节点处引入大容量的灵活光节点设备才能转化为实际组网可以灵活应用的带宽,实现WDM层互联,构筑光传送网(Optical Transport Network,OTN)。这类光节点设备主要包括可重配置的光分叉复用器(Optical Add-Drop Multiplexer,OADM)和光交叉连接(Optical Cross Connect,OXC)。通过在网络中间节点处引入OADM,可以在本地插入或下路一组选择的波长,灵活的上下业务量。随着WDM网络朝网状网的方向发展,需要在网络枢纽节点处实现更大粒度,包括波长、波带,乃至光纤粒度上的处理光信号,在枢纽节点处引入OXC成为必要。其主要完成在波长、波带以及光纤级别的连接、分叉、保护和恢复等功能。
按应用类型,OXC可分为光纤交叉连接(Fiber Cross Connect,FXC)、波长选择交叉连接(Wavelength Selective Cross Connect,WSXC)和波长交换交叉连接(Wavelength Interchange Cross Connect,WIXC)。FXC将一根输入光纤上的所有波长一次性交换到任意一根输出光纤上;WSXC将一个输入光纤上的一个波长交换到任意一根输出光纤上的同一波长上;WIXC具有波长转换能力,可以将一根输入光纤上的一个波长交换到任意一根输出光纤上的任意一个波长上。按实现方式,OXC可分为采用电交叉矩阵的OXC(OEO-OXC、电OXC)和采用全光交叉矩阵的OXC(OOO-OXC、全光OXC)。电OXC通过光电转换将光信号转换为电信号,进行交叉连接处理后,再转换为光信号输出。全光OXC不需要进行光电转换,一切交叉均在WDM层进行。OADM和OXC只选择有本地业务的波长上下路,其他波长无阻碍的通过网络节点,称之为旁路。OADM和OXC具有灵活的可重构性,使得网络具有波长路由能力,建立端到端的波长通路(光路,lightpath)。随着OADM和OXC技术的不断进步,WDM光网络逐渐从线性、环形网朝着完全网状网发展。
虽然OXC具有灵活的组网能力,但是传统意义上的OXC只具有静态配置能力。近年来,IP业务逐渐成为网络通信的主要业务量,由于IP业务的不确定性和不可预见性,对网络带宽的动态配置要求越来越迫切,网络需要具有动态配置的能力,而传统的靠人工配置的方式耗时费力,容易出错,且不能及时配置,其缺点逐渐显现。WDM光网络要适应新业务的需求,必须能充分利用巨大的带宽容量,合理的分配业务,尽快的为业务建立连接,并且提供保护和恢复机制,同时还能根据业务的需求提供不同服务质量(Quality of Service,QoS)等级的服务。自动交换光网络(Automatic Switched Optical Network,ASON)[5,6]就是在这样的背景下产生的。它能自动的管理光网络的连接,这种具有独立控制平面的光网络称为智能光网络。
智能光网络能够自动的发现拓扑、资源和业务的变化;能够快速和动态的建立光连接,实现网络资源的动态分配;引入了基础网状网的保护恢复机制,能够采用更加灵活的方式为业务提供保护和恢复;能够提供更多新型的高速和增收业务,例如,超带宽业务和非标准带宽业务、按需带宽业务、动态虚拟环配置和端到端电路配置业务、虚拟光网络业务等。目前,国际电信联盟(ITU-T)、因特网工程任务组(IETF)、光互联网论坛(OIF)以及光域业务互联联盟(ODSI)等国际标准化组织正在积极的进行智能光网络领域相关标准的制定工作。
1.2网络模型
随着电视会议等业务发展,Internet业务逐渐多元化,IP业务成为主要的数据通信业务量。WDM光网络作为主导传送网,提供了巨大的传输容量。IP与WDM的融合成为未来网络发展的趋势。传输网络的互联模型也逐渐由传统的IP over ATM over SDH/SONET over WDM多层重叠结构向IP over WDM两层结构发展,如图1所示。在多层重叠的网络结构中,IP层用来提供业务,ATM层为业务连接提供服务质量(Quality of Service,QoS)保证,SDH/SONET层利用其保护环机制为网络提供保护和恢复机制,WDM层提供巨大的传输带宽。但是,多层重叠网络结构中,ATM的信元机制带来了较大的额外开销,降低了带宽传输效率。随着WDM光网络由环网向网状网发展,虽然SDH/SONET保护机制快速有效,但是其保护成本较高,SDH/SONET的保护机制已不再适用。为了降低网络运营成本,提高带宽资源利用率,ATM层和SDH/SONET层逐渐消失,传输网络最终演变为IP overWDM的两层网络结构,即IP业务直接在WDM光网络上进行传输。
在IP over WDM网络中,有三种控制模型,分别为重叠模型、对等模型和扩展模型。
(1)重叠模型
重叠模型又称客户-服务器模型,由ITU-T提出。如图2所示,在该模型中IP层和WDM层是相互独立的,有各自的控制平面,运行不同的路由协议,路由协议间不交换网络拓扑等路由信息。IP层和WDM层通过用户-网络接口(User to Network Interface,UNI)联系在一起,WDM层由子网构成,各子网间通过网络-网络接口(Network to Network Interface,NNI)互联。该模型可以实现有效的子网划分,方便各子网的控制和升级等。IP层只能看到WDM层中边缘设备间建立的光路,在该模型中,WDM层网络的内部结构对IP层透明。IP层通过UNI向WDM层提出业务传输请求,由WDM层负责光路的控制,网络的智能完全反映在WDM层。这种模型最大限度的实现了WDM层和IP层的控制分离。重叠模型的缺点在于WDM层边缘设备间建立的光路,反映为IP层的逻辑链路,而这些链路的链路状态公告会造成很大的网络开销。
(2)对等模型
对等模型是由IETF提出的。如图3所示,在该模型中,IP层和WDM层是对等的,归统一的控制平面管理。IETF将该控制平面命名为通用多协议标记交换(Generalized Multi-protocol Label Switching,GMPLS)。在对等模型中,IP路由器和OXC均被称为标记交换路由器(Label Switching Router,LSR),它们运行相同的路由和信令协议,彼此间交换链路状态等路由信息,IP层可以看到WDM层的内部结构,WDM层不再对IP层透明。在对等模型中,由于IP层和WDM层是对等的,各LSR间需要交换大量的链路状态和信令控制信息,造成很大的网络开销。WDM网络的内部结构不再对用户透明,不利于网络的稳定,也不利于WDM网络中子网的划分;IP层和WDM层故障恢复机制,需要统一协调,控制复杂。
(3)扩展模型
在扩展模型中,IP层和WDM层是相互独立的,运行独立的路由协议,但是它们之间可以通过UNI交换某些可达性信息。例如为WDM网络中的OXC分配IP地址,然后通过WDM层路由协议提供给IP层使用,实现自动寻路等。这种模型的关键问题是如何在UNI处交换可达性信息。
本发明主要针对对等模型。
1.3 IP over WDM网络关键技术
在IP over WDM网络中,IP层作为业务提供层,WDM层作为传送层,其关键问题是如何实现IP层和WDM层的无缝连接,IETF提出的GMPLS提供了一个良好的解决思路。另外,IP接纳的低速业务带宽粒度一般小于单波长容量,所以在IP over WDM中如何有效的将业务汇聚,然后用WDM层承载这些低速业务,并为业务提供相应的保护/恢复机制是亟待解决的问题。为了解决上述问题,目前主要提出了GMPLS、业务量疏导、与业务量疏导密切相关的路由和波长分配及网络生存性等关键技术。
