WO2015100906A1 - 一种超声成像装置及方法 - Google Patents

一种超声成像装置及方法 Download PDF

Info

Publication number
WO2015100906A1
WO2015100906A1 PCT/CN2014/077330 CN2014077330W WO2015100906A1 WO 2015100906 A1 WO2015100906 A1 WO 2015100906A1 CN 2014077330 W CN2014077330 W CN 2014077330W WO 2015100906 A1 WO2015100906 A1 WO 2015100906A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
scan
quality
ultrasonic echo
inspected
Prior art date
Application number
PCT/CN2014/077330
Other languages
English (en)
French (fr)
Inventor
史志伟
朱子俨
朱磊
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2015100906A1 publication Critical patent/WO2015100906A1/zh
Priority to US15/198,457 priority Critical patent/US11231431B2/en
Priority to US17/541,131 priority patent/US11754577B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/021Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a flexible chain, e.g. "cartridge belt", conveyor for reaction cells or cuvettes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0825Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the breast, e.g. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/523Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for generating planar views from image data in a user selectable plane not corresponding to the acquisition plane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4427Device being portable or laptop-like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5292Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves using additional data, e.g. patient information, image labeling, acquisition parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0412Block or rack elements with a single row of samples
    • G01N2035/0413Block or rack elements with a single row of samples moving in one dimension

