WO2015100576A1 - 传输数据的方法和装置 - Google Patents

传输数据的方法和装置 Download PDF

Info

Publication number
WO2015100576A1
WO2015100576A1 PCT/CN2013/091009 CN2013091009W WO2015100576A1 WO 2015100576 A1 WO2015100576 A1 WO 2015100576A1 CN 2013091009 W CN2013091009 W CN 2013091009W WO 2015100576 A1 WO2015100576 A1 WO 2015100576A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
hfru
downlink
intermediate frequency
uplink
Prior art date
Application number
PCT/CN2013/091009
Other languages
English (en)
French (fr)
Inventor
王珏平
张思
王伟
王勇
陈默
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2013/091009 priority Critical patent/WO2015100576A1/zh
Priority to CN201380003391.6A priority patent/CN104937969B/zh
Priority to EP13900679.5A priority patent/EP3079394B1/en
Publication of WO2015100576A1 publication Critical patent/WO2015100576A1/zh
Priority to US15/197,362 priority patent/US9924374B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a method and apparatus for transmitting data in the field of communications. Background technique
  • the Acer Collaborative Networking System is a Heterogeneous Network (HetNet) system that can effectively solve wireless network coverage problems and improve network throughput and improve user experience.
  • HetNet Heterogeneous Network
  • the deployed micro station can be used to absorb hotspot services, supplement the coverage of the blind spot, and the like.
  • the digital baseband processing of the macro station and the micro station can be completed in the macro station, that is, the macro station includes the radio transceiver module of the macro station, and the baseband processing module that undertakes the digital processing functions of the macro station and the micro station, and the baseband processing module is mainly used for digital Functional processing, such as performing channel codec, digital modulation and demodulation, etc.; and the remotely located microstation site mainly includes a radio frequency transceiver module.
  • the data transmission between the macro station and the micro station is one of the key technologies of the macro-micro collaborative network system.
  • the communication between the existing micro-station and the macro station is mainly based on the Common Public Radio Interface (CPRI) protocol, that is, the interface between the radio transceiver module of the micro-station and the baseband processing unit is usually also a CPRI interface.
  • CPRI Common Public Radio Interface
  • the data transmission method between the micro station and the macro station mainly includes a fiber transmission method and a microwave transmission method.
  • the microwave transmission method the data communication of the base station processing unit of the micro station and the macro station is realized by microwave transmission, and the data transmitted is also CPRI protocol data based on the CPRI protocol, and the data transmission bandwidth required by the solution is wide, and the microwave is required.
  • the limited transmission bandwidth makes it difficult to meet the data bandwidth requirements of transmitting CPRI protocols, and the transmission cost is high.
  • embodiments of the present invention provide a method and apparatus for transmitting data, which can significantly reduce data transmission bandwidth and reduce data transmission costs.
  • an apparatus for transmitting data comprising: a high frequency radio frequency unit HFRU communicatively coupled to a station; and a frequency shifting radio unit SFRU communicatively coupled to the HFRU and the user equipment, wherein
  • the HFRU includes a high frequency radio unit indoor unit HFRU-IDU and a high frequency radio unit outdoor unit connected to the HFRU-IDU HFRU-ODU;
  • the SFRU includes a high frequency band transceiver and a wireless cellular band transceiver, wherein the HFRU-IDU is used to convert the data sent by the station into a downlink intermediate frequency analog signal, and send the downlink intermediate frequency analog signal
  • the HFRU-ODU is configured to convert the downlink intermediate frequency analog signal sent by the HFRU-IDU into a downlink high frequency signal, and send the downlink high frequency signal to the SFRU through an air interface;
  • the high frequency band The transceiver is configured to convert the downlink high frequency signal sent by the
  • the wireless cellular band transceiver is further configured to convert the uplink wireless cellular signal sent by the user equipment into an uplink intermediate frequency signal, and the uplink intermediate frequency The signal is sent to the high frequency band transceiver; the high frequency band transceiver is further configured to convert the uplink intermediate frequency signal sent by the wireless cellular band transceiver into an uplink high frequency signal, and send the uplink high frequency signal.
  • the HFRU-ODU is further configured to convert the uplink high frequency signal sent by the high frequency band transceiver into an uplink intermediate frequency analog signal, and send the uplink intermediate frequency analog signal to the HFRU-IDU;
  • the HFRU-IDU is further configured to convert the uplink intermediate frequency analog signal sent by the HFRU-ODU into an uplink intermediate frequency digital signal, and send the uplink intermediate frequency digital signal to the station.
  • the HFRU-IDU includes a common public radio interface CPRI deframe/frame module and a first digital/analog converter, where the CPRI deframes And a framing module is configured to obtain a downlink intermediate frequency digital signal from the CPRI protocol data sent by the station, where the first digital-to-analog converter is configured to convert the downlink intermediate frequency digital signal into the downlink intermediate frequency analog signal; wherein, the first number The /mode converter is further configured to convert the uplink intermediate frequency analog signal sent by the HFRU-ODU into the uplink intermediate frequency digital signal, and the CPRI deframing/framing module is further configured to convert the uplink intermediate frequency digital signal into a CPRI data frame.
  • the HFRU-IDU further includes a data rate conversion module, where the data rate conversion module is configured to match the CPRI deframe a data rate of the downlink intermediate frequency digital signal or the uplink intermediate frequency digital signal processed by the framing module and the first digital to analog converter.
  • the HFRU-ODU includes a first mixer and a first power amplifier, wherein the first mixer is configured to use the downlink intermediate frequency Converting the analog signal into the downlink high frequency signal, and converting the uplink high frequency signal into the uplink intermediate frequency analog signal, the first power amplifier is configured to amplify the downlink high frequency signal output by the first mixer, so that Sent to the SFRU.
  • the high frequency band transceiver includes: a second mixer and a second power amplifier, wherein the second mixer is configured to Converting the downlink high frequency signal into the downlink intermediate frequency signal, and converting the uplink intermediate frequency signal into the uplink high frequency signal, wherein the second power amplifier is configured to amplify the uplink high frequency signal output by the second mixer, so that Sent to the HFRU-ODIL
  • the wireless cellular band transceiver includes: a third mixer and a third power amplifier, where the third mixer is configured to: Converting the downlink intermediate frequency signal into the downlink wireless cellular signal, and converting the uplink wireless cellular signal sent by the user equipment into an uplink intermediate frequency signal, where the third power amplifier is configured to output the downlink wireless cellular signal to the third mixer Zoom in for easy transmission to the user device.
  • the high frequency band transceiver further includes: a second digital to analog converter and an SFRU configuration module, where The second digital-to-analog converter is used for mutual conversion between an intermediate frequency analog signal and an intermediate frequency digital signal, and the SFRU configuration module is configured to control the SFRU based on configuration management information sent by the HFRU, and the SFRU configuration module further uses The status information of the SFRU is sent to the HFRU.
  • the wireless cellular band transceiver further includes a third digital/analog converter, the third digital/analog The converter is configured to convert the downlink intermediate frequency digital signal sent by the high frequency band transceiver into a downlink intermediate frequency analog signal, so that the third mixer converts the downlink intermediate frequency analog signal generated by the third digital/analog converter into the a downlink digital cellular signal; the third digital-to-analog converter is further configured to convert the uplink intermediate frequency analog signal generated by the third mixer into an uplink intermediate frequency digital signal, so as to facilitate the uplink generated by the third digital-to-analog converter The intermediate frequency digital signal is sent to the high frequency band transceiver.
  • the HFRU further includes the first a compensation module
  • the high frequency band transceiver further includes a second compensation module
  • the first compensation module is configured to add a signal sent to the SFRU to the downlink phase noise compensation information of the transmitting local oscillator of the HFRU
  • the second compensation module is configured to obtain the downlink phase noise compensation information from the signal sent by the HFRU-ODU, to perform compensation correction on the signal sent by the HFRU-ODU
  • the second compensation module is further configured to add the signal sent to the HFRU-ODU to the uplink phase noise compensation information of the transmit local oscillator of the SFRU, where the first compensation module is further used to send the signal from the high frequency band transceiver.
  • the uplink phase noise compensation information is obtained to compensate for the signal sent by the high frequency band transceiver.
  • a method of transmitting data comprising: a high frequency radio frequency unit
  • the HFRU receives the data sent by the station; the HFRU converts the data sent by the station into a downlink intermediate frequency analog signal, and converts the downlink intermediate frequency analog signal into a downlink high frequency signal; the HFRU sends the downlink high frequency signal to the mobile interface through the air interface.
  • the SFRU converts the downlink high frequency signal into a downlink intermediate frequency signal, and converts the downlink intermediate frequency signal into a downlink wireless cellular signal; the SFRU sends the downlink wireless cellular signal to the user equipment.
  • the HFRU converts the data sent by the station into a downlink intermediate frequency analog signal, including: the common public radio interface CPRI protocol data sent by the HFRU from the station
  • the downlink intermediate frequency digital signal is obtained, and the downlink intermediate frequency digital signal is converted into the downlink intermediate frequency analog signal.
  • the method further includes: determining, by the HFRU, downlink phase noise compensation information of a transmitting local oscillator of the HFRU; and transmitting, by the HFRU, the downlink phase noise compensation information Giving the SFRU; the SFRU performs compensation correction on the downlink high frequency signal sent by the HFRU according to the downlink phase noise compensation information.
  • the method further includes: sending, by the HFRU, the configuration of the SFRU to the SFRU Management information; the SFRU controls the SFRU according to the configuration management information.
  • a third aspect provides a method for transmitting data, where the method includes: receiving, by a frequency-shifting radio unit, a SFRU, an uplink wireless cellular signal sent by a user equipment; the SFRU converting the uplink wireless cellular signal into an uplink intermediate frequency signal, and transmitting the uplink Converting the intermediate frequency signal into an uplink high frequency signal; the SFRU transmitting the uplink high frequency signal to the high frequency radio frequency unit HFRU through an air interface; the HFRU converting the uplink high frequency signal sent by the SFRU into an uplink intermediate frequency analog signal, and The uplink intermediate frequency analog signal is converted into an uplink intermediate frequency digital signal; the HFRU transmits the uplink intermediate frequency digital signal to the station.
  • the HFRU sends the uplink IF digital signal to the station, including: the HFRU converting the uplink IF digital signal into a common public radio interface CPRI data frame And send the CPRI data frame to the site.
  • the method further includes: determining, by the SFRU, uplink phase noise compensation information of a transmit local oscillator of the SFRU; and sending, by the SFRU, the uplink phase noise compensation information Giving the HFRU; the HFRU performs compensation correction on the uplink high frequency signal sent by the SFRU according to the uplink phase noise compensation information.
  • the method further includes: determining, by the SFRU, status information of the SFRU; The SFRU sends the status information to the HFRU.
  • a high frequency radio frequency unit HFRU comprising: a processor, a memory, a bus system, a receiver, and a transmitter; wherein the processor, the memory, the receiver, and the a transmitter is coupled to the bus system, the memory is configured to store an instruction, the processor is configured to execute an instruction stored by the memory to control the receiver to receive a signal, and control the transmitter to transmit a signal;
  • the receiver is configured to receive data sent by the station;
  • the processor is configured to convert data sent by the station into a downlink intermediate frequency analog signal, and convert the downlink intermediate frequency analog signal into a downlink high frequency signal;
  • the transmitter is used to The downlink high frequency signal is sent to the frequency shifting radio unit SFRU through the air interface.
  • the determining, by the processor, the data sent by the station into a downlink intermediate frequency analog signal includes: a general public that is sent by the processor from the station
  • the downlink intermediate frequency digital signal is obtained in the wireless interface CPRI protocol data, and the downlink intermediate frequency digital signal is converted into the downlink intermediate frequency analog signal.
  • the processor is further configured to determine downlink phase noise compensation information of a transmit local oscillator of the HFRU, where the transmitter is further configured to: The downlink phase noise compensation information is sent to the SFRU.
  • the transmitter is further configured to send configuration management information of the SFRU to the SFRU.
  • the receiver is further configured to receive an uplink high frequency signal that is sent by the SFRU, and the processor is further configured to use the uplink high frequency signal Converting to an uplink intermediate frequency analog signal, and converting the uplink intermediate frequency analog signal into an uplink intermediate frequency digital signal; the transmitter is further configured to send the uplink intermediate frequency digital signal to the station.
  • the processor is further configured to convert the uplink intermediate frequency digital signal into a common public radio interface CPRI data frame; Transmitting the uplink intermediate frequency digital signal to the station, the transmitter The CPRI data frame is sent to the site.
  • the receiver is further configured to receive uplink phase noise compensation information that is sent by the SFRU, where the processor is further configured to perform The uplink phase noise compensation information is described, and the uplink high frequency signal is compensated and corrected.
  • the receiver is further configured to receive status information of the SFRU that is sent by the SFRU.
  • a frequency shifting radio unit SFRU comprising: a processor, a memory, a bus system, a receiver, and a transmitter; wherein the processor, the memory, the receiver, and the a transmitter is coupled through the bus system, the memory is configured to store an instruction, the processor is configured to execute an instruction stored by the memory to control the receiver to receive a signal, and control the transmitter to transmit a signal;
  • the receiver is configured to receive a downlink high frequency signal sent by the high frequency radio unit HFRU through the air interface;
  • the processor is configured to convert the downlink high frequency signal into a downlink intermediate frequency signal, and convert the downlink intermediate frequency signal into a downlink wireless cellular signal
  • the transmitter is configured to send the downlink wireless cellular signal to a user equipment.
  • the receiver is further configured to receive downlink phase noise compensation information that is sent by the HFRU, and the processor is further configured to perform, according to the downlink phase noise Compensating information, performing compensation correction on the downlink high frequency signal.
  • the receiver is further configured to receive configuration management information of the SFRU that is sent by the HFRU, and the processor is further configured to perform according to the configuration Management information controls the SFRU.
  • the receiver is further configured to receive an uplink wireless cellular signal that is sent by the user equipment, where the processor is further configured to use the uplink wireless cellular Converting the signal into an uplink intermediate frequency signal, and converting the uplink intermediate frequency signal into an uplink high frequency signal; the transmitter is further configured to send the uplink high frequency signal to the HFRIL through an air interface
  • the processor is further configured to determine an uplink phase noise compensation information of a transmit local oscillator of the SFRU, where the transmitter further uses And transmitting the uplink phase noise compensation information to the HFRU.
  • the processor is further configured to determine status information of the SFRU, and the transmitter is further configured to send the status information Give the HFRU.
  • FIG. 1 is a schematic diagram of an application scenario of a method and apparatus for transmitting data according to an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of an apparatus in accordance with an embodiment of the present invention.
  • FIG 3 is another schematic block diagram of an apparatus in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a HFRU-IDU in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a HFRU-ODU in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a high frequency band transceiver in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a wireless cellular band transceiver in accordance with an embodiment of the present invention.
  • FIG. 8 is another schematic block diagram of a high frequency band transceiver in accordance with an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of an SFRU in accordance with an embodiment of the present invention.
  • FIG. 10 is another schematic block diagram of an SFRU according to an embodiment of the present invention.
  • FIG. 11 is a schematic flow chart of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 12 is another schematic flowchart of a method of transmitting data according to an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of a method of transmitting data according to another embodiment of the present invention.
  • FIG. 14 is another schematic flowchart of a method of transmitting data according to another embodiment of the present invention.
  • Figure 15 is a schematic block diagram of a HFRU in accordance with an embodiment of the present invention.
  • Figure 16 is still another schematic block diagram of a SFRU according to an embodiment of the present invention. detailed description
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • WiMAX Worldwide Interoperability for Microwave Access
  • the station may be a base station (Base Transceiver Station, BTS) in GSM or CDMA, or may be a base station (NodeB, NB) in WCDMA, or may be an evolved base station in LTE (Evolutional Node B)
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Evolutional Node B
  • the ENB or eNB the site may also be a macro station or a micro station.
  • the present invention is not limited, but for convenience of description, the following embodiments will be described by taking a macro station as an example.
  • a user equipment may be referred to as a terminal, a terminal device, a mobile station (Mobile Station, MS), or a mobile terminal (Mobile Terminal).
  • the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile telephone (or "cellular" telephone) or have a mobile terminal.
  • RAN Radio Access Network
  • the user device may also be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges voice and/or data with the wireless access network, but the invention is not limited thereto.
  • the communication system is, for example, a heterogeneous network system.
  • the communication system may be a macro-micro-cooperative networking system.
  • FIG. 1 shows a schematic diagram of an application scenario of a method and apparatus for transmitting data according to an embodiment of the present invention.
  • the communication system is, for example, a heterogeneous network system.
  • the communication system may be a macro-micro-cooperative networking system.
  • FIG. 1 shows a schematic diagram of an application scenario of a method and apparatus for transmitting data according to an embodiment of the present invention.
  • the communication system is, for example, a heterogeneous network system.
  • the communication system may be a macro-micro-cooperative networking system.
