WO2015100824A1 - 一种amoled驱动电路及其驱动方法 - Google Patents

一种amoled驱动电路及其驱动方法 Download PDF

Info

Publication number
WO2015100824A1
WO2015100824A1 PCT/CN2014/071190 CN2014071190W WO2015100824A1 WO 2015100824 A1 WO2015100824 A1 WO 2015100824A1 CN 2014071190 W CN2014071190 W CN 2014071190W WO 2015100824 A1 WO2015100824 A1 WO 2015100824A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
organic light
signal
time
voltage
Prior art date
Application number
PCT/CN2014/071190
Other languages
English (en)
French (fr)
Inventor
温亦谦
朱立伟
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/241,080 priority Critical patent/US9343012B2/en
Publication of WO2015100824A1 publication Critical patent/WO2015100824A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • G09G2300/0866Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage

Definitions

  • AMOLED driving circuit and driving method thereof AMOLED driving circuit and driving method thereof
  • the present invention relates to the field of electronic display, and more particularly to an AMOLED driving circuit and a driving method thereof. Background technique
  • AMOLEDs organic light-emitting diodes 10 Due to advances in process technology and materials for planar displays, organic light-emitting diodes 10 (AMOLEDs) are slowly becoming the mainstream of future displays.
  • 1 shows an AMOLED driving circuit including a first semiconductor controllable switch T1, a second semiconductor controllable switch ⁇ 2, a storage capacitor C1, and an organic light emitting diode D1.
  • the second semiconductor controllable switch T2 is connected to the first control voltage VDD, the other end is connected to the anode of the organic light emitting diode D1, and the cathode of the organic light emitting diode DI is connected to the second control voltage VSS.
  • the first semiconductor is controllable. Switch T1 source is connected!
  • the gate is connected to the AMOLED display panel scan drive signal
  • the drain is connected to the second semiconductor controllable switch T2
  • the storage capacitor is connected in series
  • the source and gate of the semiconductor controllable switch T2 are such that the second semiconductor controllable switch T2 is controlled in the saturation region, thereby providing AMOLED current and illumination.
  • the existing AMOLED driving circuit has a problem of luminance attenuation, which affects the uniformity of the display area. 20 uniformity
  • the technical problem to be solved by the present invention is to provide an AMOLED driving circuit and a driving method thereof for improving the display uniformity of an AMOLED panel.
  • An AMOLED driving circuit comprising a first semiconductor controllable switch, a second semiconductor controllable switch, a storage capacitor and an organic light emitting diode; an output end of the second semiconductor controllable switch and an organic light emitting diode
  • the anode of the tube is coupled, the source of the semiconductor controllable switch is connected to the data driving signal of the AMOLED display panel, the gate is connected to the scan driving signal of the AMOLED display panel, and the drain is connected to the gate of the second semiconductor ig, the storage capacitor String Connected between the source and the gate of the second semiconductor controllable switch;
  • the driving circuit includes a timing control module that divides a frame driving time of the organic light emitting diode into N sub-frames, and the data driving signal is divided into an active signal for driving the display of the organic light emitting diode and turning off in each sub-frame time.
  • the blanking signal displayed by the organic light-emitting diode is divided into a timing control module that divides a frame driving time of the organic light emitting diode into N sub-frames, and the data driving signal is divided into an active signal for driving the display of the organic light emitting diode and turning off in each sub-frame time.
  • the driving circuit further includes a third semiconductor controllable switch, and the third semiconductor controllable switch is serially connected between the gate of the second semiconductor controllable switch and a low level signal.
  • the power in the storage capacitor can be forcibly discharged within one frame driving time, thereby further reducing the influence of the electron of the storage capacitor on the deflection voltage of the first semiconductor controllable switch, further improving the AMOLED.
  • the driving circuit further includes an overvoltage driving module that increases a current flowing through the organic light emitting diode when the organic light emitting diode is displayed;
  • the overvoltage driving module includes a data driving that provides the data driving signal a module, a gamma correction module coupled to the data driving module;
  • the overvoltage driving module reduces the organic light emission by increasing the input terminal voltage of the second semiconductor controllable switch during any one or more blanking signal durations The diode negative voltage is either increased or increased; 5 gamma correction module output voltage increases the current flowing through the organic light emitting diode.
  • the invention adopts the PWM method to drive the AMOLED, and divides the driving time of one frame of the organic light emitting diode into N sub-frame times to achieve different gray scale effects.
  • This type of driving method has a longer duration of blanking signal in a shorter sub-frame time in which the active signal can be sustained, so 0 has a relatively large luminance loss. Therefore, the speed of data transmission of the subsequent sub-frame time must be relatively increased to compensate for the loss of luminance. Since the transmission of the data driving signal is limited by the transmission speed of the driving circuit interface, and the higher resolution display panel, the transmission rate of the data driving signal is more limited.
  • the wood technology scheme preliminarily increases the driving voltage of the organic light emitting diode during the duration of the blanking signal, so that the current flowing through the organic light emitting diode under the action of the higher driving voltage 5 during the duration of the next active signal
  • the corresponding increase is also made, the driving voltage is increased in the blanking time, and the display time of the organic light emitting diode is not occupied. Even if the transmission medium has a limitation on the signal transmission rate, the driving voltage is sufficient in the time zone of the blanking time. .
  • the OLED is not displayed, and the voltage change will not cause the display to flicker.
  • the overvoltage driving module includes a first multiplexer, a second multiplexer, and a third
  • the first multiplexer input end is connected with X voltage unequal reference voltages; the output end is coupled to the input end of the second semiconductor controllable switch; the control end is coupled to the timing control module;
  • the duration of the active signal in each sub-frame time increases in turn; from the N-X+1 sub-frame time, the blanking signal of each sub-detection time lasts for 5 time, and outputs one.
  • the reference voltage; the output reference voltage is sequentially increased in size: and, the duration of the active signal in each sub-detection time is equal to the duration of the active signal in the NXth sub-frame time;
  • the second multiplexer input is connected with Y voltage unequal reference voltages: an output coupled to a negative terminal of the organic light emitting diode; a control terminal coupled to the timing control module; and a NY 10 subframe
  • the reference voltage output of a reference electrical output is successively decreased in duration of the blanking signal of each sub-detection time;
  • the third multiplexer input is connected with z voltage unequal reference voltages; the output terminal is coupled to the gamma correction module; the control terminal is coupled to the timing control module; starting from the NZth subframe time, each During the duration of the blanking signal of the sub-detection time, a reference voltage is output; the reference voltage of the output 15 is sequentially increased:
  • the X, Y, and ⁇ are less than the natural number of ⁇ .
  • Increasing the voltage of the positive electrode of the organic light-emitting diode and reducing the voltage of the negative electrode of the organic light-emitting diode can directly increase the voltage difference across the organic light-emitting diode, thereby increasing the current flowing through the organic light-emitting diode; The brightness of the tube.