Definitions

  • the present invention relates to the field of medical technology, and in particular, to an ultrasound imaging apparatus and method. Background technique
  • Ultrasound is one of the most important imaging tools in breast screening. Ultrasound is non-radiative, easy to use, low cost, more glandular, glandular and young women, especially near the chest muscles. damage.
  • Automatic mammography is a technology that has just emerged in recent years. It scans breast tissue through a mechanical scanning device and then builds a model that allows doctors to view breast tissue in the coronal plane, which is not possible with conventional ultrasound. effect.
  • the idea of automatic milk scanning technology can be divided into water immersion method and direct contact method.
  • the water immersion method is further divided into supine and prone.
  • the water immersion method refers to the patient's breast directly/small layer of sound-permeable material immersed in water (prone position) or water bag covering the patient's breast (supine position), and the ultrasonic probe is scanned around the breast in water.
  • the advantage of the prone position is that the breast does not deform during the scanning process.
  • the disadvantage is that the peripheral mammary gland cannot be scanned.
  • the disadvantage of the supine position is that the fluidity of the water is not easy to fix the breast, and the breast is easily deformed during scanning to affect the image reconstruction error;
  • the upper and lower surfaces of the bag form reverberation, which produces obvious artifacts.
  • the insufficiency of the water immersion method is as follows: The liquid thickness between the ultrasonic probe and the tissue affects the imaging quality, and the region of interest is not in the physical focus region; the ultrasonic probe rotating in the water may have a bubble effect. Image Quality.
  • the direct contact method is subdivided into a splint type and a down type.
  • the splint type is similar to the splint type scanning method of molybdenum crucible.
  • the patient's mammary gland is clamped and fixed from both sides by two splints.
  • the contact surface of one splint with the mammary gland is a sound-transparent plane, and the ultrasonic probe is hooked along the contact surface in the splint.
  • the splint scanning method has the following disadvantages: The scanning position is different from the surgical position, the peripheral mammary gland cannot be scanned, the patient feels uncomfortable, and the patient is not suitable for the smaller breast.
  • the down-pressure type in the direct contact method means that the ultrasound probe covers the breast of the supine patient downward, or the patient stands, the chest actively presses the ultrasonic probe (the ultrasonic probe scans the surface upwards), and the down-pressure type is suitable for a small and thin Asian patient. And the patient position is the same as the operation position. After the hand probe is scanned, the patient can continue the automatic breast scan without changing the position.
  • the down-press type is currently the most widely used method, and its specific commercial implementation is to cover with a porous mesh cloth. Breast tissue, the probe is scanned over the mesh.
  • an ultrasound imaging method including: performing, by using an ultrasonic transducer of an ultrasonic probe assembly, a first scan of an object to be inspected at a first speed to obtain a first ultrasonic echo signal, Wherein the ultrasonic probe assembly further includes an acoustic window structure, and at least a portion of a lower surface of the acoustic window structure is in contact with an object to be inspected; determining a quality of the first scan according to the first ultrasonic echo signal; The ultrasonic transducer scans the object to be inspected at a second speed, obtains a second ultrasonic echo signal, and obtains a second ultrasonic image of the object to be inspected according to the second ultrasonic echo signal; displaying the second ultrasound image.
  • the determining, according to the first ultrasonic echo signal, the quality of the first scan comprises: obtaining a first ultrasound image according to the first ultrasound echo signal, and displaying the first An ultrasound image.
  • the determining, according to the first ultrasonic echo signal, the quality of the first scan comprises: comparing the first ultrasonic echo signal with a pre-stored feature quantity; The quality of the first scan is determined by comparing the ultrasonic echo signal with a pre-stored feature amount.
  • the step of determining the quality of the first scan according to the first ultrasonic echo signal comprises: extracting a feature quantity from the first ultrasonic echo signal; The feature quantity extracted by the feature quantity extracting unit classifies the first ultrasonic echo signal; and determines the quality of the first scan according to the type of the first ultrasonic echo signal.
  • the determining, according to the category of the first ultrasonic echo signal, the quality of the first scan comprises: generating, according to a category of the first ultrasonic echo signal, the first scan Quality metric of quality; the quality metric is displayed.
  • the step of performing a first scan on the object to be inspected at the first speed includes: scanning, by the ultrasonic transducer, the object to be inspected at the first speed to obtain a first set of first ultrasonic echo signals; and scanning the ultrasonic wave at the first speed with the ultrasonic transducer Obtaining a second set of first ultrasonic echo signals, wherein the determining the quality of the first scan according to the first ultrasonic echo signals comprises: according to the first set of first ultrasonic echoes A signal and the second set of first ultrasonic echo signals determine a quality of the first scan.
  • the step of performing the first scanning of the object to be inspected at the first speed comprises: scanning, by the ultrasonic transducer, the object to be inspected in the scanning area at the first speed, to obtain the first a set of first ultrasonic echo signals; dividing the scan region into a first region and a second region according to the first set of first ultrasonic echo signals; scanning at the first speed with the ultrasonic transducer Determining, by the first region, a second set of first ultrasonic echo signals; wherein the determining the quality of the first scan according to the first ultrasonic echo signals comprises: according to the first set of first ultrasonic waves The echo signal and the second set of first ultrasonic echo signals determine the quality of the first scan.
  • the step of determining the quality of the first scan according to the first set of first ultrasonic echo signals and the second set of first ultrasonic echo signals comprises: according to the second group An ultrasonic echo signal obtains a first ultrasound image and displays the first ultrasound image.
  • the step of determining the quality of the first scan according to the first set of first ultrasonic echo signals and the second set of first ultrasonic echo signals comprises: from the second group Extracting a feature quantity in an ultrasonic echo signal; classifying the second set of first ultrasonic echo signals according to the feature quantity extracted by the feature quantity extracting unit; according to the second set of first ultrasonic echo signals The category determines the quality of the first scan.
  • the determining, according to the category of the second set of first ultrasonic echo signals, the quality of the first scan comprises: generating according to a category of the second set of first ultrasonic echo signals a quality metric representing the quality of the first scan; displaying the quality metric.
  • the step of determining the quality of the first scan according to the first set of first ultrasonic echo signals and the second set of first ultrasonic echo signals comprises: from the first group Obtaining first slice image data of a predetermined slice in an ultrasonic echo signal; acquiring second slice image data of a predetermined slice from the second set of first ultrasonic echo signals; comparing the first slice image data and The second slice image data; determining a quality of the first scan according to a comparison result of the first slice image data and the second slice image data.
  • the root is based on the first slice image data and the second slice
  • the step of determining the quality of the first scan by the comparison result of the image data comprises: generating a quality metric indicating the quality of the first scan according to a comparison result of the first slice image data and the second slice image data ; Display the quality metric.
  • the first area is an area in which the acoustic window structure is in contact with the object to be inspected
  • the second area is an area in which the acoustic window structure is in contact with air.
  • the quality of the first scan includes: a degree of contact between the acoustic window structure and the object to be inspected when the first scan is performed, and a first ultrasound image obtained by the first scan The extent of the bubble and/or the image quality of the first ultrasound image obtained by the first scan.
  • the second speed is less than the first speed.
  • the method further includes: monitoring a position of the ultrasonic transducer relative to the acoustic window structure, obtaining position information indicating a position of the ultrasonic transducer relative to the acoustic window structure, and outputting The location information.
  • An embodiment of the present invention further provides an ultrasound imaging apparatus, including: an ultrasound probe assembly, the ultrasound probe assembly comprising: a probe housing; an acoustic window structure, the acoustic window structure being located below the probe housing And at least a portion of the lower surface of the acoustic window structure is in contact with the object to be inspected; an ultrasonic transducer, the ultrasonic transducer is located above the acoustic window structure for scanning an object to be inspected; a transducer driving mechanism, The transducer drive mechanism is coupled to the ultrasonic transducer, and configured to drive the ultrasonic transducer to perform a first scan on the object to be inspected at a first speed to obtain a first ultrasonic echo signal; a processor, the signal processor receiving the first ultrasonic echo signal and determining a quality of the first scan according to the first ultrasonic echo signal; based on an analysis result of the first ultrasonic echo signal, The transducer driving mechanism is further configured to drive the ultrasonic transducer to
  • the signal processor includes a first image processing module, the first image processing module receives the first ultrasonic echo signal, and obtains the to-be-acquired according to the first ultrasonic echo signal Checking a first ultrasound image of the subject; the display device is further for displaying the first ultrasound image.
  • the signal processor includes an echo analyzer
  • the echo analyzer includes: a feature quantity extracting unit, configured to extract a feature quantity from the first ultrasonic echo signal; And configured to perform the first ultrasonic echo signal according to the feature quantity extracted by the feature quantity extracting unit a classification; a quality determining unit, configured to determine a quality of the first scan by a category divided by the classifier.
  • the quality determining unit is configured to generate a quality metric indicating a quality of the first scan according to a category of the first ultrasonic echo signal, and the display device is further configured to display the quality measure.
  • the transducer driving mechanism drives the ultrasonic transducer to scan the object to be inspected at the first speed to obtain a first set of first ultrasonic echo signals; a driving mechanism driving the ultrasonic transducer to scan the object to be inspected again at the first speed to obtain a second set of first ultrasonic echo signals; the signal processor according to the first set of first ultrasonic echoes A signal and the second set of first ultrasonic echo signals determine a quality of the first scan.
  • the signal processor includes an echo analyzer
  • the echo analyzer includes: a cut surface image acquiring unit, configured to acquire a predetermined slice from the first set of first ultrasonic echo signals a first surface image data, and second slice image data for acquiring a predetermined slice from the second set of first ultrasonic echo signals; a comparator for comparing the first slice image data with the second The cut surface image data; the quality determining unit, configured to determine the quality of the first scan according to the comparison result of the comparator.
  • the quality determining unit is configured to generate a quality metric indicating a quality of the first scan according to a comparison result of the first slice image data and the second slice image data, and
  • the display device is also for displaying the quality metric.
  • the display device further includes: a sub display module, wherein the sub display module is disposed on the probe housing for displaying the first ultrasonic image and/or the second ultrasonic image.
  • the method further includes: an ultrasonic transducer position indicator, the ultrasonic transducer position indicator is configured to monitor a position of the ultrasonic transducer relative to the acoustic window structure, and obtain the representation of the ultrasound Positional information of the transducer relative to the position of the acoustic window structure.
  • the quality of the first scan includes: a degree of contact between the acoustic window structure and the object to be inspected when the first scan is performed, and a first ultrasound image obtained by the first scan The extent of the bubble and/or the image quality of the first ultrasound image obtained by the first scan.
  • the second speed is less than the first speed.
  • the ultrasonic probe adopts a pre-sweep (the first speed sweep)
  • the ultrasound data is acquired in a manner to describe whether the surface of the acoustic window of the ultrasonic probe is in contact with or coupled with human tissue, and is adjusted to perform a regular formal scan, thereby improving the success rate of the breast scan.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of a 3D ultrasonic imaging apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of Embodiment 2 of a 3D ultrasonic imaging apparatus according to an embodiment of the present invention
  • 3 is a schematic structural diagram of Embodiment 1 of an ultrasonic probe assembly of a 3D ultrasonic imaging apparatus according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of position indication and real-time reconstruction of an ultrasound probe assembly of a 3D ultrasound imaging apparatus during a collection process according to an embodiment of the present invention
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of an ultrasonic probe assembly of a 3D ultrasonic imaging apparatus according to an embodiment of the present invention
  • Embodiment 3 is a schematic structural diagram of Embodiment 3 of an ultrasonic probe assembly of a 3D ultrasonic imaging apparatus according to an embodiment of the present invention
  • Embodiment 7 is a schematic structural diagram of Embodiment 4 of an ultrasonic probe assembly of a 3D ultrasonic imaging apparatus according to an embodiment of the present invention
  • Embodiment 8 is a schematic structural diagram of Embodiment 5 of an ultrasonic probe assembly of a 3D ultrasonic imaging apparatus according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a 3D ultrasonic imaging apparatus using a rotary encoder for slider displacement detection according to an embodiment of the present invention.
  • FIG. 10( a ) and FIG. 10 ( b ) are schematic diagrams of a 3D ultrasonic imaging apparatus using a proximity sensor for detecting a displacement of a slider according to an embodiment of the present invention
  • FIG. 11(a), FIG. 11(b), and FIG. 11(c) are schematic diagrams showing echo signals of an ultrasonic probe assembly of a 3D ultrasonic imaging apparatus in contact with different media according to an embodiment of the present invention
  • FIG. 12 is a diagram of a first embodiment of an echo analyzer in a 3D imaging device according to an embodiment of the present invention. Schematic diagram
  • 13 is a classification diagram of near-field skin layer echo characteristics according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of Embodiment 2 of an echo analyzer in a 3D imaging apparatus according to an embodiment of the present invention.
  • Figure 15 (a), Figure 15 (b) is a schematic diagram of a contact effect indicator of a 3D imaging device according to an embodiment of the present invention
  • FIG. 16 is a schematic flowchart of Embodiment 1 of a 3D imaging method according to an embodiment of the present invention
  • FIG. 17 is a schematic flowchart of Embodiment 2 of a 3D imaging method according to an embodiment of the present invention
  • FIG. 18 is a 3D imaging method according to an embodiment of the present invention
  • FIG. 19 is a schematic flowchart of Embodiment 4 of a 3D imaging method according to an embodiment of the present invention
  • FIG. 20 is a schematic flowchart of Embodiment 5 of a 3D imaging method according to an embodiment of the present invention
  • Figure 22 is a flow chart showing the workflow of the preparation stage for performing ultrasonic scanning using the 3D ultrasonic imaging apparatus provided by the embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION In one embodiment of the invention, a new ultrasound imaging technique is provided.
  • an ultrasonic imaging apparatus is provided which can be used to package a mechanical probe with a housing, and a unique "high speed pre-sweep" process is used to ensure good contact of the probe surface with the patient, and the mechanical movement of the probe itself is not directly The effect on patients and doctors is better.
  • an ultrasound imaging method includes the following steps.
  • Step 1 Using the ultrasonic transducer of the ultrasonic probe assembly to perform a first scan of the object to be inspected at a first speed to obtain a first ultrasonic echo signal.
  • the ultrasonic probe assembly includes an acoustic window structure in addition to the ultrasonic transducer described above, and at least a portion of the lower surface of the acoustic window structure is in contact with the object to be inspected.
  • the object to be examined herein may be any suitable object for applying ultrasound examination or scanning, such as a part of a human body (e.g., a breast of a human body) or a part of an animal body, and the like.
  • the specific structure of the ultrasonic probe assembly herein can be used in the present document. And the structure schematically illustrated in the drawings, as disclosed in Chinese Patent Application No. 201310351863.9 (named “an Ultrasound Probe Assembly”) or Chinese Patent Application 201310351756.6 (named “An Ultrasound Probe Assembly”) The same structure as the disclosed ultrasound probe assembly.
  • Step 2 Determine the quality of the first scan based on the first ultrasonic echo signal.
  • the "quality" of the scan refers to an image effect that affects the effect of the scanning process itself and/or scans and/or affects the final scan of the object to be inspected. A collection of various factors that look at the results.
  • the "quality" of the scan may include, but is not limited to, the degree of contact of the acoustic window structure of the ultrasonic probe assembly with the object to be inspected during scanning, the degree of bubble occurrence in the ultrasound image obtained by the scan, and/or the image of the ultrasound image obtained by the scan. Quality and so on.
  • Step 3 Scan the object to be inspected with the ultrasonic transducer at a second speed, obtain a second ultrasonic echo signal, and obtain a second ultrasonic image of the object to be inspected according to the second ultrasonic echo signal.
  • the quality of the first scan is determined based on the first ultrasonic echo signal.
  • the user can determine, according to the quality of the first scan, whether various operating parameters for the current ultrasound scan are performed (for example, the position of the ultrasound probe assembly relative to the object to be inspected, the acoustic window structure of the ultrasound probe assembly, and the object to be inspected, The imaging parameters of the ultrasound imaging device are set, etc.) are adjusted. For example, the user can determine whether the current various working parameters need or do not need to be adjusted according to the quality of the first scan. If no adjustment is needed, the various working parameters are kept unchanged; if adjustment is needed, the user can perform the first scan according to the first scan. The quality and actual needs adjust the relevant operating parameters.
  • the object to be inspected is scanned with the ultrasonic transducer at a second speed to obtain a second ultrasonic echo signal, and a second ultrasonic image of the object to be inspected is obtained according to the second ultrasonic echo signal.
  • the first scan at the first speed may be a "pre-sweep" for the current operating parameters and/or the working environment and/or operating conditions (eg, the ultrasound probe assembly relative to Preliminary judgment is made as to the position of the object to be inspected, the acoustic window structure of the ultrasonic probe assembly and the contact condition of the object to be inspected, the imaging parameter setting of the ultrasonic imaging device, etc., thereby determining whether a corresponding adjustment is required;
  • the scanning performed may be a normal scanning process for ultrasound imaging of the object to be examined for obtaining a normal ultrasound image of the subject to be examined (eg, B image, blood flow image, contrast image, spectral image, etc.).
  • Step 4 Display the second ultrasound image. After the second ultrasound image of the object to be inspected is obtained in step 3, the second ultrasound image can be displayed on the display device.
  • the foregoing determining the quality of the first scan according to the first ultrasonic echo signal may include: obtaining a first ultrasound image according to the first ultrasound echo signal, and displaying the first ultrasound image.
  • the first ultrasound image is obtained according to the first ultrasound echo signal obtained by the first scan, and the first ultrasound image is displayed, so that the user can observe the first
  • the quality of the first scan is determined by an ultrasound image.
  • the step of determining the quality of the first scan according to the first ultrasonic echo signal may include: comparing the obtained first ultrasonic echo signal with a pre-stored feature quantity, and according to the first ultrasonic echo The result of the comparison of the wave signal and the pre-stored feature amount determines the quality of the first scan.
  • the "pre-stored feature quantity" referred to herein may be a feature quantity indicating a desired signal feature and/or image feature, such as a mean value, a variance, a gradient, etc., or as mentioned or described below. Feature amount.
  • These pre-stored feature quantities may be that the ultrasound imaging device is pre-cured in the ultrasound imaging device prior to shipment from the factory, or may be stored in the ultrasound imaging device by the ultrasound imaging device either automatically or by user operation prior to the current ultrasound examination.
  • the step of determining the quality of the first scan according to the first ultrasonic echo signal may further include: extracting a feature quantity from the first ultrasonic echo signal; Extracting the feature quantity, classifying the first ultrasonic echo signal; determining the quality of the first scan according to the category of the first ultrasonic echo signal.
  • the step of determining the quality of the first scan according to the category of the first ultrasonic echo signal may include: generating a quality metric indicating the quality of the first scan according to the category of the first ultrasonic echo signal; This quality metric.
  • the "quality metric" indicating the quality of the scan refers to various identities that can qualitatively or quantitatively represent the quality of the scan, such as numerical values, colors, graphics, lines or line combinations, and the like.
  • the step of performing the first scanning of the object to be inspected at the first speed may include: scanning the object to be inspected with the ultrasonic transducer at a first speed to obtain a first set of first ultrasonic echo signals Obscuring the object to be inspected again with the ultrasonic transducer at a first speed to obtain a second set of first ultrasonic echo signals; and wherein the step of determining the quality of the first scan according to the first ultrasonic echo signal may include: The set of first ultrasonic echo signals and the second set of first ultrasonic echo signals determine the quality of the first scan.
  • the object to be inspected is repeatedly scanned at the first speed by the ultrasonic transducer at least twice, and at least the first set of the first ultrasonic echo signals and the second group are obtained.
  • One Ultrasonic echo signals That is, the first ultrasonic echo signal includes at least two groups.
  • the step of performing the first scanning of the object to be inspected at the first speed may further include: scanning the object to be inspected in the scanning area at the first speed with the ultrasonic transducer to obtain the first group of first ultrasound An echo signal; dividing the scan area into the first area and the second area according to the first set of first ultrasonic echo signals; scanning the first area with the ultrasonic transducer at the first speed to obtain the second set of first ultrasonic echoes And determining wherein the determining the quality of the first scan based on the first ultrasonic echo signal comprises: determining a quality of the first scan based on the first set of first ultrasonic echo signals and the second set of first ultrasonic echo signals.
  • the scan area of the first scan is scanned according to the first set of first ultrasonic echo signals obtained when scanning at the first speed for the first time (ie, during the scanning process)
  • the area swept by the ultrasonic transducer is divided into at least two regions, and then, when performing the second scanning at the first speed, only the region of the at least two regions that needs to be scanned is scanned, and no other scanning is performed. Areas that do not need to be scanned. In this way, the speed of the first scan can be increased, saving time.
  • the first region may be a region in which the acoustic window structure is in contact with the object to be inspected
  • the second region may be a region in which the acoustic window structure is in contact with air.
  • the step of determining the quality of the first scan according to the first set of first ultrasonic echo signals and the second set of first ultrasonic echo signals may include: obtaining the first ultrasound according to the second set of first ultrasonic echo signals Image, and display the first ultrasound image. That is, in addition to the foregoing generating the second ultrasound image, the first ultrasound image is obtained according to the second group of first ultrasound echo signals obtained by the first scan, and the first ultrasound image is displayed, thereby allowing the user to observe this The quality of the first scan is determined by an ultrasound image.
  • the step of determining the quality of the first scan according to the first set of first ultrasonic echo signals and the second set of first ultrasonic echo signals may further include: Extracting the feature quantity from the wave signal; classifying the second set of first ultrasonic echo signals according to the feature quantity extracted by the feature quantity extracting unit; determining the quality of the first scan according to the category of the second set of first ultrasonic echo signals.
  • the steps of extracting the feature amount, classifying, and determining the first scan quality according to the classification in this embodiment may be similar to the similar embodiments in the foregoing and the embodiments described in detail below.
  • the first scan is determined according to the category of the second set of first ultrasonic echo signals
  • the step of describing the quality comprises: generating a quality metric indicative of the quality of the first scan based on the category of the second set of first ultrasonic echo signals; displaying the quality metric.
  • the "quality metric" indicating the quality of the scan refers to various identities that can qualitatively or quantitatively represent the quality of the scan, such as numerical values, colors, graphics, lines or line combinations, etc. .
  • the foregoing step of determining the quality of the first scan according to the first set of first ultrasonic echo signals and the second set of first ultrasonic echo signals may further comprise: from the first set of first ultrasonic waves Obtaining first slice image data of a predetermined slice in the wave signal; acquiring second slice image data of the predetermined slice from the second set of first ultrasonic echo signals; comparing the first slice image data and the second slice image data; The comparison result of the first face image data and the second face image data determines the quality of the first scan.
  • the step of determining, by the foregoing root, the quality of the first scan according to the comparison result of the first slice image data and the second slice image data comprises: according to the first slice image data and the second slice image data As a result of the comparison, a quality metric representing the quality of the first scan is generated; the quality metric is displayed.
  • the "quality metric" indicating the quality of the scan refers to various identities that can qualitatively or quantitatively represent the quality of the scan, such as numerical values, colors, graphics, lines or line combinations, etc. .
  • the quality of the first scan may include: a degree of contact of the acoustic window structure with the object to be inspected when performing the first scan, a degree of occurrence of bubbles in the first ultrasonic image obtained by the first scan, and/or Or the image quality of the first ultrasound image obtained by the first scan, and the like.
  • the first scan may be a high speed scan that performs a high speed pre-sweep at a higher speed relative to the second speed.
  • the foregoing ultrasonic imaging method further comprises: monitoring a position of the ultrasonic transducer relative to the acoustic window structure, obtaining position information indicating a position of the ultrasonic transducer relative to the acoustic window structure, and outputting the position information .
