WO2015100941A1 - 内圆磨主轴 - Google Patents

内圆磨主轴 Download PDF

Info

Publication number
WO2015100941A1
WO2015100941A1 PCT/CN2014/079281 CN2014079281W WO2015100941A1 WO 2015100941 A1 WO2015100941 A1 WO 2015100941A1 CN 2014079281 W CN2014079281 W CN 2014079281W WO 2015100941 A1 WO2015100941 A1 WO 2015100941A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
air
guide groove
air guide
bearing seat
Prior art date
Application number
PCT/CN2014/079281
Other languages
English (en)
French (fr)
Inventor
汤秀清
Original Assignee
广州市昊志机电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市昊志机电股份有限公司 filed Critical 广州市昊志机电股份有限公司
Publication of WO2015100941A1 publication Critical patent/WO2015100941A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition

Definitions

  • the invention relates to the technical field of processing equipment, and in particular to an inner cylindrical grinding spindle. Background technique
  • An inner cylindrical grinding spindle comprises an aluminum water jacket, a bearing housing, a body, a lower body cover, a shaft core, a motor, a stator core, a grinding rod and a bearing; the lower cover of the body and the outer casing of the bearing sleeve are respectively mounted on the body
  • the aluminum water jacket is fixed on an end wall of the bearing shell outer casing away from the body, the aluminum water jacket is provided with an air inlet, a water inlet and a water outlet; the shaft core is inserted in the body
  • the motor, the stator core and the bearing are sleeved on the shaft core; the air bearing passage and the number of cooling passages are formed on the bearing housing outer casing; Air passage and cooling passage; the air passage on the airframe has the same air passage structure as the outer casing of the bearing housing, and the number is equal and mutually penetrated.
  • the cooling passages on the body are the same as the cooling passages on the casing of the bearing housing, and the quantity is equal; the water inlet and the water outlet are respectively communicated with the cooling passages on the casing of the bearing housing; the inlet and the bearing housing The air passage on the outer casing is connected; the grinding rod is screwed to the shaft core.
  • the upper end surface of the bearing housing is spaced apart from the first guide groove; the two ends of the first guide groove are respectively communicated with a cooling passage; the lower end surface of the body is provided with a second The guide groove, the two ends of the second guide groove are respectively communicated with a cooling passage of the body, and all the cooling passages are sequentially communicated through the first guide groove and the second guide groove.
  • the lower end of the lower cover of the body is provided with an intermediate hollow annular air guide assembly;
  • the annular air guide assembly has an annular air guiding groove and a plurality of air guiding holes; the annular air guiding groove and the air guiding body on the air body
  • the air guiding groove is coaxial with the air guiding component;
  • the air guiding hole is arranged along the radial spacing of the air guiding component; each air guiding hole is penetrated with the annular air guiding groove, and the air guiding is penetrated The inner surface of the component.
  • the inside of the bearing housing is provided with a first accommodating cavity along the axial direction thereof; the center of the body is provided with a second accommodating cavity along the axial direction thereof, and the cooling passages on the body are arranged in the same
  • the circumference of the second accommodating cavity is parallel to the axis of the second accommodating cavity.
  • the bearing comprises two, respectively a first bearing and a second bearing, the first bearing is mounted on an upper end of the shaft core and located in the first receiving cavity; the first bearing and the first bearing a gap is formed in an inner wall of the accommodating cavity; a bearing seat is mounted in the gap, the bearing seat is connected to the bearing housing by a pre-tightening spring; the second bearing is mounted at a lower end of the second accommodating cavity, and is sleeved On the shaft core.
  • each of the cooling passages and the air passages are parallel and spaced apart from each other.
  • the body has a cylindrical shape.
  • the utility model discloses a built-in structure of an internal circular grinding electric spindle used for a motor, that is, a motor design
  • the motor is placed in the second accommodating cavity of the body, and the motor is controlled by the frequency converter.
  • the motor drives the stator core to rotate, and the stator core drives the shaft core to rotate at a high speed.
  • the shaft core drives the grinding rod that is screwed to rotate, and is driven by the grinding rod 8 that rotates at a high speed.
  • the grinding wheel is used for grinding.