  • the organic light-emitting diode is connected in series with the semiconductor controllable :::0, the semiconductor controllable switch operates in the saturation region, and the data drive signal is coupled to the gate of the semiconductor controllable switch, thereby increasing the data drive The voltage of the signal increases the current flowing through the controllable switch of the conductor, thereby increasing the brightness of the organic light-emitting diode.
  • An AMOLED driving method includes the steps of:
  • is a natural number greater than or equal to 2
  • the corresponding storage capacitor of the LED is discharged.
  • This technical solution can force the power in the storage capacitor to be released within one frame driving time.
  • the sample further reduces the influence of the electrons of the storage capacitor on the deflection voltage of the controllable switch of the first conductor, and further improves the consistency of the display of the AM0 LED panel.
  • each sub-frame time is equal; dividing the data driving signal in each sub-frame time into an active signal for driving the display of the organic light-emitting diode and turning off the blanking signal displayed by the organic light-emitting diode in the organic light-emitting diode During the one-frame driving time, the active time of the active signal in each sub-frame time is sequentially increased;
  • the technical solution uses the PWM method to drive the AMOLED, and divides the driving time of one frame of the organic light emitting diode into N sub-frame times to achieve different gray scale effects.
  • Such a driving method has a longer duration of the blanking signal in a shorter sub-frame time in which the active signal can be sustained, and thus has a relatively large luminance loss. Therefore, the speed of data transmission of the subsequent sub-frame time must be relatively increased to compensate for the loss of luminance. Since the transmission of the data drive signal is limited by the transmission speed of the driver circuit interface, and the higher resolution display panel, the transmission rate limit of the data drive signal is more limited.
  • the technical solution increases the driving voltage of the organic light emitting diode in advance for the duration of the blanking signal, so that the current flowing through the organic light emitting diode is correspondingly under the action of the higher driving voltage for the duration of the next active signal.
  • the driving voltage is increased within the blanking time, and does not occupy the display time of the organic light emitting diode. Even if the transmission medium has a limitation on the signal transmission rate, the driving voltage is prepared in the time zone of the blanking time. In addition, during the blanking time, the OLED is not displayed, and the voltage change 3 ⁇ 4 does not cause the display to flicker.
  • the voltage of the anode of the organic light-emitting diode is divided into X levels of reference voltage, starting from the N-X+1 subframe time, and the blanking signal duration of each sub-detection time is outputted.
  • Reference voltage; the output reference voltage is increased in order;
  • the X is a natural number less than N.
  • the voltage coupled to the negative electrode of the organic light-emitting diode is divided into reference voltages of Y levels, and a reference voltage is outputted for each duration of the blanking signal of each sub-detection time from the time of the first to third sub-frames; The output reference voltage is sequentially decremented;
  • the ⁇ is a natural number less than ⁇ .
  • Reducing the voltage of the negative electrode of the organic light-emitting diode can directly increase the voltage difference between the two ends of the light-emitting diode, thereby increasing the current flowing through the organic light-emitting diode; and further improving the organic light-emitting diode, the organic
  • the incremental voltage of the data driving signal of the LED is divided into ⁇ levels, starting from the ⁇ - ⁇ sub-frame time, and outputting a level of incremental voltage for the duration of the blanking signal of each sub-detection time; The magnitude of the voltage increases in turn;
  • the ⁇ is a natural number less than ⁇ .
  • the organic light emitting diode is connected in series with the semiconductor controllable switch, the semiconductor controllable switch works in the saturation region, and the data driving signal is coupled to the gate of the semiconductor controllable switch, thereby increasing the voltage of the data driving signal
  • the current flowing through the semiconductor controllable switch can be increased to increase the brightness of the organic light emitting diode.
  • the AMOLED driving circuit provides an organic light-emitting diode current by charging the storage capacitor C1 to illuminate the display.
  • the conductor controllable switch connected in series with the organic light-emitting diode is affected by electrons for a long time, it will affect the bias voltage between the gate and the source, so that the current of the organic light-emitting diode changes, so that the display The uniformity is affected.
  • the present invention divides the current driving time of the organic light-emitting diode into N sub-frames, and the data driving signal is divided into an active signal for driving the display of the organic light-emitting diode and turning off the display of the organic light-emitting diode for each sub-frame time.
  • Blanking signal During the blanking signal time, the first semiconductor controllable switch is turned off, the storage capacitor is no longer charged, and the discharge is started, thus avoiding the second semiconductor controllable switch to the storage capacitor for a long time. Electronic influence, thereby improving the display consistency of the AMOLED panel.
  • Figure ⁇ is a schematic diagram of the existing AMOLED driver circuit
  • FIG. 2 is a schematic diagram of an AMOLED driving circuit of the present invention
  • FIG. 3 is a schematic diagram of an AMOLED driving circuit for adding a third controllable switch
  • 4 is a schematic diagram showing the principle of an AMOLED driving circuit according to an embodiment of the present invention
  • FIG. 5 is a timing diagram of an AM0LED driving method according to an embodiment of the present invention.
  • Fig. 6 is a flow chart showing the driving method of the AM0LED according to the embodiment of the present invention.
  • the present invention discloses an AM0LED driving circuit, an AMOLED driving circuit, and the driving circuit includes a first semiconductor controllable switch T1, a second semiconductor controllable switch ⁇ 2, a storage capacitor C1, and an organic light emitting diode.
  • the output terminal of the second semiconductor controllable switch ⁇ 2 is coupled to the anode of the organic light-emitting diode D1, and the source of the first semiconductor controllable switch Ti is connected to! 0 AMOLED display panel data drive signal SN, the gate is connected to the AMOLED display panel (! scoop scan drive signal GN, the drain is connected to the gate of the second semiconductor controllable switch T2, the storage capacitor C1 is connected in series with the second semiconductor Controlling the source between the source and the gate of the switch T2;
  • the AMOLED driving circuit includes a timing control module that divides the driving time of the organic light emitting diode into a frame time by N subframe times, and the data driving signal is divided into active signals for driving the display of the organic light emitting diodes in each sub-frame time. Turn off the blanking signal displayed by the organic light-emitting diode.
  • the AMOLED driving circuit provides an organic light-emitting diode current by charging the storage capacitor C1 to illuminate the display.
  • the semiconductor controllable switch connected in series with the organic light-emitting diode is affected by electrons for a long time, the bias voltage between the gate and the source is affected, so that the current of the organic light-emitting diode is changed, so that the display
  • the consistency (uniformity) is affected by :::>.
  • the present invention divides the data driving signal into an active signal for driving the organic light emitting diode display and turns off the display of the organic light emitting diode by dividing the current driving time of the organic light emitting diode into a frame time of N subframes.
  • Blanking signal During the blanking signal time, the first semiconductor controllable switch is turned off, the storage capacitor is no longer charged, and the discharge is started, thus avoiding the second semiconductor controllable switch being affected by the electron of the storage capacitor for a long time. , thereby improving the display consistency of the AMOLED 25 panel.