1.3.1GMPLS技术
GMPLS是多协议标记交换(MPLS)向WDM层发展的产物,它有效地实现了IP层和WDM光网络的无缝融合。GMPLS继承了MPLS中流量工程等几乎所有优秀特性,同时对MPLS协议进行了扩展。GMPLS专注于控制平面,支持分组交换、时分交换、波长交换和空分交换(光纤交换)等多种资源粒度的交换。GMPLS还对MPLS中原有的信令和路由协议进行了补充和修改,并设计了全新的链路管理协议(Link Management protocol,LMP)。
(1)通用多协议标签
GMPLS定义了五种接口类型,分别是:(a)分组交换接口(Packet Switch Capable,PSC):进行分组交换,通过识别分组边界,根据分组头部的信息转发分组。(b)第二层交换接口(Layer2 Switch Capable,L2SC):进行信元交换,通过识别通过的边界,根据信元头部的信息转发信元。(c)时隙交换接口(Time Division Multiplexing Capable,TDMC):根据TDM时隙进行业务转发。(d)波长交换接口(Lambda Switch Capable,LSC):根据承载业务的光波长或光波段转发业务。(e)光纤交换接口(Fiber Switch Capable,FSC):根据光纤在物理空间中的实际位置进行转发。GMPLS对MPLS中的标签作了扩展,使其对TDM时隙、波长、波带、光纤等也能进行标记。GMPLS对IP数据交换、TDM电路交换和WDM光交换进行统一标记。分组交换标签继续采用MPLS中的标签,对电路交换和光交换标签重新进行了定义,包括请求标签、通用标签、建议标签、设定标签等。其中,请求标签用于标记交换路径(Label Switching Path,LSP)的建立;通用标签用于建立LSP后,指示沿LSP传输的业务情况;建议标签用于配置LSP时,避免反向配置造成的时延,快速建立光连接;设定标签用于限制下游节点选择标签的范围。
(2)通用标记交换路径
由于GMPLS支持不同资源粒度的交换,在建立LSP时为了避免带宽资源的浪费,需要将低等级(PSC、L2SC、TDMC、LSC、FSC等级依次降低)的LSP嵌套到高等级的LSP中,又称为LSP分级。LSP分级技术是通过GMPLS标记栈实现的,允许入口相同的低等级LSP汇聚后,透明的穿过高等级的LSP,然后在远端分离。使用LSP分级技术要求每条LSP起始和结束的设备接口类型相同。相同接口是指某种等级的接口可以使用某种技术复用多个LSP。MPLS中,建立双向LSP必须建立两条方向相反的单向LSP,其建立时延长、信令开销大。GMPLS对其做了改进,能够建立双向LSP。建立双向LSP时要求两个方向的LSP具有相同的流量工程参数,包括资源需求、保护/恢复机制等。GMPLS建立双向LSP时,上行和下行的通路采用同一信令消息,两条LSP同时建立,有效的降低了LSP建立的时延,减小了信令开销。
(3)链路管理
在光网络中,两个相邻OXC之间平行光纤链路的数量以及每条光纤中复用的波长数是巨大的,如果分别为其提供广播机制,会造成链路维护和广播时传输的信息量非常大,同时为每条光纤、每个波长提供一个IP地址是不现实的。为此,GMPLS采用了链路绑定和无编号链路的方式处理这个问题。如果并行链路属于相同的链路组,那么可以将这些链路进行绑定,构成一个条捆绑链路。相同的链路组是指属于相同的共享风险链路组(Shared Risk Link Group,SRLG)编号、相同的链路编码类型、相同的保护/恢复类型。这样大大降低了链路状态数据库的大小,降低了广播带来的信令开销。无编号链路是指,采用(路由器ID,链路编号)二元组的方式标识链路的地址,以此来代替使用IP地址标识的方式。GMPLS制定了链路管理协议,负责两相邻节点间控制通道管理、链路摘要、链路验证、故障管理等功能,其中链路验证和故障管理是可选的。
(4)路由和信令协议
GMPLS采用通用多协议标签建立LSP时,需要考虑带宽和保护/恢复能力的因素,这要求节点需要记录链路状态信息,为此GMPLS将MPLS流量工程所定义的两个信令协议RSVP和LDP分别扩展为RSVP-TE和CR-LDP,通过信令交换LSP的带宽、类型、保护/恢复机制等参数。路由选择既可以采用显示路由方法,也可以采用多跳的方法。另外,GMPLS还将用于域内流量工程控制的路由协议OSPF和IS-IS分别扩展为OSPF-TE和IS-IS-TE。GMPLS中链路绑定、链路管理协议等链路管理机制很好的减少了路由和信令协议中维护链路状态信息带来的开销。
1.3.2路由与波长分配
给定一组连接,为每一个连接创建一条光路并分配一个波长的过程称为路由与波长分配(Route and Wavelength Assignment,RWA)。连接请求可以分为两种:静态连接请求和动态连接请求。对于静态业务,业务连接请求的集合是预先给定的,其目标是为这些连接请求建立光路,并在全局范围内最小化所用网络资源,例如波长数、光纤数等,即给定固定数目的波长数,为尽可能多的连接请求建立光路。静态路由与波长分配问题被称为静态光路建立(Static Lightpath Establishment,SLE)问题。对于动态业务,当连接请求到达时,为其建立光路,当业务离去后,撤销光路。其目标是为动态到达的业务建立光路,并尽可能的降低阻塞率,或最大化同一时刻网络中建立光路的数量。动态路由与波长分配被称为动态光路建立(Dynamic Lightpath Establishment,DLE)问题。
目前将路由和波长分配问题分解为路由选择和波长分配两个子问题。先找到一条最佳路由(例如最短路径),然后检查是否有可用的波长供分配。如果因为波长连续性的约束,没有波长能够分配给该路由,那么再计算次优的路由,继续重复上述过程,直到找到一条满足波长连续性约束的路由,否则阻塞连接请求。在找到该路由之前,方法可能要迭代很多次,针对这个问题,提出了波长分层图的概念,将路由和波长分配转换为图论的问题,同时解决路由选择和波长分配的问题。
定义网络拓扑为N(R,A,L,W),其中R是波长路由器节点的集合,A是访问节点的集合,L是无向边,W是每条物理链路中的可用波长数。每一个访问节点都绑定在一个波长路由器上并且提供电光变换以支持电交换。每一条边由两条反向单向光纤组成,每一条光纤上可以承载|W|个波长信道。定义波长分层图模型为G(V,E),它是一个有向图。根据物理拓扑N得到波长分层图的过程如下:N中每个节点i∈R在G中复制|W|次,这些节点分别标识为
Figure BDA0000058308020000091
如果链路l∈L连接路由器i和路由器j,其中i,j∈R,那么对于任意w∈W,
Figure BDA0000058308020000092
通过一条有向边
Figure BDA0000058308020000093
连接在一起,其中,
Figure BDA0000058308020000094
假设访问节点a∈A连接到波长路由器节点r∈R上。在G中,为每个访问节点a创建两个节点,一个代表业务生成部分(源),另外一个代表业务终结部分(目的)。这两个节点分别标识为
Figure BDA0000058308020000095
向G中添加
Figure BDA0000058308020000096
到节点