  • the communication system may include a macro station 200, one or more devices 100 for transmitting data according to an embodiment of the present invention, and a user equipment 300, wherein the device 100 is communicatively coupled to the macro station 200, and each device 100 provides communication services for one or more user equipments 300 within the coverage of the device 100, that is, the device 100 is configured to receive downlink data sent by the macro station 200, and send the downlink data to the user equipment 300, on the other hand, The device 100 is further configured to receive uplink data sent by the user equipment 300, and send the uplink data to the macro station 200.
  • FIG. 2 shows a schematic block diagram of an apparatus 100 for transmitting data in accordance with an embodiment of the present invention.
  • the apparatus 100 for transmitting data includes:
  • HFRU High Frequency Radio Unit
  • Frequency shifting radio unit in communication with the HFRU 110 and user equipment 300 (Shift
  • the HFRU 110 includes a High Frequency Radio Unit- Indoor Device Unite (HFRU-IDU) 111 and a high frequency radio unit connected to the HFRU-IDU 111.
  • HFRU-IDU High Frequency Radio Unit- Indoor Device Unite
  • SFRU 120 includes a high frequency band transceiver 121 and a wireless cellular band transceiver 122,
  • the HFRU-IDU 111 is configured to convert the data sent by the station 200 into a downlink intermediate frequency analog signal, and send the downlink intermediate frequency analog signal to the HFRU-ODU 112;
  • the HFRU-ODU 112 is configured to convert the downlink intermediate frequency analog signal sent by the HFRU-IDU 111 into a downlink high frequency signal, and send the downlink high frequency signal to the SFRU 120 through an air interface (slotted air interface);
  • the high frequency band transceiver 121 is configured to convert the downlink high frequency signal sent by the HFRU-ODU 112 into a downlink intermediate frequency signal, and send the downlink intermediate frequency signal to the wireless cellular band transceiver 122;
  • the wireless cellular band transceiver 122 is configured to convert the downlink intermediate frequency signal transmitted by the high frequency band transceiver 121 into a downlink wireless cellular signal, and send the downlink wireless cellular signal to the user equipment 300.
  • the high frequency radio unit indoor unit unit 111 can be connected to the high frequency radio unit outdoor unit 112 through an intermediate frequency cable.
  • the station 200 needs to send downlink data to the user equipment 300,
  • the HFRU-IDU 111 can receive the data sent by the baseband processing unit of the station 200, and can first convert the received data into a downlink intermediate frequency analog signal, and then send the downlink intermediate frequency analog signal to the HFRU-ODU 112 through the intermediate frequency cable; the HFRU The -ODU 112 can convert the downlink intermediate frequency analog signal into a downlink high frequency signal, and can send the downlink high frequency signal to the SFRU 120 through the antenna feed disposed in the HFRU; after receiving the high downlink high frequency signal, the SFRU 120 receives the high downlink high frequency signal.
  • the downlink high frequency signal can be converted into a wireless cellular signal and sent to the user equipment in the coverage area, thereby realizing Wireless cell coverage; wherein, specifically, the high frequency band transceiver 121 included in the SFRU 120 may convert the downlink high frequency signal into a downlink intermediate frequency signal, and the downlink intermediate frequency signal may be an analog signal or a digital signal, and then The wireless cellular band transceiver 122 included in the SFRU 120 can then convert the downlink intermediate frequency signal into a downlink wireless cellular signal.
  • the required data transmission bandwidth is only 20 Mbps, which can significantly save data transmission bandwidth and reduce the complexity of data transmission.
  • the apparatus for transmitting data can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources and reducing data transmission cost.
  • the digital part processing is concentrated in the HFRU-IDU, so that the HFRU-ODU is smaller in size, consumes less power, and can improve reliability, thereby enabling Reduce equipment deployment costs.
  • downstream and uplink are used to indicate the transmission direction of a signal or data
  • downlink is used to indicate that the transmission direction of a signal or data is a user that is transmitted from a station to a cell.
  • the first direction of the device “uplink” is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the station.
  • downlink high frequency signal indicates that the transmission direction of the signal is the first direction. .
  • intermediate frequency signal “high frequency signal” and “wireless cellular signal” are relative to the frequency of the signal, wherein the frequency of the “intermediate frequency signal” is lower than that of the “wireless cellular”
  • the frequency of the signal “the frequency of the “wireless cellular signal” is lower than the frequency of the "high frequency signal”.
  • the frequency of the "intermediate frequency signal” may be between 90 MHz and 150 MHz, but the embodiment of the present invention is not limited thereto.
  • the frequency of the "intermediate frequency signal” may also be between 3 MHz and 50 MHz;
  • “Signal” may refer to signals in the wireless cellular communication band, such as “wireless cellular signals” at frequencies between 800 MHz and 2.6 GHz;
  • “high frequency signals” may refer to signals above the wireless cellular communication band, eg, "high frequency signals”
  • the frequency of "the frequency is between 2 GHz and 8 GHz.
  • the frequency of the "high frequency signal” is between 10 GHz and 100 GHz, etc., but the embodiment of the present invention is not limited thereto.
  • the "IF signal” may include an intermediate frequency analog signal, and may also include an intermediate frequency digital signal, such as an uplink intermediate frequency analog signal or a downlink intermediate frequency digital signal.
  • intermediate frequency digital signal such as an uplink intermediate frequency analog signal or a downlink intermediate frequency digital signal.
  • high frequency signal and wireless cellular signal are transmitted in the air, so “high frequency signal” and “wireless cellular signal” in the embodiments of the present invention refer to analog signals, but The invention is not limited to this.
  • the wireless cellular band transceiver 122 is further configured to convert the uplink wireless cellular signal sent by the user equipment 300 into an uplink intermediate frequency signal, and send the uplink intermediate frequency signal to the high frequency.
  • the high frequency band transceiver 121 is further configured to convert the uplink intermediate frequency signal sent by the wireless cellular band transceiver 122 into an uplink high frequency signal, and send the uplink high frequency signal to the HFRU-ODU 112;
  • the HFRU-ODU 112 is further configured to convert the uplink high frequency signal sent by the high frequency band transceiver 121 into an uplink intermediate frequency analog signal, and send the uplink intermediate frequency analog signal to the HFRU-IDU 111;
  • the HFRU-IDU 111 is further configured to convert the uplink intermediate frequency analog signal transmitted by the HFRU-ODU 112 into an uplink intermediate frequency digital signal, and send the uplink intermediate frequency digital signal to the station 200.
  • the wireless cellular band transceiver 122 included in the SFRU 120 can receive the uplink wireless cellular signal sent by the user equipment 300, and can convert the uplink wireless cellular signal into an uplink intermediate frequency signal, and then send the signal to the high frequency band transceiver 121, where the uplink
  • the IF signal can be an uplink IF digital signal or an uplink IF analog signal.
  • the high frequency band transceiver 121 converts the uplink intermediate frequency signal into an upstream high frequency signal and transmits it to the HFRU 110 over the air interface.
  • the HFRU-ODU 112 included in the HFRU 110 can convert the uplink high frequency signal into an uplink intermediate frequency analog signal and send it to the HFRU-IDU 111; the HFRU-IDU 111 can convert the uplink intermediate frequency analog signal into an uplink intermediate frequency digital signal. And transmitting the uplink intermediate frequency digital signal to the station 200.
  • This enables the transmission of upstream data between the site and the user equipment, and can significantly reduce the data transmission bandwidth, thereby saving bandwidth resources, reducing data transmission costs, and reducing equipment deployment costs.
  • a station may be in communication with one or more HFRUs.
  • one or more HFRU-IDUs may maintain a communication connection with a baseband processing unit of the station, the HFRU- The IDU can be integrated in the site, or it can be arranged separately and connected to the baseband processing unit through optical fiber, high-speed cable, etc.
  • the HFRU-ODU can be an outdoor high-frequency transceiver for receiving and transmitting high-frequency signals, but Embodiments of the invention are not limited thereto.
  • the data sent by the station 200 may be CPRI protocol data or an intermediate frequency digital signal.
  • the HFRU-IDU 111 needs to obtain the downlink intermediate frequency digital signal from the CPRI protocol data, and convert the downlink intermediate frequency digital signal into a downlink intermediate frequency analog signal; on the other hand, the HFRU-IDU
  • the uplink intermediate frequency analog signal sent by the HFRU-ODU 112 may be first converted into an uplink intermediate frequency digital signal, and then the uplink intermediate frequency digital signal is converted into CPRI protocol data and then sent to the baseband processing unit of the station 200, but the embodiment of the present invention is Not limited to this.
  • the HFRU-IDU 111 includes a general public radio interface CPRI deframing/framing module 1111 and a first digital/analog converter 1112, wherein the CPRI deframing/framing The module 1111 is configured to obtain a downlink intermediate frequency digital signal from the CPRI protocol data sent by the site 200, where the first digital-to-analog converter 1112 is configured to convert the downlink intermediate frequency digital signal into the downlink intermediate frequency analog signal.
  • the digital-to-analog converter 1112 is further configured to convert the uplink intermediate frequency analog signal sent by the HFRU-ODU 112 into the uplink intermediate frequency digital signal, and the CPRI deframing/framing module 1111 is further configured to convert the uplink intermediate frequency digital signal into CPRI data frame.
  • the first digital-to-analog converter 1112 is, for example, an analog to digital converter (ADC) / a digital to analog converter (DAC), but the invention is not limited thereto.
  • the HFRU-IDU 111 further includes a data rate conversion module 1113, and the data rate conversion module 1113 is configured to match the CPRI deframing/framing module 1111 and the The data rate of the downlink intermediate frequency digital signal or the uplink intermediate frequency digital signal processed by the first digital-to-analog converter 1112.
  • the data rate conversion module 1113 can change the rate of the signal or data to cause the CPRI to deframe/ The framing module 1111 and the first digital to analog converter 1112 process the rate matching of the signals or data.
  • the data rate conversion module 1113 may increase the rate of the downlink intermediate frequency digital signal from the baseband processing unit by an interpolation technique to adapt the rate at which the first digital-to-analog converter 1112 processes the signal; for example, the data rate conversion module 1113
  • the rate of the upstream digital signal from the first digital to analog converter 1112 can be reduced by a decimation technique to adapt the rate at which the baseband processing unit processes the signal.
  • the data rate conversion module 1113 can reduce downlink IF digital signals from baseband processing unit
  • the rate of the number is adapted to the rate at which the first digital to analog converter 1112 processes the signal.
  • the HFRU-ODU 112 includes a first mixer 1121 and a first power amplifier 1122, where the first mixer 1121 is configured to simulate the downlink intermediate frequency.
  • the signal is converted into the downlink high frequency signal, and the uplink high frequency signal is converted into the uplink intermediate frequency analog signal, and the first power amplifier 1122 is configured to amplify the downlink high frequency signal output by the first mixer 1121.
  • the first mixer 1121 is configured to simulate the downlink intermediate frequency.
  • the signal is converted into the downlink high frequency signal
  • the uplink high frequency signal is converted into the uplink intermediate frequency analog signal
  • the first power amplifier 1122 is configured to amplify the downlink high frequency signal output by the first mixer 1121.
  • the SFRU 120 In order to be sent to the SFRU 120.
  • the first mixer 1121 can convert the downlink intermediate frequency analog signal sent by the HFRU-IDF 111 through the intermediate frequency cable into a downlink high frequency signal, and the first power amplifier 1122 is configured to use the first frequency mixing.
  • the downlink high frequency signal output by the device 1121 is amplified, and the amplified downlink high frequency signal can be sent to the SFRU 120 through the antenna feed; in the uplink direction, the HFRU-ODU 112 can receive the uplink high frequency signal sent by the SFRU 120 through the antenna feed.
  • the first mixer 1121 is further configured to convert the uplink high frequency signal into an uplink intermediate frequency analog signal, so that the uplink intermediate frequency analog signal can be transmitted to the HFRU-IDU 111 through an intermediate frequency cable, and further processed and sent to the station.
  • Baseband processing unit configured to convert the uplink high frequency signal into an uplink intermediate frequency analog signal, so that the uplink intermediate frequency analog signal can be transmitted to the HFRU-IDU 111 through an intermediate frequency cable, and further processed and sent to the station.
  • the high frequency band transceiver 121 includes: a second mixer 1211 and a second power amplifier 1212, wherein the second mixer 1211 is used for Converting the downlink high frequency signal into the downlink intermediate frequency signal, and converting the uplink intermediate frequency signal into the uplink high frequency signal, the second power amplifier 1212 is configured to output the uplink high frequency signal to the second mixer 1211 Amplification is performed to facilitate transmission to the HFRU-ODU 112.
  • the wireless cellular band transceiver 122 includes: a third mixer 1221 and a third power amplifier 1222, wherein the third mixer 1221 is configured to convert the downlink intermediate frequency signal into The downlink wireless cellular signal, and the uplink wireless cellular signal sent by the user equipment 300 is converted into an uplink intermediate frequency signal, and the third power amplifier 1222 is configured to amplify the downlink wireless cellular signal output by the third mixer 1221. So as to be sent to the user device 300.
  • the downlink high frequency signal sent by the HFRU-ODU 112 can be converted into a downlink intermediate frequency signal by the second mixer 1211 of the high frequency band transceiver 121, and the downlink intermediate frequency signal is further transmitted and received through the wireless cellular band.
  • the third mixer 1221 of the machine 122 can be converted into a downlink wireless cellular signal, which is then amplified by the third power amplifier 1222 and can be sent to the user equipment 300 via the antenna; in the uplink direction, The third mixer 1221 can convert the uplink wireless cellular signal sent by the user equipment 300 into an uplink intermediate frequency signal, and the second mixer 1211 can further convert the uplink intermediate frequency signal into an uplink high frequency signal.
  • the upstream high frequency signal can be sent to the HFRU-ODU 112 via the antenna.
  • the high frequency band transceiver 121 further includes: a second digital to analog converter 1213 and an SFRU configuration module 1214, wherein the second digital/analog The converter 1213 is configured to convert between an intermediate frequency analog signal and an intermediate frequency digital signal, the SFRU configuration module 1214 is configured to control the SFRU based on the configuration management information sent by the HFRU, and the SFRU configuration module 1214 is further configured to Status information of the SFRU is sent to the HFRU.
  • the device for transmitting data may transmit configuration management information, status information, and the like in addition to the service data of the station.
  • the configuration management information includes, for example, frequency point configuration information of the SFRU, configuration information of the digital/analog converter, channel measurement information of the wireless channel, and the like
  • the status information includes, for example, alarm information and the like.
  • the embodiment of the present invention is only taken as an example, but the present invention is not limited thereto.
  • the apparatus for transmitting data according to an embodiment of the present invention may also transmit downlink phase noise compensation information and the like of the transmitting local oscillator of the HFRU 110 or the SFRU 120.
  • the phase noise compensation information refers to phase noise compensation information.
  • the high frequency band transceiver and the wireless cellular band transceiver may be integrated in one unit, or may be two independent units connected by a data cable or an optical fiber, etc., but The invention is not limited to this.
  • the downlink intermediate frequency signal includes a downlink intermediate frequency analog signal or a downlink intermediate frequency digital signal
  • the uplink intermediate frequency signal includes an uplink intermediate frequency analog signal or an uplink intermediate frequency digital signal. That is, in the embodiment of the present invention, the signal transmitted between the high frequency band transceiver 121 and the wireless cellular band transceiver 122 may be an intermediate frequency digital signal or an intermediate frequency analog signal.
  • the second mixer 1211 in the downlink direction, is configured to convert the downlink high frequency signal into a downlink intermediate frequency analog signal, and the third mixer 1221 is configured to convert the downlink intermediate frequency signal into Downstream wireless cellular signal;
  • the third mixer 1221 In the uplink direction, is configured to convert the uplink wireless cellular signal into an uplink intermediate frequency analog signal, and the second mixer 1211 is configured to convert the uplink intermediate frequency analog signal into an uplink high frequency signal.
  • the second digital/analog converter 1213 is set to The downlink intermediate frequency analog signal of the second mixer 1211 that carries the configuration management information is converted into the downlink intermediate frequency digital signal, so that the SFRU configuration module 1214 performs digital signal processing, and the second mixer 1211 outputs the downlink intermediate frequency of the bearer service data.
  • the analog signal is sent directly Sending to the wireless cellular band transceiver 122; in the uplink direction, the second digital-to-analog converter 1213 converts the uplink intermediate frequency digital signal of the bearer state information output by the SFRU configuration module 1214 into an uplink intermediate frequency analog signal, and the second mixer
  • the intermediate frequency signal processed by 1211 and third mixer 1221 is still an analog signal.
  • the wireless cellular band transceiver 122 further includes a third The digital-to-analog converter 1223 is configured to convert the downlink intermediate frequency digital signal sent by the high frequency band transceiver 121 into a downlink intermediate frequency analog signal, so that the third mixer 1221 will The downlink intermediate frequency analog signal generated by the third digital-to-analog converter 1223 is converted into the downlink wireless cellular signal; the third digital-to-analog converter 1223 is further configured to convert the uplink intermediate frequency analog signal generated by the third mixer 1221.
  • the uplink intermediate frequency digital signal is sent to the high frequency band transceiver 121 for transmitting the uplink intermediate frequency digital signal generated by the third digital-to-analog converter 1223.
  • the second digital-to-analog converter 1213 may be configured to convert all downlink intermediate frequency analog signals output by the second mixer 1211 into downlink intermediate frequency digital signals
  • the third digital-to-analog converter 1223 is configured to convert the downlink intermediate frequency digital signal sent by the high frequency band transceiver 121 into a downlink intermediate frequency analog signal, and then the downlink intermediate frequency analog signal is further processed by the third mixer 1221;
  • the third digital-to-analog converter 1223 is configured to convert the uplink intermediate frequency analog signal sent by the third mixer 1221 into an uplink intermediate frequency digital signal, and the uplink intermediate frequency digital signal is further converted into an uplink intermediate frequency by the second digital-to-analog converter 1213.
  • Analog signal is configured to convert all downlink intermediate frequency analog signals output by the second mixer 1211 into downlink intermediate frequency digital signals
  • the third digital-to-analog converter 1223 is configured to convert the downlink intermediate frequency digital signal sent by the high frequency band transceiver 121 into a downlink intermediate frequency analog signal, and
  • the apparatus for transmitting data can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources, reducing data transmission cost, and reducing equipment. Deployment costs.