  • the driving circuit may further add a third semiconductor controllable switch T3, and the third semiconductor controllable switch ⁇ 3 is serially connected to the second semiconductor controllable switch ⁇ 2 Between the pole and a low level signal (logic 0) vref.
  • the power in the storage capacitor can be forced within one frame drive time Discharge, which further reduces the effect of the electrons of the storage capacitor on the deflection voltage of the first semiconductor controllable switch.
  • the AM0LED driving circuit disclosed in this embodiment includes a first semiconductor controllable switch T1, a second semiconductor controllable switch T2, a storage capacitor C1, and an organic light emitting diode D1;
  • the output end of the semiconductor controllable switch is coupled to the anode of the organic light emitting diode, the first semiconductor controllable switch source is connected to the data driving signal SN of the AM0 LED display panel, the gate is connected to the scan driving signal of the AM0 LED display panel, and the drain is a gate connected to the second semiconductor controllable switch
  • the 10 pole, the storage capacitor is connected in series between the source and the gate of the second semiconductor controllable switch.
  • the MTOLED driving circuit further includes a scan driving module 30, a data driving module 2.0 providing the data driving signal, and a gamma correction module Gamma IC coupled to the data driving module; the data driving module 20 is connected to each organic light through a data line
  • the first semiconductor controllable source S190(), S1920 corresponding to the diode, the scan driving module 30 is connected to each through the scan line
  • the AMOLED driving circuit further includes a timing control module 40 for dividing the driving time of the organic light emitting diode into a frame time by 8 sub-frames, and the data driving signal is divided into an active signal for driving the display of the organic light emitting diode during each sub-frame time.
  • the blanking signal displayed by the organic light emitting diode is turned off, and the sustainable time of the active signal 0 in each sub-frame time is sequentially increased in one frame driving time of the organic light emitting diode.
  • the timing of the control of the scan driver module and the data driver module is also provided by the timing control module.
  • the overvoltage driving module 10 includes a first multiplexer 11, a second multiplexer 12, and a third multiplexer 13.
  • the first multiplexer input terminal is connected with three voltage reference voltages VDD1 VDD VDD3; the output terminal is coupled to the input end of the second semiconductor controllable switch; the timing control module 40 outputs the control signal 5 y S , SW2 to The control end of the first multiplexer.
  • the second multiplexer input terminal is connected with three voltage reference voltages VSS1 VSS VSS3; the output terminal coupled to the OLED timing control module 40 outputs a control signal SW3. SW4 to the second The control end of the tool.
  • the third multiplexer input terminal is connected with three voltage reference voltages VSDD1 VSVSDD3; the output terminal is coupled to the gamma correction module; the timing control module outputs control signals SW6, SW7 to the third The console of the multiplexer.
  • the duration of the active signal in each sub-frame time increases sequentially; from the sixth sub-frame time, the blanking time duration of each sub-detection time
  • the first multiplexer and the third multiplexer both output a reference voltage; the output reference voltage is sequentially increased; the second multiplexer outputs a reference voltage; the output reference voltage is sequentially decreased; and, each The duration and duration of the active signal in a sub-detection time
  • the active signals in 5 sub-frames can last for the same amount of time.
  • the three reference voltages connected to the input end of each multiplexer are in a multiple relationship, which are 2 times, 4 times, and 8 times respectively of the existing driving voltage.
  • the three multiplexers can also be switched at different times, and it is also feasible to arbitrarily select one or two multiplexers for switching control.
  • the driving gray levels in the last three sub-frames need to reach 256, 515 and 1024, respectively, and the display gray level is at most 256, obviously the last The 512 and 1024 gray levels are unreachable.
  • the driving gray level in the last three sub-frames only needs to be maintained at 128, and the brightness compensation is realized by increasing the driving voltage.
  • the technical scheme adopts a PWM method to drive the AM0LED, and one of the organic light-emitting diodes
  • the driving time is divided into 8 sub-frame times to achieve different gray scale effects.
  • Such a driving method has a longer duration of the blanking signal in a shorter sub-frame time in which the active signal can be sustained, and thus has a relatively large luminance loss. Therefore, the speed of data transmission of the subsequent sub-frame time must be relatively increased to compensate for the loss of brightness. Since the transmission of the data driving signal is limited by the transmission speed of the 5 moving circuit interface, and the higher resolution display panel, the transmission rate limit of the data driving signal is more limited.
  • the technical solution increases the driving voltage of the organic light emitting diode in advance for the duration of the blanking signal, so that the current flowing through the organic light emitting diode is correspondingly under the action of the higher driving voltage for the duration of the next active signal. Increase, the driving voltage is increased within the blanking time, and does not occupy the display time of the organic light-emitting diode. Even if the transmission medium has a signal (the 0 transmission rate is limited, the driving voltage is sufficient in the time zone of the blanking time). In addition, during the blanking time, the organic light-emitting diode has no display, and the voltage change does not cause the display to flicker.
  • the organic light emitting diode is connected in series with the controllable switch of the vehicle conductor.
  • the semiconductor controllable switch operates in a saturation zone, and the data driving signal is coupled to the gate of the semiconductor controllable switch. Therefore, increasing the voltage of the data driving signal can be Increasing the current flowing through the controllable switch of the conductor, thereby increasing the brightness of the organic light-emitting diode.
  • the present embodiment further discloses an AMOLED driving method, comprising the steps of: controlling an increase in current output to the organic light emitting diode during a frame driving time of the organic light emitting diode.
  • the three methods can be used individually or in combination.
  • a reference voltage VDD1 to VDD3 is output during the blanking signal duration of each sub-frame time ; the output reference voltage is sequentially increased.
  • a reference voltage VSS1 to VSS3 is output for the duration of the blanking signal of each sub-detection time; the output reference voltage is sequentially decreased.
  • the power in the storage capacitor can be forcibly discharged within one frame driving time, thereby further reducing the influence of the electron of the storage capacitor on the deflection voltage of the first semiconductor controllable switch, thereby further improving the display of the AMOLED panel. consistency.
  • the time of each subframe is unequal in the present invention.
  • the number of sub-frame times is not limited to eight. The more the number, the better the gradation adjustment effect, and of course the higher the control cost.
  • the number of recommended times of the present invention is between 2 and 10.
  • the positive voltage of the organic light-emitting diode (VDD), the voltage of the anode of the organic light-emitting diode (VSS), and the incremental voltage of the data driving signal of the organic light-emitting diode (VSDD) are not limited to the division. S grades can be flexibly increased or decreased according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种AMOLED驱动电路,包括第一半导体可控开关(T1)、第二半导体可控开关(T2)、存储电容(C1)和有机发光二极管(D1)。第二半导体可控开关(T2)的输出端与有机发光二极管(D1)的正极耦合。第一半导体可控开关(T1)源极连接到AMOLED显示面板的数据驱动信号(SN),闸极连接到AMOLED显示面板的扫描驱动信号(GN),漏极连接到第二半导体可控开关(T2)的闸极。存储电容(C1)串接在第二半导体可控开关(T2)的源极和闸极之间。该驱动电路还包括将有机发光二极管(D1)一帧驱动时间分成N个子帧时间的时序控制模块(40),每个子帧时间内数据驱动信号(SN)分成驱动有机发光二极管(D1)显示的能动信号和关断有机发光二极管(D1)显示的消隐信号。