  • introducing a coolant into the cooling passage the internal components of the inner grinding spindle are cooled to improve the working accuracy and efficiency.
  • FIG. 1 is a cross-sectional view showing an overall structure of an inner cylindrical grinding spindle according to an embodiment of the present invention
  • FIG. 2 is a view showing a K1 direction in FIG.
  • Figure 3 is a cross-sectional view showing the assembly of the body and the bearing housing according to the embodiment of the present invention
  • Figure 4 is a view of the K2 direction of Figure 3;
  • Figure 5 is a view of the K3 direction in Figure 3;
  • Fig. 6 is an enlarged view of a portion A of Fig. 3.
  • an inner cylindrical grinding spindle includes an aluminum water jacket 1, a bearing housing 2, and a body 3.
  • the lower body cover 4 and the bearing housing 2 are respectively mounted on both ends of the body 3.
  • the aluminum water jacket 1 is fixed to the end wall of the bearing housing 2 away from the body 3.
  • the shaft core 5 is inserted into the body 3 and the bearing housing 2.
  • the motor 6, the stator core 7 and the bearing 9 are sleeved on the shaft core 5.
  • the grinding rod 8 is screwed to the shaft core 5.
  • the aluminum water jacket 1 defines a through hole (not shown) through which the air inlet 10, a water inlet 12 and a water outlet 14 and other power supply lines pass.
  • an air passage 21 and a plurality of cooling passages 22 are formed in the bearing housing 2 . And each of the cooling passages 22 and the air passages 21 are parallel and spaced apart from each other.
  • the inside of the bearing housing 2 is internally provided with a first accommodating cavity 23 along its axial direction.
  • the upper air passage 21 and the cooling passage 22 of the bearing housing 2 are disposed around the first accommodating chamber 23 and are parallel to the axis of the first accommodating chamber 23.
  • a plurality of first guide grooves 24 are formed in the upper end surface of the bearing housing 2 at intervals. Both ends of the first guiding groove 24 are respectively communicated with a cooling passage 22.
  • the first guide groove 24 is encapsulated by the aluminum water jacket 1 into a passage through which the coolant can pass.
  • the air passage 21 is in communication with the air inlet 10.
  • the water inlet 12 and the water outlet 14 are respectively connected to a cooling passage 22.
  • the air passage 21 and the cooling passage 22 are opened on the body 3.
  • the air passage 21 has the same structure as the air passage 21 of the bearing housing 2, and the number is equal and mutually penetrated.
  • the cooling passages 22 on the body 3 are identical in structure to the cooling passages 22 on the casing 2 of the shaft 7.
  • the cooling passages 22 on the body 3 are respectively in communication with the cooling passages 22 on the bearing housing 2 .
  • a plurality of second guiding slots 33 are defined in the lower end surface of the body 3, and two ends of the second guiding slot 33 are respectively communicated with a cooling passage 22 of the body 3, and the first guiding slot 24 and the first guiding slot
  • the two guide grooves 33 sequentially connect all the cooling passages 22, and form a wrap-around whole.
  • the coolant enters from the water inlet 12 and then flows out of the water outlet 14 through the cooling passage 22.
  • the center of the body 3 defines the circumference of the accommodating cavity 30 along its axial direction and is parallel to the axis of the second accommodating cavity 30.
  • the second accommodating cavity 30 and the first accommodating cavity 23 penetrate each other.
  • the number of the second guide grooves 33 is one more than the first guide grooves 24.
  • the lower cover 4 of the body covers the lower end of the body 3, and the second guide groove 33 is encapsulated into a passage through which the coolant can flow, but the coolant can be prevented from leaking out of the body 3 from the second guide groove 33. .
  • the lower end of the lower cover 4 of the body is provided with an intermediate hollow annular gas guide assembly 41.
  • An annular air guiding groove (not shown) and a plurality of air guiding holes 42 are defined in the annular air guiding component 41.
  • the annular air guiding groove is continuous with the air passage 21 on the body 3, and the annular air guiding groove is coaxial with the air guiding assembly 41.
  • the air guiding holes 42 are disposed at even intervals in the radial direction of the air guiding member 41. Each of the air guiding holes 42 penetrates the annular air guiding groove and penetrates the inner surface of the air guiding member 41.
  • the shaft core 5 is hollow inside and has an internal thread for screwing with the grinding rod 8 at its lower end.
  • the motor 6 and the stator core 7 are both mounted in the second accommodating cavity 30, and The shaft core 5 is connected.