  • the HFRU 110 further includes a first compensation module 113
  • the high frequency band transceiver 121 further includes a second compensation module 1215
  • the first compensation module 113 is configured to add the signal sent to the SFRU 120 to the downlink phase noise compensation information of the transmitting local oscillator of the HFRU 110
  • the second compensation module 1215 is used to
  • the downlink phase noise compensation information is obtained from the signal sent by the HFRU-ODU 112 to perform compensation correction on the signal sent by the HFRU-ODU 112.
  • the second compensation module 1215 is further configured to send to the HFRU-ODU 112.
  • the uplink phase noise compensation information of the transmitting local oscillator of the SFRU 120 is added to the signal, and the first compensation module 113 is further configured to obtain the uplink phase noise compensation information from the signal sent by the high frequency band transceiver 121, to High frequency band The signal transmitted by the transceiver 121 performs compensation correction.
  • the quality information is, for example, the downlink phase noise compensation information of the transmitting local oscillator of the HFRU 110 or the uplink phase noise compensation information of the transmitting local oscillator of the SFRU 120, but the present invention is not limited thereto.
  • the compensation correction of the signal may be implemented in the analog domain, for example, as shown in FIG. 9, or in the digital domain, for example, as shown in FIG.
  • the first compensation module 113 included in the HFRU 110 may be disposed in the HFRU-ODU 112; when the compensation correction of the signal is implemented in the digital domain, the HFRU 110 includes The first compensation module 113 can then be disposed in the HFRU-IDU 111.
  • the embodiment of the present invention is only described by way of example, but the present invention is not limited thereto.
  • the first compensation module 113 may also be disposed in the HFRU-ODU 112.
  • the first compensation module 113 may further include a digital/analog converter or the like.
  • the apparatus for transmitting data according to the embodiment of the present invention can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources, reducing data transmission cost, and reducing equipment.
  • the apparatus for transmitting data according to the embodiment of the present invention can perform compensation correction on the transmitted signal based on the downlink phase noise compensation information of the HFRU or SFRU transmitting local oscillator, thereby improving the quality of the transmitted signal, thereby being further enhanced. user experience.
  • Figure 11 shows a schematic flow diagram of a method 600 of transmitting data in accordance with an embodiment of the present invention, the method comprising:
  • the high frequency radio unit HFRU receives the data sent by the station
  • the HFRU converts the data sent by the station into a downlink intermediate frequency analog signal, and converts the downlink intermediate frequency analog signal into a downlink high frequency signal;
  • the HFRU sends the downlink high frequency signal to the frequency shifting radio unit SFRU through the air interface;
  • the SFRU converts the downlink high frequency signal into a downlink intermediate frequency signal, and converts the downlink intermediate frequency signal into a downlink wireless cellular signal; S650.
  • the SFRU sends the downlink wireless cellular signal to the user equipment.
  • the method for transmitting data in the embodiment of the present invention can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources, reducing data transmission cost, and reducing equipment. Deployment costs.
  • the data sent by the station may be an intermediate frequency digital signal, or
  • the HFRU needs to obtain the downlink intermediate frequency digital signal from the CPRI protocol data, and convert the downlink intermediate frequency digital signal into a downlink intermediate frequency analog signal.
  • the HFRU converts the data sent by the station into a downlink intermediate frequency analog signal, including: the HFRU obtains a downlink intermediate frequency digital signal from a common public wireless interface CPRI protocol data sent by the station, and converts the downlink intermediate frequency digital signal into The downlink intermediate frequency analog signal.
  • the method for transmitting data according to the embodiment of the present invention, by adding redundant information for compensation correction in the transmission channel, and first separating the service data and the redundant information for correcting the compensation in the receiving channel, and improving the quality of the transmission signal by correcting the compensation algorithm .
  • the method for transmitting data according to the embodiment of the present invention further includes:
  • the HFRU determines downlink phase noise compensation information of the transmitting local oscillator of the HFRU;
  • the HFRU sends the downlink phase noise compensation information to the SFRU;
  • the SFRU performs compensation correction on the downlink high frequency signal sent by the HFRU according to the downlink phase noise compensation information.
  • the apparatus for transmitting data according to the embodiment of the present invention can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources, reducing data transmission cost, and reducing equipment.
  • the device for transmitting data, and the device for transmitting data according to the embodiment of the present invention can perform compensation correction on the transmitted signal based on the downlink phase noise compensation information of the transmitting local oscillator, thereby improving the quality of the transmitted signal, thereby further enhancing the user experience.
  • the configuration management information in addition to the service data of the station, the configuration management information, the status information, and the like can be transmitted.
  • the configuration management information includes, for example, frequency point configuration information of the SFRU, configuration information of the digital/analog converter, channel measurement information of the wireless channel, and the like, and the status information includes, for example, alarm information and the like.
  • the method for transmitting data according to an embodiment of the present invention further includes:
  • the HFRU sends configuration management information of the SFRU to the SFRU;
  • the SFRU controls the SFRU according to the configuration management information.
  • the method for transmitting downlink data includes, for example, the IDU included in the HFRU receives the downlink intermediate frequency digital signal from the baseband processing unit of the station, or the IDU deframes the CPRI data from the baseband processing unit of the station.
  • the downlink intermediate frequency analog signal is sent to the ODU of the HFRU through the intermediate frequency cable;
  • the ODU receives the downlink intermediate frequency analog signal from the IDU, and converts the downlink intermediate frequency analog signal into a downlink high frequency signal by mixing;
  • the ODU transmits through the high frequency power amplifier
  • the signal of the channel is amplified, and the signal-amplified downlink high-frequency signal is transmitted to the SFRU through the air interface;
  • the SFRU receives the downlink high-frequency signal from the ODU, and converts the downlink high-frequency signal into a downlink intermediate frequency signal through a mixer, and further Converting the downlink IF signal to downlink through a wireless mixer
  • the HFRU can also add redundant information for compensation correction in the transmission channel, and the SFRU can first separate the service data and the redundant information for correcting the compensation in the receiving channel, and can improve the quality of the transmitted signal by the correction compensation algorithm.
  • the SFRU can receive management configuration information, perform configuration management processing, and the like.
  • intermediate frequency signal intermediate frequency signal
  • high frequency signal high frequency signal
  • wireless cellular signal are relative to the frequency of the signal, wherein the frequency of the “intermediate frequency signal” is lower than the “wireless cellular signal” "The frequency, the frequency of the “wireless cellular signal” is lower than the frequency of the "high frequency signal”.
  • the frequency of the "intermediate frequency signal” may be between 90 MHz and 150 MHz, but the embodiment of the present invention is not limited thereto.
  • the frequency of the "intermediate frequency signal” may also be between 3 MHz and 50 MHz;
  • “Signal” may refer to signals in the wireless cellular communication band, such as “wireless cellular signals” at frequencies between 800 MHz and 2.6 GHz;
  • “high frequency signals” may refer to signals above the wireless cellular communication band, eg, "high frequency signals”
  • the frequency of "the frequency is between 2 GHz and 8 GHz.
  • the frequency of the "high frequency signal” is between 10 GHz and 100 GHz, etc., but the embodiment of the present invention is not limited thereto.
  • the "IF signal” may include an intermediate frequency analog signal, and may also include an intermediate frequency digital signal, such as an uplink intermediate frequency analog signal or a downlink intermediate frequency digital signal.
  • the "high frequency signal” and the “wireless cellular signal” are transmitted in the air. Therefore, the "high frequency signal” and the “wireless cellular signal” in the embodiment of the present invention refer to an analog signal. However, the invention is not limited to this.
  • the method for transmitting data in the embodiment of the present invention can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources, reducing data transmission cost, and reducing equipment. Deployment costs.
  • a method 700 of transmitting data includes:
  • the SFRU receives an uplink wireless cellular signal sent by the user equipment.
  • the SFRU converts the uplink wireless cellular signal into an uplink intermediate frequency signal, and converts the uplink intermediate frequency signal into an uplink high frequency signal;
  • the SFRU sends the uplink high frequency signal to the HFRU through an air interface
  • the HFRU converts the uplink high frequency signal sent by the SFRU into an uplink intermediate frequency analog signal, and converts the uplink intermediate frequency analog signal into an uplink intermediate frequency digital signal;
  • the HFRU sends the uplink intermediate frequency digital signal to the station.
  • the method for transmitting data in the embodiment of the present invention can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources, reducing data transmission cost, and reducing equipment. Deployment costs.
  • the HFRU sends the uplink intermediate frequency digital signal to the station, including:
  • the HFRU converts the upstream IF digital signal into a common public radio interface CPRI data frame and transmits the CPRI data frame to the station.
  • the method further includes:
  • the SFRU determines uplink phase noise compensation information of the transmitting local oscillator of the SFRU; S770, the SFRU sends the uplink phase noise compensation information to the HFRU;
  • the HFRU performs compensation correction on the uplink high frequency signal sent by the SFRU according to the uplink phase noise compensation information.
  • the method further includes:
  • the SFRU determines status information of the SFRU
  • the SFRU sends the status information to the HFRU.
  • downstream and uplink are used to indicate the transmission direction of a signal or data
  • downlink is used to indicate that the transmission direction of a signal or data is a user that is transmitted from a station to a cell.
  • the first direction of the device “uplink” is used to indicate that the transmission direction of the signal or data is the second direction sent from the user equipment of the cell to the station.
  • downlink high frequency signal indicates that the transmission direction of the signal is the first direction. .
  • the transmission of the downlink data corresponds to the transmission of the uplink data, and is not described here.
  • the method for transmitting data in the embodiment of the present invention can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources, reducing data transmission cost, and reducing equipment. Deployment costs.
  • an embodiment of the present invention further provides a high frequency radio frequency unit HFRU 800, which includes a processor 810, a memory 820, a bus system 830, a receiver 840, and a transmitter 850.
  • the processor 810, the memory 820, the receiver 840, and the transmitter 850 are connected by a bus system 830 for storing instructions, and the processor 810 is configured to execute instructions stored by the memory 820 to control the receiver 840 to receive. Signal, and control transmitter 850 to send a signal.
  • the receiver 840 is configured to receive data sent by the station; the processor 810 is configured to convert the data sent by the station into a downlink intermediate frequency analog signal, and convert the downlink intermediate frequency analog signal into a downlink high frequency signal; the transmitter The 850 is configured to send the downlink high frequency signal to the frequency shifting radio unit SFRU through an air interface.
  • the HFRU according to the embodiment of the present invention can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources, reducing data transmission cost, and reducing equipment deployment cost. .
  • the processor 810 may be a central processing unit (a central processing unit), and the processor 810 may also be another general-purpose processor, a digital signal processor (DSP). ), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 820 can include read only memory and random access memory and provides instructions and data to the processor 810. A portion of memory 820 may also include non-volatile random access memory. For example, the memory 820 can also store information of the device type.
  • the bus system 830 may include a power bus, a control bus, and a status signal bus in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 830 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 810 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in random memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, etc., which are well established in the art.
  • the storage medium is located in the memory 820.
  • the processor 810 reads the information in the memory 820 and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the processor 810 converts the data sent by the station into a downlink intermediate frequency analog signal, including: acquiring a downlink intermediate frequency digital signal from a common public wireless interface CPRI protocol data sent by the station, and The downlink intermediate frequency digital signal is converted into the downlink intermediate frequency analog signal.
  • the processor 810 is further configured to determine downlink phase noise compensation information of a transmit local oscillator of the HFRU.
  • the transmitter 850 is further configured to send the downlink phase noise compensation information to the SFRU.
  • the transmitter 850 is further configured to send configuration management information of the SFRU to the SFRU.
  • the receiver 840 is further configured to receive an uplink high frequency signal sent by the SFRU, where the processor 810 is further configured to convert the uplink high frequency signal into an uplink intermediate frequency analog signal, and the uplink intermediate frequency The analog signal is converted into an uplink intermediate frequency digital signal; the transmitter 850 is further configured to transmit the uplink intermediate frequency digital signal to the station.
  • the processor 810 is further configured to convert the uplink intermediate frequency digital signal into a general public radio interface CPRI data frame; the transmitter 850 sends the uplink intermediate frequency digital signal to the station, where the transmitter The 850 sends the CPRI data frame to the site.
  • the receiver 840 is further configured to receive uplink phase noise compensation information sent by the SFRU.
  • the processor 810 is further configured to perform compensation correction on the uplink high frequency signal according to the uplink phase noise compensation information.
  • the receiver 840 is further configured to receive status information of the SFRU sent by the SFRU.
  • HFRU 800 in accordance with an embodiment of the present invention may correspond to the above and other operations and/or functions of the various modules in the HFRU 800 in embodiments of the present invention, respectively, in order to achieve respective ones of the various methods of FIGS. 11-14 The process, for the sake of cleanliness, will not be repeated here.
  • the HFRU according to the embodiment of the present invention can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources, reducing data transmission cost, and reducing equipment deployment cost. .
  • an embodiment of the present invention further provides a frequency shifting radio unit SFRU 900, which includes a processor 910, a memory 920, a bus system 930, a receiver 940, and a transmitter 950.
  • the processor 910, the memory 920, the receiver 940, and the transmitter 950 are connected by a bus system 930 for storing instructions, and the processor 910 is configured to execute instructions stored by the memory 920 to control the receiver 940 to receive. Signal, and control transmitter 950 to send a signal.
  • the receiver 940 is configured to receive the downlink high frequency signal sent by the HFRU through the air interface.
  • the processor 910 is configured to convert the downlink high frequency signal into a downlink intermediate frequency signal, and convert the downlink intermediate frequency signal into a downlink wireless cellular signal.
  • the transmitter 950 is configured to send the downlink wireless cellular signal to the user equipment.
  • the SFRU according to the embodiment of the present invention can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources, reducing data transmission cost, and reducing equipment deployment cost. .
  • the processor 910 may be a central processing unit (a central processing unit), and the processor 910 may also be another general-purpose processor, a digital signal processor (DSP). ), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • DSP digital signal processor
  • ASICs application specific integrated circuits
  • FPGAs off-the-shelf programmable gate arrays
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 920 can include read only memory and random access memory and provides instructions and data to the processor 910. A portion of the memory 920 may also include a non-volatile random access memory. For example, the memory 920 can also store information of the device type.
  • the bus system 930 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 930 in the figure.
  • the steps of the foregoing methods may be performed by an integrated logic circuit of hardware in the processor 910 or an instruction in the form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software modules can be located in random memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, etc., which are well established in the art.
  • the storage medium is located in the memory 920, and the processor 910 reads the information in the memory 920 and combines the hardware to complete the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the receiver 940 is further configured to receive downlink phase noise compensation information sent by the HFRU.
  • the processor 910 is further configured to perform compensation correction on the downlink high frequency signal according to the downlink phase noise compensation information.
  • the receiver 940 is further configured to receive configuration management information of the SFRU sent by the HFRU.
  • the processor 910 is further configured to control the SFRU according to the configuration management information.
  • the receiver 940 is further configured to receive an uplink wireless cellular signal sent by the user equipment, where the processor 910 is further configured to convert the uplink wireless cellular signal into an uplink intermediate frequency signal, and the uplink intermediate frequency The signal is converted to an upstream high frequency signal; the transmitter 950 is further configured to transmit the upstream high frequency signal to the HFRU over an air interface.
  • the processor 910 is further configured to determine uplink phase noise compensation information of a transmit local oscillator of the SFRU, where the transmitter 950 is further configured to send the uplink phase noise compensation information to the HFRUo.
  • the processor 910 is further configured to determine status information of the SFRU; the transmitter 950 is further configured to send the status information to the HFRU.
  • SFRU 900 may correspond to the embodiment of the present invention.
  • the SFRU according to the embodiment of the present invention can significantly reduce the data transmission bandwidth by converting the data to be transmitted into an intermediate frequency signal, thereby saving bandwidth resources and reducing Data transfer costs and the ability to reduce equipment deployment costs.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there can be three relationships, for example, A and / or B, which can mean: A exists separately, and both A and B exist, exist alone B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. Through the description of the above embodiments, it will be apparent to those skilled in the art that the present invention can be implemented in hardware, firmware implementation, or a combination thereof.
  • the functions described above may be stored in or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • Any connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transceivers (AREA)