Figure BDA0000058308020000097
以及
Figure BDA0000058308020000098
的有向边。因此G中节点的个数|V|=|R|×|W|+2×|A|;有向边的条数|E|=2×|L|×|W|。例如,图4所示物理拓扑对应的波长分层图如图5所示。其中,每条波长路由器间的链路是由两条反向单向光纤组成的,每条光纤中波长数为2。通过波长分层图,路由和波长分配问题就变得相对简单了。只要在某个波长平面上找到了连接源和目的的路由,该路由就一定能够满足波长连续性约束。
1.3.3业务量疏导
WDM光网络提供了巨大的传输容量,单波长容量40Gbit/s的系统已经商用。但在实际应用中,每个业务的请求带宽和单波长容量相比相对较低,例如OC-12、OC-48、OC-192。所以为每个低速业务请求分配一个波长会造成大量的带宽浪费。为每个请求都创建一条光路,也会增加网络的电交换成本(例如需要部署更多的光收发器),增加网络的成本。最重要的是,现实网络中的可用波长数要比到达的低速业务数少的多。所以,业务量疏导是WDM光网络必须具有的基本功能,以增加网络吞吐量,提高波长资源利用率,降低网络成本。WDM光网络中业务量疏导就是将低速业务汇聚到一条高速光路上进行传输的技术,其目标是最小化网络成本或最大化网络吞吐量。
在WDM光网络中,业务量疏导需要解决三方面的问题:(1)建立光路,(2)为光路分配波长以满足波长连续性,(3)在逻辑拓扑上路由低速业务。根据业务是否预先给定,业务量疏导可以分为两类:静态业务量疏导和动态业务量疏导。对于静态业务量疏导,这三个问题可以采用整形线性规划(Integer Linear Programming,ILP)优化的方法一起解决。但对于大型网络,问题求解的复杂度上升,一般采用启发式算法分别解决三个问题。在动态业务量疏导中,当业务连接请求到达时,首先在逻辑拓扑上为其寻找路由,如果目的不可达或已有光路上的带宽已用完,那么创建新的光路承载新业务连接。
1.3.4网络生存性
网络生存性是指发生故障后,网络能够提供不间断服务的能力。随着WDM技术的发展,单光纤内能复用成百上千个波长,每个波长的容量也达到几十甚至几百Gbit/s,一旦发生网络故障(如链路失效等),会导致Tbit/s数量级的业务失效,造成严重影响。因此WDM光网络的生存性成为人们日益关注的重要问题。
WDM层生存性技术可以分为两类:保护(Protection)和恢复(Restoration)。保护是指业务建立连接时预先为业务预留保护资源,一旦发生故障,业务转由保护资源承载。保护具有较短的保护切换时间,但由于需要预先预留保护资源,而未发生故障时,保护资源是空闲的,所以资源利用率低。恢复是指不预先为业务预留保护资源,当故障发生时,再根据当时的网络资源利用状况,采用重路由的方式,动态的寻找空闲资源承载受影响的业务。恢复具有较高的资源利用率,但是由于是在故障发生后再动态的寻找可用资源承载业务,所以保护切换时间比较长,而且当网络负载较重,没有足够的可用资源时,会导致故障恢复失败。
根据保护资源是否共享,保护机制又分为两类:专用保护(Dedicated Protection)和共享保护(Shared Protection)。在专用保护中,为某条工作路预留的保护资源是独占的,其它保护路不能再使用。在共享保护中,如果两条工作路不会同时发生故障(如两条工作路是物理链路分离的),那么它们可以共享保护资源。从资源利用率的角度看,共享保护要比专用保护资源利用率高,网络的业务强度越高,共享保护的优势越明显。在保护切换时间方面,专用保护要比共享保护短。这是因为专用保护中,保护资源是独占的,可以预先配置,一旦发生故障,就把受影响业务切换到保护资源上;而共享保护中,不能预先判断哪些业务失效,不能提前配置,只有当故障发生后,再通过一定的信令机制配置保护路上的OXC等器件,因此其保护切换时间较长。
根据保护的粒度,保护机制又可分为通路保护、链路保护和分段保护。通路保护是指为工作路提供一条端到端的保护路。链路保护是指为工作路上的每一条链路计算一条保护路,一旦发生故障,故障链路两端负责业务的切换,无需源宿节点参与。分段保护中,先将工作路分段,再为每一段计算一条保护路,段首段尾负责故障恢复。相比而言,通路保护具有较高的资源利用率,链路保护的故障恢复无需源宿节点参与,具有较快的保护切换时间,分段保护是试图在二者间寻求平衡。
作为生存性技术中的一种,保护技术具有较快的保护切换时间,可以满足大量实时业务的要求,所以本发明主要涉及保护技术。
1.3.5 IP over WDM网络中多层生存性机制
多层生存性机制可以分为两类,独立的多层生存性机制和层间协调的多层生存性机制。
独立的多层生存性机制包括两方面的内容:(1)在WDM层恢复故障,(2)在IP层恢复故障。WDM层恢复故障,多为波长粒度或波带粒度,在最靠近故障源的位置恢复故障,需要恢复的故障路径数量少,所以保护切换动作较少,可以避免复杂的恢复动作,减少信令开销。但是,WDM层恢复不能恢复来自IP层诸如路由器节点失效的故障,不能保证百分百的恢复故障;IP层恢复,恢复粒度细,可以区分业务等级,为不同等级的业务提供不同的恢复策略,恢复方法灵活。但是WDM层故障,例如光纤断裂会导致大量的IP层链路故障,在IP层恢复会产生很多恢复动作,控制复杂,信令开销很大。另外,由于IP层也能够检测到WDM层的故障,但因缺乏层间协调机制,恢复动作不能协调一致,会带来资源利用低和竞争等问题。
2网络模型
网络模型可描述为有向连通图Gp(V,L,W),如图6所示。其中V,L,W分别代表网络的节点集合、物理链路集合和每条物理链路的波长集合,|V|,|L|,|W|分别表示网络的节点数、物理链路数和每条物理链路中波长数。
2.1网络节点
网络节点由整合在一起的OXC和IP路由器组成。其中,IP路由器负责接纳业务请求。OXC由波长交换矩阵、低速业务疏导矩阵和一组可调谐光收发器组成(如图7所示)。输入光纤中的波长经解复用后,可以直接通过波长交换矩阵交换到输出光纤相应的波长上去,或者交换至光接受器转变成电信号进入低速疏导矩阵。属于本地的业务则通过低速业务数据流端口交由IP路由器处理,非本地业务通过光发送器转换为光信号,重新进入波长交换矩阵,交换至相应光纤的相应波长上去。也就是说,输入光纤中的某波长通道中不含有本地业务则可以直接通过波长交换矩阵到输出光纤,即旁路掉;具有业务上/下的波长通道通过光收发器下到电域内进行处理。每个网络节点都维护了全局的链路状态信息,包括各物理链路上波长的使用情况,各光路上带宽的使用情况等。
另外,本发明考虑的约束条件主要有:光收发器数约束、稀疏部分波长转换下的波长连续性约束、稀疏部分分光约束等。
(1)光收发器数
每个网络节点都部署了一定数目的光发送器和光接收器,本发明假设同一节点的光发送器和光接收器数目相同。
(2)波长转换能力
根据节点是否具有波长转换能力,可以将节点分为三类:无波长转换能力节点、完全波长转换能力节点、部分波长转换能力节点。
无波长转换能力是指,输入光纤中的波长通道通过波长交换矩阵只能交换到输出光纤中相同波长的波长通道上去。
完全波长转换能力是指,输入光纤中的波长通道通过波长交换矩阵能够交换到输出光纤中任意波长的波长通道上去。
部分波长转换能力,输入光纤中的波长通道通过波长交换矩阵能够交换到输出光纤中与该波长相邻的一定范围内波长的波长通道上去。例如,某节点具有部分波长转换能力,且其波长转换范围为2,那么波长λ4可以变换到波长λ2、λ3、λ5和λ6上去。具有部分波长转换能力的节点的波长转换范围可能也不相同。