  • the shaft core 5 is inserted into the first accommodating cavity 23 and the second accommodating cavity 30, and a pretensioning space 11 is formed between the upper end of the shaft core 5 and the inner surface of the aluminum water jacket 1.
  • the bearing 9 includes two first bearings 91 and a second bearing 92.
  • the first bearing 91 is mounted on the upper end of the core 5 and is located in the first receiving cavity 23.
  • the first bearing 91 and the inner wall of the first accommodating cavity 23 are formed with a gap 230; a bearing seat 25 is mounted in the gap 230, and the bearing block 25 is connected to the bearing housing 2 by a preload spring (not shown). .
  • This structure ensures that the spindle can be operated at a high speed, and at the same time, the outer ring of the first bearing 91 can be floated flexibly, and the shaft core 5 which is heated by the inner circular grinding spindle can be thermally expanded.
  • the second bearing 92 is mounted on the lower end of the second accommodating cavity 30 and is sleeved on the core 5.
  • the motor 6 can be a three-phase asynchronous motor.
  • the invention discloses a built-in structure of the internal grinding electric spindle ⁇ motor 6, that is, the motor 6 is disposed in the second accommodating cavity 30 of the body 3, and the motor 6 is controlled by the frequency converter.
  • the motor 6 drives the stator core 7 to rotate, and the stator core 7 drives the shaft core 5 to rotate at a high speed.
  • the shaft core 5 drives the grinding rod 8 screwed thereto to rotate.
  • the rotating grinding rod 8 drives the grinding wheel to perform the grinding work.
  • introducing a coolant into the cooling passage 22 the internal components of the inner cylindrical grinding spindle are cooled to improve the working accuracy and efficiency.
  • the working principle of the air passage 21 the compressed gas is passed through the air inlet 10 of the aluminum water jacket 1 into the bearing housing 2 and the air passage 21 in the body 3, and then the compressed gas enters the ring in the annular air guiding assembly 41.
  • the air guiding holes 42 are respectively introduced into the gap between the lower cover 4 of the body and the working parts in the body 3, and the positive air pressure of the gap is realized, and the generated air film effectively isolates the external dust and dirt.
  • the internal cleaning of the body 3 and the accuracy and service life of the bearing 9 are ensured.
  • the cooling liquid in this embodiment may be cooling water.
  • the cooling water is introduced into the cooling passage 22 from the water inlet 12 of the aluminum water jacket 1, and the cooling passages 22 are connected to the second guide grooves 33 through the first guide grooves 24 to form a complete water passage. Therefore, the cooling water can flow out from the water outlets 14 of the aluminum water jacket 1 after passing through all the cooling passages 22 in order. Therefore, the cooling water can be fully circulated around the body 3, and the components in the body 3 can be cooled and cooled, thereby taking away the heat generated by the parts such as the motor 6 and the bearing 9 during operation, so that the inner cylindrical grinding machine of the present invention The spindle can work stably. Since the cooling passages 22 on the body 3 are arranged around the second accommodating chamber 30, the heat in the body 3 can be effectively carried away as much as possible.
  • the appearance of the machine body is cylindrical, and the outline is simple and beautiful.
  • the machine has the following unique advantages: 1 high rotation speed and high smoothness: the shaft core cooperates with the first bearing and the second bearing to realize high-speed rotation of the shaft core through the built-in motor and the stator, so the shaft rotation speed of the inner circular grinding spindle of the invention can reach 40,000 rpm Above, it is very advantageous in the field of grinding spindles.
  • the grinding torque is correspondingly reduced, which is advantageous for the processing of the ultra-precision occasion, and this feature can make the machining surface of the part very High finish and dimensional accuracy.
  • Stator core temperature rise control means Stator core material is selected from Japan imported 0.35 thick, 2.5 iron loss cold-rolled silicon steel sheet, which can effectively reduce the iron loss value to reduce motor heating.
  • the vacuum dipping process and the rotary bake curing process can be used to achieve the ideal air gap-free insulation of the motor coil, effectively improving the withstand voltage and moisture resistance of the motor. Therefore, the surface temperature of the stator core can be controlled below 40 °C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Turning (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