Abstract

本发明实施例公开了一种传输数据的方法和装置。该传输数据的装置包括与站点通信连接的高频射频单元HFRU;以及与该HFRU和用户设备通信连接的移频射频单元SFRU,其中,该HFRU包括高频射频单元室内设备单元HFRU-IDU,以及与该HFRU-IDU连接的高频射频单元室外设备单元HFRU-ODU;该SFRU包括高频频段收发信机和无线蜂窝频段收发信机。本发明实施例的传输数据的方法和装置,通过将待传输的数据转换成中频信号进行传输,能够显著减小数据传输带宽,并由此能够节省带宽资源,降低数据传输成本,并能够降低设备部署成本。

Description

传输数据的方法和装置 技术领域
本发明实施例涉及通信领域, 尤其涉及通信领域中传输数据的方法和装 置。 背景技术
宏敫协同组网系统是一种异构网 ( Heterogeneous Network, HetNet ) 系 统, 该系统能够有效地解决无线网络覆盖问题, 并能够提升网络吞吐率, 改 善用户体验。 在宏站覆盖的小区内, 部署的微站可以用于吸收热点的业务, 补充盲区的覆盖等。 宏站和微站的数字基带处理可以在宏站完成, 即宏站包 括宏站的射频收发模块, 以及承担宏站和微站的数字处理功能的基带处理模 块, 该基带处理模块主要用于数字功能处理, 例如执行信道编解码、 数字调 制解调等功能; 而位于远端的微站站点主要包括射频收发模块。 其中宏站与 微站之间的数据传输是宏微协同组网系统的关键技术之一。
现有微站与宏站的通信主要是基于通用公共无线接口 (Common Public Radio Interface, CPRI )协议, 即微站的射频收发模块与基带处理单元的接 口通常也为 CPRI接口。
目前,微站与宏站之间的数据传输方法主要包括光纤传输方法和微波传 输方法。 对于微波传输方法而言, 微站与宏站的基带处理单元的数据通信通 过微波传输实现, 并且传输的数据也为基于 CPRI协议的 CPRI协议数据, 该方案需要的数据传输带宽很宽,而微波传输带宽有限,使得满足传输 CPRI 协议数据带宽要求的技术难度大, 传输成本很高。 发明内容
有鉴于此, 本发明实施例提供了一种传输数据的方法和装置, 能够显著 减小数据传输带宽, 并能够降低数据传输成本。
第一方面, 提供了一种传输数据的装置, 该传输数据的装置包括: 与站 点通信连接的高频射频单元 HFRU; 以及与该 HFRU和用户设备通信连接的 移频射频单元 SFRU, 其中, 该 HFRU 包括高频射频单元室内设备单元 HFRU-IDU , 以及与该 HFRU-IDU 连接的高频射频单元室外设备单元 HFRU-ODU; 该 SFRU包括高频频段收发信机和无线蜂窝频段收发信机, 其 中,该 HFRU-IDU用于将该站点发送的数据转换成下行中频模拟信号,并将 该下行中频模拟信号发送给该 HFRU-ODU ; 该 HFRU-ODU 用于将该 HFRU-IDU发送的该下行中频模拟信号转换成下行高频信号,并将该下行高 频信号通过空中接口发送给该 SFRU ; 该高频频段收发信机用于将该 HFRU-ODU发送的该下行高频信号转换成下行中频信号, 并将该下行中频 信号发送给该无线蜂窝频段收发信机; 该无线蜂窝频段收发信机用于将该高 频频段收发信机发送的该下行中频信号转换成下行无线蜂窝信号, 并将该下 行无线蜂窝信号发送给用户设备。
结合第一方面, 在第一方面的第一种可能的实现方式中, 该无线蜂窝频 段收发信机还用于将该用户设备发送的上行无线蜂窝信号转换成上行中频 信号, 并将该上行中频信号发送给该高频频段收发信机; 该高频频段收发信 机还用于将该无线蜂窝频段收发信机发送的该上行中频信号转换成上行高 频信号, 并将该上行高频信号发送给该 HFRU-ODU; 该 HFRU-ODU还用于 将该高频频段收发信机发送的该上行高频信号转换成上行中频模拟信号, 并 将该上行中频模拟信号发送给该 HFRU-IDU; 该 HFRU-IDU还用于将该 HFRU-ODU发送的该上行中频模拟信号转换成上行中频数字信号, 并将该 上行中频数字信号发送给该站点。
结合第一方面, 在第一方面的第二种可能的实现方式中, 该 HFRU-IDU 包括通用公共无线接口 CPRI解帧 /组帧模块和第一数 /模转换器, 其中, 该 CPRI解帧 /组帧模块用于从该站点发送的 CPRI协议数据中获取下行中频数 字信号,该第一数 /模转换器用于将该下行中频数字信号转换成该下行中频模 拟信号; 其中, 该第一数 /模转换器还用于将该 HFRU-ODU发送的该上行中 频模拟信号转换成该上行中频数字信号, 该 CPRI解帧 /组帧模块还用于将该 上行中频数字信号转换成 CPRI数据帧。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实 现方式中,该 HFRU-IDU还包括数据速率变换模块,该数据速率变换模块用 于匹配该 CPRI解帧 /组帧模块和该第一数 /模转换器处理的该下行中频数字 信号或该上行中频数字信号的数据速率。
结合第一方面,在第一方面的第四种可能的实现方式中,该 HFRU-ODU 包括第一混频器和第一功率放大器, 其中, 该第一混频器用于将该下行中频 模拟信号转换为该下行高频信号, 以及将该上行高频信号转换为该上行中频 模拟信号, 该第一功率放大器用于对该第一混频器输出的该下行高频信号进 行放大, 以便于发送给该 SFRU。
结合第一方面, 在第一方面的第五种可能的实现方式中, 该高频频段收 发信机包括: 第二混频器和第二功率放大器, 其中, 该第二混频器用于将该 下行高频信号转换为该下行中频信号, 以及将该上行中频信号转换为该上行 高频信号, 该第二功率放大器用于对该第二混频器输出的该上行高频信号进 行放大, 以便于发送给该 HFRU-ODIL
结合第一方面, 在第一方面的第六种可能的实现方式中, 该无线蜂窝频 段收发信机包括: 第三混频器和第三功率放大器, 其中, 该第三混频器用于 将该下行中频信号转换为该下行无线蜂窝信号, 以及将该用户设备发送的该 上行无线蜂窝信号转换为上行中频信号, 该第三功率放大器用于将该第三混 频器输出的该下行无线蜂窝信号进行放大, 以便于发送给该用户设备。
结合第一方面的第五种可能的实现方式,在第一方面的第七种可能的实 现方式中,该高频频段收发信机还包括:第二数 /模转换器和 SFRU配置模块, 其中, 该第二数 /模转换器用于中频模拟信号与中频数字信号之间的相互转 换, 该 SFRU配置模块用于基于该 HFRU发送的配置管理信息, 对该 SFRU 进行控制,该 SFRU配置模块还用于将该 SFRU的状态信息发送给该 HFRU。
结合第一方面的第六种可能的实现方式,在第一方面的第八种可能的实 现方式中, 该无线蜂窝频段收发信机还包括第三数 /模转换器, 该第三数 /模 转换器用于将该高频频段收发信机发送的下行中频数字信号转换成下行中 频模拟信号,以便于该第三混频器将该第三数 /模转换器生成的下行中频模拟 信号转换为该下行无线蜂窝信号;该第三数 /模转换器还用于将该第三混频器 生成的上行中频模拟信号转换成上行中频数字信号,以便于将该第三数 /模转 换器生成的上行中频数字信号发送给该高频频段收发信机。
结合第一方面或第一方面的第一种至第八种可能的实现方式中的任一 种可能的实现方式, 在第一方面的第九种可能的实现方式中, 该 HFRU还包 括第一补偿模块, 该高频频段收发信机还包括第二补偿模块, 其中, 该第一 补偿模块用于将发送到该 SFRU的信号中加入该 HFRU的发射本振的下行相 噪补偿信息, 该第二补偿模块用于从该 HFRU-ODU发送的信号中获取该下 行相噪补偿信息, 以对该 HFRU-ODU发送的信号进行补偿校正; 其中, 该 第二补偿模块还用于将发送到该 HFRU-ODU的信号中加入该 SFRU的发射 本振的上行相噪补偿信息, 该第一补偿模块还用于从该高频频段收发信机发 送的信号中获取该上行相噪补偿信息, 以对该高频频段收发信机发送的信号 进行补偿校正。
第二方面, 提供了一种传输数据的方法, 该方法包括: 高频射频单元
HFRU接收站点发送的数据;该 HFRU将该站点发送的数据转换成下行中频 模拟信号, 并将该下行中频模拟信号转换成下行高频信号; 该 HFRU将该下 行高频信号通过空中接口发送给移频射频单元 SFRU; 该 SFRU将该下行高 频信号转换成下行中频信号, 并将该下行中频信号转换成下行无线蜂窝信 号; 该 SFRU将该下行无线蜂窝信号发送给用户设备。
结合第二方面, 在第二方面的第一种可能的实现方式中, 该 HFRU将该 站点发送的数据转换成下行中频模拟信号, 包括: 该 HFRU从该站点发送的 通用公共无线接口 CPRI协议数据中获取下行中频数字信号, 并将该下行中 频数字信号转换成该下行中频模拟信号。
结合第二方面,在第二方面的第二种可能的实现方式中,该方法还包括: 该 HFRU确定该 HFRU的发射本振的下行相噪补偿信息; 该 HFRU将该下 行相噪补偿信息发送给该 SFRU; 该 SFRU根据该下行相噪补偿信息, 对该 HFRU发送的该下行高频信号进行补偿校正。
结合第二方面、 第二方面的第一种或第二种可能的实现方式, 在第二方 面的第三种可能的实现方式中, 该方法还包括: 该 HFRU向该 SFRU发送该 SFRU的配置管理信息;该 SFRU根据该配置管理信息对该 SFRU进行控制。
第三方面, 提供了一种传输数据的方法, 该方法包括: 移频射频单元 SFRU接收用户设备发送的上行无线蜂窝信号; 该 SFRU将该上行无线蜂窝 信号转换成上行中频信号, 并将该上行中频信号转换成上行高频信号; 该 SFRU将该上行高频信号通过空中接口发送给高频射频单元 HFRU;该 HFRU 将该 SFRU发送的该上行高频信号转换成上行中频模拟信号, 并将该上行中 频模拟信号转换成上行中频数字信号;该 HFRU将该上行中频数字信号发送 给站点。
结合第三方面, 在第三方面的第一种可能的实现方式中, 该 HFRU将该 上行中频数字信号发送给站点, 包括: 该 HFRU将该上行中频数字信号转换 成通用公共无线接口 CPRI数据帧, 并将该 CPRI数据帧发送给该站点。 结合第三方面,在第三方面的第二种可能的实现方式中,该方法还包括: 该 SFRU确定该 SFRU的发射本振的上行相噪补偿信息; 该 SFRU将该上行 相噪补偿信息发送给该 HFRU; 该 HFRU根据该上行相噪补偿信息, 对该 SFRU发送的该上行高频信号进行补偿校正。
结合第三方面或第三方面的第一种或第二种可能的实现方式,在第三方 面的第三种可能的实现方式中, 该方法还包括: 该 SFRU确定该 SFRU的状 态信息; 该 SFRU将该状态信息发送给该 HFRU。
第四方面, 提供了一种高频射频单元 HFRU, 该 HFRU包括: 处理器、 存储器、 总线系统、 接收器和发送器; 其中, 所述处理器、 所述存储器、 所 述接收器和所述发送器通过所述总线系统相连, 所述存储器用于存储指令, 所述处理器用于执行所述存储器存储的指令, 以控制所述接收器接收信号, 并控制所述发送器发送信号; 所述接收器用于接收站点发送的数据; 所述处 理器用于将所述站点发送的数据转换成下行中频模拟信号, 并将所述下行中 频模拟信号转换成下行高频信号; 所述发送器用于将所述下行高频信号通过 空中接口发送给移频射频单元 SFRU。
结合第四方面, 在第四方面第一种可能的实现方式中, 所述处理器将所 述站点发送的数据转换成下行中频模拟信号, 包括: 所述处理器从所述站点 发送的通用公共无线接口 CPRI协议数据中获取下行中频数字信号, 并将所 述下行中频数字信号转换成所述下行中频模拟信号。
结合第四方面, 在第四方面第二种可能的实现方式中, 所述处理器还用 于确定所述 HFRU的发射本振的下行相噪补偿信息;所述发送器还用于将所 述下行相噪补偿信息发送给所述 SFRU。
结合第四方面, 在第四方面第三种可能的实现方式中, 所述发送器还用 于向所述 SFRU发送所述 SFRU的配置管理信息。
结合第四方面, 在第四方面第四种可能的实现方式中, 所述接收器还用 于接收所述 SFRU发送的上行高频信号; 所述处理器还用于将所述上行高频 信号转换成上行中频模拟信号, 并将所述上行中频模拟信号转换成上行中频 数字信号; 所述发送器还用于将所述上行中频数字信号发送给所述站点。
结合第四方面第四种可能的实现方式, 在第五种可能的实现方式中, 所 述处理器还用于将所述上行中频数字信号转换成通用公共无线接口 CPRI数 据帧; 所述发送器将所述上行中频数字信号发送给所述站点为, 所述发送器 将所述 CPRI数据帧发送给所述站点。
结合第四方面第四种可能的实现方式, 在第六种可能的实现方式中, 所 述接收器还用于接收所述 SFRU发送的上行相噪补偿信息; 所述处理器还用 于根据所述上行相噪补偿信息, 对所述上行高频信号进行补偿校正。
结合第四方面第四种可能的实现方式, 在第七种可能的实现方式中, 所 述接收器还用于接收所述 SFRU发送的所述 SFRU的状态信息。
第五方面, 提供了一种移频射频单元 SFRU, 该 SFRU包括: 处理器、 存储器、 总线系统、 接收器和发送器; 其中, 所述处理器、 所述存储器、 所 述接收器和所述发送器通过所述总线系统相连, 所述存储器用于存储指令, 所述处理器用于执行所述存储器存储的指令, 以控制所述接收器接收信号, 并控制所述发送器发送信号;所述接收器用于接收高频射频单元 HFRU通过 空中接口发送的下行高频信号; 所述处理器用于将所述下行高频信号转换成 下行中频信号, 并将所述下行中频信号转换成下行无线蜂窝信号; 所述发送 器用于将所述下行无线蜂窝信号发送给用户设备。
结合第五方面, 在第五方面第一种可能的实现方式中, 所述接收器还用 于接收所述 HFRU发送的下行相噪补偿信息;所述处理器还用于根据所述下 行相噪补偿信息, 对所述下行高频信号进行补偿校正。
结合第五方面, 在第五方面第二种可能的实现方式中, 所述接收器还用 于接收所述 HFRU发送的所述 SFRU的配置管理信息;所述处理器还用于根 据所述配置管理信息对所述 SFRU进行控制。
结合第五方面, 在第五方面第三种可能的实现方式中, 所述接收器还用 于接收所述用户设备发送的上行无线蜂窝信号; 所述处理器还用于将所述上 行无线蜂窝信号转换成上行中频信号, 并将所述上行中频信号转换成上行高 频信号; 所述发送器还用于将所述上行高频信号通过空中接口发送给所述 HFRIL
结合第五方面第三种可能的实现方式, 在第四种可能的实现方式中, 所 述处理器还用于确定所述 SFRU的发射本振的上行相噪补偿信息; 所述发送 器还用于将所述上行相噪补偿信息发送给所述 HFRU。
结合第五方面第三种可能的实现方式, 在第五种可能的实现方式中, 所 述处理器还用于确定所述 SFRU的状态信息; 所述发送器还用于将所述状态 信息发送给所述 HFRU。 基于上述技术方案, 本发明实施例的传输数据的方 法和装置, 通过将待传输的数据转换成中频信号进行传输, 能够显著减小数 据传输带宽, 并由此能够节省带宽资源, 降低数据传输成本。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作筒单地介绍, 显而易见地, 下面所描述的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1 是根据本发明实施例的传输数据的方法和装置的应用场景的示意 图。
图 2是根据本发明实施例的装置的示意性框图。
图 3是根据本发明实施例的装置的另一示意性框图。
图 4是根据本发明实施例的 HFRU-IDU的示意性框图。
图 5是根据本发明实施例的 HFRU-ODU的示意性框图。
图 6是根据本发明实施例的高频频段收发信机的示意性框图。
图 7是根据本发明实施例的无线蜂窝频段收发信机的示意性框图。
图 8是根据本发明实施例的高频频段收发信机的另一示意性框图。
图 9是根据本发明实施例的 SFRU的示意性框图。
图 10是根据本发明实施例的 SFRU的另一示意性框图。
图 11是根据本发明实施例的传输数据的方法的示意性流程图。
图 12是根据本发明实施例的传输数据的方法的另一示意性流程图。 图 13是根据本发明另一实施例的传输数据的方法的示意性流程图。 图 14是根据本发明另一实施例的传输数据的方法的另一示意性流程图。 图 15是根据本发明实施例的 HFRU的示意性框图。
图 16是根据本发明实施例的 SFRU的再一示意性框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。 应理解, 本发明实施例的技术方案可以应用于各种通信系统, 例如: 全 球移动通讯 ( Global System of Mobile communication, GSM ) 系统、 码分多 址( Code Division Multiple Access, CDMA )系统、 宽带码分多址( Wideband Code Division Multiple Access, WCDMA )系统、通用分组无线业务 ( General Packet Radio Service, GPRS )、 长期演进( Long Term Evolution, LTE ) 系 统、 LTE频分双工(Frequency Division Duplex, FDD ) 系统、 LTE时分双工 ( Time Division Duplex , TDD ) 或全球互联 波接入 ( Worldwide Interoperability for Microwave Access , WiMAX )通信系统等。
在本发明实施例中, 站点可以是 GSM 或 CDMA 中的基站 (Base Transceiver Station, BTS ), 也可以是 WCDMA中的基站( NodeB , NB ), 还 可以是 LTE中的演进型基站( Evolutional Node B, ENB或 eNB ); 该站点还 可以是宏站或微站, 本发明并不限定, 但为描述方便, 下述实施例将以宏站 为例进行说明。
还应理解, 在本发明实施例中, 用户设备( User Equipment, UE )可称 之为终端( Terminal )、终端设 < Terminal Equipment )、移动台( Mobile Station , MS )或移动终端( Mobile Terminal )等,该用户设备可以经无线接入网( Radio Access Network, RAN ) 与一个或多个核心网进行通信, 例如, 用户设备可 以是移动电话(或称为 "蜂窝" 电话)或具有移动终端的计算机等, 例如, 用户设备还可以是便携式、 袖珍式、 手持式、 计算机内置的或者车载的移动 装置, 它们与无线接入网交换语音和 /或数据, 但本发明并不限于此。