  • the output of the location information may be output in any suitable manner, for example, may be outputted in a visual form, such as displayed on a display device (eg, displayed on a sub-display module disposed on the ultrasound probe assembly); Formal output, for example, by indicator light, sound, etc.
  • an ultrasound imaging apparatus comprising an ultrasound probe assembly, a signal processor and a display device.
  • the ultrasound probe assembly includes: Probe housing
  • the acoustic window structure is located below the probe housing, and at least a portion of the lower surface of the acoustic window structure is in contact with the object to be inspected;
  • An ultrasonic transducer the ultrasonic transducer is located above the acoustic window structure for scanning an object to be inspected; the transducer driving mechanism, the transducer driving mechanism is connected to the ultrasonic transducer, and is used for driving the ultrasonic transducer A first scan of the object to be inspected is performed at a speed to obtain a first ultrasonic echo signal.
  • the signal processor receives the first ultrasonic echo signal and determines a quality of the first scan based on the first ultrasonic echo signal.
  • the transducer driving mechanism is further configured to drive the ultrasonic transducer to scan the object to be inspected at a second speed to obtain a second ultrasonic echo signal; the signal processor further receives the first And second ultrasonic echo signals, and obtaining a second ultrasonic image of the object to be inspected according to the second ultrasonic echo signals.
  • the display device is for displaying the second ultrasound image.
  • the signal processor includes a first image processing module, the first image processing module receives the first ultrasonic echo signal, and obtains a first ultrasonic image of the object to be inspected according to the first ultrasonic echo signal;
  • the device is also for displaying a first ultrasound image.
  • the signal processor includes an echo analyzer
  • the echo analyzer includes: a feature quantity extracting unit, configured to extract a feature quantity from the first ultrasonic echo signal;
  • a classifier configured to classify the first ultrasonic echo signal according to the feature quantity extracted by the feature quantity extracting unit
  • the quality determining unit is configured to determine the quality of the first scan according to the category of the classifier.
  • the quality determining unit is configured to generate a quality metric representing the quality of the first scan based on the type of the first ultrasonic echo signal, and the display device is further configured to display the quality metric.
  • the transducer drive mechanism drives the ultrasonic transducer to scan the object to be inspected at a first speed to obtain a first set of first ultrasonic echo signals; and then the transducer drive mechanism drives the ultrasonic transducer to The first speed scans the object to be inspected again to obtain a second set of first ultrasonic echo signals; and the signal processor determines the quality of the first scan according to the first set of first ultrasonic echo signals and the second set of first ultrasonic echo signals .
  • the signal processor includes an echo analyzer
  • the echo analyzer includes: a sliced image acquisition unit configured to acquire a first slice of the predetermined slice from the first set of first ultrasonic echo signals Surface image data, and second slice image data for acquiring a predetermined slice from the second set of first ultrasonic echo signals; a comparator for comparing the first slice image data with the second slice image data; the quality determining unit, The quality of the first scan is determined based on the comparison result of the comparator.
  • the quality determining unit is configured to generate a quality metric indicating the quality of the first scan based on the comparison result of the first slice image data and the second slice image data, and the display device is further configured to display the quality metric.
  • the display device further includes: a sub display module, the sub display module is disposed on the probe housing for displaying the first ultrasonic image and/or the second ultrasonic image.
  • the method further includes: an ultrasonic transducer position indicator for monitoring a position of the ultrasonic transducer relative to the acoustic window structure, obtaining an ultrasonic transducer relative to the acoustic window Location information for the location of the structure.
  • the location information can be output by the aforementioned display device. In a further embodiment of the invention, the location information can be output by the sub-display module of the aforementioned display device.
  • the quality of the first scan may include: a degree of contact of the acoustic window structure with the object to be inspected when performing the first scan, a degree of occurrence of bubbles in the first ultrasonic image obtained by the first scan, and/or a first scan obtained The image quality of the first ultrasound image.
  • the second speed may be less than the first speed.
  • the foregoing ultrasonic imaging method may be a general two-dimensional ultrasound imaging method, or may be a three-dimensional (3D) ultrasound imaging method.
  • the ultrasound imaging device may be a two-dimensional ultrasound imaging device, or may be three-dimensional. Ultrasound imaging device.
  • FIG. 1 is a schematic structural view of a first embodiment of a 3D ultrasound imaging apparatus provided by the present invention.
  • the 3D ultrasound imaging apparatus provided by this embodiment includes: an ultrasound probe component 1 and a signal processor, wherein the signal processor may include an echo analyzer 2;
  • the ultrasound probe assembly 1 includes:
  • An acoustic window structure 11 is located below the probe housing 10 and is attached to the probe housing 10 Forming a sealed cavity, the sealed cavity is filled with coupling oil; the surface of the acoustic window structure 11 is in direct contact with the breast of the human body to be inspected;
  • An ultrasonic transducer 12 comprising an acoustic head and a vertical axis; the acoustic head being immersed in the coupling oil of the sealed cavity and moving back and forth in the sealed cavity at a first speed through the acoustic window
  • the surface of the structure 11 performs high-speed pre-sweeping on the breast of the human body to be inspected to obtain an initial ultrasonic signal;
  • the acoustic window structure 11 uses a probe acoustic window material with high mechanical strength, and the mechanical movement of the ultrasonic transducer 12 does not act on the human body through the acoustic window structure 11, so that deformation does not occur, and the probe The scanned track is fixed and the process of collecting is stable, which can avoid "tightening and then loosening” or “first loosening and then tightening” due to the improper initial angle of the probe.
  • the echo analyzer 2 is configured to analyze an initial ultrasonic signal obtained by the ultrasonic transducer 12, and determine an ultrasonic image quality obtained by the ultrasonic transducer 12 to perform high-speed pre-scan;
  • the ultrasonic transducer 12 is reciprocally circulated in the sealed cavity at a second speed to re-scan to obtain an ultrasonic signal.
  • the echo analyzer 2 will be described in detail in the subsequent embodiments.
  • FIG. 2 is a schematic structural view of a second embodiment of a 3D ultrasound imaging apparatus provided by the present invention. Compared with the first embodiment, the apparatus provided in the second embodiment further includes:
  • the image processor 3 is configured to process an ultrasonic signal acquired when the ultrasonic transducer 12 moves back and forth in the sealed cavity at a second speed, and analyze an ultrasonic signal that has been collected at a certain depth to reconstruct a 3D image. Coronal image.
  • FIG. 3 is a schematic structural view of Embodiment 1 of an ultrasonic probe assembly of a 3D ultrasonic imaging apparatus provided by the present invention.
  • the third embodiment will focus on the specific composition of the ultrasonic probe assembly 1 of the 3D ultrasonic imaging apparatus, and further includes:
  • An acoustic window structure 11 is disposed under the probe housing 10 and is attached to the probe housing 10 to form a sealed cavity filled with coupling oil; the surface of the acoustic window structure 11 and the human body to be inspected Direct contact with the breast;
  • An ultrasonic transducer 12 comprising an acoustic head and a vertical axis; the acoustic head being immersed in the coupling oil of the sealed cavity and moving back and forth in the sealed cavity at a first speed through the acoustic window
  • the surface of the structure 11 performs high-speed pre-sweeping on the breast of the human body to be inspected to obtain an initial ultrasonic signal;
  • the energy device 12 can also reciprocally move in the sealed cavity at a second speed to re-scan to obtain an ultrasonic signal.
  • a display module 13 is further disposed on the top of the probe housing 11 for real-time display of an initial ultrasonic signal acquired when the ultrasonic transducer 12 is reciprocatingly moved at a first speed to reflect the ultrasonic transducer 12 .
  • the ultrasonic image quality obtained by the high speed pre-scan is performed, and the 3D coronal image reconstructed by the image processor 3.
  • a handle 14 can be disposed on both sides of the probe housing 10 of the ultrasonic probe assembly to facilitate user operation.
  • the display module 13 is fixed above the probe, corresponding to the actual scanning surface in physical position--correspondingly, the user can understand the current scanning condition of the probe through the screen of the display module 13, similar to the effect of a "perspective", which is relatively intuitive. 4 is shown.
  • the surface of the acoustic window structure 11 shown in FIG. 3 is a flat surface. In other implementations, the surface of the acoustic window structure 11 may also be a curved surface or a closed cylindrical shape. For details, please refer to FIG. 5 and FIG. The working principle is the same as that of the ultrasonic probe assembly shown in FIG. 3, and details are not described herein again.
  • FIG. 7 is a schematic structural view of Embodiment 4 of an ultrasonic probe assembly of a 3D ultrasonic imaging apparatus according to the present invention.
  • the ultrasonic probe assembly of the fourth embodiment further includes:
  • a lead screw assembly 14 consisting of a lead screw 141 and two slide rails 142, a motor 15;
  • the lead screw 141 is connected to the vertical axis of the ultrasonic transducer 12 through a slider 1410; the electrode 15 pulls the lead screw to move horizontally along the sliding rail 142 to drive the ultrasonic exchange The energy device 12 moves horizontally within the sealed chamber.
  • FIG. 8 is a schematic structural view of Embodiment 5 of an ultrasonic probe assembly of a 3D ultrasonic imaging apparatus according to the present invention.
  • a head position indicator 4 for monitoring the position of the lead screw assembly 14 when the ultrasonic transducer 12 is moved back and forth in the sealed cavity at a first speed or a second speed, The positional information of the acoustic head in the sealed cavity.
  • the position indicating unit 5 is configured to mark the current scanning position of the ultrasonic transducer 12 according to the received marking instruction. In the specific implementation, if the user stops the collection and restarts, or One of the ROI regions of the image is of interest, and it is intended to re-collect the region.
  • the touch panel input device of the display module 13 inputs an instruction, and the position marking unit 5 can mark the collection region, and the ultrasonic probe assembly can be re-arranged. Set this specific area.
  • the head position indicator 4 is a resistive sensor or an inductive sensor or a rotary encoder or a proximity sensor, and the mechanical motion of the slider 1410 is converted into a voltage or a current amount by these sensors.
  • the rotary encoder is linked with the lead screw, and the output can be detected by two pulses, and the displacement and the direction of the slider are detected by the pulse of the phase difference.
  • the positioning can also be achieved by a proximity sensor, the metal body is fixed on the slider 1410 and horizontally moved together with the ultrasonic transducer, and the proximity sensor is fixed on the inner wall of the cavity, when the slider 1410 and the metal body move. Near the proximity sensor, the proximity sensor responds to the processor through the leads.
  • sensor positions A and B are located at kl and k2, respectively. position.
  • the slider moves, it can be counted by the number of pulses of the stepping motor.
  • the internal count value should be equal to kl. If it is not equal to kl, it indicates that the positioning has an error and needs to be calibrated. For the same reason, calibration can be performed at position B.
  • the slider can be reciprocated once to perform two calibrations; when only one proximity sensor is used, the slider can be calibrated once and for all.
  • the function of the echo analyzer 2 provided by the present invention is to identify three cases a, b and c.
  • the ultrasonic signal received by the probe (hereinafter referred to as the probe) is as shown in Fig. 11(a), due to the mixing of the probe surface.
  • the near-field echo periodically oscillates, but it decays rapidly.
  • the echo is characterized by a certain intensity within a certain range of the near field. As the depth increases, the intensity decays rapidly. As the depth increases, the near-field artifact disappears, close to the noise of the probe at no load. Background.
  • the ultrasonic waves When there is more couplant on the probe and it is not in contact with the human body, the ultrasonic waves will be reflected multiple times within the thickness of the couplant to form a reverberation. Due to the small attenuation of the ultrasonic wave by the coupling agent, the near-field echo of the echo is weak, and when the irregular interface between the coupling and the air is reached, a strong echo is formed, and the reverberation is formed to form a reverberation. For long distances, the far field echo intensity is uniform and the variance is gradually attenuated, as shown in Figure 11(b).
  • the skin layer in the near field may have a medium-high echo. There may be multiple points with strong echoes below the skin layer, or they may decay rapidly after a point with strong echoes. The echo variance is mostly large.
  • Coupled agent echo low echo region
  • the near field may contain point-like high echo, followed by strong echo and slow oscillation attenuation. It is more likely that there are more coupling agents and no contact with the human body. Because the interface of the coupling agent forming the reverberation is irregular, the amplitude of the echo signal becomes relatively uniform after several reflections;
  • the attribution of the classes is not limited to "one or the other". It is allowed to introduce the concept of ambiguity and define the "scalar measure" of good contact: Assume that the contact with the human body is well set. The output indication is 1, the direct contact with air is 0, and the other can be attributed to 0 to 1 according to the degree of contact. Display this measure in the display module 13 to guide the operation of the doctor Students interact. The way of display can be distinguished by grayscale height or color. When the probe is directly in contact with air or there is less coupling agent, it can be judged well by echo analysis. Assuming that the probe is in direct contact with air, its echo signal is almost fixed. If it is Eair, it can be judged by matching the similarity between the actual collected echo signals E and Eair. The similarity can be defined as distance-dependent. , for example, Euclidean distance:
  • the present invention provides the first embodiment of the echo analyzer.
  • FIG. 12 it is a schematic structural diagram of Embodiment 1 of an echo analyzer in a 3D imaging device provided by the present invention, which includes:
  • the feature quantity extracting unit 20 is configured to extract a feature quantity from the initial ultrasonic signal obtained by the ultrasonic transducer 12;
  • the classifier 21 classifies the initial ultrasonic signals obtained by the ultrasonic transducer 12 according to the feature quantities extracted by the feature amount extracting unit 20;
  • the quality determining unit 22 is configured to determine, according to the category of the classifier 21, the degree of contact between the acoustic head through the acoustic window structure 11 of the ultrasonic transducer 12 and the breast of the human body to be inspected or the degree of occurrence of bubbles in the ultrasonic image. .
  • the feature value extracted by the feature value extracting unit 20 is in addition to the Euclidean distance:
  • the near-field echo characteristics are: when there are more couplants, the near-field attenuation is less, showing a low echo; in addition, the couplant contains small bubbles, which exhibits a point-like high echo in the low echo; the overall is the echo signal Low, large variance; in contrast, the echo of the organization near field is medium or high echo, and the signal distribution is relatively stable.
  • the horizontal axis represents the mean value of the near-field signal
  • the vertical axis represents the variance of the near-field signal
  • "0" represents that the probe surface has more couplant, the mean value is smaller, and the variance is relatively larger
  • "X" It indicates that the probe is in contact with human tissue, and the coupling is good.
  • the near-field echo amplitude is relatively large and stable.
  • the middle dotted line is two kinds of boundaries. Generally, data within 2 ⁇ 3mm can be selected for analysis. Written as:
  • the far-field echo characteristic means that the reverberation formed by the low attenuation of the couplant will last for a long time, such as As shown in Fig. 2(b), the characteristic quantity of the far-field echo can select the variance of the far-field echo, and the reverberation variation of the far-field of the coupling agent is relatively small. Due to the influence of internal gain, the echoes of the far-field field can be de-trended by time series analysis, and the calculated variance can more accurately reflect this characteristic.
  • the "detrended variance" feature of the far field can be recorded as (analysis of echo signals below a fixed depth, such as 2 cm to deeper areas):
  • the feature vectors for discriminating the above three categories can be recorded as:
  • X [AirSimilarity, SkinLayerMean, SkinLayerStd, DetrendFarfieldStd]T
  • feature value extracting unit 20 can also extract feature values from the initial ultrasonic signals obtained from the ultrasonic transducer 12 by principal component analysis or by deep learning.
  • the classifier 21 establishes a classifier by the above four feature quantities, and divides the echo signal into three classifications. It should be noted that the classifier 21 has multiple implementation manners, and can be based on a Bayesian statistical classifier or a kernel function based. Classifier or classifier for support vector machines.
  • the following describes a recognition method based on Bayesian statistics.
  • x), p(w b
  • x) and p(w c
  • the minimum error rate Bayesian classifier is used to judge: Select the class with the largest posterior probability to complete the discrimination.
  • classifiers such as kernel functions and support vector machines, to achieve classification problems by maximizing decision boundaries; or using decision trees, multi-layer feedforward neural networks, etc., the specific method is not here - repeat.
  • echo analyzer that analyzes an image in a slice based on the current echo and its adjacent echo information, such as the texture features of the image in a region (texture features and couplant of human tissue)
  • the texture of the reverb has a large difference, and the purpose of determining the "scalar measure" can also be achieved.
  • a schematic structural diagram of Embodiment 2 of an echo analyzer in a 3D imaging device includes:
  • the sliced image acquiring unit 23 is configured to obtain adjacent images in the same slice from the initial ultrasonic signals obtained by the ultrasonic transducer 12;
  • the comparator 24 compares the adjacent images in the unified slice acquired by the slice image acquiring unit 23; the quality determining unit 25 is configured to determine the ultrasonic transducer 12 according to the comparison result of the comparator 23.
  • the purpose of the echo analyzer 2 is to give an indication of the current imaging quality by analyzing the echo signals.
  • the doctor does not wait too long for the 3D ultrasound imaging device to completely collect the entire 3D data when the ultrasound probe is placed, and the present invention uses a sparse sampling method to collect data, effectively reducing the placement of the probe.
  • Preparation time When the present invention performs normal scanning and 3D reconstruction, the 10 cm area requires about 30 seconds to collect about 200 frames of data, that is, 6-7 frames of data per second. When detecting contact or not, it may take only 3 seconds to complete the whole volume data scanning. According to the collection speed of 15 frames per second, about 45 frames of data can be collected, that is, 2-3 mm is collected. Such a sampling frequency is sufficient for detecting whether there is contact. In fact, during the detection process, it is often possible to use a higher pulse repetition frequency because the analysis does not require deeper echo data, and thus the detection accuracy or the collection speed can be further improved.
  • the ultrasonic transducer repeatedly collects the data of the entire scanning surface at a high speed, and analyzes and reconstructs the collected result on the screen of the display module, and the doctor can obtain the entire image from the screen in a short time.
  • the general form is to judge the area with poor contact, and adjust the angle and position of the acoustic window of the probe in real time to achieve the best condition.
  • the probe is oriented to the left, After about 2-3 seconds of data collection, the echo analyzer of the 3D ultrasound imaging device analyzes the echo data and judges and displays the contact and non-contact areas.
  • the black area is in good contact with the tissue.
  • the area, the white area is the non-contact area.
  • the amount of computation for real-time 3D reconstruction is very small, since the calculation is an incremental algorithm and the reconstructed image is not recalculated.
  • the user re-changes the depth of the collection or changes the effect, it is necessary to reconstruct the updated data.
  • the present invention also provides a 3D ultrasound imaging method implemented by the aforementioned 3D ultrasound imaging apparatus.
  • FIG. 16 a schematic flowchart of a first embodiment of a 3D imaging method according to the present invention is provided.
  • the method of the first embodiment includes:
  • Step 100 directly contacting a surface of the acoustic window structure of the ultrasonic probe assembly with a breast of a human body to be inspected;
  • Step 101 The ultrasonic transducer moves back and forth in the sealed cavity at a first speed, and the breast of the human body to be inspected is pre-swept through the surface of the acoustic window structure to obtain an initial ultrasonic signal.
  • Step 102 The echo analyzer analyzes an initial ultrasonic signal obtained by the ultrasonic transducer, and determines an ultrasonic image quality obtained by the ultrasonic transducer performing high-speed pre-scan;
  • Step 103 The ultrasonic transducer moves back and forth in the sealed cavity at a second speed, and re-scans to obtain an ultrasonic signal.
  • FIG. 17 a schematic flowchart of a second embodiment of a 3D imaging method according to the present invention is provided.
  • the method of the second embodiment includes:
  • Step 200 directly contacting a surface of the acoustic window structure of the ultrasonic probe assembly with a breast of a human body to be inspected;
  • Step 201 the ultrasonic transducer moves back and forth in the sealed cavity at a first speed, and the breast of the human body to be inspected is pre-swept through the surface of the acoustic window structure to obtain an initial ultrasonic signal.
  • Step 202 The echo analyzer analyzes an initial ultrasonic signal obtained by the ultrasonic transducer, and determines an ultrasonic image quality obtained by the ultrasonic transducer performing high-speed pre-scan;
  • Step 203 the ultrasonic transducer moves back and forth in the sealed cavity at a second speed, and the weight The new scan acquires an ultrasonic signal.
  • Step 204 Processing an ultrasonic signal acquired by the ultrasonic transducer during a round-trip cyclic movement in the sealed cavity at a second speed, analyzing an ultrasonic signal that has been collected at a certain depth, and reconstructing a 3D coronal image.
  • FIG. 18 it is a schematic flowchart of Embodiment 3 of a 3D imaging method provided by the present invention.
  • the third embodiment mainly describes a first method for performing echo analysis by an echo analyzer, which specifically includes:
  • Step 2020 extracting feature quantities from the initial ultrasonic signals obtained by the ultrasonic transducer; in particular, the feature values may be extracted from the initial ultrasonic signals obtained from the ultrasonic transducers by principal component analysis or by deep learning.
  • Step 2021 classify an initial ultrasonic signal obtained by the ultrasonic transducer according to the extracted feature quantity.
  • a classifier based on Bayesian statistics or a core may be used according to the extracted feature quantity.
  • a classifier of the function or a classifier of the support vector machine classifies the initial ultrasonic signals obtained by the ultrasonic transducer.
  • Step 2022 Determine, according to a category to which the initial ultrasonic signal is divided, a degree of contact between the acoustic head of the ultrasonic transducer and the breast of the human body to be inspected or a degree of occurrence of bubbles in the ultrasonic image.
  • FIG. 19 it is a schematic flowchart of Embodiment 4 of a 3D imaging method provided by the present invention.
  • the third embodiment mainly describes a second method for performing echo analysis by an echo analyzer, which specifically includes:
  • Step 2023 Acquire an adjacent image in the same slice from the initial ultrasonic signal obtained by the ultrasonic transducer
  • Step 2024 comparing adjacent images in the acquired unified slice
  • Step 2025 Determine, according to the comparison result, a degree of contact between the acoustic head of the ultrasonic transducer and the breast of the human body to be inspected or a degree of bubble appearance of the ultrasonic image.
  • Embodiment 5 of the 3D imaging method provided by the present invention.
  • the fifth embodiment specifically includes:
  • Step 300 directly contacting the surface of the acoustic window structure of the ultrasonic probe assembly with the breast of the human body to be inspected;
  • Step 301 the ultrasonic transducer moves back and forth in the sealed cavity at a first speed, and the breast of the human body to be inspected is pre-swept through the surface of the acoustic window structure to obtain an initial ultrasonic signal.
  • Step 302 the echo analyzer analyzes an initial ultrasonic signal obtained by the ultrasonic transducer, and determines an ultrasonic image quality obtained by the ultrasonic transducer performing high-speed pre-scan;
  • Step 303 The ultrasonic transducer moves back and forth in the sealed cavity at a second speed, and re-scans to obtain an ultrasonic signal.
  • Step 304 Process the ultrasonic signal acquired by the ultrasonic transducer at the second speed during the reciprocating movement of the sealed cavity, analyze the ultrasonic signal that has been collected at a certain depth, and reconstruct the 3D coronal image.
  • Step 305 Real-time display an initial ultrasonic signal obtained when the ultrasonic transducer is reciprocatingly moved at a first speed to reflect an ultrasonic image quality obtained by the ultrasonic transducer for performing high-speed pre-scan, and the 3D coronal image.
  • the method further includes:
  • the position information of the ultrasonic transducer is obtained by means of a sensor as described in the foregoing embodiment of the 3D ultrasonic imaging device, and details are not described herein again.
  • Figure 21 is a flow chart showing the preparation phase of the ultrasonic scanning using the 3D ultrasonic imaging apparatus provided by the present invention:
  • the 3D ultrasonic imaging apparatus first enters the preparation stage and performs scanning at the first moving speed (may complete in 2-3 seconds) One back and forth), at this time, the echo analyzer inside the 3D ultrasonic imaging device analyzes the collected echo signal, calculates the contact degree of the surface, and indicates on the corresponding display, the process repeats the cycle until the user exits the cycle. .
  • Fig. 22 is a flow chart showing the preparation phase of the ultrasonic scanning using the 3D ultrasonic imaging apparatus provided by the present invention.
  • the condition for exiting the preparation phase is that the user approves the current probe position placement, and the user decides whether to formally enter the data collection stage by observing the contact indication and adjusting the probe position.
  • the present invention provides a 3D ultrasonic imaging apparatus and method, wherein the acoustic window structure of the ultrasonic probe used is high in mechanical strength, has good sound permeability, and maintains good stability with the breast of the human body to be inspected.
  • the 3D ultrasonic imaging apparatus provided by the present invention rapidly acquires ultrasonic data by using a high-speed pre-sweeping method to evaluate the contact or coupling of the acoustic window surface of the ultrasonic probe with human tissue. After adjustment, high-speed scanning is performed, thereby improving the success rate of mammography scanning.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM). It is to be understood that the specific embodiments of the invention are limited only by the description. It will be apparent to those skilled in the art that the present invention may be practiced without departing from the spirit and scope of the invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Quality & Reliability (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种3D超声成像装置,包括:超声探头组件(1)和回波分析器(2),该探头包括探头外壳(10);声窗结构(11),其与探头外壳(10)贴合构成一密封腔体;该声窗结构(11)的表面与待检査人体的乳房直接接触;超声换能器(12),其声头在密封腔体内以第一速度往返循环移动,透过声窗结构(11)的表面对待检査人体的乳房进行高速预扫,获得初始超声波信号;回波分析器(2),用于对初始超声波信号进行分析,确定超声换能器(12)进行高速预扫获得的超声图像质量;超声换能器(12)以第二速度在密封腔体中往返移动,重新扫描获得超声波信号。以及一种3D超声成像方法,用高速预扫的方式快速获取超声数据,以评估超声探头与人体组织接触或者耦合的好坏,经调整后再以第二种速度进行扫描,提高了乳腺扫描的成功率。