Description

一种 AMOLED驱动电路及其驱动方法 技术领域
': 本发明涉及电子显示领域, 更具体的说, 涉及一种 AMOLED驱动电 路及其驱动方法。 背景技术
由于平面显示的制程技术及材料的进步,使得有机发光二极体 10 (AMOLED)慢慢地成为未来显示器的主流。 图 1所示为一种 AMOLED驱 动电路, 其包括第一半导体可控开关 Tl、 第二半导体可控开关 Τ2、 储能 电容 C1和有机发光二级管 Dl。 第二半导体可控开关 T2—端连接到第一 控制电压 VDD, 另一端与有机发光二级管 D1的正极连接, 有机发光二级 DI的负极连接到第二控制电压 VSS,第一半导体可控开关 T1源极连接 ! 5 到 AMOLED显示面板的数据驱动信号, 闸极连接到 AMOLED显示面板 的扫描驱动信号, 漏极连接到第二半导体可控开关 T2 的阐极, 存储电容 串接在第二半导体可控开关 T2 的源极和闸极, 使得第二半导体可控幵关 T2控制于饱和区, 借此提供 AMOLED电流及发光。
现有的 AMOLED驱动电路存在亮度衰减的问题, 影响显示区的一致 20 uniformity) 发明内容
本发明所要解决的技术问题是提供一种改善 AMOLED面板显示一致 性的 AMOLED驱动电路及其驱动方法。
25 本发明的目的是通过以 技术方案来实现的:
一种 AMOLED驱动电路, 所述驱动电路包括第一半导体可控开关、 第二半导体可控开关、 储能电容和有机发光二级管; 所述第二半导体可控 开关的输出端与有机发光二级管的正极耦合, 第 半导体可控开关源极连 接到 AMOLED显示面板的数据驱动信号, 闸极连接到 AMOLED显示面 板的扫描驱动信号, 漏极连接到第二半导体 ig 关的闸极, 存储电容串 接在第二半导体可控开关的源极和闸极之间;
所述驱动电路包括将所述有机发光二级管一帧驱动时间分成 N 个子 帧吋间的时序控制模块, 每个子帧时间内数据驱动信号分成驱动有机发光 二级管显示的能动信号和关断有机发光二级管显示的消隐信号。
.5 进一步的, 所述驱动电路还包括第三半导体可控幵关, 所述第三半导 体可控开关串接在所述第二半导体可控开关的闸极和一低电平信号之间。
增加第三可控开关, 可以在一帧驱动时间内将储能电容中的电量强制 放掉, 这样进一步减少了储能电容的电子对第一半导体可控开关偏转电压 的影响, 进一步提高了 AMOLED面板显示的一致性。
1 :ι 进一步的, 所述驱动电路还包括在有机发光二级管显示时增加流过该 有机发光二极管电流的过压驱动模块; 所述过压驱动模块包括提供所述数 据驱动信号的数据驱动模块、 与数据驱动模块耦合的伽马校正模块; 在任意一个或多个消隐信号持续时间内, 所述过压驱动模块通过增大 第二半导体可控开关的输入端电压、 减小有机发光二级管负极电压或增大 ; 5 伽马校正模块输出电压中的任意一种或多种的方式增大流过所述有机发光 二级管的电流。
本发明采用 PWM的方式来驱动 AMOLED,将有机发光二级管的一帧 驱动时间分成 N个子帧时间, 以达到不同灰阶效果。此种驱动方式在能动 信号可持续的时间较短的子帧时间中, 其消隐信号的持续时间较长, 因此 0 会有比较大的亮度损失。 因此后续子帧时间的数据驱动信号的传输的速度 必须相对提升, 才能补偿亮度的损失。 由于数据驱动信号的传输会受限于 驱动电路介面的传输速度, 且越高解析度的显示面板, 对数据驱动信号的 传输速率限制越大。 木技术方案在消隐信号持续时间内预先提高有机发光 二级管的驱动电压, 这样在下一个能动信号的持续时间内, 在更高驱动电 5 压作用下, 流经有机发光二级管的电流也相应增加, 驱动电压的提升在消 隐时间内完成, 不占用有机发光二级管的显示时间, 即便传输介质对信号 传输速率有限制,在消隐时间的时区内也足够完成驱动电压的准备。另外
? Έ消隐时间内, 有机发光二级管无显示, 电压的变化也不会造成显示画面 闪烁。
-:) 进一步的, 所述过压驱动模块包括第一多工器、 第二多工器和第三多 工器, 所述第一多工器输入端连接有 X个电压不等的基准电压; 输出端耦 含到第二半导体可控开关的输入端; 控制端耦合到所述时序控制模块; 在第 1〜N-X个子帧时间内, 每个子帧时间内的能动信号可持续的时 间依次递增; 从第 N-X+1个子帧时间开始, 每个子侦时间的消隐信号持续 5 时间内, 输出一个基准电压; 输出的基准电压大小依次递增: 并且, 每个 子侦时间内的能动信号可持续的时间与第 N-X 个子帧时间内的能动信号 可持续的时间相等;
所述第二多工器输入端连接有 Y个电压不等的基准电压:输出端耦合 到所述有机发光二级管的负极;控制端耦合到所述时序控制模块;从第 N-Y 10 子帧时间开始, 每个子侦时间的消隐信号持续时间内, 输出一个基准电 输出的基准电压大小依次递减;
所述第三多工器输入端连接有 z个电压不等的基准电压; 输出端耦合 所述伽马校正模块; 控制端耦合到所述时序控制模块; 从第 N-Z个子帧 时间幵始, 每个子侦时间的消隐信号持续时间内, 输出一个基准电压; 输 15 出的基准电压大小依次递增:
所述 X、 Y、 Ζ为小于 Ν的自然数。
增大有机发光二级管正极的电压、 减小有机发光二级管负极的电压可 以直接提高有机发光二级管两端的电压差, 从而增加流经有机发光二级管 的电流; 提高有机发光二级管的亮度。 有机发光二级管是跟半导体可控开 :::0 关串接的, 半导体可控开关工作在饱和区, 而数据驱动信号耦合到该半导 体可控开关的闸极, 因此, 增大数据驱动信号的电压可以增加流经 导体 可控开关的电流, 进而提升有机发光二级管的亮度。
一种 AMOLED驱动方法, 包括步骤:
将所述有机发光二级管的一帧驱动时间分成 Ν个子帧时间, 25 将每个子帧时间内数据驱动信号分成驱动有机发光二级管显示的能动 信号和关断有机发光二级管显示的消隐信号;
Ν为大于或等于 2的自然数
进一步的, 在任意一个或多个消隐信号持续时间内, 对该发光二极管 对应的储能电容迸行放电。
Η) 本技术方案可以在一帧驱动时间内将储能电容中的电量强制放掉, 这 样进一步减少了储能电容的电子对第一 导体可控开关偏转电压的影响, 进一步提高了 AM0LED面板显示的一致性。
进一步的, 每个子帧时间相等; 将每个子帧时间内数据驱动信号分成 驱动有机发光二级管显示的能动信号和关断有机发光二级管显示的消隐信 在所述有机发光二级管的一帧驱动时间内, 每个子帧时间内的能动信 号可持续的时间依次递增;