本发明中,为了描述方便,统一用波长转换范围的概念描述节点的波长转换能力,将不具有波长转换能力的节点标志为波长转换范围为0,而具有完全波长转换能力的节点波长转换范围为|W|。
(3)分光能力
在WDM光网络中,若要使节点具有多播能力,需要在节点部署分光器。按照分光能力的强弱,网络节点可以分为三类:无分光能力MI(Multicast Incapable)、完全分光能力、部分分光能力。
无分光能力是指,节点只能将一个输入信号送入一个输出端口,如果它不是多播目的节点,那么只能作为多播树的中间非分叉节点;如果它是多播目的节点,那么它只能作为多播树的叶子节点。
完全分光能力是指,节点可以将输入信号送入任意多个输出端口。
部分分光能力是指,节点可以将输入信号送入一定数目的输出端口。
后两种节点统称为MC(Multicast Capable)节点,既可以作为多播树的目的节点,也可以作为光树的中间节点。当作为中间分叉节点时,对于完全分光能力的节点,其出度没有限制;对于部分分光能力的节点,如果其不是目的节点,那么其出度不能超过其最大可分光数;如果同时作为目的节点,需要分出一路光信号在本地下路,其出度不能超过其最大可分光数减一。
同波长转换能力一样,为了描述方便,本发明统一用最大可分光数描述节点的分光能力,将不具有分光能力的节点的最大可分光数设为1,而具有完全分光的节点波长转换范围为节点的度。
既有波长转换能力,又有分光能力的节点有两种节点结构:(1)先进行波长转换,后进行分光,(2)先进行分光,后进行波长转换。第一种节点结构要简单些,其分出的两个波长必须具有相同的波长,具有一定的局限性。第二种节点结构更加灵活,是将来的发展的方向,其每个分光出来的波长,都可以进行波长转换,因此对波长转换器的数量要求比较多。另外,从方法的角度看,设计基于第一种节点结构的方法其实是第二种节点结构的一个特殊情况(分光后变换到相同的波长上),所以本发明采用第二种节点结构。
2.2网络链路
两个网络节点间由一对传输方向相反的单向光纤连接。两条光纤具有相同的波长集合,且波长数均为|W|。两条光纤是物理链路分离的,并且在波长的使用,以及数据的传输上相互独立,互不影响。
2.3基本结构
对于给定的物理拓扑Gp(V,L,W),按照以下步骤构造多层辅助图。
(1)将每个节点vi∈V,i=1,2,...,|V|,复制|W|遍,分别标记为称为波长节点。由同一节点复制出的所有波长节点具有相同的ID,均为其物理节点ID。如果从节点vi到节点vj有一条有向物理链路lij,那么对于所有的w=1,2,...|W|,从波长节点
Figure BDA0000058308020000132
到波长节点
Figure BDA0000058308020000133
增加一条链路
Figure BDA0000058308020000134
称为波长链路,每条波长链路对应于其所在物理链路中一个波长。这样便构造出了波长分层图,其中每个波长对应的波长节点和波长链路构成的拓扑,称为波长平面。例如,根据图6中物理拓扑构造的波长分层图如图8所示(假设每条物理链路中波长数为2)。
(2)将每个节点vi∈V,i=1,2,...,|V|复制一遍,标识为v′i,称为逻辑节点。逻辑节点用于接收和结束业务连接,可以理解为IP路由器节点。如果在WDM层,有一条从节点vi到节点vj的光路,那么增加一条从节点v′i到节点v′j的虚拟的链路,称为逻辑链路(后文中逻辑链路即光路),逻辑链路的带宽为一个波长的容量(假设所有光路都是单波长通道)。由逻辑节点和逻辑链路构成的拓扑称为逻辑拓扑。将逻辑拓扑和波长分层图综合在一起便构成了基本的多层辅助图。还是以图6的拓扑为例,假设以波长λ2创建了一条从节点v2到节点v4的光路,光路经过中间节点v3。将波长分层图上
Figure BDA0000058308020000141
以及的波长链路标记为已使用,在逻辑拓扑上,增加v′2到v′4的逻辑链路,得到的多层辅助图如图9所示。
2.4光收发器数约束
在对业务进行业务量疏导的时候,有时利用已有的逻辑链路找不到可达目的节点的路由,这时需要新建光路。每次新建光路时,光路源节点需要消耗一个光发送器,目的节点消耗一个光接收器。逻辑链路作为业务的接纳节点,需要记录可用光发送器数和可用光接收器数。源、目的节点只要有一个不满足要求,光路就不能建立。为了将光收发器数的数字化约束,转化为图论的内容,采用接纳链路的概念描述光收发器数约束。对于任意节点vi∈V,i=1,2,...,|V|,增加v′i
Figure BDA0000058308020000143
以及
Figure BDA0000058308020000144
到v′x的接纳链路。
以图9为例,假设每个节点处光接收器数和光发送器数均为2,由于v2到v4新建了一条光路,所以v2处可用光发送器数减一,v4处可用光接收器数减一。那么得到的多层辅助图如图10所示,其中逻辑节点旁的数字,前面的表示可用光发送器数,后面的表示可用光接收器数。
2.5波长转换能力约束
本发明考虑稀疏部分波长转换能力约束,该约束可以通过完善多层辅助图解决。
对于任意节点vi∈V,其波长转换范围为r,那么增加
Figure BDA0000058308020000145
w1=1,2,...,|W|到
Figure BDA0000058308020000146
,w2=max{1,w1-r},...w1-1,w1+1,...min{|W|,w1+r}的虚链路,称为波长转换链路。
引入波长转换能力后,光路和光树的结构有所改变。
(1)光路
一般意义上的光路为了满足波长连续性约束,要求光路经过的各波长链路具有相同的波长,即光路是由一组具有相同波长的波长链路组成的。在新建一条光路时只需要在某个波长平面上找到链接源、目的节点的路由即可。在考虑波长转换能力后,光路经过的各波长链路可以使用不同的波长,在新建一条光路时,就不再是在某个波长平面上路由,而是在多层辅助图上路由。此时光路是由波长链路和波长转换链路组成的有序集合。
(2)光树
引入波长变换后,光树上的每个节点都是波长节点,父节点到孩子节点的链路可能是波长链路或波长转换链路。
3基于效用的层间协调机制
3.1问题分析
层间协调机制的主要作用是当发生故障时,决定各层的故障恢复顺序。WDM层恢复的优点是故障恢复时间短,缺点是使用的保护资源多;IP层恢复的优点是使用的保护资源少,缺点是故障恢复时间长,带来的恢复动作较多,信令开销比较大。本发明综合考虑故障恢复时间和保护资源使用率,设计了一种基于效用的均衡故障恢复时间和保护资源使用率的层间协调方法。
3.2保护资源使用率
保护资源使用率(Resource Utilization Ratio,RUR)是指保护资源所保护的工作资源与该保护资源的比值,即单位保护资源保护的工作资源数。
3.2.1WDM层保护资源使用率
一条光路的保护资源是指其保护光路占用的带宽,是保护光路的跳数与单位波长带宽的乘积。其工作资源是指其承载的所有业务的带宽的和与该光路跳数的乘积。计算方法如下:
RUR 1 = h w × Σ b r i h p × B - - - ( 3.1 )
其中,hp为其保护光路的跳数,B为单位波长带宽,hw为工作光路的跳数,
Figure BDA0000058308020000152
为该工作光路承载的第i个业务的带宽。