Description

一种超声成像装置及方法
技术领域
本发明涉及医疗技术领域, 尤其涉及一种超声成像装置及方法。 背景技术
超声在乳腺筛查中是最重要的影像学工具之一, 超声检查无辐射、 使用方 便、 费用低, 对腺体多, 腺体质密和年轻女性, 特别是靠近胸肌的部位效果良 好且无损伤。
乳腺自动扫描技术是最近几年刚刚兴起的一项技术, 这种技术通过一个机 械扫描装置对乳腺组织进行扫描, 然后建立模型, 使医生能够在冠状面来观察 乳腺组织, 获得常规超声无法达到的效果。
全乳自动扫描技术思路可分为水浸法和直接接触法。 水浸法又分为仰卧式 和俯卧式。 水浸法是指病人乳房直接 /隔一层透声材料浸在水中 (俯卧位)或水 袋覆盖在病人乳房上(仰卧位), 超声探头在水中围绕乳房旋转扫描。 俯卧位的 优点是扫查过程中乳房没有形变, 不足之处是不能扫查外周乳腺; 仰卧位的不 足之处是水的流动性不易固定乳房, 扫描过程中乳房易变形影响图像重建误差; 水袋上下表面形成混响, 产生明显伪像; 另外水浸法的不足还有: 超声探头与 组织之间液体厚度影响成像质量, 感兴趣区域不在物理焦点区域; 超声探头在 水中旋转可能产生气泡影响图像质量。
直接接触法又细分为夹板式和下压式。 夹板式类似于钼耙的夹板式扫查方 法, 病人乳腺被两个夹板从两侧夹住固定, 一个夹板与乳腺的接触面是透声平 面, 超声探头在这个夹板内沿着接触面勾速移动扫描乳房。 夹板式扫查方法存 在以下不足: 扫描摆位不同于手术位、 不能扫查外周乳腺、 病人感觉不舒服、 不适合乳房较小的病人。
直接接触法中的下压式是指超声探头向下覆盖仰卧病人的乳房, 或病人站 立, 胸部主动压向超声探头(超声探头扫描表面朝上), 下压式的特点适合体型 瘦小的亚洲病人, 而且病人摆位与手术位同, 手持探头扫查后, 病人不需变换 摆位即可继续全乳自动扫描。
下压式是目前应用最广的一种方法, 其具体商业实现是釆用多孔网布覆盖 乳腺组织, 探头在网布上面进行扫描。
但是, 目前的下压式乳腺自动扫描技术有一定的不足。
例如, 由于目前的重建是机械扫描结束之后才进行, 如果某些区域与人体 组织接触不好, 被空气阻隔而产生黑影, 则会严重影响图像质量。 由于扫描时 间较长, 无法事先知道接触情况是否理想, 数据釆集的成功率受到了影响。 发明内容
为解决现有技术中存在的技术问题, 本发明提供一种超声成像装置及方法。 本发明一个实施例中, 提供了一种超声成像方法, 其特征在于, 包括: 用 超声探头组件的超声换能器以第一速度对待检查对象进行第一扫描, 获得第一 超声回波信号, 其中所述超声探头组件还包括声窗结构, 并且所述声窗结构的 下表面的至少一部分与待检查对象接触; 根据所述第一超声回波信号确定所述 第一扫描的质量; 用所述超声换能器以第二速度扫描待检查对象, 获得第二超 声回波信号, 并根据所述第二超声回波信号获得所述待检查对象的第二超声图 像; 显示所述第二超声图像。
本发明一个实施例中, 所述根据所述第一超声回波信号确定所述第一扫描 的质量的步骤包括: 根据所述第一超声回波信号获得第一超声图像, 并显示所 述第一超声图像。
本发明一个实施例中, 所述根据所述第一超声回波信号确定所述第一扫描 的质量的步骤包括: 比较所述第一超声回波信号和预先存储的特征量; 根据所 述第一超声回波信号和预先存储的特征量的比较结果, 确定所述第一扫描的质 量。
本发明一个实施例中, 所述根据所述第一超声回波信号确定所述第一扫描 的质量的步骤包括的步骤包括: 从所述第一超声回波信号中提取特征量; 根据 所述特征量提取单元所提取的特征量, 将所述第一超声回波信号进行分类; 根 据所述第一超声回波信号的类别确定所述第一扫描的质量。
本发明一个实施例中, 所述根据所述第一超声回波信号的类别确定所述第 一扫描的质量的步骤包括: 根据所述第一超声回波信号的类别生成表示所述第 一扫描的质量的质量度量; 显示所述质量度量。
本发明一个实施例中, 所述以第一速度对待检查对象进行第一扫描的步骤 包括: 用所述超声换能器以所述第一速度扫描所述待检查对象, 获得第一组第 一超声回波信号; 用所述超声换能器以所述第一速度再次扫描所述待检查对象, 获得第二组第一超声回波信号; 其中所述根据所述第一超声回波信号确定所述 第一扫描的质量的步骤包括: 根据所述第一组第一超声回波信号和所述第二组 第一超声回波信号确定所述第一扫描的质量。
本发明一个实施例中 , 所述以第一速度对待检查对象进行第一扫描的步骤 包括: 用所述超声换能器以所述第一速度在扫描区域内扫描所述待检查对象, 获得第一组第一超声回波信号; 根据所述第一组第一超声回波信号, 将所述扫 描区域分成第一区域和第二区域; 用所述超声换能器以所述第一速度扫描所述 第一区域, 获得第二组第一超声回波信号; 其中所述根据所述第一超声回波信 号确定所述第一扫描的质量的步骤包括: 根据所述第一组第一超声回波信号和 所述第二组第一超声回波信号确定所述第一扫描的质量。
本发明一个实施例中, 根据所述第一组第一超声回波信号和所述第二组第 一超声回波信号确定所述第一扫描的质量的步骤包括: 根据所述第二组第一超 声回波信号获得第一超声图像, 并显示所述第一超声图像。
本发明一个实施例中, 根据所述第一组第一超声回波信号和所述第二组第 一超声回波信号确定所述第一扫描的质量的步骤包括: 从所述第二组第一超声 回波信号中提取特征量; 根据所述特征量提取单元所提取的特征量, 将所述第 二组第一超声回波信号进行分类; 根据所述第二组第一超声回波信号的类别确 定所述第一扫描的质量。
本发明一个实施例中, 所述根据所述第二组第一超声回波信号的类别确定 所述第一扫描的质量的步骤包括: 根据所述第二组第一超声回波信号的类别生 成表示所述第一扫描的质量的质量度量; 显示所述质量度量。
本发明一个实施例中, 根据所述第一组第一超声回波信号和所述第二组第 一超声回波信号确定所述第一扫描的质量的步骤包括: 从所述第一组第一超声 回波信号中获取预定切面的第一切面图像数据; 从所述第二组第一超声回波信 号中获取预定切面的第二切面图像数据; 比较所述第一切面图像数据和所述第 二切面图像数据; 根据所述第一切面图像数据和所述第二切面图像数据的比较 结果确定所述第一扫描的质量。
本发明一个实施例中, 所述根根据所述第一切面图像数据和所述第二切面 图像数据的比较结果确定所述第一扫描的质量的步骤包括: 根据所述第一切面 图像数据和所述第二切面图像数据的比较结果, 生成表示所述第一扫描的质量 的质量度量; 显示所述质量度量。
本发明一个实施例中, 所述第一区域为在其中所述声窗结构与所述待检查 对象接触的区域, 所述第二区域为在其中所述声窗结构与空气接触的区域。
本发明一个实施例中, 所述第一扫描的质量包括: 进行所述第一扫描时所 述声窗结构与所述待检查对象的接触程度、 所述第一扫描获得的第一超声图像 中出现气泡的程度和 /或所述第一扫描获得的第一超声图像的图像质量。
本发明一个实施例中, 所述第二速度小于所述第一速度。
本发明一个实施例中, 还包括: 监测所述超声换能器相对于所述声窗结构 的位置, 获得表示所述超声换能器相对于所述声窗结构的位置的位置信息, 并 且输出所述位置信息。
本发明的实施例还提供了一种超声成像装置, 其特征在于, 包括: 超声探 头组件, 所述超声探头组件包括: 探头外壳; 声窗结构, 所述声窗结构位于所 述探头外壳下方, 并且所述声窗结构的下表面的至少一部分与待检查对象接触; 超声换能器, 所述超声换能器位于所述声窗结构上方, 用于扫描待检查对象; 换能器驱动机构, 所述换能器驱动机构连接到所述超声换能器, 并且用于驱动 所述超声换能器以第一速度对所述待检查对象进行第一扫描, 获得第一超声回 波信号; 信号处理器, 所述信号处理器接收所述第一超声回波信号并根据所述 第一超声回波信号确定所述第一扫描的质量; 基于对所述第一超声回波信号的 分析结果, 所述换能器驱动机构还用于驱动所述超声换能器以第二速度扫描所 述待检查对象, 获得第二超声回波信号; 所述信号处理器还接收所述第二超声 回波信号, 并根据所述第二超声回波信号获得所述待检查对象的第二超声图像; 显示装置, 所述显示装置用于显示所述第二超声图像。
本发明一个实施例中, 所述信号处理器包括第一图像处理模块, 所述第一 图像处理模块接收所述第一超声回波信号, 并根据所述第一超声回波信号获得 所述待检查对象的第一超声图像; 所述显示装置还用于显示所述第一超声图像。
本发明一个实施例中, 所述信号处理器包括回波分析器, 所述回波分析器 包括: 特征量提取单元, 用于从所述第一超声回波信号中提取特征量; 分类器, 用于根据所述特征量提取单元所提取的特征量, 将所述第一超声回波信号进行 分类; 质量确定单元, 用于 居所述分类器所分的类别确定所述第一扫描的质 量。
本发明一个实施例中 , 所述质量确定单元用于根据所述第一超声回波信号 的类别生成表示所述第一扫描的质量的质量度量, 并且所述显示装置还用于显 示所述质量度量。
本发明一个实施例中, 所述换能器驱动机构驱动所述超声换能器以所述第 一速度扫描所述待检查对象, 获得第一组第一超声回波信号; 所述换能器驱动 机构驱动所述超声换能器以所述第一速度再次扫描所述待检查对象, 获得第二 组第一超声回波信号; 所述信号处理器根据所述第一组第一超声回波信号和所 述第二组第一超声回波信号确定所述第一扫描的质量。
本发明一个实施例中, 所述信号处理器包括回波分析器, 所述回波分析器 包括: 切面图像获取单元, 用于从所述第一组第一超声回波信号中获取预定切 面的第一切面图像数据, 以及从所述第二组第一超声回波信号中获取预定切面 的第二切面图像数据; 比较器, 用于比较所述第一切面图像数据和所述第二切 面图像数据; 质量确定单元, 用于根据所述比较器的比较结果, 确定所述第一 扫描的质量。
本发明一个实施例中 , 所述质量确定单元用于根据所述第一切面图像数据 和所述第二切面图像数据的比较结果生成表示所述第一扫描的质量的质量度 量, 并且所述显示装置还用于显示所述质量度量。
本发明一个实施例中, 所述显示装置还包括: 子显示模块, 所述子显示模 块设置在所述探头外壳上,用于显示所述第一超声图像和 /或所述第二超声图像。
本发明一个实施例中, 还包括: 超声换能器位置指示器, 所述超声换能器 位置指示器用于监测所述超声换能器相对于所述声窗结构的位置, 获得表示所 述超声换能器相对于所述声窗结构的位置的位置信息。
本发明一个实施例中, 所述第一扫描的质量包括: 进行所述第一扫描时所 述声窗结构与所述待检查对象的接触程度、 所述第一扫描获得的第一超声图像 中出现气泡的程度和 /或所述第一扫描获得的第一超声图像的图像质量。
本发明一个实施例中, 所述第二速度小于所述第一速度。
实施本发明, 具有如下有益效果:
本发明提供的超声成像装置和方法, 其超声探头釆用预扫 (第一速度的扫 描 /第一扫描) 的方式获取超声数据, 以评估超声探头的声窗表面与人体组织接 触或者耦合的好坏, 经调整后再进行常规的正式扫描, 从而提高了乳腺扫描的 成功率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种 3D超声成像装置实施例一的结构示意图; 图 2为本发明实施例提供的一种 3D超声成像装置实施例二的结构示意图。 图 3为本发明实施例提供的一种 3D超声成像装置的超声探头组件实施例一 的结构示意图;
图 4为本发明实施例提供的一种 3D超声成像装置的超声探头组件在釆集过 程中位置标示和实时重建的示意图;
图 5为本发明实施例提供的一种 3D超声成像装置的超声探头组件实施例二 的结构示意图;
图 6为本发明实施例提供的一种 3D超声成像装置的超声探头组件实施例三 的结构示意图;
图 7为本发明实施例提供的一种 3D超声成像装置的超声探头组件实施例四 的结构示意图;
图 8为本发明实施例提供的一种 3D超声成像装置的超声探头组件实施例五 的结构示意图;
图 9为本发明实施例提供的一种 3D超声成像装置釆用釆用旋转编码器进行 滑块位移检测的示意图;
图 10 ( a ), 图 10 ( b )为本发明实施例提供的一种 3D超声成像装置釆用接 近传感器进行滑块位移检测的示意图;
图 11 ( a ), 图 11 ( b ), 图 11 ( c )为本发明实施例提供的一种 3D超声成像 装置的超声探头组件与不同介质接触时的回波信号示意图;
图 12为本发明实施例提供的一种 3D成像装置中回波分析器实施例一的结 构示意图;
图 13为本发明实施例提出的近场皮肤层回波特性分类图;
图 14为本发明实施例提供的 3D成像装置中回波分析器实施例二的结构示 意图;
图 15 ( a ), 图 15 ( b )为本发明实施例提供的 3D成像装置的接触效果指示 器示意图;
图 16为本发明实施例提供的 3D成像方法实施例一的流程示意图; 图 17为本发明实施例提供的 3D成像方法实施例二的流程示意图; 图 18为本发明实施例提供的 3D成像方法实施例三的流程示意图; 图 19为本发明实施例提供的 3D成像方法实施例四的流程示意图; 图 20为本发明实施例提供的 3D成像方法实施例五的流程示意图; 图 21是使用本发明实施例提供的 3D超声成像装置进行超声扫描的准备阶 段的工作流程示意图;
图 22是使用本发明实施例提供的 3D超声成像装置进行超声扫描的准备阶 段的工作流程示意图。 具体实施方式 的问题, 本发明一个实施例中, 提供了一种新的超声成像技术。 本发明的一个 实施例中,提供的超声成像装置可以釆用外壳来封装机械探头,借助独特的 "高 速预扫" 过程来保证探头表面与病人良好接触, 同时, 探头本身的机械运动不 会直接作用在人体组织上, 病人和医生的体验较好。
根据本发明的一个方面, 本发明一个实施例中, 提供了一种超声成像方法。 该超声成像方法包括下列步骤。
步骤 1 :用超声探头组件的超声换能器以第一速度对待检查对象进行第一扫 描, 获得第一超声回波信号。 本发明的实施例中, 超声探头组件除了包括上述 的超声换能器, 还包括声窗结构, 并且声窗结构的下表面的至少一部分与待检 查对象接触。 这里的待检查对象可以是任何适合的应用超声检查或者扫描的对 象, 例如人体的部分(例如人体的乳房)或者动物体的部分, 等等。
本发明的实施例中, 这里的超声探头组件的具体结构, 可以使用本文中下 文以及附图所示意性描述的结构, 也可以使用如中国专利申请 201310351863.9 (名称为 "一种超声探头组件" )中披露的或者中国专利申请 201310351756.6(名 称为 "一种超声探头组件") 中披露的超声探头组件一样的结构。
步骤 2: 根据第一超声回波信号确定第一扫描的质量。 本发明的实施例中, 所说的扫描的 "质量" (例如这里的第一扫描的质量)是指影响扫描过程本身效 果和 /或扫描获得的图像效果和 /或影响对待检查对象的最终扫查结果的各种因 素的集合。 例如, 扫描的 "质量" 可以包括但不限于进行扫描时超声探头组件 的声窗结构与待检查对象的接触程度、 扫描获得的超声图像中出现气泡的程度 和 /或扫描获得的超声图像的图像质量等等。
步骤 3:用超声换能器以第二速度扫描待检查对象,获得第二超声回波信号, 并根据第二超声回波信号获得待检查对象的第二超声图像。
在步骤 2 中, 根据第一超声回波信号确定了第一扫描的质量。 用户可以根 据该第一扫描的质量判断是否对当前进行超声扫描的各种工作参数(例如, 超 声探头组件相对于待检查对象的位置、 超声探头组件的声窗结构与待检查对象 的接触情况、 超声成像装置的成像参数设置、 等等)进行调整。 例如, 用户可 以根据第一扫描的质量判断当前的各种工作参数需要或者不需要进行调整, 如 果不需要调整, 则保持各种工作参数不变; 如果需要调整, 则用户可以根据该 第一扫描的质量和实际的需要对相关工作参数进行调整。
此后, 用超声换能器以第二速度扫描待检查对象, 获得第二超声回波信号, 并根据第二超声回波信号获得待检查对象的第二超声图像。
本发明的实施例中, 以第一速度进行的第一扫描可以是一种 "预扫", 用于 对当前的工作参数和 /或工作环境和 /或工作状态(例如, 超声探头组件相对于待 检查对象的位置、 超声探头组件的声窗结构与待检查对象的接触情况、 超声成 像装置的成像参数设置、 等等)进行初步判断, 从而确定是否需要进行相应的 调整; 而以第二速度进行的扫描可以是正常的用于待检查对象进行超声成像的 扫描过程, 用于获得待检查对象的正常超声图像(例如、 B图像、 血流图像、 造 影图像、 频谱图像等等)。
步骤 4: 显示第二超声图像。 步骤 3中获得了待检查对象的第二超声图像之 后, 即可在显示装置上显示该第二超声图像。