一种内圆磨主轴,包括铝水套(1)、轴承座外套(2)、机体(3)、机体下盖(4)、轴芯(5)、电机(6)、定子铁芯(7)、磨杆(8)及轴承(9);机体下盖(4)与轴承座外套(2)上分别安装在机体(3)的两端;铝水套(1)固定在轴承座外套(2)的远离所述机体(3)的端壁上,铝水套(1)上开设有一进气口(10)、一进水口(12)及一出水口(14);轴芯(5)穿插在机体(3)与轴承座外套(2)内;电机(6)、定子铁芯(7)及轴承(9)均套设在轴芯(5)上;轴承座外套(2)上开设有一气道(21)与数量若干的冷却道(22);机体(3)上开设有气道(21)与冷却道(22);进水口(12)、出水口(14)分别与轴承座外套(2)上的冷却道(22)连通;进气口(10)与轴承座外套(2)上的气道(21)连通;磨杆(8)与轴芯(5)螺接。这种内圆磨主轴结构合理、加工精度较高。

Description

内圓磨主轴 技术领域
本发明涉及加工设备技术领域, 具体涉及一种内圓磨主轴。 背景技术
随着超硬磨料砂轮和超高速磨床技术研究和发展,与之相配套的 电主轴也提出的新的要求。 高速磨削不仅能极大地提高磨削效率, 而 能有效地改善加工质量,是当今磨削技术最重要的发展方向之一是超 高速磨削和高效深磨。
高速磨削相对于以前的普通磨削而言, 凡砂轮线速度大于 45米 / 秒的磨削都可称为高速磨削, 早在 20世纪 60年代,砂轮的线速度已 提高至 60米 /秒, 70年代砂轮的线速度又提高至 80米 /秒, 但其后十 年由于受到当时砂轮回转破裂速度的制约和工件烧伤问题的困拢,砂 轮转速没有大的提高, 直到 80年代后期砂轮超硬材的研究成功和应 用,使砂轮线速度大幅度地提高, 当前砂轮主轴的线速度仍然保持在 200米 /秒左右。 因此,使得这些主轴很难满足一些金属表面光洁度要 求更好、 尺寸精度要求更高的加工场合。
为了提高主轴的转速, 目前已经出现转速远远大于 200米 /秒的 主轴, 但是由于轴芯转速的大幅提高, 轴承的润滑必将成为制约转速 的一个主要原因。在此之前,主轴轴承的润滑多釆用油气润滑等技术, 这一技术有两个缺点: a.油气润滑需要设计油气通道等附属结构, 给主轴的设计制造增 加了复杂度, 从而影响主轴的整体研发与使用性能。 b.油气润滑时需 持续不断地通入油气, 一方面油气很容易混入杂质, 直接影响轴承的 正常使用, 另一方面油气对轴承的润滑作用十分有限, 形成的油膜很 薄, 而且润滑表面积并不全面。从而导致磨杆的加工精度以及与主轴 的配合精度都不理想, 使得主轴在加工使用时的精度较低。 发明内容
针对现有技术的不足, 本发明的目的在于提供一种结构合理、加 工精度较高的内圓磨主轴。
为实现上述目的, 本发明通过釆用如下技术方案:
一种内圓磨主轴, 包括铝水套、 轴承座外套、 机体、 机体下盖、 轴芯、 电机、 定子铁芯、 磨杆及轴承; 所述机体下盖与轴承座外套上 分别安装在机体的两端;所述铝水套固定在轴承座外套的远离所述机 体的端壁上, 该铝水套上开设有一进气口、 一进水口及一出水口; 所 述轴芯穿插在机体与轴承座外套内; 所述电机、 定子铁芯及轴承均套 设在所述轴芯上;所述轴承座外套上开设有一气道与数量若干的冷却 道; 所述机体上开设有所述气道与冷却道; 所述机体上的气道与轴承 座外套的气道结构相同, 数量相等, 且相互贯通。 所述机体上的冷却 道与轴承座外套上的冷却道结构相同, 数量相等; 所述进水口、 出水 口分别与所述轴承座外套上的冷却道连通;所述进去口与所述轴承座 外套上的气道连通; 所述磨杆与所述轴芯螺接。 优选地,所述轴承座的上端面上间隔地开设有数量若干的第一导 槽; 所述第一导槽的两端分别与一冷却道连通; 所述机体的下端面上 开设有第二导槽, 该第二导槽的两端分别与机体的一冷却道连通, 且 通过所述第一导槽与第二导槽将所有的冷却道依次进行连通。
优选地, 所述机体下盖的下端设置有一中间空心的环形导气组 件; 该环形导气组件内部开设有一环形导气槽及若干导气孔; 该环形 导气槽与所述机体上的导气槽贯通, 且该环形导气槽与导气组件同 轴; 所述导气孔沿着导气组件的径向均勾的间隔设置; 各导气孔均与 该环形导气槽贯通, 且贯穿导气组件的内表面。
优选地, 所述轴承座外套内部沿着其轴线方向开设有第一容置 腔; 机体的中心沿其轴线方向开设有第二容置腔, 所述机体上的冷却 道均勾的排列在所述第二容置腔的周围, 且与第二容置腔的轴线平 行。
优选地, 所述轴承包括两个, 分别为第一轴承、 第二轴承, 所述 第一轴承安装在轴芯的上端, 且位于所述第一容置腔内; 该第一轴承 与第一容置腔的内壁形成有间隙; 该间隙内安装有一轴承座, 该轴承 座通过预紧弹簧与所述轴承座外套连接;所述第二轴承安装在第二容 置腔的下端, 且套设在轴芯上。