3.2.2IP层保护资源使用率
当为一条光路采用IP层恢复时,其工作资源是指该光路承载的所有工作LSP(标记交换路径)占用物理带宽的总和。一条工作LSP占用的物理带宽是指该LSP经过的物理链路的跳数与其承载的业务的带宽的乘积。
例如,某工作LSP经过2条逻辑链路,其对应光路经过的物理链路分别为e1,e2,e3和e4,e5,e2,e6,那么其经过的物理链路的跳数为6(不去掉重复的物理链路)。
保护资源专用时,保护资源是指该光路承载的所有业务的保护LSP占用的物理带宽的总和。
保护资源共享时,需要考虑某条逻辑链路上多个保护LSP共享带宽的情况。
计算保护资源的步骤如下:
步骤1列出该光路承载业务的保护LSP经过的各逻辑链路。
步骤2如果有多条上述保护LSP经过同一逻辑链路,那么随后介绍的逻辑链路保护资源共享策略,计算这些保护LSP共享此逻辑链路时需要占用的实际带宽。
步骤3对于每一条逻辑链路,计算其占用的实际带宽与其物理跳数的乘积作为该逻辑链路的保护资源使用量。
步骤4对步骤3中计算出的各保护资源使用量求和。
根据以上步骤计算出该IP层保护的保护资源,进而保护资源所保护的工作资源与该保护资源的比值就是IP层保护资源使用率RUR2
逻辑链路保护资源共享策略如下:
令Rl为所有保护LSP经过逻辑链路l的请求集合;Er为请求r的工作LSP经过的物理链路的集合;保护LSP经过l的工作LSP所经过的物理链路构成l的所保护物理链路集合
Figure BDA0000058308020000161
为工作LSP经过物理链路e,保护LSP经过逻辑链路l的请求集合;对于任意e∈A1,都记录了保护该物理链路需要分配的带宽数br为业务r的请求带宽。
每当为一个新业务请求建立保护LSP时,如果该保护LSP经过逻辑链路l,那么首先列出其工作LSP经过的各逻辑链路列出来,然后再依次列出各逻辑链路经过的物理链路。这些物理链路间可能有重复,去掉重复的物理链路,每条物理链路只保留一条,构成集合A2
对于任意的e∈A2,如果
Figure BDA0000058308020000163
,那么将e添加到A1中,同时将令
Figure BDA0000058308020000164
br为新业务的请求带宽;如果e∈A1,令
Figure BDA0000058308020000165
该逻辑链路需要新分配的保护资源带宽
Figure BDA0000058308020000166
如果l上没有足够的空闲带宽,那么l不可用。
举例来说,请求r1,r2,r3依次到达,其申请带宽均为1个单位(例如OC-1),且为它们计算的保护LSP均经过l。如图11所示,为了清晰起见,图中所示工作LSP已去掉重复链路后的物理链路表示。假设逻辑链路l上原来的保护资源为0,那么逻辑链路l的保护资源的使用情况变化如下。
假设去掉重复物理链路后,r1工作LSP经过的物理链路集合为e1,e2,e3,e4,e5;r1工作LSP经过的物理链路集合为e2,e3,e6;r3工作LSP经过的物理链路集合为e2,e1,e7
步骤1:请求r1到达。
1.1:将e1,e2,e3,e4,e5添加到逻辑链路l的所保护物理链路集合A1中,将A1中各
Figure BDA0000058308020000171
均记为1。
1.2:将l的bp记为1。
步骤2:请求r2到达。
2.1:将e6添加到逻辑链路l的A1中,并将其对应的带宽更新为1。
2.2:将A1中e2,e3对应的带宽均增加1。当前A1中记录的物理链路为e1,e2,e3,e4,e5,e6,其相应的
Figure BDA0000058308020000172
依次为1、2、2、1、1、1。
2.3:将l的bp更新为当前的最大值2。
步骤3:请求r3到达。
3.1:将e7添加到逻辑链路l的A1中,并将其对应的带宽更新为1。
3.2:将A1中e1,e2对应的带宽均增加1。当前A1中记录的物理链路为e1,e2,e3,e4,e5,e6,e7,其相应的
Figure BDA0000058308020000173
依次为2、3、2、1、1、1、1。
3.3:将bp更新为当前的最大值3。
3.3故障恢复时间
故障恢复时间又称保护切换时间(Protection Switching Time,PST)是指从故障发生,到业务恢复成功的时间间隔。
3.3.1WDM层故障恢复时间
令节点消息处理时间为D1,物理链路传播延时P1,OXC配置时间X1,故障探测时间F1,n1为发生故障物理链路源节点到光路源节点的跳数,h1为保护光路的跳数。
在保护资源专用时,某条光路的保护切换时间:
PST1=F1+n1×P1+(n1+1)×D1+2×h1×P1+2×(h1+1)×D1    (3.2)
在保护资源共享时,由于保护光路不是预先创建好的,而只是分配了资源,是在发生了故障后,才动态配置OXC的波长交换矩阵,所以:
PST1=F1+n1×P1+(n1+1)×D1+2×h1×P1+2×(h1+1)×D1+(h1+1)×X1    (3.3)
3.3.2IP层故障恢复时间
令路由器节点消息处理时间D2,逻辑链路传播延时P2,节点标签分配时间X2,故障探测时间F2,n2为故障逻辑链路源点到业务源点的跳数,h2为保护LSP的跳数。由于是在电层处理,所以这里的D2,P2,X2,F2要比WDM层里相应的大得多。
在保护资源专用时,对于某条LSPi,其保护切换时间:
PSTi=F2+n2×P2+(n2+1)×D2+2×h2×P2+2×(h2+1)×D2    (3.4)
在保护资源共享时,由于保护LSP不是预先建立好的,而只是分配了带宽,所以需要考虑路由器节点标签分配的时间:
PSTi=F2+n2×P2+(n2+1)×D2+2×h2×P2+2×(h2+1)×D2+(h2+1)×X2    (3.5)
该光路在IP层恢复的保护切换时间为经过该光路的所有工作LSP的保护切换时间的最大值:
PST2=max{PSTi}    (3.6)
3.4协调策略
由于RUR是比率而PST是时间,难以直接比较,所以用F/(PST-F)先将PST也变为比率,然后将二者加权,定义光路恢复的效用
U = α × RUR + β × F PST - F - - - ( 3.7 )
其中,α+β=1;F为一个常量。
根据上式计算WDM层光路故障恢复效用U1和IP层光路故障恢复效用U2
U 1 = α × RUR 1 + β × F PST 1 - F - - - ( 3.8 )
U 2 = α × RUR 2 + β × F RST 2 - F - - - ( 3.9 )
二、本发明的WDM光网络中的基于效用的层间协调方法,包括如下步骤:
当一条物理链路发生故障时,对于经过该物理链路的每一条光路,进行如下层间协调:
步骤(1)、如果该光路未提供WDM层保护,则在IP层恢复该光路上承载的业务,机制结束。
步骤(2)、根据式3.1计算WDM层保护资源使用率,根据保护资源类型(专用或共享)按式3.2或式3.3计算WDM层故障恢复时间,然后根据式3.7、式3.8计算WDM层故障恢复效用。
步骤(3)、根据3.2.2节所述计算IP层保护资源使用率,根据保护资源类型(专用或共享)按式3.4或式3.5计算IP层故障恢复时间,然后根据式3.7、式3.9计算IP层故障恢复效用。
步骤(4)、比较WDM层故障恢复效用和IP层故障恢复效用,
如果WDM层故障恢复效用大于IP层故障恢复效用,则在WDM层恢复该光路上承载的业务;