在任意一个或多个消隐信号持续时间内, 通过增大数据驱动信号的电 压. 增大有机发光二级管正极的电压或减小有机发光二级管负极的电压中 的任意一种或多种方式增大流过所述有机发光二级管的电流。
本技术方案采用 PWM的方式来驱动 AMOLED,将有机发光二级管的 一帧驱动时间分成 N个子帧时间, 以达到不同灰阶效果。此种驱动方式在 能动信号可持续的时间较短的子帧时间中, 其消隐信号的持续时间较长, 因此会有比较大的亮度损失。 因此后续子帧时间的数据驱动信号的传输的 速度必须相对提升, 才能补偿亮度的损失。 由于数据驱动信号的传输会受 限 驱动电路介面的传输速度, 且越高解析度的显示面板, 对数据驱动信 号的传输速率限制越大。 本技术方案在消隐信号持续时间内预先提高有机 发光二级管的驱动电压, 这样在下一个能动信号的持续时间内, 在更高驱 动电压作用下, 流经有机发光二级管的电流也相应增加, 驱动电压的提升 在消隐时间内完成, 不占用有机发光二级管的显示时间, 即便传输介质对 信号传输速率有限制, 在消隐时间的时区内也足够完成驱动电压的准备。 另外, 在消隐时间内, 有机发光二级管无显示, 电压的变化 ¾不会造成显 画面闪烁。
进一步的,将所述有机发光二级管正极耦合的电压分成 X个等级的基 准电压, 从第 N-X+1个子帧时间幵始,每个子侦时间的消隐信号持续时间 内, 输出一个基准电压; 输出的基准电压大小依次递增;
所述 X为小于 N的自然数。
增大有机发光二级管正极的电压可以直接提高有机发光二级管两靖 的电压差, 从而增加流经有机发光二级管的电流; 提高有机发光二级管的 Ά 进一步的,将所述有机发光二级管负极耦合的电压分成 Y个等级的基 准电压,从第 Ν-Υ个子帧时间开始,每个子侦时间的消隐信号持续时间内, 输出一个基准电压; 输出的基准电压大小依次递减;
所述 Υ为小于 Ν的自然数。
减小有机发光二级管负极的电压可以直接提高有杌发光二级管两端 的电压差, 从而增加流经有机发光二级管的电流; 提高有机发光二级管的 进一步的, 将所述有机发光二级管的数据驱动信号的增量电压分成 ζ 个等级,从第 Ν-Ζ个子帧时间开始,每个子侦时间的消隐信号持续时间内, 输出一个等级的增量电压; 输出的增量电压大小依次递增;
所述 Ζ为小于 Ν的自然数。
有机发光二级管是跟半导体可控开关串接的, 半导体可控幵关工作在 饱和区, 而数据驱动信号耦合到该半导体可控幵关的闸极, 因此, 增大数 据驱动信号的电压可以增加流经半导体可控开关的电流, 进而提升有机发 光二级管的亮度。
AMOLED驱动电路由于是通过对存储电容 C1 充电,借此提供有机发 光二级管电流, 使其发光显示。 但是由于与有机发光二级管串接的 导体 可控开关长时间受到电子影响, 会影响其栅极和源极之间的偏置电压, 因 此使得有机发光二级管的电流会改变, 使得显示器的一致性 (uniformity)受 到影响。本发明由于将在当前有机发光二级管一帧驱动时间分成 N个子帧 时间, 每个子帧时间内数据驱动信号分成驱动有机发光二级管显示的能动 信号和关断有机发光二级管显示的消隐信号; 在消隐信号时间内, 第一半 导体可控开关关断, 储能电容不再有电量补充, 幵始放电, 这样就避免了 第二半导体可控幵关长期受到到存储电容的电子影响,从而改善 AMOLED 面板显示一致性。
^图说明
图〗是现有的 AMOLED驱动电路示意图;
图 2是本发明的 AMOLED驱动电路示意图;
图 3是增加第三可控开关的 AMOLED驱动电路示意图; 图 4是本发明实施例 AM0LED驱动电路的原理示意图;
图 5是本发明实施例 AM0LED驱动方法的时序示意图;
图 6是本发明实施例 AM0LED驱动方法的流程示意图。
5 具体实施方式
如图 2所示, 本发明公开了一种 AM0LED驱动电路, AMOLED驱动电 路, 所述驱动电路包括第一半导体可控开关 Tl、第二半导体可控开关 Τ2、. 储能电容 C1和有机发光二级管 D1 ; 所述第二半导体可控开关 Τ2的输出 端与有机发光二级管 D1的正极耦合,第一半导体可控开关 Ti源极连接到 ! 0 AMOLED显示面板的数据驱动信号 SN, 闸极连接到 AMOLED显示面板 (!勺扫描驱动信号 GN, 漏极连接到第二半导体可控开关 T2的闸极, 存储电 容 C1串接在第二半导体可控开关 T2的源极和闸极之间;
所述 AMOLED驱动电路包括将所述有机发光二级管一帧驱动时间分 成 N个子帧时间的时序控制模块,每个子帧时间内数据驱动信号分成驱动 1 5 有机发光二级管显示的能动信号和关断有机发光二级管显示的消隐信号。
AMOLED驱动电路由于是通过对存储电容 C1 充电,借此提供有机发 光二级管电流, 使其发光显示。 但是由于与有机发光二级管串接的半导体 可控开关长时间受到电子影响, 会影响其栅极和源极之间的偏置电压, 因 此使得有机发光二级管的电流会改变, 使得显示器的一致性 (uniformity)受 :::> 到影响。本发明由于将在当前有机发光二级管一帧驱动时间分成 N个子帧 吋间 每个子帧时间内数据驱动信号分成驱动有机发光二级管显示的能动 信号和关断有机发光二级管显示的消隐信号; 在消隐信号时间内, 第一半 导体可控开关关断, 储能电容不再有电量补充, 开始放电, 这样就避免了 第二半导体可控开关长期受到到存储电容的电子影响,从而改善 AMOLED 25 面板显示一致性。
参见图 3, 为了进一步提高了 AMOLED面板显示的一致性, 驱动电 路还可以增加第三半导体可控幵关 T3, 所述第三半导体可控开关 Τ3串接 在所述第二半导体可控开关 Τ2的阐极和一低电平信号 (logic 0) vref之间。
增加第三可控开关, 可以在一帧驱动时间内将储能电容中的电量强制 放掉, 这样进一步减少了储能电容的电子对第一半导体可控开关偏转电压 的影响。 下面结合附图和较佳的实施例对本发明作进一步说明。
5 如图 3、 所示, 本实施方式公开的 AM0LED驱动电路包括第一半导体 可控幵关 T1、第二半导体可控开关 T2、储能电容 C1和有机发光二级管 D1 ; 所述第二半导体可控开关的输出端与有机发光二级管的正极耦合, 第一半 导体可控开关源极连接到 AM0LED显示面板的数据驱动信号 SN, 闸极连接 到 AM0LED显示面板的扫描驱动信号,漏极连接到第二半导体可控开关的闸
10 极, 存储电容串接在第二半导体可控开关的源极和闸极之间。
所述 MTOLED驱动电路还包括扫描驱动模块 30、 提供所述数据驱动信 号的数据驱动模块 2.0、 与数据驱动模块耦合的伽马校正模块 Gamma IC; 数 据驱动模块 20 通过数据线连接到每个有机发光二级管对应的第一半导体 可控幵关的源极 S190()、 S1920,扫描驱动模块 30通过扫描线连接到每个有