优选地, 各冷却道与气道之间相互平行且间隔设置。
优选地, 所述机体呈圓柱形。
本发明的有益效果:
本发明公开的一种内圓磨电主轴釆用电机内藏式结构,即电机设 置在机体的第二容置腔内, 由变频器进行无极变速控制该电机。 所述 电机驱动所述定子铁芯旋转, 并有定子铁芯带动所述轴芯高速旋转, 此时该轴芯即会带动与其螺接的磨杆进行转动,同过高速旋转的磨杆 8带动砂轮进行打磨工作。 通过在冷却道内通入冷却液, 实现为该内 圓磨主轴的内部零件进行降温, 以提高其工作精度及效率。通过在气 道内通入预定压强的气体,并由导气组件导入至机体下盖与轴芯之间 的各缝隙内, 防止外界的粉尘从缝隙进入到机体内。从而提高机体内 部的清洁度及内圓磨主轴的使用寿命。 附图说明
图 1为本发明中实施例所述的一种内圓磨主轴整体结构剖视图; 图 2为图 1中 K1方向视图;
图 3为本发明中实施例所述的机体与轴承座外套装配的剖视图; 图 4为图 3中 K2方向视图;
图 5为图 3中 K3方向视图;
图 6为图 3的 A部放大图。
图中: 1、 铝水套; 10、 进气口; 11、 预紧空间; 12、 进水口; 14、 出水口; 2、 轴承座外套; 21、 气道; 22、 冷却道; 23、 第一容 置腔; 230、 间隙; 24、 第一导槽; 25、 轴承座; 3、 机体; 30、 第二 容置腔; 33、 第二导槽; 4、 机体下盖; 41、 导气组件; 42、 导气孔; 5、 轴芯; 6、 电机; 7、 定子铁芯; 8、 磨杆; 9、 轴承; 91、 第一轴 承; 92、 第二轴承。 具体实施方式
下面, 结合附图以及具体实施方式, 对本发明做进一步描述: 参照图 1与图 2, 本实施例所述的一种内圓磨主轴, 包括铝水套 1、 轴承座外套 2、机体 3、机体下盖 4、 轴芯 5、 电机 6、 定子铁芯 7、 磨杆 8及轴承 9。 所述机体下盖 4与轴承座外套 2上分别安装在机体 3的两端。 所述铝水套 1固定在轴承座外套 2的远离所述机体 3的端 壁上。 所述轴芯 5穿插在机体 3与轴承座外套 2内。 所述电机 6、 定 子铁芯 7及轴承 9均套设在所述轴芯 5上。 所述磨杆 8与所述轴芯 5 螺接。
所述铝水套 1上开设有一进气口 10、一进水口 12及一出水口 14 及其他供电线等穿过的穿孔(图未标) 。
结合参照 3至图 6, 所述轴承座外套 2上开设有一气道 21与数 量若干的冷却道 22。 且各冷却道 22与气道 21之间相互平行且间隔 设置。 该轴承座外套 2 内部沿着其轴线方向开设有第一容置腔 23。 该轴承座外套 2上气道 21与冷却道 22设置所述第一容置腔 23周围, 且与第一容置腔 23的轴线相平行。 所述轴承座外套 2的上端面上间 隔地开设有数量若干的第一导槽 24。 所述第一导槽 24的两端分别与 一冷却道 22连通。该第一导槽 24通过所述铝水套 1进行封装成冷却 液可以通过的通道。 所述气道 21与所述进气口 10连通。 所述进水口 12、 出水口 14分别与一冷却道 22连通。
所述机体 3上开设有所述气道 21与冷却道 22。 所述机体 3上的 气道 21与轴承座外套 2的气道 21结构相同,数量相等,且相互贯通。 所述机体 3上的冷却道 22与轴 7 座外套 2上的冷却道 22结构相同, 数量相等。 所述机体 3上的各冷却道 22分别与轴承座外套 2上的冷 却道 22——对应连通。 所述机体 3的下端面上开设有数量若干的第 二导槽 33 , 该第二导槽 33的两端分别与机体 3的一冷却道 22连通, 且通过所述第一导槽 24与第二导槽 33将所有的冷却道 22依次进行 连通, 并形成一个呈迂回形的整体。 冷却液从进水口 12进入, 然后 通过冷却道 22从出水口 14流出。该机体 3的中心沿其轴线方向开设 容置腔 30的周围, 且与第二容置腔 30的轴线平行。 该第二容置腔 30与所述第一容置腔 23相互贯通。 优选地, 第二导槽 33的数量比 第一导槽 24多一个。
所述机体下盖 4覆盖在机体 3的下端, 并将所述第二导槽 33进 行封装成通道, 冷却液可以通过该通道流通, 但是可以防止冷却液从 第二导槽 33处漏出机体 3。 该机体下盖 4的下端设置有一中间空心 的环形导气组件 41。该环形导气组件 41内部开设有一环形导气槽(图 未示)及若干导气孔 42。 该环形导气槽与所述机体 3上的气道 21贯 通, 且该环形导气槽与导气组件 41同轴。 所述导气孔 42沿着导气组 件 41的径向均匀的间隔设置。 各导气孔 42均与该环形导气槽贯通, 且贯穿导气组件 41的内表面。