图 1示出了根据本发明实施例的传输数据的方法和装置的应用场景的示 意图。在图 1所示的通信系统中,该通信系统例如为异构网络系统,具体地, 该通信系统可以为宏微协同组网系统。 如图 1所示, 该通信系统可以包括宏 站 200、 一个或多个根据本发明实施例的传输数据的装置 100以及用户设备 300, 其中, 装置 100与宏站 200通信连接, 并且每个装置 100为该装置 100 覆盖范围内的一个或多个用户设备 300提供通信服务, 即该装置 100用于接 收宏站 200发送的下行数据, 并将该下行数据发送给用户设备 300, 另一方 面, 该装置 100还用于接收用户设备 300发送的上行数据, 并将该上行数据 发送给宏站 200。
为了描述方便, 本发明实施例将以宏微协同组网系统构架为例进行描 述, 但本发明并不限于此。 图 2示出了根据本发明实施例的传输数据的装置 100的示意性框图。如 图 2所示, 该传输数据的装置 100包括:
与站点 200 通信连接的高频射频单元(High Frequency Radio Unit, HFRU ) 110; 以及
与该 HFRU 110 和用户设备 300 通信连接的移频射频单元 (Shift
Frequency Radio Unit, SFRU ) 120,
其中, 该 HFRU 110包括高频射频单元室内设备单元(High Frequency Radio Unit- Indoor Device Unite , HFRU-IDU ) 111 , 以及与该 HFRU-IDU 111 连接的高频射频单元室外设备单元 (High Frequency Radio Unit- Outdoor Device Unite, HFRU-ODU ) 112; 该 SFRU 120包括高频频段收发信机 121 和无线蜂窝频段收发信机 122,
其中, 该 HFRU-IDU 111用于将该站点 200发送的数据转换成下行中频 模拟信号, 并将该下行中频模拟信号发送给该 HFRU-ODU 112;
该 HFRU-ODU 112用于将该 HFRU-IDU 111发送的该下行中频模拟信 号转换成下行高频信号, 并将该下行高频信号通过空中接口 (筒称空口)发 送给该 SFRU 120;
该高频频段收发信机 121用于将该 HFRU-ODU 112发送的该下行高频 信号转换成下行中频信号, 并将该下行中频信号发送给该无线蜂窝频段收发 信机 122;
该无线蜂窝频段收发信机 122用于将该高频频段收发信机 121发送的该 下行中频信号转换成下行无线蜂窝信号, 并将该下行无线蜂窝信号发送给用 户设备 300。
可选的, 该高频射频单元室内设备单元 111可以通过中频线缆与该高频 射频单元室外设备单元 112相连接。
具体而言, 例如当站点 200 需要向用户设备 300 发送下行数据时,
HFRU-IDU 111可以接收站点 200的基带处理单元发送的数据, 并可以首先 将接收的数据转换成下行中频模拟信号,再将该下行中频模拟信号通过中频 线缆发送给 HFRU-ODU 112; 该 HFRU-ODU 112可以将该下行中频模拟信 号转换成下行高频信号,并可以将该下行高频信号通过设置在 HFRU内的天 馈发送给该 SFRU 120; SFRU 120接收到高下行高频信号后, 可以将该下行 高频信号转换成无线蜂窝信号, 并发送给覆盖范围内的用户设备, 从而实现 无线蜂窝小区覆盖; 其中, 具体地, SFRU 120包括的高频频段收发信机 121 可以将首先该下行高频信号转换成下行中频信号,该下行中频信号可以为模 拟信号也可以为数字信号,然后 SFRU 120包括的无线蜂窝频段收发信机 122 可以再将该下行中频信号转换成下行无线蜂窝信号。
在本发明实施例中, 如果传输 CPRI协议数据所需要的数据传输带宽为
2.5Gbps时, 将同样的 CPRI协议数据转换成中频数据进行传输时, 所需要 的数据传输带宽仅为 20Mbps, 由此能够显著地节省数据传输带宽, 并降低 数据传输的复杂度。
因此, 本发明实施例的传输数据的装置, 通过将待传输的数据转换成中 频信号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低数据传输成本。
另一方面, 在本发明实施例的传输数据的装置中, 数字部分处理都集中 在 HFRU-IDU中进行, 使得 HFRU-ODU的体积更小, 功耗更小, 并能够提 高可靠性, 从而能够降低设备部署成本。
应理解, 在本发明实施例中, 术语 "下行" 和 "上行" 用于表示信号或 数据的传输方向, 其中, "下行" 用于表示信号或数据的传输方向为从站点 发送至小区的用户设备的第一方向, "上行" 用于表示信号或数据的传输方 向为从小区的用户设备发送至站点的第二方向, 例如, "下行高频信号" 表 示该信号的传输方向为第一方向。
还应理解, 在本发明实施例中, 术语 "中频信号"、 "高频信号" 和 "无 线蜂窝信号"是相对于信号的频率而言的,其中 "中频信号"的频率低于 "无 线蜂窝信号" 的频率, "无线蜂窝信号" 的频率低于 "高频信号" 的频率。
具体而言, 例如, "中频信号" 的频率可以在 90MHz至 150MHz之间, 但本发明实施例并不限于此, 例如, "中频信号" 的频率也可以在 3MHz至 50MHz之间; "无线蜂窝信号" 可以指在无线蜂窝通信频段内的信号, 例如 "无线蜂窝信号"的频率在 800MHz至 2.6GHz之间; "高频信号"可以指无 线蜂窝通信频段以上的信号, 例如, "高频信号" 的频率在 2GHz 至 8GHz 之间, 再例如, "高频信号" 的频率在 10GHz到 100GHz之间等, 但本发明 实施例并不限于此。
还应理解, 在本发明实施例中, "中频信号" 可以包括中频模拟信号, 也可以包括中频数字信号, 例如上行中频模拟信号或下行中频数字信号等。 还应理解, 在本发明实施例中, "高频信号" 和 "无线蜂窝信号" 在空中传 播, 因此本发明实施例中的 "高频信号"和 "无线蜂窝信号"均指模拟信号, 但本发明并不限于此。
在本发明实施例中, 可选地, 该无线蜂窝频段收发信机 122还用于将该 用户设备 300发送的上行无线蜂窝信号转换成上行中频信号, 并将该上行中 频信号发送给该高频频段收发信机 121;
该高频频段收发信机 121还用于将该无线蜂窝频段收发信机 122发送的 该上行中频信号转换成上行高频信号, 并将该上行高频信号发送给该 HFRU-ODU 112;
该 HFRU-ODU 112还用于将该高频频段收发信机 121发送的该上行高 频信号转换成上行中频模拟信号, 并将该上行中频模拟信号发送给该 HFRU-IDU 111;
该 HFRU-IDU 111还用于将该 HFRU-ODU 112发送的该上行中频模拟 信号转换成上行中频数字信号,并将该上行中频数字信号发送给该站点 200。
具体而言, 例如当用户设备 300 需要向站点 200 发送上行数据时,
SFRU120包括的无线蜂窝频段收发信机 122可以接收用户设备 300发送的 上行无线蜂窝信号, 并可以将该上行无线蜂窝信号转换成上行中频信号后, 发送给高频频段收发信机 121 ,其中该上行中频信号可以是上行中频数字信 号, 也可以是上行中频模拟信号。 该高频频段收发信机 121将该上行中频 信号转换成上行高频信号后, 通过空中接口发送给 HFRU 110。 HFRU 110 包括的 HFRU-ODU 112 可以将该上行高频信号转换成上行中频模拟信号 后,发送给 HFRU-IDU 111; 该 HFRU-IDU 111则可以将该上行中频模拟信 号转换成上行中频数字信号, 并将该上行中频数字信号发送给该站点 200。 由此能够实现站点与用户设备之间的上行数据的传输, 并能够显著减小数 据传输带宽, 从而能够节省带宽资源, 降低数据传输成本, 并能够降低设 备部署成本。
在本发明实施例中, 一个站点可以与一个或多个 HFRU通信连接, 具体 地,例如如图 3所示,一个或多个 HFRU-IDU可以与站点的基带处理单元保 持通信连接, 该 HFRU-IDU可以集成在站点内, 也可以单独布置, 并通过光 纤、 高速线缆等与基带处理单元连接; HFRU-ODU 可以是室外的高频收发 信机, 用于接收和发送高频信号, 但本发明实施例并不限于此。 在本发明实施例中, 站点 200发送的数据可以为 CPRI协议数据, 也可 以为中频数字信号。当站点 200发送的数据为 CPRI协议数据时, HFRU-IDU 111需要从该 CPRI协议数据中获取下行中频数字信号, 并将该下行中频数 字信号转换成下行中频模拟信号; 另一方面, HFRU-IDU 111 也可以将 HFRU-ODU 112发送的上行中频模拟信号先转换成上行中频数字信号,再将 该上行中频数字信号转换成 CPRI协议数据后发送给站点 200的基带处理单 元, 但本发明实施例并不限于此。
具体地, 如图 4所示, 可选地, 该 HFRU-IDU 111包括通用公共无线接 口 CPRI解帧 /组帧模块 1111和第一数 /模转换器 1112, 其中, 该 CPRI解帧 / 组帧模块 1111用于从该站点 200发送的 CPRI协议数据中获取下行中频数字 信号, 该第一数 /模转换器 1112用于将该下行中频数字信号转换成该下行中 频模拟信号; 其中, 该第一数 /模转换器 1112还用于将该 HFRU-ODU 112发 送的该上行中频模拟信号转换成该上行中频数字信号, 该 CPRI解帧 /组帧模 块 1111还用于将该上行中频数字信号转换成 CPRI数据帧。 其中, 该第一数 /模转换器 1112例如为模数转换器( Analog to Digital Converter, ADC ) /数 模转换器( Digital to Analog Converter, DAC ), 但本发明并不限于此。
在本发明实施例中, 可选地, 如图 4所示, 该 HFRU-IDU 111还包括数 据速率变换模块 1113, 该数据速率变换模块 1113用于匹配该 CPRI解帧 /组 帧模块 1111和该第一数 /模转换器 1112处理的该下行中频数字信号或该上行 中频数字信号的数据速率。
具体而言, 当 CPRI解帧 /组帧模块 1111和第一数 /模转换器 1112处理信 号或数据的速率不同时, 数据速率变换模块 1113 可以改变信号或数据的速 率,以使得 CPRI解帧 /组帧模块 1111和第一数 /模转换器 1112处理信号或数 据的速率匹配。
例如, 数据速率变换模块 1113可以通过内插技术, 提高来自基带处理 单元的下行中频数字信号的速率, 以适配第一数 /模转换器 1112处理信号的 速率; 又例如, 数据速率变换模块 1113可以通过抽取技术, 降低来自第一 数 /模转换器 1112的上行数字信号的速率, 以适配基带处理单元处理信号的 速率。 本发明实施例仅以此为例进行说明, 但本发明并不限于此, 例如, 当 基带处理单元处理信号的速率高于第一数 /模转换器 1112 处理信号的速率 时, 数据速率变换模块 1113 可以降低来自基带处理单元的下行中频数字信 号的速率, 以适配第一数 /模转换器 1112处理信号的速率。
在本发明实施例中, 可选地, 如图 5所示, HFRU-ODU112包括第一混 频器 1121和第一功率放大器 1122, 其中, 该第一混频器 1121用于将该下行 中频模拟信号转换为该下行高频信号, 以及将该上行高频信号转换为该上行 中频模拟信号, 该第一功率放大器 1122用于对该第一混频器 1121输出的该 下行高频信号进行放大, 以便于发送给该 SFRU 120。
具体而言,在下行方向上,第一混频器 1121可以将 HFRU-IDF 111通过 中频线缆发送的下行中频模拟信号转换为下行高频信号, 第一功率放大器 1122用于对该第一混频器 1121输出的该下行高频信号进行放大, 放大后的 下行高频信号可以通过天馈发送给 SFRU 120; 在上行方向上, HFRU-ODU 112通过天馈可以接收 SFRU 120发送的上行高频信号, 该第一混频器 1121 还用于将该上行高频信号转换为上行中频模拟信号,从而该上行中频模拟信 号可以通过中频线缆传输至 HFRU-IDU 111 , 并经过进一步处理后发送至站 点的基带处理单元。
在本发明实施例中,可选地,如图 6所示, 高频频段收发信机 121包括: 第二混频器 1211和第二功率放大器 1212, 其中, 该第二混频器 1211用于将 该下行高频信号转换为该下行中频信号, 以及将该上行中频信号转换为该上 行高频信号, 该第二功率放大器 1212用于对该第二混频器 1211输出的该上 行高频信号进行放大, 以便于发送给该 HFRU-ODU 112。
可选地,如图 7所示,无线蜂窝频段收发信机 122包括:第三混频器 1221 和第三功率放大器 1222, 其中, 该第三混频器 1221用于将该下行中频信号 转换为该下行无线蜂窝信号, 以及将该用户设备 300发送的该上行无线蜂窝 信号转换为上行中频信号, 该第三功率放大器 1222 用于将该第三混频器 1221输出的该下行无线蜂窝信号进行放大, 以便于发送给该用户设备 300。
具体地, 在下行方向上, HFRU-ODU 112发送的下行高频信号可以通过 高频频段收发信机 121的第二混频器 1211转换为下行中频信号, 该下行中 频信号再通过无线蜂窝频段收发信机 122的第三混频器 1221可以转换为下 行无线蜂窝信号, 该下行无线蜂窝信号接着通过第三功率放大器 1222进行 信号功率放大后, 可以经过天馈发送给用户设备 300; 在上行方向上, 第三 混频器 1221可以将用户设备 300发送的上行无线蜂窝信号转换为上行中频 信号, 该第二混频器 1211 可以进一步将该上行中频信号转换为上行高频信 号, 从而该上行高频信号可以通过天馈发送给 HFRU-ODU 112。
在本发明实施例中, 可选地, 如图 8所示, 该高频频段收发信机 121还 包括: 第二数 /模转换器 1213和 SFRU配置模块 1214, 其中, 该第二数 /模 转换器 1213用于中频模拟信号与中频数字信号之间的相互转换, 该 SFRU 配置模块 1214用于基于该 HFRU发送的配置管理信息, 对该 SFRU进行控 制, 该 SFRU配置模块 1214还用于将该 SFRU的状态信息发送给该 HFRU。
应理解, 在本发明实施例中, 传输数据的装置除了可以传输站点的业务 数据之外, 还可以传输配置管理信息、 状态信息等。 该配置管理信息例如包 括 SFRU的频点配置信息、数 /模转换器的配置信息、无线通道的信道测量信 息等, 该状态信息例如包括告警信息等。 本发明实施例仅以此为例, 但本发 明并不限于此,例如,根据本发明实施例的传输数据的装置还可以传输 HFRU 110或 SFRU 120的发射本振的下行相噪补偿信息等。 本发明实施例中, 相 噪补偿信息是指相位噪声补偿信息。
还应理解, 在本发明实施例中, 高频频段收发信机和无线蜂窝频段收发 信机可以集成在一个单元里,也可以为通过数据线缆或光纤等连接的两个独 立的单元, 但本发明并不限于此。
还应理解, 在本发明实施例中, 可选地, 该下行中频信号包括下行中频 模拟信号或下行中频数字信号, 该上行中频信号包括上行中频模拟信号或上 行中频数字信号。 即在本发明实施例中, 高频频段收发信机 121与无线蜂窝 频段收发信机 122之间传输的信号可以是中频数字信号,也可以是中频模拟 信号。
具体而言, 在本发明实施例中, 在下行方向上, 第二混频器 1211 用于 将下行高频信号转换为下行中频模拟信号, 第三混频器 1221用于将该下行 中频信号转换为下行无线蜂窝信号; 在上行方向上, 第三混频器 1221用于 将上行无线蜂窝信号转换为上行中频模拟信号, 第二混频器 1211 用于将上 行中频模拟信号转换为上行高频信号。
当高频频段收发信机 121与无线蜂窝频段收发信机 122之间传输的信号 为中频模拟信号时, 例如, 如图 9 所示, 在下行方向上, 第二数 /模转换器 1213设置成将第二混频器 1211输出的承载配置管理信息的下行中频模拟信 号转换为下行中频数字信号, 以便于 SFRU配置模块 1214进行数字信号处 理, 而第二混频器 1211输出的承载业务数据的下行中频模拟信号则直接发 送给无线蜂窝频段收发信机 122; 在上行方向上, 第二数 /模转换器 1213将 SFRU配置模块 1214输出的承载状态信息的上行中频数字信号转换为上行 中频模拟信号, 第二混频器 1211和第三混频器 1221处理的中频信号仍是模 拟信号。
当高频频段收发信机 121与无线蜂窝频段收发信机 122之间传输的信号 为中频数字信号时, 在本发明实施例中, 可选地, 该无线蜂窝频段收发信机 122还包括第三数 /模转换器 1223,该第三数 /模转换器 1223用于将该高频频 段收发信机 121发送的下行中频数字信号转换成下行中频模拟信号, 以便于 该第三混频器 1221将该第三数 /模转换器 1223生成的下行中频模拟信号转换 为该下行无线蜂窝信号; 该第三数 /模转换器 1223 还用于将该第三混频器 1221生成的上行中频模拟信号转换成上行中频数字信号,以便于将该第三数 /模转换器 1223生成的上行中频数字信号发送给该高频频段收发信机 121。
具体地, 例如, 如图 10 所示, 在下行方向上, 第二数 /模转换器 1213 可以设置成将第二混频器 1211输出的所有下行中频模拟信号都转换成下行 中频数字信号, 而第三数 /模转换器 1223用于将高频频段收发信机 121发送 的下行中频数字信号转换为下行中频模拟信号, 而后该下行中频模拟信号再 由第三混频器 1221处理;在上行方向上,第三数 /模转换器 1223用于将第三 混频器 1221发送的上行中频模拟信号转换为上行中频数字信号, 该上行中 频数字信号再由第二数 /模转换器 1213转换成上行中频模拟信号。
因此, 本发明实施例的传输数据的装置, 通过将待传输的数据转换成中 频信号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低数据传输成本, 并能够降低设备部署成本。