本发明一个实施例中, 前述的根据第一超声回波信号确定第一扫描的质量 的步骤可以包括: 根据第一超声回波信号获得第一超声图像, 并显示第一超声 图像。 本实施例中, 除了前述的生成第二超声图像之外, 还根据第一扫描获得 的第一超声回波信号获得第一超声图像, 并且显示这个第一超声图像, 从而供 用户通过观察这个第一超声图像而确定第一扫描的质量。
本发明一个实施例中, 前述的根据第一超声回波信号确定第一扫描的质量 的步骤可以包括: 比较获得的第一超声回波信号和预先存储的特征量, 并且根 据该第一超声回波信号和预先存储的特征量的比较结果, 确定第一扫描的质量。 本实施例中, 这里所说的 "预先存储的特征量" 可以是表示期望的信号特征和 / 或图像特征的特征量, 比如均值、 方差、 梯度等等, 或者比如下文中提到或者 描述的特征量。 这些预先存储的特征量可以是超声成像装置出厂前预先固化存 储在超声成像装置中的, 也可以是在当前的超声检查之前由超声成像装置自动 或者由用户操作存储在超声成像装置中的。
本发明另一个实施例中 , 前述的根据第一超声回波信号确定第一扫描的质 量的步骤包括的步骤也可以包括: 从第一超声回波信号中提取特征量; 根据特 征量提取单元所提取的特征量, 将第一超声回波信号进行分类; 根据第一超声 回波信号的类别确定第一扫描的质量。 本实施例的细节可以参考下文中详述的 具体实施例理解。
本发明一个实施例中, 前述的根据第一超声回波信号的类别确定第一扫描 的质量的步骤可以包括: 根据第一超声回波信号的类别生成表示第一扫描的质 量的质量度量; 显示该质量度量。 这里, 所说的表示扫描的质量的 "质量度量" 是指能够定性或者定量表示扫描的质量的各种标识, 例如数值、 色彩、 图形、 线条或线条组合、 等等。
本发明另外的实施例中 , 前述的以第一速度对待检查对象进行第一扫描的 步骤可以包括: 用超声换能器以第一速度扫描待检查对象, 获得第一组第一超 声回波信号; 用超声换能器以第一速度再次扫描待检查对象, 获得第二组第一 超声回波信号; 并且其中根据第一超声回波信号确定第一扫描的质量的步骤可 以包括: 根据第一组第一超声回波信号和第二组第一超声回波信号确定第一扫 描的质量。
也就是说, 本实施例中, 在进行第一扫描时, 用超声换能器以第一速度反 复扫描待检查对象至少两次, 获得至少第一组第一超声回波信号和第二组第一 超声回波信号。 即, 第一超声回波信号包括至少两组。
本发明另外的实施例中, 以第一速度对待检查对象进行第一扫描的步骤也 可以包括: 用超声换能器以第一速度在扫描区域内扫描待检查对象, 获得第一 组第一超声回波信号; 根据第一组第一超声回波信号, 将扫描区域分成第一区 域和第二区域; 用超声换能器以第一速度扫描第一区域, 获得第二组第一超声 回波信号; 并且其中根据第一超声回波信号确定第一扫描的质量的步骤可以包 括: 根据第一组第一超声回波信号和第二组第一超声回波信号确定第一扫描的 质量。
即, 本实施例中, 在进行第一扫描时, 根据第一次以第一速度进行扫描时 获得的第一组第一超声回波信号将该第一次扫描的扫描区域(即扫描过程中超 声换能器扫过的区域)分成至少两个区域, 然后在进行第二次以第一速度进行 扫描时, 只扫描该至少两个区域中的需要进行扫描的区域, 而不再扫描其它的 不需要扫描的区域。 这样, 能够提高第一扫描的速度, 节省时间。
例如, 本发明一个实施例中, 第一区域可以为在其中声窗结构与待检查对 象接触的区域, 第二区域可以为在其中声窗结构与空气接触的区域。 这样, 在 进行第二次以第一速度进行的扫描时, 可以只扫描第一区域, 而不扫描第二区 域。
前述实施例中, 根据第一组第一超声回波信号和第二组第一超声回波信号 确定第一扫描的质量的步骤可以包括: 根据第二组第一超声回波信号获得第一 超声图像, 并显示第一超声图像。 即, 除了前述的生成第二超声图像之外, 还 根据第一扫描获得的第二组第一超声回波信号获得第一超声图像, 并且显示这 个第一超声图像, 从而供用户通过观察这个第一超声图像而确定第一扫描的质 量。
本发明另外的实施例中, 前述的根据第一组第一超声回波信号和第二组第 一超声回波信号确定第一扫描的质量的步骤也可以包括: 从第二组第一超声回 波信号中提取特征量; 根据特征量提取单元所提取的特征量, 将第二组第一超 声回波信号进行分类; 根据第二组第一超声回波信号的类别确定第一扫描的质 量。 本实施例中提取特征量、 分类、 根据分类确定第一扫描质量的步骤可以与 前文中的类似的实施例和下文中详细描述的实施例类似。
本发明另外的实施例中, 根据第二组第一超声回波信号的类别确定第一扫 描的质量的步骤包括: 根据第二组第一超声回波信号的类别生成表示第一扫描 的质量的质量度量; 显示该质量度量。 这里, 与前文所述的类似, 所说的表示 扫描的质量的 "质量度量" 是指能够定性或者定量表示扫描的质量的各种标识, 例如数值、 色彩、 图形、 线条或线条组合、 等等。
本发明另外的实施例中, 前述的根据第一组第一超声回波信号和第二组第 一超声回波信号确定第一扫描的质量的步骤也可以包括: 从第一组第一超声回 波信号中获取预定切面的第一切面图像数据; 从第二组第一超声回波信号中获 取预定切面的第二切面图像数据; 比较第一切面图像数据和第二切面图像数据; 根据第一切面图像数据和第二切面图像数据的比较结果确定第一扫描的质量。
本发明另外的实施例中 , 前述的根根据第一切面图像数据和第二切面图像 数据的比较结果确定第一扫描的质量的步骤包括: 根据第一切面图像数据和第 二切面图像数据的比较结果, 生成表示第一扫描的质量的质量度量; 显示质该 量度量。 这里, 与前文所述的类似, 所说的表示扫描的质量的 "质量度量" 是 指能够定性或者定量表示扫描的质量的各种标识, 例如数值、 色彩、 图形、 线 条或线条组合、 等等。
前述实施例中, 如前文所述, 第一扫描的质量可以包括: 进行第一扫描时 声窗结构与待检查对象的接触程度、 第一扫描获得的第一超声图像中出现气泡 的程度和 /或第一扫描获得的第一超声图像的图像质量、 等等。
本发明的一些实施例中, 其中第二速度可以小于第一速度, 或者说, 第一 速度可以大于第二速度。 即, 本发明的一些实施例中, 第一扫描可以是高速扫 描, 以相对第二速度更高的速度进行高速预扫。
本发明另外的实施例中, 前述的超声成像方法还包括: 监测超声换能器相 对于声窗结构的位置, 获得表示超声换能器相对于声窗结构的位置的位置信息, 并且输出位置信息。 这里, 位置信息的输出可以以任何适合的方式输出, 例如, 可以以视觉的形式输出, 例如显示在显示装置上(例如显示在设置在超声探头 组件上的子显示模块上); 也可以以其他形式输出, 例如通过指示灯、 声音等等 输出。
本发明的实施例中, 还提供了一种超声成像装置, 包括超声探头组件、 信 号处理器和显示装置。
其中, 超声探头组件包括: 探头外壳;
声窗结构, 声窗结构位于探头外壳下方, 并且声窗结构的下表面的至少一 部分与待检查对象接触;
超声换能器, 超声换能器位于声窗结构上方, 用于扫描待检查对象; 换能 器驱动机构, 换能器驱动机构连接到超声换能器, 并且用于驱动超声换能器以 第一速度对待检查对象进行第一扫描, 获得第一超声回波信号。
信号处理器接收第一超声回波信号并根据第一超声回波信号确定第一扫描 的质量。
此外, 基于对第一超声回波信号的分析结果, 换能器驱动机构还用于驱动 超声换能器以第二速度扫描待检查对象, 获得第二超声回波信号; 信号处理器 还接收第二超声回波信号, 并根据第二超声回波信号获得待检查对象的第二超 声图像。
显示装置用于显示第二超声图像。
本发明的一个实施例中, 信号处理器包括第一图像处理模块, 第一图像处 理模块接收第一超声回波信号, 并根据第一超声回波信号获得待检查对象的第 一超声图像; 显示装置还用于显示第一超声图像。
本发明另外的实施例中, 信号处理器包括回波分析器, 该回波分析器包括: 特征量提取单元, 用于从第一超声回波信号中提取特征量;
分类器, 用于根据特征量提取单元所提取的特征量, 将第一超声回波信号 进行分类;
质量确定单元, 用于才艮据分类器所分的类别确定第一扫描的质量。
本发明另外的实施例中 , 质量确定单元用于根据第一超声回波信号的类别 生成表示第一扫描的质量的质量度量, 并且显示装置还用于显示质量度量。
本发明另外的实施例中, 换能器驱动机构驱动超声换能器以第一速度扫描 待检查对象, 获得第一组第一超声回波信号; 然后换能器驱动机构驱动超声换 能器以第一速度再次扫描待检查对象, 获得第二组第一超声回波信号; 并且信 号处理器根据第一组第一超声回波信号和第二组第一超声回波信号确定第一扫 描的质量。
本发明另外的实施例中, 信号处理器包括回波分析器, 回波分析器包括: 切面图像获取单元, 用于从第一组第一超声回波信号中获取预定切面的第一切 面图像数据, 以及从第二组第一超声回波信号中获取预定切面的第二切面图像 数据; 比较器, 用于比较第一切面图像数据和第二切面图像数据; 质量确定单 元, 用于根据比较器的比较结果, 确定第一扫描的质量。
本发明另外的实施例中 , 质量确定单元用于根据第一切面图像数据和第二 切面图像数据的比较结果生成表示第一扫描的质量的质量度量, 并且显示装置 还用于显示质量度量。
本发明另外的实施例中, 显示装置还包括: 子显示模块, 子显示模块设置 在探头外壳上, 用于显示第一超声图像和 /或第二超声图像。
本发明另外的实施例中, 还包括: 超声换能器位置指示器, 超声换能器位 置指示器用于监测超声换能器相对于声窗结构的位置, 获得表示超声换能器相 对于声窗结构的位置的位置信息。
本发明的另外的实施例中 , 该位置信息可以通过前述的显示装置输出。 本发明的另外的实施例中, 该位置信息可以通过前述的显示装置的子显示 模块输出。
前述实施例中, 第一扫描的质量可以包括: 进行第一扫描时声窗结构与待 检查对象的接触程度、 第一扫描获得的第一超声图像中出现气泡的程度和 /或第 一扫描获得的第一超声图像的图像质量。
前述实施例中, 第二速度可以小于第一速度。
本发明的实施例中, 前述的超声成像方法可以是通常的二维超声成像方法, 也可以是三维(3D )超声成像方法, 相应地超声成像装置可以是二维超声成像 装置, 也可以是三维超声成像装置。
下面以 3D超声成像方法和装置的具体实施例为例,对本发明的实施例进行 更详细的说明。 应该理解, 这些实施例仅仅是示例性的, 而非对本发明的范围 的限制。
如图 1所示,为本发明提供的一种 3D超声成像装置实施例一的结构示意图。 本实施例提供的 3D超声成像装置, 包括: 超声探头组件 1和信号处理器, 其中该信号处理器可以包括回波分析器 2;
所述超声探头组件 1包括:
探头外壳 10;
声窗结构 11 , 其位于所述探头外壳 10下方, 与所述探头外壳 10贴合, 构 成一密封腔体, 该密封腔体中填充有耦合油; 该声窗结构 11的表面与待检查人 体的乳房直接接触;
超声换能器 12, 其包括声头和竖轴; 所述声头浸入所述密封腔体的耦合油 中, 并在所述密封腔体内以第一速度往返循环移动, 透过所述声窗结构 11的表 面对所述待检查人体的乳房进行高速预扫, 获得初始超声波信号;
需要说明的是, 该声窗结构 11的使用机械强度较高的探头声窗材料, 超声 换能器 12的机械运动不会通过声窗结构 11作用到人体之上, 因而不会产生形 变, 探头扫描的轨道固定不变, 釆集过程稳定, 可以避免由于探头的初始摆放 角度不合适引起的 "先紧后松" 或者 "先松后紧"。
所述回波分析器 2, 用于对所述超声换能器 12获得的初始超声波信号进行 分析, 确定所述超声换能器 12进行高速预扫获得的超声图像质量;
所述超声换能器 12以第二速度在所述密封腔体中往返循环移动, 重新扫描 获得超声波信号。
回波分析器 2将在后续的实施例中重点描述。
如图 2所示,为本发明提供的一种 3D超声成像装置实施例二的结构示意图。 与实施例一相比, 实施例二提供的装置还包括:
图像处理器 3 , 用于处理所述超声换能器 12以第二速度在所述密封腔体内 往返循环移动时获取的超声波信号 , 对某一深度下已经釆集的超声波信号进行 分析, 重建 3D冠状面图像。
如图 3所示,为本发明提供的一种 3D超声成像装置的超声探头组件实施例 一的结构示意图。
本实施例三将重点说明 3D超声成像装置的超声探头组件 1的具体组成,其 还包括:
探头外壳 10;
声窗结构 11 , 其位于所述探头外壳 10下方, 与所述探头外壳 10贴合, 构 成一密封腔体, 该密封腔体中填充有耦合油; 该声窗结构 11的表面与待检查人 体的乳房直接接触;
超声换能器 12, 其包括声头和竖轴; 所述声头浸入所述密封腔体的耦合油 中, 并在所述密封腔体内以第一速度往返循环移动, 透过所述声窗结构 11的表 面对所述待检查人体的乳房进行高速预扫, 获得初始超声波信号; 所述超声换 能器 12还可以以第二速度在所述密封腔体中往返循环移动, 重新扫描获得超声 波信号。
本实施例中, 在探头外壳 11顶部还设置有显示模块 13 , 用于实时显示所述 超声换能器 12以第一速度往返循环移动时获取的初始超声波信号以反映所述超 声换能器 12进行高速预扫获得的超声图像质量, 以及所述图像处理器 3重建的 3D冠状面图像。
可选的, 该超声探头组件的探头外壳 10两侧还可以设置手柄 14, 以方便用 户操作。
显示模块 13固定在探头上方, 与实际扫描面在物理位置上——对应, 用户 会通过显示模块 13的屏幕来了解目前探头的扫描情况, 类似一种 "透视" 的效 果, 比较直观, 如图 4所示。
图 3中所示的声窗结构 11的表面为平面, 在其他的实现方式中, 声窗结构 11的表面还可以为弧面或封闭的圆筒形, 具体请参见图 5和图 6, 其工作原理 同图 3所示的超声探头组件, 在此不再赘述。
如图 7所示,为本发明提供的一种 3D超声成像装置的超声探头组件实施例 四的结构示意图。
图 7是侧面示意图, 本实施例四的超声探头组件, 还包括:
位于所述密封腔体之外, 由一根丝杠 141和两根滑轨 142组成的丝杠滑轨 组件 14、 电机 15;
其中, 所述丝杠 141通过一个滑块 1410与所述超声换能器 12的竖轴连接; 所述电极 15牵引所述丝杠沿着所述滑轨 142水平移动, 以驱动所述超声换 能器 12在所述密封腔体内水平移动。
如图 8所示,为本发明提供的一种 3D超声成像装置的超声探头组件实施例 五的结构示意图。
本实施例五的装置还包括:
声头位置指示器 4, 用于监测所述丝杠滑轨组件 14的位置, 获取所述超声 换能器 12以第一速度或第二速度在所述密封腔体中往返循环移动时, 其声头在 所述密封腔体中所处的位置信息。
位置标示单元 5 , 用于根据接收到的标记指令, 标记所述超声换能器 12当 前扫描位置。 具体实施中, 如果用户中途停止釆集而重新开始, 或者对刚釆集 的图像的某一个 ROI区域比较感兴趣, 打算重新釆集该区域, 可以通过显示模 块 13的触摸屏输入设备输入指令, 位置标记单元 5即可对釆集区域进行标记, 超声探头组件就可以重新釆集该特定区域。
在具体实现中, 所述声头位置指示器 4 为电阻式传感器或电感式传感器或 旋转编码器或接近传感器, 通过这些传感器, 将滑块 1410的机械运动转化为电 压或者电流量。
如图 9所示, 为釆用旋转编码器进行滑块位移检测, 旋转编码器与丝杠一 起联动, 并可以通过两路输出, 利用相位差的脉冲检测滑块的位移的大小和方 向。
另一种实施方式中, 还可通过接近传感器来实现定位, 金属体固定在滑块 1410上与超声换能器一起做水平运动,接近传感器固定在腔体内壁,当滑块 1410 和金属体移动靠近接近传感器时, 接近传感器响应, 通过引线传递至处理器。 如图 10 ( a )所示, 可在超声换能器行程的两侧安装两个接近传感器: A和 如 图 10 ( b )假设两个接近传感器 A和 B位置固定, 相距 L毫米。 步进电机每一 个脉冲, 滑块移动 d毫米, 假设 n=L/d, 滑块从位置 A移动到位置 B需要 n步。
使用 "接近传感器 +步进电机" 进行定位时, 可以将整个行程以滑块单步行 程 d毫米进行量化,假设整个行程为 m (m>=n),传感器位置 A和 B分别位于 kl 和 k2位置。 当滑块移动过程中, 可通过步进电机的脉冲数进行计数, 当滑块经 过 A时, 接近传感器动作时, 内部计数值应等于 kl, 若不等于 kl,表明定位有 误差, 需要校准。 同理可在位置 B处进行校准。