':> 机发光二级管对应的第一半导体可控开关的闸极 G1〜G1080。
所述 AM0LED驱动电路还包括将所述有机发光二级管一帧驱动时间分 成 8个子帧时间的时序控制模块 40,每个子帧时间内数据驱动信号分成驱 动有机发光二级管显示的能动信号和关断有机发光二级管显示的消隐信 号, 在所述有机发光二级管的一帧驱动时间内, 每个子帧时间内的能动信 0 号可持续的时间依次递增。 扫描驱动模块和数据驱动模块的控制时序也通 过时序控制模块提供。
所述过压驱动模块 10包括第一多工器 11、第二多工器 12和第三多工 器 13。所述第一多工器输入端连接有 3个电压不等的基准电压 VDD1〜VDD3 ; 输出端耦合到第二半导体可控开关的输入端;时序控制模块 40输出控制信 5 y S 、 SW2到第一多工器的控制端。所述第二多工器输入端连接有 3个电 压不等的基准电压 VSS1〜VSS3 ; 输出端耦合到所述有机发光二级管的负 极 时序控制模块 40输出控制信号 SW3. SW4到第二多工器的控制端。 述第三多工器输入端连接有 3个电压不等的基准电压 VSDD1〜VSDD3 ;输出 端耦合到所述伽马校正模块;时序控制模块输出控制信号 SW6、 SW7到第三 多工器的控制端。
参见表 1和图 5, 在第 1〜5个子帧时间内,每个子帧时间内的能动信 号可持续的时间依次递增; 从第 6个子帧时间开始, 每个子侦时间的消隐 号持续时间内, 第一多工器、 第三多工器都输出一个基准电压; 输出的 基准电压大小依次递增; 第二多工器输出一个基准电压; 所述输出的基准 电压大小依次递减; 并且, 每个子侦时间内的能动信号可持续的时间与第
5个子帧时间内的能动信号可持续的时间相等。
本实施方式中, 每个多工器输入端连接的三个基准电压呈倍数关系, 分别是现有驱动电压的 2倍、 4倍、 8倍。
三个多工器也可以不同时切换, 任意选择其中一个或两个多工器进行 切涣控制也是可行的。
Figure imgf000010_0001
表 1
可见, 在未调变电压时, 为了补偿有机发光二级管的亮度, 最后三个 子帧时间内的驱动灰阶分别需要达到 256、 515和 1024, 而显示灰阶最多 也就是 256, 显然最后的 512和 1024灰阶是无法达到的。 而采用多工器进 行电压调变以后, 最后三个子帧时间内的驱动灰阶只需要维持 128即可, 而通过增大驱动电压来实现亮度补偿。
本技术方案采用 PWM的方式来驱动 AM0LED,将有机发光二级管的一 驱动时间分成 8个子帧时间, 以达到不同灰阶效果。 此种驱动方式在能动 信号可持续的时间较短的子帧时间中, 其消隐信号的持续时间较长, 因此 会有比较大的亮度损失。 因此后续子帧时间的数据驱动信号的传输的速度 必须相对提升, 才能补偿亮度的损失。 由于数据驱动信号的传输会受限于 5 动电路介面的传输速度, 且越高解析度的显示面板, 对数据驱动信号的 传输速率限制越大。 本技术方案在消隐信号持续时间内预先提高有机发光 二级管的驱动电压, 这样在下一个能动信号的持续时间内, 在更高驱动电 压作用下, 流经有机发光二级管的电流也相应增加, 驱动电压的提升在消 隐时间内完成, 不占用有机发光二级管的显示时间, 即便传输介质对信号 ( 0 传输速率有限制,在消隐时间的时区内也足够完成驱动电压的准备。另外, 在消隐时间内, 有机发光二级管无显示, 电压的变化也不会造成显示画面 闪烁。
增大有机发光二级管正极的电压、减小有机发光二级管负极的电压可 以 .1 [接提高有机发光二级管两端的电压差, 从而增加流经有机发光二级管 ' 的电流; 提高有机发光二级管的亮度。 有机发光二级管是跟车导体可控开 关串接的, 半导体可控开关工作在饱和区, 而数据驱动信号耦合到该半导 体可控开关的闸极, 因此, 增大数据驱动信号的电压可以增加流经 导体 可控开关的电流, 进而提升有机发光二级管的亮度。 0 本实施方式还公开一种 AMOLED驱动方法, 包括步骤: 在有机发光 二级管的一帧驱动时间内, 控制输出到该有机发光二级管的电流增大。
参见图 6, 具体实施方式如下所述。
S1 : 将所述有机发光二级管的一帧驱动时间分成 8个子帧时间, 每个 子帧时间内数据驱动信号分成驱动有机发光二级管显示的能动信号和关断 5 有.机发光二级管显示的消隐信号, 在所述有机发光二级管的一帧驱动时间 内, 每个子帧时间内的能动信号可持续的时间依次递增; 每个子帧时间相 等。
分成子帧后, 有三种方式都可以实现输出到有机发光二级管的电流增 大. 三种方式可以单个使用, 也可以组合使用。 第一种方式:
S2-1 : 将所述有机发光二级管正极耦合的电压(VDD)分成 3个等级的 基准电压;
52- 2 :从第 6个子帧时间开始,每个子帧时间的消隐信号持续时间内, 输出一个基准电压 VDD1〜VDD3; 输出的基准电压大小依次递增。
第二种方式:
53- 1 : 将所述有机发光二级管负极耦合的电压(VSS )分成 3个等级的 基准电压;
83-2:从第 6个子帧时间开始,每个子侦时间的消隐信号持续时间内, 输出一个基准电压 VSS1〜VSS3; 输出的基准电压大小依次递减。
第三种方式:
54- 1 : 将所述有机发光二级管的数据驱动信号的增量电压 (VSDD) 分 成 3个等级;
S4-2:从第 6个子帧时间开始,每个子侦时间的消隐信号持续时间内, 输出一个等级的增量电压 VSDD1〜VSDD3; 输出的增量电压大小依次递增:
85: 在任意一个或多个消隐信号持续时间内, 对该发光二极管对应的 储能电容进行放电。
本实施方式可以在一帧驱动时间内将储能电容中的电量强制放掉, 这 样迸一步减少了储能电容的电子对第一半导体可控开关偏转电压的影响, 进一步提高了 AMOLED面板显示的一致性。
本发明中每个子帧时间不等也是可以的。 子帧时间数量也不局限于 8 个 数量越多, 灰度调节效果越好, 当然控制成本也越高, 本发明推荐子 ¾时间的数量在 2〜10 之间。 同样的, 有机发光二级管正极耦合的电压 ( VDD) , 有机发光二级管负极耦合的电压 (VSS)、 有机发光二级管的数据 驱动信号的增量电压 (VSDD) 也不局限于划分 S个等级, 可以根据实际需 要灵活增减。
以上内容是结合具体的优选实施方式对本发明所作的进一歩详细说 明 不能认定本发明的具体实施只局限于这些说¾。 对于本发明所属技术 领域的普通技术人员来说, 在不脱离木发明构思的前提下 还可以做出若 :f简单推演或替换, 都应当视为属于本发明的保护范围。