如果WDM层故障恢复效用小于IP层故障恢复效用,则在IP层恢复该光路上承载的业务;
如果WDM层故障恢复效用等于IP层故障恢复效用,则随机选择在WDM层或IP层来恢复该光路上承载的业务;
机制结束。

Claims (1)

1.一种WDM光网络中的基于效用的层间协调方法,其特征在于:包括如下步骤:
当一条物理链路发生故障时,进行如下层间协调:
对于经过该物理链路的每一条光路:
步骤(1):如果该光路未提供WDM层保护,则在IP层恢复该光路上承载的业务,机制结束;
步骤(2):根据式
Figure FDA0000058308010000011
计算WDM层保护资源使用率RUR1
其中,hp为其保护光路的跳数,B为单位波长带宽,hw为工作光路的跳数,
Figure FDA0000058308010000012
为该工作光路承载的第i个业务的带宽;
根据保护资源类型计算WDM层故障恢复时间:
如果保护资源类型是专用,
按式PST1=F1+n1×P1+(n1+1)×D1+2×h1×P1+2×(h1+1)×D1计算,
如果保护资源类型是共享,
按式PST1=F1+n1×P1+(n1+1)×D1+2×h1×P1+2×(h1+1)×D1+(h1+1)×X1计算;
其中:D1为节点消息处理时间,P1为物理链路传播延时,X1为OXC配置时间,F1为故障探测时间,n1为发生故障物理链路源节点到光路源节点的跳数,h1为保护光路的跳数;
根据式
Figure FDA0000058308010000013
计算WDM层的光路故障恢复的效用;
其中,U1为WDM层的光路故障恢复的效用;α+β=1;F为一个常量,满足F<F1
步骤(3):计算IP层的光路故障恢复的效用,具体步骤如下:
步骤(3.1)计算IP层保护的工作资源:
列出该光路承载的所有工作LSP;通过计算该LSP经过的物理链路的跳数与其承载的业务的带宽的乘积得出其占用的物理带宽;对所有工作LSP占用的物理带宽进行求和得到该条光路采用IP层恢复时的工作资源;
计算IP层保护的保护资源:
保护资源专用时,保护资源等于该光路承载的所有业务的保护LSP占用的物理带宽的总和;
保护资源共享时,需要考虑某条逻辑链路上多个保护LSP共享带宽的情况;计算保护资源的步骤如下:
1)列出该光路承载业务的保护LSP经过的各逻辑链路;
2)如果有多条上述保护LSP经过同一逻辑链路,那么根据以下逻辑链路保护资源共享策略计算这些保护LSP共享此逻辑链路时需要占用的实际带宽:
令Rl为所有保护LSP经过逻辑链路l的请求集合;Er为请求r的工作LSP经过的物理链路的集合;保护LSP经过l的工作LSP所经过的物理链路构成l的所保护物理链路集合
Figure FDA0000058308010000021
为工作LSP经过物理链路e,保护LSP经过逻辑链路l的请求集合;对于任意e∈A1,都记录了保护该物理链路需要分配的带宽数
Figure FDA0000058308010000022
br为业务r的请求带宽;
每当为一个新业务请求建立保护LSP时,如果该保护LSP经过逻辑链路l,那么首先列出其工作LSP经过的各逻辑链路列出来,然后再依次列出各逻辑链路经过的物理链路;这些物理链路间可能有重复,去掉重复的物理链路,每条物理链路只保留一条,构成集合A2
对于任意的e∈A2,如果
Figure FDA0000058308010000023
,那么将e添加到A1中,同时将令
Figure FDA0000058308010000024
br为新业务的请求带宽;如果e∈A1,令
Figure FDA0000058308010000025
该逻辑链路分配的保护资源带宽
Figure FDA0000058308010000026
如果l上没有足够的空闲带宽,则系统出现资源分配错误,随机选择在WDM层或IP层来恢复该光路上承载的业务,方法结束;
3)对于每一条逻辑链路,计算其占用的实际带宽与其物理跳数的乘积作为该逻辑链路的保护资源使用量;
4)对上步中计算出的各保护资源使用量求和,得出IP层保护的保护资源;
工作资源与保护资源的比值就是IP层保护资源使用率RUR2
步骤(3.2)根据保护资源类型计算IP层故障恢复时间;
如果保护资源类型是专用,对于某条LSPi,其保护切换时间按式PSTi=F2+n2×P2+(n2+1)×D2+2×h2×P2+2×(h2+1)×D2计算,
如果保护资源类型是共享,需要考虑路由器节点标签分配的时间按式PSTi=F2+n2×P2+(n2+1)×D2+2×h2×P2+2×(h2+1)×D2+(h2+1)×X2计算;
其中:D2为路由器节点消息处理时间,P2为逻辑链路传播延时,X2为节点标签分配时间,F2为故障探测时间,n2为故障逻辑链路源点到业务源点的跳数,h2为保护LSP的跳数;
该光路在IP层恢复的保护切换时间为经过该光路的所有工作LSP的保护切换时间的最大值:PST2=max{PSTi}
步骤(3.3)根据式
Figure FDA0000058308010000031
计算IP层光路故障恢复效用;
其中,U2为IP层光路故障恢复效用;α+β=1;F为一个常量,与计算U1的公式中的相同,满足F<F2
步骤(4):比较WDM层故障恢复效用和IP层故障恢复效用:
如果WDM层故障恢复效用U1大于IP层故障恢复效用U2,则在WDM层恢复该光路上承载的业务;
如果WDM层故障恢复效用U1小于IP层故障恢复效用U2,则在IP层恢复该光路上承载的业务;
如果WDM层故障恢复效用U1等于IP层故障恢复效用U2,则随机选择在WDM层或IP层来恢复该光路上承载的业务;
机制结束。
CN201110109795.6A 2011-04-29 2011-04-29 一种wdm光网络中的基于效用的层间协调方法 Expired - Fee Related CN102186124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110109795.6A CN102186124B (zh) 2011-04-29 2011-04-29 一种wdm光网络中的基于效用的层间协调方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110109795.6A CN102186124B (zh) 2011-04-29 2011-04-29 一种wdm光网络中的基于效用的层间协调方法

Publications (2)

Publication Number Publication Date
CN102186124A true CN102186124A (zh) 2011-09-14
CN102186124B CN102186124B (zh) 2014-01-15

Family

ID=44572183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110109795.6A Expired - Fee Related CN102186124B (zh) 2011-04-29 2011-04-29 一种wdm光网络中的基于效用的层间协调方法

Country Status (1)

Country Link
CN (1) CN102186124B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893563A (zh) * 2012-07-02 2013-01-23 华为技术有限公司 业务路由确定方法及相关装置