由上面所述可知, 使用两个接近传感器, 滑块往返一次, 可进行两次校准; 当仅使用一个接近传感器时, 滑块往返一次, 可校准一次。
以下将重点介绍回波分析器 2的具体实现过程。
一个较大面积的声窗结构与人体接触过程中, 由于角度和位置原因, 很有 可能接触不好, 需要重新调整角度和位置。 已有技术需要将整个三维数据釆集 完成之后才能知道哪里接触不好, 这样就降低了单次数据釆集的成功率。
一般来说, 在超声探头组件进行扫描过程中, 可能出现三种情况: a、 空气或较少的耦合剂;
b、 仅与较多的耦合剂接触;
c、 与人体耦合良好。 当出现 a和 b两种情况时,是医生不愿意看到的,需要调整成 c才能开始正 常的数据釆集。
本发明提供的回波分析器 2的作用是识别出 a、 b和 c三种情况。
当超声探头组件(以下简称探头) 的声窗结构直接与空气接触或者极少量 耦合剂时, 探头接收到的超声波信号 (以下简称回波)如图 11(a)所示, 由于探 头表面的混响, 近场回波周期性地震荡, 但又迅速衰减。 此时回波的特点是:近 场一定范围之内回波有一定强度, 随着深度增加, 强度迅速衰减, 随着深度的 增加, 近场的伪像消失, 接近于探头空载时的噪声本底。
当探头上存在较多的耦合剂, 且没有与人体接触时, 超声波会在耦合剂的 厚度范围之内多次反射, 形成混响。 由于耦合剂对超声波衰减小, 这种回波的 近场回波较弱, 到达耦合与空气之间不规则的界面时形成较强的回波, 折回形 成混响, 这种混响会持续较长距离, 远场回声强度均匀、 方差逐步衰减, 如图 11(b)所示。
当探头与人体接触时, 由于人体组织较为复杂, 其回波规律性不如上面所 述两种情况, 如图 11(c)所示, 这种情况下, 近场的皮肤层可能出现中高回声, 皮肤层以下深度可能存在多个回波较强的点, 也可能在一个回波较强的点之后 迅速衰减, 回波方差大的情况居多。
区分上述三种情况的基本方法如下:
( 1 )近场有中等回声, 且迅速振荡式衰减, 有较大可能属于直接与空气接 触的情况;
( 2 )近场有一层低回声区域 (耦合剂回声), 其中或包含点状高回声, 后续 出现强回声且緩慢振荡衰减的 , 有较大可能是存在较多耦合剂且与人体没有接 触的; 由于形成混响的耦合剂界面不规则, 回声信号经过若干次反射之后, 幅 度变得比较均匀;
( 3 )近场有中等回声(皮肤层回声), 且不具备上述 (1)和 (2)特点, 回波方差 较大: 可能属于接触良好的情况。
当要区分这些情况时, 需要对回波的特征进行分析后归类, 类的归属也不 局限于 "非此即彼"。 可允许引入模糊的概念, 定义接触好坏的 "标量测度": 假设与人体接触良好设置输出指示为 1 , 直接与空气接触为 0, 其他的按照接触 程度可归于 0到 1之间。 将这个测度在显示模块 13中进行显示, 以指引操作医 生进行互动。 显示的方式可以用灰阶高低或者彩色的形式加以区别。 当探头直接与空气接触或者耦合剂较少时, 通过回波分析, 可以很好进行 判断。 假设探头直接接触空气时, 其回波信号几乎是固定不变的, 假设为 Eair, 通过匹配实际釆集回波信号 E与 Eair之间的相似度即可进行判断, 相似度可以 定义与距离相关, 例如欧几里得距离:
AirSimilarity(E, Eair)= 1/(E - Eair)T(E - Eair),
相似性越大, 属于直接接触空气的可能性就越大。
比较难区分的是耦合剂较多 /与人体接触的情况。 为了区分这种情况, 需要 提取回波的特征量, 为此本发明提供回波分析器的实施例一。
如图 12所示, 为本发明提供的一种 3D成像装置中回波分析器实施例一的 结构示意图, 其包括:
特征量提取单元 20,用于从所述超声换能器 12获得的初始超声波信号中提 取特征量;
分类器 21 , 根据所述特征量提取单元 20所提取的特征量, 将所述超声换能 器 12获得的初始超声波信号进行分类;
质量确定单元 22, 用于根据所述分类器 21所分类别, 确定所述超声换能器 12的声头透过声窗结构 11与待检查人体的乳房的接触程度或超声图像出现气泡 的程度。
其中, 所述特征值提取单元 20提取的特征值除了上述欧几里得距离:
AirSimilarity(E, Eair)= 1/(E - Eair)T(E - Eair)之外, 还包括: 近场回波特征 SkinLayerMean, SkinLayerStd和远场回波特' 1"生 DetrendFarfieldStd„
其中近场回波特征是指: 当耦合剂较多时, 近场衰减较少, 呈现低回声; 另 外耦合剂中或含有小气泡, 在低回声中呈现点状高回声; 整体来说是回声信号 低、 方差大; 相比而言, 组织近场的回波是中等或高回声, 信号分布较为稳定。 如图 13所示, 横轴表示近场信号的均值, 纵轴表示近场信号的方差, "0" 表示 探头表面有较多的耦合剂, 其均值较小, 方差相对偏大; "X" 表示探头与人体 组织接触, 耦合较好, 近场回声幅度相对较大, 且稳定, 中间的虚线为两类的边 界; 一般来说可选取 2〜3mm之内的数据做分析, 其特征量可写成:
SkinLayerMean, SkinLayerStd,
其中, 远场回波特性是指: 耦合剂的低衰减形成的混响会持续较长时间, 如 图 2(b)所示,远场回波的特征量可以选择中远场回波的方差,耦合剂远场的混响 变化幅度相对较小。 由于内部增益的影响, 可以对中远场的回波, 通过时间序 列分析, 去趋势化 (Detrend),之后计算的方差可以更精确地反映这一特性。 远 场的 "去趋势化方差"特征量可记为(分析固定深度以下的回波信号, 比如 2cm 到更深的区域) :
DetrendFarfieldStd,
综上所示, 对上述三类进行判别的特征向量可记为:
X = [AirSimilarity, SkinLayerMean, SkinLayerStd, DetrendFarfieldStd]T 其中, 所述特征值提取单元 20还可以使用主成分分析或通过深度学习方式 从所述超声换能器 12获得的初始超声波信号提取特征值。
分类器 21通过以上四个特征量建立分类器, 将回波信号分成 3个分类, 需 要说明的是, 分类器 21有多种实现方式, 可以基于贝叶斯统计的分类器或基于 核函数的分类器或支持向量机的分类器。
下面首先介绍一种基于贝叶斯统计的识别方法。
统计发生三类事件 =直接接触空气、 b 较多耦合剂且不与人体接触、 0=与 人体接触良好)的先验概率, 即计算概率 p(w=a), p(w=b)和 (w=c)。 可以通过用 户的随机实验统计得到, 比如统计放置到人体之上, 三类的面积比。 比如 p(w=a)=0.35, p(w=b)=0.1, p(w=c)=0.55。
计算条件概率 p(x|w=a), p(x|w=b)和 p(x|w=c)。条件概率的计算也具有很强的 操作性, 通过预先设定的实验, 借助于目测, 计算当三类情况发生时, 特征向 量 X的概率分布。
对当前釆集的回波特征向量 X进行分析,计算属于各类的后验概率 p(w=a|x), p(w=b|x)和 p(w=c|x). 计算公式分别为:
p(w=a|x) = p(x|w=a)*p(w=a)/p(x),
p(w=b|x) = p(x|w=b)*p(w=b)/p(x),
p(w=c|x) = p(x|w=c)*p(w=c)/p(x).
应用最小错误率贝叶斯分类器进行判断: 选择后验概率最大的类完成判别。 其他分类器还有很多, 比如基于核函数和支持向量机, 通过最大化决策边 界来实现分类问题; 或使用决策树、 多层前馈神经网络等等, 具体方法不在这 里——赘述。 还有一种回波分析器是通过对一个切面内的图像进行分析 , 基于当前回波 和其邻接的回波信息进行判断, 比如某个区域内图像的纹理特征 (人体组织的纹 理特征与耦合剂混响的纹理有 ^艮大差别), 同样也可以达到确定 "标量测度" 的 目的。
具体的, 如图 14所示, 为本发明提供的 3D成像装置中回波分析器实施例 二的结构示意图, 其包括:
切面图像获取单元 23 ,用于从所述超声换能器 12获得的初始超声波信号中 获取同一个切面内的相邻图像;
比较器 24,比较所述切面图像获取单元 23所获取的统一切面内的相邻图像; 质量确定单元 25 , 用于根据所述比较器器 23的比较结果, 确定所述超声换 能器 12的声头透过声窗结构与待检查人体的乳房的接触程度或超声图像出现气 泡的程度。
另外一种不使用 "标量测度" 的方式是直接显示图像, 或对某一冠状面进 行实时重建和显示, 虽然图像质量较差, 但可大致了解目前的接触情况, 并对 图像质量的预期作出判断。
综上所述, 回波分析器 2 的目的是通过对回波信号进行分析, 从而对目前 的成像质量给出量的提示。
实施本发明, 医生在放置超声探头时, 不会等太长时间让 3D超声成像装置 去完整釆集整个 3D数据, 本发明釆用稀疏的釆样方法来釆集数据, 有效降低探 头放置时的准备时间。 本发明进行正常扫描和 3D重建时, 10cm的区域需要大 约 30秒的时间釆集大约 200帧数据, 就是每秒钟釆集 6-7帧数据。 在对接触与 否进行检测时, 可能只需要 3秒钟完成整个体数据的扫描, 按照每秒 15帧的釆 集速度, 大约可釆集 45帧数据, 也就是 2-3mm釆集一帧, 这样的釆样频率对于 检测是否有接触已经足够。 实际上, 在检测过程中, 往往可以使用更高的脉冲 重复频率来完成, 因为分析不需要更深的回波数据, 因而, 探测精度或釆集速 度可以进一步提高。
超声换能器以较高的速度反复对整个扫描面的数据进行釆集, 并将釆集的 结果经过分析和重建显示在显示模块的屏幕上, 医生可以在短时间内从屏幕上 获取整个图像的大致形态, 对于接触不好的区域进行判断, 并实时对探头的声 窗角度和位置做调整, 使其达到最佳状态。 如图 15 ( a )所示, 探头方位偏左, 经过大约 2-3秒钟的数据釆集, 3D超声成像装置的回波分析器对回波数据进行 分析, 并对接触和非接触的区域进行判断和显示, 黑色的区域是探头与组织接 触良好的区域, 白色区域是非接触区域。 用户看到这个区域时, 将调整探头位 置向左移动如图 15 ( b )所示, 而这一位置会在接下来 2-3秒钟显示给用户。
一旦用户选择了冠状面的釆集深度, 比如在 1cm深度下, 实时 3D重建的 计算量是非常小的, 因为计算是增量算法, 已经重建的图像不会重新计算。 在 用户重新更改釆集深度或改变效果时, 需要对更新对已经釆数据的进行重建。
相应的, 本发明还提供一种 3D超声成像方法, 由前述的 3D超声成像装置 实现。
参见图 16, 为本发明提供的 3D成像方法实施例一的流程示意图, 该实施 例一的方法, 包括:
步骤 100,将所述超声探头组件的声窗结构的表面与待检查人体的乳房直接 接触;
步骤 101 , 所述超声换能器在所述密封腔体内以第一速度往返循环移动, 透 过所述声窗结构的表面对所述待检查人体的乳房进行高速预扫, 获得初始超声 波信号;
步骤 102,所述回波分析器对所述超声换能器获得的初始超声波信号进行分 析, 确定所述超声换能器进行高速预扫获得的超声图像质量;
步骤 103 , 所述超声换能器以第二速度在所述密封腔体中往返循环移动, 重 新扫描获得超声波信号。
参见图 17, 为本发明提供的 3D成像方法实施例二的流程示意图, 该实施 例二的方法, 包括:
步骤 200,将所述超声探头组件的声窗结构的表面与待检查人体的乳房直接 接触;
步骤 201 , 所述超声换能器在所述密封腔体内以第一速度往返循环移动, 透 过所述声窗结构的表面对所述待检查人体的乳房进行高速预扫, 获得初始超声 波信号;
步骤 202,所述回波分析器对所述超声换能器获得的初始超声波信号进行分 析, 确定所述超声换能器进行高速预扫获得的超声图像质量;
步骤 203 , 所述超声换能器以第二速度在所述密封腔体中往返循环移动, 重 新扫描获得超声波信号。
步骤 204,处理所述超声换能器以第二速度在所述密封腔体内往返循环移动 时获取的超声波信号, 对某一深度下已经釆集的超声波信号进行分析, 重建 3D 冠状面图像。
参见图 18, 为本发明提供的 3D成像方法实施例三的流程示意图, 该实施 例三主要描述回波分析器进行回波分析的第一种方法, 具体包括:
步骤 2020, 从所述超声换能器获得的初始超声波信号中提取特征量; 具体 的, 可以使用主成分分析或通过深度学习方式从所述超声换能器获得的初始超 声波信号提取特征值。
步骤 2021 , 根据所述提取的特征量, 将所述超声换能器获得的初始超声波 信号进行分类; 具体的, 可以根据所述提取的特征量, 利用基于贝叶斯统计的 分类器或基于核函数的分类器或支持向量机的分类器将所述超声换能器获得的 初始超声波信号进行分类。
步骤 2022, 根据对所述初始超声波信号所分的类别, 确定所述超声换能器 的声头透过声窗结构与待检查人体的乳房的接触程度或超声图像出现气泡的程 度。
参见图 19, 为本发明提供的 3D成像方法实施例四的流程示意图, 该实施 例三主要描述回波分析器进行回波分析的第二种方法, 具体包括:
步骤 2023 , 从所述超声换能器获得的初始超声波信号中获取同一个切面内 的相邻图像;
步骤 2024, 比较所述获取的统一切面内的相邻图像;
步骤 2025 , 根据所述比较结果, 确定所述超声换能器的声头透过声窗结构 与待检查人体的乳房的接触程度或超声图像出现气泡的程度。
参见图 20, 为本发明提供的 3D成像方法实施例五的流程示意图, 该实施 例五具体包括:
步骤 300,将所述超声探头组件的声窗结构的表面与待检查人体的乳房直接 接触;
步骤 301 , 所述超声换能器在所述密封腔体内以第一速度往返循环移动, 透 过所述声窗结构的表面对所述待检查人体的乳房进行高速预扫, 获得初始超声 波信号; 步骤 302,所述回波分析器对所述超声换能器获得的初始超声波信号进行分 析, 确定所述超声换能器进行高速预扫获得的超声图像质量;
步骤 303 , 所述超声换能器以第二速度在所述密封腔体中往返循环移动, 重 新扫描获得超声波信号。
步骤 304,处理所述超声换能器以第二速度在所述密封腔体内往返循环移动 时获取的超声波信号, 对某一深度下已经釆集的超声波信号进行分析, 重建 3D 冠状面图像。
步骤 305 ,实时显示所述超声换能器以第一速度往返循环移动时获取的初始 超声波信号以反映所述超声换能器进行高速预扫获得的超声图像质量, 以及所 述 3D冠状面图像。
其中, 所述方法还包括:
获取所述超声换能器以第一速度或第二速度在所述密封腔体中往返循环移 动时, 其声头在所述密封腔体中所处的位置信息。 其具体实现过程如前述的 3D 超声成像装置实施例中描述的通过传感器的方式来获得超声换能器的位置信 息, 在此不再赘述。
以及根据接收到的标记指令, 标记所述超声换能器当前扫描位置, 其具体 实现如前述的通过位置标示单元进行位置标记, 在此不再赘述。
图 21是使用本发明提供的 3D超声成像装置进行超声扫描的准备阶段的工 作流程示意图: 3D超声成像装置首先进入准备阶段, 并以第一种移动速度进行 扫描 (可能 2-3秒时间内完成一个来回), 此时 3D超声成像装置内部的回波分析 器对釆集的回声信号进行分析, 计算这个表面的接触程度, 并在对应的显示器 上指示, 这个过程反复循环, 直到用户退出这个循环。
图 22是使用本发明提供的 3D超声成像装置进行超声扫描的准备阶段的工 作流程示意图。 退出准备阶段的条件是用户认可当前探头位置摆放, 用户通过 观察接触指示并调整好探头位置之后, 才决定是否正式进入的数据釆集阶段,。
实施本发明, 具有如下有益效果:
本发明提供 3D超声成像装置及方法,其釆用的超声探头的声窗结构机械强 度较高, 具有良好的透声性, 且与待检查人体的乳房之间保持良好的稳定性。
并且, 本发明提供的 3D超声成像装置, 其超声探头釆用高速预扫的方式快 速获取超声数据, 以评估超声探头的声窗表面与人体组织接触或者耦合的好坏, 经调整后再进行高速扫描, 从而提高了乳腺扫描的成功率。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计算 机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。 能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的普通 技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单推演或替 换, 都应当视为属于本发明的保护范围。