Claims

权 利 要 求 书
1 . 一种 AMOLED驱动电路,所述驱动电路包括第一半导体可控开关、 第二半导体可控开关、 储能电容和有机发光二级管; 所述第二半导体可控 开关的输出端与有机发光二级管的正极耦合, 第一半导体可控开关源极连 5 接到 AMOLED显示面板的数据驱动信号, 闸极连接到 AMOLED显示面 板的扫描驱动信号, 漏极连接到第二半导体可控开关的闸极, 存储电容串 接在第二半导体可控开关的源极和间极之间;
所述驱动电路包括将所述有机发光二级管一帧驱动时间分成 N个子 帧时间的时序控制模块, 每个子帧时间内数据驱动信号分成驱动有机发光 10 二级管显示的能动信号和关断有机发光二级管显示的消隐信号;
N为大于或等于 2的自然数。
2. 如权利要求 1所述的一种 AMOLED驱动电路, 其中, 所述驱动电 路还包括第三半导体可控开关, 所述第三半导体可控开关串接在所述第二 半导体可控开关的闸极和一低电平信号之间。
) 5
3. 如权利要求 1所述的一种 AMOLED驱动电路, 所述驱动电路还包 括在有机发光二级管显示时增加流过该有机发光二极管电流的过压驱动模 块; 所述过压驱动模块包括提供所述数据驱动信号的数据驱动模块、 与数 据驱动模块耦合的伽马校正模块;
在任意一个或多个消隐信号持续时间内, 所述过压驱动模块通过增大
2 第二半导体可控开关的输入端电压、 减小有机发光二级管负极电压或增大 伽马校正模块输出电压中的任意一种或多种的方式增大流过所述有机发光 二级管的电流。
4. 如权利要求 3所述的一种 AMOLED驱动电路, 其中, 所述过压驱 动模块包括第一多工器、 第二多工器和第三多工器, 所述第一多工器输入 5 端连接有 X个电压不等的基准电压;输出端耦合到第二半导体可控开关的 输入端; 控制端耦合到所述时序控制模块;
在第 i〜N-X个子帧时间内, 每个子帧时间内的能动信号可持续的时 间依次递增; 从第 N-X+1个子帧时间开始, 每个子侦时间的消隐信号持续 时间内, 输出一个基准电压; 输出的基准电压大小依次递增; 并且, 每个 替换页 (细则第 26条) 子侦时间内的能动信号可持续的时间与第 N- X个子帧时间内的能动信号 可持续的时间相等;
所述第二多工器输入端连接有 Y个电压不等的基准电压;输出端耦合 到所述有机发光二级管的负极;控制端耦合到所述时序控制模块;从第 N-Y 冬子帧时间开始, 每个子侦时间的消隐信号持续时间内, 输出一个基准电 压; 输出的基准电压大小依次递减;
所述第三多工器输入端连接有 Z个电压不等的基准电压; 输出端耦合 ¾所述伽马校正模块; 控制端耦合到所述时序控制模块; 从第 N- Z个子帧 时间开始, 每个子侦时间的消隐信号持续时间内, 输出一个基准电压; 输 的基准电压大小依次递增;
所述 X、 Y、 Ζ为小于 Ν的自然数。
5.—种 AMOLED驱动方法, 包括步骤:
将所述有机发光二级管的一帧驱动时间分成 Ν个子帧时间, 将每个子帧时间内数据驱动信号分成驱动有机发光二级管显示的能动 信号和关断有机发光二级管显示的消隐信号;
Ν为大于或等于 2的自然数。
6. 如权利要求 5所述的一种 AMOLED驱动方法, 其中, 在任意一个 或多个消隐信号持续时间内, 对该发光二极管对应的储能电容进行放电。
7. 如权利要求 5所述的一种 AMOLED驱动方法, 其中, 每个 子帧时间相等; 在所述有机发光二级管的一帧驱动时间内, 每个子帧时间 内的能动信号可持续的时间依次递增;
在任意一个或多个消隐信号持续时间内, 通过增大数据驱动信号的电 压、 增大有机发光二级管正极的电压或减小有机发光二级管负极的电压中 的 意一种或多种方式增大流过所述有机发光二级管的电流。
8. 如权利要求 7所述的一种 AMOLED驱动方法,
其中, 将所述有机发光二级管正极耦合的电压分成 X个等级的基准电压, 从第 N-X+1个子帧时间开始, 每个子侦时间的消隐信号持续时间内, 输出 个基准电压; 输出的基准电压大小依次递增;
所述 X为小于 N的自然数。 替换页 (细则第 26条)
9. 如权利要求 7所述的一种 AMOLED驱动方法,
中, 将所述有机发光二级管负极耦合的电压分成 Y个等级的基准电压, 人第 N-Y个子帧时间开始, 每个子侦时间的消隐信号持续时间内, 输出一 基准电压; 输出的基准电压大小依次递减;
所述 Y为小于 N的自然数。
10. 如权利要求 7所述的一种 AMOLED驱动方法, 其中, 将所述有 机发光二级管的数据驱动信号的增量电压分成 Z个等级,从第 N-Z个 子帧时间幵始, 每个子侦时间的消隐信号持续时间内, 输出一个等级 的增量电压; 输出的增量电压大小依次递增;
所述 Z为小于 N的自然数。
替换页 (细则第 26条)
PCT/CN2014/071190 2013-12-31 2014-01-23 一种amoled驱动电路及其驱动方法 WO2015100824A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/241,080 US9343012B2 (en) 2013-12-31 2014-01-23 Driving circuit of AMOLED and method for driving the AMOLED