所述轴芯 5内部中空,且在其下端开设有用于与磨杆 8螺接的内 螺紋。 所述电机 6与定子铁芯 7均安装在第二容置腔 30内, 且与所 述轴芯 5连接。 该轴芯 5穿插在第一容置腔 23与第二容置腔 30内, 且轴芯 5的上端与铝水套 1的内表面之间形成有预紧空间 11。 当轴 芯 5因受热膨胀时, 可在该预紧空间 11延伸, 从而可保证轴芯 5能 保持在高速旋转时加工精度保持良好。
所述轴承 9包括两个, 分别为第一轴承 91、 第二轴承 92, 所述 第一轴承 91安装在轴芯 5的上端, 且位于所述第一容置腔 23内。 该 第一轴承 91与第一容置腔 23的内壁形成有间隙 230; 该间隙 230内 安装有一轴承座 25 , 该轴承座 25通过预紧弹簧(图未示)与所述轴 承座外套 2连接。 此种结构既保证了主轴能够高速运转, 同时又可以 保证第一轴承 91的外圈浮动灵活, 又中和内圓磨主轴工作时发热引 起的轴芯 5热膨胀。 所述第二轴承 92安装在第二容置腔 30的下端, 且套设在轴芯 5上。
需要说明的是, 本发明中所述的下方是至右铝水套 1指向磨杆 8 的方向, 其反向为上方。 所述电机 6可为三相交流异步电机。
本发明的工作原理:
本发明公开的一种内圓磨电主轴釆用电机 6内藏式结构,即电机 6设置在机体 3的第二容置腔 30内, 由变频器进行无极变速控制该 电机 6。 所述电机 6驱动所述定子铁芯 7旋转, 并有定子铁芯 7带动 所述轴芯 5高速旋转,此时该轴芯 5即会带动与其螺接的磨杆 8进行 转动, 同过高速旋转的磨杆 8带动砂轮进行打磨工作。 通过在冷却道 22 内通入冷却液, 实现为该内圓磨主轴的内部零件进行降温, 以提 高其工作精度及效率。 通过在气道 21 内通入预定压强的气体, 并由 导气组件 41导入至机体下盖 4与轴芯 5之间的各缝隙内 , 防止外界 的粉尘从缝隙进入到机体 3内。从而提高机体 3内部的清洁度及内圓 磨主轴的使用寿命。
所述气道 21的工作原理: 将压缩气体通过铝水套 1所述进气口 10通入轴承座外套 2与机体 3内的气道 21 , 然后压缩气体进入环形 导气组件 41内的环形导气槽内,并有各导气孔 42均勾的导入机体下 盖 4与机体 3内工作零件之间的缝隙内, 实现缝隙空气正压, 产生的 气膜有效地隔离开外来粉尘与污垢, 保证机体 3内部的清洁和轴承 9 的精度及使用寿命。
所述冷却道 22的工作原理: 本实施例所述冷却液可为冷却水。 将冷却水从铝水套 1的进水口 12处通入冷却道 22内,由于各冷却道 22通过第一导槽 24与第二导槽 33连接成一个完整的水路。 所以冷 却水可依次经过所有冷却道 22之后从铝水套 1上的出水口 14流出。 因此冷却水可以在机体 3周围得到充分的循环流动,实现为机体 3内 的各零件进行降温冷却,从而带走电机 6及轴承 9等零件在工作时产 生的热量,使本发明的内圓磨主轴可以稳定工作。 由于所述机体 3上 的冷却道 22均勾的排列在所述第二容置腔 30的周围,因此可有效的 尽可能多地将机体 3内的热量带走。
结构性能与外形特点:
所述机体的外观呈圓柱形, 外形轮廓简洁美观, 除了具有结构紧 凑、 重量轻、 惯性小、振动小、噪声低、运转刚度高等优异的品质外, 还具备以下独特的优点: ①高转速与高光洁度:所述轴芯通过内置的电机与定子配合所述 第一轴承、 第二轴承实现轴芯高速旋转, 所以本发明所述的内圓磨主 轴的轴芯转速可达 40000rpm以上,在磨削主轴领域里十分具有优势。 且本发明的内圓磨主轴在加工的过程中, 当提高运转速度进行磨削 时, 磨削力矩会相应减小, 有利于超精场合的加工, 这一特点能使得 零件的加工表面具有很高的光洁度和尺寸精度。
②定子铁芯的温升控制手段: 定子铁芯材料选用日本进口 0.35 厚、 2.5铁损的冷轧硅钢片, 能有效减小铁损值, 以减小电机发热。 可以釆用真空浸漆工艺和旋转烘焙固化工艺,使电机线圈实现了理想 的无气隙绝缘, 有效地提高电机的耐压和防潮性能。 因此定子铁芯的 表面温度能够控制在 40°C以下。
③优化的磨杆连接结构加工技术: 为保证磨杆的精度, 由于所述 磨杆与所述轴芯通过螺接固定,使得磨杆上端与轴芯内孔的连接部分 配合间隙小于等于 2 μ πι。 使得磨杆与轴芯安装时更方便, 且两者之 间的同轴度非常高。同时零件热处理硬度也非常高。磨杆装入轴芯后, 在离轴芯端面 100mm 的磨杆外圓位置检测, 回转精度最高达到了 0.002mm左右。这些技术突破所获得的高加工精度使得该内圓磨主轴 在同类设备中具有了独特的优势。
对本领域的技术人员来说, 可根据以上描述的技术方案以及构 思,做出其它各种相应的改变以及形变, 而所有的这些改变以及形变 都应该属于本发明权利要求的保护范围之内。