WO2014205792A1 (zh) * 2013-06-28 2014-12-31 华为技术有限公司 一种建立光旁路的方法、装置和系统
CN104283608A (zh) * 2014-10-14 2015-01-14 国家电网公司 面向单srlg故障的长距离无源光网络保护方法
WO2015101168A1 (zh) * 2013-12-30 2015-07-09 华为技术有限公司 故障恢复的方法及控制器
WO2016119265A1 (zh) * 2015-01-31 2016-08-04 华为技术有限公司 一种网络业务建立方法、协作控制中心及网络系统
WO2017012431A1 (zh) * 2015-07-21 2017-01-26 中国移动通信集团公司 一种多层网络中业务保护的方法、设备和系统
CN106685571A (zh) * 2016-12-05 2017-05-17 重庆邮电大学 一种wdm光网络中基于恢复时间敏感的混合保护方法
CN108418750A (zh) * 2017-02-10 2018-08-17 中国移动通信集团贵州有限公司 一种传输业务单点运行预警判断的方法和装置
CN109547874A (zh) * 2018-12-03 2019-03-29 国家电网有限公司 电力骨干光传输网业务可靠均衡路由波长分配方法及系统
CN114339493A (zh) * 2021-12-31 2022-04-12 中国联合网络通信集团有限公司 基于otn网络的故障业务处理方法、装置及存储介质
WO2024051060A1 (zh) * 2022-09-08 2024-03-14 烽火通信科技股份有限公司 一种ip和光网络保护倒换协同管控的方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512716A (zh) * 2002-12-30 2004-07-14 北京邮电大学 一种多层网络故障恢复方法
US20050123294A1 (en) * 2003-12-05 2005-06-09 Alcatel Dynamic interlayer protection in optical telecommunication networks
KR20060112862A (ko) * 2005-04-28 2006-11-02 김영천 수동형 파장 선택 라우팅 소자 기반의 파장 분할 다중화수동형 광 가입자망을 위한 장애 복구 구조
CN1933415A (zh) * 2005-09-14 2007-03-21 曲桦 多层网的层间协调方法
JP2007306611A (ja) * 2007-07-09 2007-11-22 Korea Advanced Inst Of Sci Technol 波長分割多重方式パッシブ光ネットワークシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1512716A (zh) * 2002-12-30 2004-07-14 北京邮电大学 一种多层网络故障恢复方法
US20050123294A1 (en) * 2003-12-05 2005-06-09 Alcatel Dynamic interlayer protection in optical telecommunication networks
KR20060112862A (ko) * 2005-04-28 2006-11-02 김영천 수동형 파장 선택 라우팅 소자 기반의 파장 분할 다중화수동형 광 가입자망을 위한 장애 복구 구조
CN1933415A (zh) * 2005-09-14 2007-03-21 曲桦 多层网的层间协调方法
JP2007306611A (ja) * 2007-07-09 2007-11-22 Korea Advanced Inst Of Sci Technol 波長分割多重方式パッシブ光ネットワークシステム

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FUMAGALLI, A.; VALCARENGHI, L.: "IP restoration vs. WDM protection: is there an optimal choice?", 《IEEE NETWORK》 *
JAVED, M.; THULASIRAMAN, K.; GUOLIANG XUE: "Lightpaths routing for single link failure survivability in IP-over-WDM networks", 《JOURNAL OF COMMUNICATIONS AND NETWORKS》 *
SAHASRABUDDHE, L.; RAMAMURTHY, S.; MUKHERJEE, B.: "Fault management in IP-over-WDM networks: WDM protection versus IP restoration", 《 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 》 *
YANG QIN; MASON, L.; KE JIA: "Study on a joint multiple layer restoration scheme for IP over WDM networks", 《IEEE NETWORK》 *
张颖,朱娜: "基于博弈均衡的WDM光网络动态恢复策略", 《计算机工程》 *
徐雯娟,蔡伟祥: "IP over WDM网络的多层联合恢复策略", 《光通信技术》 *
熊余,王汝言,常交法: "光网络分布式恢复机制的恢复时间分析", 《光通信技术》 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893563B (zh) * 2012-07-02 2014-12-24 华为技术有限公司 业务路由确定方法及相关装置
CN102893563A (zh) * 2012-07-02 2013-01-23 华为技术有限公司 业务路由确定方法及相关装置
US9736066B2 (en) 2013-06-28 2017-08-15 Huawei Technologies Co., Ltd. Method, apparatus and system for establishing optical bypass
WO2014205792A1 (zh) * 2013-06-28 2014-12-31 华为技术有限公司 一种建立光旁路的方法、装置和系统
WO2015101168A1 (zh) * 2013-12-30 2015-07-09 华为技术有限公司 故障恢复的方法及控制器
CN104283608A (zh) * 2014-10-14 2015-01-14 国家电网公司 面向单srlg故障的长距离无源光网络保护方法
CN104283608B (zh) * 2014-10-14 2016-11-30 国家电网公司 面向单srlg故障的长距离无源光网络保护方法