Claims

权 利 要 求 书
1、 一种超声成像方法, 其特征在于, 包括:
用超声探头组件的超声换能器以第一速度对待检查对象进行第一扫描, 获得第一超声回波信号, 其中所述超声探头组件还包括声窗结构, 并且所述 声窗结构的下表面的至少一部分与待检查对象接触;
根据所述第一超声回波信号确定所述第一扫描的质量;
用所述超声换能器以第二速度扫描待检查对象, 获得第二超声回波信 号, 并根据所述第二超声回波信号获得所述待检查对象的第二超声图像; 显示所述第二超声图像。
2、 如权利要求 1 所述的方法, 其特征在于, 所述根据所述第一超声回 波信号确定所述第一扫描的质量的步骤包括: 根据所述第一超声回波信号获 得第一超声图像, 并显示所述第一超声图像。
3、 如权利要求 1 所述的方法, 其特征在于, 所述根据所述第一超声回 波信号确定所述第一扫描的质量的步骤包括的步骤包括:
从所述第一超声回波信号中提取特征量;
根据所述特征量提取单元所提取的特征量, 将所述第一超声回波信号进 行分类;
根据所述第一超声回波信号的类别确定所述第一扫描的质量。
4、 如权利要求 3 所述的方法, 其特征在于, 所述根据所述第一超声回 波信号的类别确定所述第一扫描的质量的步骤包括:
根据所述第一超声回波信号的类别生成表示所述第一扫描的质量的质 量度量;
显示所述质量度量。
5、 如权利要求 1 所述的方法, 其特征在于, 所述根据所述第一超声回 波信号确定所述第一扫描的质量的步骤包括: 比较所述第一超声回波信号和预先存储的特征量;
根据所述第一超声回波信号和预先存储的特征量的比较结果, 确定所述 第一扫描的质量。
6、 如权利要求 1所述的方法, 其特征在于:
所述以第一速度对待检查对象进行第一扫描的步骤包括:
用所述超声换能器以所述第一速度扫描所述待检查对象, 获得第一组第 一超声回波信号;
用所述超声换能器以所述第一速度再次扫描所述待检查对象, 获得第二 组第一超声回波信号;
其中所述根据所述第一超声回波信号确定所述第一扫描的质量的步骤 包括: 根据所述第一组第一超声回波信号和所述第二组第一超声回波信号确 定所述第一扫描的质量。
7、 如权利要求 1所述的方法, 其特征在于:
所述以第一速度对待检查对象进行第一扫描的步骤包括:
用所述超声换能器以所述第一速度在扫描区域内扫描所述待检查对象, 获得第一组第一超声回波信号;
根据所述第一组第一超声回波信号, 将所述扫描区域分成第一区域和第 二区域;
用所述超声换能器以所述第一速度扫描所述第一区域, 获得第二组第一 超声回波信号;
其中所述根据所述第一超声回波信号确定所述第一扫描的质量的步骤 包括: 根据所述第一组第一超声回波信号和所述第二组第一超声回波信号确 定所述第一扫描的质量。
8、 如权利要求 6或者 7所述的方法, 其特征在于, 根据所述第一组第 一超声回波信号和所述第二组第一超声回波信号确定所述第一扫描的质量 的步骤包括: 根据所述第二组第一超声回波信号获得第一超声图像, 并显示 所述第一超声图像。
9、 如权利要求 6或者 7所述的方法, 其特征在于, 根据所述第一组第 一超声回波信号和所述第二组第一超声回波信号确定所述第一扫描的质量 的步骤包括:
从所述第二组第一超声回波信号中提取特征量;
根据所述特征量提取单元所提取的特征量, 将所述第二组第一超声回波 信号进行分类;
根据所述第二组第一超声回波信号的类别确定所述第一扫描的质量。
10、 如权利要求 9所述的方法, 其特征在于, 所述根据所述第二组第一 超声回波信号的类别确定所述第一扫描的质量的步骤包括:
根据所述第二组第一超声回波信号的类别生成表示所述第一扫描的质 量的质量度量;
显示所述质量度量。
11、 如权利要求 6或者 7所述的方法, 其特征在于, 根据所述第一组第 一超声回波信号和所述第二组第一超声回波信号确定所述第一扫描的质量 的步骤包括:
从所述第一组第一超声回波信号中获取预定切面的第一切面图像数据; 从所述第二组第一超声回波信号中获取预定切面的第二切面图像数据; 比较所述第一切面图像数据和所述第二切面图像数据;
根据所述第一切面图像数据和所述第二切面图像数据的比较结果确定 所述第一扫描的质量。
12、 如权利要求 11 所述的方法, 其特征在于, 所述根根据所述第一切 面图像数据和所述第二切面图像数据的比较结果确定所述第一扫描的质量 的步骤包括:
根据所述第一切面图像数据和所述第二切面图像数据的比较结果, 生成 表示所述第一扫描的质量的质量度量;
显示所述质量度量。
13、 如权利要求 1至 12中任意一项所述的方法, 其特征在于: 所述第 一区域为在其中所述声窗结构与所述待检查对象接触的区域, 所述第二区域 为在其中所述声窗结构与空气接触的区域。
14、 如权利要求 1至 12中任意一项所述的方法, 其特征在于, 所述第 一扫描的质量包括: 进行所述第一扫描时所述声窗结构与所述待检查对象的 接触程度、所述第一扫描获得的第一超声图像中出现气泡的程度和 /或所述第 一扫描获得的第一超声图像的图像质量。
15、 如权利要求 1至 12中任意一项所述的方法, 其特征在于: 所述第 二速度小于所述第一速度。
16、 如权利要求 1至 12中任意一项所述的方法, 其特征在于, 还包括: 监测所述超声换能器相对于所述声窗结构的位置, 获得表示所述超声换能器 相对于所述声窗结构的位置的位置信息, 并且输出所述位置信息。
17、 一种超声成像装置, 其特征在于, 包括: 超声探头组件和回信号处 理器;
所述超声探头组件包括:
探头外壳;
声窗结构, 所述声窗结构位于所述探头外壳下方, 并且所述声窗结构的 下表面的至少一部分与待检查对象接触;
超声换能器, 所述超声换能器位于所述声窗结构上方, 用于扫描待检查 换能器驱动机构, 所述换能器驱动机构连接到所述超声换能器, 并且用 于驱动所述超声换能器以第一速度对所述待检查对象进行第一扫描, 获得第 一超声回波信号;
信号处理器, 所述信号处理器接收所述第一超声回波信号并根据所述第 一超声回波信号确定所述第一扫描的质量; 基于对所述第一超声回波信号的分析结果, 所述换能器驱动机构还用于 驱动所述超声换能器以第二速度扫描所述待检查对象, 获得第二超声回波信 所述信号处理器还接收所述第二超声回波信号, 并根据所述第二超声回 波信号获得所述待检查对象的第二超声图像;
显示装置, 所述显示装置用于显示所述第二超声图像。
18、 如权利要求 17所述的一种超声成像装置, 其特征在于:
所述信号处理器包括第一图像处理模块, 所述第一图像处理模块接收所 述第一超声回波信号, 并根据所述第一超声回波信号获得所述待检查对象的 第一超声图像;
所述显示装置还用于显示所述第一超声图像。
19、 如权利要求 17所述的超声成像装置, 其特征在于, 所述信号处理 器包括回波分析器, 所述回波分析器包括:
特征量提取单元, 用于从所述第一超声回波信号中提取特征量; 分类器, 用于根据所述特征量提取单元所提取的特征量, 将所述第一超 声回波信号进行分类;
质量确定单元, 用于才艮据所述分类器所分的类别确定所述第一扫描的质 量。
20、 如权利要求 19所述的超声成像装置, 其特征在于: 所述质量确定 单元用于根据所述第一超声回波信号的类别生成表示所述第一扫描的质量 的质量度量, 并且所述显示装置还用于显示所述质量度量。
21、 如权利要求 17所述的超声成像装置, 其特征在于:
所述换能器驱动机构驱动所述超声换能器以所述第一速度扫描所述待 检查对象, 获得第一组第一超声回波信号;
所述换能器驱动机构驱动所述超声换能器以所述第一速度再次扫描所 述待检查对象, 获得第二组第一超声回波信号; 所述信号处理器根据所述第一组第一超声回波信号和所述第二组第一 超声回波信号确定所述第一扫描的质量。
22、 如权利要求 21所述的超声成像装置, 其特征在于,
所述信号处理器包括回波分析器, 所述回波分析器包括:
切面图像获取单元, 用于从所述第一组第一超声回波信号中获取预定切 面的第一切面图像数据, 以及从所述第二组第一超声回波信号中获取预定切 面的第二切面图像数据;;
比较器, 用于比较所述第一切面图像数据和所述第二切面图像数据; 质量确定单元, 用于根据所述比较器的比较结果, 确定所述第一扫描的 质量。
23、 如权利要求 22所述的超声成像装置, 其特征在于: 所述质量确定 单元用于根据所述第一切面图像数据和所述第二切面图像数据的比较结果 生成表示所述第一扫描的质量的质量度量, 并且所述显示装置还用于显示所 述质量度量。
24、 如权利要求 17所述的超声成像装置, 其特征在于, 所述显示装置 还包括:
子显示模块, 所述子显示模块设置在所述探头外壳上, 用于显示所述第 一超声图像和 /或所述第二超声图像。
25、 如权利要求 17所述的超声成像装置, 其特征在于, 还包括: 超声换能器位置指示器, 所述超声换能器位置指示器用于监测所述超声 换能器相对于所述声窗结构的位置, 获得表示所述超声换能器相对于所述声 窗结构的位置的位置信息。
26、如权利要求 17至 25中任意一项所述的超声成像装置,其特征在于, 所述第一扫描的质量包括: 进行所述第一扫描时所述声窗结构与所述待检查 对象的接触程度、 所述第一扫描获得的第一超声图像中出现气泡的程度和 / 或所述第一扫描获得的第一超声图像的图像质量。
27、如权利要求 17至 25中任意一项所述的超声成像装置,其特征在于: 所述第二速度小于所述第一速度。
PCT/CN2014/077330 2013-12-30 2014-05-13 一种超声成像装置及方法 WO2015100906A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/198,457 US11231431B2 (en) 2013-12-30 2016-06-30 Ultrasound imaging device and imaging method thereof
US17/541,131 US11754577B2 (en) 2013-12-30 2021-12-02 Ultrasound imaging device and imaging method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310746549.0A CN104739452B (zh) 2013-12-30 2013-12-30 一种超声成像装置及方法
CN201310746549.0 2013-12-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/198,457 Continuation US11231431B2 (en) 2013-12-30 2016-06-30 Ultrasound imaging device and imaging method thereof
US15/198,436 Continuation US10481170B2 (en) 2013-12-31 2016-06-30 Test tube rack of analyzer pipeline, shift detection method and device using the same