在本发明实施例中, 为了进一步提升传输信号的质量, 可选地, 如图 5、 9和 10所示, 该 HFRU 110还包括第一补偿模块 113, 该高频频段收发信机 121还包括第二补偿模块 1215, 其中, 该第一补偿模块 113用于将发送到该 SFRU 120的信号中加入该 HFRU 110的发射本振的下行相噪补偿信息, 该 第二补偿模块 1215用于从该 HFRU-ODU 112发送的信号中获取该下行相噪 补偿信息, 以对该 HFRU-ODU 112发送的信号进行补偿校正; 其中, 该第 二补偿模块 1215还用于将发送到该 HFRU-ODU 112的信号中加入该 SFRU 120的发射本振的上行相噪补偿信息, 该第一补偿模块 113还用于从该高频 频段收发信机 121发送的信号中获取该上行相噪补偿信息, 以对该高频频段 收发信机 121发送的信号进行补偿校正。
即在本发明实施例中, 通过在发射通道加入用于补偿校正的冗余信息, 并在接收通道首先分离业务数据和用于校正补偿的冗余信息, 并通过校正补 偿算法能够提高传输信号的质量, 其中, 该冗余信息例如为 HFRU 110的发 射本振的下行相噪补偿信息,或 SFRU 120的发射本振的上行相噪补偿信息, 但本发明并不限于此。
应理解, 在本发明实施例中, 信号的补偿校正可以在模拟域实现, 例如 如图 9所示, 也可以在数字域实现, 例如如图 10所示。 当信号的补偿校正 在模拟域实现时, 例如如图 5所示, HFRU 110包括的第一补偿模块 113可 以设置在 HFRU-ODU 112中;当信号的补偿校正在数字域实现时, HFRU 110 包括的第一补偿模块 113则可以设置在 HFRU-IDU 111中。 本发明实施例仅 以此为例进行说明, 但本发明并不限于此, 例如, 当信号的补偿校正在数字 域实现时, 第一补偿模块 113也可以设置在 HFRU-ODU 112中, 此时, 第 一补偿模块 113还可以包括数 /模转换器等。
因此, 本发明实施例的传输数据的装置, 通过将待传输的数据转换成中 频信号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低数据传输成本, 并能够降低设备部署成本; 并且本发明实施例的传输数 据的装置,基于 HFRU或 SFRU的发射本振的下行相噪补偿信息, 能够对传 输的信号进行补偿校正, 从而能够提高传输信号的质量, 从而能够进一步增 强用户体验。
上文中结合图 1至图 10,详细描述了根据本发明实施例的传输数据的装 置, 下面将结合图 11至图 14, 描述根据本发明实施例的传输数据的方法。
图 11示出了根据本发明实施例的传输数据的方法 600的示意性流程图, 该方法包括:
S610, 高频射频单元 HFRU接收站点发送的数据;
S620, 该 HFRU将该站点发送的数据转换成下行中频模拟信号, 并将该 下行中频模拟信号转换成下行高频信号;
S630, 该 HFRU将该下行高频信号通过空中接口发送给移频射频单元 SFRU;
S640, 该 SFRU将该下行高频信号转换成下行中频信号, 并将该下行中 频信号转换成下行无线蜂窝信号; S650, 该 SFRU将该下行无线蜂窝信号发送给用户设备。
因此, 本发明实施例的传输数据的方法, 通过将待传输的数据转换成中 频信号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低数据传输成本, 并能够降低设备部署成本。
在本发明实施例中, 站点发送的数据可以为中频数字信号, 也可以为
CPRI协议数据。 当站点发送的数据为 CPRI协议数据时, HFRU需要从该 CPRI协议数据中获取下行中频数字信号, 并将该下行中频数字信号转换成 下行中频模拟信号。
具体地,该 HFRU将该站点发送的数据转换成下行中频模拟信号,包括: 该 HFRU从该站点发送的通用公共无线接口 CPRI协议数据中获取下行中频 数字信号, 并将该下行中频数字信号转换成该下行中频模拟信号。
在本发明实施例中, 通过在发射通道加入用于补偿校正的冗余信息, 并 在接收通道首先分离业务数据和用于校正补偿的冗余信息, 并通过校正补偿 算法能够提高传输信号的质量。 具体而言, 如图 12所示, 可选地, 根据本 发明实施例的传输数据的方法还包括:
S660, 该 HFRU确定该 HFRU的发射本振的下行相噪补偿信息;
S670 , 该 HFRU将该下行相噪补偿信息发送给该 SFRU;
S680,该 SFRU根据该下行相噪补偿信息,对该 HFRU发送的该下行高 频信号进行补偿校正。
因此, 本发明实施例的传输数据的装置, 通过将待传输的数据转换成中 频信号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低数据传输成本, 并能够降低设备部署成本; 并且本发明实施例的传输数 据的装置, 基于发射本振的下行相噪补偿信息, 能够对传输的信号进行补偿 校正, 从而能够提高传输信号的质量, 从而能够进一步增强用户体验。
在本发明实施例中, 除了可以传输站点的业务数据之外, 还可以传输配 置管理信息、状态信息等。该配置管理信息例如包括 SFRU的频点配置信息、 数 /模转换器的配置信息、无线通道的信道测量信息等,该状态信息例如包括 告警信息等。 具体而言, 可选地, 根据本发明实施例的传输数据的方法还包 括:
该 HFRU向该 SFRU发送该 SFRU的配置管理信息;
该 SFRU根据该配置管理信息对该 SFRU进行控制。 具体而言, 在本发明实施例中, 下行数据的传输方法例如包括: HFRU 包括的 IDU接收来自站点的基带处理单元的下行中频数字信号, 或 IDU将 来自站点的基带处理单元的 CPRI数据解帧, 从 CPRI数据帧中提取出下行 中频数字信号; HFRU包括的数据速率变换模块提升下行中频数字信号的速 率, 以匹配 HFRU包括的 DAC的速率; DAC将下行中频数字信号转换成下 行中频模拟信号;该下行中频模拟信号通过中频线缆发送至 HFRU的 ODU; ODU接收来自 IDU的下行中频模拟信号, 并通过混频将该下行中频模拟信 号转换为下行高频信号; ODU通过高频功率放大器将发射通道的信号放大, 并通过空中接口向 SFRU发射经过信号放大的下行高频信号; SFRU接收来 自 ODU的下行高频信号, 并通过混频器将该下行高频信号转换为下行中频 信号, 并进一步通过无线混频器将该下行中频信号转换为下行无线蜂窝信 号; 该 SFRU可以通过无线功率放大器将该下行无线蜂窝信号进行放大, 并 发射该下行无线蜂窝信号, 从而覆盖无线蜂窝小区。
HFRU还可以在发射通道加入用于补偿校正的冗余信息, 并且 SFRU可 以在接收通道首先分离业务数据和用于校正补偿的冗余信息, 并通过校正补 偿算法能够提高传输信号的质量。 此外, SFRU可以接收管理配置信息, 进 行配置管理处理等。
应理解, 在本发明实施例中, 术语 "中频信号"、 "高频信号" 和 "无线 蜂窝信号" 是相对于信号的频率而言的, 其中 "中频信号" 的频率低于 "无 线蜂窝信号" 的频率, "无线蜂窝信号" 的频率低于 "高频信号" 的频率。
具体而言, 例如, "中频信号" 的频率可以在 90MHz至 150MHz之间, 但本发明实施例并不限于此, 例如, "中频信号" 的频率也可以在 3MHz至 50MHz之间; "无线蜂窝信号" 可以指在无线蜂窝通信频段内的信号, 例如 "无线蜂窝信号"的频率在 800MHz至 2.6GHz之间; "高频信号"可以指无 线蜂窝通信频段以上的信号, 例如, "高频信号" 的频率在 2GHz 至 8GHz 之间, 再例如, "高频信号" 的频率在 10GHz到 100GHz之间等, 但本发明 实施例并不限于此。
还应理解, 在本发明实施例中, "中频信号" 可以包括中频模拟信号, 也可以包括中频数字信号, 例如上行中频模拟信号或下行中频数字信号等。 还应理解, 在本发明实施例中, "高频信号" 和 "无线蜂窝信号" 在空中传 播, 因此本发明实施例中的 "高频信号"和 "无线蜂窝信号"均指模拟信号, 但本发明并不限于此。
还应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意 味着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不 应对本发明实施例的实施过程构成任何限定。
因此, 本发明实施例的传输数据的方法, 通过将待传输的数据转换成中 频信号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低数据传输成本, 并能够降低设备部署成本。
上文中结合图 11至图 12, 从下行方向详细描述了根据本发明实施例的 传输数据的方法, 下面将结合图 13至图 14, 从上行方向详细描述根据本发 明实施例的传输数据的方法。
如图 13所示, 在包括高频射频单元 HFRU和移频射频单元 SFRU的系 统中, 传输数据的方法 700包括:
S710, 该 SFRU接收用户设备发送的上行无线蜂窝信号;
S720, 该 SFRU将该上行无线蜂窝信号转换成上行中频信号, 并将该上 行中频信号转换成上行高频信号;
S730, 该 SFRU将该上行高频信号通过空中接口发送给该 HFRU;
S740,该 HFRU将该 SFRU发送的该上行高频信号转换成上行中频模拟 信号, 并将该上行中频模拟信号转换成上行中频数字信号;
S750, 该 HFRU将该上行中频数字信号发送给站点。
因此, 本发明实施例的传输数据的方法, 通过将待传输的数据转换成中 频信号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低数据传输成本, 并能够降低设备部署成本。
在本发明实施例中, 可选地, 该 HFRU将该上行中频数字信号发送给站 点, 包括:
该 HFRU将该上行中频数字信号转换成通用公共无线接口 CPRI数据 帧, 并将该 CPRI数据帧发送给该站点。
在本发明实施例中, 可选地, 如图 14所示, 该方法还包括:
S760, 该 SFRU确定该 SFRU的发射本振的上行相噪补偿信息; S770, 该 SFRU将该上行相噪补偿信息发送给该 HFRU;
S780,该 HFRU根据该上行相噪补偿信息,对该 SFRU发送的该上行高 频信号进行补偿校正。 在本发明实施例中, 可选地, 该方法还包括:
该 SFRU确定该 SFRU的状态信息;
该 SFRU将该状态信息发送给该 HFRU。
应理解, 在本发明实施例中, 术语 "下行" 和 "上行" 用于表示信号或 数据的传输方向, 其中, "下行" 用于表示信号或数据的传输方向为从站点 发送至小区的用户设备的第一方向, "上行" 用于表示信号或数据的传输方 向为从小区的用户设备发送至站点的第二方向, 例如, "下行高频信号" 表 示该信号的传输方向为第一方向。
还应理解, 下行数据的传输与上行数据的传输相应, 为了筒洁, 在此不 再赘述。
还应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意 味着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不 应对本发明实施例的实施过程构成任何限定。
因此, 本发明实施例的传输数据的方法, 通过将待传输的数据转换成中 频信号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低数据传输成本, 并能够降低设备部署成本。
如图 15所示, 本发明实施例还提供了一种高频射频单元 HFRU 800, 该 HFRU 800包括处理器 810、 存储器 820、 总线系统 830、 接收器 840和发送 器 850。 其中, 处理器 810、 存储器 820、 接收器 840和发送器 850通过总线 系统 830相连, 该存储器 820用于存储指令, 该处理器 810用于执行该存储 器 820存储的指令, 以控制接收器 840接收信号, 并控制发送器 850发送信 号。 其中, 该接收器 840用于接收站点发送的数据; 该处理器 810用于将该 站点发送的数据转换成下行中频模拟信号, 并将该下行中频模拟信号转换成 下行高频信号; 该发送器 850用于将该下行高频信号通过空中接口发送给移 频射频单元 SFRU。
因此, 根据本发明实施例的 HFRU, 通过将待传输的数据转换成中频信 号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低 数据传输成本, 并能够降低设备部署成本。
应理解,在本发明实施例中,该处理器 810可以是中央处理单元( Central Processing Unit, 筒称为 "CPU" ), 该处理器 810还可以是其他通用处理器、 数字信号处理器(DSP )、专用集成电路(ASIC )、现成可编程门阵列(FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器 820可以包括只读存储器和随机存取存储器, 并向处理器 810 提供指令和数据。存储器 820的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 820还可以存储设备类型的信息。
该总线系统 830除包括数据总线之外, 还可以包括电源总线、 控制总线 和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线 系统 830。
在实现过程中, 上述方法的各步骤可以通过处理器 810中的硬件的集成 逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 820, 处理器 810读取存储器 820中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。
可选地, 作为一个实施例, 该处理器 810将该站点发送的数据转换成下 行中频模拟信号, 包括: 从该站点发送的通用公共无线接口 CPRI协议数据 中获取下行中频数字信号, 并将该下行中频数字信号转换成该下行中频模拟 信号。
可选地,作为一个实施例, 该处理器 810还用于确定该 HFRU的发射本 振的下行相噪补偿信息; 该发送器 850还用于将该下行相噪补偿信息发送给 该 SFRU。
可选地,作为一个实施例,该发送器 850还用于向该 SFRU发送该 SFRU 的配置管理信息。
可选地, 作为一个实施例, 该接收器 840还用于接收 SFRU发送的上行 高频信号;该处理器 810还用于将该上行高频信号转换成上行中频模拟信号, 并将该上行中频模拟信号转换成上行中频数字信号; 该发送器 850还用于将 该上行中频数字信号发送给站点。
进一步可选地, 作为一个实施例, 该处理器 810还用于将该上行中频数 字信号转换成通用公共无线接口 CPRI数据帧; 发送器 850将该上行中频数 字信号发送给站点是, 该发送器 850将该 CPRI数据帧发送给该站点。 可选地, 作为一个实施例, 该接收器 840还用于接收 SFRU发送的上行 相噪补偿信息; 该处理器 810还用于根据该上行相噪补偿信息, 对上行高频 信号进行补偿校正。
可选地,作为一个实施例,该接收器 840还用于接收 SFRU发送的 SFRU 的状态信息。
应理解, 根据本发明实施例的 HFRU 800 可对应于本发明实施例中的 且 HFRU 800中的各个模块的上述和其它操作和 /或功能分别为了实现图 11 至图 14中的各个方法的相应流程, 为了筒洁, 在此不再赘述。
因此, 根据本发明实施例的 HFRU, 通过将待传输的数据转换成中频信 号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低 数据传输成本, 并能够降低设备部署成本。
如图 16所示, 本发明实施例还提供了一种移频射频单元 SFRU 900, 包 括处理器 910、存储器 920、 总线系统 930、接收器 940和发送器 950。 其中, 处理器 910、 存储器 920、 接收器 940和发送器 950通过总线系统 930相连, 该存储器 920用于存储指令, 该处理器 910用于执行该存储器 920存储的指 令, 以控制接收器 940接收信号, 并控制发送器 950发送信号。 其中, 该接 收器 940用于接收 HFRU通过空中接口发送的下行高频信号; 该处理器 910 用于将该下行高频信号转换成下行中频信号, 并将该下行中频信号转换成下 行无线蜂窝信号;该发送器 950用于将该下行无线蜂窝信号发送给用户设备。
因此, 根据本发明实施例的 SFRU, 通过将待传输的数据转换成中频信 号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低 数据传输成本, 并能够降低设备部署成本。
应理解,在本发明实施例中,该处理器 910可以是中央处理单元( Central Processing Unit, 筒称为 "CPU" ), 该处理器 910还可以是其他通用处理器、 数字信号处理器(DSP )、专用集成电路(ASIC )、现成可编程门阵列(FPGA ) 或者其他可编程逻辑器件、 分立门或者晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器 920可以包括只读存储器和随机存取存储器, 并向处理器 910 提供指令和数据。存储器 920的一部分还可以包括非易失性随机存取存储器。 例如, 存储器 920还可以存储设备类型的信息。 该总线系统 930除包括数据总线之外, 还可以包括电源总线、 控制总线 和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线 系统 930。
在实现过程中, 上述方法的各步骤可以通过处理器 910中的硬件的集成 逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤 可以直接体现为硬件处理器执行完成, 或者用处理器中的硬件及软件模块组 合执行完成。 软件模块可以位于随机存储器, 闪存、 只读存储器, 可编程只 读存储器或者电可擦写可编程存储器、 寄存器等本领域成熟的存储介质中。 该存储介质位于存储器 920, 处理器 910读取存储器 920中的信息, 结合其 硬件完成上述方法的步骤。 为避免重复, 这里不再详细描述。
可选地,作为一个实施例, 该接收器 940还用于接收 HFRU发送的下行 相噪补偿信息; 该处理器 910还用于根据该下行相噪补偿信息, 对下行高频 信号进行补偿校正。
可选地,作为一个实施例,该接收器 940还用于接收 HFRU发送的 SFRU 的配置管理信息; 该处理器 910还用于根据该配置管理信息对该 SFRU进行 控制。