WO2016119265A1 (zh) * 2015-01-31 2016-08-04 华为技术有限公司 一种网络业务建立方法、协作控制中心及网络系统
CN106233679A (zh) * 2015-01-31 2016-12-14 华为技术有限公司 一种网络业务建立方法、协作控制中心及网络系统
CN106233679B (zh) * 2015-01-31 2019-10-01 华为技术有限公司 一种网络业务建立方法、协作控制中心及网络系统
US10491487B2 (en) 2015-01-31 2019-11-26 Huawei Technologies Co., Ltd. Network service establishment method, orchestration control center, and network system
WO2017012431A1 (zh) * 2015-07-21 2017-01-26 中国移动通信集团公司 一种多层网络中业务保护的方法、设备和系统
CN106685571A (zh) * 2016-12-05 2017-05-17 重庆邮电大学 一种wdm光网络中基于恢复时间敏感的混合保护方法
CN106685571B (zh) * 2016-12-05 2018-06-15 重庆邮电大学 一种wdm光网络中基于恢复时间敏感的混合保护方法
CN108418750A (zh) * 2017-02-10 2018-08-17 中国移动通信集团贵州有限公司 一种传输业务单点运行预警判断的方法和装置
CN108418750B (zh) * 2017-02-10 2020-11-24 中国移动通信集团贵州有限公司 一种传输业务单点运行预警判断的方法和装置
CN109547874A (zh) * 2018-12-03 2019-03-29 国家电网有限公司 电力骨干光传输网业务可靠均衡路由波长分配方法及系统
CN114339493A (zh) * 2021-12-31 2022-04-12 中国联合网络通信集团有限公司 基于otn网络的故障业务处理方法、装置及存储介质
CN114339493B (zh) * 2021-12-31 2023-06-20 中国联合网络通信集团有限公司 基于otn网络的故障业务处理方法、装置及存储介质
WO2024051060A1 (zh) * 2022-09-08 2024-03-14 烽火通信科技股份有限公司 一种ip和光网络保护倒换协同管控的方法和系统

Also Published As

Publication number Publication date
CN102186124B (zh) 2014-01-15

Similar Documents

Publication Publication Date Title
CN102137313B (zh) 一种wdm光网络中的基于子树的多播业务量疏导方法
CN102186124B (zh) 一种wdm光网络中的基于效用的层间协调方法
CN102137026B (zh) 一种wdm光网络中的多约束多播路由方法
Mouftah et al. Optical networks: architecture and survivability
Wei Advances in the management and control of optical internet
Ye et al. A simple dynamic integrated provisioning/protection scheme in IP over WDM networks
Ye et al. On joint protection/restoration in IP-centric DWDM based optical transport networks
US20050030951A1 (en) Reservation protocol signaling extensions for optical switched networks
US20040246912A1 (en) Source based scheme to establish communication paths in an optical network
CN102186123B (zh) 一种wdm光网络中的基于子树的多播共享多层保护方法
Urushidani et al. Highly available network design and resource management of SINET4
CN101459574B (zh) 网络部署方法和网络系统以及ip节点
CN102186125B (zh) 一种wdm光网络中的基于子树的多播专用多层保护方法
Oki et al. Heuristic multi-layer optimum topology design scheme based on traffic measurement for IP+ photonic networks
CN102143086B (zh) 一种wdm光网络中的多播共享段保护方法
CN102271294B (zh) 一种光网络中的基于负载均衡的单播共享多层保护方法
CN102186126B (zh) 一种光网络中的基于负载均衡的单播专用多层保护方法
Munoz et al. An experimental signalling enhancement to efficiently encompass WCC and backup sharing in GMPLS-enabled wavelength-routed networks
Fang et al. IP traffic grooming over WDM optical networks
Koubàa et al. QoT-aware elastic bandwidth allocation and spare capacity assignment in flexible island-based optical transport networks under shared risk link group constraints
Agrawal et al. Single shortest path-based logical topologies for grooming IP traffic over wavelength-routed networks
Correia et al. Protection schemes for IP-over-WDM networks: Throughput and recovery time comparison
Kibria et al. IP Over WDM Network Control: Network Addressing and Restoration.
Huo Survivable design and analysis of WDM mesh networks
Groebbens et al. Logical topology optimisation for dynamic multilayer recovery schemes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140115