Claims

权 利 要 求 书
1、 内圓磨主轴, 其特征在于: 包括铝水套、 轴承座外套、 机体、 机体下盖、 轴芯、 电机、 定子铁芯、 磨杆及轴承; 所述机体下盖与轴 承座外套上分别安装在机体的两端;所述铝水套固定在轴承座外套的 远离所述机体的端壁上, 该铝水套上开设有一进气口、 一进水口及一 出水口; 所述轴芯穿插在机体与轴承座外套内; 所述电机、 定子铁芯 及轴承均套设在所述轴芯上;所述轴承座外套上开设有一气道与数量 若干的冷却道; 所述机体上开设有所述气道与冷却道; 所述机体上的 气道与轴承座外套的气道结构相同, 数量相等, 且相互贯通; 所述机 体上的冷却道与轴承座外套上的冷却道结构相同,数量相等; 所述进 水口、 出水口分别与所述轴承座外套上的冷却道连通; 所述进去口与 所述轴承座外套上的气道连通; 所述磨杆与所述轴芯螺接。
2、 根据权利要求 1所述的内圓磨主轴, 其特征在于: 所述轴承 座的上端面上间隔地开设有数量若干的第一导槽;所述第一导槽的两 端分别与一冷却道连通; 所述机体的下端面上开设有第二导槽, 该第 二导槽的两端分别与机体的一冷却道连通,且通过所述第一导槽与第 二导槽将所有的冷却道依次进行连通。
3、 根据权利要求 2所述的内圓磨主轴, 其特征在于: 所述机体 下盖的下端设置有一中间空心的环形导气组件;该环形导气组件内部 开设有一环形导气槽及若干导气孔;该环形导气槽与所述机体上的导 气槽贯通, 且该环形导气槽与导气组件同轴; 所述导气孔沿着导气组 件的径向均勾的间隔设置; 各导气孔均与该环形导气槽贯通, 且各导 气孔贯穿导气组件的内表面。
4、 根据权利要求 3所述的内圓磨主轴, 其特征在于: 所述轴承 座外套内部沿着其轴线方向开设有第一容置腔;机体的中心沿其轴线 方向开设有第二容置腔,所述机体上的冷却道均勾的排列在所述第二 容置腔的周围, 且与第二容置腔的轴线平行。
5、 根据权利要求 4所述的内圓磨主轴, 其特征在于: 所述轴承 包括两个, 分别为第一轴承、 第二轴承, 所述第一轴承安装在轴芯的 上端, 且位于所述第一容置腔内; 该第一轴承与第一容置腔的内壁形 成有间隙; 该间隙内安装有一轴承座, 该轴承座通过预紧弹簧与所述 轴承座外套连接; 所述第二轴承安装在第二容置腔的下端, 且套设在 轴芯上。
6、 根据权利要求 5所述的内圓磨主轴, 其特征在于: 各冷却道 与气道之间相互平行且间隔设置。
7、 根据权利要求 1~6任一项所述的内圓磨主轴, 其特征在于: 所述机体呈圓柱形。
PCT/CN2014/079281 2013-12-31 2014-06-05 内圆磨主轴 WO2015100941A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310754744.8A CN103817594B (zh) 2013-12-31 2013-12-31 内圆磨主轴
CN201310754744.8 2013-12-31

Publications (1)

Publication Number Publication Date
WO2015100941A1 true WO2015100941A1 (zh) 2015-07-09

Family

ID=50753034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079281 WO2015100941A1 (zh) 2013-12-31 2014-06-05 内圆磨主轴

Country Status (2)

Country Link
CN (1) CN103817594B (zh)
WO (1) WO2015100941A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661898B (zh) * 2018-12-06 2019-06-11 御成工業有限公司 Spindle structure
TWI785717B (zh) * 2021-08-04 2022-12-01 全鑫精密工業股份有限公司 直結式高速液靜壓磨床主軸結構