可选地, 作为一个实施例, 该接收器 940还用于接收用户设备发送的上 行无线蜂窝信号; 该处理器 910还用于将该上行无线蜂窝信号转换成上行中 频信号, 并将该上行中频信号转换成上行高频信号; 该发送器 950还用于将 该上行高频信号通过空中接口发送给该 HFRU。
可选地, 作为一个实施例, 该处理器 910还用于确定该 SFRU的发射本 振的上行相噪补偿信息; 该发送器 950还用于将该上行相噪补偿信息发送给 该 HFRUo
可选地, 作为一个实施例, 该处理器 910还用于确定该 SFRU的状态信 息; 该发送器 950还用于将该状态信息发送给该 HFRU。
应理解, 根据本发明实施例的 SFRU 900 可对应于本发明实施例中的
SFRU 900中的各个模块的上述和其它操作和 /或功能分别为了实现图 11至 图 14中的各个方法的相应流程, 为了筒洁, 在此不再赘述。
因此, 根据本发明实施例的 SFRU, 通过将待传输的数据转换成中频信 号进行传输, 能够显著减小数据传输带宽, 并由此能够节省带宽资源, 降低 数据传输成本, 并能够降低设备部署成本。
另外, 本文中术语 "系统" 和 "网络" 在本文中常被可互换使用。 本文 中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种 关系, 例如, A和 /或 B, 可以表示: 单独存在 A , 同时存在 A和 B, 单独存 在 B这三种情况。另外,本文中字符 "/" ,一般表示前后关联对象是一种 "或" 的关系。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为了描述的方便和筒洁, 上述 描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对 应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另外, 所显示或讨论的相互之间的 耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或 通信连接, 也可以是电的, 机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件 功能单元的形式实现。 通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本 发明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件 实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上 的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和 通信介质, 其中通信介质包括便于从一个地方向另一个地方传送计算机程序 的任何介质。 存储介质可以是计算机能够存取的任何可用介质。 以此为例但 不限于: 计算机可读介质可以包括 RAM、 ROM, EEPROM、 CD-ROM或其 他光盘存储、 磁盘存储介质或者其他磁存储设备、 或者能够用于携带或存储 具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其 他介质。 此外。 任何连接可以适当的成为计算机可读介质。 例如, 如果软件 是使用同轴电缆、 光纤光缆、 双绞线、 数字用户线(DSL )或者诸如红外线、 无线电和微波之类的无线技术从网站、 服务器或者其他远程源传输的, 那么 同轴电缆、 光纤光缆、 双绞线、 DSL或者诸如红外线、 无线和微波之类的无 线技术包括在所属介质的定影中。如本发明所使用的,盘( Disk )和碟( disc ) 包括压缩光碟(CD )、 激光碟、 光碟、 数字通用光碟(DVD )、 软盘和蓝光 光碟, 其中盘通常磁性的复制数据, 而碟则用激光来光学的复制数据。 上面 的组合也应当包括在计算机可读介质的保护范围之内。
总之, 以上所述仅为本发明技术方案的较佳实施例而已, 并非用于限定 本发明的保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同 替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种传输数据的装置, 其特征在于, 所述装置包括:
与站点通信连接的高频射频单元 HFRU; 以及
与所述 HFRU和用户设备通信连接的移频射频单元 SFRU,
其中, 所述 HFRU包括高频射频单元室内设备单元 HFRU-IDU , 以及与 所述 HFRU-IDU连接的高频射频单元室外设备单元 HFRU-ODU;所述 SFRU 包括高频频段收发信机和无线蜂窝频段收发信机,
其中,所述 HFRU-IDU用于将所述站点发送的数据转换成下行中频模拟 信号, 并将所述下行中频模拟信号发送给所述 HFRU-ODU; 转换成下行高频信号, 并将所述下行高频信号通过空中接口发送给所述 SFRU;
所述高频频段收发信机用于将所述 HFRU-ODU发送的所述下行高频信 号转换成下行中频信号, 并将所述下行中频信号发送给所述无线蜂窝频段收 发信机;
所述无线蜂窝频段收发信机用于将所述高频频段收发信机发送的所述 下行中频信号转换成下行无线蜂窝信号, 并将所述下行无线蜂窝信号发送给 用户设备。
2、 根据权利要求 1所述的装置, 其特征在于,
所述无线蜂窝频段收发信机还用于将所述用户设备发送的上行无线蜂 窝信号转换成上行中频信号, 并将所述上行中频信号发送给所述高频频段收 发信机;
所述高频频段收发信机还用于将所述无线蜂窝频段收发信机发送的所 述上行中频信号转换成上行高频信号, 并将所述上行高频信号发送给所述 HFRU-ODU;
所述 HFRU-ODU还用于将所述高频频段收发信机发送的所述上行高频 信号转换成上行中频模拟信号, 并将所述上行中频模拟信号发送给所述
HFRU-IDU; 号转换成上行中频数字信号, 并将所述上行中频数字信号发送给所述站点。
3、 根据权利要求 1所述的装置, 其特征在于, 所述 HFRU-IDU包括通 用公共无线接口 CPRI解帧 /组帧模块和第一数 /模转换器, 其中, 所述 CPRI 号,所述第一数 /模转换器用于将所述下行中频数字信号转换成所述下行中频 模拟信号; 其中, 所述第一数 /模转换器还用于将所述 HFRU-ODU发送的所 述上行中频模拟信号转换成所述上行中频数字信号, 所述 CPRI解帧 /组帧模 块还用于将所述上行中频数字信号转换成 CPRI数据帧。
4、 根据权利要求 3所述的装置, 其特征在于, 所述 HFRU-IDU还包括 数据速率变换模块, 所述数据速率变换模块用于匹配所述 CPRI解帧 /组帧模 块和所述第一数 /模转换器处理的所述下行中频数字信号或所述上行中频数 字信号的数据速率。
5、 根据权利要求 1所述的装置, 其特征在于, 所述 HFRU-ODU包括第 一混频器和第一功率放大器, 其中, 所述第一混频器用于将所述下行中频模 拟信号转换为所述下行高频信号, 以及将所述上行高频信号转换为所述上行 中频模拟信号,所述第一功率放大器用于对所述第一混频器输出的所述下行 高频信号进行放大, 以便于发送给所述 SFRU。
6、 根据权利要求 1所述的装置, 其特征在于, 所述高频频段收发信机 包括: 第二混频器和第二功率放大器, 其中, 所述第二混频器用于将所述下 行高频信号转换为所述下行中频信号, 以及将所述上行中频信号转换为所述 上行高频信号,所述第二功率放大器用于对所述第二混频器输出的所述上行 高频信号进行放大, 以便于发送给所述 HFRU-ODU。
7、 根据权利要求 1所述的装置, 其特征在于, 所述无线蜂窝频段收发 信机包括: 第三混频器和第三功率放大器, 其中, 所述第三混频器用于将所 述下行中频信号转换为所述下行无线蜂窝信号, 以及将所述用户设备发送的 所述上行无线蜂窝信号转换为上行中频信号, 所述第三功率放大器用于将所 述第三混频器输出的所述下行无线蜂窝信号进行放大, 以便于发送给所述用 户设备。
8、 根据权利要求 6所述的装置, 其特征在于, 所述高频频段收发信机 还包括: 第二数 /模转换器和 SFRU配置模块, 其中, 所述第二数 /模转换器 用于中频模拟信号与中频数字信号之间的相互转换, 所述 SFRU配置模块用 于基于所述 HFRU发送的配置管理信息,对所述 SFRU进行控制,所述 SFRU 配置模块还用于将所述 SFRU的状态信息发送给所述 HFRU。
9、 根据权利要求 7所述的装置, 其特征在于, 所述无线蜂窝频段收发 信机还包括第三数 /模转换器, 所述第三数 /模转换器用于将所述高频频段收 发信机发送的下行中频数字信号转换成下行中频模拟信号, 以便于所述第三 混频器将所述第三数 /模转换器生成的下行中频模拟信号转换为所述下行无 线蜂窝信号;所述第三数 /模转换器还用于将所述第三混频器生成的上行中频 模拟信号转换成上行中频数字信号,以便于将所述第三数 /模转换器生成的上 行中频数字信号发送给所述高频频段收发信机。
10、 根据权利要求 1至 9中任一项所述的装置, 其特征在于, 所述 HFRU还包括第一补偿模块,所述高频频段收发信机还包括第二补 偿模块, 其中, 所述第一补偿模块用于将发送到所述 SFRU的信号中加入所 述 HFRU 的发射本振的下行相噪补偿信息, 所述第二补偿模块用于从所述 HFRU-ODU 发送的信号中获取所述下行相噪补偿信息, 以对所述 HFRU-ODU发送的信号进行补偿校正; 其中, 所述第二补偿模块还用于将 发送到所述 HFRU-ODU的信号中加入所述 SFRU的发射本振的上行相噪补 偿信息,所述第一补偿模块还用于从所述高频频段收发信机发送的信号中获 取所述上行相噪补偿信息, 以对所述高频频段收发信机发送的信号进行补偿 校正。
11、 一种传输数据的方法, 其特征在于, 所述方法包括:
高频射频单元 HFRU接收站点发送的数据;
所述 HFRU将所述站点发送的数据转换成下行中频模拟信号,并将所述 下行中频模拟信号转换成下行高频信号;
所述 HFRU 将所述下行高频信号通过空中接口发送给移频射频单元 SFRU;
所述 SFRU将所述下行高频信号转换成下行中频信号, 并将所述下行中 频信号转换成下行无线蜂窝信号;
所述 SFRU将所述下行无线蜂窝信号发送给用户设备。
12、 根据权利要求 11所述的方法, 其特征在于, 所述 HFRU将所述站 点发送的数据转换成下行中频模拟信号, 包括:
所述 HFRU从所述站点发送的通用公共无线接口 CPRI协议数据中获取 下行中频数字信号, 并将所述下行中频数字信号转换成所述下行中频模拟信 号。
13、 根据权利要求 11所述的方法, 其特征在于, 所述方法还包括: 所述 HFRU确定所述 HFRU的发射本振的下行相噪补偿信息; 所述 HFRU将所述下行相噪补偿信息发送给所述 SFRU;
所述 SFRU根据所述下行相噪补偿信息,对所述 HFRU发送的所述下行 高频信号进行补偿校正。
14、 根据权利要求 11至 13中任一项所述的方法, 其特征在于, 所述方 法还包括:
所述 HFRU向所述 SFRU发送所述 SFRU的配置管理信息;
所述 SFRU根据所述配置管理信息对所述 SFRU进行控制。
15、 一种传输数据的方法, 其特征在于, 所述方法包括:
移频射频单元 SFRU接收用户设备发送的上行无线蜂窝信号; 所述 SFRU将所述上行无线蜂窝信号转换成上行中频信号, 并将所述上 行中频信号转换成上行高频信号;
所述 SFRU 将所述上行高频信号通过空中接口发送给高频射频单元 HFRU;
所述 HFRU将所述 SFRU发送的所述上行高频信号转换成上行中频模拟 信号, 并将所述上行中频模拟信号转换成上行中频数字信号;
所述 HFRU将所述上行中频数字信号发送给站点。
16、 根据权利要求 15所述的方法, 其特征在于, 所述 HFRU将所述上 行中频数字信号发送给站点, 包括:
所述 HFRU将所述上行中频数字信号转换成通用公共无线接口 CPRI数 据帧, 并将所述 CPRI数据帧发送给所述站点。
17、 根据权利要求 15所述的方法, 其特征在于, 所述方法还包括: 所述 SFRU确定所述 SFRU的发射本振的上行相噪补偿信息; 所述 SFRU将所述上行相噪补偿信息发送给所述 HFRU;
所述 HFRU根据所述上行相噪补偿信息,对所述 SFRU发送的所述上行 高频信号进行补偿校正。
18、 根据权利要求 15至 17中任一项所述的方法, 其特征在于, 所述方 法还包括:
所述 SFRU确定所述 SFRU的状态信息;
所述 SFRU将所述状态信息发送给所述 HFRU。
19、 一种高频射频单元 HFRU, 其特征在于, 所述 HFRU包括: 处理器、 存储器、 总线系统、 接收器和发送器;
其中, 所述处理器、 所述存储器、 所述接收器和所述发送器通过所述总 线系统相连, 所述存储器用于存储指令, 所述处理器用于执行所述存储器存 储的指令, 以控制所述接收器接收信号, 并控制所述发送器发送信号; 所述接收器用于接收站点发送的数据;
所述处理器用于将所述站点发送的数据转换成下行中频模拟信号, 并将 所述下行中频模拟信号转换成下行高频信号;
所述发送器用于将所述下行高频信号通过空中接口发送给移频射频单 元 SFRU。
20、 根据权利要求 19所述的 HFRU, 其特征在于, 所述处理器将所述 站点发送的数据转换成下行中频模拟信号, 包括:
所述处理器从所述站点发送的通用公共无线接口 CPRI协议数据中获取 下行中频数字信号, 并将所述下行中频数字信号转换成所述下行中频模拟信 号。
21、 根据权利要求 19所述的 HFRU, 其特征在于, 所述处理器还用于 确定所述 HFRU的发射本振的下行相噪补偿信息;所述发送器还用于将所述 下行相噪补偿信息发送给所述 SFRU。
22、 根据权利要求 19所述的 HFRU, 其特征在于, 所述发送器还用于 向所述 SFRU发送所述 SFRU的配置管理信息。
23、 根据权利要求 19所述的 HFRU, 其特征在于, 所述接收器还用于 接收所述 SFRU发送的上行高频信号; 所述处理器还用于将所述上行高频信 号转换成上行中频模拟信号, 并将所述上行中频模拟信号转换成上行中频数 字信号; 所述发送器还用于将所述上行中频数字信号发送给所述站点。
24、 根据权利要求 23所述的 HFRU, 其特征在于, 所述处理器还用于 将所述上行中频数字信号转换成通用公共无线接口 CPRI数据帧; 所述发送 器将所述上行中频数字信号发送给所述站点为, 所述发送器将所述 CPRI数 据帧发送给所述站点。
25、 根据权利要求 23所述的 HFRU, 其特征在于, 所述接收器还用于 接收所述 SFRU发送的上行相噪补偿信息; 所述处理器还用于根据所述上行 相噪补偿信息, 对所述上行高频信号进行补偿校正。
26、 根据权利要求 23所述的 HFRU, 其特征在于, 所述接收器还用于 接收所述 SFRU发送的所述 SFRU的状态信息。
27、 一种移频射频单元 SFRU, 其特征在于, 所述 SFRU包括: 处理器、 存储器、 总线系统、 接收器和发送器;
其中, 所述处理器、 所述存储器、 所述接收器和所述发送器通过所述总 线系统相连, 所述存储器用于存储指令, 所述处理器用于执行所述存储器存 储的指令, 以控制所述接收器接收信号, 并控制所述发送器发送信号;
所述接收器用于接收高频射频单元 HFRU通过空中接口发送的下行高 频信号;
所述处理器用于将所述下行高频信号转换成下行中频信号, 并将所述下 行中频信号转换成下行无线蜂窝信号;
所述发送器用于将所述下行无线蜂窝信号发送给用户设备。
28、根据权利要求 27所述的 SFRU, 其特征在于, 所述接收器还用于接 收所述 HFRU发送的下行相噪补偿信息;所述处理器还用于根据所述下行相 噪补偿信息, 对所述下行高频信号进行补偿校正。
29、根据权利要求 27所述的 SFRU, 其特征在于, 所述接收器还用于接 收所述 HFRU发送的所述 SFRU的配置管理信息;所述处理器还用于根据所 述配置管理信息对所述 SFRU进行控制。
30、根据权利要求 27所述的 SFRU, 其特征在于, 所述接收器还用于接 收所述用户设备发送的上行无线蜂窝信号; 所述处理器还用于将所述上行无 线蜂窝信号转换成上行中频信号, 并将所述上行中频信号转换成上行高频信 号;所述发送器还用于将所述上行高频信号通过空中接口发送给所述 HFRU。
31、根据权利要求 30所述的 SFRU, 其特征在于, 所述处理器还用于确 定所述 SFRU的发射本振的上行相噪补偿信息; 所述发送器还用于将所述上 行相噪补偿信息发送给所述 HFRU。
32、根据权利要求 30所述的 SFRU, 其特征在于, 所述处理器还用于确 定所述 SFRU 的状态信息; 所述发送器还用于将所述状态信息发送给所述 HFRUo
PCT/CN2013/091009 2013-12-31 2013-12-31 传输数据的方法和装置 WO2015100576A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2013/091009 WO2015100576A1 (zh) 2013-12-31 2013-12-31 传输数据的方法和装置
CN201380003391.6A CN104937969B (zh) 2013-12-31 2013-12-31 传输数据的方法和装置
EP13900679.5A EP3079394B1 (en) 2013-12-31 2013-12-31 Method and apparatus for transmitting data
US15/197,362 US9924374B2 (en) 2013-12-31 2016-06-29 Method and apparatus for transmitting data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/091009 WO2015100576A1 (zh) 2013-12-31 2013-12-31 传输数据的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/197,362 Continuation US9924374B2 (en) 2013-12-31 2016-06-29 Method and apparatus for transmitting data