Publications (1)

Publication Number Publication Date
WO2015100906A1 true WO2015100906A1 (zh) 2015-07-09

Family

ID=53493085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/077330 WO2015100906A1 (zh) 2013-12-30 2014-05-13 一种超声成像装置及方法

Country Status (3)

Country Link
US (2) US11231431B2 (zh)
CN (1) CN104739452B (zh)
WO (1) WO2015100906A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105877780B (zh) * 2015-08-25 2019-05-31 上海深博医疗器械有限公司 全自动超声扫描仪及扫描检测方法
CN105319530A (zh) * 2015-11-30 2016-02-10 江苏中海达海洋信息技术有限公司 基于iTrack-UB系列超短基线水声定位系统的声头装置
US10945706B2 (en) 2017-05-05 2021-03-16 Biim Ultrasound As Hand held ultrasound probe
CN107260211B (zh) * 2017-06-20 2020-05-05 云南大学 一种内嵌归一化声模的量化超声检测探头
CN107290428B (zh) * 2017-06-23 2020-02-07 上海新跃联汇电子科技有限公司 基于深度学习的超声波铁轨探伤小车系统及其控制方法
CN111432733B (zh) * 2017-09-07 2021-10-26 皮乌尔影像股份有限公司 用于确定超声探头的运动的设备和方法
CN107766874B (zh) * 2017-09-07 2021-06-04 深圳度影医疗科技有限公司 一种超声容积生物学参数的测量方法及测量系统
CN107811652B (zh) * 2017-10-18 2021-01-26 飞依诺科技(苏州)有限公司 自动调整参数的超声成像方法及系统
US11464490B2 (en) * 2017-11-14 2022-10-11 Verathon Inc. Real-time feedback and semantic-rich guidance on quality ultrasound image acquisition
CN110235172B (zh) * 2018-06-07 2021-07-20 深圳迈瑞生物医疗电子股份有限公司 基于超声影像设备的图像分析方法及超声影像设备
US11965959B2 (en) * 2018-10-23 2024-04-23 Koninklijke Philips N.V. Adaptive ultrasound flow imaging
US20200196987A1 (en) * 2018-12-20 2020-06-25 General Electric Company Method and system to manage beamforming parameters based on tissue density
US11188032B2 (en) * 2019-02-08 2021-11-30 Texas Instruments Incorporated Molecular clock with delay compensation
CN111759346B (zh) * 2019-04-02 2023-06-09 深圳市理邦精密仪器股份有限公司 超声探头阵元的检测方法、设备及存储介质
CN110432930A (zh) * 2019-07-26 2019-11-12 德迈特医学技术(北京)有限公司 乳腺癌超声筛查系统及筛查方法
CN110613479A (zh) * 2019-10-22 2019-12-27 无锡祥生医疗科技股份有限公司 超声设备降功耗的方法和装置
CN113939232A (zh) * 2020-05-14 2022-01-14 深圳迈瑞生物医疗电子股份有限公司 一种超声成像设备及方法
CN114689097B (zh) * 2020-06-18 2023-11-24 中国科学院苏州生物医学工程技术研究所 一种超声旋转编码器的传感部件
US11598625B2 (en) * 2020-08-31 2023-03-07 Advanced Semiconductor Engineering, Inc. Apparatus and method for deformation measurement
CN114305502A (zh) * 2020-09-29 2022-04-12 深圳迈瑞生物医疗电子股份有限公司 乳腺超声扫描方法、装置和存储介质
CN114431892B (zh) * 2020-10-30 2024-04-16 通用电气精准医疗有限责任公司 一种超声成像系统及超声成像方法
CN112618972B (zh) * 2020-12-28 2022-06-03 中聚科技股份有限公司 一种超声波换能器驱动方法、存储介质、系统和装置
US11974884B2 (en) * 2021-11-15 2024-05-07 GE Precision Healthcare LLC Method and system for dynamically adjusting imaging parameters during an ultrasound scan
CN114062501B (zh) * 2021-11-18 2023-07-28 中国航空制造技术研究院 复合材料工字梁的正交超声检测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574499B1 (en) * 1998-11-25 2003-06-03 Xdata Corporation Mammography method and apparatus
CN1469723A (zh) * 2000-10-13 2004-01-21 超声波细胞组织鉴别工具
JP2008200096A (ja) * 2007-02-16 2008-09-04 Meta Corporation Japan 超音波診断装置
US20110301461A1 (en) * 2010-06-04 2011-12-08 Doris Nkiruka Anite Self-administered breast ultrasonic imaging systems
US20120083692A1 (en) * 2010-09-30 2012-04-05 Siemens Medical Solutions Usa, Inc. Pressure control in medical diagnostic ultrasound imaging
EP2468190A1 (de) * 2010-12-23 2012-06-27 em-tec GmbH Ultraschall-Sonde, Ultraschall-Monitoring-System sowie deren Verwendung
WO2013171671A1 (en) * 2012-05-15 2013-11-21 Koninklijke Philips N.V. Mechanically scanned three-dimensional ultrasound imaging adapted to the contours of a body

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137777A (en) * 1977-07-11 1979-02-06 Mediscan Inc. Ultrasonic body scanner and method
US4917096A (en) * 1987-11-25 1990-04-17 Laboratory Equipment, Corp. Portable ultrasonic probe
FR2662813B1 (fr) * 1990-05-29 1992-08-14 Traitement Synthese Image Procede d'acquisition d'images d'echographie.
WO2004089221A1 (ja) * 2003-04-08 2004-10-21 Hitachi Medical Corporation 超音波診断装置
EP1737348A1 (en) * 2004-04-14 2007-01-03 Koninklijke Philips Electronics N.V. Ultrasound imaging probe featuring wide field of view
CA2603495A1 (en) * 2005-04-01 2006-10-12 Visualsonics Inc. System and method for 3-d visualization of vascular structures using ultrasound
US8002704B2 (en) * 2005-05-25 2011-08-23 General Electric Company Method and system for determining contact along a surface of an ultrasound probe
US20070239020A1 (en) * 2006-01-19 2007-10-11 Kazuhiro Iinuma Ultrasonography apparatus
JP4772540B2 (ja) * 2006-03-10 2011-09-14 株式会社東芝 超音波診断装置
JP4857070B2 (ja) * 2006-10-11 2012-01-18 キヤノン株式会社 乳房撮影用x線ct装置
US20130237826A1 (en) * 2012-03-12 2013-09-12 Arcscan, Inc. Precision ultrasonic scanner for body parts with extended imaging depth
JP5376877B2 (ja) * 2008-09-17 2013-12-25 株式会社東芝 超音波診断装置および画像表示プログラム
US9161736B2 (en) * 2009-09-10 2015-10-20 Hitachi Medical Corporation Ultrasonic diagnostic apparatus and elasticity image display method
JP5917039B2 (ja) * 2010-09-13 2016-05-11 キヤノン株式会社 被検体情報取得装置
JP6010306B2 (ja) * 2011-03-10 2016-10-19 富士フイルム株式会社 光音響計測装置
US9526476B2 (en) * 2011-04-12 2016-12-27 Brigham And Women's Hospital, Inc. System and method for motion tracking using unique ultrasound echo signatures
CN103870828B (zh) * 2012-12-17 2018-06-15 富泰华工业(深圳)有限公司 图像相似度判断系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574499B1 (en) * 1998-11-25 2003-06-03 Xdata Corporation Mammography method and apparatus
CN1469723A (zh) * 2000-10-13 2004-01-21 超声波细胞组织鉴别工具
JP2008200096A (ja) * 2007-02-16 2008-09-04 Meta Corporation Japan 超音波診断装置
US20110301461A1 (en) * 2010-06-04 2011-12-08 Doris Nkiruka Anite Self-administered breast ultrasonic imaging systems
US20120083692A1 (en) * 2010-09-30 2012-04-05 Siemens Medical Solutions Usa, Inc. Pressure control in medical diagnostic ultrasound imaging
EP2468190A1 (de) * 2010-12-23 2012-06-27 em-tec GmbH Ultraschall-Sonde, Ultraschall-Monitoring-System sowie deren Verwendung
WO2013171671A1 (en) * 2012-05-15 2013-11-21 Koninklijke Philips N.V. Mechanically scanned three-dimensional ultrasound imaging adapted to the contours of a body

Also Published As

Publication number Publication date
CN104739452B (zh) 2019-02-12
US11231431B2 (en) 2022-01-25
US20160302759A1 (en) 2016-10-20
US20220091144A1 (en) 2022-03-24
US11754577B2 (en) 2023-09-12
CN104739452A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
US11754577B2 (en) Ultrasound imaging device and imaging method thereof
JP4699724B2 (ja) 周期的に動いている対象に対するボリュメトリック走査を得るための方法及び装置
CN110072466B (zh) 产前超声成像
CN103169500B (zh) 超声波诊断装置、医用图像诊断装置以及医用图像处理方法
CN110325119A (zh) 卵巢卵泡计数和大小确定
CN105407809A (zh) 超声波诊断装置以及弹性评价方法
CN109330626B (zh) 一种自适应调节超声探头位置的装置及方法
US20180042578A1 (en) Automated ultrasound image measurement system and method
AU2009326864B2 (en) Medical diagnostic method and apparatus
US11944485B2 (en) Ultrasound device, systems, and methods for lung pulse detection by plueral line movement
CN115153634A (zh) 一种智能超声检查诊断方法及系统
TW201936120A (zh) 超音波影像均勻度檢測方法及其系統
US20210298717A1 (en) Methods and systems for performing fetal weight estimations
EP3506832B1 (en) Ultrasound diagnosis apparatus
US20160296201A1 (en) Imaging and measuring system of vocal cord vibration based on plane wave ultrasonography, and method thereof
Tang et al. Measuring body layer vibration of vocal folds by high-frame-rate ultrasound synchronized with a modified electroglottograph
US11419585B2 (en) Methods and systems for turbulence awareness enabled ultrasound scanning
JP2022505574A (ja) 超音波制御ユニット
EP3449838B1 (en) Imaging method and device
Khan 3D reconstruction of ultrasound images
EP4014884A1 (en) Apparatus for use in analysing an ultrasound image of a subject
KR100681855B1 (ko) 향상된 해상도의 이미지를 얻을 수 있는 초음파 측정방법
CN104323803B (zh) 基于平面波超声成像的声带振动成像与测量系统及方法
CN115551416A (zh) 对髋部进行测量

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/12/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14876386

Country of ref document: EP

Kind code of ref document: A1