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103817594B (zh) * 2013-12-31 2016-08-24 广州市昊志机电股份有限公司 内圆磨主轴
CN104175216A (zh) * 2014-08-14 2014-12-03 北京工业大学 随动式双砂轮架曲轴磨床砂轮架
CN104772188B (zh) * 2015-04-15 2017-11-17 洛阳大华重型机械有限公司 一种内置式高效动力传递的立式冲击破碎机
CN105150101A (zh) * 2015-10-20 2015-12-16 广东豪特曼智能机器有限公司 内圆磨床工作头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19538762C1 (de) * 1995-10-18 1997-04-10 Hueller Hille Gmbh Verfahren zur Kühlung und Schmierung eines spanend arbeitenden, rotierenden Werkzeuges mit geometrisch definierter Schneide und/oder des Werkstückes im Bearbeitungsbereich u. Bearbeitungsspindel zur Durchführung des Verfahrens
JP2002039176A (ja) * 2000-07-21 2002-02-06 Ntn Corp 静圧磁気複合軸受スピンドル装置
CN202804924U (zh) * 2012-06-29 2013-03-20 无锡机床股份有限公司 一种机床的高速电主轴结构
CN103042466A (zh) * 2012-12-29 2013-04-17 广州市昊志机电股份有限公司 一种深孔内圆磨主轴
CN203030914U (zh) * 2012-12-29 2013-07-03 广州市昊志机电股份有限公司 一种滚珠高速电主轴轴承外环压盖
CN103817594A (zh) * 2013-12-31 2014-05-28 广州市昊志机电股份有限公司 内圆磨主轴

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3517802A1 (de) * 1984-05-30 1985-12-05 Schaudt Maschinenbau Gmbh, 7000 Stuttgart Reitstock fuer eine schleifmaschine
CN101585167A (zh) * 2009-06-08 2009-11-25 上海铭磨实业有限公司 新型磨头装置
CN201559121U (zh) * 2009-11-20 2010-08-25 无锡机床股份有限公司 一种使用空气轴承的砂轮主轴
CN102078973B (zh) * 2010-12-29 2012-09-05 广州市昊志机电股份有限公司 一种滚珠高速电主轴
CN202428317U (zh) * 2011-09-16 2012-09-12 安阳斯普机械有限公司 大功率内圆磨削电主轴

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19538762C1 (de) * 1995-10-18 1997-04-10 Hueller Hille Gmbh Verfahren zur Kühlung und Schmierung eines spanend arbeitenden, rotierenden Werkzeuges mit geometrisch definierter Schneide und/oder des Werkstückes im Bearbeitungsbereich u. Bearbeitungsspindel zur Durchführung des Verfahrens
JP2002039176A (ja) * 2000-07-21 2002-02-06 Ntn Corp 静圧磁気複合軸受スピンドル装置
CN202804924U (zh) * 2012-06-29 2013-03-20 无锡机床股份有限公司 一种机床的高速电主轴结构
CN103042466A (zh) * 2012-12-29 2013-04-17 广州市昊志机电股份有限公司 一种深孔内圆磨主轴
CN203030914U (zh) * 2012-12-29 2013-07-03 广州市昊志机电股份有限公司 一种滚珠高速电主轴轴承外环压盖
CN103817594A (zh) * 2013-12-31 2014-05-28 广州市昊志机电股份有限公司 内圆磨主轴

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661898B (zh) * 2018-12-06 2019-06-11 御成工業有限公司 Spindle structure
TWI785717B (zh) * 2021-08-04 2022-12-01 全鑫精密工業股份有限公司 直結式高速液靜壓磨床主軸結構

Also Published As

Publication number Publication date
CN103817594B (zh) 2016-08-24
CN103817594A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2015100941A1 (zh) 内圆磨主轴
CN106849509B (zh) 一种超高速永磁电机空心转子冷却结构
CN103286678B (zh) 一种用于高效高速精密机床的多功能内置式动静压电主轴
CN105464996B (zh) 电动液泵
CN204349702U (zh) 旋转电机
CN102489726A (zh) 一种气浮高速电主轴
CN204504240U (zh) 一种高速高精高效动静压电主轴
WO2013075532A1 (zh) 一种滚珠高速铣削电主轴
CN209157136U (zh) 一种永磁同步电主轴
CN202572133U (zh) 一种双头玻璃磨削机主轴
CN103286331A (zh) 中孔通水套料电主轴
CN207642316U (zh) 一种永磁同步铣削电主轴
CA2568881A1 (en) Totally-enclosed fan-cooled motor
WO2015100942A1 (zh) 一种高速雕铣电主轴
CN209255853U (zh) 轴套、电主轴和机床
CN103056769A (zh) 一种单头双砂轮电主轴
CN203304574U (zh) 一种用于高效高速精密机床的多功能内置式动静压电主轴
CN108233607A (zh) 一种汽车电机驱动设备
CN205407539U (zh) 水冷电机
CN112846929A (zh) 一种用于冷却电主轴轴芯的冷却装置
CN110524010A (zh) 一种高侧向力的大功率高速滚珠电主轴
CN102909396A (zh) 具有外转子结构的高速电主轴
CN109590488A (zh) 轴套、电主轴和机床
CN205817455U (zh) 一种电主轴轴承座的隔热冷却机构
CN210452046U (zh) 一种适用于高速机械主轴的冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876577

Country of ref document: EP

Kind code of ref document: A1