Publications (1)

Publication Number Publication Date
WO2015100576A1 true WO2015100576A1 (zh) 2015-07-09

Family

ID=53492932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091009 WO2015100576A1 (zh) 2013-12-31 2013-12-31 传输数据的方法和装置

Country Status (4)

Country Link
US (1) US9924374B2 (zh)
EP (1) EP3079394B1 (zh)
CN (1) CN104937969B (zh)
WO (1) WO2015100576A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10116483B2 (en) 2016-04-18 2018-10-30 Qualcomm Incorporated Dynamically convey information of demodulation reference signal and phase noise compensation reference signal
US10595225B2 (en) * 2016-09-13 2020-03-17 Qualcomm Incorporated Phase-noise compensation reference signal configuration reporting and signaling
CN111373838B (zh) * 2017-11-24 2022-07-19 华为技术有限公司 一种传输上行信号的方法、基站及系统
CN117424945B (zh) * 2023-12-18 2024-03-22 四川恒湾科技有限公司 一种应用于o-ru的gsm上行处理系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1213258A (zh) * 1997-09-18 1999-04-07 三星电子株式会社 产生导频信号以执行硬切换的设备和方法
CN1224986A (zh) * 1997-08-14 1999-08-04 Sk泰力康姆株式会社 微蜂窝移动通信系统
CN102355297A (zh) * 2011-07-05 2012-02-15 成都睿兴通电子科技有限公司 基于接收机阵列的航空遥测系统及其实现方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2904093B2 (ja) * 1996-01-19 1999-06-14 日本電気株式会社 室内外並用式移動通信システム
KR100259843B1 (ko) * 1997-08-14 2000-06-15 윤종용 고출력 증폭기와 광 안테나의 정합 시스템을 이용한 양방향성 옥외용 기지국
JP2001146141A (ja) 1999-11-19 2001-05-29 Honda Motor Co Ltd フロントピラーの衝撃吸収構造
AU2001288828A1 (en) * 2000-09-14 2002-03-26 Ensemble Communications, Inc. A system and method for wireless communication in a frequency division duplexingregion
US7123649B1 (en) * 2000-11-03 2006-10-17 Peter Smith Outdoor unit programming system
US6731946B1 (en) * 2000-11-22 2004-05-04 Ensemble Communications System and method for timing detector measurements in a wireless communication system
US6704579B2 (en) * 2001-02-15 2004-03-09 Ensemble Communications System and method of automatically calibrating the gain for a distributed wireless communication system
US6577863B2 (en) * 2001-02-15 2003-06-10 Ensemble Communications, Inc. Failure redundancy between modem interface cards and outdoor units in a wireless communication system
IT1403065B1 (it) * 2010-12-01 2013-10-04 Andrew Wireless Systems Gmbh Distributed antenna system for mimo signals.
US8396368B2 (en) * 2009-12-09 2013-03-12 Andrew Llc Distributed antenna system for MIMO signals
US20030104781A1 (en) * 2001-12-03 2003-06-05 Son O. Sung Modular residential radio frequency converting repeater
JP2003298486A (ja) * 2002-03-29 2003-10-17 Maruko & Co Ltd 無線中継装置
GB2387516B (en) * 2002-04-11 2005-03-09 Cambridge Broadband Ltd Communication system
JP3845420B2 (ja) * 2004-03-22 2006-11-15 Necアクセステクニカ株式会社 光メディアコンバータシステム
CN100375550C (zh) * 2005-03-07 2008-03-12 大唐移动通信设备有限公司 一种基站系统
RU2279764C1 (ru) 2005-07-27 2006-07-10 Юрий Алексеевич Громаков Система сотовой связи и ее узлы
US8098990B2 (en) * 2006-09-12 2012-01-17 Nec Laboratories America, Inc. System and method for providing wireless over a passive optical network (PON)
CN101868055B (zh) * 2010-05-31 2012-08-15 华为技术有限公司 一种无线基站
US8381250B2 (en) * 2010-08-11 2013-02-19 Verizon Patent And Licensing Inc. Customer premises equipment architecture for bundled services in a fixed broadband wireless installation
US8406709B2 (en) * 2011-02-27 2013-03-26 Provigent Ltd. Carrier recovery in re-modulation communication systems
US9060382B2 (en) * 2011-10-13 2015-06-16 Broadcom Corporation Split architecture remote radio
US9380645B2 (en) * 2011-11-30 2016-06-28 Broadcom Corporation Communication pathway supporting an advanced split microwave backhaul architecture
DE102011120827B4 (de) * 2011-12-13 2019-03-21 Andrew Wireless Systems Gmbh Kommunikationsnetzwerk
EP2829152A2 (en) * 2012-03-23 2015-01-28 Corning Optical Communications Wireless Ltd. Radio-frequency integrated circuit (rfic) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods
US9077649B2 (en) * 2012-05-29 2015-07-07 Verizon Patent And Licensing Inc. Split customer premises equipment architecture for provisioning fixed wireless broadband services

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1224986A (zh) * 1997-08-14 1999-08-04 Sk泰力康姆株式会社 微蜂窝移动通信系统
CN1213258A (zh) * 1997-09-18 1999-04-07 三星电子株式会社 产生导频信号以执行硬切换的设备和方法
CN102355297A (zh) * 2011-07-05 2012-02-15 成都睿兴通电子科技有限公司 基于接收机阵列的航空遥测系统及其实现方法

Also Published As

Publication number Publication date
CN104937969A (zh) 2015-09-23
US9924374B2 (en) 2018-03-20
US20160309338A1 (en) 2016-10-20
EP3079394A1 (en) 2016-10-12
EP3079394A4 (en) 2016-12-28
CN104937969B (zh) 2019-10-15
EP3079394B1 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
WO2018028619A1 (zh) 一种资源配置方法及装置
JP6910483B2 (ja) 通信方法、ネットワークデバイス、およびユーザ機器
WO2018202102A1 (zh) 数据传输方法及通信设备
CN110557846B (zh) 一种数据传输方法、终端设备及网络设备
US9924374B2 (en) Method and apparatus for transmitting data
WO2011076112A1 (zh) 接入设备、网络设备、接入系统和数据传送方法
WO2015058379A1 (zh) 传输信息的方法、装置和系统
WO2022042600A1 (zh) 一种通信方法、装置及系统
WO2019183903A1 (zh) 用于传输数据的方法和终端设备
WO2017130511A1 (ja) 装置及び方法
WO2020173464A1 (zh) 随机接入方法和装置
WO2016045097A1 (zh) D2d信号跳频方法及基站
JP2007028124A (ja) 中継装置
WO2017219205A1 (zh) 基站、数据传输方法及装置
JP2024502261A (ja) Iab mt-duリソースのミスアライメントのグループへの通知発明の背景
US9986535B2 (en) Method and system for managing mobile management entity (MME) in a telecommunication network
US9119184B2 (en) Method and system of transmitting a bearer resource request message from a UE to a MME for setting up an EPS bearer in a LTE network
WO2020063546A1 (zh) 一种指示方法、装置及系统
WO2015042954A1 (zh) 站间同步的方法及基站
US9210612B2 (en) Communication system, method and device
WO2022267604A1 (zh) 信道检测的方法和装置
WO2022022302A1 (zh) 一种数据传输时域参数指示的方法和ue及基站
TW201524236A (zh) 用於行動中繼收發器及車輛電傳模組的設備、車輛、方法及電腦程式
WO2018028640A1 (zh) 信息传输的方法、终端设备和网络设备
WO2023202515A1 (zh) 信息处理方法、装置及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013900679

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013900679

Country of ref document: EP