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310753793.X 2013-12-31
CN201310753793 2013-12-31
CN201410014397.XA CN103700348B (zh) 2013-12-31 2014-01-13 一种amoled驱动电路及其驱动方法
CN201410014397.X 2014-01-13

Publications (1)

Publication Number Publication Date
WO2015100824A1 true WO2015100824A1 (zh) 2015-07-09

Family

ID=50361858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071190 WO2015100824A1 (zh) 2013-12-31 2014-01-23 一种amoled驱动电路及其驱动方法

Country Status (2)

Country Link
CN (1) CN103700348B (zh)
WO (1) WO2015100824A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105096825B (zh) * 2015-08-13 2018-01-26 深圳市华星光电技术有限公司 显示装置
CN105185313A (zh) * 2015-10-15 2015-12-23 深圳市华星光电技术有限公司 Amoled驱动方法
CN105243991B (zh) * 2015-10-27 2018-01-26 深圳市华星光电技术有限公司 Amoled驱动装置
CN107256691B (zh) * 2017-08-10 2019-09-27 深圳市华星光电半导体显示技术有限公司 Oled显示装置的数位驱动方法及系统
CN107947569B (zh) * 2017-12-20 2024-02-06 深圳市明微电子股份有限公司 一种消影电压控制系统和方法
CN110197647A (zh) * 2019-07-01 2019-09-03 上海天马有机发光显示技术有限公司 一种显示面板及显示面板拓扑结构模型调整方法、装置
CN111083855B (zh) * 2020-02-22 2021-10-08 禹创半导体(南京)有限公司 一种适用于micro LED的数据驱动电路
US11227561B2 (en) * 2020-03-01 2022-01-18 Novatek Microelectronics Corp. Display driver circuit suitable for applications of variable refresh rate
CN116472575A (zh) 2021-11-18 2023-07-21 瑞仪光电(苏州)有限公司 显示装置、电流校正值的建立方法与电流校正系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647051A (zh) * 2007-03-29 2010-02-10 伊斯曼柯达公司 具有不同灰度级模式的有源矩阵显示设备
CN101661705A (zh) * 2008-08-29 2010-03-03 三菱电机株式会社 灰度控制方法和显示装置
CN102473377A (zh) * 2009-07-23 2012-05-23 夏普株式会社 显示装置和显示装置的驱动方法
US20120313903A1 (en) * 2011-06-10 2012-12-13 Samsung Mobile Display Co., Ltd. Organic light emitting display
CN103198797A (zh) * 2013-04-26 2013-07-10 深圳市华星光电技术有限公司 有源矩阵有机发光二极管面板的驱动方法及像素单元
CN203179478U (zh) * 2013-04-26 2013-09-04 深圳市华星光电技术有限公司 有源矩阵有机发光二极管面板的像素单元

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW587239B (en) * 1999-11-30 2004-05-11 Semiconductor Energy Lab Electric device
JP5177999B2 (ja) * 2006-12-05 2013-04-10 株式会社半導体エネルギー研究所 液晶表示装置
KR20130135505A (ko) * 2012-06-01 2013-12-11 삼성디스플레이 주식회사 유기전계발광 표시장치 및 그의 구동방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101647051A (zh) * 2007-03-29 2010-02-10 伊斯曼柯达公司 具有不同灰度级模式的有源矩阵显示设备
CN101661705A (zh) * 2008-08-29 2010-03-03 三菱电机株式会社 灰度控制方法和显示装置
CN102473377A (zh) * 2009-07-23 2012-05-23 夏普株式会社 显示装置和显示装置的驱动方法
US20120313903A1 (en) * 2011-06-10 2012-12-13 Samsung Mobile Display Co., Ltd. Organic light emitting display
CN103198797A (zh) * 2013-04-26 2013-07-10 深圳市华星光电技术有限公司 有源矩阵有机发光二极管面板的驱动方法及像素单元
CN203179478U (zh) * 2013-04-26 2013-09-04 深圳市华星光电技术有限公司 有源矩阵有机发光二极管面板的像素单元

Also Published As

Publication number Publication date
CN103700348B (zh) 2017-01-18
CN103700348A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
WO2015100824A1 (zh) 一种amoled驱动电路及其驱动方法
CN102930824B (zh) 像素电路及驱动方法、显示装置
KR100911982B1 (ko) 이미션 구동부 및 이를 이용한 유기전계발광 표시장치
CN107068048B (zh) Oled显示装置的数字驱动方法
KR101411619B1 (ko) 화소 회로와 그 구동 방법 및 이를 이용한 유기 발광 표시 장치
US9343015B2 (en) Organic light emitting display device including a sensing unit for compensating degradation and threshold voltage and driving method thereof
CN202855271U (zh) 像素电路及显示装置
KR100858618B1 (ko) 유기전계발광 표시장치 및 그의 구동방법
US8319761B2 (en) Organic light emitting display and driving method thereof
CN110910816B (zh) 像素驱动电路和显示面板
US20090284502A1 (en) Image signal display control apparatus and image signal display control method
CN104036726A (zh) 像素电路及其驱动方法、oled显示面板和装置
KR20110037537A (ko) 구동부 및 이를 이용한 유기전계발광 표시장치
KR20080087355A (ko) 발광 픽셀 및 상기 발광 픽셀의 구동 장치
US8743024B2 (en) Emission control driver and organic light emitting display using the same
US20080055304A1 (en) Organic light emitting display and driving method thereof
CN111341267B (zh) 像素电路及其驱动方法
CN102693696B (zh) 像素电路结构及驱动像素电路结构的方法
WO2022156078A1 (zh) 一种μLED单元电路、其发光控制方法和像素装置
WO2022217681A1 (zh) 像素电路、显示面板及控制方法
US11348519B2 (en) Display device displaying frames at different driving frequencies utilizing first and second gamma voltage generators and a gap controller
US9165504B2 (en) Method of controlling a dimming operation and organic light emitting display device performing the same
CN113593469A (zh) 像素电路及显示面板
KR100836431B1 (ko) 화소 및 이를 이용한 유기전계발광 표시장치
US20130002307A1 (en) Stage circuit and scan driver using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14241080

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876639

Country of ref document: EP

Kind code of ref document: A1